ggml.c 637 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnigns
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. //
  198. // tensor access macros
  199. //
  200. #define GGML_TENSOR_UNARY_OP_LOCALS \
  201. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  202. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  203. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  204. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  205. #define GGML_TENSOR_BINARY_OP_LOCALS \
  206. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  207. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  208. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  209. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  210. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  211. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  212. #if defined(GGML_USE_ACCELERATE)
  213. #include <Accelerate/Accelerate.h>
  214. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  215. #include "ggml-opencl.h"
  216. #endif
  217. #elif defined(GGML_USE_OPENBLAS)
  218. #if defined(GGML_BLAS_USE_MKL)
  219. #include <mkl.h>
  220. #else
  221. #include <cblas.h>
  222. #endif
  223. #elif defined(GGML_USE_CUBLAS)
  224. #include "ggml-cuda.h"
  225. #elif defined(GGML_USE_CLBLAST)
  226. #include "ggml-opencl.h"
  227. #endif
  228. // floating point type used to accumulate sums
  229. typedef double ggml_float;
  230. //
  231. // global data
  232. //
  233. // precomputed gelu table for f16 (128 KB)
  234. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  235. // precomputed quick gelu table for f16 (128 KB)
  236. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  237. // precomputed silu table for f16 (128 KB)
  238. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  239. // precomputed exp table for f16 (128 KB)
  240. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  241. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  242. float ggml_table_f32_f16[1 << 16];
  243. // note: do not use these inside ggml.c
  244. // these are meant to be used via the ggml.h API
  245. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  246. return (float) GGML_FP16_TO_FP32(x);
  247. }
  248. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  249. return GGML_FP32_TO_FP16(x);
  250. }
  251. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  252. for (int i = 0; i < n; i++) {
  253. y[i] = GGML_FP16_TO_FP32(x[i]);
  254. }
  255. }
  256. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  257. int i = 0;
  258. #if defined(__F16C__)
  259. for (; i + 7 < n; i += 8) {
  260. __m256 x_vec = _mm256_loadu_ps(x + i);
  261. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  262. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  263. }
  264. for(; i + 3 < n; i += 4) {
  265. __m128 x_vec = _mm_loadu_ps(x + i);
  266. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  267. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  268. }
  269. #endif
  270. for (; i < n; i++) {
  271. y[i] = GGML_FP32_TO_FP16(x[i]);
  272. }
  273. }
  274. //
  275. // timing
  276. //
  277. #if defined(_MSC_VER) || defined(__MINGW32__)
  278. static int64_t timer_freq, timer_start;
  279. void ggml_time_init(void) {
  280. LARGE_INTEGER t;
  281. QueryPerformanceFrequency(&t);
  282. timer_freq = t.QuadPart;
  283. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  284. // and the uptime is high enough.
  285. // We subtract the program start time to reduce the likelihood of that happening.
  286. QueryPerformanceCounter(&t);
  287. timer_start = t.QuadPart;
  288. }
  289. int64_t ggml_time_ms(void) {
  290. LARGE_INTEGER t;
  291. QueryPerformanceCounter(&t);
  292. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  293. }
  294. int64_t ggml_time_us(void) {
  295. LARGE_INTEGER t;
  296. QueryPerformanceCounter(&t);
  297. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  298. }
  299. #else
  300. void ggml_time_init(void) {}
  301. int64_t ggml_time_ms(void) {
  302. struct timespec ts;
  303. clock_gettime(CLOCK_MONOTONIC, &ts);
  304. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  305. }
  306. int64_t ggml_time_us(void) {
  307. struct timespec ts;
  308. clock_gettime(CLOCK_MONOTONIC, &ts);
  309. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  310. }
  311. #endif
  312. int64_t ggml_cycles(void) {
  313. return clock();
  314. }
  315. int64_t ggml_cycles_per_ms(void) {
  316. return CLOCKS_PER_SEC/1000;
  317. }
  318. #ifdef GGML_PERF
  319. #define ggml_perf_time_ms() ggml_time_ms()
  320. #define ggml_perf_time_us() ggml_time_us()
  321. #define ggml_perf_cycles() ggml_cycles()
  322. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  323. #else
  324. #define ggml_perf_time_ms() 0
  325. #define ggml_perf_time_us() 0
  326. #define ggml_perf_cycles() 0
  327. #define ggml_perf_cycles_per_ms() 0
  328. #endif
  329. //
  330. // cache line
  331. //
  332. #if defined(__cpp_lib_hardware_interference_size)
  333. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  334. #else
  335. #if defined(__POWER9_VECTOR__)
  336. #define CACHE_LINE_SIZE 128
  337. #else
  338. #define CACHE_LINE_SIZE 64
  339. #endif
  340. #endif
  341. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  342. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  343. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  344. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  345. [GGML_TYPE_I8] = {
  346. .type_name = "i8",
  347. .blck_size = 1,
  348. .type_size = sizeof(int8_t),
  349. .is_quantized = false,
  350. },
  351. [GGML_TYPE_I16] = {
  352. .type_name = "i16",
  353. .blck_size = 1,
  354. .type_size = sizeof(int16_t),
  355. .is_quantized = false,
  356. },
  357. [GGML_TYPE_I32] = {
  358. .type_name = "i32",
  359. .blck_size = 1,
  360. .type_size = sizeof(int32_t),
  361. .is_quantized = false,
  362. },
  363. [GGML_TYPE_F32] = {
  364. .type_name = "f32",
  365. .blck_size = 1,
  366. .type_size = sizeof(float),
  367. .is_quantized = false,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  369. .vec_dot_type = GGML_TYPE_F32,
  370. },
  371. [GGML_TYPE_F16] = {
  372. .type_name = "f16",
  373. .blck_size = 1,
  374. .type_size = sizeof(ggml_fp16_t),
  375. .is_quantized = false,
  376. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  377. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  378. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  379. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  380. .vec_dot_type = GGML_TYPE_F16,
  381. },
  382. [GGML_TYPE_Q4_0] = {
  383. .type_name = "q4_0",
  384. .blck_size = QK4_0,
  385. .type_size = sizeof(block_q4_0),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  388. .from_float = quantize_row_q4_0,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  390. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  391. .vec_dot_type = GGML_TYPE_Q8_0,
  392. },
  393. [GGML_TYPE_Q4_1] = {
  394. .type_name = "q4_1",
  395. .blck_size = QK4_1,
  396. .type_size = sizeof(block_q4_1),
  397. .is_quantized = true,
  398. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  399. .from_float = quantize_row_q4_1,
  400. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  401. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  402. .vec_dot_type = GGML_TYPE_Q8_1,
  403. },
  404. [4] = { // GGML_TYPE_Q4_2
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [5] = { // GGML_TYPE_Q4_3
  416. .type_name = "DEPRECATED",
  417. .blck_size = 0,
  418. .type_size = 0,
  419. .is_quantized = false,
  420. .to_float = NULL,
  421. .from_float = NULL,
  422. .from_float_reference = NULL,
  423. .vec_dot = NULL,
  424. .vec_dot_type = GGML_TYPE_COUNT,
  425. },
  426. [GGML_TYPE_Q5_0] = {
  427. .type_name = "q5_0",
  428. .blck_size = QK5_0,
  429. .type_size = sizeof(block_q5_0),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  432. .from_float = quantize_row_q5_0,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  434. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  435. .vec_dot_type = GGML_TYPE_Q8_0,
  436. },
  437. [GGML_TYPE_Q5_1] = {
  438. .type_name = "q5_1",
  439. .blck_size = QK5_1,
  440. .type_size = sizeof(block_q5_1),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  443. .from_float = quantize_row_q5_1,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  445. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  446. .vec_dot_type = GGML_TYPE_Q8_1,
  447. },
  448. [GGML_TYPE_Q8_0] = {
  449. .type_name = "q8_0",
  450. .blck_size = QK8_0,
  451. .type_size = sizeof(block_q8_0),
  452. .is_quantized = true,
  453. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  454. .from_float = quantize_row_q8_0,
  455. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  456. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  457. .vec_dot_type = GGML_TYPE_Q8_0,
  458. },
  459. [GGML_TYPE_Q8_1] = {
  460. .type_name = "q8_1",
  461. .blck_size = QK8_1,
  462. .type_size = sizeof(block_q8_1),
  463. .is_quantized = true,
  464. .from_float = quantize_row_q8_1,
  465. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  466. .vec_dot_type = GGML_TYPE_Q8_1,
  467. },
  468. [GGML_TYPE_Q2_K] = {
  469. .type_name = "q2_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q2_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  474. .from_float = quantize_row_q2_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  476. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q3_K] = {
  480. .type_name = "q3_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q3_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  485. .from_float = quantize_row_q3_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  487. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q4_K] = {
  491. .type_name = "q4_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q4_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  496. .from_float = quantize_row_q4_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  498. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q5_K] = {
  502. .type_name = "q5_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q5_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  507. .from_float = quantize_row_q5_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  509. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_Q6_K] = {
  513. .type_name = "q6_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q6_K),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  518. .from_float = quantize_row_q6_K,
  519. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  520. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. },
  523. [GGML_TYPE_Q8_K] = {
  524. .type_name = "q8_K",
  525. .blck_size = QK_K,
  526. .type_size = sizeof(block_q8_K),
  527. .is_quantized = true,
  528. .from_float = quantize_row_q8_K,
  529. }
  530. };
  531. // For internal test use
  532. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  533. GGML_ASSERT(type < GGML_TYPE_COUNT);
  534. return type_traits[type];
  535. }
  536. //
  537. // simd mappings
  538. //
  539. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  540. // we then implement the fundamental computation operations below using only these macros
  541. // adding support for new architectures requires to define the corresponding SIMD macros
  542. //
  543. // GGML_F32_STEP / GGML_F16_STEP
  544. // number of elements to process in a single step
  545. //
  546. // GGML_F32_EPR / GGML_F16_EPR
  547. // number of elements to fit in a single register
  548. //
  549. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  550. #define GGML_SIMD
  551. // F32 NEON
  552. #define GGML_F32_STEP 16
  553. #define GGML_F32_EPR 4
  554. #define GGML_F32x4 float32x4_t
  555. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  556. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  557. #define GGML_F32x4_LOAD vld1q_f32
  558. #define GGML_F32x4_STORE vst1q_f32
  559. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  560. #define GGML_F32x4_ADD vaddq_f32
  561. #define GGML_F32x4_MUL vmulq_f32
  562. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  563. #define GGML_F32x4_REDUCE(res, x) \
  564. { \
  565. int offset = GGML_F32_ARR >> 1; \
  566. for (int i = 0; i < offset; ++i) { \
  567. x[i] = vaddq_f32(x[i], x[offset+i]); \
  568. } \
  569. offset >>= 1; \
  570. for (int i = 0; i < offset; ++i) { \
  571. x[i] = vaddq_f32(x[i], x[offset+i]); \
  572. } \
  573. offset >>= 1; \
  574. for (int i = 0; i < offset; ++i) { \
  575. x[i] = vaddq_f32(x[i], x[offset+i]); \
  576. } \
  577. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  578. }
  579. #define GGML_F32_VEC GGML_F32x4
  580. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  581. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  582. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  583. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  584. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  585. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  586. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  587. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  588. // F16 NEON
  589. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  590. #define GGML_F16_STEP 32
  591. #define GGML_F16_EPR 8
  592. #define GGML_F16x8 float16x8_t
  593. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  594. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  595. #define GGML_F16x8_LOAD vld1q_f16
  596. #define GGML_F16x8_STORE vst1q_f16
  597. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  598. #define GGML_F16x8_ADD vaddq_f16
  599. #define GGML_F16x8_MUL vmulq_f16
  600. #define GGML_F16x8_REDUCE(res, x) \
  601. do { \
  602. int offset = GGML_F16_ARR >> 1; \
  603. for (int i = 0; i < offset; ++i) { \
  604. x[i] = vaddq_f16(x[i], x[offset+i]); \
  605. } \
  606. offset >>= 1; \
  607. for (int i = 0; i < offset; ++i) { \
  608. x[i] = vaddq_f16(x[i], x[offset+i]); \
  609. } \
  610. offset >>= 1; \
  611. for (int i = 0; i < offset; ++i) { \
  612. x[i] = vaddq_f16(x[i], x[offset+i]); \
  613. } \
  614. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  615. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  616. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  617. } while (0)
  618. #define GGML_F16_VEC GGML_F16x8
  619. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  620. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  621. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  622. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  623. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  624. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  625. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  626. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  627. #else
  628. // if FP16 vector arithmetic is not supported, we use FP32 instead
  629. // and take advantage of the vcvt_ functions to convert to/from FP16
  630. #define GGML_F16_STEP 16
  631. #define GGML_F16_EPR 4
  632. #define GGML_F32Cx4 float32x4_t
  633. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  634. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  635. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  636. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  637. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  638. #define GGML_F32Cx4_ADD vaddq_f32
  639. #define GGML_F32Cx4_MUL vmulq_f32
  640. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  641. #define GGML_F16_VEC GGML_F32Cx4
  642. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  643. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  644. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  645. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  646. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  647. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  648. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  649. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  650. #endif
  651. #elif defined(__AVX__)
  652. #define GGML_SIMD
  653. // F32 AVX
  654. #define GGML_F32_STEP 32
  655. #define GGML_F32_EPR 8
  656. #define GGML_F32x8 __m256
  657. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  658. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  659. #define GGML_F32x8_LOAD _mm256_loadu_ps
  660. #define GGML_F32x8_STORE _mm256_storeu_ps
  661. #if defined(__FMA__)
  662. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  663. #else
  664. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  665. #endif
  666. #define GGML_F32x8_ADD _mm256_add_ps
  667. #define GGML_F32x8_MUL _mm256_mul_ps
  668. #define GGML_F32x8_REDUCE(res, x) \
  669. do { \
  670. int offset = GGML_F32_ARR >> 1; \
  671. for (int i = 0; i < offset; ++i) { \
  672. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  673. } \
  674. offset >>= 1; \
  675. for (int i = 0; i < offset; ++i) { \
  676. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  677. } \
  678. offset >>= 1; \
  679. for (int i = 0; i < offset; ++i) { \
  680. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  681. } \
  682. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  683. _mm256_extractf128_ps(x[0], 1)); \
  684. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  685. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  686. } while (0)
  687. // TODO: is this optimal ?
  688. #define GGML_F32_VEC GGML_F32x8
  689. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  690. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  691. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  692. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  693. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  694. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  695. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  696. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  697. // F16 AVX
  698. #define GGML_F16_STEP 32
  699. #define GGML_F16_EPR 8
  700. // F16 arithmetic is not supported by AVX, so we use F32 instead
  701. #define GGML_F32Cx8 __m256
  702. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  703. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  704. #if defined(__F16C__)
  705. // the _mm256_cvt intrinsics require F16C
  706. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  707. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  708. #else
  709. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  710. float tmp[8];
  711. for (int i = 0; i < 8; i++) {
  712. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  713. }
  714. return _mm256_loadu_ps(tmp);
  715. }
  716. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  717. float arr[8];
  718. _mm256_storeu_ps(arr, y);
  719. for (int i = 0; i < 8; i++)
  720. x[i] = GGML_FP32_TO_FP16(arr[i]);
  721. }
  722. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  723. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  724. #endif
  725. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  726. #define GGML_F32Cx8_ADD _mm256_add_ps
  727. #define GGML_F32Cx8_MUL _mm256_mul_ps
  728. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  729. #define GGML_F16_VEC GGML_F32Cx8
  730. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  731. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  732. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  733. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  734. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  735. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  736. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  737. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  738. #elif defined(__POWER9_VECTOR__)
  739. #define GGML_SIMD
  740. // F32 POWER9
  741. #define GGML_F32_STEP 32
  742. #define GGML_F32_EPR 4
  743. #define GGML_F32x4 vector float
  744. #define GGML_F32x4_ZERO 0.0f
  745. #define GGML_F32x4_SET1 vec_splats
  746. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  747. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  748. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  749. #define GGML_F32x4_ADD vec_add
  750. #define GGML_F32x4_MUL vec_mul
  751. #define GGML_F32x4_REDUCE(res, x) \
  752. { \
  753. int offset = GGML_F32_ARR >> 1; \
  754. for (int i = 0; i < offset; ++i) { \
  755. x[i] = vec_add(x[i], x[offset+i]); \
  756. } \
  757. offset >>= 1; \
  758. for (int i = 0; i < offset; ++i) { \
  759. x[i] = vec_add(x[i], x[offset+i]); \
  760. } \
  761. offset >>= 1; \
  762. for (int i = 0; i < offset; ++i) { \
  763. x[i] = vec_add(x[i], x[offset+i]); \
  764. } \
  765. res = vec_extract(x[0], 0) + \
  766. vec_extract(x[0], 1) + \
  767. vec_extract(x[0], 2) + \
  768. vec_extract(x[0], 3); \
  769. }
  770. #define GGML_F32_VEC GGML_F32x4
  771. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  772. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  773. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  774. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  775. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  776. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  777. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  778. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  779. // F16 POWER9
  780. #define GGML_F16_STEP GGML_F32_STEP
  781. #define GGML_F16_EPR GGML_F32_EPR
  782. #define GGML_F16_VEC GGML_F32x4
  783. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  784. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  785. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  786. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  787. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  788. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  789. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  790. vec_extract_fp32_from_shortl(vec_xl(0, p))
  791. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  792. #define GGML_F16_VEC_STORE(p, r, i) \
  793. if (i & 0x1) \
  794. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  795. r[i - GGML_ENDIAN_BYTE(0)]), \
  796. 0, p - GGML_F16_EPR)
  797. #elif defined(__wasm_simd128__)
  798. #define GGML_SIMD
  799. // F32 WASM
  800. #define GGML_F32_STEP 16
  801. #define GGML_F32_EPR 4
  802. #define GGML_F32x4 v128_t
  803. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  804. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  805. #define GGML_F32x4_LOAD wasm_v128_load
  806. #define GGML_F32x4_STORE wasm_v128_store
  807. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  808. #define GGML_F32x4_ADD wasm_f32x4_add
  809. #define GGML_F32x4_MUL wasm_f32x4_mul
  810. #define GGML_F32x4_REDUCE(res, x) \
  811. { \
  812. int offset = GGML_F32_ARR >> 1; \
  813. for (int i = 0; i < offset; ++i) { \
  814. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  815. } \
  816. offset >>= 1; \
  817. for (int i = 0; i < offset; ++i) { \
  818. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  819. } \
  820. offset >>= 1; \
  821. for (int i = 0; i < offset; ++i) { \
  822. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  823. } \
  824. res = wasm_f32x4_extract_lane(x[0], 0) + \
  825. wasm_f32x4_extract_lane(x[0], 1) + \
  826. wasm_f32x4_extract_lane(x[0], 2) + \
  827. wasm_f32x4_extract_lane(x[0], 3); \
  828. }
  829. #define GGML_F32_VEC GGML_F32x4
  830. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  831. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  832. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  833. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  834. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  835. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  836. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  837. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  838. // F16 WASM
  839. #define GGML_F16_STEP 16
  840. #define GGML_F16_EPR 4
  841. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  842. float tmp[4];
  843. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  844. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  845. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  846. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  847. return wasm_v128_load(tmp);
  848. }
  849. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  850. float tmp[4];
  851. wasm_v128_store(tmp, x);
  852. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  853. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  854. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  855. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  856. }
  857. #define GGML_F16x4 v128_t
  858. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  859. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  860. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  861. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  862. #define GGML_F16x4_FMA GGML_F32x4_FMA
  863. #define GGML_F16x4_ADD wasm_f32x4_add
  864. #define GGML_F16x4_MUL wasm_f32x4_mul
  865. #define GGML_F16x4_REDUCE(res, x) \
  866. { \
  867. int offset = GGML_F16_ARR >> 1; \
  868. for (int i = 0; i < offset; ++i) { \
  869. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  870. } \
  871. offset >>= 1; \
  872. for (int i = 0; i < offset; ++i) { \
  873. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  874. } \
  875. offset >>= 1; \
  876. for (int i = 0; i < offset; ++i) { \
  877. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  878. } \
  879. res = wasm_f32x4_extract_lane(x[0], 0) + \
  880. wasm_f32x4_extract_lane(x[0], 1) + \
  881. wasm_f32x4_extract_lane(x[0], 2) + \
  882. wasm_f32x4_extract_lane(x[0], 3); \
  883. }
  884. #define GGML_F16_VEC GGML_F16x4
  885. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  886. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  887. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  888. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  889. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  890. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  891. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  892. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  893. #elif defined(__SSE3__)
  894. #define GGML_SIMD
  895. // F32 SSE
  896. #define GGML_F32_STEP 32
  897. #define GGML_F32_EPR 4
  898. #define GGML_F32x4 __m128
  899. #define GGML_F32x4_ZERO _mm_setzero_ps()
  900. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  901. #define GGML_F32x4_LOAD _mm_loadu_ps
  902. #define GGML_F32x4_STORE _mm_storeu_ps
  903. #if defined(__FMA__)
  904. // TODO: Does this work?
  905. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  906. #else
  907. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  908. #endif
  909. #define GGML_F32x4_ADD _mm_add_ps
  910. #define GGML_F32x4_MUL _mm_mul_ps
  911. #define GGML_F32x4_REDUCE(res, x) \
  912. { \
  913. int offset = GGML_F32_ARR >> 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  916. } \
  917. offset >>= 1; \
  918. for (int i = 0; i < offset; ++i) { \
  919. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  920. } \
  921. offset >>= 1; \
  922. for (int i = 0; i < offset; ++i) { \
  923. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  924. } \
  925. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  926. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  927. }
  928. // TODO: is this optimal ?
  929. #define GGML_F32_VEC GGML_F32x4
  930. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  931. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  932. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  933. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  934. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  935. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  936. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  937. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  938. // F16 SSE
  939. #define GGML_F16_STEP 32
  940. #define GGML_F16_EPR 4
  941. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  942. float tmp[4];
  943. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  944. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  945. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  946. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  947. return _mm_loadu_ps(tmp);
  948. }
  949. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  950. float arr[4];
  951. _mm_storeu_ps(arr, y);
  952. x[0] = GGML_FP32_TO_FP16(arr[0]);
  953. x[1] = GGML_FP32_TO_FP16(arr[1]);
  954. x[2] = GGML_FP32_TO_FP16(arr[2]);
  955. x[3] = GGML_FP32_TO_FP16(arr[3]);
  956. }
  957. #define GGML_F32Cx4 __m128
  958. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  959. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  960. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  961. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  962. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  963. #define GGML_F32Cx4_ADD _mm_add_ps
  964. #define GGML_F32Cx4_MUL _mm_mul_ps
  965. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  966. #define GGML_F16_VEC GGML_F32Cx4
  967. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  968. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  969. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  970. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  971. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  972. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  973. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  974. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  975. #endif
  976. // GGML_F32_ARR / GGML_F16_ARR
  977. // number of registers to use per step
  978. #ifdef GGML_SIMD
  979. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  980. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  981. #endif
  982. //
  983. // fundamental operations
  984. //
  985. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  986. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  987. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  988. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  989. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  990. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  991. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  992. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  993. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  994. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  995. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  996. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  997. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  998. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  999. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1000. #ifdef GGML_SIMD
  1001. float sumf = 0.0f;
  1002. const int np = (n & ~(GGML_F32_STEP - 1));
  1003. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1004. GGML_F32_VEC ax[GGML_F32_ARR];
  1005. GGML_F32_VEC ay[GGML_F32_ARR];
  1006. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1007. for (int j = 0; j < GGML_F32_ARR; j++) {
  1008. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1009. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1010. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1011. }
  1012. }
  1013. // reduce sum0..sum3 to sum0
  1014. GGML_F32_VEC_REDUCE(sumf, sum);
  1015. // leftovers
  1016. for (int i = np; i < n; ++i) {
  1017. sumf += x[i]*y[i];
  1018. }
  1019. #else
  1020. // scalar
  1021. ggml_float sumf = 0.0;
  1022. for (int i = 0; i < n; ++i) {
  1023. sumf += (ggml_float)(x[i]*y[i]);
  1024. }
  1025. #endif
  1026. *s = sumf;
  1027. }
  1028. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1029. ggml_float sumf = 0.0;
  1030. #if defined(GGML_SIMD)
  1031. const int np = (n & ~(GGML_F16_STEP - 1));
  1032. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1033. GGML_F16_VEC ax[GGML_F16_ARR];
  1034. GGML_F16_VEC ay[GGML_F16_ARR];
  1035. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1036. for (int j = 0; j < GGML_F16_ARR; j++) {
  1037. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1038. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1039. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1040. }
  1041. }
  1042. // reduce sum0..sum3 to sum0
  1043. GGML_F16_VEC_REDUCE(sumf, sum);
  1044. // leftovers
  1045. for (int i = np; i < n; ++i) {
  1046. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1047. }
  1048. #else
  1049. for (int i = 0; i < n; ++i) {
  1050. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1051. }
  1052. #endif
  1053. *s = sumf;
  1054. }
  1055. // compute GGML_VEC_DOT_UNROLL dot products at once
  1056. // xs - x row stride in bytes
  1057. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1058. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1059. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1060. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1061. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1062. }
  1063. #if defined(GGML_SIMD)
  1064. const int np = (n & ~(GGML_F16_STEP - 1));
  1065. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1066. GGML_F16_VEC ax[GGML_F16_ARR];
  1067. GGML_F16_VEC ay[GGML_F16_ARR];
  1068. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1069. for (int j = 0; j < GGML_F16_ARR; j++) {
  1070. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1071. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1072. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1073. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1074. }
  1075. }
  1076. }
  1077. // reduce sum0..sum3 to sum0
  1078. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1079. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1080. }
  1081. // leftovers
  1082. for (int i = np; i < n; ++i) {
  1083. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1084. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1085. }
  1086. }
  1087. #else
  1088. for (int i = 0; i < n; ++i) {
  1089. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1090. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1091. }
  1092. }
  1093. #endif
  1094. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1095. s[i] = sumf[i];
  1096. }
  1097. }
  1098. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1099. #if defined(GGML_SIMD)
  1100. const int np = (n & ~(GGML_F32_STEP - 1));
  1101. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1102. GGML_F32_VEC ax[GGML_F32_ARR];
  1103. GGML_F32_VEC ay[GGML_F32_ARR];
  1104. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1105. for (int j = 0; j < GGML_F32_ARR; j++) {
  1106. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1107. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1108. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1109. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1110. }
  1111. }
  1112. // leftovers
  1113. for (int i = np; i < n; ++i) {
  1114. y[i] += x[i]*v;
  1115. }
  1116. #else
  1117. // scalar
  1118. for (int i = 0; i < n; ++i) {
  1119. y[i] += x[i]*v;
  1120. }
  1121. #endif
  1122. }
  1123. // xs and vs are byte strides of x and v
  1124. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1125. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1126. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1127. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1128. x[i] = (const float *) ((const char *) xv + i*xs);
  1129. v[i] = (const float *) ((const char *) vv + i*vs);
  1130. }
  1131. #if defined(GGML_SIMD)
  1132. const int np = (n & ~(GGML_F32_STEP - 1));
  1133. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1134. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1135. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1136. }
  1137. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1138. GGML_F32_VEC ay[GGML_F32_ARR];
  1139. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1140. for (int j = 0; j < GGML_F32_ARR; j++) {
  1141. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1142. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1143. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1144. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1145. }
  1146. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1147. }
  1148. }
  1149. // leftovers
  1150. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1151. for (int i = np; i < n; ++i) {
  1152. y[i] += x[k][i]*v[k][0];
  1153. }
  1154. }
  1155. #else
  1156. // scalar
  1157. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1158. for (int i = 0; i < n; ++i) {
  1159. y[i] += x[k][i]*v[k][0];
  1160. }
  1161. }
  1162. #endif
  1163. }
  1164. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1165. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1166. #if defined(GGML_USE_ACCELERATE)
  1167. vDSP_vsmul(y, 1, &v, y, 1, n);
  1168. #elif defined(GGML_SIMD)
  1169. const int np = (n & ~(GGML_F32_STEP - 1));
  1170. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1171. GGML_F32_VEC ay[GGML_F32_ARR];
  1172. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1173. for (int j = 0; j < GGML_F32_ARR; j++) {
  1174. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1175. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1176. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1177. }
  1178. }
  1179. // leftovers
  1180. for (int i = np; i < n; ++i) {
  1181. y[i] *= v;
  1182. }
  1183. #else
  1184. // scalar
  1185. for (int i = 0; i < n; ++i) {
  1186. y[i] *= v;
  1187. }
  1188. #endif
  1189. }
  1190. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1191. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1192. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1193. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1194. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1195. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1196. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1197. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1198. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1199. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1200. inline static void ggml_vec_leaky_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.1f*x[i]; }
  1201. static const float GELU_COEF_A = 0.044715f;
  1202. static const float GELU_QUICK_COEF = -1.702f;
  1203. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1204. inline static float ggml_gelu_f32(float x) {
  1205. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1206. }
  1207. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1208. const uint16_t * i16 = (const uint16_t *) x;
  1209. for (int i = 0; i < n; ++i) {
  1210. y[i] = ggml_table_gelu_f16[i16[i]];
  1211. }
  1212. }
  1213. #ifdef GGML_GELU_FP16
  1214. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1215. uint16_t t;
  1216. for (int i = 0; i < n; ++i) {
  1217. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1218. memcpy(&t, &fp16, sizeof(uint16_t));
  1219. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1220. }
  1221. }
  1222. #else
  1223. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1224. for (int i = 0; i < n; ++i) {
  1225. y[i] = ggml_gelu_f32(x[i]);
  1226. }
  1227. }
  1228. #endif
  1229. inline static float ggml_gelu_quick_f32(float x) {
  1230. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1231. }
  1232. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1233. // const uint16_t * i16 = (const uint16_t *) x;
  1234. // for (int i = 0; i < n; ++i) {
  1235. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1236. // }
  1237. //}
  1238. #ifdef GGML_GELU_QUICK_FP16
  1239. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1240. uint16_t t;
  1241. for (int i = 0; i < n; ++i) {
  1242. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1243. memcpy(&t, &fp16, sizeof(uint16_t));
  1244. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1245. }
  1246. }
  1247. #else
  1248. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1249. for (int i = 0; i < n; ++i) {
  1250. y[i] = ggml_gelu_quick_f32(x[i]);
  1251. }
  1252. }
  1253. #endif
  1254. // Sigmoid Linear Unit (SiLU) function
  1255. inline static float ggml_silu_f32(float x) {
  1256. return x/(1.0f + expf(-x));
  1257. }
  1258. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1259. // const uint16_t * i16 = (const uint16_t *) x;
  1260. // for (int i = 0; i < n; ++i) {
  1261. // y[i] = ggml_table_silu_f16[i16[i]];
  1262. // }
  1263. //}
  1264. #ifdef GGML_SILU_FP16
  1265. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1266. uint16_t t;
  1267. for (int i = 0; i < n; ++i) {
  1268. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1269. memcpy(&t, &fp16, sizeof(uint16_t));
  1270. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1271. }
  1272. }
  1273. #else
  1274. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1275. for (int i = 0; i < n; ++i) {
  1276. y[i] = ggml_silu_f32(x[i]);
  1277. }
  1278. }
  1279. #endif
  1280. inline static float ggml_silu_backward_f32(float x, float dy) {
  1281. const float s = 1.0f/(1.0f + expf(-x));
  1282. return dy*s*(1.0f + x*(1.0f - s));
  1283. }
  1284. #ifdef GGML_SILU_FP16
  1285. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1286. for (int i = 0; i < n; ++i) {
  1287. // we did not use x[i] to compute forward silu but its f16 equivalent
  1288. // take derivative at f16 of x[i]:
  1289. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1290. float usedx = GGML_FP16_TO_FP32(fp16);
  1291. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1292. }
  1293. }
  1294. #else
  1295. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1296. for (int i = 0; i < n; ++i) {
  1297. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1298. }
  1299. }
  1300. #endif
  1301. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1302. #ifndef GGML_USE_ACCELERATE
  1303. ggml_float sum = 0.0;
  1304. for (int i = 0; i < n; ++i) {
  1305. sum += (ggml_float)x[i];
  1306. }
  1307. *s = sum;
  1308. #else
  1309. vDSP_sve(x, 1, s, n);
  1310. #endif
  1311. }
  1312. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1313. ggml_float sum = 0.0;
  1314. for (int i = 0; i < n; ++i) {
  1315. sum += (ggml_float)x[i];
  1316. }
  1317. *s = sum;
  1318. }
  1319. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1320. float sum = 0.0f;
  1321. for (int i = 0; i < n; ++i) {
  1322. sum += GGML_FP16_TO_FP32(x[i]);
  1323. }
  1324. *s = sum;
  1325. }
  1326. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1327. #ifndef GGML_USE_ACCELERATE
  1328. float max = -INFINITY;
  1329. for (int i = 0; i < n; ++i) {
  1330. max = MAX(max, x[i]);
  1331. }
  1332. *s = max;
  1333. #else
  1334. vDSP_maxv(x, 1, s, n);
  1335. #endif
  1336. }
  1337. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1338. ggml_vec_norm_f32(n, s, x);
  1339. *s = 1.f/(*s);
  1340. }
  1341. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1342. float max = -INFINITY;
  1343. int idx = 0;
  1344. for (int i = 0; i < n; ++i) {
  1345. max = MAX(max, x[i]);
  1346. if (max == x[i]) { idx = i; }
  1347. }
  1348. *s = idx;
  1349. }
  1350. //
  1351. // data types
  1352. //
  1353. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1354. "NONE",
  1355. "DUP",
  1356. "ADD",
  1357. "ADD1",
  1358. "ACC",
  1359. "SUB",
  1360. "MUL",
  1361. "DIV",
  1362. "SQR",
  1363. "SQRT",
  1364. "LOG",
  1365. "SUM",
  1366. "SUM_ROWS",
  1367. "MEAN",
  1368. "ARGMAX",
  1369. "REPEAT",
  1370. "REPEAT_BACK",
  1371. "CONCAT",
  1372. "SILU_BACK",
  1373. "NORM",
  1374. "RMS_NORM",
  1375. "RMS_NORM_BACK",
  1376. "GROUP_NORM",
  1377. "MUL_MAT",
  1378. "OUT_PROD",
  1379. "SCALE",
  1380. "SET",
  1381. "CPY",
  1382. "CONT",
  1383. "RESHAPE",
  1384. "VIEW",
  1385. "PERMUTE",
  1386. "TRANSPOSE",
  1387. "GET_ROWS",
  1388. "GET_ROWS_BACK",
  1389. "DIAG",
  1390. "DIAG_MASK_INF",
  1391. "DIAG_MASK_ZERO",
  1392. "SOFT_MAX",
  1393. "SOFT_MAX_BACK",
  1394. "ROPE",
  1395. "ROPE_BACK",
  1396. "ALIBI",
  1397. "CLAMP",
  1398. "CONV_1D",
  1399. "CONV_1D_STAGE_0",
  1400. "CONV_1D_STAGE_1",
  1401. "CONV_TRANSPOSE_1D",
  1402. "CONV_2D",
  1403. "CONV_2D_STAGE_0",
  1404. "CONV_2D_STAGE_1",
  1405. "CONV_TRANSPOSE_2D",
  1406. "POOL_1D",
  1407. "POOL_2D",
  1408. "UPSCALE",
  1409. "FLASH_ATTN",
  1410. "FLASH_FF",
  1411. "FLASH_ATTN_BACK",
  1412. "WIN_PART",
  1413. "WIN_UNPART",
  1414. "GET_REL_POS",
  1415. "ADD_REL_POS",
  1416. "UNARY",
  1417. "MAP_UNARY",
  1418. "MAP_BINARY",
  1419. "MAP_CUSTOM1_F32",
  1420. "MAP_CUSTOM2_F32",
  1421. "MAP_CUSTOM3_F32",
  1422. "MAP_CUSTOM1",
  1423. "MAP_CUSTOM2",
  1424. "MAP_CUSTOM3",
  1425. "CROSS_ENTROPY_LOSS",
  1426. "CROSS_ENTROPY_LOSS_BACK",
  1427. };
  1428. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1429. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1430. "none",
  1431. "x",
  1432. "x+y",
  1433. "x+y",
  1434. "view(x,nb,offset)+=y->x",
  1435. "x-y",
  1436. "x*y",
  1437. "x/y",
  1438. "x^2",
  1439. "√x",
  1440. "log(x)",
  1441. "Σx",
  1442. "Σx_k",
  1443. "Σx/n",
  1444. "argmax(x)",
  1445. "repeat(x)",
  1446. "repeat_back(x)",
  1447. "concat(x, y)",
  1448. "silu_back(x)",
  1449. "norm(x)",
  1450. "rms_norm(x)",
  1451. "rms_norm_back(x)",
  1452. "group_norm(x)",
  1453. "X*Y",
  1454. "X*Y",
  1455. "x*v",
  1456. "y-\\>view(x)",
  1457. "x-\\>y",
  1458. "cont(x)",
  1459. "reshape(x)",
  1460. "view(x)",
  1461. "permute(x)",
  1462. "transpose(x)",
  1463. "get_rows(x)",
  1464. "get_rows_back(x)",
  1465. "diag(x)",
  1466. "diag_mask_inf(x)",
  1467. "diag_mask_zero(x)",
  1468. "soft_max(x)",
  1469. "soft_max_back(x)",
  1470. "rope(x)",
  1471. "rope_back(x)",
  1472. "alibi(x)",
  1473. "clamp(x)",
  1474. "conv_1d(x)",
  1475. "conv_1d_stage_0(x)",
  1476. "conv_1d_stage_1(x)",
  1477. "conv_transpose_1d(x)",
  1478. "conv_2d(x)",
  1479. "conv_2d_stage_0(x)",
  1480. "conv_2d_stage_1(x)",
  1481. "conv_transpose_2d(x)",
  1482. "pool_1d(x)",
  1483. "pool_2d(x)",
  1484. "upscale(x)",
  1485. "flash_attn(x)",
  1486. "flash_ff(x)",
  1487. "flash_attn_back(x)",
  1488. "win_part(x)",
  1489. "win_unpart(x)",
  1490. "get_rel_pos(x)",
  1491. "add_rel_pos(x)",
  1492. "unary(x)",
  1493. "f(x)",
  1494. "f(x,y)",
  1495. "custom_f32(x)",
  1496. "custom_f32(x,y)",
  1497. "custom_f32(x,y,z)",
  1498. "custom(x)",
  1499. "custom(x,y)",
  1500. "custom(x,y,z)",
  1501. "cross_entropy_loss(x,y)",
  1502. "cross_entropy_loss_back(x,y)",
  1503. };
  1504. static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73");
  1505. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1506. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1507. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1508. // WARN:
  1509. // Mis-confguration can lead to problem that's hard to reason about:
  1510. // * At best it crash or talks nosense.
  1511. // * At worst it talks slightly difference but hard to perceive.
  1512. //
  1513. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1514. // Take care about compile options (e.g., GGML_USE_xxx).
  1515. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1516. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1517. static void ggml_setup_op_has_task_pass(void) {
  1518. { // INIT
  1519. bool * p = GGML_OP_HAS_INIT;
  1520. p[GGML_OP_ACC ] = true;
  1521. p[GGML_OP_MUL_MAT ] = true;
  1522. p[GGML_OP_OUT_PROD ] = true;
  1523. p[GGML_OP_SET ] = true;
  1524. p[GGML_OP_GET_ROWS_BACK ] = true;
  1525. p[GGML_OP_DIAG_MASK_INF ] = true;
  1526. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1527. p[GGML_OP_CONV_1D ] = true;
  1528. p[GGML_OP_CONV_1D_STAGE_0 ] = true;
  1529. p[GGML_OP_CONV_1D_STAGE_1 ] = true;
  1530. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1531. p[GGML_OP_CONV_2D ] = true;
  1532. p[GGML_OP_CONV_2D_STAGE_0 ] = true;
  1533. p[GGML_OP_CONV_2D_STAGE_1 ] = true;
  1534. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1535. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1536. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1537. p[GGML_OP_ADD_REL_POS ] = true;
  1538. }
  1539. { // FINALIZE
  1540. bool * p = GGML_OP_HAS_FINALIZE;
  1541. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1542. }
  1543. }
  1544. //
  1545. // ggml context
  1546. //
  1547. struct ggml_context {
  1548. size_t mem_size;
  1549. void * mem_buffer;
  1550. bool mem_buffer_owned;
  1551. bool no_alloc;
  1552. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1553. int n_objects;
  1554. struct ggml_object * objects_begin;
  1555. struct ggml_object * objects_end;
  1556. struct ggml_scratch scratch;
  1557. struct ggml_scratch scratch_save;
  1558. };
  1559. struct ggml_context_container {
  1560. bool used;
  1561. struct ggml_context context;
  1562. };
  1563. //
  1564. // NUMA support
  1565. //
  1566. #define GGML_NUMA_MAX_NODES 8
  1567. #define GGML_NUMA_MAX_CPUS 512
  1568. struct ggml_numa_node {
  1569. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1570. uint32_t n_cpus;
  1571. };
  1572. struct ggml_numa_nodes {
  1573. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1574. uint32_t n_nodes;
  1575. uint32_t total_cpus; // hardware threads on system
  1576. };
  1577. //
  1578. // ggml state
  1579. //
  1580. struct ggml_state {
  1581. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1582. struct ggml_numa_nodes numa;
  1583. };
  1584. // global state
  1585. static struct ggml_state g_state;
  1586. static atomic_int g_state_barrier = 0;
  1587. // barrier via spin lock
  1588. inline static void ggml_critical_section_start(void) {
  1589. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1590. while (processing > 0) {
  1591. // wait for other threads to finish
  1592. atomic_fetch_sub(&g_state_barrier, 1);
  1593. sched_yield(); // TODO: reconsider this
  1594. processing = atomic_fetch_add(&g_state_barrier, 1);
  1595. }
  1596. }
  1597. // TODO: make this somehow automatically executed
  1598. // some sort of "sentry" mechanism
  1599. inline static void ggml_critical_section_end(void) {
  1600. atomic_fetch_sub(&g_state_barrier, 1);
  1601. }
  1602. void ggml_numa_init(void) {
  1603. if (g_state.numa.n_nodes > 0) {
  1604. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1605. return;
  1606. }
  1607. #ifdef __linux__
  1608. struct stat st;
  1609. char path[256];
  1610. int rv;
  1611. // enumerate nodes
  1612. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1613. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1614. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1615. if (stat(path, &st) != 0) { break; }
  1616. ++g_state.numa.n_nodes;
  1617. }
  1618. // enumerate CPUs
  1619. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1620. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1621. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1622. if (stat(path, &st) != 0) { break; }
  1623. ++g_state.numa.total_cpus;
  1624. }
  1625. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1626. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1627. g_state.numa.n_nodes = 0;
  1628. return;
  1629. }
  1630. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1631. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1632. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1633. node->n_cpus = 0;
  1634. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1635. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1636. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1637. if (stat(path, &st) == 0) {
  1638. node->cpus[node->n_cpus++] = c;
  1639. GGML_PRINT_DEBUG(" %u", c);
  1640. }
  1641. }
  1642. GGML_PRINT_DEBUG("\n");
  1643. }
  1644. if (ggml_is_numa()) {
  1645. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1646. if (fptr != NULL) {
  1647. char buf[42];
  1648. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1649. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1650. }
  1651. fclose(fptr);
  1652. }
  1653. }
  1654. #else
  1655. // TODO
  1656. #endif
  1657. }
  1658. bool ggml_is_numa(void) {
  1659. return g_state.numa.n_nodes > 1;
  1660. }
  1661. ////////////////////////////////////////////////////////////////////////////////
  1662. void ggml_print_object(const struct ggml_object * obj) {
  1663. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1664. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1665. }
  1666. void ggml_print_objects(const struct ggml_context * ctx) {
  1667. struct ggml_object * obj = ctx->objects_begin;
  1668. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1669. while (obj != NULL) {
  1670. ggml_print_object(obj);
  1671. obj = obj->next;
  1672. }
  1673. GGML_PRINT("%s: --- end ---\n", __func__);
  1674. }
  1675. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1676. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1677. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1678. }
  1679. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1680. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1681. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1682. }
  1683. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1684. size_t nbytes;
  1685. size_t blck_size = ggml_blck_size(tensor->type);
  1686. if (blck_size == 1) {
  1687. nbytes = ggml_type_size(tensor->type);
  1688. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1689. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1690. }
  1691. }
  1692. else {
  1693. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1694. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1695. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1696. }
  1697. }
  1698. return nbytes;
  1699. }
  1700. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1701. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1702. }
  1703. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1704. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1705. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1706. }
  1707. int ggml_blck_size(enum ggml_type type) {
  1708. return type_traits[type].blck_size;
  1709. }
  1710. size_t ggml_type_size(enum ggml_type type) {
  1711. return type_traits[type].type_size;
  1712. }
  1713. float ggml_type_sizef(enum ggml_type type) {
  1714. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  1715. }
  1716. const char * ggml_type_name(enum ggml_type type) {
  1717. return type_traits[type].type_name;
  1718. }
  1719. bool ggml_is_quantized(enum ggml_type type) {
  1720. return type_traits[type].is_quantized;
  1721. }
  1722. const char * ggml_op_name(enum ggml_op op) {
  1723. return GGML_OP_NAME[op];
  1724. }
  1725. const char * ggml_op_symbol(enum ggml_op op) {
  1726. return GGML_OP_SYMBOL[op];
  1727. }
  1728. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1729. return ggml_type_size(tensor->type);
  1730. }
  1731. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1732. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1733. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1734. }
  1735. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1736. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1737. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1738. }
  1739. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1740. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1741. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1742. }
  1743. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1744. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1745. return (t0->ne[0] == t1->ne[0]) &&
  1746. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1747. (t1->ne[3]%t0->ne[3] == 0);
  1748. }
  1749. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1750. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1751. return (t0->ne[1] == t1->ne[1]) &&
  1752. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1753. (t1->ne[3]%t0->ne[3] == 0);
  1754. }
  1755. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1756. enum ggml_type wtype = GGML_TYPE_COUNT;
  1757. switch (ftype) {
  1758. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1759. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1760. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1761. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1762. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1763. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1764. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1765. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1766. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1767. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1768. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1769. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1770. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1771. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1772. }
  1773. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1774. return wtype;
  1775. }
  1776. size_t ggml_tensor_overhead(void) {
  1777. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1778. }
  1779. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1780. return tensor->nb[0] > tensor->nb[1];
  1781. }
  1782. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1783. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1784. return
  1785. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1786. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1787. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1788. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1789. }
  1790. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1791. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1792. return
  1793. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1794. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1795. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1796. }
  1797. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1798. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1799. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1800. }
  1801. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1802. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1803. return
  1804. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1805. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1806. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1807. }
  1808. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1809. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1810. return
  1811. (t0->ne[0] == t1->ne[0] ) &&
  1812. (t0->ne[1] == t1->ne[1] ) &&
  1813. (t0->ne[2] == t1->ne[2] ) &&
  1814. (t0->ne[3] == t1->ne[3] );
  1815. }
  1816. // check if t1 can be represented as a repeatition of t0
  1817. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1818. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1819. return
  1820. (t1->ne[0]%t0->ne[0] == 0) &&
  1821. (t1->ne[1]%t0->ne[1] == 0) &&
  1822. (t1->ne[2]%t0->ne[2] == 0) &&
  1823. (t1->ne[3]%t0->ne[3] == 0);
  1824. }
  1825. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1826. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1827. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1828. }
  1829. static inline int ggml_up32(int n) {
  1830. return (n + 31) & ~31;
  1831. }
  1832. //static inline int ggml_up64(int n) {
  1833. // return (n + 63) & ~63;
  1834. //}
  1835. static inline int ggml_up(int n, int m) {
  1836. // assert m is a power of 2
  1837. GGML_ASSERT((m & (m - 1)) == 0);
  1838. return (n + m - 1) & ~(m - 1);
  1839. }
  1840. // assert that pointer is aligned to GGML_MEM_ALIGN
  1841. #define ggml_assert_aligned(ptr) \
  1842. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1843. ////////////////////////////////////////////////////////////////////////////////
  1844. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1845. // make this function thread safe
  1846. ggml_critical_section_start();
  1847. static bool is_first_call = true;
  1848. if (is_first_call) {
  1849. // initialize time system (required on Windows)
  1850. ggml_time_init();
  1851. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1852. {
  1853. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1854. ggml_fp16_t ii;
  1855. for (int i = 0; i < (1 << 16); ++i) {
  1856. uint16_t ui = i;
  1857. memcpy(&ii, &ui, sizeof(ii));
  1858. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1859. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1860. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1861. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1862. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1863. }
  1864. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1865. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1866. }
  1867. // initialize g_state
  1868. {
  1869. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1870. g_state = (struct ggml_state) {
  1871. /*.contexts =*/ { { 0 } },
  1872. /*.numa =*/ {
  1873. .n_nodes = 0,
  1874. .total_cpus = 0,
  1875. },
  1876. };
  1877. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1878. g_state.contexts[i].used = false;
  1879. }
  1880. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1881. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1882. }
  1883. #if defined(GGML_USE_CUBLAS)
  1884. ggml_init_cublas();
  1885. #elif defined(GGML_USE_CLBLAST)
  1886. ggml_cl_init();
  1887. #endif
  1888. ggml_setup_op_has_task_pass();
  1889. is_first_call = false;
  1890. }
  1891. // find non-used context in g_state
  1892. struct ggml_context * ctx = NULL;
  1893. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1894. if (!g_state.contexts[i].used) {
  1895. g_state.contexts[i].used = true;
  1896. ctx = &g_state.contexts[i].context;
  1897. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1898. break;
  1899. }
  1900. }
  1901. if (ctx == NULL) {
  1902. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1903. ggml_critical_section_end();
  1904. return NULL;
  1905. }
  1906. // allow to call ggml_init with 0 size
  1907. if (params.mem_size == 0) {
  1908. params.mem_size = GGML_MEM_ALIGN;
  1909. }
  1910. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1911. *ctx = (struct ggml_context) {
  1912. /*.mem_size =*/ mem_size,
  1913. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1914. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1915. /*.no_alloc =*/ params.no_alloc,
  1916. /*.no_alloc_save =*/ params.no_alloc,
  1917. /*.n_objects =*/ 0,
  1918. /*.objects_begin =*/ NULL,
  1919. /*.objects_end =*/ NULL,
  1920. /*.scratch =*/ { 0, 0, NULL, },
  1921. /*.scratch_save =*/ { 0, 0, NULL, },
  1922. };
  1923. GGML_ASSERT(ctx->mem_buffer != NULL);
  1924. ggml_assert_aligned(ctx->mem_buffer);
  1925. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1926. ggml_critical_section_end();
  1927. return ctx;
  1928. }
  1929. void ggml_free(struct ggml_context * ctx) {
  1930. // make this function thread safe
  1931. ggml_critical_section_start();
  1932. bool found = false;
  1933. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1934. if (&g_state.contexts[i].context == ctx) {
  1935. g_state.contexts[i].used = false;
  1936. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1937. __func__, i, ggml_used_mem(ctx));
  1938. if (ctx->mem_buffer_owned) {
  1939. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1940. }
  1941. found = true;
  1942. break;
  1943. }
  1944. }
  1945. if (!found) {
  1946. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1947. }
  1948. ggml_critical_section_end();
  1949. }
  1950. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1951. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1952. }
  1953. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1954. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1955. ctx->scratch = scratch;
  1956. return result;
  1957. }
  1958. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1959. return ctx->no_alloc;
  1960. }
  1961. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1962. ctx->no_alloc = no_alloc;
  1963. }
  1964. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1965. return ctx->mem_buffer;
  1966. }
  1967. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1968. return ctx->mem_size;
  1969. }
  1970. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  1971. size_t max_size = 0;
  1972. struct ggml_object * obj = ctx->objects_begin;
  1973. while (obj != NULL) {
  1974. if (obj->type == GGML_OBJECT_TENSOR) {
  1975. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  1976. const size_t size = ggml_nbytes(tensor);
  1977. if (max_size < size) {
  1978. max_size = size;
  1979. }
  1980. }
  1981. obj = obj->next;
  1982. }
  1983. return max_size;
  1984. }
  1985. // IMPORTANT:
  1986. // when creating "opt" tensors, always save and load the scratch buffer
  1987. // this is an error prone process, but it is necessary to support inplace
  1988. // operators when using scratch buffers
  1989. // TODO: implement a better way
  1990. static void ggml_scratch_save(struct ggml_context * ctx) {
  1991. // this is needed to allow opt tensors to store their data
  1992. // TODO: again, need to find a better way
  1993. ctx->no_alloc_save = ctx->no_alloc;
  1994. ctx->no_alloc = false;
  1995. ctx->scratch_save = ctx->scratch;
  1996. ctx->scratch.data = NULL;
  1997. }
  1998. static void ggml_scratch_load(struct ggml_context * ctx) {
  1999. ctx->no_alloc = ctx->no_alloc_save;
  2000. ctx->scratch = ctx->scratch_save;
  2001. }
  2002. ////////////////////////////////////////////////////////////////////////////////
  2003. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2004. // always insert objects at the end of the context's memory pool
  2005. struct ggml_object * obj_cur = ctx->objects_end;
  2006. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2007. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2008. const size_t cur_end = cur_offs + cur_size;
  2009. // align to GGML_MEM_ALIGN
  2010. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2011. char * const mem_buffer = ctx->mem_buffer;
  2012. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2013. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2014. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2015. __func__, cur_end + size_needed, ctx->mem_size);
  2016. assert(false);
  2017. return NULL;
  2018. }
  2019. *obj_new = (struct ggml_object) {
  2020. .offs = cur_end + GGML_OBJECT_SIZE,
  2021. .size = size_needed,
  2022. .next = NULL,
  2023. .type = type,
  2024. };
  2025. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2026. if (obj_cur != NULL) {
  2027. obj_cur->next = obj_new;
  2028. } else {
  2029. // this is the first object in this context
  2030. ctx->objects_begin = obj_new;
  2031. }
  2032. ctx->objects_end = obj_new;
  2033. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2034. return obj_new;
  2035. }
  2036. static struct ggml_tensor * ggml_new_tensor_impl(
  2037. struct ggml_context * ctx,
  2038. enum ggml_type type,
  2039. int n_dims,
  2040. const int64_t * ne,
  2041. struct ggml_tensor * view_src,
  2042. size_t view_offs) {
  2043. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2044. // find the base tensor and absolute offset
  2045. if (view_src != NULL && view_src->view_src != NULL) {
  2046. view_offs += view_src->view_offs;
  2047. view_src = view_src->view_src;
  2048. }
  2049. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2050. for (int i = 1; i < n_dims; i++) {
  2051. data_size *= ne[i];
  2052. }
  2053. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2054. void * data = view_src != NULL ? view_src->data : NULL;
  2055. if (data != NULL) {
  2056. data = (char *) data + view_offs;
  2057. }
  2058. size_t obj_alloc_size = 0;
  2059. if (view_src == NULL && !ctx->no_alloc) {
  2060. if (ctx->scratch.data != NULL) {
  2061. // allocate tensor data in the scratch buffer
  2062. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2063. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2064. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2065. assert(false);
  2066. return NULL;
  2067. }
  2068. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2069. ctx->scratch.offs += data_size;
  2070. } else {
  2071. // allocate tensor data in the context's memory pool
  2072. obj_alloc_size = data_size;
  2073. }
  2074. }
  2075. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2076. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2077. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2078. *result = (struct ggml_tensor) {
  2079. /*.type =*/ type,
  2080. /*.backend =*/ GGML_BACKEND_CPU,
  2081. /*.buffer =*/ NULL,
  2082. /*.n_dims =*/ n_dims,
  2083. /*.ne =*/ { 1, 1, 1, 1 },
  2084. /*.nb =*/ { 0, 0, 0, 0 },
  2085. /*.op =*/ GGML_OP_NONE,
  2086. /*.op_params =*/ { 0 },
  2087. /*.is_param =*/ false,
  2088. /*.grad =*/ NULL,
  2089. /*.src =*/ { NULL },
  2090. /*.perf_runs =*/ 0,
  2091. /*.perf_cycles =*/ 0,
  2092. /*.perf_time_us =*/ 0,
  2093. /*.view_src =*/ view_src,
  2094. /*.view_offs =*/ view_offs,
  2095. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2096. /*.name =*/ { 0 },
  2097. /*.extra =*/ NULL,
  2098. /*.padding =*/ { 0 },
  2099. };
  2100. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2101. //ggml_assert_aligned(result->data);
  2102. for (int i = 0; i < n_dims; i++) {
  2103. result->ne[i] = ne[i];
  2104. }
  2105. result->nb[0] = ggml_type_size(type);
  2106. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2107. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2108. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2109. }
  2110. ctx->n_objects++;
  2111. return result;
  2112. }
  2113. struct ggml_tensor * ggml_new_tensor(
  2114. struct ggml_context * ctx,
  2115. enum ggml_type type,
  2116. int n_dims,
  2117. const int64_t * ne) {
  2118. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2119. }
  2120. struct ggml_tensor * ggml_new_tensor_1d(
  2121. struct ggml_context * ctx,
  2122. enum ggml_type type,
  2123. int64_t ne0) {
  2124. return ggml_new_tensor(ctx, type, 1, &ne0);
  2125. }
  2126. struct ggml_tensor * ggml_new_tensor_2d(
  2127. struct ggml_context * ctx,
  2128. enum ggml_type type,
  2129. int64_t ne0,
  2130. int64_t ne1) {
  2131. const int64_t ne[2] = { ne0, ne1 };
  2132. return ggml_new_tensor(ctx, type, 2, ne);
  2133. }
  2134. struct ggml_tensor * ggml_new_tensor_3d(
  2135. struct ggml_context * ctx,
  2136. enum ggml_type type,
  2137. int64_t ne0,
  2138. int64_t ne1,
  2139. int64_t ne2) {
  2140. const int64_t ne[3] = { ne0, ne1, ne2 };
  2141. return ggml_new_tensor(ctx, type, 3, ne);
  2142. }
  2143. struct ggml_tensor * ggml_new_tensor_4d(
  2144. struct ggml_context * ctx,
  2145. enum ggml_type type,
  2146. int64_t ne0,
  2147. int64_t ne1,
  2148. int64_t ne2,
  2149. int64_t ne3) {
  2150. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2151. return ggml_new_tensor(ctx, type, 4, ne);
  2152. }
  2153. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2154. ggml_scratch_save(ctx);
  2155. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2156. ggml_scratch_load(ctx);
  2157. ggml_set_i32(result, value);
  2158. return result;
  2159. }
  2160. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2161. ggml_scratch_save(ctx);
  2162. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2163. ggml_scratch_load(ctx);
  2164. ggml_set_f32(result, value);
  2165. return result;
  2166. }
  2167. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2168. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  2169. }
  2170. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2171. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2172. assert(params_size <= GGML_MAX_OP_PARAMS);
  2173. memcpy(tensor->op_params, params, params_size);
  2174. }
  2175. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2176. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2177. return ((const int32_t *)(tensor->op_params))[i];
  2178. }
  2179. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2180. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2181. ((int32_t *)(tensor->op_params))[i] = value;
  2182. }
  2183. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2184. memset(tensor->data, 0, ggml_nbytes(tensor));
  2185. return tensor;
  2186. }
  2187. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2188. const int n = ggml_nrows(tensor);
  2189. const int nc = tensor->ne[0];
  2190. const size_t n1 = tensor->nb[1];
  2191. char * const data = tensor->data;
  2192. switch (tensor->type) {
  2193. case GGML_TYPE_I8:
  2194. {
  2195. assert(tensor->nb[0] == sizeof(int8_t));
  2196. for (int i = 0; i < n; i++) {
  2197. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2198. }
  2199. } break;
  2200. case GGML_TYPE_I16:
  2201. {
  2202. assert(tensor->nb[0] == sizeof(int16_t));
  2203. for (int i = 0; i < n; i++) {
  2204. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2205. }
  2206. } break;
  2207. case GGML_TYPE_I32:
  2208. {
  2209. assert(tensor->nb[0] == sizeof(int32_t));
  2210. for (int i = 0; i < n; i++) {
  2211. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2212. }
  2213. } break;
  2214. case GGML_TYPE_F16:
  2215. {
  2216. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2217. for (int i = 0; i < n; i++) {
  2218. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2219. }
  2220. } break;
  2221. case GGML_TYPE_F32:
  2222. {
  2223. assert(tensor->nb[0] == sizeof(float));
  2224. for (int i = 0; i < n; i++) {
  2225. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2226. }
  2227. } break;
  2228. default:
  2229. {
  2230. GGML_ASSERT(false);
  2231. } break;
  2232. }
  2233. return tensor;
  2234. }
  2235. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2236. const int n = ggml_nrows(tensor);
  2237. const int nc = tensor->ne[0];
  2238. const size_t n1 = tensor->nb[1];
  2239. char * const data = tensor->data;
  2240. switch (tensor->type) {
  2241. case GGML_TYPE_I8:
  2242. {
  2243. assert(tensor->nb[0] == sizeof(int8_t));
  2244. for (int i = 0; i < n; i++) {
  2245. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2246. }
  2247. } break;
  2248. case GGML_TYPE_I16:
  2249. {
  2250. assert(tensor->nb[0] == sizeof(int16_t));
  2251. for (int i = 0; i < n; i++) {
  2252. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2253. }
  2254. } break;
  2255. case GGML_TYPE_I32:
  2256. {
  2257. assert(tensor->nb[0] == sizeof(int32_t));
  2258. for (int i = 0; i < n; i++) {
  2259. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2260. }
  2261. } break;
  2262. case GGML_TYPE_F16:
  2263. {
  2264. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2265. for (int i = 0; i < n; i++) {
  2266. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2267. }
  2268. } break;
  2269. case GGML_TYPE_F32:
  2270. {
  2271. assert(tensor->nb[0] == sizeof(float));
  2272. for (int i = 0; i < n; i++) {
  2273. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2274. }
  2275. } break;
  2276. default:
  2277. {
  2278. GGML_ASSERT(false);
  2279. } break;
  2280. }
  2281. return tensor;
  2282. }
  2283. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2284. const int64_t ne2 = tensor->ne[2];
  2285. const int64_t ne1 = tensor->ne[1];
  2286. const int64_t ne0 = tensor->ne[0];
  2287. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2288. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2289. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2290. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2291. if (i0) {
  2292. * i0 = i0_;
  2293. }
  2294. if (i1) {
  2295. * i1 = i1_;
  2296. }
  2297. if (i2) {
  2298. * i2 = i2_;
  2299. }
  2300. if (i3) {
  2301. * i3 = i3_;
  2302. }
  2303. }
  2304. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2305. if (!ggml_is_contiguous(tensor)) {
  2306. int64_t id[4] = { 0, 0, 0, 0 };
  2307. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2308. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2309. }
  2310. switch (tensor->type) {
  2311. case GGML_TYPE_I8:
  2312. {
  2313. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2314. return ((int8_t *)(tensor->data))[i];
  2315. }
  2316. case GGML_TYPE_I16:
  2317. {
  2318. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2319. return ((int16_t *)(tensor->data))[i];
  2320. }
  2321. case GGML_TYPE_I32:
  2322. {
  2323. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2324. return ((int32_t *)(tensor->data))[i];
  2325. }
  2326. case GGML_TYPE_F16:
  2327. {
  2328. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2329. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2330. }
  2331. case GGML_TYPE_F32:
  2332. {
  2333. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2334. return ((float *)(tensor->data))[i];
  2335. }
  2336. default:
  2337. {
  2338. GGML_ASSERT(false);
  2339. }
  2340. }
  2341. return 0.0f;
  2342. }
  2343. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2344. if (!ggml_is_contiguous(tensor)) {
  2345. int64_t id[4] = { 0, 0, 0, 0 };
  2346. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2347. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2348. return;
  2349. }
  2350. switch (tensor->type) {
  2351. case GGML_TYPE_I8:
  2352. {
  2353. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2354. ((int8_t *)(tensor->data))[i] = value;
  2355. } break;
  2356. case GGML_TYPE_I16:
  2357. {
  2358. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2359. ((int16_t *)(tensor->data))[i] = value;
  2360. } break;
  2361. case GGML_TYPE_I32:
  2362. {
  2363. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2364. ((int32_t *)(tensor->data))[i] = value;
  2365. } break;
  2366. case GGML_TYPE_F16:
  2367. {
  2368. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2369. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2370. } break;
  2371. case GGML_TYPE_F32:
  2372. {
  2373. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2374. ((float *)(tensor->data))[i] = value;
  2375. } break;
  2376. default:
  2377. {
  2378. GGML_ASSERT(false);
  2379. } break;
  2380. }
  2381. }
  2382. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2383. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2384. switch (tensor->type) {
  2385. case GGML_TYPE_I8:
  2386. return ((int8_t *) data)[0];
  2387. case GGML_TYPE_I16:
  2388. return ((int16_t *) data)[0];
  2389. case GGML_TYPE_I32:
  2390. return ((int32_t *) data)[0];
  2391. case GGML_TYPE_F16:
  2392. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2393. case GGML_TYPE_F32:
  2394. return ((float *) data)[0];
  2395. default:
  2396. GGML_ASSERT(false);
  2397. }
  2398. return 0.0f;
  2399. }
  2400. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2401. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2402. switch (tensor->type) {
  2403. case GGML_TYPE_I8:
  2404. {
  2405. ((int8_t *)(data))[0] = value;
  2406. } break;
  2407. case GGML_TYPE_I16:
  2408. {
  2409. ((int16_t *)(data))[0] = value;
  2410. } break;
  2411. case GGML_TYPE_I32:
  2412. {
  2413. ((int32_t *)(data))[0] = value;
  2414. } break;
  2415. case GGML_TYPE_F16:
  2416. {
  2417. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2418. } break;
  2419. case GGML_TYPE_F32:
  2420. {
  2421. ((float *)(data))[0] = value;
  2422. } break;
  2423. default:
  2424. {
  2425. GGML_ASSERT(false);
  2426. } break;
  2427. }
  2428. }
  2429. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2430. if (!ggml_is_contiguous(tensor)) {
  2431. int64_t id[4] = { 0, 0, 0, 0 };
  2432. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2433. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2434. }
  2435. switch (tensor->type) {
  2436. case GGML_TYPE_I8:
  2437. {
  2438. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2439. return ((int8_t *)(tensor->data))[i];
  2440. }
  2441. case GGML_TYPE_I16:
  2442. {
  2443. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2444. return ((int16_t *)(tensor->data))[i];
  2445. }
  2446. case GGML_TYPE_I32:
  2447. {
  2448. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2449. return ((int32_t *)(tensor->data))[i];
  2450. }
  2451. case GGML_TYPE_F16:
  2452. {
  2453. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2454. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2455. }
  2456. case GGML_TYPE_F32:
  2457. {
  2458. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2459. return ((float *)(tensor->data))[i];
  2460. }
  2461. default:
  2462. {
  2463. GGML_ASSERT(false);
  2464. }
  2465. }
  2466. return 0.0f;
  2467. }
  2468. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2469. if (!ggml_is_contiguous(tensor)) {
  2470. int64_t id[4] = { 0, 0, 0, 0 };
  2471. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2472. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2473. return;
  2474. }
  2475. switch (tensor->type) {
  2476. case GGML_TYPE_I8:
  2477. {
  2478. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2479. ((int8_t *)(tensor->data))[i] = value;
  2480. } break;
  2481. case GGML_TYPE_I16:
  2482. {
  2483. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2484. ((int16_t *)(tensor->data))[i] = value;
  2485. } break;
  2486. case GGML_TYPE_I32:
  2487. {
  2488. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2489. ((int32_t *)(tensor->data))[i] = value;
  2490. } break;
  2491. case GGML_TYPE_F16:
  2492. {
  2493. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2494. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2495. } break;
  2496. case GGML_TYPE_F32:
  2497. {
  2498. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2499. ((float *)(tensor->data))[i] = value;
  2500. } break;
  2501. default:
  2502. {
  2503. GGML_ASSERT(false);
  2504. } break;
  2505. }
  2506. }
  2507. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2508. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2509. switch (tensor->type) {
  2510. case GGML_TYPE_I8:
  2511. return ((int8_t *) data)[0];
  2512. case GGML_TYPE_I16:
  2513. return ((int16_t *) data)[0];
  2514. case GGML_TYPE_I32:
  2515. return ((int32_t *) data)[0];
  2516. case GGML_TYPE_F16:
  2517. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2518. case GGML_TYPE_F32:
  2519. return ((float *) data)[0];
  2520. default:
  2521. GGML_ASSERT(false);
  2522. }
  2523. return 0.0f;
  2524. }
  2525. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2526. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2527. switch (tensor->type) {
  2528. case GGML_TYPE_I8:
  2529. {
  2530. ((int8_t *)(data))[0] = value;
  2531. } break;
  2532. case GGML_TYPE_I16:
  2533. {
  2534. ((int16_t *)(data))[0] = value;
  2535. } break;
  2536. case GGML_TYPE_I32:
  2537. {
  2538. ((int32_t *)(data))[0] = value;
  2539. } break;
  2540. case GGML_TYPE_F16:
  2541. {
  2542. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2543. } break;
  2544. case GGML_TYPE_F32:
  2545. {
  2546. ((float *)(data))[0] = value;
  2547. } break;
  2548. default:
  2549. {
  2550. GGML_ASSERT(false);
  2551. } break;
  2552. }
  2553. }
  2554. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2555. return tensor->data;
  2556. }
  2557. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2558. assert(tensor->type == GGML_TYPE_F32);
  2559. return (float *)(tensor->data);
  2560. }
  2561. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2562. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2563. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2564. }
  2565. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2566. return tensor->name;
  2567. }
  2568. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2569. strncpy(tensor->name, name, sizeof(tensor->name));
  2570. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2571. return tensor;
  2572. }
  2573. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2574. va_list args;
  2575. va_start(args, fmt);
  2576. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2577. va_end(args);
  2578. return tensor;
  2579. }
  2580. struct ggml_tensor * ggml_view_tensor(
  2581. struct ggml_context * ctx,
  2582. struct ggml_tensor * src) {
  2583. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  2584. ggml_format_name(result, "%s (view)", src->name);
  2585. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2586. result->nb[i] = src->nb[i];
  2587. }
  2588. return result;
  2589. }
  2590. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2591. struct ggml_object * obj = ctx->objects_begin;
  2592. char * const mem_buffer = ctx->mem_buffer;
  2593. while (obj != NULL) {
  2594. if (obj->type == GGML_OBJECT_TENSOR) {
  2595. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2596. }
  2597. obj = obj->next;
  2598. }
  2599. return NULL;
  2600. }
  2601. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2602. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2603. obj = obj->next;
  2604. char * const mem_buffer = ctx->mem_buffer;
  2605. while (obj != NULL) {
  2606. if (obj->type == GGML_OBJECT_TENSOR) {
  2607. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2608. }
  2609. obj = obj->next;
  2610. }
  2611. return NULL;
  2612. }
  2613. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2614. struct ggml_object * obj = ctx->objects_begin;
  2615. char * const mem_buffer = ctx->mem_buffer;
  2616. while (obj != NULL) {
  2617. if (obj->type == GGML_OBJECT_TENSOR) {
  2618. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2619. if (strcmp(cur->name, name) == 0) {
  2620. return cur;
  2621. }
  2622. }
  2623. obj = obj->next;
  2624. }
  2625. return NULL;
  2626. }
  2627. ////////////////////////////////////////////////////////////////////////////////
  2628. // ggml_dup
  2629. static struct ggml_tensor * ggml_dup_impl(
  2630. struct ggml_context * ctx,
  2631. struct ggml_tensor * a,
  2632. bool inplace) {
  2633. bool is_node = false;
  2634. if (!inplace && (a->grad)) {
  2635. is_node = true;
  2636. }
  2637. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2638. result->op = GGML_OP_DUP;
  2639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2640. result->src[0] = a;
  2641. return result;
  2642. }
  2643. struct ggml_tensor * ggml_dup(
  2644. struct ggml_context * ctx,
  2645. struct ggml_tensor * a) {
  2646. return ggml_dup_impl(ctx, a, false);
  2647. }
  2648. struct ggml_tensor * ggml_dup_inplace(
  2649. struct ggml_context * ctx,
  2650. struct ggml_tensor * a) {
  2651. return ggml_dup_impl(ctx, a, true);
  2652. }
  2653. // ggml_add
  2654. static struct ggml_tensor * ggml_add_impl(
  2655. struct ggml_context * ctx,
  2656. struct ggml_tensor * a,
  2657. struct ggml_tensor * b,
  2658. bool inplace) {
  2659. // TODO: support less-strict constraint
  2660. // GGML_ASSERT(ggml_can_repeat(b, a));
  2661. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2662. bool is_node = false;
  2663. if (!inplace && (a->grad || b->grad)) {
  2664. // TODO: support backward pass for broadcasting
  2665. GGML_ASSERT(ggml_are_same_shape(a, b));
  2666. is_node = true;
  2667. }
  2668. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2669. result->op = GGML_OP_ADD;
  2670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2671. result->src[0] = a;
  2672. result->src[1] = b;
  2673. return result;
  2674. }
  2675. struct ggml_tensor * ggml_add(
  2676. struct ggml_context * ctx,
  2677. struct ggml_tensor * a,
  2678. struct ggml_tensor * b) {
  2679. return ggml_add_impl(ctx, a, b, false);
  2680. }
  2681. struct ggml_tensor * ggml_add_inplace(
  2682. struct ggml_context * ctx,
  2683. struct ggml_tensor * a,
  2684. struct ggml_tensor * b) {
  2685. return ggml_add_impl(ctx, a, b, true);
  2686. }
  2687. // ggml_add_cast
  2688. static struct ggml_tensor * ggml_add_cast_impl(
  2689. struct ggml_context * ctx,
  2690. struct ggml_tensor * a,
  2691. struct ggml_tensor * b,
  2692. enum ggml_type type) {
  2693. // TODO: support less-strict constraint
  2694. // GGML_ASSERT(ggml_can_repeat(b, a));
  2695. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2696. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2697. bool is_node = false;
  2698. if (a->grad || b->grad) {
  2699. // TODO: support backward pass for broadcasting
  2700. GGML_ASSERT(ggml_are_same_shape(a, b));
  2701. is_node = true;
  2702. }
  2703. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  2704. result->op = GGML_OP_ADD;
  2705. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  2706. result->src[0] = a;
  2707. result->src[1] = b;
  2708. return result;
  2709. }
  2710. struct ggml_tensor * ggml_add_cast(
  2711. struct ggml_context * ctx,
  2712. struct ggml_tensor * a,
  2713. struct ggml_tensor * b,
  2714. enum ggml_type type) {
  2715. return ggml_add_cast_impl(ctx, a, b, type);
  2716. }
  2717. // ggml_add1
  2718. static struct ggml_tensor * ggml_add1_impl(
  2719. struct ggml_context * ctx,
  2720. struct ggml_tensor * a,
  2721. struct ggml_tensor * b,
  2722. bool inplace) {
  2723. GGML_ASSERT(ggml_is_scalar(b));
  2724. GGML_ASSERT(ggml_is_padded_1d(a));
  2725. bool is_node = false;
  2726. if (a->grad || b->grad) {
  2727. is_node = true;
  2728. }
  2729. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2730. result->op = GGML_OP_ADD1;
  2731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2732. result->src[0] = a;
  2733. result->src[1] = b;
  2734. return result;
  2735. }
  2736. struct ggml_tensor * ggml_add1(
  2737. struct ggml_context * ctx,
  2738. struct ggml_tensor * a,
  2739. struct ggml_tensor * b) {
  2740. return ggml_add1_impl(ctx, a, b, false);
  2741. }
  2742. struct ggml_tensor * ggml_add1_inplace(
  2743. struct ggml_context * ctx,
  2744. struct ggml_tensor * a,
  2745. struct ggml_tensor * b) {
  2746. return ggml_add1_impl(ctx, a, b, true);
  2747. }
  2748. // ggml_acc
  2749. static struct ggml_tensor * ggml_acc_impl(
  2750. struct ggml_context * ctx,
  2751. struct ggml_tensor * a,
  2752. struct ggml_tensor * b,
  2753. size_t nb1,
  2754. size_t nb2,
  2755. size_t nb3,
  2756. size_t offset,
  2757. bool inplace) {
  2758. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2759. GGML_ASSERT(ggml_is_contiguous(a));
  2760. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2761. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2762. bool is_node = false;
  2763. if (!inplace && (a->grad || b->grad)) {
  2764. is_node = true;
  2765. }
  2766. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2767. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2768. ggml_set_op_params(result, params, sizeof(params));
  2769. result->op = GGML_OP_ACC;
  2770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2771. result->src[0] = a;
  2772. result->src[1] = b;
  2773. return result;
  2774. }
  2775. struct ggml_tensor * ggml_acc(
  2776. struct ggml_context * ctx,
  2777. struct ggml_tensor * a,
  2778. struct ggml_tensor * b,
  2779. size_t nb1,
  2780. size_t nb2,
  2781. size_t nb3,
  2782. size_t offset) {
  2783. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2784. }
  2785. struct ggml_tensor * ggml_acc_inplace(
  2786. struct ggml_context * ctx,
  2787. struct ggml_tensor * a,
  2788. struct ggml_tensor * b,
  2789. size_t nb1,
  2790. size_t nb2,
  2791. size_t nb3,
  2792. size_t offset) {
  2793. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2794. }
  2795. // ggml_sub
  2796. static struct ggml_tensor * ggml_sub_impl(
  2797. struct ggml_context * ctx,
  2798. struct ggml_tensor * a,
  2799. struct ggml_tensor * b,
  2800. bool inplace) {
  2801. GGML_ASSERT(ggml_are_same_shape(a, b));
  2802. bool is_node = false;
  2803. if (!inplace && (a->grad || b->grad)) {
  2804. is_node = true;
  2805. }
  2806. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2807. result->op = GGML_OP_SUB;
  2808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2809. result->src[0] = a;
  2810. result->src[1] = b;
  2811. return result;
  2812. }
  2813. struct ggml_tensor * ggml_sub(
  2814. struct ggml_context * ctx,
  2815. struct ggml_tensor * a,
  2816. struct ggml_tensor * b) {
  2817. return ggml_sub_impl(ctx, a, b, false);
  2818. }
  2819. struct ggml_tensor * ggml_sub_inplace(
  2820. struct ggml_context * ctx,
  2821. struct ggml_tensor * a,
  2822. struct ggml_tensor * b) {
  2823. return ggml_sub_impl(ctx, a, b, true);
  2824. }
  2825. // ggml_mul
  2826. static struct ggml_tensor * ggml_mul_impl(
  2827. struct ggml_context * ctx,
  2828. struct ggml_tensor * a,
  2829. struct ggml_tensor * b,
  2830. bool inplace) {
  2831. // TODO: support less-strict constraint
  2832. // GGML_ASSERT(ggml_can_repeat(b, a));
  2833. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2834. bool is_node = false;
  2835. if (!inplace && (a->grad || b->grad)) {
  2836. // TODO: support backward pass for broadcasting
  2837. GGML_ASSERT(ggml_are_same_shape(a, b));
  2838. is_node = true;
  2839. }
  2840. if (inplace) {
  2841. GGML_ASSERT(!is_node);
  2842. }
  2843. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2844. result->op = GGML_OP_MUL;
  2845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2846. result->src[0] = a;
  2847. result->src[1] = b;
  2848. return result;
  2849. }
  2850. struct ggml_tensor * ggml_mul(
  2851. struct ggml_context * ctx,
  2852. struct ggml_tensor * a,
  2853. struct ggml_tensor * b) {
  2854. return ggml_mul_impl(ctx, a, b, false);
  2855. }
  2856. struct ggml_tensor * ggml_mul_inplace(
  2857. struct ggml_context * ctx,
  2858. struct ggml_tensor * a,
  2859. struct ggml_tensor * b) {
  2860. return ggml_mul_impl(ctx, a, b, true);
  2861. }
  2862. // ggml_div
  2863. static struct ggml_tensor * ggml_div_impl(
  2864. struct ggml_context * ctx,
  2865. struct ggml_tensor * a,
  2866. struct ggml_tensor * b,
  2867. bool inplace) {
  2868. GGML_ASSERT(ggml_are_same_shape(a, b));
  2869. bool is_node = false;
  2870. if (!inplace && (a->grad || b->grad)) {
  2871. is_node = true;
  2872. }
  2873. if (inplace) {
  2874. GGML_ASSERT(!is_node);
  2875. }
  2876. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2877. result->op = GGML_OP_DIV;
  2878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2879. result->src[0] = a;
  2880. result->src[1] = b;
  2881. return result;
  2882. }
  2883. struct ggml_tensor * ggml_div(
  2884. struct ggml_context * ctx,
  2885. struct ggml_tensor * a,
  2886. struct ggml_tensor * b) {
  2887. return ggml_div_impl(ctx, a, b, false);
  2888. }
  2889. struct ggml_tensor * ggml_div_inplace(
  2890. struct ggml_context * ctx,
  2891. struct ggml_tensor * a,
  2892. struct ggml_tensor * b) {
  2893. return ggml_div_impl(ctx, a, b, true);
  2894. }
  2895. // ggml_sqr
  2896. static struct ggml_tensor * ggml_sqr_impl(
  2897. struct ggml_context * ctx,
  2898. struct ggml_tensor * a,
  2899. bool inplace) {
  2900. bool is_node = false;
  2901. if (!inplace && (a->grad)) {
  2902. is_node = true;
  2903. }
  2904. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2905. result->op = GGML_OP_SQR;
  2906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2907. result->src[0] = a;
  2908. return result;
  2909. }
  2910. struct ggml_tensor * ggml_sqr(
  2911. struct ggml_context * ctx,
  2912. struct ggml_tensor * a) {
  2913. return ggml_sqr_impl(ctx, a, false);
  2914. }
  2915. struct ggml_tensor * ggml_sqr_inplace(
  2916. struct ggml_context * ctx,
  2917. struct ggml_tensor * a) {
  2918. return ggml_sqr_impl(ctx, a, true);
  2919. }
  2920. // ggml_sqrt
  2921. static struct ggml_tensor * ggml_sqrt_impl(
  2922. struct ggml_context * ctx,
  2923. struct ggml_tensor * a,
  2924. bool inplace) {
  2925. bool is_node = false;
  2926. if (!inplace && (a->grad)) {
  2927. is_node = true;
  2928. }
  2929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2930. result->op = GGML_OP_SQRT;
  2931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2932. result->src[0] = a;
  2933. return result;
  2934. }
  2935. struct ggml_tensor * ggml_sqrt(
  2936. struct ggml_context * ctx,
  2937. struct ggml_tensor * a) {
  2938. return ggml_sqrt_impl(ctx, a, false);
  2939. }
  2940. struct ggml_tensor * ggml_sqrt_inplace(
  2941. struct ggml_context * ctx,
  2942. struct ggml_tensor * a) {
  2943. return ggml_sqrt_impl(ctx, a, true);
  2944. }
  2945. // ggml_log
  2946. static struct ggml_tensor * ggml_log_impl(
  2947. struct ggml_context * ctx,
  2948. struct ggml_tensor * a,
  2949. bool inplace) {
  2950. bool is_node = false;
  2951. if (!inplace && (a->grad)) {
  2952. is_node = true;
  2953. }
  2954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2955. result->op = GGML_OP_LOG;
  2956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2957. result->src[0] = a;
  2958. return result;
  2959. }
  2960. struct ggml_tensor * ggml_log(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a) {
  2963. return ggml_log_impl(ctx, a, false);
  2964. }
  2965. struct ggml_tensor * ggml_log_inplace(
  2966. struct ggml_context * ctx,
  2967. struct ggml_tensor * a) {
  2968. return ggml_log_impl(ctx, a, true);
  2969. }
  2970. // ggml_sum
  2971. struct ggml_tensor * ggml_sum(
  2972. struct ggml_context * ctx,
  2973. struct ggml_tensor * a) {
  2974. bool is_node = false;
  2975. if (a->grad) {
  2976. is_node = true;
  2977. }
  2978. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2979. result->op = GGML_OP_SUM;
  2980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2981. result->src[0] = a;
  2982. return result;
  2983. }
  2984. // ggml_sum_rows
  2985. struct ggml_tensor * ggml_sum_rows(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a) {
  2988. bool is_node = false;
  2989. if (a->grad) {
  2990. is_node = true;
  2991. }
  2992. int64_t ne[4] = {1,1,1,1};
  2993. for (int i=1; i<a->n_dims; ++i) {
  2994. ne[i] = a->ne[i];
  2995. }
  2996. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  2997. result->op = GGML_OP_SUM_ROWS;
  2998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2999. result->src[0] = a;
  3000. return result;
  3001. }
  3002. // ggml_mean
  3003. struct ggml_tensor * ggml_mean(
  3004. struct ggml_context * ctx,
  3005. struct ggml_tensor * a) {
  3006. bool is_node = false;
  3007. if (a->grad) {
  3008. GGML_ASSERT(false); // TODO: implement
  3009. is_node = true;
  3010. }
  3011. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3012. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3013. result->op = GGML_OP_MEAN;
  3014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3015. result->src[0] = a;
  3016. return result;
  3017. }
  3018. // ggml_argmax
  3019. struct ggml_tensor * ggml_argmax(
  3020. struct ggml_context * ctx,
  3021. struct ggml_tensor * a) {
  3022. GGML_ASSERT(ggml_is_matrix(a));
  3023. bool is_node = false;
  3024. if (a->grad) {
  3025. GGML_ASSERT(false);
  3026. is_node = true;
  3027. }
  3028. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  3029. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  3030. result->op = GGML_OP_ARGMAX;
  3031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3032. result->src[0] = a;
  3033. return result;
  3034. }
  3035. // ggml_repeat
  3036. struct ggml_tensor * ggml_repeat(
  3037. struct ggml_context * ctx,
  3038. struct ggml_tensor * a,
  3039. struct ggml_tensor * b) {
  3040. GGML_ASSERT(ggml_can_repeat(a, b));
  3041. bool is_node = false;
  3042. if (a->grad) {
  3043. is_node = true;
  3044. }
  3045. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3046. result->op = GGML_OP_REPEAT;
  3047. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3048. result->src[0] = a;
  3049. return result;
  3050. }
  3051. // ggml_repeat_back
  3052. struct ggml_tensor * ggml_repeat_back(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a,
  3055. struct ggml_tensor * b) {
  3056. GGML_ASSERT(ggml_can_repeat(b, a));
  3057. bool is_node = false;
  3058. if (a->grad) {
  3059. is_node = true;
  3060. }
  3061. if (ggml_are_same_shape(a, b) && !is_node) {
  3062. return a;
  3063. }
  3064. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3065. result->op = GGML_OP_REPEAT_BACK;
  3066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3067. result->src[0] = a;
  3068. return result;
  3069. }
  3070. // ggml_concat
  3071. struct ggml_tensor * ggml_concat(
  3072. struct ggml_context* ctx,
  3073. struct ggml_tensor* a,
  3074. struct ggml_tensor* b) {
  3075. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3076. bool is_node = false;
  3077. if (a->grad || b->grad) {
  3078. is_node = true;
  3079. }
  3080. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3081. result->op = GGML_OP_CONCAT;
  3082. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3083. result->src[0] = a;
  3084. result->src[1] = b;
  3085. return result;
  3086. }
  3087. // ggml_abs
  3088. struct ggml_tensor * ggml_abs(
  3089. struct ggml_context * ctx,
  3090. struct ggml_tensor * a) {
  3091. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3092. }
  3093. struct ggml_tensor * ggml_abs_inplace(
  3094. struct ggml_context * ctx,
  3095. struct ggml_tensor * a) {
  3096. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3097. }
  3098. // ggml_sgn
  3099. struct ggml_tensor * ggml_sgn(
  3100. struct ggml_context * ctx,
  3101. struct ggml_tensor * a) {
  3102. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3103. }
  3104. struct ggml_tensor * ggml_sgn_inplace(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a) {
  3107. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3108. }
  3109. // ggml_neg
  3110. struct ggml_tensor * ggml_neg(
  3111. struct ggml_context * ctx,
  3112. struct ggml_tensor * a) {
  3113. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3114. }
  3115. struct ggml_tensor * ggml_neg_inplace(
  3116. struct ggml_context * ctx,
  3117. struct ggml_tensor * a) {
  3118. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3119. }
  3120. // ggml_step
  3121. struct ggml_tensor * ggml_step(
  3122. struct ggml_context * ctx,
  3123. struct ggml_tensor * a) {
  3124. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3125. }
  3126. struct ggml_tensor * ggml_step_inplace(
  3127. struct ggml_context * ctx,
  3128. struct ggml_tensor * a) {
  3129. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3130. }
  3131. // ggml_tanh
  3132. struct ggml_tensor * ggml_tanh(
  3133. struct ggml_context * ctx,
  3134. struct ggml_tensor * a) {
  3135. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3136. }
  3137. struct ggml_tensor * ggml_tanh_inplace(
  3138. struct ggml_context * ctx,
  3139. struct ggml_tensor * a) {
  3140. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3141. }
  3142. // ggml_elu
  3143. struct ggml_tensor * ggml_elu(
  3144. struct ggml_context * ctx,
  3145. struct ggml_tensor * a) {
  3146. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3147. }
  3148. struct ggml_tensor * ggml_elu_inplace(
  3149. struct ggml_context * ctx,
  3150. struct ggml_tensor * a) {
  3151. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3152. }
  3153. // ggml_relu
  3154. struct ggml_tensor * ggml_relu(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a) {
  3157. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3158. }
  3159. struct ggml_tensor * ggml_relu_inplace(
  3160. struct ggml_context * ctx,
  3161. struct ggml_tensor * a) {
  3162. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3163. }
  3164. // ggml_leaky
  3165. struct ggml_tensor * ggml_leaky(
  3166. struct ggml_context * ctx,
  3167. struct ggml_tensor * a) {
  3168. return ggml_unary(ctx, a, GGML_UNARY_OP_LEAKY);
  3169. }
  3170. // ggml_gelu
  3171. struct ggml_tensor * ggml_gelu(
  3172. struct ggml_context * ctx,
  3173. struct ggml_tensor * a) {
  3174. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3175. }
  3176. struct ggml_tensor * ggml_gelu_inplace(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a) {
  3179. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3180. }
  3181. // ggml_gelu_quick
  3182. struct ggml_tensor * ggml_gelu_quick(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a) {
  3185. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3186. }
  3187. struct ggml_tensor * ggml_gelu_quick_inplace(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a) {
  3190. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3191. }
  3192. // ggml_silu
  3193. struct ggml_tensor * ggml_silu(
  3194. struct ggml_context * ctx,
  3195. struct ggml_tensor * a) {
  3196. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3197. }
  3198. struct ggml_tensor * ggml_silu_inplace(
  3199. struct ggml_context * ctx,
  3200. struct ggml_tensor * a) {
  3201. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3202. }
  3203. // ggml_silu_back
  3204. struct ggml_tensor * ggml_silu_back(
  3205. struct ggml_context * ctx,
  3206. struct ggml_tensor * a,
  3207. struct ggml_tensor * b) {
  3208. bool is_node = false;
  3209. if (a->grad || b->grad) {
  3210. // TODO: implement backward
  3211. is_node = true;
  3212. }
  3213. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3214. result->op = GGML_OP_SILU_BACK;
  3215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3216. result->src[0] = a;
  3217. result->src[1] = b;
  3218. return result;
  3219. }
  3220. // ggml_norm
  3221. static struct ggml_tensor * ggml_norm_impl(
  3222. struct ggml_context * ctx,
  3223. struct ggml_tensor * a,
  3224. float eps,
  3225. bool inplace) {
  3226. bool is_node = false;
  3227. if (!inplace && (a->grad)) {
  3228. GGML_ASSERT(false); // TODO: implement backward
  3229. is_node = true;
  3230. }
  3231. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3232. ggml_set_op_params(result, &eps, sizeof(eps));
  3233. result->op = GGML_OP_NORM;
  3234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3235. result->src[0] = a;
  3236. return result;
  3237. }
  3238. struct ggml_tensor * ggml_norm(
  3239. struct ggml_context * ctx,
  3240. struct ggml_tensor * a,
  3241. float eps) {
  3242. return ggml_norm_impl(ctx, a, eps, false);
  3243. }
  3244. struct ggml_tensor * ggml_norm_inplace(
  3245. struct ggml_context * ctx,
  3246. struct ggml_tensor * a,
  3247. float eps) {
  3248. return ggml_norm_impl(ctx, a, eps, true);
  3249. }
  3250. // ggml_rms_norm
  3251. static struct ggml_tensor * ggml_rms_norm_impl(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a,
  3254. float eps,
  3255. bool inplace) {
  3256. bool is_node = false;
  3257. if (!inplace && (a->grad)) {
  3258. is_node = true;
  3259. }
  3260. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3261. ggml_set_op_params(result, &eps, sizeof(eps));
  3262. result->op = GGML_OP_RMS_NORM;
  3263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3264. result->src[0] = a;
  3265. return result;
  3266. }
  3267. struct ggml_tensor * ggml_rms_norm(
  3268. struct ggml_context * ctx,
  3269. struct ggml_tensor * a,
  3270. float eps) {
  3271. return ggml_rms_norm_impl(ctx, a, eps, false);
  3272. }
  3273. struct ggml_tensor * ggml_rms_norm_inplace(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a,
  3276. float eps) {
  3277. return ggml_rms_norm_impl(ctx, a, eps, true);
  3278. }
  3279. // ggml_rms_norm_back
  3280. struct ggml_tensor * ggml_rms_norm_back(
  3281. struct ggml_context * ctx,
  3282. struct ggml_tensor * a,
  3283. struct ggml_tensor * b,
  3284. float eps) {
  3285. bool is_node = false;
  3286. if (a->grad) {
  3287. // TODO: implement backward
  3288. is_node = true;
  3289. }
  3290. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3291. ggml_set_op_params(result, &eps, sizeof(eps));
  3292. result->op = GGML_OP_RMS_NORM_BACK;
  3293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3294. result->src[0] = a;
  3295. result->src[1] = b;
  3296. return result;
  3297. }
  3298. // ggml_group_norm
  3299. static struct ggml_tensor * ggml_group_norm_impl(
  3300. struct ggml_context * ctx,
  3301. struct ggml_tensor * a,
  3302. int n_groups,
  3303. bool inplace) {
  3304. bool is_node = false;
  3305. if (!inplace && (a->grad)) {
  3306. GGML_ASSERT(false); // TODO: implement backward
  3307. is_node = true;
  3308. }
  3309. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3310. result->op = GGML_OP_GROUP_NORM;
  3311. result->op_params[0] = n_groups;
  3312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3313. result->src[0] = a;
  3314. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3315. return result;
  3316. }
  3317. struct ggml_tensor * ggml_group_norm(
  3318. struct ggml_context * ctx,
  3319. struct ggml_tensor * a,
  3320. int n_groups) {
  3321. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3322. }
  3323. struct ggml_tensor * ggml_group_norm_inplace(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a,
  3326. int n_groups) {
  3327. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3328. }
  3329. // ggml_mul_mat
  3330. struct ggml_tensor * ggml_mul_mat(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a,
  3333. struct ggml_tensor * b) {
  3334. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3335. GGML_ASSERT(!ggml_is_transposed(a));
  3336. bool is_node = false;
  3337. if (a->grad || b->grad) {
  3338. is_node = true;
  3339. }
  3340. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3341. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3342. result->op = GGML_OP_MUL_MAT;
  3343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3344. result->src[0] = a;
  3345. result->src[1] = b;
  3346. return result;
  3347. }
  3348. // ggml_out_prod
  3349. struct ggml_tensor * ggml_out_prod(
  3350. struct ggml_context * ctx,
  3351. struct ggml_tensor * a,
  3352. struct ggml_tensor * b) {
  3353. GGML_ASSERT(ggml_can_out_prod(a, b));
  3354. GGML_ASSERT(!ggml_is_transposed(a));
  3355. bool is_node = false;
  3356. if (a->grad || b->grad) {
  3357. is_node = true;
  3358. }
  3359. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3360. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3361. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  3362. result->op = GGML_OP_OUT_PROD;
  3363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3364. result->src[0] = a;
  3365. result->src[1] = b;
  3366. return result;
  3367. }
  3368. // ggml_scale
  3369. static struct ggml_tensor * ggml_scale_impl(
  3370. struct ggml_context * ctx,
  3371. struct ggml_tensor * a,
  3372. struct ggml_tensor * b,
  3373. bool inplace) {
  3374. GGML_ASSERT(ggml_is_scalar(b));
  3375. GGML_ASSERT(ggml_is_padded_1d(a));
  3376. bool is_node = false;
  3377. if (a->grad || b->grad) {
  3378. is_node = true;
  3379. }
  3380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3381. result->op = GGML_OP_SCALE;
  3382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3383. result->src[0] = a;
  3384. result->src[1] = b;
  3385. return result;
  3386. }
  3387. struct ggml_tensor * ggml_scale(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * a,
  3390. struct ggml_tensor * b) {
  3391. return ggml_scale_impl(ctx, a, b, false);
  3392. }
  3393. struct ggml_tensor * ggml_scale_inplace(
  3394. struct ggml_context * ctx,
  3395. struct ggml_tensor * a,
  3396. struct ggml_tensor * b) {
  3397. return ggml_scale_impl(ctx, a, b, true);
  3398. }
  3399. // ggml_set
  3400. static struct ggml_tensor * ggml_set_impl(
  3401. struct ggml_context * ctx,
  3402. struct ggml_tensor * a,
  3403. struct ggml_tensor * b,
  3404. size_t nb1,
  3405. size_t nb2,
  3406. size_t nb3,
  3407. size_t offset,
  3408. bool inplace) {
  3409. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3410. bool is_node = false;
  3411. if (a->grad || b->grad) {
  3412. is_node = true;
  3413. }
  3414. // make a view of the destination
  3415. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3416. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3417. ggml_set_op_params(result, params, sizeof(params));
  3418. result->op = GGML_OP_SET;
  3419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3420. result->src[0] = a;
  3421. result->src[1] = b;
  3422. return result;
  3423. }
  3424. struct ggml_tensor * ggml_set(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a,
  3427. struct ggml_tensor * b,
  3428. size_t nb1,
  3429. size_t nb2,
  3430. size_t nb3,
  3431. size_t offset) {
  3432. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3433. }
  3434. struct ggml_tensor * ggml_set_inplace(
  3435. struct ggml_context * ctx,
  3436. struct ggml_tensor * a,
  3437. struct ggml_tensor * b,
  3438. size_t nb1,
  3439. size_t nb2,
  3440. size_t nb3,
  3441. size_t offset) {
  3442. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3443. }
  3444. struct ggml_tensor * ggml_set_1d(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a,
  3447. struct ggml_tensor * b,
  3448. size_t offset) {
  3449. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3450. }
  3451. struct ggml_tensor * ggml_set_1d_inplace(
  3452. struct ggml_context * ctx,
  3453. struct ggml_tensor * a,
  3454. struct ggml_tensor * b,
  3455. size_t offset) {
  3456. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3457. }
  3458. struct ggml_tensor * ggml_set_2d(
  3459. struct ggml_context * ctx,
  3460. struct ggml_tensor * a,
  3461. struct ggml_tensor * b,
  3462. size_t nb1,
  3463. size_t offset) {
  3464. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3465. }
  3466. struct ggml_tensor * ggml_set_2d_inplace(
  3467. struct ggml_context * ctx,
  3468. struct ggml_tensor * a,
  3469. struct ggml_tensor * b,
  3470. size_t nb1,
  3471. size_t offset) {
  3472. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3473. }
  3474. // ggml_cpy
  3475. static struct ggml_tensor * ggml_cpy_impl(
  3476. struct ggml_context * ctx,
  3477. struct ggml_tensor * a,
  3478. struct ggml_tensor * b,
  3479. bool inplace) {
  3480. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3481. bool is_node = false;
  3482. if (!inplace && (a->grad || b->grad)) {
  3483. is_node = true;
  3484. }
  3485. // make a view of the destination
  3486. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3487. if (strlen(b->name) > 0) {
  3488. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3489. } else {
  3490. ggml_format_name(result, "%s (copy)", a->name);
  3491. }
  3492. result->op = GGML_OP_CPY;
  3493. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3494. result->src[0] = a;
  3495. result->src[1] = b;
  3496. return result;
  3497. }
  3498. struct ggml_tensor * ggml_cpy(
  3499. struct ggml_context * ctx,
  3500. struct ggml_tensor * a,
  3501. struct ggml_tensor * b) {
  3502. return ggml_cpy_impl(ctx, a, b, false);
  3503. }
  3504. struct ggml_tensor * ggml_cpy_inplace(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a,
  3507. struct ggml_tensor * b) {
  3508. return ggml_cpy_impl(ctx, a, b, true);
  3509. }
  3510. // ggml_cont
  3511. static struct ggml_tensor * ggml_cont_impl(
  3512. struct ggml_context * ctx,
  3513. struct ggml_tensor * a,
  3514. bool inplace) {
  3515. bool is_node = false;
  3516. if (!inplace && a->grad) {
  3517. is_node = true;
  3518. }
  3519. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3520. ggml_format_name(result, "%s (cont)", a->name);
  3521. result->op = GGML_OP_CONT;
  3522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3523. result->src[0] = a;
  3524. return result;
  3525. }
  3526. struct ggml_tensor * ggml_cont(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a) {
  3529. return ggml_cont_impl(ctx, a, false);
  3530. }
  3531. struct ggml_tensor * ggml_cont_inplace(
  3532. struct ggml_context * ctx,
  3533. struct ggml_tensor * a) {
  3534. return ggml_cont_impl(ctx, a, true);
  3535. }
  3536. // make contiguous, with new shape
  3537. GGML_API struct ggml_tensor * ggml_cont_1d(
  3538. struct ggml_context * ctx,
  3539. struct ggml_tensor * a,
  3540. int64_t ne0) {
  3541. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3542. }
  3543. GGML_API struct ggml_tensor * ggml_cont_2d(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a,
  3546. int64_t ne0,
  3547. int64_t ne1) {
  3548. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3549. }
  3550. GGML_API struct ggml_tensor * ggml_cont_3d(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. int64_t ne0,
  3554. int64_t ne1,
  3555. int64_t ne2) {
  3556. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3557. }
  3558. struct ggml_tensor * ggml_cont_4d(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a,
  3561. int64_t ne0,
  3562. int64_t ne1,
  3563. int64_t ne2,
  3564. int64_t ne3) {
  3565. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3566. bool is_node = false;
  3567. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3568. ggml_format_name(result, "%s (cont)", a->name);
  3569. result->op = GGML_OP_CONT;
  3570. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3571. result->src[0] = a;
  3572. return result;
  3573. }
  3574. // ggml_reshape
  3575. struct ggml_tensor * ggml_reshape(
  3576. struct ggml_context * ctx,
  3577. struct ggml_tensor * a,
  3578. struct ggml_tensor * b) {
  3579. GGML_ASSERT(ggml_is_contiguous(a));
  3580. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3581. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3582. bool is_node = false;
  3583. if (a->grad) {
  3584. is_node = true;
  3585. }
  3586. if (b->grad) {
  3587. // gradient propagation is not supported
  3588. //GGML_ASSERT(false);
  3589. }
  3590. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  3591. ggml_format_name(result, "%s (reshaped)", a->name);
  3592. result->op = GGML_OP_RESHAPE;
  3593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3594. result->src[0] = a;
  3595. return result;
  3596. }
  3597. struct ggml_tensor * ggml_reshape_1d(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a,
  3600. int64_t ne0) {
  3601. GGML_ASSERT(ggml_is_contiguous(a));
  3602. GGML_ASSERT(ggml_nelements(a) == ne0);
  3603. bool is_node = false;
  3604. if (a->grad) {
  3605. is_node = true;
  3606. }
  3607. const int64_t ne[1] = { ne0 };
  3608. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3609. ggml_format_name(result, "%s (reshaped)", a->name);
  3610. result->op = GGML_OP_RESHAPE;
  3611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3612. result->src[0] = a;
  3613. return result;
  3614. }
  3615. struct ggml_tensor * ggml_reshape_2d(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a,
  3618. int64_t ne0,
  3619. int64_t ne1) {
  3620. GGML_ASSERT(ggml_is_contiguous(a));
  3621. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3622. bool is_node = false;
  3623. if (a->grad) {
  3624. is_node = true;
  3625. }
  3626. const int64_t ne[2] = { ne0, ne1 };
  3627. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3628. ggml_format_name(result, "%s (reshaped)", a->name);
  3629. result->op = GGML_OP_RESHAPE;
  3630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3631. result->src[0] = a;
  3632. return result;
  3633. }
  3634. struct ggml_tensor * ggml_reshape_3d(
  3635. struct ggml_context * ctx,
  3636. struct ggml_tensor * a,
  3637. int64_t ne0,
  3638. int64_t ne1,
  3639. int64_t ne2) {
  3640. GGML_ASSERT(ggml_is_contiguous(a));
  3641. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3642. bool is_node = false;
  3643. if (a->grad) {
  3644. is_node = true;
  3645. }
  3646. const int64_t ne[3] = { ne0, ne1, ne2 };
  3647. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3648. ggml_format_name(result, "%s (reshaped)", a->name);
  3649. result->op = GGML_OP_RESHAPE;
  3650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3651. result->src[0] = a;
  3652. return result;
  3653. }
  3654. struct ggml_tensor * ggml_reshape_4d(
  3655. struct ggml_context * ctx,
  3656. struct ggml_tensor * a,
  3657. int64_t ne0,
  3658. int64_t ne1,
  3659. int64_t ne2,
  3660. int64_t ne3) {
  3661. GGML_ASSERT(ggml_is_contiguous(a));
  3662. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3663. bool is_node = false;
  3664. if (a->grad) {
  3665. is_node = true;
  3666. }
  3667. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3668. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3669. ggml_format_name(result, "%s (reshaped)", a->name);
  3670. result->op = GGML_OP_RESHAPE;
  3671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3672. result->src[0] = a;
  3673. return result;
  3674. }
  3675. static struct ggml_tensor * ggml_view_impl(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. int n_dims,
  3679. const int64_t * ne,
  3680. size_t offset) {
  3681. bool is_node = false;
  3682. if (a->grad) {
  3683. is_node = true;
  3684. }
  3685. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3686. ggml_format_name(result, "%s (view)", a->name);
  3687. ggml_set_op_params(result, &offset, sizeof(offset));
  3688. result->op = GGML_OP_VIEW;
  3689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3690. result->src[0] = a;
  3691. return result;
  3692. }
  3693. // ggml_view_1d
  3694. struct ggml_tensor * ggml_view_1d(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. int64_t ne0,
  3698. size_t offset) {
  3699. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3700. return result;
  3701. }
  3702. // ggml_view_2d
  3703. struct ggml_tensor * ggml_view_2d(
  3704. struct ggml_context * ctx,
  3705. struct ggml_tensor * a,
  3706. int64_t ne0,
  3707. int64_t ne1,
  3708. size_t nb1,
  3709. size_t offset) {
  3710. const int64_t ne[2] = { ne0, ne1 };
  3711. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3712. result->nb[1] = nb1;
  3713. result->nb[2] = result->nb[1]*ne1;
  3714. result->nb[3] = result->nb[2];
  3715. return result;
  3716. }
  3717. // ggml_view_3d
  3718. struct ggml_tensor * ggml_view_3d(
  3719. struct ggml_context * ctx,
  3720. struct ggml_tensor * a,
  3721. int64_t ne0,
  3722. int64_t ne1,
  3723. int64_t ne2,
  3724. size_t nb1,
  3725. size_t nb2,
  3726. size_t offset) {
  3727. const int64_t ne[3] = { ne0, ne1, ne2 };
  3728. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3729. result->nb[1] = nb1;
  3730. result->nb[2] = nb2;
  3731. result->nb[3] = result->nb[2]*ne2;
  3732. return result;
  3733. }
  3734. // ggml_view_4d
  3735. struct ggml_tensor * ggml_view_4d(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. int64_t ne0,
  3739. int64_t ne1,
  3740. int64_t ne2,
  3741. int64_t ne3,
  3742. size_t nb1,
  3743. size_t nb2,
  3744. size_t nb3,
  3745. size_t offset) {
  3746. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3747. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3748. result->nb[1] = nb1;
  3749. result->nb[2] = nb2;
  3750. result->nb[3] = nb3;
  3751. return result;
  3752. }
  3753. // ggml_permute
  3754. struct ggml_tensor * ggml_permute(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a,
  3757. int axis0,
  3758. int axis1,
  3759. int axis2,
  3760. int axis3) {
  3761. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3762. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3763. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3764. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3765. GGML_ASSERT(axis0 != axis1);
  3766. GGML_ASSERT(axis0 != axis2);
  3767. GGML_ASSERT(axis0 != axis3);
  3768. GGML_ASSERT(axis1 != axis2);
  3769. GGML_ASSERT(axis1 != axis3);
  3770. GGML_ASSERT(axis2 != axis3);
  3771. bool is_node = false;
  3772. if (a->grad) {
  3773. is_node = true;
  3774. }
  3775. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3776. ggml_format_name(result, "%s (permuted)", a->name);
  3777. int ne[GGML_MAX_DIMS];
  3778. int nb[GGML_MAX_DIMS];
  3779. ne[axis0] = a->ne[0];
  3780. ne[axis1] = a->ne[1];
  3781. ne[axis2] = a->ne[2];
  3782. ne[axis3] = a->ne[3];
  3783. nb[axis0] = a->nb[0];
  3784. nb[axis1] = a->nb[1];
  3785. nb[axis2] = a->nb[2];
  3786. nb[axis3] = a->nb[3];
  3787. result->ne[0] = ne[0];
  3788. result->ne[1] = ne[1];
  3789. result->ne[2] = ne[2];
  3790. result->ne[3] = ne[3];
  3791. result->nb[0] = nb[0];
  3792. result->nb[1] = nb[1];
  3793. result->nb[2] = nb[2];
  3794. result->nb[3] = nb[3];
  3795. result->op = GGML_OP_PERMUTE;
  3796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3797. result->src[0] = a;
  3798. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3799. ggml_set_op_params(result, params, sizeof(params));
  3800. return result;
  3801. }
  3802. // ggml_transpose
  3803. struct ggml_tensor * ggml_transpose(
  3804. struct ggml_context * ctx,
  3805. struct ggml_tensor * a) {
  3806. bool is_node = false;
  3807. if (a->grad) {
  3808. is_node = true;
  3809. }
  3810. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3811. ggml_format_name(result, "%s (transposed)", a->name);
  3812. result->ne[0] = a->ne[1];
  3813. result->ne[1] = a->ne[0];
  3814. result->nb[0] = a->nb[1];
  3815. result->nb[1] = a->nb[0];
  3816. result->op = GGML_OP_TRANSPOSE;
  3817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3818. result->src[0] = a;
  3819. return result;
  3820. }
  3821. // ggml_get_rows
  3822. struct ggml_tensor * ggml_get_rows(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. struct ggml_tensor * b) {
  3826. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3827. bool is_node = false;
  3828. if (a->grad || b->grad) {
  3829. is_node = true;
  3830. }
  3831. // TODO: implement non F32 return
  3832. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3833. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3834. result->op = GGML_OP_GET_ROWS;
  3835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3836. result->src[0] = a;
  3837. result->src[1] = b;
  3838. return result;
  3839. }
  3840. // ggml_get_rows_back
  3841. struct ggml_tensor * ggml_get_rows_back(
  3842. struct ggml_context * ctx,
  3843. struct ggml_tensor * a,
  3844. struct ggml_tensor * b,
  3845. struct ggml_tensor * c) {
  3846. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3847. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3848. bool is_node = false;
  3849. if (a->grad || b->grad) {
  3850. is_node = true;
  3851. }
  3852. // TODO: implement non F32 return
  3853. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3854. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3855. result->op = GGML_OP_GET_ROWS_BACK;
  3856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3857. result->src[0] = a;
  3858. result->src[1] = b;
  3859. return result;
  3860. }
  3861. // ggml_diag
  3862. struct ggml_tensor * ggml_diag(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a) {
  3865. GGML_ASSERT(a->ne[1] == 1);
  3866. bool is_node = false;
  3867. if (a->grad) {
  3868. is_node = true;
  3869. }
  3870. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3871. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  3872. result->op = GGML_OP_DIAG;
  3873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3874. result->src[0] = a;
  3875. return result;
  3876. }
  3877. // ggml_diag_mask_inf
  3878. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3879. struct ggml_context * ctx,
  3880. struct ggml_tensor * a,
  3881. int n_past,
  3882. bool inplace) {
  3883. bool is_node = false;
  3884. if (a->grad) {
  3885. is_node = true;
  3886. }
  3887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3888. int32_t params[] = { n_past };
  3889. ggml_set_op_params(result, params, sizeof(params));
  3890. result->op = GGML_OP_DIAG_MASK_INF;
  3891. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3892. result->src[0] = a;
  3893. return result;
  3894. }
  3895. struct ggml_tensor * ggml_diag_mask_inf(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a,
  3898. int n_past) {
  3899. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3900. }
  3901. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3902. struct ggml_context * ctx,
  3903. struct ggml_tensor * a,
  3904. int n_past) {
  3905. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3906. }
  3907. // ggml_diag_mask_zero
  3908. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3909. struct ggml_context * ctx,
  3910. struct ggml_tensor * a,
  3911. int n_past,
  3912. bool inplace) {
  3913. bool is_node = false;
  3914. if (a->grad) {
  3915. is_node = true;
  3916. }
  3917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3918. int32_t params[] = { n_past };
  3919. ggml_set_op_params(result, params, sizeof(params));
  3920. result->op = GGML_OP_DIAG_MASK_ZERO;
  3921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3922. result->src[0] = a;
  3923. return result;
  3924. }
  3925. struct ggml_tensor * ggml_diag_mask_zero(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a,
  3928. int n_past) {
  3929. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  3930. }
  3931. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  3932. struct ggml_context * ctx,
  3933. struct ggml_tensor * a,
  3934. int n_past) {
  3935. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  3936. }
  3937. // ggml_soft_max
  3938. static struct ggml_tensor * ggml_soft_max_impl(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a,
  3941. bool inplace) {
  3942. bool is_node = false;
  3943. if (a->grad) {
  3944. is_node = true;
  3945. }
  3946. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3947. result->op = GGML_OP_SOFT_MAX;
  3948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3949. result->src[0] = a;
  3950. return result;
  3951. }
  3952. struct ggml_tensor * ggml_soft_max(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a) {
  3955. return ggml_soft_max_impl(ctx, a, false);
  3956. }
  3957. struct ggml_tensor * ggml_soft_max_inplace(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a) {
  3960. return ggml_soft_max_impl(ctx, a, true);
  3961. }
  3962. // ggml_soft_max_back
  3963. static struct ggml_tensor * ggml_soft_max_back_impl(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a,
  3966. struct ggml_tensor * b,
  3967. bool inplace) {
  3968. bool is_node = false;
  3969. if (a->grad || b->grad) {
  3970. is_node = true; // TODO : implement backward pass
  3971. }
  3972. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3973. result->op = GGML_OP_SOFT_MAX_BACK;
  3974. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3975. result->src[0] = a;
  3976. result->src[1] = b;
  3977. return result;
  3978. }
  3979. struct ggml_tensor * ggml_soft_max_back(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a,
  3982. struct ggml_tensor * b) {
  3983. return ggml_soft_max_back_impl(ctx, a, b, false);
  3984. }
  3985. struct ggml_tensor * ggml_soft_max_back_inplace(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. struct ggml_tensor * b) {
  3989. return ggml_soft_max_back_impl(ctx, a, b, true);
  3990. }
  3991. // ggml_rope
  3992. static struct ggml_tensor * ggml_rope_impl(
  3993. struct ggml_context * ctx,
  3994. struct ggml_tensor * a,
  3995. struct ggml_tensor * b,
  3996. int n_dims,
  3997. int mode,
  3998. int n_ctx,
  3999. int n_orig_ctx,
  4000. float freq_base,
  4001. float freq_scale,
  4002. float ext_factor,
  4003. float attn_factor,
  4004. float beta_fast,
  4005. float beta_slow,
  4006. float xpos_base,
  4007. bool xpos_down,
  4008. bool inplace) {
  4009. GGML_ASSERT(ggml_is_vector(b));
  4010. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4011. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4012. bool is_node = false;
  4013. if (a->grad) {
  4014. is_node = true;
  4015. }
  4016. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4017. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4018. memcpy(params + 5, &freq_base, sizeof(float));
  4019. memcpy(params + 6, &freq_scale, sizeof(float));
  4020. memcpy(params + 7, &ext_factor, sizeof(float));
  4021. memcpy(params + 8, &attn_factor, sizeof(float));
  4022. memcpy(params + 9, &beta_fast, sizeof(float));
  4023. memcpy(params + 10, &beta_slow, sizeof(float));
  4024. memcpy(params + 11, &xpos_base, sizeof(float));
  4025. memcpy(params + 12, &xpos_down, sizeof(bool));
  4026. ggml_set_op_params(result, params, sizeof(params));
  4027. result->op = GGML_OP_ROPE;
  4028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4029. result->src[0] = a;
  4030. result->src[1] = b;
  4031. return result;
  4032. }
  4033. struct ggml_tensor * ggml_rope(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a,
  4036. struct ggml_tensor * b,
  4037. int n_dims,
  4038. int mode,
  4039. int n_ctx) {
  4040. return ggml_rope_impl(
  4041. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4042. );
  4043. }
  4044. struct ggml_tensor * ggml_rope_inplace(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a,
  4047. struct ggml_tensor * b,
  4048. int n_dims,
  4049. int mode,
  4050. int n_ctx) {
  4051. return ggml_rope_impl(
  4052. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4053. );
  4054. }
  4055. struct ggml_tensor * ggml_rope_custom(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a,
  4058. struct ggml_tensor * b,
  4059. int n_dims,
  4060. int mode,
  4061. int n_ctx,
  4062. int n_orig_ctx,
  4063. float freq_base,
  4064. float freq_scale,
  4065. float ext_factor,
  4066. float attn_factor,
  4067. float beta_fast,
  4068. float beta_slow) {
  4069. return ggml_rope_impl(
  4070. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4071. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4072. );
  4073. }
  4074. struct ggml_tensor * ggml_rope_custom_inplace(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. struct ggml_tensor * b,
  4078. int n_dims,
  4079. int mode,
  4080. int n_ctx,
  4081. int n_orig_ctx,
  4082. float freq_base,
  4083. float freq_scale,
  4084. float ext_factor,
  4085. float attn_factor,
  4086. float beta_fast,
  4087. float beta_slow) {
  4088. return ggml_rope_impl(
  4089. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4090. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4091. );
  4092. }
  4093. struct ggml_tensor * ggml_rope_xpos_inplace(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. struct ggml_tensor * b,
  4097. int n_dims,
  4098. float base,
  4099. bool down) {
  4100. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4101. }
  4102. // ggml_rope_back
  4103. struct ggml_tensor * ggml_rope_back(
  4104. struct ggml_context * ctx,
  4105. struct ggml_tensor * a,
  4106. struct ggml_tensor * b,
  4107. int n_dims,
  4108. int mode,
  4109. int n_ctx,
  4110. int n_orig_ctx,
  4111. float freq_base,
  4112. float freq_scale,
  4113. float ext_factor,
  4114. float attn_factor,
  4115. float beta_fast,
  4116. float beta_slow,
  4117. float xpos_base,
  4118. bool xpos_down) {
  4119. GGML_ASSERT(ggml_is_vector(b));
  4120. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4121. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4122. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4123. bool is_node = false;
  4124. if (a->grad) {
  4125. is_node = false; // TODO: implement backward
  4126. }
  4127. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4128. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4129. memcpy(params + 5, &freq_base, sizeof(float));
  4130. memcpy(params + 6, &freq_scale, sizeof(float));
  4131. memcpy(params + 7, &ext_factor, sizeof(float));
  4132. memcpy(params + 8, &attn_factor, sizeof(float));
  4133. memcpy(params + 9, &beta_fast, sizeof(float));
  4134. memcpy(params + 10, &beta_slow, sizeof(float));
  4135. memcpy(params + 11, &xpos_base, sizeof(float));
  4136. memcpy(params + 12, &xpos_down, sizeof(bool));
  4137. ggml_set_op_params(result, params, sizeof(params));
  4138. result->op = GGML_OP_ROPE_BACK;
  4139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4140. result->src[0] = a;
  4141. result->src[1] = b;
  4142. return result;
  4143. }
  4144. // ggml_alibi
  4145. struct ggml_tensor * ggml_alibi(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. int n_past,
  4149. int n_head,
  4150. float bias_max) {
  4151. GGML_ASSERT(n_past >= 0);
  4152. bool is_node = false;
  4153. if (a->grad) {
  4154. GGML_ASSERT(false); // TODO: implement backward
  4155. is_node = true;
  4156. }
  4157. // TODO: when implement backward, fix this:
  4158. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4159. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4160. int32_t op_params[3] = { n_past, n_head };
  4161. memcpy(op_params + 2, &bias_max, sizeof(float));
  4162. ggml_set_op_params(result, op_params, sizeof(op_params));
  4163. result->op = GGML_OP_ALIBI;
  4164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4165. result->src[0] = a;
  4166. return result;
  4167. }
  4168. // ggml_clamp
  4169. struct ggml_tensor * ggml_clamp(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a,
  4172. float min,
  4173. float max) {
  4174. bool is_node = false;
  4175. if (a->grad) {
  4176. GGML_ASSERT(false); // TODO: implement backward
  4177. is_node = true;
  4178. }
  4179. // TODO: when implement backward, fix this:
  4180. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4181. float params[] = { min, max };
  4182. ggml_set_op_params(result, params, sizeof(params));
  4183. result->op = GGML_OP_CLAMP;
  4184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4185. result->src[0] = a;
  4186. return result;
  4187. }
  4188. // ggml_conv_1d
  4189. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4190. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4191. }
  4192. // im2col: [N, IC, IL] => [N, OL, IC*K]
  4193. // a: [OC,IC, K]
  4194. // b: [N, IC, IL]
  4195. // result: [N, OL, IC*K]
  4196. static struct ggml_tensor * ggml_conv_1d_stage_0(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a,
  4199. struct ggml_tensor * b,
  4200. int s0,
  4201. int p0,
  4202. int d0) {
  4203. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4204. bool is_node = false;
  4205. if (a->grad || b->grad) {
  4206. GGML_ASSERT(false); // TODO: implement backward
  4207. is_node = true;
  4208. }
  4209. const int64_t OL = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4210. const int64_t ne[4] = {
  4211. a->ne[1] * a->ne[0],
  4212. OL,
  4213. b->ne[2],
  4214. 1,
  4215. };
  4216. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4217. int32_t params[] = { s0, p0, d0 };
  4218. ggml_set_op_params(result, params, sizeof(params));
  4219. result->op = GGML_OP_CONV_1D_STAGE_0;
  4220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4221. result->src[0] = a;
  4222. result->src[1] = b;
  4223. return result;
  4224. }
  4225. // ggml_conv_1d_stage_1
  4226. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  4227. // a: [OC, IC, K]
  4228. // b: [N, OL, IC * K]
  4229. // result: [N, OC, OL]
  4230. static struct ggml_tensor * ggml_conv_1d_stage_1(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a,
  4233. struct ggml_tensor * b) {
  4234. bool is_node = false;
  4235. if (a->grad || b->grad) {
  4236. GGML_ASSERT(false); // TODO: implement backward
  4237. is_node = true;
  4238. }
  4239. const int64_t ne[4] = {
  4240. b->ne[1],
  4241. a->ne[2],
  4242. b->ne[2],
  4243. 1,
  4244. };
  4245. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4246. result->op = GGML_OP_CONV_1D_STAGE_1;
  4247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4248. result->src[0] = a;
  4249. result->src[1] = b;
  4250. return result;
  4251. }
  4252. // ggml_conv_1d
  4253. GGML_API struct ggml_tensor * ggml_conv_1d(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b,
  4257. int s0,
  4258. int p0,
  4259. int d0) {
  4260. struct ggml_tensor * result = ggml_conv_1d_stage_0(ctx, a, b, s0, p0, d0);
  4261. result = ggml_conv_1d_stage_1(ctx, a, result);
  4262. return result;
  4263. }
  4264. // GGML_API struct ggml_tensor * ggml_conv_1d(
  4265. // struct ggml_context * ctx,
  4266. // struct ggml_tensor * a,
  4267. // struct ggml_tensor * b,
  4268. // int s0,
  4269. // int p0,
  4270. // int d0) {
  4271. // GGML_ASSERT(ggml_is_matrix(b));
  4272. // GGML_ASSERT(a->ne[1] == b->ne[1]);
  4273. // bool is_node = false;
  4274. // if (a->grad || b->grad) {
  4275. // GGML_ASSERT(false); // TODO: implement backward
  4276. // is_node = true;
  4277. // }
  4278. // const int64_t ne[4] = {
  4279. // ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  4280. // a->ne[2], 1, 1,
  4281. // };
  4282. // struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4283. // int32_t params[] = { s0, p0, d0 };
  4284. // ggml_set_op_params(result, params, sizeof(params));
  4285. // result->op = GGML_OP_CONV_1D;
  4286. // result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4287. // result->src[0] = a;
  4288. // result->src[1] = b;
  4289. // return result;
  4290. // }
  4291. // ggml_conv_1d_ph
  4292. struct ggml_tensor* ggml_conv_1d_ph(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. struct ggml_tensor * b,
  4296. int s,
  4297. int d) {
  4298. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4299. }
  4300. // ggml_conv_transpose_1d
  4301. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4302. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4303. }
  4304. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b,
  4308. int s0,
  4309. int p0,
  4310. int d0) {
  4311. GGML_ASSERT(ggml_is_matrix(b));
  4312. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4313. GGML_ASSERT(a->ne[3] == 1);
  4314. GGML_ASSERT(p0 == 0);
  4315. GGML_ASSERT(d0 == 1);
  4316. bool is_node = false;
  4317. if (a->grad || b->grad) {
  4318. GGML_ASSERT(false); // TODO: implement backward
  4319. is_node = true;
  4320. }
  4321. const int64_t ne[4] = {
  4322. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4323. a->ne[1], b->ne[2], 1,
  4324. };
  4325. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4326. int32_t params[] = { s0, p0, d0 };
  4327. ggml_set_op_params(result, params, sizeof(params));
  4328. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4330. result->src[0] = a;
  4331. result->src[1] = b;
  4332. return result;
  4333. }
  4334. // ggml_conv_2d
  4335. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4336. // a: [OC,IC, KH, KW]
  4337. // b: [N, IC, IH, IW]
  4338. // result: [N, OH, OW, IC*KH*KW]
  4339. static struct ggml_tensor * ggml_conv_2d_stage_0(
  4340. struct ggml_context * ctx,
  4341. struct ggml_tensor * a,
  4342. struct ggml_tensor * b,
  4343. int s0,
  4344. int s1,
  4345. int p0,
  4346. int p1,
  4347. int d0,
  4348. int d1) {
  4349. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4350. bool is_node = false;
  4351. if (a->grad || b->grad) {
  4352. GGML_ASSERT(false); // TODO: implement backward
  4353. is_node = true;
  4354. }
  4355. const int64_t OH = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1);
  4356. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4357. const int64_t ne[4] = {
  4358. a->ne[2] * a->ne[1] * a->ne[0],
  4359. OW,
  4360. OH,
  4361. b->ne[3],
  4362. };
  4363. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4364. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  4365. ggml_set_op_params(result, params, sizeof(params));
  4366. result->op = GGML_OP_CONV_2D_STAGE_0;
  4367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4368. result->src[0] = a;
  4369. result->src[1] = b;
  4370. return result;
  4371. }
  4372. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  4373. // a: [OC, IC, KH, KW]
  4374. // b: [N, OH, OW, IC * KH * KW]
  4375. // result: [N, OC, OH, OW]
  4376. static struct ggml_tensor * ggml_conv_2d_stage_1(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. struct ggml_tensor * b) {
  4380. bool is_node = false;
  4381. if (a->grad || b->grad) {
  4382. GGML_ASSERT(false); // TODO: implement backward
  4383. is_node = true;
  4384. }
  4385. const int64_t ne[4] = {
  4386. b->ne[1],
  4387. b->ne[2],
  4388. a->ne[3],
  4389. b->ne[3],
  4390. };
  4391. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4392. result->op = GGML_OP_CONV_2D_STAGE_1;
  4393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4394. result->src[0] = a;
  4395. result->src[1] = b;
  4396. return result;
  4397. }
  4398. // a: [OC,IC, KH, KW]
  4399. // b: [N, IC, IH, IW]
  4400. // result: [N, OC, OH, OW]
  4401. struct ggml_tensor * ggml_conv_2d(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a,
  4404. struct ggml_tensor * b,
  4405. int s0,
  4406. int s1,
  4407. int p0,
  4408. int p1,
  4409. int d0,
  4410. int d1) {
  4411. struct ggml_tensor * result = ggml_conv_2d_stage_0(ctx, a, b, s0, s1, p0, p1, d0, d1); // [N, OH, OW, IC * KH * KW]
  4412. result = ggml_conv_2d_stage_1(ctx, a, result);
  4413. return result;
  4414. }
  4415. // ggml_conv_2d_sk_p0
  4416. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a,
  4419. struct ggml_tensor * b) {
  4420. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4421. }
  4422. // ggml_conv_2d_s1_ph
  4423. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a,
  4426. struct ggml_tensor * b) {
  4427. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4428. }
  4429. // ggml_conv_transpose_2d_p0
  4430. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4431. return (ins - 1) * s - 2 * p + ks;
  4432. }
  4433. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. struct ggml_tensor * b,
  4437. int stride) {
  4438. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4439. bool is_node = false;
  4440. if (a->grad || b->grad) {
  4441. GGML_ASSERT(false); // TODO: implement backward
  4442. is_node = true;
  4443. }
  4444. const int64_t ne[4] = {
  4445. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4446. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4447. a->ne[2], b->ne[3],
  4448. };
  4449. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4450. ggml_set_op_params_i32(result, 0, stride);
  4451. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4452. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4453. result->src[0] = a;
  4454. result->src[1] = b;
  4455. return result;
  4456. }
  4457. // ggml_pool_*
  4458. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4459. return (ins + 2 * p - ks) / s + 1;
  4460. }
  4461. // ggml_pool_1d
  4462. struct ggml_tensor * ggml_pool_1d(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * a,
  4465. enum ggml_op_pool op,
  4466. int k0,
  4467. int s0,
  4468. int p0) {
  4469. bool is_node = false;
  4470. if (a->grad) {
  4471. GGML_ASSERT(false); // TODO: implement backward
  4472. is_node = true;
  4473. }
  4474. const int64_t ne[3] = {
  4475. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4476. a->ne[1],
  4477. };
  4478. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4479. int32_t params[] = { op, k0, s0, p0 };
  4480. ggml_set_op_params(result, params, sizeof(params));
  4481. result->op = GGML_OP_POOL_1D;
  4482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4483. result->src[0] = a;
  4484. return result;
  4485. }
  4486. // ggml_pool_2d
  4487. struct ggml_tensor * ggml_pool_2d(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. enum ggml_op_pool op,
  4491. int k0,
  4492. int k1,
  4493. int s0,
  4494. int s1,
  4495. float p0,
  4496. float p1) {
  4497. bool is_node = false;
  4498. if (a->grad) {
  4499. GGML_ASSERT(false); // TODO: implement backward
  4500. is_node = true;
  4501. }
  4502. const int64_t ne[3] = {
  4503. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4504. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4505. a->ne[2],
  4506. };
  4507. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4508. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4509. ggml_set_op_params(result, params, sizeof(params));
  4510. result->op = GGML_OP_POOL_2D;
  4511. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4512. result->src[0] = a;
  4513. return result;
  4514. }
  4515. // ggml_upscale
  4516. static struct ggml_tensor * ggml_upscale_impl(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a,
  4519. int scale_factor) {
  4520. bool is_node = false;
  4521. if (a->grad) {
  4522. GGML_ASSERT(false); // TODO: implement backward
  4523. is_node = true;
  4524. }
  4525. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4526. a->ne[0] * scale_factor,
  4527. a->ne[1] * scale_factor,
  4528. a->ne[2], a->ne[3]);
  4529. result->op = GGML_OP_UPSCALE;
  4530. result->op_params[0] = scale_factor;
  4531. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4532. result->src[0] = a;
  4533. result->src[1] = NULL;
  4534. return result;
  4535. }
  4536. struct ggml_tensor * ggml_upscale(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. int scale_factor) {
  4540. return ggml_upscale_impl(ctx, a, scale_factor);
  4541. }
  4542. // ggml_flash_attn
  4543. struct ggml_tensor * ggml_flash_attn(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * q,
  4546. struct ggml_tensor * k,
  4547. struct ggml_tensor * v,
  4548. bool masked) {
  4549. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4550. // TODO: check if vT can be multiplied by (k*qT)
  4551. bool is_node = false;
  4552. if (q->grad || k->grad || v->grad) {
  4553. is_node = true;
  4554. }
  4555. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4556. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  4557. int32_t t = masked ? 1 : 0;
  4558. ggml_set_op_params(result, &t, sizeof(t));
  4559. result->op = GGML_OP_FLASH_ATTN;
  4560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4561. result->src[0] = q;
  4562. result->src[1] = k;
  4563. result->src[2] = v;
  4564. return result;
  4565. }
  4566. // ggml_flash_ff
  4567. struct ggml_tensor * ggml_flash_ff(
  4568. struct ggml_context * ctx,
  4569. struct ggml_tensor * a,
  4570. struct ggml_tensor * b0,
  4571. struct ggml_tensor * b1,
  4572. struct ggml_tensor * c0,
  4573. struct ggml_tensor * c1) {
  4574. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4575. // TODO: more checks
  4576. bool is_node = false;
  4577. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4578. is_node = true;
  4579. }
  4580. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4581. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  4582. result->op = GGML_OP_FLASH_FF;
  4583. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4584. result->src[0] = a;
  4585. result->src[1] = b0;
  4586. result->src[2] = b1;
  4587. result->src[3] = c0;
  4588. result->src[4] = c1;
  4589. return result;
  4590. }
  4591. // ggml_flash_attn_back
  4592. struct ggml_tensor * ggml_flash_attn_back(
  4593. struct ggml_context * ctx,
  4594. struct ggml_tensor * q,
  4595. struct ggml_tensor * k,
  4596. struct ggml_tensor * v,
  4597. struct ggml_tensor * d,
  4598. bool masked) {
  4599. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4600. // TODO: check if vT can be multiplied by (k*qT)
  4601. // d shape [D,N,ne2,ne3]
  4602. // q shape [D,N,ne2,ne3]
  4603. // k shape [D,M,kvne2,ne3]
  4604. // v shape [M,D,kvne2,ne3]
  4605. const int64_t D = q->ne[0];
  4606. const int64_t N = q->ne[1];
  4607. const int64_t M = k->ne[1];
  4608. const int64_t ne2 = q->ne[2];
  4609. const int64_t ne3 = q->ne[3];
  4610. const int64_t kvne2 = k->ne[2];
  4611. GGML_ASSERT(k->ne[0] == D);
  4612. GGML_ASSERT(v->ne[0] == M);
  4613. GGML_ASSERT(v->ne[1] == D);
  4614. GGML_ASSERT(d->ne[0] == D);
  4615. GGML_ASSERT(d->ne[1] == N);
  4616. GGML_ASSERT(k->ne[2] == kvne2);
  4617. GGML_ASSERT(k->ne[3] == ne3);
  4618. GGML_ASSERT(v->ne[2] == kvne2);
  4619. GGML_ASSERT(v->ne[3] == ne3);
  4620. GGML_ASSERT(d->ne[2] == ne2);
  4621. GGML_ASSERT(d->ne[3] == ne3);
  4622. GGML_ASSERT(ne2 % kvne2 == 0);
  4623. bool is_node = false;
  4624. if (q->grad || k->grad || v->grad) {
  4625. // when using this operation (in backwards pass) these grads are set.
  4626. // we don't want to create (big) grad of our result, so is_node is false.
  4627. is_node = false;
  4628. }
  4629. // store gradients of q, k and v as continuous tensors concatenated in result.
  4630. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4631. const int64_t elem_q = ggml_nelements(q);
  4632. const int64_t elem_k = ggml_nelements(k);
  4633. const int64_t elem_v = ggml_nelements(v);
  4634. enum ggml_type result_type = GGML_TYPE_F32;
  4635. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4636. const size_t tsize = ggml_type_size(result_type);
  4637. const size_t offs_q = 0;
  4638. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4639. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4640. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4641. const size_t nelements = (end + tsize - 1)/tsize;
  4642. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4643. int32_t masked_i = masked ? 1 : 0;
  4644. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4645. result->op = GGML_OP_FLASH_ATTN_BACK;
  4646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4647. result->src[0] = q;
  4648. result->src[1] = k;
  4649. result->src[2] = v;
  4650. result->src[3] = d;
  4651. return result;
  4652. }
  4653. // ggml_win_part
  4654. struct ggml_tensor * ggml_win_part(
  4655. struct ggml_context * ctx,
  4656. struct ggml_tensor * a,
  4657. int w) {
  4658. GGML_ASSERT(a->ne[3] == 1);
  4659. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4660. bool is_node = false;
  4661. if (a->grad) {
  4662. GGML_ASSERT(false); // TODO: implement backward
  4663. is_node = true;
  4664. }
  4665. // padding
  4666. const int px = (w - a->ne[1]%w)%w;
  4667. const int py = (w - a->ne[2]%w)%w;
  4668. const int npx = (px + a->ne[1])/w;
  4669. const int npy = (py + a->ne[2])/w;
  4670. const int np = npx*npy;
  4671. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4672. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4673. int32_t params[] = { npx, npy, w };
  4674. ggml_set_op_params(result, params, sizeof(params));
  4675. result->op = GGML_OP_WIN_PART;
  4676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4677. result->src[0] = a;
  4678. return result;
  4679. }
  4680. // ggml_win_unpart
  4681. struct ggml_tensor * ggml_win_unpart(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. int w0,
  4685. int h0,
  4686. int w) {
  4687. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4688. bool is_node = false;
  4689. if (a->grad) {
  4690. GGML_ASSERT(false); // TODO: implement backward
  4691. is_node = true;
  4692. }
  4693. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4694. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4695. int32_t params[] = { w };
  4696. ggml_set_op_params(result, params, sizeof(params));
  4697. result->op = GGML_OP_WIN_UNPART;
  4698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4699. result->src[0] = a;
  4700. return result;
  4701. }
  4702. // ggml_get_rel_pos
  4703. struct ggml_tensor * ggml_get_rel_pos(
  4704. struct ggml_context * ctx,
  4705. struct ggml_tensor * a,
  4706. int qh,
  4707. int kh) {
  4708. GGML_ASSERT(qh == kh);
  4709. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4710. bool is_node = false;
  4711. if (a->grad) {
  4712. GGML_ASSERT(false); // TODO: implement backward
  4713. is_node = true;
  4714. }
  4715. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4716. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4717. result->op = GGML_OP_GET_REL_POS;
  4718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4719. result->src[0] = a;
  4720. result->src[1] = NULL;
  4721. return result;
  4722. }
  4723. // ggml_add_rel_pos
  4724. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a,
  4727. struct ggml_tensor * pw,
  4728. struct ggml_tensor * ph,
  4729. bool inplace) {
  4730. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4731. GGML_ASSERT(ggml_is_contiguous(a));
  4732. GGML_ASSERT(ggml_is_contiguous(pw));
  4733. GGML_ASSERT(ggml_is_contiguous(ph));
  4734. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4735. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4736. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4737. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4738. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4739. bool is_node = false;
  4740. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4741. is_node = true;
  4742. }
  4743. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4744. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4745. result->op = GGML_OP_ADD_REL_POS;
  4746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4747. result->src[0] = a;
  4748. result->src[1] = pw;
  4749. result->src[2] = ph;
  4750. return result;
  4751. }
  4752. struct ggml_tensor * ggml_add_rel_pos(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a,
  4755. struct ggml_tensor * pw,
  4756. struct ggml_tensor * ph) {
  4757. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4758. }
  4759. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4760. struct ggml_context * ctx,
  4761. struct ggml_tensor * a,
  4762. struct ggml_tensor * pw,
  4763. struct ggml_tensor * ph) {
  4764. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4765. }
  4766. // gmml_unary
  4767. static struct ggml_tensor * ggml_unary_impl(
  4768. struct ggml_context * ctx,
  4769. struct ggml_tensor * a,
  4770. enum ggml_unary_op op,
  4771. bool inplace) {
  4772. bool is_node = false;
  4773. if (!inplace && (a->grad)) {
  4774. is_node = true;
  4775. }
  4776. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4777. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4778. result->op = GGML_OP_UNARY;
  4779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4780. result->src[0] = a;
  4781. return result;
  4782. }
  4783. struct ggml_tensor * ggml_unary(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. enum ggml_unary_op op) {
  4787. return ggml_unary_impl(ctx, a, op, false);
  4788. }
  4789. struct ggml_tensor * ggml_unary_inplace(
  4790. struct ggml_context * ctx,
  4791. struct ggml_tensor * a,
  4792. enum ggml_unary_op op) {
  4793. return ggml_unary_impl(ctx, a, op, true);
  4794. }
  4795. // ggml_map_unary
  4796. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4797. struct ggml_context * ctx,
  4798. struct ggml_tensor * a,
  4799. const ggml_unary_op_f32_t fun,
  4800. bool inplace) {
  4801. bool is_node = false;
  4802. if (!inplace && a->grad) {
  4803. is_node = true;
  4804. }
  4805. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4806. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4807. result->op = GGML_OP_MAP_UNARY;
  4808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4809. result->src[0] = a;
  4810. return result;
  4811. }
  4812. struct ggml_tensor * ggml_map_unary_f32(
  4813. struct ggml_context * ctx,
  4814. struct ggml_tensor * a,
  4815. const ggml_unary_op_f32_t fun) {
  4816. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4817. }
  4818. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4819. struct ggml_context * ctx,
  4820. struct ggml_tensor * a,
  4821. const ggml_unary_op_f32_t fun) {
  4822. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4823. }
  4824. // ggml_map_binary
  4825. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4826. struct ggml_context * ctx,
  4827. struct ggml_tensor * a,
  4828. struct ggml_tensor * b,
  4829. const ggml_binary_op_f32_t fun,
  4830. bool inplace) {
  4831. GGML_ASSERT(ggml_are_same_shape(a, b));
  4832. bool is_node = false;
  4833. if (!inplace && (a->grad || b->grad)) {
  4834. is_node = true;
  4835. }
  4836. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4837. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4838. result->op = GGML_OP_MAP_BINARY;
  4839. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4840. result->src[0] = a;
  4841. result->src[1] = b;
  4842. return result;
  4843. }
  4844. struct ggml_tensor * ggml_map_binary_f32(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. struct ggml_tensor * b,
  4848. const ggml_binary_op_f32_t fun) {
  4849. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4850. }
  4851. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. struct ggml_tensor * b,
  4855. const ggml_binary_op_f32_t fun) {
  4856. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4857. }
  4858. // ggml_map_custom1_f32
  4859. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. const ggml_custom1_op_f32_t fun,
  4863. bool inplace) {
  4864. bool is_node = false;
  4865. if (!inplace && a->grad) {
  4866. is_node = true;
  4867. }
  4868. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4869. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4870. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4871. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4872. result->src[0] = a;
  4873. return result;
  4874. }
  4875. struct ggml_tensor * ggml_map_custom1_f32(
  4876. struct ggml_context * ctx,
  4877. struct ggml_tensor * a,
  4878. const ggml_custom1_op_f32_t fun) {
  4879. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4880. }
  4881. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. const ggml_custom1_op_f32_t fun) {
  4885. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4886. }
  4887. // ggml_map_custom2_f32
  4888. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4889. struct ggml_context * ctx,
  4890. struct ggml_tensor * a,
  4891. struct ggml_tensor * b,
  4892. const ggml_custom2_op_f32_t fun,
  4893. bool inplace) {
  4894. bool is_node = false;
  4895. if (!inplace && (a->grad || b->grad)) {
  4896. is_node = true;
  4897. }
  4898. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4899. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4900. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4901. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4902. result->src[0] = a;
  4903. result->src[1] = b;
  4904. return result;
  4905. }
  4906. struct ggml_tensor * ggml_map_custom2_f32(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a,
  4909. struct ggml_tensor * b,
  4910. const ggml_custom2_op_f32_t fun) {
  4911. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4912. }
  4913. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4914. struct ggml_context * ctx,
  4915. struct ggml_tensor * a,
  4916. struct ggml_tensor * b,
  4917. const ggml_custom2_op_f32_t fun) {
  4918. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4919. }
  4920. // ggml_map_custom3_f32
  4921. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4922. struct ggml_context * ctx,
  4923. struct ggml_tensor * a,
  4924. struct ggml_tensor * b,
  4925. struct ggml_tensor * c,
  4926. const ggml_custom3_op_f32_t fun,
  4927. bool inplace) {
  4928. bool is_node = false;
  4929. if (!inplace && (a->grad || b->grad || c->grad)) {
  4930. is_node = true;
  4931. }
  4932. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4933. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4934. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4935. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4936. result->src[0] = a;
  4937. result->src[1] = b;
  4938. result->src[2] = c;
  4939. return result;
  4940. }
  4941. struct ggml_tensor * ggml_map_custom3_f32(
  4942. struct ggml_context * ctx,
  4943. struct ggml_tensor * a,
  4944. struct ggml_tensor * b,
  4945. struct ggml_tensor * c,
  4946. const ggml_custom3_op_f32_t fun) {
  4947. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4948. }
  4949. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4950. struct ggml_context * ctx,
  4951. struct ggml_tensor * a,
  4952. struct ggml_tensor * b,
  4953. struct ggml_tensor * c,
  4954. const ggml_custom3_op_f32_t fun) {
  4955. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4956. }
  4957. // ggml_map_custom1
  4958. struct ggml_map_custom1_op_params {
  4959. ggml_custom1_op_t fun;
  4960. int n_tasks;
  4961. void * userdata;
  4962. };
  4963. static struct ggml_tensor * ggml_map_custom1_impl(
  4964. struct ggml_context * ctx,
  4965. struct ggml_tensor * a,
  4966. const ggml_custom1_op_t fun,
  4967. int n_tasks,
  4968. void * userdata,
  4969. bool inplace) {
  4970. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  4971. bool is_node = false;
  4972. if (!inplace && a->grad) {
  4973. is_node = true;
  4974. }
  4975. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4976. struct ggml_map_custom1_op_params params = {
  4977. /*.fun =*/ fun,
  4978. /*.n_tasks =*/ n_tasks,
  4979. /*.userdata =*/ userdata
  4980. };
  4981. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  4982. result->op = GGML_OP_MAP_CUSTOM1;
  4983. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4984. result->src[0] = a;
  4985. return result;
  4986. }
  4987. struct ggml_tensor * ggml_map_custom1(
  4988. struct ggml_context * ctx,
  4989. struct ggml_tensor * a,
  4990. const ggml_custom1_op_t fun,
  4991. int n_tasks,
  4992. void * userdata) {
  4993. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  4994. }
  4995. struct ggml_tensor * ggml_map_custom1_inplace(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. const ggml_custom1_op_t fun,
  4999. int n_tasks,
  5000. void * userdata) {
  5001. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5002. }
  5003. // ggml_map_custom2
  5004. struct ggml_map_custom2_op_params {
  5005. ggml_custom2_op_t fun;
  5006. int n_tasks;
  5007. void * userdata;
  5008. };
  5009. static struct ggml_tensor * ggml_map_custom2_impl(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. struct ggml_tensor * b,
  5013. const ggml_custom2_op_t fun,
  5014. int n_tasks,
  5015. void * userdata,
  5016. bool inplace) {
  5017. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5018. bool is_node = false;
  5019. if (!inplace && (a->grad || b->grad)) {
  5020. is_node = true;
  5021. }
  5022. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5023. struct ggml_map_custom2_op_params params = {
  5024. /*.fun =*/ fun,
  5025. /*.n_tasks =*/ n_tasks,
  5026. /*.userdata =*/ userdata
  5027. };
  5028. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5029. result->op = GGML_OP_MAP_CUSTOM2;
  5030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5031. result->src[0] = a;
  5032. result->src[1] = b;
  5033. return result;
  5034. }
  5035. struct ggml_tensor * ggml_map_custom2(
  5036. struct ggml_context * ctx,
  5037. struct ggml_tensor * a,
  5038. struct ggml_tensor * b,
  5039. const ggml_custom2_op_t fun,
  5040. int n_tasks,
  5041. void * userdata) {
  5042. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5043. }
  5044. struct ggml_tensor * ggml_map_custom2_inplace(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. struct ggml_tensor * b,
  5048. const ggml_custom2_op_t fun,
  5049. int n_tasks,
  5050. void * userdata) {
  5051. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5052. }
  5053. // ggml_map_custom3
  5054. struct ggml_map_custom3_op_params {
  5055. ggml_custom3_op_t fun;
  5056. int n_tasks;
  5057. void * userdata;
  5058. };
  5059. static struct ggml_tensor * ggml_map_custom3_impl(
  5060. struct ggml_context * ctx,
  5061. struct ggml_tensor * a,
  5062. struct ggml_tensor * b,
  5063. struct ggml_tensor * c,
  5064. const ggml_custom3_op_t fun,
  5065. int n_tasks,
  5066. void * userdata,
  5067. bool inplace) {
  5068. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5069. bool is_node = false;
  5070. if (!inplace && (a->grad || b->grad || c->grad)) {
  5071. is_node = true;
  5072. }
  5073. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5074. struct ggml_map_custom3_op_params params = {
  5075. /*.fun =*/ fun,
  5076. /*.n_tasks =*/ n_tasks,
  5077. /*.userdata =*/ userdata
  5078. };
  5079. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5080. result->op = GGML_OP_MAP_CUSTOM3;
  5081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5082. result->src[0] = a;
  5083. result->src[1] = b;
  5084. result->src[2] = c;
  5085. return result;
  5086. }
  5087. struct ggml_tensor * ggml_map_custom3(
  5088. struct ggml_context * ctx,
  5089. struct ggml_tensor * a,
  5090. struct ggml_tensor * b,
  5091. struct ggml_tensor * c,
  5092. const ggml_custom3_op_t fun,
  5093. int n_tasks,
  5094. void * userdata) {
  5095. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5096. }
  5097. struct ggml_tensor * ggml_map_custom3_inplace(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. struct ggml_tensor * b,
  5101. struct ggml_tensor * c,
  5102. const ggml_custom3_op_t fun,
  5103. int n_tasks,
  5104. void * userdata) {
  5105. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5106. }
  5107. // ggml_cross_entropy_loss
  5108. struct ggml_tensor * ggml_cross_entropy_loss(
  5109. struct ggml_context * ctx,
  5110. struct ggml_tensor * a,
  5111. struct ggml_tensor * b) {
  5112. GGML_ASSERT(ggml_are_same_shape(a, b));
  5113. bool is_node = false;
  5114. if (a->grad || b->grad) {
  5115. is_node = true;
  5116. }
  5117. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5118. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src[0] = a;
  5121. result->src[1] = b;
  5122. return result;
  5123. }
  5124. // ggml_cross_entropy_loss_back
  5125. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. struct ggml_tensor * b,
  5129. struct ggml_tensor * c) {
  5130. GGML_ASSERT(ggml_are_same_shape(a, b));
  5131. GGML_ASSERT(ggml_is_scalar(c));
  5132. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5133. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5134. result->grad = NULL;
  5135. result->src[0] = a;
  5136. result->src[1] = b;
  5137. result->src[2] = c;
  5138. return result;
  5139. }
  5140. ////////////////////////////////////////////////////////////////////////////////
  5141. void ggml_set_param(
  5142. struct ggml_context * ctx,
  5143. struct ggml_tensor * tensor) {
  5144. tensor->is_param = true;
  5145. GGML_ASSERT(tensor->grad == NULL);
  5146. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5147. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5148. }
  5149. // ggml_compute_forward_dup
  5150. static void ggml_compute_forward_dup_same_cont(
  5151. const struct ggml_compute_params * params,
  5152. const struct ggml_tensor * src0,
  5153. struct ggml_tensor * dst) {
  5154. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5155. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5156. GGML_ASSERT(src0->type == dst->type);
  5157. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5158. return;
  5159. }
  5160. const size_t nb00 = src0->nb[0];
  5161. const size_t nb0 = dst->nb[0];
  5162. const int ith = params->ith; // thread index
  5163. const int nth = params->nth; // number of threads
  5164. // parallelize by elements
  5165. const int ne = ggml_nelements(dst);
  5166. const int dr = (ne + nth - 1) / nth;
  5167. const int ie0 = dr * ith;
  5168. const int ie1 = MIN(ie0 + dr, ne);
  5169. if (ie0 < ie1) {
  5170. memcpy(
  5171. ((char *) dst->data + ie0*nb0),
  5172. ((char *) src0->data + ie0*nb00),
  5173. (ie1 - ie0) * ggml_type_size(src0->type));
  5174. }
  5175. }
  5176. static void ggml_compute_forward_dup_f16(
  5177. const struct ggml_compute_params * params,
  5178. const struct ggml_tensor * src0,
  5179. struct ggml_tensor * dst) {
  5180. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5182. return;
  5183. }
  5184. GGML_TENSOR_UNARY_OP_LOCALS
  5185. const int ith = params->ith; // thread index
  5186. const int nth = params->nth; // number of threads
  5187. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5188. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5189. return;
  5190. }
  5191. // parallelize by rows
  5192. const int nr = ne01;
  5193. // number of rows per thread
  5194. const int dr = (nr + nth - 1) / nth;
  5195. // row range for this thread
  5196. const int ir0 = dr * ith;
  5197. const int ir1 = MIN(ir0 + dr, nr);
  5198. if (src0->type == dst->type &&
  5199. ne00 == ne0 &&
  5200. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5201. // copy by rows
  5202. const size_t rs = ne00*nb00;
  5203. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5204. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5205. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5206. memcpy(
  5207. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5208. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5209. rs);
  5210. }
  5211. }
  5212. }
  5213. return;
  5214. }
  5215. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5216. if (ggml_is_contiguous(dst)) {
  5217. if (nb00 == sizeof(ggml_fp16_t)) {
  5218. if (dst->type == GGML_TYPE_F16) {
  5219. size_t id = 0;
  5220. const size_t rs = ne00 * nb00;
  5221. char * dst_ptr = (char *) dst->data;
  5222. for (int i03 = 0; i03 < ne03; i03++) {
  5223. for (int i02 = 0; i02 < ne02; i02++) {
  5224. id += rs * ir0;
  5225. for (int i01 = ir0; i01 < ir1; i01++) {
  5226. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5227. memcpy(dst_ptr + id, src0_ptr, rs);
  5228. id += rs;
  5229. }
  5230. id += rs * (ne01 - ir1);
  5231. }
  5232. }
  5233. } else if (dst->type == GGML_TYPE_F32) {
  5234. size_t id = 0;
  5235. float * dst_ptr = (float *) dst->data;
  5236. for (int i03 = 0; i03 < ne03; i03++) {
  5237. for (int i02 = 0; i02 < ne02; i02++) {
  5238. id += ne00 * ir0;
  5239. for (int i01 = ir0; i01 < ir1; i01++) {
  5240. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5241. for (int i00 = 0; i00 < ne00; i00++) {
  5242. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5243. id++;
  5244. }
  5245. }
  5246. id += ne00 * (ne01 - ir1);
  5247. }
  5248. }
  5249. } else if (type_traits[dst->type].from_float) {
  5250. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5251. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5252. size_t id = 0;
  5253. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5254. char * dst_ptr = (char *) dst->data;
  5255. for (int i03 = 0; i03 < ne03; i03++) {
  5256. for (int i02 = 0; i02 < ne02; i02++) {
  5257. id += rs * ir0;
  5258. for (int i01 = ir0; i01 < ir1; i01++) {
  5259. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5260. for (int i00 = 0; i00 < ne00; i00++) {
  5261. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5262. }
  5263. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5264. id += rs;
  5265. }
  5266. id += rs * (ne01 - ir1);
  5267. }
  5268. }
  5269. } else {
  5270. GGML_ASSERT(false); // TODO: implement
  5271. }
  5272. } else {
  5273. //printf("%s: this is not optimal - fix me\n", __func__);
  5274. if (dst->type == GGML_TYPE_F32) {
  5275. size_t id = 0;
  5276. float * dst_ptr = (float *) dst->data;
  5277. for (int i03 = 0; i03 < ne03; i03++) {
  5278. for (int i02 = 0; i02 < ne02; i02++) {
  5279. id += ne00 * ir0;
  5280. for (int i01 = ir0; i01 < ir1; i01++) {
  5281. for (int i00 = 0; i00 < ne00; i00++) {
  5282. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5283. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5284. id++;
  5285. }
  5286. }
  5287. id += ne00 * (ne01 - ir1);
  5288. }
  5289. }
  5290. } else if (dst->type == GGML_TYPE_F16) {
  5291. size_t id = 0;
  5292. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5293. for (int i03 = 0; i03 < ne03; i03++) {
  5294. for (int i02 = 0; i02 < ne02; i02++) {
  5295. id += ne00 * ir0;
  5296. for (int i01 = ir0; i01 < ir1; i01++) {
  5297. for (int i00 = 0; i00 < ne00; i00++) {
  5298. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5299. dst_ptr[id] = *src0_ptr;
  5300. id++;
  5301. }
  5302. }
  5303. id += ne00 * (ne01 - ir1);
  5304. }
  5305. }
  5306. } else {
  5307. GGML_ASSERT(false); // TODO: implement
  5308. }
  5309. }
  5310. return;
  5311. }
  5312. // dst counters
  5313. int64_t i10 = 0;
  5314. int64_t i11 = 0;
  5315. int64_t i12 = 0;
  5316. int64_t i13 = 0;
  5317. if (dst->type == GGML_TYPE_F16) {
  5318. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5319. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5320. i10 += ne00 * ir0;
  5321. while (i10 >= ne0) {
  5322. i10 -= ne0;
  5323. if (++i11 == ne1) {
  5324. i11 = 0;
  5325. if (++i12 == ne2) {
  5326. i12 = 0;
  5327. if (++i13 == ne3) {
  5328. i13 = 0;
  5329. }
  5330. }
  5331. }
  5332. }
  5333. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5334. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5335. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5336. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5337. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5338. if (++i10 == ne00) {
  5339. i10 = 0;
  5340. if (++i11 == ne01) {
  5341. i11 = 0;
  5342. if (++i12 == ne02) {
  5343. i12 = 0;
  5344. if (++i13 == ne03) {
  5345. i13 = 0;
  5346. }
  5347. }
  5348. }
  5349. }
  5350. }
  5351. }
  5352. i10 += ne00 * (ne01 - ir1);
  5353. while (i10 >= ne0) {
  5354. i10 -= ne0;
  5355. if (++i11 == ne1) {
  5356. i11 = 0;
  5357. if (++i12 == ne2) {
  5358. i12 = 0;
  5359. if (++i13 == ne3) {
  5360. i13 = 0;
  5361. }
  5362. }
  5363. }
  5364. }
  5365. }
  5366. }
  5367. } else if (dst->type == GGML_TYPE_F32) {
  5368. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5369. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5370. i10 += ne00 * ir0;
  5371. while (i10 >= ne0) {
  5372. i10 -= ne0;
  5373. if (++i11 == ne1) {
  5374. i11 = 0;
  5375. if (++i12 == ne2) {
  5376. i12 = 0;
  5377. if (++i13 == ne3) {
  5378. i13 = 0;
  5379. }
  5380. }
  5381. }
  5382. }
  5383. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5384. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5385. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5386. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5387. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5388. if (++i10 == ne0) {
  5389. i10 = 0;
  5390. if (++i11 == ne1) {
  5391. i11 = 0;
  5392. if (++i12 == ne2) {
  5393. i12 = 0;
  5394. if (++i13 == ne3) {
  5395. i13 = 0;
  5396. }
  5397. }
  5398. }
  5399. }
  5400. }
  5401. }
  5402. i10 += ne00 * (ne01 - ir1);
  5403. while (i10 >= ne0) {
  5404. i10 -= ne0;
  5405. if (++i11 == ne1) {
  5406. i11 = 0;
  5407. if (++i12 == ne2) {
  5408. i12 = 0;
  5409. if (++i13 == ne3) {
  5410. i13 = 0;
  5411. }
  5412. }
  5413. }
  5414. }
  5415. }
  5416. }
  5417. } else {
  5418. GGML_ASSERT(false); // TODO: implement
  5419. }
  5420. }
  5421. static void ggml_compute_forward_dup_f32(
  5422. const struct ggml_compute_params * params,
  5423. const struct ggml_tensor * src0,
  5424. struct ggml_tensor * dst) {
  5425. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5426. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5427. return;
  5428. }
  5429. GGML_TENSOR_UNARY_OP_LOCALS
  5430. const int ith = params->ith; // thread index
  5431. const int nth = params->nth; // number of threads
  5432. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5433. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5434. return;
  5435. }
  5436. // parallelize by rows
  5437. const int nr = ne01;
  5438. // number of rows per thread
  5439. const int dr = (nr + nth - 1) / nth;
  5440. // row range for this thread
  5441. const int ir0 = dr * ith;
  5442. const int ir1 = MIN(ir0 + dr, nr);
  5443. if (src0->type == dst->type &&
  5444. ne00 == ne0 &&
  5445. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5446. // copy by rows
  5447. const size_t rs = ne00*nb00;
  5448. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5449. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5450. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5451. memcpy(
  5452. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5453. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5454. rs);
  5455. }
  5456. }
  5457. }
  5458. return;
  5459. }
  5460. if (ggml_is_contiguous(dst)) {
  5461. // TODO: simplify
  5462. if (nb00 == sizeof(float)) {
  5463. if (dst->type == GGML_TYPE_F32) {
  5464. size_t id = 0;
  5465. const size_t rs = ne00 * nb00;
  5466. char * dst_ptr = (char *) dst->data;
  5467. for (int i03 = 0; i03 < ne03; i03++) {
  5468. for (int i02 = 0; i02 < ne02; i02++) {
  5469. id += rs * ir0;
  5470. for (int i01 = ir0; i01 < ir1; i01++) {
  5471. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5472. memcpy(dst_ptr + id, src0_ptr, rs);
  5473. id += rs;
  5474. }
  5475. id += rs * (ne01 - ir1);
  5476. }
  5477. }
  5478. } else if (type_traits[dst->type].from_float) {
  5479. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5480. size_t id = 0;
  5481. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5482. char * dst_ptr = (char *) dst->data;
  5483. for (int i03 = 0; i03 < ne03; i03++) {
  5484. for (int i02 = 0; i02 < ne02; i02++) {
  5485. id += rs * ir0;
  5486. for (int i01 = ir0; i01 < ir1; i01++) {
  5487. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5488. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5489. id += rs;
  5490. }
  5491. id += rs * (ne01 - ir1);
  5492. }
  5493. }
  5494. } else {
  5495. GGML_ASSERT(false); // TODO: implement
  5496. }
  5497. } else {
  5498. //printf("%s: this is not optimal - fix me\n", __func__);
  5499. if (dst->type == GGML_TYPE_F32) {
  5500. size_t id = 0;
  5501. float * dst_ptr = (float *) dst->data;
  5502. for (int i03 = 0; i03 < ne03; i03++) {
  5503. for (int i02 = 0; i02 < ne02; i02++) {
  5504. id += ne00 * ir0;
  5505. for (int i01 = ir0; i01 < ir1; i01++) {
  5506. for (int i00 = 0; i00 < ne00; i00++) {
  5507. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5508. dst_ptr[id] = *src0_ptr;
  5509. id++;
  5510. }
  5511. }
  5512. id += ne00 * (ne01 - ir1);
  5513. }
  5514. }
  5515. } else if (dst->type == GGML_TYPE_F16) {
  5516. size_t id = 0;
  5517. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5518. for (int i03 = 0; i03 < ne03; i03++) {
  5519. for (int i02 = 0; i02 < ne02; i02++) {
  5520. id += ne00 * ir0;
  5521. for (int i01 = ir0; i01 < ir1; i01++) {
  5522. for (int i00 = 0; i00 < ne00; i00++) {
  5523. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5524. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5525. id++;
  5526. }
  5527. }
  5528. id += ne00 * (ne01 - ir1);
  5529. }
  5530. }
  5531. } else {
  5532. GGML_ASSERT(false); // TODO: implement
  5533. }
  5534. }
  5535. return;
  5536. }
  5537. // dst counters
  5538. int64_t i10 = 0;
  5539. int64_t i11 = 0;
  5540. int64_t i12 = 0;
  5541. int64_t i13 = 0;
  5542. if (dst->type == GGML_TYPE_F32) {
  5543. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5544. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5545. i10 += ne00 * ir0;
  5546. while (i10 >= ne0) {
  5547. i10 -= ne0;
  5548. if (++i11 == ne1) {
  5549. i11 = 0;
  5550. if (++i12 == ne2) {
  5551. i12 = 0;
  5552. if (++i13 == ne3) {
  5553. i13 = 0;
  5554. }
  5555. }
  5556. }
  5557. }
  5558. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5559. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5560. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5561. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5562. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5563. if (++i10 == ne0) {
  5564. i10 = 0;
  5565. if (++i11 == ne1) {
  5566. i11 = 0;
  5567. if (++i12 == ne2) {
  5568. i12 = 0;
  5569. if (++i13 == ne3) {
  5570. i13 = 0;
  5571. }
  5572. }
  5573. }
  5574. }
  5575. }
  5576. }
  5577. i10 += ne00 * (ne01 - ir1);
  5578. while (i10 >= ne0) {
  5579. i10 -= ne0;
  5580. if (++i11 == ne1) {
  5581. i11 = 0;
  5582. if (++i12 == ne2) {
  5583. i12 = 0;
  5584. if (++i13 == ne3) {
  5585. i13 = 0;
  5586. }
  5587. }
  5588. }
  5589. }
  5590. }
  5591. }
  5592. } else if (dst->type == GGML_TYPE_F16) {
  5593. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5594. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5595. i10 += ne00 * ir0;
  5596. while (i10 >= ne0) {
  5597. i10 -= ne0;
  5598. if (++i11 == ne1) {
  5599. i11 = 0;
  5600. if (++i12 == ne2) {
  5601. i12 = 0;
  5602. if (++i13 == ne3) {
  5603. i13 = 0;
  5604. }
  5605. }
  5606. }
  5607. }
  5608. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5609. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5610. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5611. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5612. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5613. if (++i10 == ne0) {
  5614. i10 = 0;
  5615. if (++i11 == ne1) {
  5616. i11 = 0;
  5617. if (++i12 == ne2) {
  5618. i12 = 0;
  5619. if (++i13 == ne3) {
  5620. i13 = 0;
  5621. }
  5622. }
  5623. }
  5624. }
  5625. }
  5626. }
  5627. i10 += ne00 * (ne01 - ir1);
  5628. while (i10 >= ne0) {
  5629. i10 -= ne0;
  5630. if (++i11 == ne1) {
  5631. i11 = 0;
  5632. if (++i12 == ne2) {
  5633. i12 = 0;
  5634. if (++i13 == ne3) {
  5635. i13 = 0;
  5636. }
  5637. }
  5638. }
  5639. }
  5640. }
  5641. }
  5642. } else {
  5643. GGML_ASSERT(false); // TODO: implement
  5644. }
  5645. }
  5646. static void ggml_compute_forward_dup(
  5647. const struct ggml_compute_params * params,
  5648. const struct ggml_tensor * src0,
  5649. struct ggml_tensor * dst) {
  5650. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5651. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5652. return;
  5653. }
  5654. switch (src0->type) {
  5655. case GGML_TYPE_F16:
  5656. {
  5657. ggml_compute_forward_dup_f16(params, src0, dst);
  5658. } break;
  5659. case GGML_TYPE_F32:
  5660. {
  5661. ggml_compute_forward_dup_f32(params, src0, dst);
  5662. } break;
  5663. default:
  5664. {
  5665. GGML_ASSERT(false);
  5666. } break;
  5667. }
  5668. }
  5669. // ggml_compute_forward_add
  5670. static void ggml_compute_forward_add_f32(
  5671. const struct ggml_compute_params * params,
  5672. const struct ggml_tensor * src0,
  5673. const struct ggml_tensor * src1,
  5674. struct ggml_tensor * dst) {
  5675. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  5676. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5677. return;
  5678. }
  5679. const int ith = params->ith;
  5680. const int nth = params->nth;
  5681. const int nr = ggml_nrows(src0);
  5682. GGML_TENSOR_BINARY_OP_LOCALS
  5683. GGML_ASSERT( nb0 == sizeof(float));
  5684. GGML_ASSERT(nb00 == sizeof(float));
  5685. // rows per thread
  5686. const int dr = (nr + nth - 1)/nth;
  5687. // row range for this thread
  5688. const int ir0 = dr*ith;
  5689. const int ir1 = MIN(ir0 + dr, nr);
  5690. if (nb10 == sizeof(float)) {
  5691. for (int ir = ir0; ir < ir1; ++ir) {
  5692. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5693. const int64_t i03 = ir/(ne02*ne01);
  5694. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5695. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5696. const int64_t i13 = i03 % ne13;
  5697. const int64_t i12 = i02 % ne12;
  5698. const int64_t i11 = i01 % ne11;
  5699. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5700. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5701. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5702. #ifdef GGML_USE_ACCELERATE
  5703. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  5704. #else
  5705. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  5706. #endif
  5707. }
  5708. } else {
  5709. // src1 is not contiguous
  5710. for (int ir = ir0; ir < ir1; ++ir) {
  5711. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5712. const int64_t i03 = ir/(ne02*ne01);
  5713. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5714. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5715. const int64_t i13 = i03 % ne13;
  5716. const int64_t i12 = i02 % ne12;
  5717. const int64_t i11 = i01 % ne11;
  5718. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5719. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5720. for (int i0 = 0; i0 < ne0; i0++) {
  5721. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  5722. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5723. }
  5724. }
  5725. }
  5726. }
  5727. static void ggml_compute_forward_add_f16_f32(
  5728. const struct ggml_compute_params * params,
  5729. const struct ggml_tensor * src0,
  5730. const struct ggml_tensor * src1,
  5731. struct ggml_tensor * dst) {
  5732. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5733. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5734. return;
  5735. }
  5736. const int ith = params->ith;
  5737. const int nth = params->nth;
  5738. const int nr = ggml_nrows(src0);
  5739. GGML_TENSOR_BINARY_OP_LOCALS
  5740. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5741. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5742. if (dst->type == GGML_TYPE_F32) {
  5743. GGML_ASSERT( nb0 == sizeof(float));
  5744. }
  5745. else {
  5746. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5747. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5748. }
  5749. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5750. // rows per thread
  5751. const int dr = (nr + nth - 1)/nth;
  5752. // row range for this thread
  5753. const int ir0 = dr*ith;
  5754. const int ir1 = MIN(ir0 + dr, nr);
  5755. if (nb10 == sizeof(float)) {
  5756. if (dst->type == GGML_TYPE_F16) {
  5757. for (int ir = ir0; ir < ir1; ++ir) {
  5758. // src0, src1 and dst are same shape => same indices
  5759. const int i3 = ir/(ne2*ne1);
  5760. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5761. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5762. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5763. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5764. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5765. for (int i = 0; i < ne0; i++) {
  5766. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5767. }
  5768. }
  5769. } else {
  5770. for (int ir = ir0; ir < ir1; ++ir) {
  5771. // src0, src1 and dst are same shape => same indices
  5772. const int i3 = ir/(ne2*ne1);
  5773. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5774. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5775. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5776. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5777. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5778. for (int i = 0; i < ne0; i++) {
  5779. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5780. }
  5781. }
  5782. }
  5783. }
  5784. else {
  5785. // src1 is not contiguous
  5786. GGML_ASSERT(false);
  5787. }
  5788. }
  5789. static void ggml_compute_forward_add_f16_f16(
  5790. const struct ggml_compute_params * params,
  5791. const struct ggml_tensor * src0,
  5792. const struct ggml_tensor * src1,
  5793. struct ggml_tensor * dst) {
  5794. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5795. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5796. return;
  5797. }
  5798. const int ith = params->ith;
  5799. const int nth = params->nth;
  5800. const int nr = ggml_nrows(src0);
  5801. GGML_TENSOR_BINARY_OP_LOCALS
  5802. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5803. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5804. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5805. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5806. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5807. // rows per thread
  5808. const int dr = (nr + nth - 1)/nth;
  5809. // row range for this thread
  5810. const int ir0 = dr*ith;
  5811. const int ir1 = MIN(ir0 + dr, nr);
  5812. if (nb10 == sizeof(ggml_fp16_t)) {
  5813. for (int ir = ir0; ir < ir1; ++ir) {
  5814. // src0, src1 and dst are same shape => same indices
  5815. const int i3 = ir/(ne2*ne1);
  5816. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5817. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5818. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5819. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5820. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5821. for (int i = 0; i < ne0; i++) {
  5822. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5823. }
  5824. }
  5825. }
  5826. else {
  5827. // src1 is not contiguous
  5828. GGML_ASSERT(false);
  5829. }
  5830. }
  5831. static void ggml_compute_forward_add_q_f32(
  5832. const struct ggml_compute_params * params,
  5833. const struct ggml_tensor * src0,
  5834. const struct ggml_tensor * src1,
  5835. struct ggml_tensor * dst) {
  5836. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5837. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5838. return;
  5839. }
  5840. const int nr = ggml_nrows(src0);
  5841. GGML_TENSOR_BINARY_OP_LOCALS
  5842. const int ith = params->ith;
  5843. const int nth = params->nth;
  5844. const enum ggml_type type = src0->type;
  5845. const enum ggml_type dtype = dst->type;
  5846. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5847. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5848. // we don't support permuted src0 or src1
  5849. GGML_ASSERT(nb00 == ggml_type_size(type));
  5850. GGML_ASSERT(nb10 == sizeof(float));
  5851. // dst cannot be transposed or permuted
  5852. GGML_ASSERT(nb0 <= nb1);
  5853. GGML_ASSERT(nb1 <= nb2);
  5854. GGML_ASSERT(nb2 <= nb3);
  5855. GGML_ASSERT(ggml_is_quantized(src0->type));
  5856. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5857. // rows per thread
  5858. const int dr = (nr + nth - 1)/nth;
  5859. // row range for this thread
  5860. const int ir0 = dr*ith;
  5861. const int ir1 = MIN(ir0 + dr, nr);
  5862. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5863. for (int ir = ir0; ir < ir1; ++ir) {
  5864. // src0 indices
  5865. const int i03 = ir/(ne02*ne01);
  5866. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5867. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5868. // src1 and dst are same shape as src0 => same indices
  5869. const int i13 = i03;
  5870. const int i12 = i02;
  5871. const int i11 = i01;
  5872. const int i3 = i03;
  5873. const int i2 = i02;
  5874. const int i1 = i01;
  5875. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5876. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5877. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5878. assert(ne00 % 32 == 0);
  5879. // unquantize row from src0 to temp buffer
  5880. dequantize_row_q(src0_row, wdata, ne00);
  5881. // add src1
  5882. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5883. // quantize row to dst
  5884. if (quantize_row_q != NULL) {
  5885. quantize_row_q(wdata, dst_row, ne00);
  5886. } else {
  5887. memcpy(dst_row, wdata, ne0*nb0);
  5888. }
  5889. }
  5890. }
  5891. static void ggml_compute_forward_add(
  5892. const struct ggml_compute_params * params,
  5893. const struct ggml_tensor * src0,
  5894. const struct ggml_tensor * src1,
  5895. struct ggml_tensor * dst) {
  5896. switch (src0->type) {
  5897. case GGML_TYPE_F32:
  5898. {
  5899. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5900. } break;
  5901. case GGML_TYPE_F16:
  5902. {
  5903. if (src1->type == GGML_TYPE_F16) {
  5904. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5905. }
  5906. else if (src1->type == GGML_TYPE_F32) {
  5907. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5908. }
  5909. else {
  5910. GGML_ASSERT(false);
  5911. }
  5912. } break;
  5913. case GGML_TYPE_Q4_0:
  5914. case GGML_TYPE_Q4_1:
  5915. case GGML_TYPE_Q5_0:
  5916. case GGML_TYPE_Q5_1:
  5917. case GGML_TYPE_Q8_0:
  5918. case GGML_TYPE_Q2_K:
  5919. case GGML_TYPE_Q3_K:
  5920. case GGML_TYPE_Q4_K:
  5921. case GGML_TYPE_Q5_K:
  5922. case GGML_TYPE_Q6_K:
  5923. {
  5924. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5925. } break;
  5926. default:
  5927. {
  5928. GGML_ASSERT(false);
  5929. } break;
  5930. }
  5931. }
  5932. // ggml_compute_forward_add1
  5933. static void ggml_compute_forward_add1_f32(
  5934. const struct ggml_compute_params * params,
  5935. const struct ggml_tensor * src0,
  5936. const struct ggml_tensor * src1,
  5937. struct ggml_tensor * dst) {
  5938. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5939. GGML_ASSERT(ggml_is_scalar(src1));
  5940. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5941. return;
  5942. }
  5943. const int ith = params->ith;
  5944. const int nth = params->nth;
  5945. const int nr = ggml_nrows(src0);
  5946. GGML_TENSOR_UNARY_OP_LOCALS
  5947. GGML_ASSERT( nb0 == sizeof(float));
  5948. GGML_ASSERT(nb00 == sizeof(float));
  5949. // rows per thread
  5950. const int dr = (nr + nth - 1)/nth;
  5951. // row range for this thread
  5952. const int ir0 = dr*ith;
  5953. const int ir1 = MIN(ir0 + dr, nr);
  5954. for (int ir = ir0; ir < ir1; ++ir) {
  5955. // src0 and dst are same shape => same indices
  5956. const int i3 = ir/(ne2*ne1);
  5957. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5958. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5959. #ifdef GGML_USE_ACCELERATE
  5960. UNUSED(ggml_vec_add1_f32);
  5961. vDSP_vadd(
  5962. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5963. (float *) ((char *) src1->data), 0,
  5964. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5965. ne0);
  5966. #else
  5967. ggml_vec_add1_f32(ne0,
  5968. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5969. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5970. *(float *) src1->data);
  5971. #endif
  5972. }
  5973. }
  5974. static void ggml_compute_forward_add1_f16_f32(
  5975. const struct ggml_compute_params * params,
  5976. const struct ggml_tensor * src0,
  5977. const struct ggml_tensor * src1,
  5978. struct ggml_tensor * dst) {
  5979. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5980. GGML_ASSERT(ggml_is_scalar(src1));
  5981. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5982. return;
  5983. }
  5984. // scalar to add
  5985. const float v = *(float *) src1->data;
  5986. const int ith = params->ith;
  5987. const int nth = params->nth;
  5988. const int nr = ggml_nrows(src0);
  5989. GGML_TENSOR_UNARY_OP_LOCALS
  5990. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5991. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5992. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5993. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5994. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5995. // rows per thread
  5996. const int dr = (nr + nth - 1)/nth;
  5997. // row range for this thread
  5998. const int ir0 = dr*ith;
  5999. const int ir1 = MIN(ir0 + dr, nr);
  6000. for (int ir = ir0; ir < ir1; ++ir) {
  6001. // src0 and dst are same shape => same indices
  6002. const int i3 = ir/(ne2*ne1);
  6003. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6004. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6005. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6006. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6007. for (int i = 0; i < ne0; i++) {
  6008. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6009. }
  6010. }
  6011. }
  6012. static void ggml_compute_forward_add1_f16_f16(
  6013. const struct ggml_compute_params * params,
  6014. const struct ggml_tensor * src0,
  6015. const struct ggml_tensor * src1,
  6016. struct ggml_tensor * dst) {
  6017. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6018. GGML_ASSERT(ggml_is_scalar(src1));
  6019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6020. return;
  6021. }
  6022. // scalar to add
  6023. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6024. const int ith = params->ith;
  6025. const int nth = params->nth;
  6026. const int nr = ggml_nrows(src0);
  6027. GGML_TENSOR_UNARY_OP_LOCALS
  6028. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6029. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6030. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6031. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6032. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6033. // rows per thread
  6034. const int dr = (nr + nth - 1)/nth;
  6035. // row range for this thread
  6036. const int ir0 = dr*ith;
  6037. const int ir1 = MIN(ir0 + dr, nr);
  6038. for (int ir = ir0; ir < ir1; ++ir) {
  6039. // src0 and dst are same shape => same indices
  6040. const int i3 = ir/(ne2*ne1);
  6041. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6042. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6043. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6044. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6045. for (int i = 0; i < ne0; i++) {
  6046. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6047. }
  6048. }
  6049. }
  6050. static void ggml_compute_forward_add1_q_f32(
  6051. const struct ggml_compute_params * params,
  6052. const struct ggml_tensor * src0,
  6053. const struct ggml_tensor * src1,
  6054. struct ggml_tensor * dst) {
  6055. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6056. GGML_ASSERT(ggml_is_scalar(src1));
  6057. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6058. return;
  6059. }
  6060. // scalar to add
  6061. const float v = *(float *) src1->data;
  6062. const int ith = params->ith;
  6063. const int nth = params->nth;
  6064. const int nr = ggml_nrows(src0);
  6065. GGML_TENSOR_UNARY_OP_LOCALS
  6066. const enum ggml_type type = src0->type;
  6067. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6068. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6069. // we don't support permuted src0
  6070. GGML_ASSERT(nb00 == ggml_type_size(type));
  6071. // dst cannot be transposed or permuted
  6072. GGML_ASSERT(nb0 <= nb1);
  6073. GGML_ASSERT(nb1 <= nb2);
  6074. GGML_ASSERT(nb2 <= nb3);
  6075. GGML_ASSERT(ggml_is_quantized(src0->type));
  6076. GGML_ASSERT(dst->type == src0->type);
  6077. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6078. // rows per thread
  6079. const int dr = (nr + nth - 1)/nth;
  6080. // row range for this thread
  6081. const int ir0 = dr*ith;
  6082. const int ir1 = MIN(ir0 + dr, nr);
  6083. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6084. for (int ir = ir0; ir < ir1; ++ir) {
  6085. // src0 and dst are same shape => same indices
  6086. const int i3 = ir/(ne2*ne1);
  6087. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6088. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6089. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6090. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6091. assert(ne0 % 32 == 0);
  6092. // unquantize row from src0 to temp buffer
  6093. dequantize_row_q(src0_row, wdata, ne0);
  6094. // add src1
  6095. ggml_vec_acc1_f32(ne0, wdata, v);
  6096. // quantize row to dst
  6097. quantize_row_q(wdata, dst_row, ne0);
  6098. }
  6099. }
  6100. static void ggml_compute_forward_add1(
  6101. const struct ggml_compute_params * params,
  6102. const struct ggml_tensor * src0,
  6103. const struct ggml_tensor * src1,
  6104. struct ggml_tensor * dst) {
  6105. switch (src0->type) {
  6106. case GGML_TYPE_F32:
  6107. {
  6108. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6109. } break;
  6110. case GGML_TYPE_F16:
  6111. {
  6112. if (src1->type == GGML_TYPE_F16) {
  6113. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6114. }
  6115. else if (src1->type == GGML_TYPE_F32) {
  6116. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6117. }
  6118. else {
  6119. GGML_ASSERT(false);
  6120. }
  6121. } break;
  6122. case GGML_TYPE_Q4_0:
  6123. case GGML_TYPE_Q4_1:
  6124. case GGML_TYPE_Q5_0:
  6125. case GGML_TYPE_Q5_1:
  6126. case GGML_TYPE_Q8_0:
  6127. case GGML_TYPE_Q8_1:
  6128. case GGML_TYPE_Q2_K:
  6129. case GGML_TYPE_Q3_K:
  6130. case GGML_TYPE_Q4_K:
  6131. case GGML_TYPE_Q5_K:
  6132. case GGML_TYPE_Q6_K:
  6133. {
  6134. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6135. } break;
  6136. default:
  6137. {
  6138. GGML_ASSERT(false);
  6139. } break;
  6140. }
  6141. }
  6142. // ggml_compute_forward_acc
  6143. static void ggml_compute_forward_acc_f32(
  6144. const struct ggml_compute_params * params,
  6145. const struct ggml_tensor * src0,
  6146. const struct ggml_tensor * src1,
  6147. struct ggml_tensor * dst) {
  6148. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6149. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6150. // view src0 and dst with these strides and data offset inbytes during acc
  6151. // nb0 is implicitely element_size because src0 and dst are contiguous
  6152. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6153. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6154. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6155. size_t offset = ((int32_t *) dst->op_params)[3];
  6156. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6157. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6158. // memcpy needs to be synchronized across threads to avoid race conditions.
  6159. // => do it in INIT phase
  6160. memcpy(
  6161. ((char *) dst->data),
  6162. ((char *) src0->data),
  6163. ggml_nbytes(dst));
  6164. }
  6165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6166. return;
  6167. }
  6168. const int ith = params->ith;
  6169. const int nth = params->nth;
  6170. const int nr = ggml_nrows(src1);
  6171. const int nc = src1->ne[0];
  6172. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6173. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6174. // src0 and dst as viewed during acc
  6175. const size_t nb0 = ggml_element_size(src0);
  6176. const size_t nb00 = nb0;
  6177. const size_t nb01 = nb1;
  6178. const size_t nb02 = nb2;
  6179. const size_t nb03 = nb3;
  6180. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6181. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6182. GGML_ASSERT(nb10 == sizeof(float));
  6183. // rows per thread
  6184. const int dr = (nr + nth - 1)/nth;
  6185. // row range for this thread
  6186. const int ir0 = dr*ith;
  6187. const int ir1 = MIN(ir0 + dr, nr);
  6188. for (int ir = ir0; ir < ir1; ++ir) {
  6189. // src0 and dst are viewed with shape of src1 and offset
  6190. // => same indices
  6191. const int i3 = ir/(ne12*ne11);
  6192. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6193. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6194. #ifdef GGML_USE_ACCELERATE
  6195. vDSP_vadd(
  6196. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6197. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6198. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6199. #else
  6200. ggml_vec_add_f32(nc,
  6201. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6202. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6203. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6204. #endif
  6205. }
  6206. }
  6207. static void ggml_compute_forward_acc(
  6208. const struct ggml_compute_params * params,
  6209. const struct ggml_tensor * src0,
  6210. const struct ggml_tensor * src1,
  6211. struct ggml_tensor * dst) {
  6212. switch (src0->type) {
  6213. case GGML_TYPE_F32:
  6214. {
  6215. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6216. } break;
  6217. case GGML_TYPE_F16:
  6218. case GGML_TYPE_Q4_0:
  6219. case GGML_TYPE_Q4_1:
  6220. case GGML_TYPE_Q5_0:
  6221. case GGML_TYPE_Q5_1:
  6222. case GGML_TYPE_Q8_0:
  6223. case GGML_TYPE_Q8_1:
  6224. case GGML_TYPE_Q2_K:
  6225. case GGML_TYPE_Q3_K:
  6226. case GGML_TYPE_Q4_K:
  6227. case GGML_TYPE_Q5_K:
  6228. case GGML_TYPE_Q6_K:
  6229. default:
  6230. {
  6231. GGML_ASSERT(false);
  6232. } break;
  6233. }
  6234. }
  6235. // ggml_compute_forward_sub
  6236. static void ggml_compute_forward_sub_f32(
  6237. const struct ggml_compute_params * params,
  6238. const struct ggml_tensor * src0,
  6239. const struct ggml_tensor * src1,
  6240. struct ggml_tensor * dst) {
  6241. assert(params->ith == 0);
  6242. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6243. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6244. return;
  6245. }
  6246. const int nr = ggml_nrows(src0);
  6247. GGML_TENSOR_BINARY_OP_LOCALS
  6248. GGML_ASSERT( nb0 == sizeof(float));
  6249. GGML_ASSERT(nb00 == sizeof(float));
  6250. if (nb10 == sizeof(float)) {
  6251. for (int ir = 0; ir < nr; ++ir) {
  6252. // src0, src1 and dst are same shape => same indices
  6253. const int i3 = ir/(ne2*ne1);
  6254. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6255. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6256. #ifdef GGML_USE_ACCELERATE
  6257. vDSP_vsub(
  6258. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6259. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6260. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6261. ne0);
  6262. #else
  6263. ggml_vec_sub_f32(ne0,
  6264. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6265. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6266. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6267. #endif
  6268. // }
  6269. // }
  6270. }
  6271. } else {
  6272. // src1 is not contiguous
  6273. for (int ir = 0; ir < nr; ++ir) {
  6274. // src0, src1 and dst are same shape => same indices
  6275. const int i3 = ir/(ne2*ne1);
  6276. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6277. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6278. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6279. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6280. for (int i0 = 0; i0 < ne0; i0++) {
  6281. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6282. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6283. }
  6284. }
  6285. }
  6286. }
  6287. static void ggml_compute_forward_sub(
  6288. const struct ggml_compute_params * params,
  6289. const struct ggml_tensor * src0,
  6290. const struct ggml_tensor * src1,
  6291. struct ggml_tensor * dst) {
  6292. switch (src0->type) {
  6293. case GGML_TYPE_F32:
  6294. {
  6295. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6296. } break;
  6297. default:
  6298. {
  6299. GGML_ASSERT(false);
  6300. } break;
  6301. }
  6302. }
  6303. // ggml_compute_forward_mul
  6304. static void ggml_compute_forward_mul_f32(
  6305. const struct ggml_compute_params * params,
  6306. const struct ggml_tensor * src0,
  6307. const struct ggml_tensor * src1,
  6308. struct ggml_tensor * dst) {
  6309. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6310. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6311. return;
  6312. }
  6313. const int ith = params->ith;
  6314. const int nth = params->nth;
  6315. #ifdef GGML_USE_CLBLAST
  6316. if (src1->backend == GGML_BACKEND_GPU) {
  6317. if (ith == 0) {
  6318. ggml_cl_mul(src0, src1, dst);
  6319. }
  6320. return;
  6321. }
  6322. #endif
  6323. const int64_t nr = ggml_nrows(src0);
  6324. GGML_TENSOR_BINARY_OP_LOCALS
  6325. GGML_ASSERT( nb0 == sizeof(float));
  6326. GGML_ASSERT(nb00 == sizeof(float));
  6327. GGML_ASSERT(ne00 == ne10);
  6328. if (nb10 == sizeof(float)) {
  6329. for (int64_t ir = ith; ir < nr; ir += nth) {
  6330. // src0 and dst are same shape => same indices
  6331. const int64_t i03 = ir/(ne02*ne01);
  6332. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6333. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6334. const int64_t i13 = i03 % ne13;
  6335. const int64_t i12 = i02 % ne12;
  6336. const int64_t i11 = i01 % ne11;
  6337. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6338. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6339. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6340. #ifdef GGML_USE_ACCELERATE
  6341. UNUSED(ggml_vec_mul_f32);
  6342. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6343. #else
  6344. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6345. #endif
  6346. // }
  6347. // }
  6348. }
  6349. } else {
  6350. // src1 is not contiguous
  6351. for (int64_t ir = ith; ir < nr; ir += nth) {
  6352. // src0 and dst are same shape => same indices
  6353. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6354. const int64_t i03 = ir/(ne02*ne01);
  6355. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6356. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6357. const int64_t i13 = i03 % ne13;
  6358. const int64_t i12 = i02 % ne12;
  6359. const int64_t i11 = i01 % ne11;
  6360. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6361. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6362. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6363. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6364. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6365. }
  6366. }
  6367. }
  6368. }
  6369. static void ggml_compute_forward_mul(
  6370. const struct ggml_compute_params * params,
  6371. const struct ggml_tensor * src0,
  6372. const struct ggml_tensor * src1,
  6373. struct ggml_tensor * dst) {
  6374. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6375. switch (src0->type) {
  6376. case GGML_TYPE_F32:
  6377. {
  6378. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6379. } break;
  6380. default:
  6381. {
  6382. GGML_ASSERT(false);
  6383. } break;
  6384. }
  6385. }
  6386. // ggml_compute_forward_div
  6387. static void ggml_compute_forward_div_f32(
  6388. const struct ggml_compute_params * params,
  6389. const struct ggml_tensor * src0,
  6390. const struct ggml_tensor * src1,
  6391. struct ggml_tensor * dst) {
  6392. assert(params->ith == 0);
  6393. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6394. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6395. return;
  6396. }
  6397. const int nr = ggml_nrows(src0);
  6398. GGML_TENSOR_BINARY_OP_LOCALS
  6399. GGML_ASSERT( nb0 == sizeof(float));
  6400. GGML_ASSERT(nb00 == sizeof(float));
  6401. if (nb10 == sizeof(float)) {
  6402. for (int ir = 0; ir < nr; ++ir) {
  6403. // src0, src1 and dst are same shape => same indices
  6404. const int i3 = ir/(ne2*ne1);
  6405. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6406. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6407. #ifdef GGML_USE_ACCELERATE
  6408. UNUSED(ggml_vec_div_f32);
  6409. vDSP_vdiv(
  6410. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6411. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6412. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6413. ne0);
  6414. #else
  6415. ggml_vec_div_f32(ne0,
  6416. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6417. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6418. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6419. #endif
  6420. // }
  6421. // }
  6422. }
  6423. } else {
  6424. // src1 is not contiguous
  6425. for (int ir = 0; ir < nr; ++ir) {
  6426. // src0, src1 and dst are same shape => same indices
  6427. const int i3 = ir/(ne2*ne1);
  6428. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6429. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6430. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6431. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6432. for (int i0 = 0; i0 < ne0; i0++) {
  6433. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6434. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6435. }
  6436. }
  6437. }
  6438. }
  6439. static void ggml_compute_forward_div(
  6440. const struct ggml_compute_params * params,
  6441. const struct ggml_tensor * src0,
  6442. const struct ggml_tensor * src1,
  6443. struct ggml_tensor * dst) {
  6444. switch (src0->type) {
  6445. case GGML_TYPE_F32:
  6446. {
  6447. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6448. } break;
  6449. default:
  6450. {
  6451. GGML_ASSERT(false);
  6452. } break;
  6453. }
  6454. }
  6455. // ggml_compute_forward_sqr
  6456. static void ggml_compute_forward_sqr_f32(
  6457. const struct ggml_compute_params * params,
  6458. const struct ggml_tensor * src0,
  6459. struct ggml_tensor * dst) {
  6460. assert(params->ith == 0);
  6461. assert(ggml_are_same_shape(src0, dst));
  6462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6463. return;
  6464. }
  6465. const int n = ggml_nrows(src0);
  6466. const int nc = src0->ne[0];
  6467. assert( dst->nb[0] == sizeof(float));
  6468. assert(src0->nb[0] == sizeof(float));
  6469. for (int i = 0; i < n; i++) {
  6470. ggml_vec_sqr_f32(nc,
  6471. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6472. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6473. }
  6474. }
  6475. static void ggml_compute_forward_sqr(
  6476. const struct ggml_compute_params * params,
  6477. const struct ggml_tensor * src0,
  6478. struct ggml_tensor * dst) {
  6479. switch (src0->type) {
  6480. case GGML_TYPE_F32:
  6481. {
  6482. ggml_compute_forward_sqr_f32(params, src0, dst);
  6483. } break;
  6484. default:
  6485. {
  6486. GGML_ASSERT(false);
  6487. } break;
  6488. }
  6489. }
  6490. // ggml_compute_forward_sqrt
  6491. static void ggml_compute_forward_sqrt_f32(
  6492. const struct ggml_compute_params * params,
  6493. const struct ggml_tensor * src0,
  6494. struct ggml_tensor * dst) {
  6495. assert(params->ith == 0);
  6496. assert(ggml_are_same_shape(src0, dst));
  6497. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6498. return;
  6499. }
  6500. const int n = ggml_nrows(src0);
  6501. const int nc = src0->ne[0];
  6502. assert( dst->nb[0] == sizeof(float));
  6503. assert(src0->nb[0] == sizeof(float));
  6504. for (int i = 0; i < n; i++) {
  6505. ggml_vec_sqrt_f32(nc,
  6506. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6507. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6508. }
  6509. }
  6510. static void ggml_compute_forward_sqrt(
  6511. const struct ggml_compute_params * params,
  6512. const struct ggml_tensor * src0,
  6513. struct ggml_tensor * dst) {
  6514. switch (src0->type) {
  6515. case GGML_TYPE_F32:
  6516. {
  6517. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6518. } break;
  6519. default:
  6520. {
  6521. GGML_ASSERT(false);
  6522. } break;
  6523. }
  6524. }
  6525. // ggml_compute_forward_log
  6526. static void ggml_compute_forward_log_f32(
  6527. const struct ggml_compute_params * params,
  6528. const struct ggml_tensor * src0,
  6529. struct ggml_tensor * dst) {
  6530. GGML_ASSERT(params->ith == 0);
  6531. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6532. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6533. return;
  6534. }
  6535. const int n = ggml_nrows(src0);
  6536. const int nc = src0->ne[0];
  6537. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6538. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6539. for (int i = 0; i < n; i++) {
  6540. ggml_vec_log_f32(nc,
  6541. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6542. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6543. }
  6544. }
  6545. static void ggml_compute_forward_log(
  6546. const struct ggml_compute_params * params,
  6547. const struct ggml_tensor * src0,
  6548. struct ggml_tensor * dst) {
  6549. switch (src0->type) {
  6550. case GGML_TYPE_F32:
  6551. {
  6552. ggml_compute_forward_log_f32(params, src0, dst);
  6553. } break;
  6554. default:
  6555. {
  6556. GGML_ASSERT(false);
  6557. } break;
  6558. }
  6559. }
  6560. // ggml_compute_forward_sum
  6561. static void ggml_compute_forward_sum_f32(
  6562. const struct ggml_compute_params * params,
  6563. const struct ggml_tensor * src0,
  6564. struct ggml_tensor * dst) {
  6565. assert(params->ith == 0);
  6566. assert(ggml_is_scalar(dst));
  6567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6568. return;
  6569. }
  6570. assert(ggml_is_scalar(dst));
  6571. assert(src0->nb[0] == sizeof(float));
  6572. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6573. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6574. ggml_float sum = 0;
  6575. ggml_float row_sum = 0;
  6576. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6577. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6578. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6579. ggml_vec_sum_f32_ggf(ne00,
  6580. &row_sum,
  6581. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6582. sum += row_sum;
  6583. }
  6584. }
  6585. }
  6586. ((float *) dst->data)[0] = sum;
  6587. }
  6588. static void ggml_compute_forward_sum_f16(
  6589. const struct ggml_compute_params * params,
  6590. const struct ggml_tensor * src0,
  6591. struct ggml_tensor * dst) {
  6592. assert(params->ith == 0);
  6593. assert(ggml_is_scalar(dst));
  6594. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6595. return;
  6596. }
  6597. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6598. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6599. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6600. float sum = 0;
  6601. float row_sum = 0;
  6602. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6603. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6604. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6605. ggml_vec_sum_f16_ggf(ne00,
  6606. &row_sum,
  6607. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6608. sum += row_sum;
  6609. }
  6610. }
  6611. }
  6612. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6613. }
  6614. static void ggml_compute_forward_sum(
  6615. const struct ggml_compute_params * params,
  6616. const struct ggml_tensor * src0,
  6617. struct ggml_tensor * dst) {
  6618. switch (src0->type) {
  6619. case GGML_TYPE_F32:
  6620. {
  6621. ggml_compute_forward_sum_f32(params, src0, dst);
  6622. } break;
  6623. case GGML_TYPE_F16:
  6624. {
  6625. ggml_compute_forward_sum_f16(params, src0, dst);
  6626. } break;
  6627. default:
  6628. {
  6629. GGML_ASSERT(false);
  6630. } break;
  6631. }
  6632. }
  6633. // ggml_compute_forward_sum_rows
  6634. static void ggml_compute_forward_sum_rows_f32(
  6635. const struct ggml_compute_params * params,
  6636. const struct ggml_tensor * src0,
  6637. struct ggml_tensor * dst) {
  6638. GGML_ASSERT(params->ith == 0);
  6639. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6640. return;
  6641. }
  6642. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6643. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6644. GGML_TENSOR_UNARY_OP_LOCALS
  6645. GGML_ASSERT(ne0 == 1);
  6646. GGML_ASSERT(ne1 == ne01);
  6647. GGML_ASSERT(ne2 == ne02);
  6648. GGML_ASSERT(ne3 == ne03);
  6649. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6650. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6651. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6652. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6653. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6654. float row_sum = 0;
  6655. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6656. dst_row[0] = row_sum;
  6657. }
  6658. }
  6659. }
  6660. }
  6661. static void ggml_compute_forward_sum_rows(
  6662. const struct ggml_compute_params * params,
  6663. const struct ggml_tensor * src0,
  6664. struct ggml_tensor * dst) {
  6665. switch (src0->type) {
  6666. case GGML_TYPE_F32:
  6667. {
  6668. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6669. } break;
  6670. default:
  6671. {
  6672. GGML_ASSERT(false);
  6673. } break;
  6674. }
  6675. }
  6676. // ggml_compute_forward_mean
  6677. static void ggml_compute_forward_mean_f32(
  6678. const struct ggml_compute_params * params,
  6679. const struct ggml_tensor * src0,
  6680. struct ggml_tensor * dst) {
  6681. assert(params->ith == 0);
  6682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6683. return;
  6684. }
  6685. assert(src0->nb[0] == sizeof(float));
  6686. GGML_TENSOR_UNARY_OP_LOCALS
  6687. assert(ne0 == 1);
  6688. assert(ne1 == ne01);
  6689. assert(ne2 == ne02);
  6690. assert(ne3 == ne03);
  6691. UNUSED(ne0);
  6692. UNUSED(ne1);
  6693. UNUSED(ne2);
  6694. UNUSED(ne3);
  6695. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6696. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6697. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6698. ggml_vec_sum_f32(ne00,
  6699. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6700. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6701. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6702. }
  6703. }
  6704. }
  6705. }
  6706. static void ggml_compute_forward_mean(
  6707. const struct ggml_compute_params * params,
  6708. const struct ggml_tensor * src0,
  6709. struct ggml_tensor * dst) {
  6710. switch (src0->type) {
  6711. case GGML_TYPE_F32:
  6712. {
  6713. ggml_compute_forward_mean_f32(params, src0, dst);
  6714. } break;
  6715. default:
  6716. {
  6717. GGML_ASSERT(false);
  6718. } break;
  6719. }
  6720. }
  6721. // ggml_compute_forward_argmax
  6722. static void ggml_compute_forward_argmax_f32(
  6723. const struct ggml_compute_params * params,
  6724. const struct ggml_tensor * src0,
  6725. struct ggml_tensor * dst) {
  6726. assert(params->ith == 0);
  6727. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6728. return;
  6729. }
  6730. assert(src0->nb[0] == sizeof(float));
  6731. assert(dst->nb[0] == sizeof(float));
  6732. const int64_t ne00 = src0->ne[0];
  6733. const int64_t ne01 = src0->ne[1];
  6734. const size_t nb01 = src0->nb[1];
  6735. const size_t nb0 = dst->nb[0];
  6736. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6737. float * src = (float *) ((char *) src0->data + i1*nb01);
  6738. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6739. int v = 0;
  6740. ggml_vec_argmax_f32(ne00, &v, src);
  6741. dst_[0] = v;
  6742. }
  6743. }
  6744. static void ggml_compute_forward_argmax(
  6745. const struct ggml_compute_params * params,
  6746. const struct ggml_tensor * src0,
  6747. struct ggml_tensor * dst) {
  6748. switch (src0->type) {
  6749. case GGML_TYPE_F32:
  6750. {
  6751. ggml_compute_forward_argmax_f32(params, src0, dst);
  6752. } break;
  6753. default:
  6754. {
  6755. GGML_ASSERT(false);
  6756. } break;
  6757. }
  6758. }
  6759. // ggml_compute_forward_repeat
  6760. static void ggml_compute_forward_repeat_f32(
  6761. const struct ggml_compute_params * params,
  6762. const struct ggml_tensor * src0,
  6763. struct ggml_tensor * dst) {
  6764. GGML_ASSERT(params->ith == 0);
  6765. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6767. return;
  6768. }
  6769. GGML_TENSOR_UNARY_OP_LOCALS
  6770. // guaranteed to be an integer due to the check in ggml_can_repeat
  6771. const int nr0 = (int)(ne0/ne00);
  6772. const int nr1 = (int)(ne1/ne01);
  6773. const int nr2 = (int)(ne2/ne02);
  6774. const int nr3 = (int)(ne3/ne03);
  6775. // TODO: support for transposed / permuted tensors
  6776. GGML_ASSERT(nb0 == sizeof(float));
  6777. GGML_ASSERT(nb00 == sizeof(float));
  6778. // TODO: maybe this is not optimal?
  6779. for (int i3 = 0; i3 < nr3; i3++) {
  6780. for (int k3 = 0; k3 < ne03; k3++) {
  6781. for (int i2 = 0; i2 < nr2; i2++) {
  6782. for (int k2 = 0; k2 < ne02; k2++) {
  6783. for (int i1 = 0; i1 < nr1; i1++) {
  6784. for (int k1 = 0; k1 < ne01; k1++) {
  6785. for (int i0 = 0; i0 < nr0; i0++) {
  6786. ggml_vec_cpy_f32(ne00,
  6787. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6788. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6789. }
  6790. }
  6791. }
  6792. }
  6793. }
  6794. }
  6795. }
  6796. }
  6797. static void ggml_compute_forward_repeat_f16(
  6798. const struct ggml_compute_params * params,
  6799. const struct ggml_tensor * src0,
  6800. struct ggml_tensor * dst) {
  6801. GGML_ASSERT(params->ith == 0);
  6802. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6803. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6804. return;
  6805. }
  6806. GGML_TENSOR_UNARY_OP_LOCALS;
  6807. // guaranteed to be an integer due to the check in ggml_can_repeat
  6808. const int nr0 = (int)(ne0/ne00);
  6809. const int nr1 = (int)(ne1/ne01);
  6810. const int nr2 = (int)(ne2/ne02);
  6811. const int nr3 = (int)(ne3/ne03);
  6812. // TODO: support for transposed / permuted tensors
  6813. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6814. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6815. // TODO: maybe this is not optimal?
  6816. for (int i3 = 0; i3 < nr3; i3++) {
  6817. for (int k3 = 0; k3 < ne03; k3++) {
  6818. for (int i2 = 0; i2 < nr2; i2++) {
  6819. for (int k2 = 0; k2 < ne02; k2++) {
  6820. for (int i1 = 0; i1 < nr1; i1++) {
  6821. for (int k1 = 0; k1 < ne01; k1++) {
  6822. for (int i0 = 0; i0 < nr0; i0++) {
  6823. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6824. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6825. // ggml_vec_cpy_f16(ne00, y, x)
  6826. for (int i = 0; i < ne00; ++i) {
  6827. y[i] = x[i];
  6828. }
  6829. }
  6830. }
  6831. }
  6832. }
  6833. }
  6834. }
  6835. }
  6836. }
  6837. static void ggml_compute_forward_repeat(
  6838. const struct ggml_compute_params * params,
  6839. const struct ggml_tensor * src0,
  6840. struct ggml_tensor * dst) {
  6841. switch (src0->type) {
  6842. case GGML_TYPE_F16:
  6843. {
  6844. ggml_compute_forward_repeat_f16(params, src0, dst);
  6845. } break;
  6846. case GGML_TYPE_F32:
  6847. {
  6848. ggml_compute_forward_repeat_f32(params, src0, dst);
  6849. } break;
  6850. default:
  6851. {
  6852. GGML_ASSERT(false);
  6853. } break;
  6854. }
  6855. }
  6856. // ggml_compute_forward_repeat_back
  6857. static void ggml_compute_forward_repeat_back_f32(
  6858. const struct ggml_compute_params * params,
  6859. const struct ggml_tensor * src0,
  6860. struct ggml_tensor * dst) {
  6861. GGML_ASSERT(params->ith == 0);
  6862. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6864. return;
  6865. }
  6866. GGML_TENSOR_UNARY_OP_LOCALS
  6867. // guaranteed to be an integer due to the check in ggml_can_repeat
  6868. const int nr0 = (int)(ne00/ne0);
  6869. const int nr1 = (int)(ne01/ne1);
  6870. const int nr2 = (int)(ne02/ne2);
  6871. const int nr3 = (int)(ne03/ne3);
  6872. // TODO: support for transposed / permuted tensors
  6873. GGML_ASSERT(nb0 == sizeof(float));
  6874. GGML_ASSERT(nb00 == sizeof(float));
  6875. if (ggml_is_contiguous(dst)) {
  6876. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6877. } else {
  6878. for (int k3 = 0; k3 < ne3; k3++) {
  6879. for (int k2 = 0; k2 < ne2; k2++) {
  6880. for (int k1 = 0; k1 < ne1; k1++) {
  6881. ggml_vec_set_f32(ne0,
  6882. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6883. 0);
  6884. }
  6885. }
  6886. }
  6887. }
  6888. // TODO: maybe this is not optimal?
  6889. for (int i3 = 0; i3 < nr3; i3++) {
  6890. for (int k3 = 0; k3 < ne3; k3++) {
  6891. for (int i2 = 0; i2 < nr2; i2++) {
  6892. for (int k2 = 0; k2 < ne2; k2++) {
  6893. for (int i1 = 0; i1 < nr1; i1++) {
  6894. for (int k1 = 0; k1 < ne1; k1++) {
  6895. for (int i0 = 0; i0 < nr0; i0++) {
  6896. ggml_vec_acc_f32(ne0,
  6897. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6898. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6899. }
  6900. }
  6901. }
  6902. }
  6903. }
  6904. }
  6905. }
  6906. }
  6907. static void ggml_compute_forward_repeat_back(
  6908. const struct ggml_compute_params * params,
  6909. const struct ggml_tensor * src0,
  6910. struct ggml_tensor * dst) {
  6911. switch (src0->type) {
  6912. case GGML_TYPE_F32:
  6913. {
  6914. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6915. } break;
  6916. default:
  6917. {
  6918. GGML_ASSERT(false);
  6919. } break;
  6920. }
  6921. }
  6922. // ggml_compute_forward_concat
  6923. static void ggml_compute_forward_concat_f32(
  6924. const struct ggml_compute_params * params,
  6925. const struct ggml_tensor * src0,
  6926. const struct ggml_tensor * src1,
  6927. struct ggml_tensor * dst) {
  6928. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6929. return;
  6930. }
  6931. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6932. const int ith = params->ith;
  6933. GGML_TENSOR_BINARY_OP_LOCALS
  6934. // TODO: support for transposed / permuted tensors
  6935. GGML_ASSERT(nb0 == sizeof(float));
  6936. GGML_ASSERT(nb00 == sizeof(float));
  6937. GGML_ASSERT(nb10 == sizeof(float));
  6938. for (int i3 = 0; i3 < ne3; i3++) {
  6939. for (int i2 = ith; i2 < ne2; i2++) {
  6940. if (i2 < ne02) { // src0
  6941. for (int i1 = 0; i1 < ne1; i1++) {
  6942. for (int i0 = 0; i0 < ne0; i0++) {
  6943. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6944. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6945. *y = *x;
  6946. }
  6947. }
  6948. } // src1
  6949. else {
  6950. for (int i1 = 0; i1 < ne1; i1++) {
  6951. for (int i0 = 0; i0 < ne0; i0++) {
  6952. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  6953. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6954. *y = *x;
  6955. }
  6956. }
  6957. }
  6958. }
  6959. }
  6960. }
  6961. static void ggml_compute_forward_concat(
  6962. const struct ggml_compute_params* params,
  6963. const struct ggml_tensor* src0,
  6964. const struct ggml_tensor* src1,
  6965. struct ggml_tensor* dst) {
  6966. switch (src0->type) {
  6967. case GGML_TYPE_F32:
  6968. {
  6969. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  6970. } break;
  6971. default:
  6972. {
  6973. GGML_ASSERT(false);
  6974. } break;
  6975. }
  6976. }
  6977. // ggml_compute_forward_abs
  6978. static void ggml_compute_forward_abs_f32(
  6979. const struct ggml_compute_params * params,
  6980. const struct ggml_tensor * src0,
  6981. struct ggml_tensor * dst) {
  6982. assert(params->ith == 0);
  6983. assert(ggml_are_same_shape(src0, dst));
  6984. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6985. return;
  6986. }
  6987. const int n = ggml_nrows(src0);
  6988. const int nc = src0->ne[0];
  6989. assert(dst->nb[0] == sizeof(float));
  6990. assert(src0->nb[0] == sizeof(float));
  6991. for (int i = 0; i < n; i++) {
  6992. ggml_vec_abs_f32(nc,
  6993. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6994. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6995. }
  6996. }
  6997. static void ggml_compute_forward_abs(
  6998. const struct ggml_compute_params * params,
  6999. const struct ggml_tensor * src0,
  7000. struct ggml_tensor * dst) {
  7001. switch (src0->type) {
  7002. case GGML_TYPE_F32:
  7003. {
  7004. ggml_compute_forward_abs_f32(params, src0, dst);
  7005. } break;
  7006. default:
  7007. {
  7008. GGML_ASSERT(false);
  7009. } break;
  7010. }
  7011. }
  7012. // ggml_compute_forward_sgn
  7013. static void ggml_compute_forward_sgn_f32(
  7014. const struct ggml_compute_params * params,
  7015. const struct ggml_tensor * src0,
  7016. struct ggml_tensor * dst) {
  7017. assert(params->ith == 0);
  7018. assert(ggml_are_same_shape(src0, dst));
  7019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7020. return;
  7021. }
  7022. const int n = ggml_nrows(src0);
  7023. const int nc = src0->ne[0];
  7024. assert(dst->nb[0] == sizeof(float));
  7025. assert(src0->nb[0] == sizeof(float));
  7026. for (int i = 0; i < n; i++) {
  7027. ggml_vec_sgn_f32(nc,
  7028. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7029. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7030. }
  7031. }
  7032. static void ggml_compute_forward_sgn(
  7033. const struct ggml_compute_params * params,
  7034. const struct ggml_tensor * src0,
  7035. struct ggml_tensor * dst) {
  7036. switch (src0->type) {
  7037. case GGML_TYPE_F32:
  7038. {
  7039. ggml_compute_forward_sgn_f32(params, src0, dst);
  7040. } break;
  7041. default:
  7042. {
  7043. GGML_ASSERT(false);
  7044. } break;
  7045. }
  7046. }
  7047. // ggml_compute_forward_neg
  7048. static void ggml_compute_forward_neg_f32(
  7049. const struct ggml_compute_params * params,
  7050. const struct ggml_tensor * src0,
  7051. struct ggml_tensor * dst) {
  7052. assert(params->ith == 0);
  7053. assert(ggml_are_same_shape(src0, dst));
  7054. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7055. return;
  7056. }
  7057. const int n = ggml_nrows(src0);
  7058. const int nc = src0->ne[0];
  7059. assert(dst->nb[0] == sizeof(float));
  7060. assert(src0->nb[0] == sizeof(float));
  7061. for (int i = 0; i < n; i++) {
  7062. ggml_vec_neg_f32(nc,
  7063. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7064. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7065. }
  7066. }
  7067. static void ggml_compute_forward_neg(
  7068. const struct ggml_compute_params * params,
  7069. const struct ggml_tensor * src0,
  7070. struct ggml_tensor * dst) {
  7071. switch (src0->type) {
  7072. case GGML_TYPE_F32:
  7073. {
  7074. ggml_compute_forward_neg_f32(params, src0, dst);
  7075. } break;
  7076. default:
  7077. {
  7078. GGML_ASSERT(false);
  7079. } break;
  7080. }
  7081. }
  7082. // ggml_compute_forward_step
  7083. static void ggml_compute_forward_step_f32(
  7084. const struct ggml_compute_params * params,
  7085. const struct ggml_tensor * src0,
  7086. struct ggml_tensor * dst) {
  7087. assert(params->ith == 0);
  7088. assert(ggml_are_same_shape(src0, dst));
  7089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7090. return;
  7091. }
  7092. const int n = ggml_nrows(src0);
  7093. const int nc = src0->ne[0];
  7094. assert(dst->nb[0] == sizeof(float));
  7095. assert(src0->nb[0] == sizeof(float));
  7096. for (int i = 0; i < n; i++) {
  7097. ggml_vec_step_f32(nc,
  7098. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7099. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7100. }
  7101. }
  7102. static void ggml_compute_forward_step(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. struct ggml_tensor * dst) {
  7106. switch (src0->type) {
  7107. case GGML_TYPE_F32:
  7108. {
  7109. ggml_compute_forward_step_f32(params, src0, dst);
  7110. } break;
  7111. default:
  7112. {
  7113. GGML_ASSERT(false);
  7114. } break;
  7115. }
  7116. }
  7117. // ggml_compute_forward_tanh
  7118. static void ggml_compute_forward_tanh_f32(
  7119. const struct ggml_compute_params * params,
  7120. const struct ggml_tensor * src0,
  7121. struct ggml_tensor * dst) {
  7122. assert(params->ith == 0);
  7123. assert(ggml_are_same_shape(src0, dst));
  7124. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7125. return;
  7126. }
  7127. const int n = ggml_nrows(src0);
  7128. const int nc = src0->ne[0];
  7129. assert(dst->nb[0] == sizeof(float));
  7130. assert(src0->nb[0] == sizeof(float));
  7131. for (int i = 0; i < n; i++) {
  7132. ggml_vec_tanh_f32(nc,
  7133. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7134. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7135. }
  7136. }
  7137. static void ggml_compute_forward_tanh(
  7138. const struct ggml_compute_params * params,
  7139. const struct ggml_tensor * src0,
  7140. struct ggml_tensor * dst) {
  7141. switch (src0->type) {
  7142. case GGML_TYPE_F32:
  7143. {
  7144. ggml_compute_forward_tanh_f32(params, src0, dst);
  7145. } break;
  7146. default:
  7147. {
  7148. GGML_ASSERT(false);
  7149. } break;
  7150. }
  7151. }
  7152. // ggml_compute_forward_elu
  7153. static void ggml_compute_forward_elu_f32(
  7154. const struct ggml_compute_params * params,
  7155. const struct ggml_tensor * src0,
  7156. struct ggml_tensor * dst) {
  7157. assert(params->ith == 0);
  7158. assert(ggml_are_same_shape(src0, dst));
  7159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7160. return;
  7161. }
  7162. const int n = ggml_nrows(src0);
  7163. const int nc = src0->ne[0];
  7164. assert(dst->nb[0] == sizeof(float));
  7165. assert(src0->nb[0] == sizeof(float));
  7166. for (int i = 0; i < n; i++) {
  7167. ggml_vec_elu_f32(nc,
  7168. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7169. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7170. }
  7171. }
  7172. static void ggml_compute_forward_elu(
  7173. const struct ggml_compute_params * params,
  7174. const struct ggml_tensor * src0,
  7175. struct ggml_tensor * dst) {
  7176. switch (src0->type) {
  7177. case GGML_TYPE_F32:
  7178. {
  7179. ggml_compute_forward_elu_f32(params, src0, dst);
  7180. } break;
  7181. default:
  7182. {
  7183. GGML_ASSERT(false);
  7184. } break;
  7185. }
  7186. }
  7187. // ggml_compute_forward_relu
  7188. static void ggml_compute_forward_relu_f32(
  7189. const struct ggml_compute_params * params,
  7190. const struct ggml_tensor * src0,
  7191. struct ggml_tensor * dst) {
  7192. assert(params->ith == 0);
  7193. assert(ggml_are_same_shape(src0, dst));
  7194. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7195. return;
  7196. }
  7197. const int n = ggml_nrows(src0);
  7198. const int nc = src0->ne[0];
  7199. assert(dst->nb[0] == sizeof(float));
  7200. assert(src0->nb[0] == sizeof(float));
  7201. for (int i = 0; i < n; i++) {
  7202. ggml_vec_relu_f32(nc,
  7203. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7204. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7205. }
  7206. }
  7207. static void ggml_compute_forward_relu(
  7208. const struct ggml_compute_params * params,
  7209. const struct ggml_tensor * src0,
  7210. struct ggml_tensor * dst) {
  7211. switch (src0->type) {
  7212. case GGML_TYPE_F32:
  7213. {
  7214. ggml_compute_forward_relu_f32(params, src0, dst);
  7215. } break;
  7216. default:
  7217. {
  7218. GGML_ASSERT(false);
  7219. } break;
  7220. }
  7221. }
  7222. // ggml_compute_forward_gelu
  7223. static void ggml_compute_forward_gelu_f32(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. struct ggml_tensor * dst) {
  7227. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7228. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7229. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7231. return;
  7232. }
  7233. const int ith = params->ith;
  7234. const int nth = params->nth;
  7235. const int nc = src0->ne[0];
  7236. const int nr = ggml_nrows(src0);
  7237. // rows per thread
  7238. const int dr = (nr + nth - 1)/nth;
  7239. // row range for this thread
  7240. const int ir0 = dr*ith;
  7241. const int ir1 = MIN(ir0 + dr, nr);
  7242. for (int i1 = ir0; i1 < ir1; i1++) {
  7243. ggml_vec_gelu_f32(nc,
  7244. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7245. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7246. #ifndef NDEBUG
  7247. for (int k = 0; k < nc; k++) {
  7248. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7249. UNUSED(x);
  7250. assert(!isnan(x));
  7251. assert(!isinf(x));
  7252. }
  7253. #endif
  7254. }
  7255. }
  7256. static void ggml_compute_forward_gelu(
  7257. const struct ggml_compute_params * params,
  7258. const struct ggml_tensor * src0,
  7259. struct ggml_tensor * dst) {
  7260. switch (src0->type) {
  7261. case GGML_TYPE_F32:
  7262. {
  7263. ggml_compute_forward_gelu_f32(params, src0, dst);
  7264. } break;
  7265. default:
  7266. {
  7267. GGML_ASSERT(false);
  7268. } break;
  7269. }
  7270. }
  7271. // ggml_compute_forward_gelu_quick
  7272. static void ggml_compute_forward_gelu_quick_f32(
  7273. const struct ggml_compute_params * params,
  7274. const struct ggml_tensor * src0,
  7275. struct ggml_tensor * dst) {
  7276. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7277. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7278. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7279. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7280. return;
  7281. }
  7282. const int ith = params->ith;
  7283. const int nth = params->nth;
  7284. const int nc = src0->ne[0];
  7285. const int nr = ggml_nrows(src0);
  7286. // rows per thread
  7287. const int dr = (nr + nth - 1)/nth;
  7288. // row range for this thread
  7289. const int ir0 = dr*ith;
  7290. const int ir1 = MIN(ir0 + dr, nr);
  7291. for (int i1 = ir0; i1 < ir1; i1++) {
  7292. ggml_vec_gelu_quick_f32(nc,
  7293. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7294. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7295. #ifndef NDEBUG
  7296. for (int k = 0; k < nc; k++) {
  7297. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7298. UNUSED(x);
  7299. assert(!isnan(x));
  7300. assert(!isinf(x));
  7301. }
  7302. #endif
  7303. }
  7304. }
  7305. static void ggml_compute_forward_gelu_quick(
  7306. const struct ggml_compute_params * params,
  7307. const struct ggml_tensor * src0,
  7308. struct ggml_tensor * dst) {
  7309. switch (src0->type) {
  7310. case GGML_TYPE_F32:
  7311. {
  7312. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7313. } break;
  7314. default:
  7315. {
  7316. GGML_ASSERT(false);
  7317. } break;
  7318. }
  7319. }
  7320. // ggml_compute_forward_silu
  7321. static void ggml_compute_forward_silu_f32(
  7322. const struct ggml_compute_params * params,
  7323. const struct ggml_tensor * src0,
  7324. struct ggml_tensor * dst) {
  7325. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7326. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7327. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7329. return;
  7330. }
  7331. const int ith = params->ith;
  7332. const int nth = params->nth;
  7333. const int nc = src0->ne[0];
  7334. const int nr = ggml_nrows(src0);
  7335. // rows per thread
  7336. const int dr = (nr + nth - 1)/nth;
  7337. // row range for this thread
  7338. const int ir0 = dr*ith;
  7339. const int ir1 = MIN(ir0 + dr, nr);
  7340. for (int i1 = ir0; i1 < ir1; i1++) {
  7341. ggml_vec_silu_f32(nc,
  7342. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7343. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7344. #ifndef NDEBUG
  7345. for (int k = 0; k < nc; k++) {
  7346. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7347. UNUSED(x);
  7348. assert(!isnan(x));
  7349. assert(!isinf(x));
  7350. }
  7351. #endif
  7352. }
  7353. }
  7354. static void ggml_compute_forward_silu(
  7355. const struct ggml_compute_params * params,
  7356. const struct ggml_tensor * src0,
  7357. struct ggml_tensor * dst) {
  7358. switch (src0->type) {
  7359. case GGML_TYPE_F32:
  7360. {
  7361. ggml_compute_forward_silu_f32(params, src0, dst);
  7362. } break;
  7363. default:
  7364. {
  7365. GGML_ASSERT(false);
  7366. } break;
  7367. }
  7368. }
  7369. // ggml_compute_forward_leaky
  7370. static void ggml_compute_forward_leaky_f32(
  7371. const struct ggml_compute_params * params,
  7372. const struct ggml_tensor * src0,
  7373. struct ggml_tensor * dst) {
  7374. assert(params->ith == 0);
  7375. assert(ggml_are_same_shape(src0, dst));
  7376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7377. return;
  7378. }
  7379. const int n = ggml_nrows(src0);
  7380. const int nc = src0->ne[0];
  7381. assert(dst->nb[0] == sizeof(float));
  7382. assert(src0->nb[0] == sizeof(float));
  7383. for (int i = 0; i < n; i++) {
  7384. ggml_vec_leaky_f32(nc,
  7385. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7386. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7387. }
  7388. }
  7389. static void ggml_compute_forward_leaky(
  7390. const struct ggml_compute_params * params,
  7391. const struct ggml_tensor * src0,
  7392. struct ggml_tensor * dst) {
  7393. switch (src0->type) {
  7394. case GGML_TYPE_F32:
  7395. {
  7396. ggml_compute_forward_leaky_f32(params, src0, dst);
  7397. } break;
  7398. default:
  7399. {
  7400. GGML_ASSERT(false);
  7401. } break;
  7402. }
  7403. }
  7404. // ggml_compute_forward_silu_back
  7405. static void ggml_compute_forward_silu_back_f32(
  7406. const struct ggml_compute_params * params,
  7407. const struct ggml_tensor * src0,
  7408. const struct ggml_tensor * grad,
  7409. struct ggml_tensor * dst) {
  7410. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7411. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7412. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7413. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7414. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7415. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7416. return;
  7417. }
  7418. const int ith = params->ith;
  7419. const int nth = params->nth;
  7420. const int nc = src0->ne[0];
  7421. const int nr = ggml_nrows(src0);
  7422. // rows per thread
  7423. const int dr = (nr + nth - 1)/nth;
  7424. // row range for this thread
  7425. const int ir0 = dr*ith;
  7426. const int ir1 = MIN(ir0 + dr, nr);
  7427. for (int i1 = ir0; i1 < ir1; i1++) {
  7428. ggml_vec_silu_backward_f32(nc,
  7429. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7430. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7431. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7432. #ifndef NDEBUG
  7433. for (int k = 0; k < nc; k++) {
  7434. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7435. UNUSED(x);
  7436. assert(!isnan(x));
  7437. assert(!isinf(x));
  7438. }
  7439. #endif
  7440. }
  7441. }
  7442. static void ggml_compute_forward_silu_back(
  7443. const struct ggml_compute_params * params,
  7444. const struct ggml_tensor * src0,
  7445. const struct ggml_tensor * grad,
  7446. struct ggml_tensor * dst) {
  7447. switch (src0->type) {
  7448. case GGML_TYPE_F32:
  7449. {
  7450. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7451. } break;
  7452. default:
  7453. {
  7454. GGML_ASSERT(false);
  7455. } break;
  7456. }
  7457. }
  7458. // ggml_compute_forward_norm
  7459. static void ggml_compute_forward_norm_f32(
  7460. const struct ggml_compute_params * params,
  7461. const struct ggml_tensor * src0,
  7462. struct ggml_tensor * dst) {
  7463. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7465. return;
  7466. }
  7467. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7468. const int ith = params->ith;
  7469. const int nth = params->nth;
  7470. GGML_TENSOR_UNARY_OP_LOCALS
  7471. float eps;
  7472. memcpy(&eps, dst->op_params, sizeof(float));
  7473. // TODO: optimize
  7474. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7475. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7476. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7477. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7478. ggml_float sum = 0.0;
  7479. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7480. sum += (ggml_float)x[i00];
  7481. }
  7482. float mean = sum/ne00;
  7483. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7484. ggml_float sum2 = 0.0;
  7485. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7486. float v = x[i00] - mean;
  7487. y[i00] = v;
  7488. sum2 += (ggml_float)(v*v);
  7489. }
  7490. float variance = sum2/ne00;
  7491. const float scale = 1.0f/sqrtf(variance + eps);
  7492. ggml_vec_scale_f32(ne00, y, scale);
  7493. }
  7494. }
  7495. }
  7496. }
  7497. static void ggml_compute_forward_norm(
  7498. const struct ggml_compute_params * params,
  7499. const struct ggml_tensor * src0,
  7500. struct ggml_tensor * dst) {
  7501. switch (src0->type) {
  7502. case GGML_TYPE_F32:
  7503. {
  7504. ggml_compute_forward_norm_f32(params, src0, dst);
  7505. } break;
  7506. default:
  7507. {
  7508. GGML_ASSERT(false);
  7509. } break;
  7510. }
  7511. }
  7512. // ggml_compute_forward_group_rms_norm
  7513. static void ggml_compute_forward_rms_norm_f32(
  7514. const struct ggml_compute_params * params,
  7515. const struct ggml_tensor * src0,
  7516. struct ggml_tensor * dst) {
  7517. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7519. return;
  7520. }
  7521. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7522. const int ith = params->ith;
  7523. const int nth = params->nth;
  7524. GGML_TENSOR_UNARY_OP_LOCALS
  7525. float eps;
  7526. memcpy(&eps, dst->op_params, sizeof(float));
  7527. // TODO: optimize
  7528. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7529. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7530. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7531. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7532. ggml_float sum = 0.0;
  7533. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7534. sum += (ggml_float)(x[i00] * x[i00]);
  7535. }
  7536. const float mean = sum/ne00;
  7537. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7538. memcpy(y, x, ne00 * sizeof(float));
  7539. // for (int i00 = 0; i00 < ne00; i00++) {
  7540. // y[i00] = x[i00];
  7541. // }
  7542. const float scale = 1.0f/sqrtf(mean + eps);
  7543. ggml_vec_scale_f32(ne00, y, scale);
  7544. }
  7545. }
  7546. }
  7547. }
  7548. static void ggml_compute_forward_rms_norm(
  7549. const struct ggml_compute_params * params,
  7550. const struct ggml_tensor * src0,
  7551. struct ggml_tensor * dst) {
  7552. switch (src0->type) {
  7553. case GGML_TYPE_F32:
  7554. {
  7555. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7556. } break;
  7557. default:
  7558. {
  7559. GGML_ASSERT(false);
  7560. } break;
  7561. }
  7562. }
  7563. static void ggml_compute_forward_rms_norm_back_f32(
  7564. const struct ggml_compute_params * params,
  7565. const struct ggml_tensor * src0,
  7566. const struct ggml_tensor * src1,
  7567. struct ggml_tensor * dst) {
  7568. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7569. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7570. return;
  7571. }
  7572. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7573. const int ith = params->ith;
  7574. const int nth = params->nth;
  7575. GGML_TENSOR_BINARY_OP_LOCALS
  7576. float eps;
  7577. memcpy(&eps, dst->op_params, sizeof(float));
  7578. // TODO: optimize
  7579. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7580. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7581. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7582. // src1 is same shape as src0 => same indices
  7583. const int64_t i11 = i01;
  7584. const int64_t i12 = i02;
  7585. const int64_t i13 = i03;
  7586. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7587. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7588. ggml_float sum_xx = 0.0;
  7589. ggml_float sum_xdz = 0.0;
  7590. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7591. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7592. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7593. }
  7594. //const float mean = (float)(sum_xx)/ne00;
  7595. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7596. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7597. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7598. // we could cache rms from forward pass to improve performance.
  7599. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7600. //const float rms = sqrtf(mean_eps);
  7601. const float rrms = 1.0f / sqrtf(mean_eps);
  7602. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7603. {
  7604. // z = rms_norm(x)
  7605. //
  7606. // rms_norm(src0) =
  7607. // scale(
  7608. // src0,
  7609. // div(
  7610. // 1,
  7611. // sqrt(
  7612. // add(
  7613. // scale(
  7614. // sum(
  7615. // sqr(
  7616. // src0)),
  7617. // (1.0/N)),
  7618. // eps))));
  7619. // postorder:
  7620. // ## op args grad
  7621. // 00 param src0 grad[#00]
  7622. // 01 const 1
  7623. // 02 sqr (#00) grad[#02]
  7624. // 03 sum (#02) grad[#03]
  7625. // 04 const 1/N
  7626. // 05 scale (#03, #04) grad[#05]
  7627. // 06 const eps
  7628. // 07 add (#05, #06) grad[#07]
  7629. // 08 sqrt (#07) grad[#08]
  7630. // 09 div (#01,#08) grad[#09]
  7631. // 10 scale (#00,#09) grad[#10]
  7632. //
  7633. // backward pass, given grad[#10]
  7634. // #10: scale
  7635. // grad[#00] += scale(grad[#10],#09)
  7636. // grad[#09] += sum(mul(grad[#10],#00))
  7637. // #09: div
  7638. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7639. // #08: sqrt
  7640. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7641. // #07: add
  7642. // grad[#05] += grad[#07]
  7643. // #05: scale
  7644. // grad[#03] += scale(grad[#05],#04)
  7645. // #03: sum
  7646. // grad[#02] += repeat(grad[#03], #02)
  7647. // #02:
  7648. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7649. //
  7650. // substitute and simplify:
  7651. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7652. // grad[#02] = repeat(grad[#03], #02)
  7653. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7654. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7655. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7656. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7657. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7658. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7659. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7660. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7661. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7662. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7663. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7664. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7665. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7666. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7667. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7668. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7669. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7670. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7671. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7672. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7673. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7674. // a = b*c + d*e
  7675. // a = b*c*f/f + d*e*f/f
  7676. // a = (b*c*f + d*e*f)*(1/f)
  7677. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7678. // a = (b + d*e/c)*c
  7679. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7680. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7681. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7682. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7683. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7684. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7685. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7686. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7687. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7688. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7689. }
  7690. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7691. // post-order:
  7692. // dx := x
  7693. // dx := scale(dx,-mean_xdz/mean_eps)
  7694. // dx := add(dx, dz)
  7695. // dx := scale(dx, rrms)
  7696. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7697. ggml_vec_cpy_f32 (ne00, dx, x);
  7698. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7699. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7700. ggml_vec_acc_f32 (ne00, dx, dz);
  7701. ggml_vec_scale_f32(ne00, dx, rrms);
  7702. }
  7703. }
  7704. }
  7705. }
  7706. static void ggml_compute_forward_rms_norm_back(
  7707. const struct ggml_compute_params * params,
  7708. const struct ggml_tensor * src0,
  7709. const struct ggml_tensor * src1,
  7710. struct ggml_tensor * dst) {
  7711. switch (src0->type) {
  7712. case GGML_TYPE_F32:
  7713. {
  7714. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7715. } break;
  7716. default:
  7717. {
  7718. GGML_ASSERT(false);
  7719. } break;
  7720. }
  7721. }
  7722. // ggml_compute_forward_group_norm
  7723. static void ggml_compute_forward_group_norm_f32(
  7724. const struct ggml_compute_params * params,
  7725. const struct ggml_tensor * src0,
  7726. struct ggml_tensor * dst) {
  7727. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7728. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7729. return;
  7730. }
  7731. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7732. const int ith = params->ith;
  7733. const int nth = params->nth;
  7734. GGML_TENSOR_UNARY_OP_LOCALS
  7735. const float eps = 1e-6f; // TODO: make this a parameter
  7736. // TODO: optimize
  7737. int n_channels = src0->ne[2];
  7738. int n_groups = dst->op_params[0];
  7739. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7740. for (int i = ith; i < n_groups; i+=nth) {
  7741. int start = i * n_channels_per_group;
  7742. int end = start + n_channels_per_group;
  7743. if (end > n_channels) {
  7744. end = n_channels;
  7745. }
  7746. int step = end - start;
  7747. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7748. ggml_float sum = 0.0;
  7749. for (int64_t i02 = start; i02 < end; i02++) {
  7750. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7751. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7752. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7753. sum += (ggml_float)x[i00];
  7754. }
  7755. }
  7756. }
  7757. float mean = sum / (ne00 * ne01 * step);
  7758. ggml_float sum2 = 0.0;
  7759. for (int64_t i02 = start; i02 < end; i02++) {
  7760. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7761. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7762. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7763. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7764. float v = x[i00] - mean;
  7765. y[i00] = v;
  7766. sum2 += (ggml_float)(v * v);
  7767. }
  7768. }
  7769. }
  7770. float variance = sum2 / (ne00 * ne01 * step);
  7771. const float scale = 1.0f / sqrtf(variance + eps);
  7772. for (int64_t i02 = start; i02 < end; i02++) {
  7773. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7774. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7775. ggml_vec_scale_f32(ne00, y, scale);
  7776. }
  7777. }
  7778. }
  7779. }
  7780. }
  7781. static void ggml_compute_forward_group_norm(
  7782. const struct ggml_compute_params * params,
  7783. const struct ggml_tensor * src0,
  7784. struct ggml_tensor * dst) {
  7785. switch (src0->type) {
  7786. case GGML_TYPE_F32:
  7787. {
  7788. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7789. } break;
  7790. default:
  7791. {
  7792. GGML_ASSERT(false);
  7793. } break;
  7794. }
  7795. }
  7796. // ggml_compute_forward_mul_mat
  7797. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7798. // helper function to determine if it is better to use BLAS or not
  7799. // for large matrices, BLAS is faster
  7800. static bool ggml_compute_forward_mul_mat_use_blas(
  7801. const struct ggml_tensor * src0,
  7802. const struct ggml_tensor * src1,
  7803. struct ggml_tensor * dst) {
  7804. //const int64_t ne00 = src0->ne[0];
  7805. //const int64_t ne01 = src0->ne[1];
  7806. const int64_t ne10 = src1->ne[0];
  7807. const int64_t ne0 = dst->ne[0];
  7808. const int64_t ne1 = dst->ne[1];
  7809. // TODO: find the optimal values for these
  7810. if (ggml_is_contiguous(src0) &&
  7811. ggml_is_contiguous(src1) &&
  7812. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7813. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7814. return true;
  7815. }
  7816. return false;
  7817. }
  7818. #endif
  7819. static void ggml_compute_forward_mul_mat(
  7820. const struct ggml_compute_params * params,
  7821. const struct ggml_tensor * src0,
  7822. const struct ggml_tensor * src1,
  7823. struct ggml_tensor * dst) {
  7824. int64_t t0 = ggml_perf_time_us();
  7825. UNUSED(t0);
  7826. GGML_TENSOR_BINARY_OP_LOCALS
  7827. const int ith = params->ith;
  7828. const int nth = params->nth;
  7829. const enum ggml_type type = src0->type;
  7830. const bool src1_cont = ggml_is_contiguous(src1);
  7831. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7832. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7833. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7834. GGML_ASSERT(ne0 == ne01);
  7835. GGML_ASSERT(ne1 == ne11);
  7836. GGML_ASSERT(ne2 == ne12);
  7837. GGML_ASSERT(ne3 == ne13);
  7838. // we don't support permuted src0 or src1
  7839. GGML_ASSERT(nb00 == ggml_type_size(type));
  7840. GGML_ASSERT(nb10 == sizeof(float));
  7841. // dst cannot be transposed or permuted
  7842. GGML_ASSERT(nb0 == sizeof(float));
  7843. GGML_ASSERT(nb0 <= nb1);
  7844. GGML_ASSERT(nb1 <= nb2);
  7845. GGML_ASSERT(nb2 <= nb3);
  7846. // broadcast factors
  7847. const int64_t r2 = ne12/ne02;
  7848. const int64_t r3 = ne13/ne03;
  7849. // nb01 >= nb00 - src0 is not transposed
  7850. // compute by src0 rows
  7851. #if defined(GGML_USE_CLBLAST)
  7852. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7853. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7854. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7855. }
  7856. return;
  7857. }
  7858. #endif
  7859. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7860. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7861. if (params->ith != 0) {
  7862. return;
  7863. }
  7864. if (params->type == GGML_TASK_INIT) {
  7865. return;
  7866. }
  7867. if (params->type == GGML_TASK_FINALIZE) {
  7868. return;
  7869. }
  7870. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7871. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7872. // broadcast src0 into src1 across 2nd,3rd dimension
  7873. const int64_t i03 = i13/r3;
  7874. const int64_t i02 = i12/r2;
  7875. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7876. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  7877. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  7878. if (type != GGML_TYPE_F32) {
  7879. float * const wdata = params->wdata;
  7880. ggml_to_float_t const to_float = type_traits[type].to_float;
  7881. size_t id = 0;
  7882. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7883. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7884. id += ne00;
  7885. }
  7886. assert(id*sizeof(float) <= params->wsize);
  7887. x = wdata;
  7888. }
  7889. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7890. ne11, ne01, ne10,
  7891. 1.0f, y, ne10,
  7892. x, ne00,
  7893. 0.0f, d, ne01);
  7894. }
  7895. }
  7896. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7897. return;
  7898. }
  7899. #endif
  7900. if (params->type == GGML_TASK_INIT) {
  7901. if (src1->type != vec_dot_type) {
  7902. char * wdata = params->wdata;
  7903. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7904. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7905. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7906. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7907. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7908. wdata += row_size;
  7909. }
  7910. }
  7911. }
  7912. }
  7913. return;
  7914. }
  7915. if (params->type == GGML_TASK_FINALIZE) {
  7916. return;
  7917. }
  7918. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7919. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7920. const int64_t nr0 = ne01; // src0 rows
  7921. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  7922. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7923. // distribute the thread work across the inner or outer loop based on which one is larger
  7924. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7925. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7926. const int64_t ith0 = ith % nth0;
  7927. const int64_t ith1 = ith / nth0;
  7928. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7929. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7930. const int64_t ir010 = dr0*ith0;
  7931. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7932. const int64_t ir110 = dr1*ith1;
  7933. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7934. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7935. // threads with no work simply yield (not sure if it helps)
  7936. if (ir010 >= ir011 || ir110 >= ir111) {
  7937. sched_yield();
  7938. return;
  7939. }
  7940. assert(ne12 % ne02 == 0);
  7941. assert(ne13 % ne03 == 0);
  7942. // block-tiling attempt
  7943. const int64_t blck_0 = 16;
  7944. const int64_t blck_1 = 16;
  7945. // attempt to reduce false-sharing (does not seem to make a difference)
  7946. float tmp[16];
  7947. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  7948. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  7949. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  7950. const int64_t i13 = (ir1/(ne12*ne11));
  7951. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  7952. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  7953. // broadcast src0 into src1
  7954. const int64_t i03 = i13/r3;
  7955. const int64_t i02 = i12/r2;
  7956. const int64_t i1 = i11;
  7957. const int64_t i2 = i12;
  7958. const int64_t i3 = i13;
  7959. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  7960. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  7961. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  7962. // the original src1 data pointer, so we should index using the indices directly
  7963. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  7964. const char * src1_col = (const char *) wdata +
  7965. (src1_cont || src1->type != vec_dot_type
  7966. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  7967. : (i11*nb11 + i12*nb12 + i13*nb13));
  7968. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  7969. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7970. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  7971. //}
  7972. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  7973. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  7974. }
  7975. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  7976. }
  7977. }
  7978. }
  7979. }
  7980. // ggml_compute_forward_out_prod
  7981. static void ggml_compute_forward_out_prod_f32(
  7982. const struct ggml_compute_params * params,
  7983. const struct ggml_tensor * src0,
  7984. const struct ggml_tensor * src1,
  7985. struct ggml_tensor * dst) {
  7986. // int64_t t0 = ggml_perf_time_us();
  7987. // UNUSED(t0);
  7988. GGML_TENSOR_BINARY_OP_LOCALS
  7989. const int ith = params->ith;
  7990. const int nth = params->nth;
  7991. GGML_ASSERT(ne02 == ne12);
  7992. GGML_ASSERT(ne03 == ne13);
  7993. GGML_ASSERT(ne2 == ne12);
  7994. GGML_ASSERT(ne3 == ne13);
  7995. // we don't support permuted src0 or src1
  7996. GGML_ASSERT(nb00 == sizeof(float));
  7997. // dst cannot be transposed or permuted
  7998. GGML_ASSERT(nb0 == sizeof(float));
  7999. // GGML_ASSERT(nb0 <= nb1);
  8000. // GGML_ASSERT(nb1 <= nb2);
  8001. // GGML_ASSERT(nb2 <= nb3);
  8002. GGML_ASSERT(ne0 == ne00);
  8003. GGML_ASSERT(ne1 == ne10);
  8004. GGML_ASSERT(ne2 == ne02);
  8005. GGML_ASSERT(ne3 == ne03);
  8006. // nb01 >= nb00 - src0 is not transposed
  8007. // compute by src0 rows
  8008. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8009. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8010. if (params->type == GGML_TASK_INIT) {
  8011. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8012. return;
  8013. }
  8014. if (params->type == GGML_TASK_FINALIZE) {
  8015. return;
  8016. }
  8017. // dst[:,:,:,:] = 0
  8018. // for i2,i3:
  8019. // for i1:
  8020. // for i01:
  8021. // for i0:
  8022. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8023. // parallelize by last three dimensions
  8024. // total rows in dst
  8025. const int64_t nr = ne1*ne2*ne3;
  8026. // rows per thread
  8027. const int64_t dr = (nr + nth - 1)/nth;
  8028. // row range for this thread
  8029. const int64_t ir0 = dr*ith;
  8030. const int64_t ir1 = MIN(ir0 + dr, nr);
  8031. // block-tiling attempt
  8032. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8033. const int64_t blck_1 = 16;
  8034. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8035. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8036. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8037. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8038. for (int64_t ir = bir; ir < bir1; ++ir) {
  8039. // dst indices
  8040. const int64_t i3 = ir/(ne2*ne1);
  8041. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8042. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8043. const int64_t i02 = i2;
  8044. const int64_t i03 = i3;
  8045. //const int64_t i10 = i1;
  8046. const int64_t i12 = i2;
  8047. const int64_t i13 = i3;
  8048. #if GGML_VEC_MAD_UNROLL > 2
  8049. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8050. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8051. const int64_t i11 = i01;
  8052. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8053. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8054. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8055. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8056. }
  8057. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8058. const int64_t i11 = i01;
  8059. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8060. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8061. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8062. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8063. }
  8064. #else
  8065. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8066. const int64_t i11 = i01;
  8067. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8068. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8069. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8070. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8071. }
  8072. #endif
  8073. }
  8074. }
  8075. }
  8076. //int64_t t1 = ggml_perf_time_us();
  8077. //static int64_t acc = 0;
  8078. //acc += t1 - t0;
  8079. //if (t1 - t0 > 10) {
  8080. // printf("\n");
  8081. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8082. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8083. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8084. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8085. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8086. //}
  8087. }
  8088. static void ggml_compute_forward_out_prod_q_f32(
  8089. const struct ggml_compute_params * params,
  8090. const struct ggml_tensor * src0,
  8091. const struct ggml_tensor * src1,
  8092. struct ggml_tensor * dst) {
  8093. // int64_t t0 = ggml_perf_time_us();
  8094. // UNUSED(t0);
  8095. GGML_TENSOR_BINARY_OP_LOCALS;
  8096. const int ith = params->ith;
  8097. const int nth = params->nth;
  8098. const enum ggml_type type = src0->type;
  8099. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8100. GGML_ASSERT(ne02 == ne12);
  8101. GGML_ASSERT(ne03 == ne13);
  8102. GGML_ASSERT(ne2 == ne12);
  8103. GGML_ASSERT(ne3 == ne13);
  8104. // we don't support permuted src0 dim0
  8105. GGML_ASSERT(nb00 == ggml_type_size(type));
  8106. // dst dim0 cannot be transposed or permuted
  8107. GGML_ASSERT(nb0 == sizeof(float));
  8108. // GGML_ASSERT(nb0 <= nb1);
  8109. // GGML_ASSERT(nb1 <= nb2);
  8110. // GGML_ASSERT(nb2 <= nb3);
  8111. GGML_ASSERT(ne0 == ne00);
  8112. GGML_ASSERT(ne1 == ne10);
  8113. GGML_ASSERT(ne2 == ne02);
  8114. GGML_ASSERT(ne3 == ne03);
  8115. // nb01 >= nb00 - src0 is not transposed
  8116. // compute by src0 rows
  8117. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8118. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8119. if (params->type == GGML_TASK_INIT) {
  8120. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8121. return;
  8122. }
  8123. if (params->type == GGML_TASK_FINALIZE) {
  8124. return;
  8125. }
  8126. // parallelize by last three dimensions
  8127. // total rows in dst
  8128. const int64_t nr = ne1*ne2*ne3;
  8129. // rows per thread
  8130. const int64_t dr = (nr + nth - 1)/nth;
  8131. // row range for this thread
  8132. const int64_t ir0 = dr*ith;
  8133. const int64_t ir1 = MIN(ir0 + dr, nr);
  8134. // dst[:,:,:,:] = 0
  8135. // for i2,i3:
  8136. // for i1:
  8137. // for i01:
  8138. // for i0:
  8139. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8140. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8141. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8142. // dst indices
  8143. const int64_t i3 = ir/(ne2*ne1);
  8144. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8145. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8146. const int64_t i02 = i2;
  8147. const int64_t i03 = i3;
  8148. //const int64_t i10 = i1;
  8149. const int64_t i12 = i2;
  8150. const int64_t i13 = i3;
  8151. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8152. const int64_t i11 = i01;
  8153. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8154. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8155. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8156. dequantize_row_q(s0, wdata, ne0);
  8157. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8158. }
  8159. }
  8160. //int64_t t1 = ggml_perf_time_us();
  8161. //static int64_t acc = 0;
  8162. //acc += t1 - t0;
  8163. //if (t1 - t0 > 10) {
  8164. // printf("\n");
  8165. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8166. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8167. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8168. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8169. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8170. //}
  8171. }
  8172. static void ggml_compute_forward_out_prod(
  8173. const struct ggml_compute_params * params,
  8174. const struct ggml_tensor * src0,
  8175. const struct ggml_tensor * src1,
  8176. struct ggml_tensor * dst) {
  8177. switch (src0->type) {
  8178. case GGML_TYPE_Q4_0:
  8179. case GGML_TYPE_Q4_1:
  8180. case GGML_TYPE_Q5_0:
  8181. case GGML_TYPE_Q5_1:
  8182. case GGML_TYPE_Q8_0:
  8183. case GGML_TYPE_Q2_K:
  8184. case GGML_TYPE_Q3_K:
  8185. case GGML_TYPE_Q4_K:
  8186. case GGML_TYPE_Q5_K:
  8187. case GGML_TYPE_Q6_K:
  8188. {
  8189. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8190. } break;
  8191. case GGML_TYPE_F16:
  8192. {
  8193. GGML_ASSERT(false); // todo
  8194. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8195. } break;
  8196. case GGML_TYPE_F32:
  8197. {
  8198. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8199. } break;
  8200. default:
  8201. {
  8202. GGML_ASSERT(false);
  8203. } break;
  8204. }
  8205. }
  8206. // ggml_compute_forward_scale
  8207. static void ggml_compute_forward_scale_f32(
  8208. const struct ggml_compute_params * params,
  8209. const struct ggml_tensor * src0,
  8210. const struct ggml_tensor * src1,
  8211. struct ggml_tensor * dst) {
  8212. GGML_ASSERT(ggml_is_contiguous(src0));
  8213. GGML_ASSERT(ggml_is_contiguous(dst));
  8214. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8215. GGML_ASSERT(ggml_is_scalar(src1));
  8216. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8217. return;
  8218. }
  8219. // scale factor
  8220. const float v = *(float *) src1->data;
  8221. const int ith = params->ith;
  8222. const int nth = params->nth;
  8223. const int nc = src0->ne[0];
  8224. const int nr = ggml_nrows(src0);
  8225. // rows per thread
  8226. const int dr = (nr + nth - 1)/nth;
  8227. // row range for this thread
  8228. const int ir0 = dr*ith;
  8229. const int ir1 = MIN(ir0 + dr, nr);
  8230. const size_t nb01 = src0->nb[1];
  8231. const size_t nb1 = dst->nb[1];
  8232. for (int i1 = ir0; i1 < ir1; i1++) {
  8233. if (dst->data != src0->data) {
  8234. // src0 is same shape as dst => same indices
  8235. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8236. }
  8237. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8238. }
  8239. }
  8240. static void ggml_compute_forward_scale(
  8241. const struct ggml_compute_params * params,
  8242. const struct ggml_tensor * src0,
  8243. const struct ggml_tensor * src1,
  8244. struct ggml_tensor * dst) {
  8245. switch (src0->type) {
  8246. case GGML_TYPE_F32:
  8247. {
  8248. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8249. } break;
  8250. default:
  8251. {
  8252. GGML_ASSERT(false);
  8253. } break;
  8254. }
  8255. }
  8256. // ggml_compute_forward_set
  8257. static void ggml_compute_forward_set_f32(
  8258. const struct ggml_compute_params * params,
  8259. const struct ggml_tensor * src0,
  8260. const struct ggml_tensor * src1,
  8261. struct ggml_tensor * dst) {
  8262. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8263. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8264. // view src0 and dst with these strides and data offset inbytes during set
  8265. // nb0 is implicitely element_size because src0 and dst are contiguous
  8266. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8267. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8268. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8269. size_t offset = ((int32_t *) dst->op_params)[3];
  8270. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8271. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8272. // memcpy needs to be synchronized across threads to avoid race conditions.
  8273. // => do it in INIT phase
  8274. memcpy(
  8275. ((char *) dst->data),
  8276. ((char *) src0->data),
  8277. ggml_nbytes(dst));
  8278. }
  8279. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8280. return;
  8281. }
  8282. const int ith = params->ith;
  8283. const int nth = params->nth;
  8284. const int nr = ggml_nrows(src1);
  8285. const int nc = src1->ne[0];
  8286. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8287. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8288. // src0 and dst as viewed during set
  8289. const size_t nb0 = ggml_element_size(src0);
  8290. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8291. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8292. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8293. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8294. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8295. GGML_ASSERT(nb10 == sizeof(float));
  8296. // rows per thread
  8297. const int dr = (nr + nth - 1)/nth;
  8298. // row range for this thread
  8299. const int ir0 = dr*ith;
  8300. const int ir1 = MIN(ir0 + dr, nr);
  8301. for (int ir = ir0; ir < ir1; ++ir) {
  8302. // src0 and dst are viewed with shape of src1 and offset
  8303. // => same indices
  8304. const int i3 = ir/(ne12*ne11);
  8305. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8306. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8307. ggml_vec_cpy_f32(nc,
  8308. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8309. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8310. }
  8311. }
  8312. static void ggml_compute_forward_set(
  8313. const struct ggml_compute_params * params,
  8314. const struct ggml_tensor * src0,
  8315. const struct ggml_tensor * src1,
  8316. struct ggml_tensor * dst) {
  8317. switch (src0->type) {
  8318. case GGML_TYPE_F32:
  8319. {
  8320. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8321. } break;
  8322. case GGML_TYPE_F16:
  8323. case GGML_TYPE_Q4_0:
  8324. case GGML_TYPE_Q4_1:
  8325. case GGML_TYPE_Q5_0:
  8326. case GGML_TYPE_Q5_1:
  8327. case GGML_TYPE_Q8_0:
  8328. case GGML_TYPE_Q8_1:
  8329. case GGML_TYPE_Q2_K:
  8330. case GGML_TYPE_Q3_K:
  8331. case GGML_TYPE_Q4_K:
  8332. case GGML_TYPE_Q5_K:
  8333. case GGML_TYPE_Q6_K:
  8334. default:
  8335. {
  8336. GGML_ASSERT(false);
  8337. } break;
  8338. }
  8339. }
  8340. // ggml_compute_forward_cpy
  8341. static void ggml_compute_forward_cpy(
  8342. const struct ggml_compute_params * params,
  8343. const struct ggml_tensor * src0,
  8344. struct ggml_tensor * dst) {
  8345. ggml_compute_forward_dup(params, src0, dst);
  8346. }
  8347. // ggml_compute_forward_cont
  8348. static void ggml_compute_forward_cont(
  8349. const struct ggml_compute_params * params,
  8350. const struct ggml_tensor * src0,
  8351. struct ggml_tensor * dst) {
  8352. ggml_compute_forward_dup(params, src0, dst);
  8353. }
  8354. // ggml_compute_forward_reshape
  8355. static void ggml_compute_forward_reshape(
  8356. const struct ggml_compute_params * params,
  8357. const struct ggml_tensor * src0,
  8358. struct ggml_tensor * dst) {
  8359. // NOP
  8360. UNUSED(params);
  8361. UNUSED(src0);
  8362. UNUSED(dst);
  8363. }
  8364. // ggml_compute_forward_view
  8365. static void ggml_compute_forward_view(
  8366. const struct ggml_compute_params * params,
  8367. const struct ggml_tensor * src0) {
  8368. // NOP
  8369. UNUSED(params);
  8370. UNUSED(src0);
  8371. }
  8372. // ggml_compute_forward_permute
  8373. static void ggml_compute_forward_permute(
  8374. const struct ggml_compute_params * params,
  8375. const struct ggml_tensor * src0) {
  8376. // NOP
  8377. UNUSED(params);
  8378. UNUSED(src0);
  8379. }
  8380. // ggml_compute_forward_transpose
  8381. static void ggml_compute_forward_transpose(
  8382. const struct ggml_compute_params * params,
  8383. const struct ggml_tensor * src0) {
  8384. // NOP
  8385. UNUSED(params);
  8386. UNUSED(src0);
  8387. }
  8388. // ggml_compute_forward_get_rows
  8389. static void ggml_compute_forward_get_rows_q(
  8390. const struct ggml_compute_params * params,
  8391. const struct ggml_tensor * src0,
  8392. const struct ggml_tensor * src1,
  8393. struct ggml_tensor * dst) {
  8394. assert(params->ith == 0);
  8395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8396. return;
  8397. }
  8398. const int nc = src0->ne[0];
  8399. const int nr = ggml_nelements(src1);
  8400. const enum ggml_type type = src0->type;
  8401. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8402. assert( dst->ne[0] == nc);
  8403. assert( dst->ne[1] == nr);
  8404. assert(src0->nb[0] == ggml_type_size(type));
  8405. for (int i = 0; i < nr; ++i) {
  8406. const int r = ((int32_t *) src1->data)[i];
  8407. dequantize_row_q(
  8408. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8409. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8410. }
  8411. }
  8412. static void ggml_compute_forward_get_rows_f16(
  8413. const struct ggml_compute_params * params,
  8414. const struct ggml_tensor * src0,
  8415. const struct ggml_tensor * src1,
  8416. struct ggml_tensor * dst) {
  8417. assert(params->ith == 0);
  8418. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8419. return;
  8420. }
  8421. const int nc = src0->ne[0];
  8422. const int nr = ggml_nelements(src1);
  8423. assert( dst->ne[0] == nc);
  8424. assert( dst->ne[1] == nr);
  8425. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8426. for (int i = 0; i < nr; ++i) {
  8427. const int r = ((int32_t *) src1->data)[i];
  8428. for (int j = 0; j < nc; ++j) {
  8429. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8430. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8431. }
  8432. }
  8433. }
  8434. static void ggml_compute_forward_get_rows_f32(
  8435. const struct ggml_compute_params * params,
  8436. const struct ggml_tensor * src0,
  8437. const struct ggml_tensor * src1,
  8438. struct ggml_tensor * dst) {
  8439. assert(params->ith == 0);
  8440. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8441. return;
  8442. }
  8443. const int nc = src0->ne[0];
  8444. const int nr = ggml_nelements(src1);
  8445. assert( dst->ne[0] == nc);
  8446. assert( dst->ne[1] == nr);
  8447. assert(src0->nb[0] == sizeof(float));
  8448. for (int i = 0; i < nr; ++i) {
  8449. const int r = ((int32_t *) src1->data)[i];
  8450. ggml_vec_cpy_f32(nc,
  8451. (float *) ((char *) dst->data + i*dst->nb[1]),
  8452. (float *) ((char *) src0->data + r*src0->nb[1]));
  8453. }
  8454. }
  8455. static void ggml_compute_forward_get_rows(
  8456. const struct ggml_compute_params * params,
  8457. const struct ggml_tensor * src0,
  8458. const struct ggml_tensor * src1,
  8459. struct ggml_tensor * dst) {
  8460. switch (src0->type) {
  8461. case GGML_TYPE_Q4_0:
  8462. case GGML_TYPE_Q4_1:
  8463. case GGML_TYPE_Q5_0:
  8464. case GGML_TYPE_Q5_1:
  8465. case GGML_TYPE_Q8_0:
  8466. case GGML_TYPE_Q8_1:
  8467. case GGML_TYPE_Q2_K:
  8468. case GGML_TYPE_Q3_K:
  8469. case GGML_TYPE_Q4_K:
  8470. case GGML_TYPE_Q5_K:
  8471. case GGML_TYPE_Q6_K:
  8472. {
  8473. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8474. } break;
  8475. case GGML_TYPE_F16:
  8476. {
  8477. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8478. } break;
  8479. case GGML_TYPE_F32:
  8480. {
  8481. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8482. } break;
  8483. default:
  8484. {
  8485. GGML_ASSERT(false);
  8486. } break;
  8487. }
  8488. //static bool first = true;
  8489. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8490. //if (first) {
  8491. // first = false;
  8492. //} else {
  8493. // for (int k = 0; k < dst->ne[1]; ++k) {
  8494. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8495. // for (int i = 0; i < 16; ++i) {
  8496. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8497. // }
  8498. // printf("\n");
  8499. // }
  8500. // printf("\n");
  8501. // }
  8502. // printf("\n");
  8503. // exit(0);
  8504. //}
  8505. }
  8506. // ggml_compute_forward_get_rows_back
  8507. static void ggml_compute_forward_get_rows_back_f32_f16(
  8508. const struct ggml_compute_params * params,
  8509. const struct ggml_tensor * src0,
  8510. const struct ggml_tensor * src1,
  8511. struct ggml_tensor * dst) {
  8512. GGML_ASSERT(params->ith == 0);
  8513. GGML_ASSERT(ggml_is_contiguous(dst));
  8514. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8515. if (params->type == GGML_TASK_INIT) {
  8516. memset(dst->data, 0, ggml_nbytes(dst));
  8517. }
  8518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8519. return;
  8520. }
  8521. const int nc = src0->ne[0];
  8522. const int nr = ggml_nelements(src1);
  8523. GGML_ASSERT( dst->ne[0] == nc);
  8524. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8525. for (int i = 0; i < nr; ++i) {
  8526. const int r = ((int32_t *) src1->data)[i];
  8527. for (int j = 0; j < nc; ++j) {
  8528. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8529. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8530. }
  8531. }
  8532. }
  8533. static void ggml_compute_forward_get_rows_back_f32(
  8534. const struct ggml_compute_params * params,
  8535. const struct ggml_tensor * src0,
  8536. const struct ggml_tensor * src1,
  8537. struct ggml_tensor * dst) {
  8538. GGML_ASSERT(params->ith == 0);
  8539. GGML_ASSERT(ggml_is_contiguous(dst));
  8540. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8541. if (params->type == GGML_TASK_INIT) {
  8542. memset(dst->data, 0, ggml_nbytes(dst));
  8543. }
  8544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8545. return;
  8546. }
  8547. const int nc = src0->ne[0];
  8548. const int nr = ggml_nelements(src1);
  8549. GGML_ASSERT( dst->ne[0] == nc);
  8550. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8551. for (int i = 0; i < nr; ++i) {
  8552. const int r = ((int32_t *) src1->data)[i];
  8553. ggml_vec_add_f32(nc,
  8554. (float *) ((char *) dst->data + r*dst->nb[1]),
  8555. (float *) ((char *) dst->data + r*dst->nb[1]),
  8556. (float *) ((char *) src0->data + i*src0->nb[1]));
  8557. }
  8558. }
  8559. static void ggml_compute_forward_get_rows_back(
  8560. const struct ggml_compute_params * params,
  8561. const struct ggml_tensor * src0,
  8562. const struct ggml_tensor * src1,
  8563. struct ggml_tensor * dst) {
  8564. switch (src0->type) {
  8565. case GGML_TYPE_F16:
  8566. {
  8567. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8568. } break;
  8569. case GGML_TYPE_F32:
  8570. {
  8571. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8572. } break;
  8573. default:
  8574. {
  8575. GGML_ASSERT(false);
  8576. } break;
  8577. }
  8578. //static bool first = true;
  8579. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8580. //if (first) {
  8581. // first = false;
  8582. //} else {
  8583. // for (int k = 0; k < dst->ne[1]; ++k) {
  8584. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8585. // for (int i = 0; i < 16; ++i) {
  8586. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8587. // }
  8588. // printf("\n");
  8589. // }
  8590. // printf("\n");
  8591. // }
  8592. // printf("\n");
  8593. // exit(0);
  8594. //}
  8595. }
  8596. // ggml_compute_forward_diag
  8597. static void ggml_compute_forward_diag_f32(
  8598. const struct ggml_compute_params * params,
  8599. const struct ggml_tensor * src0,
  8600. struct ggml_tensor * dst) {
  8601. GGML_ASSERT(params->ith == 0);
  8602. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8603. return;
  8604. }
  8605. // TODO: handle transposed/permuted matrices
  8606. GGML_TENSOR_UNARY_OP_LOCALS
  8607. GGML_ASSERT(ne00 == ne0);
  8608. GGML_ASSERT(ne00 == ne1);
  8609. GGML_ASSERT(ne01 == 1);
  8610. GGML_ASSERT(ne02 == ne2);
  8611. GGML_ASSERT(ne03 == ne3);
  8612. GGML_ASSERT(nb00 == sizeof(float));
  8613. GGML_ASSERT(nb0 == sizeof(float));
  8614. for (int i3 = 0; i3 < ne3; i3++) {
  8615. for (int i2 = 0; i2 < ne2; i2++) {
  8616. for (int i1 = 0; i1 < ne1; i1++) {
  8617. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8618. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8619. for (int i0 = 0; i0 < i1; i0++) {
  8620. d[i0] = 0;
  8621. }
  8622. d[i1] = s[i1];
  8623. for (int i0 = i1+1; i0 < ne0; i0++) {
  8624. d[i0] = 0;
  8625. }
  8626. }
  8627. }
  8628. }
  8629. }
  8630. static void ggml_compute_forward_diag(
  8631. const struct ggml_compute_params * params,
  8632. const struct ggml_tensor * src0,
  8633. struct ggml_tensor * dst) {
  8634. switch (src0->type) {
  8635. case GGML_TYPE_F32:
  8636. {
  8637. ggml_compute_forward_diag_f32(params, src0, dst);
  8638. } break;
  8639. default:
  8640. {
  8641. GGML_ASSERT(false);
  8642. } break;
  8643. }
  8644. }
  8645. // ggml_compute_forward_diag_mask_inf
  8646. static void ggml_compute_forward_diag_mask_f32(
  8647. const struct ggml_compute_params * params,
  8648. const struct ggml_tensor * src0,
  8649. struct ggml_tensor * dst,
  8650. const float value) {
  8651. const int ith = params->ith;
  8652. const int nth = params->nth;
  8653. const int n_past = ((int32_t *) dst->op_params)[0];
  8654. const bool inplace = src0->data == dst->data;
  8655. GGML_ASSERT(n_past >= 0);
  8656. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8657. // memcpy needs to be synchronized across threads to avoid race conditions.
  8658. // => do it in INIT phase
  8659. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8660. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8661. memcpy(
  8662. ((char *) dst->data),
  8663. ((char *) src0->data),
  8664. ggml_nbytes(dst));
  8665. }
  8666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8667. return;
  8668. }
  8669. // TODO: handle transposed/permuted matrices
  8670. const int n = ggml_nrows(src0);
  8671. const int nc = src0->ne[0];
  8672. const int nr = src0->ne[1];
  8673. const int nz = n/nr;
  8674. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8675. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8676. for (int k = 0; k < nz; k++) {
  8677. for (int j = ith; j < nr; j += nth) {
  8678. for (int i = n_past; i < nc; i++) {
  8679. if (i > n_past + j) {
  8680. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8681. }
  8682. }
  8683. }
  8684. }
  8685. }
  8686. static void ggml_compute_forward_diag_mask_inf(
  8687. const struct ggml_compute_params * params,
  8688. const struct ggml_tensor * src0,
  8689. struct ggml_tensor * dst) {
  8690. switch (src0->type) {
  8691. case GGML_TYPE_F32:
  8692. {
  8693. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8694. } break;
  8695. default:
  8696. {
  8697. GGML_ASSERT(false);
  8698. } break;
  8699. }
  8700. }
  8701. static void ggml_compute_forward_diag_mask_zero(
  8702. const struct ggml_compute_params * params,
  8703. const struct ggml_tensor * src0,
  8704. struct ggml_tensor * dst) {
  8705. switch (src0->type) {
  8706. case GGML_TYPE_F32:
  8707. {
  8708. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8709. } break;
  8710. default:
  8711. {
  8712. GGML_ASSERT(false);
  8713. } break;
  8714. }
  8715. }
  8716. // ggml_compute_forward_soft_max
  8717. static void ggml_compute_forward_soft_max_f32(
  8718. const struct ggml_compute_params * params,
  8719. const struct ggml_tensor * src0,
  8720. struct ggml_tensor * dst) {
  8721. GGML_ASSERT(ggml_is_contiguous(src0));
  8722. GGML_ASSERT(ggml_is_contiguous(dst));
  8723. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8725. return;
  8726. }
  8727. // TODO: handle transposed/permuted matrices
  8728. const int ith = params->ith;
  8729. const int nth = params->nth;
  8730. const int nc = src0->ne[0];
  8731. const int nr = ggml_nrows(src0);
  8732. // rows per thread
  8733. const int dr = (nr + nth - 1)/nth;
  8734. // row range for this thread
  8735. const int ir0 = dr*ith;
  8736. const int ir1 = MIN(ir0 + dr, nr);
  8737. for (int i1 = ir0; i1 < ir1; i1++) {
  8738. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8739. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8740. #ifndef NDEBUG
  8741. for (int i = 0; i < nc; ++i) {
  8742. //printf("p[%d] = %f\n", i, p[i]);
  8743. assert(!isnan(sp[i]));
  8744. }
  8745. #endif
  8746. float max = -INFINITY;
  8747. ggml_vec_max_f32(nc, &max, sp);
  8748. ggml_float sum = 0.0;
  8749. uint16_t scvt;
  8750. for (int i = 0; i < nc; i++) {
  8751. if (sp[i] == -INFINITY) {
  8752. dp[i] = 0.0f;
  8753. } else {
  8754. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8755. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8756. memcpy(&scvt, &s, sizeof(scvt));
  8757. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8758. sum += (ggml_float)val;
  8759. dp[i] = val;
  8760. }
  8761. }
  8762. assert(sum > 0.0);
  8763. sum = 1.0/sum;
  8764. ggml_vec_scale_f32(nc, dp, sum);
  8765. #ifndef NDEBUG
  8766. for (int i = 0; i < nc; ++i) {
  8767. assert(!isnan(dp[i]));
  8768. assert(!isinf(dp[i]));
  8769. }
  8770. #endif
  8771. }
  8772. }
  8773. static void ggml_compute_forward_soft_max(
  8774. const struct ggml_compute_params * params,
  8775. const struct ggml_tensor * src0,
  8776. struct ggml_tensor * dst) {
  8777. switch (src0->type) {
  8778. case GGML_TYPE_F32:
  8779. {
  8780. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8781. } break;
  8782. default:
  8783. {
  8784. GGML_ASSERT(false);
  8785. } break;
  8786. }
  8787. }
  8788. // ggml_compute_forward_soft_max_back
  8789. static void ggml_compute_forward_soft_max_back_f32(
  8790. const struct ggml_compute_params * params,
  8791. const struct ggml_tensor * src0,
  8792. const struct ggml_tensor * src1,
  8793. struct ggml_tensor * dst) {
  8794. GGML_ASSERT(ggml_is_contiguous(src0));
  8795. GGML_ASSERT(ggml_is_contiguous(src1));
  8796. GGML_ASSERT(ggml_is_contiguous(dst));
  8797. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8798. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8799. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8800. return;
  8801. }
  8802. // TODO: handle transposed/permuted matrices
  8803. const int ith = params->ith;
  8804. const int nth = params->nth;
  8805. const int nc = src0->ne[0];
  8806. const int nr = ggml_nrows(src0);
  8807. // rows per thread
  8808. const int dr = (nr + nth - 1)/nth;
  8809. // row range for this thread
  8810. const int ir0 = dr*ith;
  8811. const int ir1 = MIN(ir0 + dr, nr);
  8812. for (int i1 = ir0; i1 < ir1; i1++) {
  8813. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8814. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8815. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8816. #ifndef NDEBUG
  8817. for (int i = 0; i < nc; ++i) {
  8818. //printf("p[%d] = %f\n", i, p[i]);
  8819. assert(!isnan(dy[i]));
  8820. assert(!isnan(y[i]));
  8821. }
  8822. #endif
  8823. // Jii = yi - yi*yi
  8824. // Jij = -yi*yj
  8825. // J = diag(y)-y.T*y
  8826. // dx = J * dy
  8827. // dxk = sum_i(Jki * dyi)
  8828. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8829. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8830. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8831. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8832. // dxk = -yk * dot(y, dy) + yk*dyk
  8833. // dxk = yk * (- dot(y, dy) + dyk)
  8834. // dxk = yk * (dyk - dot(y, dy))
  8835. //
  8836. // post-order:
  8837. // dot_y_dy := dot(y, dy)
  8838. // dx := dy
  8839. // dx := dx - dot_y_dy
  8840. // dx := dx * y
  8841. // linear runtime, no additional memory
  8842. float dot_y_dy = 0;
  8843. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  8844. ggml_vec_cpy_f32 (nc, dx, dy);
  8845. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  8846. ggml_vec_mul_f32 (nc, dx, dx, y);
  8847. #ifndef NDEBUG
  8848. for (int i = 0; i < nc; ++i) {
  8849. assert(!isnan(dx[i]));
  8850. assert(!isinf(dx[i]));
  8851. }
  8852. #endif
  8853. }
  8854. }
  8855. static void ggml_compute_forward_soft_max_back(
  8856. const struct ggml_compute_params * params,
  8857. const struct ggml_tensor * src0,
  8858. const struct ggml_tensor * src1,
  8859. struct ggml_tensor * dst) {
  8860. switch (src0->type) {
  8861. case GGML_TYPE_F32:
  8862. {
  8863. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  8864. } break;
  8865. default:
  8866. {
  8867. GGML_ASSERT(false);
  8868. } break;
  8869. }
  8870. }
  8871. // ggml_compute_forward_alibi
  8872. static void ggml_compute_forward_alibi_f32(
  8873. const struct ggml_compute_params * params,
  8874. const struct ggml_tensor * src0,
  8875. struct ggml_tensor * dst) {
  8876. assert(params->ith == 0);
  8877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8878. return;
  8879. }
  8880. //const int n_past = ((int32_t *) dst->op_params)[0];
  8881. const int n_head = ((int32_t *) dst->op_params)[1];
  8882. float max_bias;
  8883. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8884. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8885. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  8886. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  8887. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  8888. const int64_t n = ggml_nrows(src0);
  8889. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  8890. const size_t nb0 = src0->nb[0];
  8891. const size_t nb1 = src0->nb[1];
  8892. const size_t nb2 = src0->nb[2];
  8893. //const int nb3 = src0->nb[3];
  8894. GGML_ASSERT(nb0 == sizeof(float));
  8895. GGML_ASSERT(n_head == ne2);
  8896. // add alibi to src0 (KQ_scaled)
  8897. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8898. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8899. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8900. for (int64_t i = 0; i < ne0; i++) {
  8901. for (int64_t j = 0; j < ne1; j++) {
  8902. for (int64_t k = 0; k < ne2_ne3; k++) {
  8903. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8904. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8905. // TODO: k*nb2 or k*nb3
  8906. float m_k;
  8907. if (k < n_heads_log2_floor) {
  8908. m_k = powf(m0, k + 1);
  8909. } else {
  8910. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8911. }
  8912. pdst[0] = i * m_k + src[0];
  8913. }
  8914. }
  8915. }
  8916. }
  8917. static void ggml_compute_forward_alibi_f16(
  8918. const struct ggml_compute_params * params,
  8919. const struct ggml_tensor * src0,
  8920. struct ggml_tensor * dst) {
  8921. assert(params->ith == 0);
  8922. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8923. return;
  8924. }
  8925. //const int n_past = ((int32_t *) dst->op_params)[0];
  8926. const int n_head = ((int32_t *) dst->op_params)[1];
  8927. float max_bias;
  8928. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  8929. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8930. const int ne1 = src0->ne[1]; // seq_len_without_past
  8931. const int ne2 = src0->ne[2]; // n_head -> this is k
  8932. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8933. const int n = ggml_nrows(src0);
  8934. const int ne2_ne3 = n/ne1; // ne2*ne3
  8935. const int nb0 = src0->nb[0];
  8936. const int nb1 = src0->nb[1];
  8937. const int nb2 = src0->nb[2];
  8938. //const int nb3 = src0->nb[3];
  8939. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8940. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  8941. GGML_ASSERT(n_head == ne2);
  8942. // add alibi to src0 (KQ_scaled)
  8943. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8944. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8945. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8946. for (int i = 0; i < ne0; i++) {
  8947. for (int j = 0; j < ne1; j++) {
  8948. for (int k = 0; k < ne2_ne3; k++) {
  8949. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8950. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8951. // TODO: k*nb2 or k*nb3
  8952. float m_k;
  8953. if (k < n_heads_log2_floor) {
  8954. m_k = powf(m0, k + 1);
  8955. } else {
  8956. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8957. }
  8958. // we return F32
  8959. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8960. }
  8961. }
  8962. }
  8963. }
  8964. static void ggml_compute_forward_alibi(
  8965. const struct ggml_compute_params * params,
  8966. const struct ggml_tensor * src0,
  8967. struct ggml_tensor * dst) {
  8968. switch (src0->type) {
  8969. case GGML_TYPE_F16:
  8970. {
  8971. ggml_compute_forward_alibi_f16(params, src0, dst);
  8972. } break;
  8973. case GGML_TYPE_F32:
  8974. {
  8975. ggml_compute_forward_alibi_f32(params, src0, dst);
  8976. } break;
  8977. case GGML_TYPE_Q4_0:
  8978. case GGML_TYPE_Q4_1:
  8979. case GGML_TYPE_Q5_0:
  8980. case GGML_TYPE_Q5_1:
  8981. case GGML_TYPE_Q8_0:
  8982. case GGML_TYPE_Q8_1:
  8983. case GGML_TYPE_Q2_K:
  8984. case GGML_TYPE_Q3_K:
  8985. case GGML_TYPE_Q4_K:
  8986. case GGML_TYPE_Q5_K:
  8987. case GGML_TYPE_Q6_K:
  8988. case GGML_TYPE_Q8_K:
  8989. case GGML_TYPE_I8:
  8990. case GGML_TYPE_I16:
  8991. case GGML_TYPE_I32:
  8992. case GGML_TYPE_COUNT:
  8993. {
  8994. GGML_ASSERT(false);
  8995. } break;
  8996. }
  8997. }
  8998. // ggml_compute_forward_clamp
  8999. static void ggml_compute_forward_clamp_f32(
  9000. const struct ggml_compute_params * params,
  9001. const struct ggml_tensor * src0,
  9002. struct ggml_tensor * dst) {
  9003. assert(params->ith == 0);
  9004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9005. return;
  9006. }
  9007. float min;
  9008. float max;
  9009. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9010. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9011. const int ith = params->ith;
  9012. const int nth = params->nth;
  9013. const int n = ggml_nrows(src0);
  9014. const int nc = src0->ne[0];
  9015. const size_t nb00 = src0->nb[0];
  9016. const size_t nb01 = src0->nb[1];
  9017. const size_t nb0 = dst->nb[0];
  9018. const size_t nb1 = dst->nb[1];
  9019. GGML_ASSERT( nb0 == sizeof(float));
  9020. GGML_ASSERT(nb00 == sizeof(float));
  9021. for (int j = ith; j < n; j += nth) {
  9022. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9023. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9024. for (int i = 0; i < nc; i++) {
  9025. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9026. }
  9027. }
  9028. }
  9029. static void ggml_compute_forward_clamp(
  9030. const struct ggml_compute_params * params,
  9031. const struct ggml_tensor * src0,
  9032. struct ggml_tensor * dst) {
  9033. switch (src0->type) {
  9034. case GGML_TYPE_F32:
  9035. {
  9036. ggml_compute_forward_clamp_f32(params, src0, dst);
  9037. } break;
  9038. case GGML_TYPE_F16:
  9039. case GGML_TYPE_Q4_0:
  9040. case GGML_TYPE_Q4_1:
  9041. case GGML_TYPE_Q5_0:
  9042. case GGML_TYPE_Q5_1:
  9043. case GGML_TYPE_Q8_0:
  9044. case GGML_TYPE_Q8_1:
  9045. case GGML_TYPE_Q2_K:
  9046. case GGML_TYPE_Q3_K:
  9047. case GGML_TYPE_Q4_K:
  9048. case GGML_TYPE_Q5_K:
  9049. case GGML_TYPE_Q6_K:
  9050. case GGML_TYPE_Q8_K:
  9051. case GGML_TYPE_I8:
  9052. case GGML_TYPE_I16:
  9053. case GGML_TYPE_I32:
  9054. case GGML_TYPE_COUNT:
  9055. {
  9056. GGML_ASSERT(false);
  9057. } break;
  9058. }
  9059. }
  9060. // ggml_compute_forward_rope
  9061. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9062. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9063. return 1 - MIN(1, MAX(0, y));
  9064. }
  9065. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9066. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9067. static void rope_yarn(
  9068. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9069. float * cos_theta, float * sin_theta
  9070. ) {
  9071. // Get n-d rotational scaling corrected for extrapolation
  9072. float theta_interp = freq_scale * theta_extrap;
  9073. float theta = theta_interp;
  9074. if (ext_factor != 0.0f) {
  9075. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9076. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9077. // Get n-d magnitude scaling corrected for interpolation
  9078. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9079. }
  9080. *cos_theta = cosf(theta) * mscale;
  9081. *sin_theta = sinf(theta) * mscale;
  9082. }
  9083. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9084. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9085. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9086. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9087. }
  9088. void ggml_rope_yarn_corr_dims(
  9089. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9090. ) {
  9091. // start and end correction dims
  9092. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9093. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9094. }
  9095. static void ggml_compute_forward_rope_f32(
  9096. const struct ggml_compute_params * params,
  9097. const struct ggml_tensor * src0,
  9098. const struct ggml_tensor * src1,
  9099. struct ggml_tensor * dst,
  9100. const bool forward) {
  9101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9102. return;
  9103. }
  9104. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9105. // these two only relevant for xPos RoPE:
  9106. float xpos_base;
  9107. bool xpos_down;
  9108. //const int n_past = ((int32_t *) dst->op_params)[0];
  9109. const int n_dims = ((int32_t *) dst->op_params)[1];
  9110. const int mode = ((int32_t *) dst->op_params)[2];
  9111. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9112. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9113. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9114. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9115. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9116. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9117. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9118. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9119. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9120. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9121. GGML_TENSOR_UNARY_OP_LOCALS
  9122. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9123. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9124. GGML_ASSERT(nb00 == sizeof(float));
  9125. const int ith = params->ith;
  9126. const int nth = params->nth;
  9127. const int nr = ggml_nrows(dst);
  9128. GGML_ASSERT(n_dims <= ne0);
  9129. GGML_ASSERT(n_dims % 2 == 0);
  9130. // rows per thread
  9131. const int dr = (nr + nth - 1)/nth;
  9132. // row range for this thread
  9133. const int ir0 = dr*ith;
  9134. const int ir1 = MIN(ir0 + dr, nr);
  9135. // row index used to determine which thread to use
  9136. int ir = 0;
  9137. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9138. const float inv_ndims = -1.f/n_dims;
  9139. float corr_dims[2];
  9140. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9141. const bool is_neox = mode & 2;
  9142. const bool is_glm = mode & 4;
  9143. // backward process uses inverse rotation by cos and sin.
  9144. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9145. // this essentially just switches the sign of sin.
  9146. const float sin_sign = forward ? 1.0f : -1.0f;
  9147. const int32_t * pos = (const int32_t *) src1->data;
  9148. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9149. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9150. const int64_t p = pos[i2];
  9151. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9152. if (ir++ < ir0) continue;
  9153. if (ir > ir1) break;
  9154. float theta_base = (float)p;
  9155. if (is_glm) {
  9156. theta_base = MIN(p, n_ctx - 2);
  9157. float block_theta = MAX(p - (n_ctx - 2), 0);
  9158. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9159. const float cos_theta = cosf(theta_base);
  9160. const float sin_theta = sinf(theta_base) * sin_sign;
  9161. const float cos_block_theta = cosf(block_theta);
  9162. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9163. theta_base *= theta_scale;
  9164. block_theta *= theta_scale;
  9165. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9166. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9167. const float x0 = src[0];
  9168. const float x1 = src[n_dims/2];
  9169. const float x2 = src[n_dims];
  9170. const float x3 = src[n_dims/2*3];
  9171. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9172. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9173. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9174. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9175. }
  9176. } else if (!is_neox) {
  9177. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9178. float cos_theta, sin_theta;
  9179. rope_yarn(
  9180. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9181. );
  9182. sin_theta *= sin_sign;
  9183. // zeta scaling for xPos only:
  9184. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9185. if (xpos_down) zeta = 1.0f / zeta;
  9186. theta_base *= theta_scale;
  9187. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9188. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9189. const float x0 = src[0];
  9190. const float x1 = src[1];
  9191. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9192. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9193. }
  9194. } else {
  9195. // TODO: this might be wrong for ne0 != n_dims - need double check
  9196. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9197. theta_base *= freq_scale;
  9198. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9199. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9200. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9201. float cur_rot = inv_ndims * ic - ib;
  9202. float cos_theta, sin_theta;
  9203. rope_yarn(
  9204. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9205. &cos_theta, &sin_theta
  9206. );
  9207. sin_theta *= sin_sign;
  9208. theta_base *= theta_scale;
  9209. const int64_t i0 = ib*n_dims + ic/2;
  9210. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9211. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9212. const float x0 = src[0];
  9213. const float x1 = src[n_dims/2];
  9214. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9215. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9216. }
  9217. }
  9218. }
  9219. }
  9220. }
  9221. }
  9222. }
  9223. static void ggml_compute_forward_rope_f16(
  9224. const struct ggml_compute_params * params,
  9225. const struct ggml_tensor * src0,
  9226. const struct ggml_tensor * src1,
  9227. struct ggml_tensor * dst,
  9228. const bool forward) {
  9229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9230. return;
  9231. }
  9232. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9233. //const int n_past = ((int32_t *) dst->op_params)[0];
  9234. const int n_dims = ((int32_t *) dst->op_params)[1];
  9235. const int mode = ((int32_t *) dst->op_params)[2];
  9236. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9237. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9238. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9239. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9240. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9241. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9242. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9243. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9244. GGML_TENSOR_UNARY_OP_LOCALS
  9245. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9246. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9247. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9248. const int ith = params->ith;
  9249. const int nth = params->nth;
  9250. const int nr = ggml_nrows(dst);
  9251. GGML_ASSERT(n_dims <= ne0);
  9252. GGML_ASSERT(n_dims % 2 == 0);
  9253. // rows per thread
  9254. const int dr = (nr + nth - 1)/nth;
  9255. // row range for this thread
  9256. const int ir0 = dr*ith;
  9257. const int ir1 = MIN(ir0 + dr, nr);
  9258. // row index used to determine which thread to use
  9259. int ir = 0;
  9260. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9261. const float inv_ndims = -1.f/n_dims;
  9262. float corr_dims[2];
  9263. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9264. const bool is_neox = mode & 2;
  9265. const bool is_glm = mode & 4;
  9266. // backward process uses inverse rotation by cos and sin.
  9267. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9268. // this essentially just switches the sign of sin.
  9269. const float sin_sign = forward ? 1.0f : -1.0f;
  9270. const int32_t * pos = (const int32_t *) src1->data;
  9271. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9272. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9273. const int64_t p = pos[i2];
  9274. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9275. if (ir++ < ir0) continue;
  9276. if (ir > ir1) break;
  9277. float theta_base = (float)p;
  9278. if (is_glm) {
  9279. theta_base = MIN(p, n_ctx - 2);
  9280. float block_theta = MAX(p - (n_ctx - 2), 0);
  9281. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9282. const float cos_theta = cosf(theta_base);
  9283. const float sin_theta = sinf(theta_base) * sin_sign;
  9284. const float cos_block_theta = cosf(block_theta);
  9285. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9286. theta_base *= theta_scale;
  9287. block_theta *= theta_scale;
  9288. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9289. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9290. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9291. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9292. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9293. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9294. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9295. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9296. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9297. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9298. }
  9299. } else if (!is_neox) {
  9300. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9301. float cos_theta, sin_theta;
  9302. rope_yarn(
  9303. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9304. );
  9305. sin_theta *= sin_sign;
  9306. theta_base *= theta_scale;
  9307. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9308. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9309. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9310. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9311. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9312. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9313. }
  9314. } else {
  9315. // TODO: this might be wrong for ne0 != n_dims - need double check
  9316. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9317. theta_base *= freq_scale;
  9318. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9319. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9320. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9321. float cur_rot = inv_ndims * ic - ib;
  9322. float cos_theta, sin_theta;
  9323. rope_yarn(
  9324. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9325. &cos_theta, &sin_theta
  9326. );
  9327. sin_theta *= sin_sign;
  9328. theta_base *= theta_scale;
  9329. const int64_t i0 = ib*n_dims + ic/2;
  9330. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9331. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9332. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9333. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9334. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9335. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9336. }
  9337. }
  9338. }
  9339. }
  9340. }
  9341. }
  9342. }
  9343. static void ggml_compute_forward_rope(
  9344. const struct ggml_compute_params * params,
  9345. const struct ggml_tensor * src0,
  9346. const struct ggml_tensor * src1,
  9347. struct ggml_tensor * dst) {
  9348. switch (src0->type) {
  9349. case GGML_TYPE_F16:
  9350. {
  9351. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9352. } break;
  9353. case GGML_TYPE_F32:
  9354. {
  9355. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9356. } break;
  9357. default:
  9358. {
  9359. GGML_ASSERT(false);
  9360. } break;
  9361. }
  9362. }
  9363. // ggml_compute_forward_rope_back
  9364. static void ggml_compute_forward_rope_back(
  9365. const struct ggml_compute_params * params,
  9366. const struct ggml_tensor * src0,
  9367. const struct ggml_tensor * src1,
  9368. struct ggml_tensor * dst) {
  9369. switch (src0->type) {
  9370. case GGML_TYPE_F16:
  9371. {
  9372. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9373. } break;
  9374. case GGML_TYPE_F32:
  9375. {
  9376. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9377. } break;
  9378. default:
  9379. {
  9380. GGML_ASSERT(false);
  9381. } break;
  9382. }
  9383. }
  9384. // ggml_compute_forward_conv_1d
  9385. static void ggml_compute_forward_conv_1d_f16_f32(
  9386. const struct ggml_compute_params * params,
  9387. const struct ggml_tensor * src0,
  9388. const struct ggml_tensor * src1,
  9389. struct ggml_tensor * dst) {
  9390. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9391. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9392. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9393. int64_t t0 = ggml_perf_time_us();
  9394. UNUSED(t0);
  9395. GGML_TENSOR_BINARY_OP_LOCALS
  9396. const int ith = params->ith;
  9397. const int nth = params->nth;
  9398. const int nk = ne00;
  9399. // size of the convolution row - the kernel size unrolled across all input channels
  9400. const int ew0 = nk*ne01;
  9401. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9402. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9403. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9404. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9405. GGML_ASSERT(nb10 == sizeof(float));
  9406. if (params->type == GGML_TASK_INIT) {
  9407. memset(params->wdata, 0, params->wsize);
  9408. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9409. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9410. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9411. ggml_fp16_t * dst_data = wdata;
  9412. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9413. for (int64_t ik = 0; ik < nk; ik++) {
  9414. const int idx0 = i0*s0 + ik*d0 - p0;
  9415. if(!(idx0 < 0 || idx0 >= ne10)) {
  9416. dst_data[i0*ew0 + i11*nk + ik] = GGML_FP32_TO_FP16(src[idx0]);
  9417. }
  9418. }
  9419. }
  9420. }
  9421. return;
  9422. }
  9423. if (params->type == GGML_TASK_FINALIZE) {
  9424. return;
  9425. }
  9426. // total rows in dst
  9427. const int nr = ne2;
  9428. // rows per thread
  9429. const int dr = (nr + nth - 1)/nth;
  9430. // row range for this thread
  9431. const int ir0 = dr*ith;
  9432. const int ir1 = MIN(ir0 + dr, nr);
  9433. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9434. for (int i2 = 0; i2 < ne2; i2++) {
  9435. for (int i1 = ir0; i1 < ir1; i1++) {
  9436. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9437. for (int i0 = 0; i0 < ne0; i0++) {
  9438. ggml_vec_dot_f16(ew0, dst_data + i0,
  9439. (ggml_fp16_t *) ((char *) src0->data + i1*nb02),
  9440. (ggml_fp16_t *) wdata + i2*nb2 + i0*ew0);
  9441. }
  9442. }
  9443. }
  9444. }
  9445. static void ggml_compute_forward_conv_1d_f32(
  9446. const struct ggml_compute_params * params,
  9447. const struct ggml_tensor * src0,
  9448. const struct ggml_tensor * src1,
  9449. struct ggml_tensor * dst) {
  9450. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9451. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9452. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9453. int64_t t0 = ggml_perf_time_us();
  9454. UNUSED(t0);
  9455. GGML_TENSOR_BINARY_OP_LOCALS
  9456. const int ith = params->ith;
  9457. const int nth = params->nth;
  9458. const int nk = ne00;
  9459. const int ew0 = nk*ne01;
  9460. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9461. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9462. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9463. GGML_ASSERT(nb00 == sizeof(float));
  9464. GGML_ASSERT(nb10 == sizeof(float));
  9465. if (params->type == GGML_TASK_INIT) {
  9466. memset(params->wdata, 0, params->wsize);
  9467. float * const wdata = (float *) params->wdata + 0;
  9468. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9469. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9470. float * dst_data = wdata;
  9471. for (int64_t i0 = 0; i0 < ne0; i0++) {
  9472. for (int64_t ik = 0; ik < nk; ik++) {
  9473. const int idx0 = i0*s0 + ik*d0 - p0;
  9474. if(!(idx0 < 0 || idx0 >= ne10)) {
  9475. dst_data[i0*ew0 + i11*nk + ik] = src[idx0];
  9476. }
  9477. }
  9478. }
  9479. }
  9480. return;
  9481. }
  9482. if (params->type == GGML_TASK_FINALIZE) {
  9483. return;
  9484. }
  9485. // total rows in dst
  9486. const int nr = ne02;
  9487. // rows per thread
  9488. const int dr = (nr + nth - 1)/nth;
  9489. // row range for this thread
  9490. const int ir0 = dr*ith;
  9491. const int ir1 = MIN(ir0 + dr, nr);
  9492. float * const wdata = (float *) params->wdata + 0;
  9493. for (int i2 = 0; i2 < ne2; i2++) {
  9494. for (int i1 = ir0; i1 < ir1; i1++) {
  9495. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  9496. for (int i0 = 0; i0 < ne0; i0++) {
  9497. ggml_vec_dot_f32(ew0, dst_data + i0,
  9498. (float *) ((char *) src0->data + i1*nb02),
  9499. (float *) wdata + i2*nb2 + i0*ew0);
  9500. }
  9501. }
  9502. }
  9503. }
  9504. // TODO: reuse ggml_mul_mat or implement ggml_im2col and remove stage_0 and stage_1
  9505. static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k,
  9506. ggml_fp16_t * A,
  9507. ggml_fp16_t * B,
  9508. float * C,
  9509. const int ith, const int nth) {
  9510. // does not seem to make a difference
  9511. int64_t m0, m1, n0, n1;
  9512. // patches per thread
  9513. if (m > n) {
  9514. n0 = 0;
  9515. n1 = n;
  9516. // total patches in dst
  9517. const int np = m;
  9518. // patches per thread
  9519. const int dp = (np + nth - 1)/nth;
  9520. // patch range for this thread
  9521. m0 = dp*ith;
  9522. m1 = MIN(m0 + dp, np);
  9523. } else {
  9524. m0 = 0;
  9525. m1 = m;
  9526. // total patches in dst
  9527. const int np = n;
  9528. // patches per thread
  9529. const int dp = (np + nth - 1)/nth;
  9530. // patch range for this thread
  9531. n0 = dp*ith;
  9532. n1 = MIN(n0 + dp, np);
  9533. }
  9534. // block-tiling attempt
  9535. int64_t blck_n = 16;
  9536. int64_t blck_m = 16;
  9537. // int64_t CACHE_SIZE = 2 * 1024 * 1024; // 2MB
  9538. // int64_t blck_size = CACHE_SIZE / (sizeof(float) + 2 * sizeof(ggml_fp16_t) * K);
  9539. // if (blck_size > 0) {
  9540. // blck_0 = 4;
  9541. // blck_1 = blck_size / blck_0;
  9542. // if (blck_1 < 0) {
  9543. // blck_1 = 1;
  9544. // }
  9545. // // blck_0 = (int64_t)sqrt(blck_size);
  9546. // // blck_1 = blck_0;
  9547. // }
  9548. // // printf("%zd %zd %zd %zd\n", blck_size, K, blck_0, blck_1);
  9549. for (int j = n0; j < n1; j+=blck_n) {
  9550. for (int i = m0; i < m1; i+=blck_m) {
  9551. // printf("i j k => %d %d %d\n", i, j, K);
  9552. for (int ii = i; ii < i + blck_m && ii < m1; ii++) {
  9553. for (int jj = j; jj < j + blck_n && jj < n1; jj++) {
  9554. ggml_vec_dot_f16(k,
  9555. C + ii*n + jj,
  9556. A + ii * k,
  9557. B + jj * k);
  9558. }
  9559. }
  9560. }
  9561. }
  9562. }
  9563. // src0: kernel [OC, IC, K]
  9564. // src1: signal [N, IC, IL]
  9565. // dst: result [N, OL, IC*K]
  9566. static void ggml_compute_forward_conv_1d_stage_0_f32(
  9567. const struct ggml_compute_params * params,
  9568. const struct ggml_tensor * src0,
  9569. const struct ggml_tensor * src1,
  9570. struct ggml_tensor * dst) {
  9571. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9572. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9573. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9574. int64_t t0 = ggml_perf_time_us();
  9575. UNUSED(t0);
  9576. GGML_TENSOR_BINARY_OP_LOCALS;
  9577. const int64_t N = ne12;
  9578. const int64_t IC = ne11;
  9579. const int64_t IL = ne10;
  9580. const int64_t K = ne00;
  9581. const int64_t OL = ne1;
  9582. const int ith = params->ith;
  9583. const int nth = params->nth;
  9584. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9585. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  9586. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  9587. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9588. GGML_ASSERT(nb10 == sizeof(float));
  9589. if (params->type == GGML_TASK_INIT) {
  9590. memset(dst->data, 0, ggml_nbytes(dst));
  9591. return;
  9592. }
  9593. if (params->type == GGML_TASK_FINALIZE) {
  9594. return;
  9595. }
  9596. // im2col: [N, IC, IL] => [N, OL, IC*K]
  9597. {
  9598. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9599. for (int64_t in = 0; in < N; in++) {
  9600. for (int64_t iol = 0; iol < OL; iol++) {
  9601. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9602. // micro kernel
  9603. ggml_fp16_t * dst_data = wdata + (in*OL + iol)*(IC*K); // [IC, K]
  9604. const float * const src_data = (float *)((char *) src1->data + in*nb12 + iic*nb11); // [IL]
  9605. for (int64_t ik = 0; ik < K; ik++) {
  9606. const int64_t iil = iol*s0 + ik*d0 - p0;
  9607. if (!(iil < 0 || iil >= IL)) {
  9608. dst_data[iic*K + ik] = GGML_FP32_TO_FP16(src_data[iil]);
  9609. }
  9610. }
  9611. }
  9612. }
  9613. }
  9614. }
  9615. }
  9616. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9617. // src0: [OC, IC, K]
  9618. // src1: [N, OL, IC * K]
  9619. // result: [N, OC, OL]
  9620. static void ggml_compute_forward_conv_1d_stage_1_f16(
  9621. const struct ggml_compute_params * params,
  9622. const struct ggml_tensor * src0,
  9623. const struct ggml_tensor * src1,
  9624. struct ggml_tensor * dst) {
  9625. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9626. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  9627. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9628. int64_t t0 = ggml_perf_time_us();
  9629. UNUSED(t0);
  9630. if (params->type == GGML_TASK_INIT) {
  9631. return;
  9632. }
  9633. if (params->type == GGML_TASK_FINALIZE) {
  9634. return;
  9635. }
  9636. GGML_TENSOR_BINARY_OP_LOCALS;
  9637. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9638. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  9639. GGML_ASSERT(nb0 == sizeof(float));
  9640. const int N = ne12;
  9641. const int OL = ne11;
  9642. const int OC = ne02;
  9643. const int IC = ne01;
  9644. const int K = ne00;
  9645. const int ith = params->ith;
  9646. const int nth = params->nth;
  9647. int64_t m = OC;
  9648. int64_t n = OL;
  9649. int64_t k = IC * K;
  9650. // [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  9651. for (int i = 0; i < N; i++) {
  9652. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  9653. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  9654. float * C = (float *)dst->data + i * m * n; // [m, n]
  9655. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  9656. }
  9657. }
  9658. static void ggml_compute_forward_conv_1d(
  9659. const struct ggml_compute_params * params,
  9660. const struct ggml_tensor * src0,
  9661. const struct ggml_tensor * src1,
  9662. struct ggml_tensor * dst) {
  9663. switch(src0->type) {
  9664. case GGML_TYPE_F16:
  9665. {
  9666. ggml_compute_forward_conv_1d_f16_f32(params, src0, src1, dst);
  9667. } break;
  9668. case GGML_TYPE_F32:
  9669. {
  9670. ggml_compute_forward_conv_1d_f32(params, src0, src1, dst);
  9671. } break;
  9672. default:
  9673. {
  9674. GGML_ASSERT(false);
  9675. } break;
  9676. }
  9677. }
  9678. static void ggml_compute_forward_conv_1d_stage_0(
  9679. const struct ggml_compute_params * params,
  9680. const struct ggml_tensor * src0,
  9681. const struct ggml_tensor * src1,
  9682. struct ggml_tensor * dst) {
  9683. switch(src0->type) {
  9684. case GGML_TYPE_F16:
  9685. {
  9686. ggml_compute_forward_conv_1d_stage_0_f32(params, src0, src1, dst);
  9687. } break;
  9688. default:
  9689. {
  9690. GGML_ASSERT(false);
  9691. } break;
  9692. }
  9693. }
  9694. static void ggml_compute_forward_conv_1d_stage_1(
  9695. const struct ggml_compute_params * params,
  9696. const struct ggml_tensor * src0,
  9697. const struct ggml_tensor * src1,
  9698. struct ggml_tensor * dst) {
  9699. switch(src0->type) {
  9700. case GGML_TYPE_F16:
  9701. {
  9702. ggml_compute_forward_conv_1d_stage_1_f16(params, src0, src1, dst);
  9703. } break;
  9704. default:
  9705. {
  9706. GGML_ASSERT(false);
  9707. } break;
  9708. }
  9709. }
  9710. // ggml_compute_forward_conv_transpose_1d
  9711. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9712. const struct ggml_compute_params * params,
  9713. const struct ggml_tensor * src0,
  9714. const struct ggml_tensor * src1,
  9715. struct ggml_tensor * dst) {
  9716. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9717. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9718. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9719. int64_t t0 = ggml_perf_time_us();
  9720. UNUSED(t0);
  9721. GGML_TENSOR_BINARY_OP_LOCALS
  9722. const int ith = params->ith;
  9723. const int nth = params->nth;
  9724. const int nk = ne00*ne01*ne02;
  9725. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9726. GGML_ASSERT(nb10 == sizeof(float));
  9727. if (params->type == GGML_TASK_INIT) {
  9728. memset(params->wdata, 0, params->wsize);
  9729. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9730. {
  9731. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9732. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9733. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9734. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9735. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9736. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9737. dst_data[i00*ne02 + i02] = src[i00];
  9738. }
  9739. }
  9740. }
  9741. }
  9742. // permute source data (src1) from (L x Cin) to (Cin x L)
  9743. {
  9744. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9745. ggml_fp16_t * dst_data = wdata;
  9746. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9747. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9748. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9749. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9750. }
  9751. }
  9752. }
  9753. // need to zero dst since we are accumulating into it
  9754. memset(dst->data, 0, ggml_nbytes(dst));
  9755. return;
  9756. }
  9757. if (params->type == GGML_TASK_FINALIZE) {
  9758. return;
  9759. }
  9760. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9761. // total rows in dst
  9762. const int nr = ne1;
  9763. // rows per thread
  9764. const int dr = (nr + nth - 1)/nth;
  9765. // row range for this thread
  9766. const int ir0 = dr*ith;
  9767. const int ir1 = MIN(ir0 + dr, nr);
  9768. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9769. ggml_fp16_t * const wdata_src = wdata + nk;
  9770. for (int i1 = ir0; i1 < ir1; i1++) {
  9771. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9772. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9773. for (int i10 = 0; i10 < ne10; i10++) {
  9774. const int i1n = i10*ne11;
  9775. for (int i00 = 0; i00 < ne00; i00++) {
  9776. float v = 0;
  9777. ggml_vec_dot_f16(ne02, &v,
  9778. (ggml_fp16_t *) wdata_src + i1n,
  9779. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9780. dst_data[i10*s0 + i00] += v;
  9781. }
  9782. }
  9783. }
  9784. }
  9785. static void ggml_compute_forward_conv_transpose_1d_f32(
  9786. const struct ggml_compute_params * params,
  9787. const struct ggml_tensor * src0,
  9788. const struct ggml_tensor * src1,
  9789. struct ggml_tensor * dst) {
  9790. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9791. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9792. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9793. int64_t t0 = ggml_perf_time_us();
  9794. UNUSED(t0);
  9795. GGML_TENSOR_BINARY_OP_LOCALS
  9796. const int ith = params->ith;
  9797. const int nth = params->nth;
  9798. const int nk = ne00*ne01*ne02;
  9799. GGML_ASSERT(nb00 == sizeof(float));
  9800. GGML_ASSERT(nb10 == sizeof(float));
  9801. if (params->type == GGML_TASK_INIT) {
  9802. memset(params->wdata, 0, params->wsize);
  9803. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9804. {
  9805. float * const wdata = (float *) params->wdata + 0;
  9806. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9807. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9808. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9809. float * dst_data = wdata + i01*ne00*ne02;
  9810. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9811. dst_data[i00*ne02 + i02] = src[i00];
  9812. }
  9813. }
  9814. }
  9815. }
  9816. // prepare source data (src1)
  9817. {
  9818. float * const wdata = (float *) params->wdata + nk;
  9819. float * dst_data = wdata;
  9820. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9821. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9822. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9823. dst_data[i10*ne11 + i11] = src[i10];
  9824. }
  9825. }
  9826. }
  9827. // need to zero dst since we are accumulating into it
  9828. memset(dst->data, 0, ggml_nbytes(dst));
  9829. return;
  9830. }
  9831. if (params->type == GGML_TASK_FINALIZE) {
  9832. return;
  9833. }
  9834. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9835. // total rows in dst
  9836. const int nr = ne1;
  9837. // rows per thread
  9838. const int dr = (nr + nth - 1)/nth;
  9839. // row range for this thread
  9840. const int ir0 = dr*ith;
  9841. const int ir1 = MIN(ir0 + dr, nr);
  9842. float * const wdata = (float *) params->wdata + 0;
  9843. float * const wdata_src = wdata + nk;
  9844. for (int i1 = ir0; i1 < ir1; i1++) {
  9845. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9846. float * wdata_kernel = wdata + i1*ne02*ne00;
  9847. for (int i10 = 0; i10 < ne10; i10++) {
  9848. const int i1n = i10*ne11;
  9849. for (int i00 = 0; i00 < ne00; i00++) {
  9850. float v = 0;
  9851. ggml_vec_dot_f32(ne02, &v,
  9852. wdata_src + i1n,
  9853. wdata_kernel + i00*ne02);
  9854. dst_data[i10*s0 + i00] += v;
  9855. }
  9856. }
  9857. }
  9858. }
  9859. static void ggml_compute_forward_conv_transpose_1d(
  9860. const struct ggml_compute_params * params,
  9861. const struct ggml_tensor * src0,
  9862. const struct ggml_tensor * src1,
  9863. struct ggml_tensor * dst) {
  9864. switch (src0->type) {
  9865. case GGML_TYPE_F16:
  9866. {
  9867. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9868. } break;
  9869. case GGML_TYPE_F32:
  9870. {
  9871. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9872. } break;
  9873. default:
  9874. {
  9875. GGML_ASSERT(false);
  9876. } break;
  9877. }
  9878. }
  9879. // ggml_compute_forward_conv_2d
  9880. // src0: kernel [OC, IC, KH, KW]
  9881. // src1: image [N, IC, IH, IW]
  9882. // dst: result [N, OH, OW, IC*KH*KW]
  9883. static void ggml_compute_forward_conv_2d_stage_0_f32(
  9884. const struct ggml_compute_params * params,
  9885. const struct ggml_tensor * src0,
  9886. const struct ggml_tensor * src1,
  9887. struct ggml_tensor * dst) {
  9888. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9889. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9890. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9891. int64_t t0 = ggml_perf_time_us();
  9892. UNUSED(t0);
  9893. GGML_TENSOR_BINARY_OP_LOCALS;
  9894. const int64_t N = ne13;
  9895. const int64_t IC = ne12;
  9896. const int64_t IH = ne11;
  9897. const int64_t IW = ne10;
  9898. // const int64_t OC = ne03;
  9899. // const int64_t IC = ne02;
  9900. const int64_t KH = ne01;
  9901. const int64_t KW = ne00;
  9902. const int64_t OH = ne2;
  9903. const int64_t OW = ne1;
  9904. const int ith = params->ith;
  9905. const int nth = params->nth;
  9906. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9907. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  9908. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  9909. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  9910. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  9911. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  9912. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9913. GGML_ASSERT(nb10 == sizeof(float));
  9914. if (params->type == GGML_TASK_INIT) {
  9915. memset(dst->data, 0, ggml_nbytes(dst));
  9916. return;
  9917. }
  9918. if (params->type == GGML_TASK_FINALIZE) {
  9919. return;
  9920. }
  9921. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9922. {
  9923. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9924. for (int64_t in = 0; in < N; in++) {
  9925. for (int64_t ioh = 0; ioh < OH; ioh++) {
  9926. for (int64_t iow = 0; iow < OW; iow++) {
  9927. for (int64_t iic = ith; iic < IC; iic+=nth) {
  9928. // micro kernel
  9929. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9930. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  9931. for (int64_t ikh = 0; ikh < KH; ikh++) {
  9932. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9933. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9934. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9935. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  9936. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9937. }
  9938. }
  9939. }
  9940. }
  9941. }
  9942. }
  9943. }
  9944. }
  9945. }
  9946. // gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  9947. // src0: [OC, IC, KH, KW]
  9948. // src1: [N, OH, OW, IC * KH * KW]
  9949. // result: [N, OC, OH, OW]
  9950. static void ggml_compute_forward_conv_2d_stage_1_f16(
  9951. const struct ggml_compute_params * params,
  9952. const struct ggml_tensor * src0,
  9953. const struct ggml_tensor * src1,
  9954. struct ggml_tensor * dst) {
  9955. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9956. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  9957. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9958. int64_t t0 = ggml_perf_time_us();
  9959. UNUSED(t0);
  9960. if (params->type == GGML_TASK_INIT) {
  9961. return;
  9962. }
  9963. if (params->type == GGML_TASK_FINALIZE) {
  9964. return;
  9965. }
  9966. GGML_TENSOR_BINARY_OP_LOCALS;
  9967. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9968. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  9969. GGML_ASSERT(nb0 == sizeof(float));
  9970. const int N = ne13;
  9971. const int OH = ne12;
  9972. const int OW = ne11;
  9973. const int OC = ne03;
  9974. const int IC = ne02;
  9975. const int KH = ne01;
  9976. const int KW = ne00;
  9977. const int ith = params->ith;
  9978. const int nth = params->nth;
  9979. int64_t m = OC;
  9980. int64_t n = OH * OW;
  9981. int64_t k = IC * KH * KW;
  9982. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  9983. for (int i = 0; i < N; i++) {
  9984. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  9985. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  9986. float * C = (float *)dst->data + i * m * n; // [m, n]
  9987. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  9988. }
  9989. }
  9990. static void ggml_compute_forward_conv_2d_f16_f32(
  9991. const struct ggml_compute_params * params,
  9992. const struct ggml_tensor * src0,
  9993. const struct ggml_tensor * src1,
  9994. struct ggml_tensor * dst) {
  9995. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9996. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9997. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9998. int64_t t0 = ggml_perf_time_us();
  9999. UNUSED(t0);
  10000. GGML_TENSOR_BINARY_OP_LOCALS
  10001. // src1: image [N, IC, IH, IW]
  10002. // src0: kernel [OC, IC, KH, KW]
  10003. // dst: result [N, OC, OH, OW]
  10004. // ne12: IC
  10005. // ne0: OW
  10006. // ne1: OH
  10007. // nk0: KW
  10008. // nk1: KH
  10009. // ne13: N
  10010. const int N = ne13;
  10011. const int IC = ne12;
  10012. const int IH = ne11;
  10013. const int IW = ne10;
  10014. const int OC = ne03;
  10015. // const int IC = ne02;
  10016. const int KH = ne01;
  10017. const int KW = ne00;
  10018. const int OH = ne1;
  10019. const int OW = ne0;
  10020. const int ith = params->ith;
  10021. const int nth = params->nth;
  10022. // const int nk0 = ne00;
  10023. // const int nk1 = ne01;
  10024. // size of the convolution row - the kernel size unrolled across all channels
  10025. // const int ew0 = nk0*nk1*ne02;
  10026. // ew0: IC*KH*KW
  10027. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10028. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10029. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10030. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10031. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10032. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10033. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10034. GGML_ASSERT(nb10 == sizeof(float));
  10035. if (params->type == GGML_TASK_INIT) {
  10036. memset(params->wdata, 0, params->wsize);
  10037. // prepare source data (src1)
  10038. // im2col: [N, IC, IH, IW] => [N*OH*OW, IC*KH*KW]
  10039. {
  10040. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10041. for (int in = 0; in < N; in++) {
  10042. for (int iic = 0; iic < IC; iic++) {
  10043. for (int ioh = 0; ioh < OH; ioh++) {
  10044. for (int iow = 0; iow < OW; iow++) {
  10045. // micro kernel
  10046. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10047. const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW]
  10048. for (int ikh = 0; ikh < KH; ikh++) {
  10049. for (int ikw = 0; ikw < KW; ikw++) {
  10050. const int iiw = iow*s0 + ikw*d0 - p0;
  10051. const int iih = ioh*s1 + ikh*d1 - p1;
  10052. if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) {
  10053. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10054. }
  10055. }
  10056. }
  10057. }
  10058. }
  10059. }
  10060. }
  10061. }
  10062. return;
  10063. }
  10064. if (params->type == GGML_TASK_FINALIZE) {
  10065. return;
  10066. }
  10067. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10068. // wdata: [N*OH*OW, IC*KH*KW]
  10069. // dst: result [N, OC, OH, OW]
  10070. // src0: kernel [OC, IC, KH, KW]
  10071. int64_t m = OC;
  10072. int64_t n = OH * OW;
  10073. int64_t k = IC * KH * KW;
  10074. // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW]
  10075. for (int i = 0; i < N; i++) {
  10076. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  10077. ggml_fp16_t * B = (ggml_fp16_t *)wdata + i * m * k; // [n, k]
  10078. float * C = (float *)dst->data + i * m * n; // [m * k]
  10079. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  10080. }
  10081. }
  10082. static void ggml_compute_forward_conv_2d(
  10083. const struct ggml_compute_params * params,
  10084. const struct ggml_tensor * src0,
  10085. const struct ggml_tensor * src1,
  10086. struct ggml_tensor * dst) {
  10087. switch (src0->type) {
  10088. case GGML_TYPE_F16:
  10089. {
  10090. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10091. } break;
  10092. case GGML_TYPE_F32:
  10093. {
  10094. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10095. GGML_ASSERT(false);
  10096. } break;
  10097. default:
  10098. {
  10099. GGML_ASSERT(false);
  10100. } break;
  10101. }
  10102. }
  10103. static void ggml_compute_forward_conv_2d_stage_0(
  10104. const struct ggml_compute_params * params,
  10105. const struct ggml_tensor * src0,
  10106. const struct ggml_tensor * src1,
  10107. struct ggml_tensor * dst) {
  10108. switch (src0->type) {
  10109. case GGML_TYPE_F16:
  10110. {
  10111. ggml_compute_forward_conv_2d_stage_0_f32(params, src0, src1, dst);
  10112. } break;
  10113. case GGML_TYPE_F32:
  10114. {
  10115. GGML_ASSERT(false);
  10116. } break;
  10117. default:
  10118. {
  10119. GGML_ASSERT(false);
  10120. } break;
  10121. }
  10122. }
  10123. static void ggml_compute_forward_conv_2d_stage_1(
  10124. const struct ggml_compute_params * params,
  10125. const struct ggml_tensor * src0,
  10126. const struct ggml_tensor * src1,
  10127. struct ggml_tensor * dst) {
  10128. switch (src0->type) {
  10129. case GGML_TYPE_F16:
  10130. {
  10131. ggml_compute_forward_conv_2d_stage_1_f16(params, src0, src1, dst);
  10132. } break;
  10133. case GGML_TYPE_F32:
  10134. {
  10135. GGML_ASSERT(false);
  10136. } break;
  10137. default:
  10138. {
  10139. GGML_ASSERT(false);
  10140. } break;
  10141. }
  10142. }
  10143. // ggml_compute_forward_conv_transpose_2d
  10144. static void ggml_compute_forward_conv_transpose_2d(
  10145. const struct ggml_compute_params * params,
  10146. const struct ggml_tensor * src0,
  10147. const struct ggml_tensor * src1,
  10148. struct ggml_tensor * dst) {
  10149. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10150. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10151. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10152. int64_t t0 = ggml_perf_time_us();
  10153. UNUSED(t0);
  10154. GGML_TENSOR_BINARY_OP_LOCALS
  10155. const int ith = params->ith;
  10156. const int nth = params->nth;
  10157. const int nk = ne00*ne01*ne02*ne03;
  10158. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10159. GGML_ASSERT(nb10 == sizeof(float));
  10160. if (params->type == GGML_TASK_INIT) {
  10161. memset(params->wdata, 0, params->wsize);
  10162. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10163. {
  10164. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10165. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10166. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10167. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10168. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10169. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10170. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10171. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10172. }
  10173. }
  10174. }
  10175. }
  10176. }
  10177. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10178. {
  10179. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10180. for (int i12 = 0; i12 < ne12; i12++) {
  10181. for (int i11 = 0; i11 < ne11; i11++) {
  10182. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10183. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10184. for (int i10 = 0; i10 < ne10; i10++) {
  10185. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10186. }
  10187. }
  10188. }
  10189. }
  10190. memset(dst->data, 0, ggml_nbytes(dst));
  10191. return;
  10192. }
  10193. if (params->type == GGML_TASK_FINALIZE) {
  10194. return;
  10195. }
  10196. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10197. // total patches in dst
  10198. const int np = ne2;
  10199. // patches per thread
  10200. const int dp = (np + nth - 1)/nth;
  10201. // patch range for this thread
  10202. const int ip0 = dp*ith;
  10203. const int ip1 = MIN(ip0 + dp, np);
  10204. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10205. ggml_fp16_t * const wdata_src = wdata + nk;
  10206. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10207. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10208. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10209. for (int i11 = 0; i11 < ne11; i11++) {
  10210. for (int i10 = 0; i10 < ne10; i10++) {
  10211. const int i1n = i11*ne10*ne12 + i10*ne12;
  10212. for (int i01 = 0; i01 < ne01; i01++) {
  10213. for (int i00 = 0; i00 < ne00; i00++) {
  10214. float v = 0;
  10215. ggml_vec_dot_f16(ne03, &v,
  10216. wdata_src + i1n,
  10217. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10218. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10219. }
  10220. }
  10221. }
  10222. }
  10223. }
  10224. }
  10225. // ggml_compute_forward_pool_1d_sk_p0
  10226. static void ggml_compute_forward_pool_1d_sk_p0(
  10227. const struct ggml_compute_params * params,
  10228. const enum ggml_op_pool op,
  10229. const struct ggml_tensor * src,
  10230. const int k,
  10231. struct ggml_tensor * dst) {
  10232. assert(src->type == GGML_TYPE_F32);
  10233. assert(params->ith == 0);
  10234. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10235. return;
  10236. }
  10237. const char * cdata = (const char *)src->data;
  10238. const char * const data_end = cdata + ggml_nbytes(src);
  10239. float * drow = (float *)dst->data;
  10240. const int64_t rs = dst->ne[0];
  10241. while (cdata < data_end) {
  10242. const float * const srow = (const float *)cdata;
  10243. int j = 0;
  10244. for (int64_t i = 0; i < rs; ++i) {
  10245. switch (op) {
  10246. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10247. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10248. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10249. }
  10250. for (int ki = 0; ki < k; ++ki) {
  10251. switch (op) {
  10252. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10253. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10254. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10255. }
  10256. ++j;
  10257. }
  10258. switch (op) {
  10259. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10260. case GGML_OP_POOL_MAX: break;
  10261. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10262. }
  10263. }
  10264. cdata += src->nb[1];
  10265. drow += rs;
  10266. }
  10267. }
  10268. // ggml_compute_forward_pool_1d
  10269. static void ggml_compute_forward_pool_1d(
  10270. const struct ggml_compute_params * params,
  10271. const struct ggml_tensor * src0,
  10272. struct ggml_tensor * dst) {
  10273. const int32_t * opts = (const int32_t *)dst->op_params;
  10274. enum ggml_op_pool op = opts[0];
  10275. const int k0 = opts[1];
  10276. const int s0 = opts[2];
  10277. const int p0 = opts[3];
  10278. GGML_ASSERT(p0 == 0); // padding not supported
  10279. GGML_ASSERT(k0 == s0); // only s = k supported
  10280. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10281. }
  10282. // ggml_compute_forward_pool_2d
  10283. static void ggml_compute_forward_pool_2d(
  10284. const struct ggml_compute_params * params,
  10285. const struct ggml_tensor * src,
  10286. struct ggml_tensor * dst) {
  10287. assert(src->type == GGML_TYPE_F32);
  10288. assert(params->ith == 0);
  10289. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10290. return;
  10291. }
  10292. const int32_t * opts = (const int32_t *)dst->op_params;
  10293. enum ggml_op_pool op = opts[0];
  10294. const int k0 = opts[1];
  10295. const int k1 = opts[2];
  10296. const int s0 = opts[3];
  10297. const int s1 = opts[4];
  10298. const int p0 = opts[5];
  10299. const int p1 = opts[6];
  10300. const char * cdata = (const char*)src->data;
  10301. const char * const data_end = cdata + ggml_nbytes(src);
  10302. const int64_t px = dst->ne[0];
  10303. const int64_t py = dst->ne[1];
  10304. const int64_t pa = px * py;
  10305. float * dplane = (float *)dst->data;
  10306. const int ka = k0 * k1;
  10307. const int offset0 = -p0;
  10308. const int offset1 = -p1;
  10309. while (cdata < data_end) {
  10310. for (int oy = 0; oy < py; ++oy) {
  10311. float * const drow = dplane + oy * px;
  10312. for (int ox = 0; ox < px; ++ox) {
  10313. float * const out = drow + ox;
  10314. switch (op) {
  10315. case GGML_OP_POOL_AVG: *out = 0; break;
  10316. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10317. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10318. }
  10319. const int ix = offset0 + ox * s0;
  10320. const int iy = offset1 + oy * s1;
  10321. for (int ky = 0; ky < k1; ++ky) {
  10322. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10323. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10324. for (int kx = 0; kx < k0; ++kx) {
  10325. int j = ix + kx;
  10326. if (j < 0 || j >= src->ne[0]) continue;
  10327. switch (op) {
  10328. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10329. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10330. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10331. }
  10332. }
  10333. }
  10334. switch (op) {
  10335. case GGML_OP_POOL_AVG: *out /= ka; break;
  10336. case GGML_OP_POOL_MAX: break;
  10337. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10338. }
  10339. }
  10340. }
  10341. cdata += src->nb[2];
  10342. dplane += pa;
  10343. }
  10344. }
  10345. // ggml_compute_forward_upscale
  10346. static void ggml_compute_forward_upscale_f32(
  10347. const struct ggml_compute_params * params,
  10348. const struct ggml_tensor * src0,
  10349. struct ggml_tensor * dst) {
  10350. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10351. return;
  10352. }
  10353. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10354. const int ith = params->ith;
  10355. GGML_TENSOR_UNARY_OP_LOCALS
  10356. const int scale_factor = dst->op_params[0];
  10357. // TODO: optimize
  10358. for (int i03 = 0; i03 < ne03; i03++) {
  10359. for (int i02 = ith; i02 < ne02; i02++) {
  10360. for (int m = 0; m < dst->ne[1]; m++) {
  10361. int i01 = m / scale_factor;
  10362. for (int n = 0; n < dst->ne[0]; n++) {
  10363. int i00 = n / scale_factor;
  10364. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  10365. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  10366. *y = *x;
  10367. }
  10368. }
  10369. }
  10370. }
  10371. }
  10372. static void ggml_compute_forward_upscale(
  10373. const struct ggml_compute_params * params,
  10374. const struct ggml_tensor * src0,
  10375. struct ggml_tensor * dst) {
  10376. switch (src0->type) {
  10377. case GGML_TYPE_F32:
  10378. {
  10379. ggml_compute_forward_upscale_f32(params, src0, dst);
  10380. } break;
  10381. default:
  10382. {
  10383. GGML_ASSERT(false);
  10384. } break;
  10385. }
  10386. }
  10387. // ggml_compute_forward_flash_attn
  10388. static void ggml_compute_forward_flash_attn_f32(
  10389. const struct ggml_compute_params * params,
  10390. const struct ggml_tensor * q,
  10391. const struct ggml_tensor * k,
  10392. const struct ggml_tensor * v,
  10393. const bool masked,
  10394. struct ggml_tensor * dst) {
  10395. int64_t t0 = ggml_perf_time_us();
  10396. UNUSED(t0);
  10397. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10398. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10399. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10400. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10401. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10402. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10403. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10404. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10405. const int ith = params->ith;
  10406. const int nth = params->nth;
  10407. const int64_t D = neq0;
  10408. const int64_t N = neq1;
  10409. const int64_t P = nek1 - N;
  10410. const int64_t M = P + N;
  10411. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10412. GGML_ASSERT(ne0 == D);
  10413. GGML_ASSERT(ne1 == N);
  10414. GGML_ASSERT(P >= 0);
  10415. GGML_ASSERT(nbq0 == sizeof(float));
  10416. GGML_ASSERT(nbk0 == sizeof(float));
  10417. GGML_ASSERT(nbv0 == sizeof(float));
  10418. GGML_ASSERT(neq0 == D);
  10419. GGML_ASSERT(nek0 == D);
  10420. GGML_ASSERT(nev1 == D);
  10421. GGML_ASSERT(neq1 == N);
  10422. GGML_ASSERT(nek1 == N + P);
  10423. GGML_ASSERT(nev1 == D);
  10424. // dst cannot be transposed or permuted
  10425. GGML_ASSERT(nb0 == sizeof(float));
  10426. GGML_ASSERT(nb0 <= nb1);
  10427. GGML_ASSERT(nb1 <= nb2);
  10428. GGML_ASSERT(nb2 <= nb3);
  10429. if (params->type == GGML_TASK_INIT) {
  10430. return;
  10431. }
  10432. if (params->type == GGML_TASK_FINALIZE) {
  10433. return;
  10434. }
  10435. // parallelize by q rows using ggml_vec_dot_f32
  10436. // total rows in q
  10437. const int nr = neq1*neq2*neq3;
  10438. // rows per thread
  10439. const int dr = (nr + nth - 1)/nth;
  10440. // row range for this thread
  10441. const int ir0 = dr*ith;
  10442. const int ir1 = MIN(ir0 + dr, nr);
  10443. const float scale = 1.0f/sqrtf(D);
  10444. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10445. for (int ir = ir0; ir < ir1; ++ir) {
  10446. // q indices
  10447. const int iq3 = ir/(neq2*neq1);
  10448. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10449. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10450. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10451. for (int i = M; i < Mup; ++i) {
  10452. S[i] = -INFINITY;
  10453. }
  10454. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10455. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10456. // k indices
  10457. const int ik3 = iq3;
  10458. const int ik2 = iq2 % nek2;
  10459. const int ik1 = ic;
  10460. // S indices
  10461. const int i1 = ik1;
  10462. ggml_vec_dot_f32(neq0,
  10463. S + i1,
  10464. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10465. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10466. }
  10467. // scale
  10468. ggml_vec_scale_f32(masked_begin, S, scale);
  10469. for (int64_t i = masked_begin; i < M; i++) {
  10470. S[i] = -INFINITY;
  10471. }
  10472. // softmax
  10473. // exclude known -INF S[..] values from max and loop
  10474. // dont forget to set their SW values to zero
  10475. {
  10476. float max = -INFINITY;
  10477. ggml_vec_max_f32(masked_begin, &max, S);
  10478. ggml_float sum = 0.0;
  10479. {
  10480. #ifdef GGML_SOFT_MAX_ACCELERATE
  10481. max = -max;
  10482. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10483. vvexpf(S, S, &Mup);
  10484. ggml_vec_sum_f32(Mup, &sum, S);
  10485. #else
  10486. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10487. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10488. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10489. if (i >= masked_begin) {
  10490. break;
  10491. }
  10492. float * SS = S + i;
  10493. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10494. if (i + j >= masked_begin) {
  10495. break;
  10496. } else if (SS[j] == -INFINITY) {
  10497. SS[j] = 0.0f;
  10498. } else {
  10499. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10500. const float val = expf(SS[j] - max);
  10501. #else
  10502. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10503. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10504. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10505. #endif
  10506. sump[j] += (ggml_float)val;
  10507. SS[j] = val;
  10508. }
  10509. }
  10510. }
  10511. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10512. sum += sump[i];
  10513. }
  10514. #endif
  10515. }
  10516. assert(sum > 0.0);
  10517. sum = 1.0/sum;
  10518. ggml_vec_scale_f32(masked_begin, S, sum);
  10519. #ifndef NDEBUG
  10520. for (int i = 0; i < masked_begin; ++i) {
  10521. assert(!isnan(S[i]));
  10522. assert(!isinf(S[i]));
  10523. }
  10524. #endif
  10525. }
  10526. for (int64_t ic = 0; ic < nev1; ++ic) {
  10527. // dst indices
  10528. const int i1 = iq1;
  10529. const int i2 = iq2;
  10530. const int i3 = iq3;
  10531. // v indices
  10532. const int iv2 = iq2 % nev2;
  10533. const int iv3 = iq3;
  10534. ggml_vec_dot_f32(masked_begin,
  10535. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10536. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10537. S);
  10538. }
  10539. }
  10540. }
  10541. static void ggml_compute_forward_flash_attn_f16(
  10542. const struct ggml_compute_params * params,
  10543. const struct ggml_tensor * q,
  10544. const struct ggml_tensor * k,
  10545. const struct ggml_tensor * v,
  10546. const bool masked,
  10547. struct ggml_tensor * dst) {
  10548. int64_t t0 = ggml_perf_time_us();
  10549. UNUSED(t0);
  10550. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10551. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10552. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10553. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10554. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10555. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10556. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10557. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10558. const int ith = params->ith;
  10559. const int nth = params->nth;
  10560. const int64_t D = neq0;
  10561. const int64_t N = neq1;
  10562. const int64_t P = nek1 - N;
  10563. const int64_t M = P + N;
  10564. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10565. GGML_ASSERT(ne0 == D);
  10566. GGML_ASSERT(ne1 == N);
  10567. GGML_ASSERT(P >= 0);
  10568. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10569. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10570. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10571. GGML_ASSERT(neq0 == D);
  10572. GGML_ASSERT(nek0 == D);
  10573. GGML_ASSERT(nev1 == D);
  10574. GGML_ASSERT(neq1 == N);
  10575. GGML_ASSERT(nek1 == N + P);
  10576. GGML_ASSERT(nev1 == D);
  10577. // dst cannot be transposed or permuted
  10578. GGML_ASSERT(nb0 == sizeof(float));
  10579. GGML_ASSERT(nb0 <= nb1);
  10580. GGML_ASSERT(nb1 <= nb2);
  10581. GGML_ASSERT(nb2 <= nb3);
  10582. if (params->type == GGML_TASK_INIT) {
  10583. return;
  10584. }
  10585. if (params->type == GGML_TASK_FINALIZE) {
  10586. return;
  10587. }
  10588. // parallelize by q rows using ggml_vec_dot_f32
  10589. // total rows in q
  10590. const int nr = neq1*neq2*neq3;
  10591. // rows per thread
  10592. const int dr = (nr + nth - 1)/nth;
  10593. // row range for this thread
  10594. const int ir0 = dr*ith;
  10595. const int ir1 = MIN(ir0 + dr, nr);
  10596. const float scale = 1.0f/sqrtf(D);
  10597. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10598. for (int ir = ir0; ir < ir1; ++ir) {
  10599. // q indices
  10600. const int iq3 = ir/(neq2*neq1);
  10601. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10602. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10603. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10604. for (int i = M; i < Mup; ++i) {
  10605. S[i] = -INFINITY;
  10606. }
  10607. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10608. for (int64_t ic = 0; ic < nek1; ++ic) {
  10609. // k indices
  10610. const int ik3 = iq3;
  10611. const int ik2 = iq2 % nek2;
  10612. const int ik1 = ic;
  10613. // S indices
  10614. const int i1 = ik1;
  10615. ggml_vec_dot_f16(neq0,
  10616. S + i1,
  10617. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10618. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10619. }
  10620. } else {
  10621. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10622. // k indices
  10623. const int ik3 = iq3;
  10624. const int ik2 = iq2 % nek2;
  10625. const int ik1 = ic;
  10626. // S indices
  10627. const int i1 = ik1;
  10628. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10629. S + i1,
  10630. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10631. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10632. }
  10633. }
  10634. // scale
  10635. ggml_vec_scale_f32(nek1, S, scale);
  10636. if (masked) {
  10637. for (int64_t i = P; i < M; i++) {
  10638. if (i > P + iq1) {
  10639. S[i] = -INFINITY;
  10640. }
  10641. }
  10642. }
  10643. // softmax
  10644. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10645. // dont forget to set their S values to zero
  10646. {
  10647. float max = -INFINITY;
  10648. ggml_vec_max_f32(M, &max, S);
  10649. ggml_float sum = 0.0;
  10650. {
  10651. #ifdef GGML_SOFT_MAX_ACCELERATE
  10652. max = -max;
  10653. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10654. vvexpf(S, S, &Mup);
  10655. ggml_vec_sum_f32(Mup, &sum, S);
  10656. #else
  10657. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10658. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10659. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10660. float * SS = S + i;
  10661. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10662. if (SS[j] == -INFINITY) {
  10663. SS[j] = 0.0f;
  10664. } else {
  10665. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10666. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10667. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10668. sump[j] += (ggml_float)val;
  10669. SS[j] = val;
  10670. }
  10671. }
  10672. }
  10673. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10674. sum += sump[i];
  10675. }
  10676. #endif
  10677. }
  10678. assert(sum > 0.0);
  10679. sum = 1.0/sum;
  10680. ggml_vec_scale_f32(M, S, sum);
  10681. #ifndef NDEBUG
  10682. for (int i = 0; i < M; ++i) {
  10683. assert(!isnan(S[i]));
  10684. assert(!isinf(S[i]));
  10685. }
  10686. #endif
  10687. }
  10688. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10689. for (int64_t i = 0; i < M; i++) {
  10690. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10691. }
  10692. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10693. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10694. for (int64_t ic = 0; ic < nev1; ++ic) {
  10695. // dst indices
  10696. const int i1 = iq1;
  10697. const int i2 = iq2;
  10698. const int i3 = iq3;
  10699. // v indices
  10700. const int iv2 = iq2 % nev2;
  10701. const int iv3 = iq3;
  10702. ggml_vec_dot_f16(nev0,
  10703. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10704. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10705. S16);
  10706. }
  10707. } else {
  10708. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10709. // dst indices
  10710. const int i1 = iq1;
  10711. const int i2 = iq2;
  10712. const int i3 = iq3;
  10713. // v indices
  10714. const int iv2 = iq2 % nev2;
  10715. const int iv3 = iq3;
  10716. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10717. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10718. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10719. S16);
  10720. }
  10721. }
  10722. }
  10723. }
  10724. static void ggml_compute_forward_flash_attn(
  10725. const struct ggml_compute_params * params,
  10726. const struct ggml_tensor * q,
  10727. const struct ggml_tensor * k,
  10728. const struct ggml_tensor * v,
  10729. const bool masked,
  10730. struct ggml_tensor * dst) {
  10731. switch (q->type) {
  10732. case GGML_TYPE_F16:
  10733. {
  10734. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10735. } break;
  10736. case GGML_TYPE_F32:
  10737. {
  10738. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10739. } break;
  10740. default:
  10741. {
  10742. GGML_ASSERT(false);
  10743. } break;
  10744. }
  10745. }
  10746. // ggml_compute_forward_flash_ff
  10747. static void ggml_compute_forward_flash_ff_f16(
  10748. const struct ggml_compute_params * params,
  10749. const struct ggml_tensor * a, // F16
  10750. const struct ggml_tensor * b0, // F16 fc_w
  10751. const struct ggml_tensor * b1, // F32 fc_b
  10752. const struct ggml_tensor * c0, // F16 proj_w
  10753. const struct ggml_tensor * c1, // F32 proj_b
  10754. struct ggml_tensor * dst) {
  10755. int64_t t0 = ggml_perf_time_us();
  10756. UNUSED(t0);
  10757. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10758. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10759. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10760. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10761. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10762. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10763. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10764. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10765. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10766. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10767. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10768. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10769. const int ith = params->ith;
  10770. const int nth = params->nth;
  10771. const int64_t D = nea0;
  10772. //const int64_t N = nea1;
  10773. const int64_t M = neb01;
  10774. GGML_ASSERT(ne0 == nea0);
  10775. GGML_ASSERT(ne1 == nea1);
  10776. GGML_ASSERT(ne2 == nea2);
  10777. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10778. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10779. GGML_ASSERT(nbb10 == sizeof(float));
  10780. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10781. GGML_ASSERT(nbc10 == sizeof(float));
  10782. GGML_ASSERT(neb00 == D);
  10783. GGML_ASSERT(neb01 == M);
  10784. GGML_ASSERT(neb10 == M);
  10785. GGML_ASSERT(neb11 == 1);
  10786. GGML_ASSERT(nec00 == M);
  10787. GGML_ASSERT(nec01 == D);
  10788. GGML_ASSERT(nec10 == D);
  10789. GGML_ASSERT(nec11 == 1);
  10790. // dst cannot be transposed or permuted
  10791. GGML_ASSERT(nb0 == sizeof(float));
  10792. GGML_ASSERT(nb0 <= nb1);
  10793. GGML_ASSERT(nb1 <= nb2);
  10794. GGML_ASSERT(nb2 <= nb3);
  10795. if (params->type == GGML_TASK_INIT) {
  10796. return;
  10797. }
  10798. if (params->type == GGML_TASK_FINALIZE) {
  10799. return;
  10800. }
  10801. // parallelize by a rows using ggml_vec_dot_f32
  10802. // total rows in a
  10803. const int nr = nea1*nea2*nea3;
  10804. // rows per thread
  10805. const int dr = (nr + nth - 1)/nth;
  10806. // row range for this thread
  10807. const int ir0 = dr*ith;
  10808. const int ir1 = MIN(ir0 + dr, nr);
  10809. for (int ir = ir0; ir < ir1; ++ir) {
  10810. // a indices
  10811. const int ia3 = ir/(nea2*nea1);
  10812. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10813. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10814. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10815. for (int64_t ic = 0; ic < neb01; ++ic) {
  10816. // b0 indices
  10817. const int ib03 = ia3;
  10818. const int ib02 = ia2;
  10819. const int ib01 = ic;
  10820. // S indices
  10821. const int i1 = ib01;
  10822. ggml_vec_dot_f16(nea0,
  10823. S + i1,
  10824. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10825. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10826. }
  10827. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10828. //ggml_vec_gelu_f32(neb01, S, S);
  10829. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10830. for (int64_t i = 0; i < M; i++) {
  10831. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10832. }
  10833. ggml_vec_gelu_f16(neb01, S16, S16);
  10834. {
  10835. // dst indices
  10836. const int i1 = ia1;
  10837. const int i2 = ia2;
  10838. const int i3 = ia3;
  10839. for (int64_t ic = 0; ic < nec01; ++ic) {
  10840. ggml_vec_dot_f16(neb01,
  10841. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10842. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10843. S16);
  10844. }
  10845. ggml_vec_add_f32(nec01,
  10846. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10847. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10848. (float *) c1->data);
  10849. }
  10850. }
  10851. }
  10852. static void ggml_compute_forward_flash_ff(
  10853. const struct ggml_compute_params * params,
  10854. const struct ggml_tensor * a,
  10855. const struct ggml_tensor * b0,
  10856. const struct ggml_tensor * b1,
  10857. const struct ggml_tensor * c0,
  10858. const struct ggml_tensor * c1,
  10859. struct ggml_tensor * dst) {
  10860. switch (b0->type) {
  10861. case GGML_TYPE_F16:
  10862. {
  10863. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10864. } break;
  10865. case GGML_TYPE_F32:
  10866. {
  10867. GGML_ASSERT(false); // TODO
  10868. } break;
  10869. default:
  10870. {
  10871. GGML_ASSERT(false);
  10872. } break;
  10873. }
  10874. }
  10875. // ggml_compute_forward_flash_attn_back
  10876. static void ggml_compute_forward_flash_attn_back_f32(
  10877. const struct ggml_compute_params * params,
  10878. const struct ggml_tensor * q,
  10879. const struct ggml_tensor * k,
  10880. const struct ggml_tensor * v,
  10881. const struct ggml_tensor * d,
  10882. const bool masked,
  10883. struct ggml_tensor * dst) {
  10884. int64_t t0 = ggml_perf_time_us();
  10885. UNUSED(t0);
  10886. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10887. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10888. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10889. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10890. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10891. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10892. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10893. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10894. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10895. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10896. const int ith = params->ith;
  10897. const int nth = params->nth;
  10898. const int64_t D = neq0;
  10899. const int64_t N = neq1;
  10900. const int64_t P = nek1 - N;
  10901. const int64_t M = P + N;
  10902. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10903. const int mxDM = MAX(D, Mup);
  10904. // GGML_ASSERT(ne0 == D);
  10905. // GGML_ASSERT(ne1 == N);
  10906. GGML_ASSERT(P >= 0);
  10907. GGML_ASSERT(nbq0 == sizeof(float));
  10908. GGML_ASSERT(nbk0 == sizeof(float));
  10909. GGML_ASSERT(nbv0 == sizeof(float));
  10910. GGML_ASSERT(neq0 == D);
  10911. GGML_ASSERT(nek0 == D);
  10912. GGML_ASSERT(nev1 == D);
  10913. GGML_ASSERT(ned0 == D);
  10914. GGML_ASSERT(neq1 == N);
  10915. GGML_ASSERT(nek1 == N + P);
  10916. GGML_ASSERT(nev1 == D);
  10917. GGML_ASSERT(ned1 == N);
  10918. // dst cannot be transposed or permuted
  10919. GGML_ASSERT(nb0 == sizeof(float));
  10920. GGML_ASSERT(nb0 <= nb1);
  10921. GGML_ASSERT(nb1 <= nb2);
  10922. GGML_ASSERT(nb2 <= nb3);
  10923. if (params->type == GGML_TASK_INIT) {
  10924. if (ith == 0) {
  10925. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10926. }
  10927. return;
  10928. }
  10929. if (params->type == GGML_TASK_FINALIZE) {
  10930. return;
  10931. }
  10932. const int64_t elem_q = ggml_nelements(q);
  10933. const int64_t elem_k = ggml_nelements(k);
  10934. enum ggml_type result_type = dst->type;
  10935. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10936. const size_t tsize = ggml_type_size(result_type);
  10937. const size_t offs_q = 0;
  10938. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10939. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10940. void * grad_q = (char *) dst->data;
  10941. void * grad_k = (char *) dst->data + offs_k;
  10942. void * grad_v = (char *) dst->data + offs_v;
  10943. const size_t nbgq1 = nb0*neq0;
  10944. const size_t nbgq2 = nb0*neq0*neq1;
  10945. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10946. const size_t nbgk1 = nb0*nek0;
  10947. const size_t nbgk2 = nb0*nek0*nek1;
  10948. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10949. const size_t nbgv1 = nb0*nev0;
  10950. const size_t nbgv2 = nb0*nev0*nev1;
  10951. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10952. // parallelize by k rows using ggml_vec_dot_f32
  10953. // total rows in k
  10954. const int nr = nek2*nek3;
  10955. // rows per thread
  10956. const int dr = (nr + nth - 1)/nth;
  10957. // row range for this thread
  10958. const int ir0 = dr*ith;
  10959. const int ir1 = MIN(ir0 + dr, nr);
  10960. const float scale = 1.0f/sqrtf(D);
  10961. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10962. // how often k2 (and v2) is repeated in q2
  10963. int nrep = neq2/nek2;
  10964. for (int ir = ir0; ir < ir1; ++ir) {
  10965. // q indices
  10966. const int ik3 = ir/(nek2);
  10967. const int ik2 = ir - ik3*nek2;
  10968. const int iq3 = ik3;
  10969. const int id3 = ik3;
  10970. const int iv3 = ik3;
  10971. const int iv2 = ik2;
  10972. for (int irep = 0; irep < nrep; ++irep) {
  10973. const int iq2 = ik2 + irep*nek2;
  10974. const int id2 = iq2;
  10975. // (ik2 + irep*nek2) % nek2 == ik2
  10976. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10977. const int id1 = iq1;
  10978. // not sure about CACHE_LINE_SIZE_F32..
  10979. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10980. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10981. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10982. for (int i = M; i < Mup; ++i) {
  10983. S[i] = -INFINITY;
  10984. }
  10985. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10986. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10987. // k indices
  10988. const int ik1 = ic;
  10989. // S indices
  10990. const int i1 = ik1;
  10991. ggml_vec_dot_f32(neq0,
  10992. S + i1,
  10993. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10994. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10995. }
  10996. // scale
  10997. ggml_vec_scale_f32(masked_begin, S, scale);
  10998. for (int64_t i = masked_begin; i < M; i++) {
  10999. S[i] = -INFINITY;
  11000. }
  11001. // softmax
  11002. // exclude known -INF S[..] values from max and loop
  11003. // dont forget to set their SM values to zero
  11004. {
  11005. float max = -INFINITY;
  11006. ggml_vec_max_f32(masked_begin, &max, S);
  11007. ggml_float sum = 0.0;
  11008. {
  11009. #ifdef GGML_SOFT_MAX_ACCELERATE
  11010. max = -max;
  11011. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11012. vvexpf(SM, SM, &Mup);
  11013. ggml_vec_sum_f32(Mup, &sum, SM);
  11014. #else
  11015. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11016. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11017. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11018. if (i >= masked_begin) {
  11019. break;
  11020. }
  11021. float * SR = S + i;
  11022. float * SW = SM + i;
  11023. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11024. if (i + j >= masked_begin) {
  11025. break;
  11026. } else if (SR[j] == -INFINITY) {
  11027. SW[j] = 0.0f;
  11028. } else {
  11029. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11030. const float val = expf(SR[j] - max);
  11031. #else
  11032. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11033. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11034. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11035. #endif
  11036. sump[j] += (ggml_float)val;
  11037. SW[j] = val;
  11038. }
  11039. }
  11040. }
  11041. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11042. sum += sump[i];
  11043. }
  11044. #endif
  11045. }
  11046. assert(sum > 0.0);
  11047. sum = 1.0/sum;
  11048. ggml_vec_scale_f32(masked_begin, SM, sum);
  11049. }
  11050. // step-by-step explanation
  11051. {
  11052. // forward-process shape grads from backward process
  11053. // parallel_for ik2,ik3:
  11054. // for irep:
  11055. // iq2 = ik2 + irep*nek2
  11056. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11057. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11058. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11059. // for iq1:
  11060. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11061. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11062. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11063. // S0 = -Inf [D,1,1,1]
  11064. // ~S1[i] = dot(kcur[:D,i], qcur)
  11065. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11066. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11067. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11068. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11069. // ~S5[i] = dot(vcur[:,i], S4)
  11070. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11071. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11072. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11073. // dst backward-/ grad[dst] = d
  11074. //
  11075. // output gradients with their dependencies:
  11076. //
  11077. // grad[kcur] = grad[S1].T @ qcur
  11078. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11079. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11080. // grad[S4] = grad[S5] @ vcur
  11081. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11082. // grad[qcur] = grad[S1] @ kcur
  11083. // grad[vcur] = grad[S5].T @ S4
  11084. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11085. //
  11086. // in post-order:
  11087. //
  11088. // S1 = qcur @ kcur.T
  11089. // S2 = S1 * scale
  11090. // S3 = diag_mask_inf(S2, P)
  11091. // S4 = softmax(S3)
  11092. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11093. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11094. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11095. // grad[qcur] = grad[S1] @ kcur
  11096. // grad[kcur] = grad[S1].T @ qcur
  11097. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11098. //
  11099. // using less variables (SM=S4):
  11100. //
  11101. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11102. // SM = softmax(S)
  11103. // S = d[:D,iq1,iq2,iq3] @ vcur
  11104. // dot_SM_gradSM = dot(SM, S)
  11105. // S = SM * (S - dot(SM, S))
  11106. // S = diag_mask_zero(S, P) * scale
  11107. //
  11108. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11109. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11110. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11111. }
  11112. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11113. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11114. // for ic:
  11115. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11116. // exclude known future zero S[..] values from operation
  11117. ggml_vec_set_f32(masked_begin, S, 0);
  11118. for (int64_t ic = 0; ic < D; ++ic) {
  11119. ggml_vec_mad_f32(masked_begin,
  11120. S,
  11121. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11122. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11123. }
  11124. // S = SM * (S - dot(SM, S))
  11125. float dot_SM_gradSM = 0;
  11126. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11127. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11128. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11129. // S = diag_mask_zero(S, P) * scale
  11130. // already done by above ggml_vec_set_f32
  11131. // exclude known zero S[..] values from operation
  11132. ggml_vec_scale_f32(masked_begin, S, scale);
  11133. // S shape [M,1]
  11134. // SM shape [M,1]
  11135. // kcur shape [D,M]
  11136. // qcur shape [D,1]
  11137. // vcur shape [M,D]
  11138. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11139. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11140. // for ic:
  11141. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11142. // exclude known zero S[..] values from loop
  11143. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11144. ggml_vec_mad_f32(D,
  11145. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11146. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11147. S[ic]);
  11148. }
  11149. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11150. // for ic:
  11151. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11152. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11153. // exclude known zero S[..] values from loop
  11154. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11155. ggml_vec_mad_f32(D,
  11156. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11157. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11158. S[ic]);
  11159. }
  11160. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11161. // for ic:
  11162. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11163. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11164. // exclude known zero SM[..] values from mad
  11165. for (int64_t ic = 0; ic < D; ++ic) {
  11166. ggml_vec_mad_f32(masked_begin,
  11167. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11168. SM,
  11169. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11170. }
  11171. }
  11172. }
  11173. }
  11174. }
  11175. static void ggml_compute_forward_flash_attn_back(
  11176. const struct ggml_compute_params * params,
  11177. const struct ggml_tensor * q,
  11178. const struct ggml_tensor * k,
  11179. const struct ggml_tensor * v,
  11180. const struct ggml_tensor * d,
  11181. const bool masked,
  11182. struct ggml_tensor * dst) {
  11183. switch (q->type) {
  11184. case GGML_TYPE_F32:
  11185. {
  11186. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11187. } break;
  11188. default:
  11189. {
  11190. GGML_ASSERT(false);
  11191. } break;
  11192. }
  11193. }
  11194. // ggml_compute_forward_win_part
  11195. static void ggml_compute_forward_win_part_f32(
  11196. const struct ggml_compute_params * params,
  11197. const struct ggml_tensor * src0,
  11198. struct ggml_tensor * dst) {
  11199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11200. return;
  11201. }
  11202. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11203. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11204. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11205. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11206. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11207. assert(ne00 == ne0);
  11208. assert(ne3 == nep0*nep1);
  11209. // TODO: optimize / multi-thread
  11210. for (int py = 0; py < nep1; ++py) {
  11211. for (int px = 0; px < nep0; ++px) {
  11212. const int64_t i3 = py*nep0 + px;
  11213. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11214. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11215. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11216. const int64_t i02 = py*w + i2;
  11217. const int64_t i01 = px*w + i1;
  11218. const int64_t i00 = i0;
  11219. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11220. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11221. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11222. ((float *) dst->data)[i] = 0.0f;
  11223. } else {
  11224. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11225. }
  11226. }
  11227. }
  11228. }
  11229. }
  11230. }
  11231. }
  11232. static void ggml_compute_forward_win_part(
  11233. const struct ggml_compute_params * params,
  11234. const struct ggml_tensor * src0,
  11235. struct ggml_tensor * dst) {
  11236. switch (src0->type) {
  11237. case GGML_TYPE_F32:
  11238. {
  11239. ggml_compute_forward_win_part_f32(params, src0, dst);
  11240. } break;
  11241. default:
  11242. {
  11243. GGML_ASSERT(false);
  11244. } break;
  11245. }
  11246. }
  11247. // ggml_compute_forward_win_unpart
  11248. static void ggml_compute_forward_win_unpart_f32(
  11249. const struct ggml_compute_params * params,
  11250. const struct ggml_tensor * src0,
  11251. struct ggml_tensor * dst) {
  11252. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11253. return;
  11254. }
  11255. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11256. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11257. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11258. // padding
  11259. const int px = (w - ne1%w)%w;
  11260. //const int py = (w - ne2%w)%w;
  11261. const int npx = (px + ne1)/w;
  11262. //const int npy = (py + ne2)/w;
  11263. assert(ne0 == ne00);
  11264. // TODO: optimize / multi-thread
  11265. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11266. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11267. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11268. const int ip2 = i2/w;
  11269. const int ip1 = i1/w;
  11270. const int64_t i02 = i2%w;
  11271. const int64_t i01 = i1%w;
  11272. const int64_t i00 = i0;
  11273. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11274. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11275. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11276. }
  11277. }
  11278. }
  11279. }
  11280. static void ggml_compute_forward_win_unpart(
  11281. const struct ggml_compute_params * params,
  11282. const struct ggml_tensor * src0,
  11283. struct ggml_tensor * dst) {
  11284. switch (src0->type) {
  11285. case GGML_TYPE_F32:
  11286. {
  11287. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11288. } break;
  11289. default:
  11290. {
  11291. GGML_ASSERT(false);
  11292. } break;
  11293. }
  11294. }
  11295. //gmml_compute_forward_unary
  11296. static void ggml_compute_forward_unary(
  11297. const struct ggml_compute_params * params,
  11298. const struct ggml_tensor * src0,
  11299. struct ggml_tensor * dst) {
  11300. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11301. switch (op) {
  11302. case GGML_UNARY_OP_ABS:
  11303. {
  11304. ggml_compute_forward_abs(params, src0, dst);
  11305. } break;
  11306. case GGML_UNARY_OP_SGN:
  11307. {
  11308. ggml_compute_forward_sgn(params, src0, dst);
  11309. } break;
  11310. case GGML_UNARY_OP_NEG:
  11311. {
  11312. ggml_compute_forward_neg(params, src0, dst);
  11313. } break;
  11314. case GGML_UNARY_OP_STEP:
  11315. {
  11316. ggml_compute_forward_step(params, src0, dst);
  11317. } break;
  11318. case GGML_UNARY_OP_TANH:
  11319. {
  11320. ggml_compute_forward_tanh(params, src0, dst);
  11321. } break;
  11322. case GGML_UNARY_OP_ELU:
  11323. {
  11324. ggml_compute_forward_elu(params, src0, dst);
  11325. } break;
  11326. case GGML_UNARY_OP_RELU:
  11327. {
  11328. ggml_compute_forward_relu(params, src0, dst);
  11329. } break;
  11330. case GGML_UNARY_OP_GELU:
  11331. {
  11332. ggml_compute_forward_gelu(params, src0, dst);
  11333. } break;
  11334. case GGML_UNARY_OP_GELU_QUICK:
  11335. {
  11336. ggml_compute_forward_gelu_quick(params, src0, dst);
  11337. } break;
  11338. case GGML_UNARY_OP_SILU:
  11339. {
  11340. ggml_compute_forward_silu(params, src0, dst);
  11341. } break;
  11342. case GGML_UNARY_OP_LEAKY:
  11343. {
  11344. ggml_compute_forward_leaky(params, src0, dst);
  11345. } break;
  11346. default:
  11347. {
  11348. GGML_ASSERT(false);
  11349. } break;
  11350. }
  11351. }
  11352. // ggml_compute_forward_get_rel_pos
  11353. static void ggml_compute_forward_get_rel_pos_f16(
  11354. const struct ggml_compute_params * params,
  11355. const struct ggml_tensor * src0,
  11356. struct ggml_tensor * dst) {
  11357. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11358. return;
  11359. }
  11360. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11361. GGML_TENSOR_UNARY_OP_LOCALS
  11362. const int64_t w = ne1;
  11363. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11364. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11365. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11366. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11367. const int64_t pos = (w - i1 - 1) + i2;
  11368. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11369. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11370. }
  11371. }
  11372. }
  11373. }
  11374. static void ggml_compute_forward_get_rel_pos(
  11375. const struct ggml_compute_params * params,
  11376. const struct ggml_tensor * src0,
  11377. struct ggml_tensor * dst) {
  11378. switch (src0->type) {
  11379. case GGML_TYPE_F16:
  11380. {
  11381. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11382. } break;
  11383. default:
  11384. {
  11385. GGML_ASSERT(false);
  11386. } break;
  11387. }
  11388. }
  11389. // ggml_compute_forward_add_rel_pos
  11390. static void ggml_compute_forward_add_rel_pos_f32(
  11391. const struct ggml_compute_params * params,
  11392. const struct ggml_tensor * src0,
  11393. const struct ggml_tensor * src1,
  11394. const struct ggml_tensor * src2,
  11395. struct ggml_tensor * dst) {
  11396. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11397. if (!inplace && params->type == GGML_TASK_INIT) {
  11398. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11399. return;
  11400. }
  11401. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11402. return;
  11403. }
  11404. int64_t t0 = ggml_perf_time_us();
  11405. UNUSED(t0);
  11406. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11407. float * src1_data = (float *) src1->data;
  11408. float * src2_data = (float *) src2->data;
  11409. float * dst_data = (float *) dst->data;
  11410. const int64_t ne10 = src1->ne[0];
  11411. const int64_t ne11 = src1->ne[1];
  11412. const int64_t ne12 = src1->ne[2];
  11413. const int64_t ne13 = src1->ne[3];
  11414. const int ith = params->ith;
  11415. const int nth = params->nth;
  11416. // total patches in dst
  11417. const int np = ne13;
  11418. // patches per thread
  11419. const int dp = (np + nth - 1)/nth;
  11420. // patch range for this thread
  11421. const int ip0 = dp*ith;
  11422. const int ip1 = MIN(ip0 + dp, np);
  11423. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11424. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11425. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11426. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11427. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11428. const int64_t jp0 = jp1 + i10;
  11429. const float src1_e = src1_data[jp0];
  11430. const float src2_e = src2_data[jp0];
  11431. const int64_t jdh = jp0 * ne10;
  11432. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11433. for (int64_t j = 0; j < ne10; ++j) {
  11434. dst_data[jdh + j ] += src2_e;
  11435. dst_data[jdw + j*ne10] += src1_e;
  11436. }
  11437. }
  11438. }
  11439. }
  11440. }
  11441. }
  11442. static void ggml_compute_forward_add_rel_pos(
  11443. const struct ggml_compute_params * params,
  11444. const struct ggml_tensor * src0,
  11445. const struct ggml_tensor * src1,
  11446. const struct ggml_tensor * src2,
  11447. struct ggml_tensor * dst) {
  11448. switch (src0->type) {
  11449. case GGML_TYPE_F32:
  11450. {
  11451. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11452. } break;
  11453. default:
  11454. {
  11455. GGML_ASSERT(false);
  11456. } break;
  11457. }
  11458. }
  11459. // ggml_compute_forward_map_unary
  11460. static void ggml_compute_forward_map_unary_f32(
  11461. const struct ggml_compute_params * params,
  11462. const struct ggml_tensor * src0,
  11463. struct ggml_tensor * dst,
  11464. const ggml_unary_op_f32_t fun) {
  11465. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11466. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11467. return;
  11468. }
  11469. const int n = ggml_nrows(src0);
  11470. const int nc = src0->ne[0];
  11471. assert( dst->nb[0] == sizeof(float));
  11472. assert(src0->nb[0] == sizeof(float));
  11473. for (int i = 0; i < n; i++) {
  11474. fun(nc,
  11475. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11476. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11477. }
  11478. }
  11479. static void ggml_compute_forward_map_unary(
  11480. const struct ggml_compute_params * params,
  11481. const struct ggml_tensor * src0,
  11482. struct ggml_tensor * dst,
  11483. const ggml_unary_op_f32_t fun) {
  11484. switch (src0->type) {
  11485. case GGML_TYPE_F32:
  11486. {
  11487. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11488. } break;
  11489. default:
  11490. {
  11491. GGML_ASSERT(false);
  11492. } break;
  11493. }
  11494. }
  11495. // ggml_compute_forward_map_binary
  11496. static void ggml_compute_forward_map_binary_f32(
  11497. const struct ggml_compute_params * params,
  11498. const struct ggml_tensor * src0,
  11499. const struct ggml_tensor * src1,
  11500. struct ggml_tensor * dst,
  11501. const ggml_binary_op_f32_t fun) {
  11502. assert(params->ith == 0);
  11503. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11505. return;
  11506. }
  11507. const int n = ggml_nrows(src0);
  11508. const int nc = src0->ne[0];
  11509. assert( dst->nb[0] == sizeof(float));
  11510. assert(src0->nb[0] == sizeof(float));
  11511. assert(src1->nb[0] == sizeof(float));
  11512. for (int i = 0; i < n; i++) {
  11513. fun(nc,
  11514. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11515. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11516. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11517. }
  11518. }
  11519. static void ggml_compute_forward_map_binary(
  11520. const struct ggml_compute_params * params,
  11521. const struct ggml_tensor * src0,
  11522. const struct ggml_tensor * src1,
  11523. struct ggml_tensor * dst,
  11524. const ggml_binary_op_f32_t fun) {
  11525. switch (src0->type) {
  11526. case GGML_TYPE_F32:
  11527. {
  11528. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11529. } break;
  11530. default:
  11531. {
  11532. GGML_ASSERT(false);
  11533. } break;
  11534. }
  11535. }
  11536. // ggml_compute_forward_map_custom1
  11537. static void ggml_compute_forward_map_custom1_f32(
  11538. const struct ggml_compute_params * params,
  11539. const struct ggml_tensor * a,
  11540. struct ggml_tensor * dst,
  11541. const ggml_custom1_op_f32_t fun) {
  11542. assert(params->ith == 0);
  11543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11544. return;
  11545. }
  11546. fun(dst, a);
  11547. }
  11548. // ggml_compute_forward_map_custom2
  11549. static void ggml_compute_forward_map_custom2_f32(
  11550. const struct ggml_compute_params * params,
  11551. const struct ggml_tensor * a,
  11552. const struct ggml_tensor * b,
  11553. struct ggml_tensor * dst,
  11554. const ggml_custom2_op_f32_t fun) {
  11555. assert(params->ith == 0);
  11556. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11557. return;
  11558. }
  11559. fun(dst, a, b);
  11560. }
  11561. // ggml_compute_forward_map_custom3
  11562. static void ggml_compute_forward_map_custom3_f32(
  11563. const struct ggml_compute_params * params,
  11564. const struct ggml_tensor * a,
  11565. const struct ggml_tensor * b,
  11566. const struct ggml_tensor * c,
  11567. struct ggml_tensor * dst,
  11568. const ggml_custom3_op_f32_t fun) {
  11569. assert(params->ith == 0);
  11570. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11571. return;
  11572. }
  11573. fun(dst, a, b, c);
  11574. }
  11575. // ggml_compute_forward_map_custom1
  11576. static void ggml_compute_forward_map_custom1(
  11577. const struct ggml_compute_params * params,
  11578. const struct ggml_tensor * a,
  11579. struct ggml_tensor * dst) {
  11580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11581. return;
  11582. }
  11583. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11584. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11585. }
  11586. // ggml_compute_forward_map_custom2
  11587. static void ggml_compute_forward_map_custom2(
  11588. const struct ggml_compute_params * params,
  11589. const struct ggml_tensor * a,
  11590. const struct ggml_tensor * b,
  11591. struct ggml_tensor * dst) {
  11592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11593. return;
  11594. }
  11595. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11596. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11597. }
  11598. // ggml_compute_forward_map_custom3
  11599. static void ggml_compute_forward_map_custom3(
  11600. const struct ggml_compute_params * params,
  11601. const struct ggml_tensor * a,
  11602. const struct ggml_tensor * b,
  11603. const struct ggml_tensor * c,
  11604. struct ggml_tensor * dst) {
  11605. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11606. return;
  11607. }
  11608. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11609. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11610. }
  11611. // ggml_compute_forward_cross_entropy_loss
  11612. static void ggml_compute_forward_cross_entropy_loss_f32(
  11613. const struct ggml_compute_params * params,
  11614. const struct ggml_tensor * src0,
  11615. const struct ggml_tensor * src1,
  11616. struct ggml_tensor * dst) {
  11617. GGML_ASSERT(ggml_is_contiguous(src0));
  11618. GGML_ASSERT(ggml_is_contiguous(src1));
  11619. GGML_ASSERT(ggml_is_scalar(dst));
  11620. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11621. const int ith = params->ith;
  11622. const int nth = params->nth;
  11623. float * sums = (float *) params->wdata;
  11624. // TODO: handle transposed/permuted matrices
  11625. const int nc = src0->ne[0];
  11626. const int nr = ggml_nrows(src0);
  11627. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11628. if (params->type == GGML_TASK_INIT) {
  11629. if (ith == 0) {
  11630. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11631. }
  11632. return;
  11633. }
  11634. if (params->type == GGML_TASK_FINALIZE) {
  11635. if (ith == 0) {
  11636. float * dp = (float *) dst->data;
  11637. ggml_vec_sum_f32(nth, dp, sums);
  11638. dp[0] *= -1.0f / (float) nr;
  11639. }
  11640. return;
  11641. }
  11642. const double eps = 1e-9;
  11643. // rows per thread
  11644. const int dr = (nr + nth - 1)/nth;
  11645. // row range for this thread
  11646. const int ir0 = dr*ith;
  11647. const int ir1 = MIN(ir0 + dr, nr);
  11648. for (int i1 = ir0; i1 < ir1; i1++) {
  11649. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11650. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11651. float * st = ((float *) params->wdata) + nth + ith*nc;
  11652. #ifndef NDEBUG
  11653. for (int i = 0; i < nc; ++i) {
  11654. //printf("p[%d] = %f\n", i, p[i]);
  11655. assert(!isnan(s0[i]));
  11656. assert(!isnan(s1[i]));
  11657. }
  11658. #endif
  11659. // soft_max
  11660. ggml_float sum = 0.0;
  11661. {
  11662. float max = -INFINITY;
  11663. ggml_vec_max_f32(nc, &max, s0);
  11664. uint16_t scvt; UNUSED(scvt);
  11665. for (int i = 0; i < nc; i++) {
  11666. if (s0[i] == -INFINITY) {
  11667. st[i] = 0.0f;
  11668. } else {
  11669. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11670. const float s = s0[i] - max;
  11671. const float val = expf(s);
  11672. #else
  11673. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11674. memcpy(&scvt, &s, sizeof(scvt));
  11675. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11676. #endif
  11677. sum += (ggml_float)val;
  11678. st[i] = val;
  11679. }
  11680. }
  11681. assert(sum > 0.0);
  11682. // sum = 1.0/sum;
  11683. }
  11684. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11685. sum = (1.0 - eps) / sum;
  11686. ggml_vec_scale_f32(nc, st, sum);
  11687. ggml_vec_add1_f32(nc, st, st, eps);
  11688. ggml_vec_log_f32(nc, st, st);
  11689. ggml_vec_mul_f32(nc, st, st, s1);
  11690. float st_sum = 0;
  11691. ggml_vec_sum_f32(nc, &st_sum, st);
  11692. sums[ith] += st_sum;
  11693. #ifndef NDEBUG
  11694. for (int i = 0; i < nc; ++i) {
  11695. assert(!isnan(st[i]));
  11696. assert(!isinf(st[i]));
  11697. }
  11698. #endif
  11699. }
  11700. }
  11701. static void ggml_compute_forward_cross_entropy_loss(
  11702. const struct ggml_compute_params * params,
  11703. const struct ggml_tensor * src0,
  11704. const struct ggml_tensor * src1,
  11705. struct ggml_tensor * dst) {
  11706. switch (src0->type) {
  11707. case GGML_TYPE_F32:
  11708. {
  11709. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11710. } break;
  11711. default:
  11712. {
  11713. GGML_ASSERT(false);
  11714. } break;
  11715. }
  11716. }
  11717. // ggml_compute_forward_cross_entropy_loss_back
  11718. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11719. const struct ggml_compute_params * params,
  11720. const struct ggml_tensor * src0,
  11721. const struct ggml_tensor * src1,
  11722. const struct ggml_tensor * opt0,
  11723. struct ggml_tensor * dst) {
  11724. GGML_ASSERT(ggml_is_contiguous(dst));
  11725. GGML_ASSERT(ggml_is_contiguous(src0));
  11726. GGML_ASSERT(ggml_is_contiguous(src1));
  11727. GGML_ASSERT(ggml_is_contiguous(opt0));
  11728. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11729. const int64_t ith = params->ith;
  11730. const int64_t nth = params->nth;
  11731. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11732. return;
  11733. }
  11734. const double eps = 1e-9;
  11735. // TODO: handle transposed/permuted matrices
  11736. const int64_t nc = src0->ne[0];
  11737. const int64_t nr = ggml_nrows(src0);
  11738. // rows per thread
  11739. const int64_t dr = (nr + nth - 1)/nth;
  11740. // row range for this thread
  11741. const int64_t ir0 = dr*ith;
  11742. const int64_t ir1 = MIN(ir0 + dr, nr);
  11743. float * d = (float *) opt0->data;
  11744. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11745. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11746. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11747. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11748. #ifndef NDEBUG
  11749. for (int i = 0; i < nc; ++i) {
  11750. //printf("p[%d] = %f\n", i, p[i]);
  11751. assert(!isnan(s0[i]));
  11752. assert(!isnan(s1[i]));
  11753. }
  11754. #endif
  11755. // soft_max
  11756. ggml_float sum = 0.0;
  11757. {
  11758. float max = -INFINITY;
  11759. ggml_vec_max_f32(nc, &max, s0);
  11760. uint16_t scvt; UNUSED(scvt);
  11761. for (int i = 0; i < nc; i++) {
  11762. if (s0[i] == -INFINITY) {
  11763. ds0[i] = 0.0f;
  11764. } else {
  11765. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11766. const float s = s0[i] - max;
  11767. const float val = expf(s);
  11768. #else
  11769. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11770. memcpy(&scvt, &s, sizeof(scvt));
  11771. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11772. #endif
  11773. sum += (ggml_float)val;
  11774. ds0[i] = val;
  11775. }
  11776. }
  11777. assert(sum > 0.0);
  11778. sum = (1.0 - eps)/sum;
  11779. }
  11780. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11781. ggml_vec_scale_f32(nc, ds0, sum);
  11782. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11783. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11784. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11785. #ifndef NDEBUG
  11786. for (int i = 0; i < nc; ++i) {
  11787. assert(!isnan(ds0[i]));
  11788. assert(!isinf(ds0[i]));
  11789. }
  11790. #endif
  11791. }
  11792. }
  11793. static void ggml_compute_forward_cross_entropy_loss_back(
  11794. const struct ggml_compute_params * params,
  11795. const struct ggml_tensor * src0,
  11796. const struct ggml_tensor * src1,
  11797. const struct ggml_tensor * opt0,
  11798. struct ggml_tensor * dst) {
  11799. switch (src0->type) {
  11800. case GGML_TYPE_F32:
  11801. {
  11802. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11803. } break;
  11804. default:
  11805. {
  11806. GGML_ASSERT(false);
  11807. } break;
  11808. }
  11809. }
  11810. /////////////////////////////////
  11811. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11812. GGML_ASSERT(params);
  11813. if (tensor->op == GGML_OP_NONE) {
  11814. return;
  11815. }
  11816. #ifdef GGML_USE_CUBLAS
  11817. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11818. if (skip_cpu) {
  11819. return;
  11820. }
  11821. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11822. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11823. #endif // GGML_USE_CUBLAS
  11824. switch (tensor->op) {
  11825. case GGML_OP_DUP:
  11826. {
  11827. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11828. } break;
  11829. case GGML_OP_ADD:
  11830. {
  11831. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11832. } break;
  11833. case GGML_OP_ADD1:
  11834. {
  11835. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11836. } break;
  11837. case GGML_OP_ACC:
  11838. {
  11839. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11840. } break;
  11841. case GGML_OP_SUB:
  11842. {
  11843. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11844. } break;
  11845. case GGML_OP_MUL:
  11846. {
  11847. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11848. } break;
  11849. case GGML_OP_DIV:
  11850. {
  11851. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11852. } break;
  11853. case GGML_OP_SQR:
  11854. {
  11855. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11856. } break;
  11857. case GGML_OP_SQRT:
  11858. {
  11859. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11860. } break;
  11861. case GGML_OP_LOG:
  11862. {
  11863. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11864. } break;
  11865. case GGML_OP_SUM:
  11866. {
  11867. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11868. } break;
  11869. case GGML_OP_SUM_ROWS:
  11870. {
  11871. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11872. } break;
  11873. case GGML_OP_MEAN:
  11874. {
  11875. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11876. } break;
  11877. case GGML_OP_ARGMAX:
  11878. {
  11879. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11880. } break;
  11881. case GGML_OP_REPEAT:
  11882. {
  11883. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11884. } break;
  11885. case GGML_OP_REPEAT_BACK:
  11886. {
  11887. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11888. } break;
  11889. case GGML_OP_CONCAT:
  11890. {
  11891. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11892. } break;
  11893. case GGML_OP_SILU_BACK:
  11894. {
  11895. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11896. } break;
  11897. case GGML_OP_NORM:
  11898. {
  11899. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11900. } break;
  11901. case GGML_OP_RMS_NORM:
  11902. {
  11903. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11904. } break;
  11905. case GGML_OP_RMS_NORM_BACK:
  11906. {
  11907. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11908. } break;
  11909. case GGML_OP_GROUP_NORM:
  11910. {
  11911. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11912. } break;
  11913. case GGML_OP_MUL_MAT:
  11914. {
  11915. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11916. } break;
  11917. case GGML_OP_OUT_PROD:
  11918. {
  11919. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11920. } break;
  11921. case GGML_OP_SCALE:
  11922. {
  11923. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11924. } break;
  11925. case GGML_OP_SET:
  11926. {
  11927. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11928. } break;
  11929. case GGML_OP_CPY:
  11930. {
  11931. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11932. } break;
  11933. case GGML_OP_CONT:
  11934. {
  11935. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11936. } break;
  11937. case GGML_OP_RESHAPE:
  11938. {
  11939. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11940. } break;
  11941. case GGML_OP_VIEW:
  11942. {
  11943. ggml_compute_forward_view(params, tensor->src[0]);
  11944. } break;
  11945. case GGML_OP_PERMUTE:
  11946. {
  11947. ggml_compute_forward_permute(params, tensor->src[0]);
  11948. } break;
  11949. case GGML_OP_TRANSPOSE:
  11950. {
  11951. ggml_compute_forward_transpose(params, tensor->src[0]);
  11952. } break;
  11953. case GGML_OP_GET_ROWS:
  11954. {
  11955. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11956. } break;
  11957. case GGML_OP_GET_ROWS_BACK:
  11958. {
  11959. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11960. } break;
  11961. case GGML_OP_DIAG:
  11962. {
  11963. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11964. } break;
  11965. case GGML_OP_DIAG_MASK_INF:
  11966. {
  11967. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11968. } break;
  11969. case GGML_OP_DIAG_MASK_ZERO:
  11970. {
  11971. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11972. } break;
  11973. case GGML_OP_SOFT_MAX:
  11974. {
  11975. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  11976. } break;
  11977. case GGML_OP_SOFT_MAX_BACK:
  11978. {
  11979. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11980. } break;
  11981. case GGML_OP_ROPE:
  11982. {
  11983. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11984. } break;
  11985. case GGML_OP_ROPE_BACK:
  11986. {
  11987. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11988. } break;
  11989. case GGML_OP_ALIBI:
  11990. {
  11991. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11992. } break;
  11993. case GGML_OP_CLAMP:
  11994. {
  11995. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11996. } break;
  11997. case GGML_OP_CONV_1D:
  11998. {
  11999. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12000. } break;
  12001. case GGML_OP_CONV_1D_STAGE_0:
  12002. {
  12003. ggml_compute_forward_conv_1d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  12004. } break;
  12005. case GGML_OP_CONV_1D_STAGE_1:
  12006. {
  12007. ggml_compute_forward_conv_1d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  12008. } break;
  12009. case GGML_OP_CONV_TRANSPOSE_1D:
  12010. {
  12011. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12012. } break;
  12013. case GGML_OP_CONV_2D:
  12014. {
  12015. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12016. } break;
  12017. case GGML_OP_CONV_2D_STAGE_0:
  12018. {
  12019. ggml_compute_forward_conv_2d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  12020. } break;
  12021. case GGML_OP_CONV_2D_STAGE_1:
  12022. {
  12023. ggml_compute_forward_conv_2d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  12024. } break;
  12025. case GGML_OP_CONV_TRANSPOSE_2D:
  12026. {
  12027. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12028. } break;
  12029. case GGML_OP_POOL_1D:
  12030. {
  12031. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12032. } break;
  12033. case GGML_OP_POOL_2D:
  12034. {
  12035. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12036. } break;
  12037. case GGML_OP_UPSCALE:
  12038. {
  12039. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12040. } break;
  12041. case GGML_OP_FLASH_ATTN:
  12042. {
  12043. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12044. GGML_ASSERT(t == 0 || t == 1);
  12045. const bool masked = t != 0;
  12046. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12047. } break;
  12048. case GGML_OP_FLASH_FF:
  12049. {
  12050. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12051. } break;
  12052. case GGML_OP_FLASH_ATTN_BACK:
  12053. {
  12054. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12055. GGML_ASSERT(t == 0 || t == 1);
  12056. bool masked = t != 0;
  12057. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12058. } break;
  12059. case GGML_OP_WIN_PART:
  12060. {
  12061. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12062. } break;
  12063. case GGML_OP_WIN_UNPART:
  12064. {
  12065. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12066. } break;
  12067. case GGML_OP_UNARY:
  12068. {
  12069. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12070. } break;
  12071. case GGML_OP_GET_REL_POS:
  12072. {
  12073. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12074. } break;
  12075. case GGML_OP_ADD_REL_POS:
  12076. {
  12077. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12078. } break;
  12079. case GGML_OP_MAP_UNARY:
  12080. {
  12081. ggml_unary_op_f32_t fun;
  12082. memcpy(&fun, tensor->op_params, sizeof(fun));
  12083. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12084. }
  12085. break;
  12086. case GGML_OP_MAP_BINARY:
  12087. {
  12088. ggml_binary_op_f32_t fun;
  12089. memcpy(&fun, tensor->op_params, sizeof(fun));
  12090. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12091. }
  12092. break;
  12093. case GGML_OP_MAP_CUSTOM1_F32:
  12094. {
  12095. ggml_custom1_op_f32_t fun;
  12096. memcpy(&fun, tensor->op_params, sizeof(fun));
  12097. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12098. }
  12099. break;
  12100. case GGML_OP_MAP_CUSTOM2_F32:
  12101. {
  12102. ggml_custom2_op_f32_t fun;
  12103. memcpy(&fun, tensor->op_params, sizeof(fun));
  12104. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12105. }
  12106. break;
  12107. case GGML_OP_MAP_CUSTOM3_F32:
  12108. {
  12109. ggml_custom3_op_f32_t fun;
  12110. memcpy(&fun, tensor->op_params, sizeof(fun));
  12111. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12112. }
  12113. break;
  12114. case GGML_OP_MAP_CUSTOM1:
  12115. {
  12116. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12117. }
  12118. break;
  12119. case GGML_OP_MAP_CUSTOM2:
  12120. {
  12121. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12122. }
  12123. break;
  12124. case GGML_OP_MAP_CUSTOM3:
  12125. {
  12126. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12127. }
  12128. break;
  12129. case GGML_OP_CROSS_ENTROPY_LOSS:
  12130. {
  12131. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12132. }
  12133. break;
  12134. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12135. {
  12136. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12137. }
  12138. break;
  12139. case GGML_OP_NONE:
  12140. {
  12141. // nop
  12142. } break;
  12143. case GGML_OP_COUNT:
  12144. {
  12145. GGML_ASSERT(false);
  12146. } break;
  12147. }
  12148. }
  12149. ////////////////////////////////////////////////////////////////////////////////
  12150. static size_t ggml_hash_size(size_t min_sz) {
  12151. // next primes after powers of two
  12152. static const size_t primes[] = {
  12153. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12154. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12155. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12156. 16777259, 33554467, 67108879, 134217757, 268435459,
  12157. 536870923, 1073741827, 2147483659
  12158. };
  12159. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12160. // find the smallest prime that is larger or equal to min_sz
  12161. size_t l = 0;
  12162. size_t r = n_primes;
  12163. while (l < r) {
  12164. size_t m = (l + r)/2;
  12165. if (primes[m] < min_sz) {
  12166. l = m + 1;
  12167. } else {
  12168. r = m;
  12169. }
  12170. }
  12171. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12172. return sz;
  12173. }
  12174. static size_t ggml_hash(const void * p) {
  12175. return (size_t)p;
  12176. }
  12177. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12178. size_t h = ggml_hash(key) % hash_set.size;
  12179. // linear probing
  12180. size_t i = h;
  12181. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12182. i = (i + 1) % hash_set.size;
  12183. if (i == h) {
  12184. // visited all hash table entries -> not found
  12185. return GGML_HASHTABLE_FULL;
  12186. }
  12187. }
  12188. return i;
  12189. }
  12190. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12191. size_t i = ggml_hash_find(hash_set, key);
  12192. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12193. }
  12194. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12195. size_t i = ggml_hash_find(hash_set, key);
  12196. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12197. if (hash_set.keys[i] == key) {
  12198. return GGML_HASHTABLE_ALREADY_EXISTS;
  12199. }
  12200. // insert
  12201. GGML_ASSERT(hash_set.keys[i] == NULL);
  12202. hash_set.keys[i] = key;
  12203. return i;
  12204. }
  12205. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12206. size_t i = ggml_hash_find(hash_set, key);
  12207. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12208. hash_set.keys[i] = key;
  12209. return i;
  12210. }
  12211. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12212. size = ggml_hash_size(size);
  12213. struct ggml_hash_set result;
  12214. result.size = size;
  12215. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12216. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12217. return result;
  12218. }
  12219. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12220. free(hash_set.keys);
  12221. }
  12222. struct hash_map {
  12223. struct ggml_hash_set set;
  12224. struct ggml_tensor ** vals;
  12225. };
  12226. static struct hash_map * ggml_new_hash_map(size_t size) {
  12227. struct hash_map * result = malloc(sizeof(struct hash_map));
  12228. result->set = ggml_hash_set_new(size);
  12229. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12230. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12231. return result;
  12232. }
  12233. static void ggml_hash_map_free(struct hash_map * map) {
  12234. ggml_hash_set_free(map->set);
  12235. free(map->vals);
  12236. free(map);
  12237. }
  12238. // gradient checkpointing
  12239. static struct ggml_tensor * ggml_recompute_graph_node(
  12240. struct ggml_context * ctx,
  12241. struct ggml_cgraph * graph,
  12242. struct hash_map * replacements,
  12243. struct ggml_tensor * node) {
  12244. if (node == NULL) {
  12245. return NULL;
  12246. }
  12247. if (node->is_param) {
  12248. return node;
  12249. }
  12250. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12251. return node;
  12252. }
  12253. int count_children = 0;
  12254. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12255. if (node->src[k]) {
  12256. ++count_children;
  12257. }
  12258. }
  12259. if (count_children == 0) {
  12260. return node;
  12261. }
  12262. size_t i = ggml_hash_find(replacements->set, node);
  12263. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12264. if (replacements->set.keys[i] == node) {
  12265. return replacements->vals[i];
  12266. }
  12267. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  12268. // insert clone into replacements
  12269. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12270. replacements->set.keys[i] = node;
  12271. replacements->vals[i] = clone;
  12272. clone->op = node->op;
  12273. clone->grad = node->grad;
  12274. clone->is_param = node->is_param;
  12275. clone->extra = node->extra;
  12276. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12277. clone->nb[k] = node->nb[k];
  12278. }
  12279. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12280. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12281. }
  12282. if (node->view_src != NULL) {
  12283. clone->data = (node->view_src->data == NULL)
  12284. ? NULL // view_src not yet allocated
  12285. : (char *) node->view_src->data // view_src already allocated
  12286. + node->view_offs;
  12287. clone->view_src = node->view_src;
  12288. clone->view_offs = node->view_offs;
  12289. }
  12290. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12291. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12292. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12293. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12294. return clone;
  12295. }
  12296. void ggml_build_backward_gradient_checkpointing(
  12297. struct ggml_context * ctx,
  12298. struct ggml_cgraph * gf,
  12299. struct ggml_cgraph * gb,
  12300. struct ggml_cgraph * gb_tmp,
  12301. struct ggml_tensor * * checkpoints,
  12302. int n_checkpoints) {
  12303. ggml_graph_cpy(gf, gb_tmp);
  12304. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12305. if (n_checkpoints <= 0) {
  12306. ggml_graph_cpy(gb_tmp, gb);
  12307. return;
  12308. }
  12309. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12310. // insert checkpoints in replacements
  12311. for (int i = 0; i < n_checkpoints; ++i) {
  12312. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12313. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12314. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12315. replacements->set.keys[k] = checkpoints[i];
  12316. replacements->vals[k] = checkpoints[i];
  12317. }
  12318. ggml_graph_cpy(gf, gb);
  12319. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12320. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12321. // by recomputing them from checkpoints
  12322. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12323. struct ggml_tensor * node = gb_tmp->nodes[i];
  12324. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12325. // insert new tensors recomputing src, reusing already made replacements,
  12326. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12327. // recurse for input tensors,
  12328. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  12329. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12330. }
  12331. // insert rewritten backward node with replacements made into resulting backward graph gb
  12332. ggml_build_forward_expand(gb, node);
  12333. }
  12334. ggml_hash_map_free(replacements);
  12335. }
  12336. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12337. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12338. if (ggml_hash_contains(zero_table, a)) {
  12339. return b;
  12340. } else {
  12341. return ggml_add_impl(ctx, a, b, false);
  12342. }
  12343. }
  12344. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12345. if (ggml_hash_contains(zero_table, a)) {
  12346. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  12347. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12348. } else {
  12349. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12350. }
  12351. }
  12352. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12353. if (ggml_hash_contains(zero_table, a)) {
  12354. return ggml_repeat(ctx, b, a);
  12355. } else {
  12356. return ggml_add1_impl(ctx, a, b, false);
  12357. }
  12358. }
  12359. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12360. if (ggml_hash_contains(zero_table, a)) {
  12361. return ggml_neg(ctx, b);
  12362. } else {
  12363. return ggml_sub_impl(ctx, a, b, false);
  12364. }
  12365. }
  12366. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12367. struct ggml_tensor * src0 = tensor->src[0];
  12368. struct ggml_tensor * src1 = tensor->src[1];
  12369. switch (tensor->op) {
  12370. case GGML_OP_DUP:
  12371. {
  12372. if (src0->grad) {
  12373. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12374. }
  12375. } break;
  12376. case GGML_OP_ADD:
  12377. {
  12378. if (src0->grad) {
  12379. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12380. }
  12381. if (src1->grad) {
  12382. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12383. }
  12384. } break;
  12385. case GGML_OP_ADD1:
  12386. {
  12387. if (src0->grad) {
  12388. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12389. }
  12390. if (src1->grad) {
  12391. src1->grad = ggml_add_or_set(ctx,
  12392. src1->grad,
  12393. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12394. zero_table);
  12395. }
  12396. } break;
  12397. case GGML_OP_ACC:
  12398. {
  12399. if (src0->grad) {
  12400. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12401. }
  12402. if (src1->grad) {
  12403. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12404. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12405. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12406. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12407. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12408. tensor->grad,
  12409. src1->grad->ne[0],
  12410. src1->grad->ne[1],
  12411. src1->grad->ne[2],
  12412. src1->grad->ne[3],
  12413. nb1, nb2, nb3, offset);
  12414. src1->grad =
  12415. ggml_add_or_set(ctx,
  12416. src1->grad,
  12417. ggml_reshape(ctx,
  12418. ggml_cont(ctx, tensor_grad_view),
  12419. src1->grad),
  12420. zero_table);
  12421. }
  12422. } break;
  12423. case GGML_OP_SUB:
  12424. {
  12425. if (src0->grad) {
  12426. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12427. }
  12428. if (src1->grad) {
  12429. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12430. }
  12431. } break;
  12432. case GGML_OP_MUL:
  12433. {
  12434. if (src0->grad) {
  12435. src0->grad =
  12436. ggml_add_or_set(ctx,
  12437. src0->grad,
  12438. ggml_mul(ctx, src1, tensor->grad),
  12439. zero_table);
  12440. }
  12441. if (src1->grad) {
  12442. src1->grad =
  12443. ggml_add_or_set(ctx,
  12444. src1->grad,
  12445. ggml_mul(ctx, src0, tensor->grad),
  12446. zero_table);
  12447. }
  12448. } break;
  12449. case GGML_OP_DIV:
  12450. {
  12451. if (src0->grad) {
  12452. src0->grad =
  12453. ggml_add_or_set(ctx,
  12454. src0->grad,
  12455. ggml_div(ctx, tensor->grad, src1),
  12456. zero_table);
  12457. }
  12458. if (src1->grad) {
  12459. src1->grad =
  12460. ggml_sub_or_set(ctx,
  12461. src1->grad,
  12462. ggml_mul(ctx,
  12463. tensor->grad,
  12464. ggml_div(ctx, tensor, src1)),
  12465. zero_table);
  12466. }
  12467. } break;
  12468. case GGML_OP_SQR:
  12469. {
  12470. if (src0->grad) {
  12471. src0->grad =
  12472. ggml_add_or_set(ctx,
  12473. src0->grad,
  12474. ggml_scale(ctx,
  12475. ggml_mul(ctx, src0, tensor->grad),
  12476. ggml_new_f32(ctx, 2.0f)),
  12477. zero_table);
  12478. }
  12479. } break;
  12480. case GGML_OP_SQRT:
  12481. {
  12482. if (src0->grad) {
  12483. src0->grad =
  12484. ggml_add_or_set(ctx,
  12485. src0->grad,
  12486. ggml_scale(ctx,
  12487. ggml_div(ctx,
  12488. tensor->grad,
  12489. tensor),
  12490. ggml_new_f32(ctx, 0.5f)),
  12491. zero_table);
  12492. }
  12493. } break;
  12494. case GGML_OP_LOG:
  12495. {
  12496. if (src0->grad) {
  12497. src0->grad =
  12498. ggml_add_or_set(ctx,
  12499. src0->grad,
  12500. ggml_div(ctx,
  12501. tensor->grad,
  12502. src0),
  12503. zero_table);
  12504. }
  12505. } break;
  12506. case GGML_OP_SUM:
  12507. {
  12508. if (src0->grad) {
  12509. src0->grad =
  12510. ggml_add1_or_set(ctx,
  12511. src0->grad,
  12512. tensor->grad,
  12513. zero_table);
  12514. }
  12515. } break;
  12516. case GGML_OP_SUM_ROWS:
  12517. {
  12518. if (src0->grad) {
  12519. src0->grad =
  12520. ggml_add_or_set(ctx,
  12521. src0->grad,
  12522. ggml_repeat(ctx,
  12523. tensor->grad,
  12524. src0->grad),
  12525. zero_table);
  12526. }
  12527. } break;
  12528. case GGML_OP_MEAN:
  12529. case GGML_OP_ARGMAX:
  12530. {
  12531. GGML_ASSERT(false); // TODO: implement
  12532. } break;
  12533. case GGML_OP_REPEAT:
  12534. {
  12535. // necessary for llama
  12536. if (src0->grad) {
  12537. src0->grad = ggml_add_or_set(ctx,
  12538. src0->grad,
  12539. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12540. zero_table);
  12541. }
  12542. } break;
  12543. case GGML_OP_REPEAT_BACK:
  12544. {
  12545. if (src0->grad) {
  12546. // TODO: test this
  12547. src0->grad = ggml_add_or_set(ctx,
  12548. src0->grad,
  12549. ggml_repeat(ctx, tensor->grad, src0->grad),
  12550. zero_table);
  12551. }
  12552. } break;
  12553. case GGML_OP_CONCAT:
  12554. {
  12555. GGML_ASSERT(false); // TODO: implement
  12556. } break;
  12557. case GGML_OP_SILU_BACK:
  12558. {
  12559. GGML_ASSERT(false); // TODO: not implemented
  12560. } break;
  12561. case GGML_OP_NORM:
  12562. {
  12563. GGML_ASSERT(false); // TODO: not implemented
  12564. } break;
  12565. case GGML_OP_RMS_NORM:
  12566. {
  12567. // necessary for llama
  12568. if (src0->grad) {
  12569. float eps;
  12570. memcpy(&eps, tensor->op_params, sizeof(float));
  12571. src0->grad = ggml_add_or_set(ctx,
  12572. src0->grad,
  12573. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12574. zero_table);
  12575. }
  12576. } break;
  12577. case GGML_OP_RMS_NORM_BACK:
  12578. {
  12579. GGML_ASSERT(false); // TODO: not implemented
  12580. } break;
  12581. case GGML_OP_GROUP_NORM:
  12582. {
  12583. GGML_ASSERT(false); // TODO: not implemented
  12584. } break;
  12585. case GGML_OP_MUL_MAT:
  12586. {
  12587. // https://cs231n.github.io/optimization-2/#staged
  12588. // # forward pass
  12589. // s0 = np.random.randn(5, 10)
  12590. // s1 = np.random.randn(10, 3)
  12591. // t = s0.dot(s1)
  12592. // # now suppose we had the gradient on t from above in the circuit
  12593. // dt = np.random.randn(*t.shape) # same shape as t
  12594. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12595. // ds1 = t.T.dot(dt)
  12596. // tensor.shape [m,p,qq,rr]
  12597. // src0.shape [n,m,q1,r1]
  12598. // src1.shape [n,p,qq,rr]
  12599. // necessary for llama
  12600. if (src0->grad) {
  12601. struct ggml_tensor * s1_tg =
  12602. ggml_out_prod(ctx, // [n,m,qq,rr]
  12603. src1, // [n,p,qq,rr]
  12604. tensor->grad); // [m,p,qq,rr]
  12605. const int64_t qq = s1_tg->ne[2];
  12606. const int64_t rr = s1_tg->ne[3];
  12607. const int64_t q1 = src0->ne[2];
  12608. const int64_t r1 = src0->ne[3];
  12609. const bool ne2_broadcasted = qq > q1;
  12610. const bool ne3_broadcasted = rr > r1;
  12611. if (ne2_broadcasted || ne3_broadcasted) {
  12612. // sum broadcast repetitions of s1_tg into shape of src0
  12613. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12614. }
  12615. src0->grad =
  12616. ggml_add_or_set(ctx,
  12617. src0->grad, // [n,m,q1,r1]
  12618. s1_tg, // [n,m,q1,r1]
  12619. zero_table);
  12620. }
  12621. if (src1->grad) {
  12622. src1->grad =
  12623. ggml_add_or_set(ctx,
  12624. src1->grad, // [n,p,qq,rr]
  12625. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12626. // ggml_cont(ctx, // [m,n,q1,r1]
  12627. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12628. // tensor->grad), // [m,p,qq,rr]
  12629. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12630. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12631. // // and then use ggml_out_prod
  12632. ggml_out_prod(ctx, // [n,p,qq,rr]
  12633. src0, // [n,m,q1,r1]
  12634. ggml_transpose(ctx, // [p,m,qq,rr]
  12635. tensor->grad)), // [m,p,qq,rr]
  12636. zero_table);
  12637. }
  12638. } break;
  12639. case GGML_OP_OUT_PROD:
  12640. {
  12641. GGML_ASSERT(false); // TODO: not implemented
  12642. } break;
  12643. case GGML_OP_SCALE:
  12644. {
  12645. // necessary for llama
  12646. if (src0->grad) {
  12647. src0->grad =
  12648. ggml_add_or_set(ctx,
  12649. src0->grad,
  12650. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12651. zero_table);
  12652. }
  12653. if (src1->grad) {
  12654. src1->grad =
  12655. ggml_add_or_set(ctx,
  12656. src1->grad,
  12657. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12658. zero_table);
  12659. }
  12660. } break;
  12661. case GGML_OP_SET:
  12662. {
  12663. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12664. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12665. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12666. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12667. struct ggml_tensor * tensor_grad_view = NULL;
  12668. if (src0->grad || src1->grad) {
  12669. GGML_ASSERT(src0->type == tensor->type);
  12670. GGML_ASSERT(tensor->grad->type == tensor->type);
  12671. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12672. tensor_grad_view = ggml_view_4d(ctx,
  12673. tensor->grad,
  12674. src1->grad->ne[0],
  12675. src1->grad->ne[1],
  12676. src1->grad->ne[2],
  12677. src1->grad->ne[3],
  12678. nb1, nb2, nb3, offset);
  12679. }
  12680. if (src0->grad) {
  12681. src0->grad = ggml_add_or_set(ctx,
  12682. src0->grad,
  12683. ggml_acc_impl(ctx,
  12684. tensor->grad,
  12685. ggml_neg(ctx, tensor_grad_view),
  12686. nb1, nb2, nb3, offset, false),
  12687. zero_table);
  12688. }
  12689. if (src1->grad) {
  12690. src1->grad =
  12691. ggml_add_or_set(ctx,
  12692. src1->grad,
  12693. ggml_reshape(ctx,
  12694. ggml_cont(ctx, tensor_grad_view),
  12695. src1->grad),
  12696. zero_table);
  12697. }
  12698. } break;
  12699. case GGML_OP_CPY:
  12700. {
  12701. // necessary for llama
  12702. // cpy overwrites value of src1 by src0 and returns view(src1)
  12703. // the overwriting is mathematically equivalent to:
  12704. // tensor = src0 * 1 + src1 * 0
  12705. if (src0->grad) {
  12706. // dsrc0 = dtensor * 1
  12707. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12708. }
  12709. if (src1->grad) {
  12710. // dsrc1 = dtensor * 0 -> noop
  12711. }
  12712. } break;
  12713. case GGML_OP_CONT:
  12714. {
  12715. // same as cpy
  12716. if (src0->grad) {
  12717. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12718. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12719. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12720. }
  12721. } break;
  12722. case GGML_OP_RESHAPE:
  12723. {
  12724. // necessary for llama
  12725. if (src0->grad) {
  12726. src0->grad =
  12727. ggml_add_or_set(ctx, src0->grad,
  12728. ggml_reshape(ctx,
  12729. ggml_is_contiguous(tensor->grad)
  12730. ? tensor->grad
  12731. : ggml_cont(ctx, tensor->grad),
  12732. src0->grad),
  12733. zero_table);
  12734. }
  12735. } break;
  12736. case GGML_OP_VIEW:
  12737. {
  12738. // necessary for llama
  12739. if (src0->grad) {
  12740. size_t offset;
  12741. memcpy(&offset, tensor->op_params, sizeof(offset));
  12742. size_t nb1 = tensor->nb[1];
  12743. size_t nb2 = tensor->nb[2];
  12744. size_t nb3 = tensor->nb[3];
  12745. if (src0->type != src0->grad->type) {
  12746. // gradient is typically F32, but src0 could be other type
  12747. size_t ng = ggml_element_size(src0->grad);
  12748. size_t n0 = ggml_element_size(src0);
  12749. GGML_ASSERT(offset % n0 == 0);
  12750. GGML_ASSERT(nb1 % n0 == 0);
  12751. GGML_ASSERT(nb2 % n0 == 0);
  12752. GGML_ASSERT(nb3 % n0 == 0);
  12753. offset = (offset / n0) * ng;
  12754. nb1 = (nb1 / n0) * ng;
  12755. nb2 = (nb2 / n0) * ng;
  12756. nb3 = (nb3 / n0) * ng;
  12757. }
  12758. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12759. }
  12760. } break;
  12761. case GGML_OP_PERMUTE:
  12762. {
  12763. // necessary for llama
  12764. if (src0->grad) {
  12765. int32_t * axes = (int32_t *) tensor->op_params;
  12766. int axis0 = axes[0] & 0x3;
  12767. int axis1 = axes[1] & 0x3;
  12768. int axis2 = axes[2] & 0x3;
  12769. int axis3 = axes[3] & 0x3;
  12770. int axes_backward[4] = {0,0,0,0};
  12771. axes_backward[axis0] = 0;
  12772. axes_backward[axis1] = 1;
  12773. axes_backward[axis2] = 2;
  12774. axes_backward[axis3] = 3;
  12775. src0->grad =
  12776. ggml_add_or_set(ctx, src0->grad,
  12777. ggml_permute(ctx,
  12778. tensor->grad,
  12779. axes_backward[0],
  12780. axes_backward[1],
  12781. axes_backward[2],
  12782. axes_backward[3]),
  12783. zero_table);
  12784. }
  12785. } break;
  12786. case GGML_OP_TRANSPOSE:
  12787. {
  12788. // necessary for llama
  12789. if (src0->grad) {
  12790. src0->grad =
  12791. ggml_add_or_set(ctx, src0->grad,
  12792. ggml_transpose(ctx, tensor->grad),
  12793. zero_table);
  12794. }
  12795. } break;
  12796. case GGML_OP_GET_ROWS:
  12797. {
  12798. // necessary for llama (only for tokenizer)
  12799. if (src0->grad) {
  12800. src0->grad =
  12801. ggml_add_or_set(ctx, src0->grad,
  12802. // last ggml_get_rows_back argument src0->grad is only
  12803. // necessary to setup correct output shape
  12804. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12805. zero_table);
  12806. }
  12807. if (src1->grad) {
  12808. // noop
  12809. }
  12810. } break;
  12811. case GGML_OP_GET_ROWS_BACK:
  12812. {
  12813. GGML_ASSERT(false); // TODO: not implemented
  12814. } break;
  12815. case GGML_OP_DIAG:
  12816. {
  12817. GGML_ASSERT(false); // TODO: not implemented
  12818. } break;
  12819. case GGML_OP_DIAG_MASK_INF:
  12820. {
  12821. // necessary for llama
  12822. if (src0->grad) {
  12823. const int n_past = ((int32_t *) tensor->op_params)[0];
  12824. src0->grad =
  12825. ggml_add_or_set(ctx, src0->grad,
  12826. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12827. zero_table);
  12828. }
  12829. } break;
  12830. case GGML_OP_DIAG_MASK_ZERO:
  12831. {
  12832. // necessary for llama
  12833. if (src0->grad) {
  12834. const int n_past = ((int32_t *) tensor->op_params)[0];
  12835. src0->grad =
  12836. ggml_add_or_set(ctx, src0->grad,
  12837. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12838. zero_table);
  12839. }
  12840. } break;
  12841. case GGML_OP_SOFT_MAX:
  12842. {
  12843. // necessary for llama
  12844. if (src0->grad) {
  12845. src0->grad =
  12846. ggml_add_or_set(ctx, src0->grad,
  12847. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12848. zero_table);
  12849. }
  12850. } break;
  12851. case GGML_OP_SOFT_MAX_BACK:
  12852. {
  12853. GGML_ASSERT(false); // TODO: not implemented
  12854. } break;
  12855. case GGML_OP_ROPE:
  12856. {
  12857. // necessary for llama
  12858. if (src0->grad) {
  12859. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12860. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12861. const int mode = ((int32_t *) tensor->op_params)[2];
  12862. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12863. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12864. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12865. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12866. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12867. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12868. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12869. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12870. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12871. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12872. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12873. src0->grad = ggml_add_or_set(ctx,
  12874. src0->grad,
  12875. ggml_rope_back(ctx,
  12876. tensor->grad,
  12877. src1,
  12878. n_dims,
  12879. mode,
  12880. n_ctx,
  12881. n_orig_ctx,
  12882. freq_base,
  12883. freq_scale,
  12884. ext_factor,
  12885. attn_factor,
  12886. beta_fast,
  12887. beta_slow,
  12888. xpos_base,
  12889. xpos_down),
  12890. zero_table);
  12891. }
  12892. } break;
  12893. case GGML_OP_ROPE_BACK:
  12894. {
  12895. if (src0->grad) {
  12896. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12897. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12898. const int mode = ((int32_t *) tensor->op_params)[2];
  12899. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12900. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12901. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12902. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12903. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12904. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12905. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12906. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12907. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12908. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12909. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12910. src0->grad = ggml_add_or_set(ctx,
  12911. src0->grad,
  12912. ggml_rope_impl(ctx,
  12913. tensor->grad,
  12914. src1,
  12915. n_dims,
  12916. mode,
  12917. n_ctx,
  12918. n_orig_ctx,
  12919. freq_base,
  12920. freq_scale,
  12921. ext_factor,
  12922. attn_factor,
  12923. beta_fast,
  12924. beta_slow,
  12925. xpos_base,
  12926. xpos_down,
  12927. false),
  12928. zero_table);
  12929. }
  12930. } break;
  12931. case GGML_OP_ALIBI:
  12932. {
  12933. GGML_ASSERT(false); // TODO: not implemented
  12934. } break;
  12935. case GGML_OP_CLAMP:
  12936. {
  12937. GGML_ASSERT(false); // TODO: not implemented
  12938. } break;
  12939. case GGML_OP_CONV_1D:
  12940. {
  12941. GGML_ASSERT(false); // TODO: not implemented
  12942. } break;
  12943. case GGML_OP_CONV_1D_STAGE_0:
  12944. {
  12945. GGML_ASSERT(false); // TODO: not implemented
  12946. } break;
  12947. case GGML_OP_CONV_1D_STAGE_1:
  12948. {
  12949. GGML_ASSERT(false); // TODO: not implemented
  12950. } break;
  12951. case GGML_OP_CONV_TRANSPOSE_1D:
  12952. {
  12953. GGML_ASSERT(false); // TODO: not implemented
  12954. } break;
  12955. case GGML_OP_CONV_2D:
  12956. {
  12957. GGML_ASSERT(false); // TODO: not implemented
  12958. } break;
  12959. case GGML_OP_CONV_2D_STAGE_0:
  12960. {
  12961. GGML_ASSERT(false); // TODO: not implemented
  12962. } break;
  12963. case GGML_OP_CONV_2D_STAGE_1:
  12964. {
  12965. GGML_ASSERT(false); // TODO: not implemented
  12966. } break;
  12967. case GGML_OP_CONV_TRANSPOSE_2D:
  12968. {
  12969. GGML_ASSERT(false); // TODO: not implemented
  12970. } break;
  12971. case GGML_OP_POOL_1D:
  12972. {
  12973. GGML_ASSERT(false); // TODO: not implemented
  12974. } break;
  12975. case GGML_OP_POOL_2D:
  12976. {
  12977. GGML_ASSERT(false); // TODO: not implemented
  12978. } break;
  12979. case GGML_OP_UPSCALE:
  12980. {
  12981. GGML_ASSERT(false); // TODO: not implemented
  12982. } break;
  12983. case GGML_OP_FLASH_ATTN:
  12984. {
  12985. struct ggml_tensor * flash_grad = NULL;
  12986. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12987. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12988. GGML_ASSERT(t == 0 || t == 1);
  12989. bool masked = t != 0;
  12990. flash_grad =
  12991. ggml_flash_attn_back(ctx,
  12992. src0,
  12993. src1,
  12994. tensor->src[2],
  12995. tensor->grad,
  12996. masked);
  12997. }
  12998. struct ggml_tensor * src2 = tensor->src[2];
  12999. const int64_t elem_q = ggml_nelements(src0);
  13000. const int64_t elem_k = ggml_nelements(src1);
  13001. const int64_t elem_v = ggml_nelements(src2);
  13002. enum ggml_type result_type = flash_grad->type;
  13003. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13004. const size_t tsize = ggml_type_size(result_type);
  13005. const size_t offs_q = 0;
  13006. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13007. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13008. if (src0->grad) {
  13009. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13010. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13011. src0->grad = ggml_add_or_set(ctx,
  13012. src0->grad,
  13013. grad_q,
  13014. zero_table);
  13015. }
  13016. if (src1->grad) {
  13017. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13018. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13019. src1->grad = ggml_add_or_set(ctx,
  13020. src1->grad,
  13021. grad_k,
  13022. zero_table);
  13023. }
  13024. if (src2->grad) {
  13025. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13026. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13027. src2->grad = ggml_add_or_set(ctx,
  13028. src2->grad,
  13029. grad_v,
  13030. zero_table);
  13031. }
  13032. } break;
  13033. case GGML_OP_FLASH_FF:
  13034. {
  13035. GGML_ASSERT(false); // not supported
  13036. } break;
  13037. case GGML_OP_FLASH_ATTN_BACK:
  13038. {
  13039. GGML_ASSERT(false); // not supported
  13040. } break;
  13041. case GGML_OP_WIN_PART:
  13042. case GGML_OP_WIN_UNPART:
  13043. case GGML_OP_UNARY:
  13044. {
  13045. switch (ggml_get_unary_op(tensor)) {
  13046. case GGML_UNARY_OP_ABS:
  13047. {
  13048. if (src0->grad) {
  13049. src0->grad =
  13050. ggml_add_or_set(ctx,
  13051. src0->grad,
  13052. ggml_mul(ctx,
  13053. ggml_sgn(ctx, src0),
  13054. tensor->grad),
  13055. zero_table);
  13056. }
  13057. } break;
  13058. case GGML_UNARY_OP_SGN:
  13059. {
  13060. if (src0->grad) {
  13061. // noop
  13062. }
  13063. } break;
  13064. case GGML_UNARY_OP_NEG:
  13065. {
  13066. if (src0->grad) {
  13067. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13068. }
  13069. } break;
  13070. case GGML_UNARY_OP_STEP:
  13071. {
  13072. if (src0->grad) {
  13073. // noop
  13074. }
  13075. } break;
  13076. case GGML_UNARY_OP_TANH:
  13077. {
  13078. GGML_ASSERT(false); // TODO: not implemented
  13079. } break;
  13080. case GGML_UNARY_OP_ELU:
  13081. {
  13082. GGML_ASSERT(false); // TODO: not implemented
  13083. } break;
  13084. case GGML_UNARY_OP_RELU:
  13085. {
  13086. if (src0->grad) {
  13087. src0->grad = ggml_add_or_set(ctx,
  13088. src0->grad,
  13089. ggml_mul(ctx,
  13090. ggml_step(ctx, src0),
  13091. tensor->grad),
  13092. zero_table);
  13093. }
  13094. } break;
  13095. case GGML_UNARY_OP_GELU:
  13096. {
  13097. GGML_ASSERT(false); // TODO: not implemented
  13098. } break;
  13099. case GGML_UNARY_OP_GELU_QUICK:
  13100. {
  13101. GGML_ASSERT(false); // TODO: not implemented
  13102. } break;
  13103. case GGML_UNARY_OP_SILU:
  13104. {
  13105. // necessary for llama
  13106. if (src0->grad) {
  13107. src0->grad = ggml_add_or_set(ctx,
  13108. src0->grad,
  13109. ggml_silu_back(ctx, src0, tensor->grad),
  13110. zero_table);
  13111. }
  13112. } break;
  13113. default:
  13114. GGML_ASSERT(false);
  13115. }
  13116. } break;
  13117. case GGML_OP_GET_REL_POS:
  13118. case GGML_OP_ADD_REL_POS:
  13119. case GGML_OP_MAP_UNARY:
  13120. case GGML_OP_MAP_BINARY:
  13121. case GGML_OP_MAP_CUSTOM1_F32:
  13122. case GGML_OP_MAP_CUSTOM2_F32:
  13123. case GGML_OP_MAP_CUSTOM3_F32:
  13124. case GGML_OP_MAP_CUSTOM1:
  13125. case GGML_OP_MAP_CUSTOM2:
  13126. case GGML_OP_MAP_CUSTOM3:
  13127. {
  13128. GGML_ASSERT(false); // not supported
  13129. } break;
  13130. case GGML_OP_CROSS_ENTROPY_LOSS:
  13131. {
  13132. if (src0->grad) {
  13133. src0->grad = ggml_add_or_set(ctx,
  13134. src0->grad,
  13135. ggml_cross_entropy_loss_back(ctx,
  13136. src0,
  13137. src1,
  13138. tensor->grad),
  13139. zero_table);
  13140. }
  13141. } break;
  13142. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13143. {
  13144. GGML_ASSERT(false); // not supported
  13145. } break;
  13146. case GGML_OP_NONE:
  13147. {
  13148. // nop
  13149. } break;
  13150. case GGML_OP_COUNT:
  13151. {
  13152. GGML_ASSERT(false);
  13153. } break;
  13154. }
  13155. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13156. if (tensor->src[i] && tensor->src[i]->grad) {
  13157. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13158. }
  13159. }
  13160. }
  13161. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13162. if (node->grad == NULL) {
  13163. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13164. // it can also happen during forward pass, if the user performs computations with constants
  13165. if (node->op != GGML_OP_NONE) {
  13166. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13167. }
  13168. }
  13169. // check if already visited
  13170. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13171. return;
  13172. }
  13173. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13174. const int k =
  13175. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13176. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13177. /* unknown order, just fall back to using i*/ i;
  13178. if (node->src[k]) {
  13179. ggml_visit_parents(cgraph, node->src[k]);
  13180. }
  13181. }
  13182. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13183. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13184. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13185. if (strlen(node->name) == 0) {
  13186. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13187. }
  13188. cgraph->leafs[cgraph->n_leafs] = node;
  13189. cgraph->n_leafs++;
  13190. } else {
  13191. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13192. if (strlen(node->name) == 0) {
  13193. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13194. }
  13195. cgraph->nodes[cgraph->n_nodes] = node;
  13196. if (cgraph->grads) {
  13197. cgraph->grads[cgraph->n_nodes] = node->grad;
  13198. }
  13199. cgraph->n_nodes++;
  13200. }
  13201. }
  13202. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13203. if (!expand) {
  13204. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13205. ggml_graph_clear(cgraph);
  13206. }
  13207. const int n0 = cgraph->n_nodes;
  13208. UNUSED(n0);
  13209. ggml_visit_parents(cgraph, tensor);
  13210. const int n_new = cgraph->n_nodes - n0;
  13211. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13212. if (n_new > 0) {
  13213. // the last added node should always be starting point
  13214. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13215. }
  13216. }
  13217. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13218. ggml_build_forward_impl(cgraph, tensor, true);
  13219. }
  13220. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13221. GGML_ASSERT(gf->n_nodes > 0);
  13222. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13223. if (keep) {
  13224. for (int i = 0; i < gf->n_nodes; i++) {
  13225. struct ggml_tensor * node = gf->nodes[i];
  13226. if (node->grad) {
  13227. node->grad = ggml_dup_tensor(ctx, node);
  13228. gf->grads[i] = node->grad;
  13229. }
  13230. }
  13231. }
  13232. // remember original gradients which start with zero values
  13233. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13234. for (int i = 0; i < gf->n_nodes; i++) {
  13235. if (gf->grads[i]) {
  13236. ggml_hash_insert(zero_table, gf->grads[i]);
  13237. }
  13238. }
  13239. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13240. struct ggml_tensor * node = gf->nodes[i];
  13241. // inplace operations to add gradients are not created by ggml_compute_backward
  13242. // use allocator to automatically make inplace operations
  13243. if (node->grad) {
  13244. ggml_compute_backward(ctx, node, zero_table);
  13245. }
  13246. }
  13247. for (int i = 0; i < gf->n_nodes; i++) {
  13248. struct ggml_tensor * node = gf->nodes[i];
  13249. if (node->is_param) {
  13250. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13251. ggml_build_forward_expand(gb, node->grad);
  13252. }
  13253. }
  13254. ggml_hash_set_free(zero_table);
  13255. }
  13256. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13257. size_t nbytes = sizeof(struct ggml_cgraph);
  13258. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13259. if (grads) {
  13260. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13261. }
  13262. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13263. return nbytes;
  13264. }
  13265. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13266. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13267. }
  13268. size_t ggml_graph_overhead(void) {
  13269. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13270. }
  13271. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13272. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13273. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13274. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13275. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13276. size_t hash_size = ggml_hash_size(size * 2);
  13277. struct ggml_tensor ** nodes_ptr = data_start;
  13278. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13279. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13280. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13281. // check that we allocated the correct amount of memory
  13282. assert(obj_size == (size_t) (
  13283. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13284. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13285. *cgraph = (struct ggml_cgraph) {
  13286. /*.size =*/ size,
  13287. /*.n_nodes =*/ 0,
  13288. /*.n_leafs =*/ 0,
  13289. /*.nodes =*/ nodes_ptr,
  13290. /*.grads =*/ grads_ptr,
  13291. /*.leafs =*/ leafs_ptr,
  13292. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13293. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13294. /*.perf_runs =*/ 0,
  13295. /*.perf_cycles =*/ 0,
  13296. /*.perf_time_us =*/ 0,
  13297. };
  13298. return cgraph;
  13299. }
  13300. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13301. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13302. }
  13303. struct ggml_cgraph * ggml_graph_view(struct ggml_context * ctx, struct ggml_cgraph * cgraph0, int i0, int i1) {
  13304. const size_t obj_size = sizeof(struct ggml_cgraph);
  13305. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13306. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13307. *cgraph = (struct ggml_cgraph) {
  13308. /*.size =*/ 0,
  13309. /*.n_nodes =*/ i1 - i0,
  13310. /*.n_leafs =*/ 0,
  13311. /*.nodes =*/ cgraph0->nodes + i0,
  13312. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13313. /*.leafs =*/ NULL,
  13314. /*.hash_table =*/ { 0, NULL },
  13315. /*.order =*/ cgraph0->order,
  13316. /*.perf_runs =*/ 0,
  13317. /*.perf_cycles =*/ 0,
  13318. /*.perf_time_us =*/ 0,
  13319. };
  13320. return cgraph;
  13321. }
  13322. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13323. GGML_ASSERT(dst->size >= src->n_leafs);
  13324. GGML_ASSERT(dst->size >= src->n_nodes);
  13325. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13326. dst->n_leafs = src->n_leafs;
  13327. dst->n_nodes = src->n_nodes;
  13328. dst->order = src->order;
  13329. for (int i = 0; i < src->n_leafs; ++i) {
  13330. dst->leafs[i] = src->leafs[i];
  13331. }
  13332. for (int i = 0; i < src->n_nodes; ++i) {
  13333. dst->nodes[i] = src->nodes[i];
  13334. }
  13335. if (src->grads) {
  13336. GGML_ASSERT(dst->grads != NULL);
  13337. for (int i = 0; i < src->n_nodes; ++i) {
  13338. dst->grads[i] = src->grads[i];
  13339. }
  13340. }
  13341. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13342. if (src->visited_hash_table.keys[i]) {
  13343. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13344. }
  13345. }
  13346. }
  13347. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13348. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13349. ggml_graph_cpy(cgraph, result);
  13350. return result;
  13351. }
  13352. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13353. GGML_ASSERT(cgraph->grads != NULL);
  13354. for (int i = 0; i < cgraph->n_nodes; i++) {
  13355. struct ggml_tensor * grad = cgraph->grads[i];
  13356. if (grad) {
  13357. ggml_set_zero(grad);
  13358. }
  13359. }
  13360. }
  13361. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13362. cgraph->n_leafs = 0;
  13363. cgraph->n_nodes = 0;
  13364. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13365. }
  13366. //
  13367. // thread data
  13368. //
  13369. // synchronization is done via busy loops
  13370. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13371. //
  13372. #ifdef __APPLE__
  13373. //#include <os/lock.h>
  13374. //
  13375. //typedef os_unfair_lock ggml_lock_t;
  13376. //
  13377. //#define ggml_lock_init(x) UNUSED(x)
  13378. //#define ggml_lock_destroy(x) UNUSED(x)
  13379. //#define ggml_lock_lock os_unfair_lock_lock
  13380. //#define ggml_lock_unlock os_unfair_lock_unlock
  13381. //
  13382. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13383. typedef int ggml_lock_t;
  13384. #define ggml_lock_init(x) UNUSED(x)
  13385. #define ggml_lock_destroy(x) UNUSED(x)
  13386. #define ggml_lock_lock(x) UNUSED(x)
  13387. #define ggml_lock_unlock(x) UNUSED(x)
  13388. #define GGML_LOCK_INITIALIZER 0
  13389. typedef pthread_t ggml_thread_t;
  13390. #define ggml_thread_create pthread_create
  13391. #define ggml_thread_join pthread_join
  13392. #else
  13393. //typedef pthread_spinlock_t ggml_lock_t;
  13394. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13395. //#define ggml_lock_destroy pthread_spin_destroy
  13396. //#define ggml_lock_lock pthread_spin_lock
  13397. //#define ggml_lock_unlock pthread_spin_unlock
  13398. typedef int ggml_lock_t;
  13399. #define ggml_lock_init(x) UNUSED(x)
  13400. #define ggml_lock_destroy(x) UNUSED(x)
  13401. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13402. #define ggml_lock_lock(x) _mm_pause()
  13403. #else
  13404. #define ggml_lock_lock(x) UNUSED(x)
  13405. #endif
  13406. #define ggml_lock_unlock(x) UNUSED(x)
  13407. #define GGML_LOCK_INITIALIZER 0
  13408. typedef pthread_t ggml_thread_t;
  13409. #define ggml_thread_create pthread_create
  13410. #define ggml_thread_join pthread_join
  13411. #endif
  13412. // Android's libc implementation "bionic" does not support setting affinity
  13413. #if defined(__linux__) && !defined(__BIONIC__)
  13414. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13415. if (!ggml_is_numa()) {
  13416. return;
  13417. }
  13418. // run thread on node_num thread_n / (threads per node)
  13419. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13420. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13421. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13422. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13423. CPU_ZERO_S(setsize, cpus);
  13424. for (size_t i = 0; i < node->n_cpus; ++i) {
  13425. CPU_SET_S(node->cpus[i], setsize, cpus);
  13426. }
  13427. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13428. if (rv) {
  13429. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13430. strerror(rv));
  13431. }
  13432. CPU_FREE(cpus);
  13433. }
  13434. static void clear_numa_thread_affinity(void) {
  13435. if (!ggml_is_numa()) {
  13436. return;
  13437. }
  13438. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13439. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13440. CPU_ZERO_S(setsize, cpus);
  13441. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13442. CPU_SET_S(i, setsize, cpus);
  13443. }
  13444. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13445. if (rv) {
  13446. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13447. strerror(rv));
  13448. }
  13449. CPU_FREE(cpus);
  13450. }
  13451. #else
  13452. // TODO: Windows etc.
  13453. // (the linux implementation may also work on BSD, someone should test)
  13454. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13455. static void clear_numa_thread_affinity(void) {}
  13456. #endif
  13457. struct ggml_compute_state_shared {
  13458. const struct ggml_cgraph * cgraph;
  13459. const struct ggml_cplan * cplan;
  13460. int64_t perf_node_start_cycles;
  13461. int64_t perf_node_start_time_us;
  13462. const int n_threads;
  13463. // synchronization primitives
  13464. atomic_int n_active; // num active threads
  13465. atomic_int node_n; // active graph node
  13466. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13467. void * abort_callback_data;
  13468. };
  13469. struct ggml_compute_state {
  13470. ggml_thread_t thrd;
  13471. int ith;
  13472. struct ggml_compute_state_shared * shared;
  13473. };
  13474. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13475. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13476. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13477. node->perf_runs++;
  13478. node->perf_cycles += cycles_cur;
  13479. node->perf_time_us += time_us_cur;
  13480. }
  13481. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13482. int n_tasks = 0;
  13483. switch (node->op) {
  13484. case GGML_OP_CPY:
  13485. case GGML_OP_DUP:
  13486. case GGML_OP_ADD:
  13487. case GGML_OP_ADD1:
  13488. case GGML_OP_ACC:
  13489. {
  13490. n_tasks = n_threads;
  13491. } break;
  13492. case GGML_OP_SUB:
  13493. case GGML_OP_DIV:
  13494. case GGML_OP_SQR:
  13495. case GGML_OP_SQRT:
  13496. case GGML_OP_LOG:
  13497. case GGML_OP_SUM:
  13498. case GGML_OP_SUM_ROWS:
  13499. case GGML_OP_MEAN:
  13500. case GGML_OP_ARGMAX:
  13501. case GGML_OP_REPEAT:
  13502. case GGML_OP_REPEAT_BACK:
  13503. {
  13504. n_tasks = 1;
  13505. } break;
  13506. case GGML_OP_UNARY:
  13507. switch (ggml_get_unary_op(node)) {
  13508. case GGML_UNARY_OP_ABS:
  13509. case GGML_UNARY_OP_SGN:
  13510. case GGML_UNARY_OP_NEG:
  13511. case GGML_UNARY_OP_STEP:
  13512. case GGML_UNARY_OP_TANH:
  13513. case GGML_UNARY_OP_ELU:
  13514. case GGML_UNARY_OP_RELU:
  13515. case GGML_UNARY_OP_LEAKY:
  13516. {
  13517. n_tasks = 1;
  13518. } break;
  13519. case GGML_UNARY_OP_GELU:
  13520. case GGML_UNARY_OP_GELU_QUICK:
  13521. case GGML_UNARY_OP_SILU:
  13522. {
  13523. n_tasks = n_threads;
  13524. } break;
  13525. }
  13526. break;
  13527. case GGML_OP_SILU_BACK:
  13528. case GGML_OP_MUL:
  13529. case GGML_OP_NORM:
  13530. case GGML_OP_RMS_NORM:
  13531. case GGML_OP_RMS_NORM_BACK:
  13532. case GGML_OP_GROUP_NORM:
  13533. case GGML_OP_CONCAT:
  13534. {
  13535. n_tasks = n_threads;
  13536. } break;
  13537. case GGML_OP_MUL_MAT:
  13538. {
  13539. n_tasks = n_threads;
  13540. // TODO: use different scheduling for different matrix sizes
  13541. //const int nr0 = ggml_nrows(node->src[0]);
  13542. //const int nr1 = ggml_nrows(node->src[1]);
  13543. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13544. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13545. #if defined(GGML_USE_CUBLAS)
  13546. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13547. n_tasks = 1; // TODO: this actually is doing nothing
  13548. // the threads are still spinning
  13549. }
  13550. #elif defined(GGML_USE_CLBLAST)
  13551. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13552. n_tasks = 1; // TODO: this actually is doing nothing
  13553. // the threads are still spinning
  13554. }
  13555. #endif
  13556. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13557. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13558. n_tasks = 1; // TODO: this actually is doing nothing
  13559. // the threads are still spinning
  13560. }
  13561. #endif
  13562. } break;
  13563. case GGML_OP_OUT_PROD:
  13564. {
  13565. n_tasks = n_threads;
  13566. } break;
  13567. case GGML_OP_SCALE:
  13568. case GGML_OP_SET:
  13569. case GGML_OP_CONT:
  13570. case GGML_OP_RESHAPE:
  13571. case GGML_OP_VIEW:
  13572. case GGML_OP_PERMUTE:
  13573. case GGML_OP_TRANSPOSE:
  13574. case GGML_OP_GET_ROWS:
  13575. case GGML_OP_GET_ROWS_BACK:
  13576. case GGML_OP_DIAG:
  13577. {
  13578. n_tasks = 1;
  13579. } break;
  13580. case GGML_OP_DIAG_MASK_ZERO:
  13581. case GGML_OP_DIAG_MASK_INF:
  13582. case GGML_OP_SOFT_MAX:
  13583. case GGML_OP_SOFT_MAX_BACK:
  13584. case GGML_OP_ROPE:
  13585. case GGML_OP_ROPE_BACK:
  13586. case GGML_OP_ADD_REL_POS:
  13587. {
  13588. n_tasks = n_threads;
  13589. } break;
  13590. case GGML_OP_ALIBI:
  13591. {
  13592. n_tasks = 1; //TODO
  13593. } break;
  13594. case GGML_OP_CLAMP:
  13595. {
  13596. n_tasks = 1; //TODO
  13597. } break;
  13598. case GGML_OP_CONV_1D:
  13599. {
  13600. n_tasks = n_threads;
  13601. } break;
  13602. case GGML_OP_CONV_1D_STAGE_0:
  13603. {
  13604. n_tasks = n_threads;
  13605. } break;
  13606. case GGML_OP_CONV_1D_STAGE_1:
  13607. {
  13608. n_tasks = n_threads;
  13609. } break;
  13610. case GGML_OP_CONV_TRANSPOSE_1D:
  13611. {
  13612. n_tasks = n_threads;
  13613. } break;
  13614. case GGML_OP_CONV_2D:
  13615. {
  13616. n_tasks = n_threads;
  13617. } break;
  13618. case GGML_OP_CONV_2D_STAGE_0:
  13619. {
  13620. n_tasks = n_threads;
  13621. } break;
  13622. case GGML_OP_CONV_2D_STAGE_1:
  13623. {
  13624. n_tasks = n_threads;
  13625. } break;
  13626. case GGML_OP_CONV_TRANSPOSE_2D:
  13627. {
  13628. n_tasks = n_threads;
  13629. } break;
  13630. case GGML_OP_POOL_1D:
  13631. case GGML_OP_POOL_2D:
  13632. {
  13633. n_tasks = 1;
  13634. } break;
  13635. case GGML_OP_UPSCALE:
  13636. {
  13637. n_tasks = n_threads;
  13638. } break;
  13639. case GGML_OP_FLASH_ATTN:
  13640. {
  13641. n_tasks = n_threads;
  13642. } break;
  13643. case GGML_OP_FLASH_FF:
  13644. {
  13645. n_tasks = n_threads;
  13646. } break;
  13647. case GGML_OP_FLASH_ATTN_BACK:
  13648. {
  13649. n_tasks = n_threads;
  13650. } break;
  13651. case GGML_OP_WIN_PART:
  13652. case GGML_OP_WIN_UNPART:
  13653. case GGML_OP_GET_REL_POS:
  13654. case GGML_OP_MAP_UNARY:
  13655. case GGML_OP_MAP_BINARY:
  13656. case GGML_OP_MAP_CUSTOM1_F32:
  13657. case GGML_OP_MAP_CUSTOM2_F32:
  13658. case GGML_OP_MAP_CUSTOM3_F32:
  13659. {
  13660. n_tasks = 1;
  13661. } break;
  13662. case GGML_OP_MAP_CUSTOM1:
  13663. {
  13664. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13665. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13666. n_tasks = n_threads;
  13667. } else {
  13668. n_tasks = MIN(p->n_tasks, n_threads);
  13669. }
  13670. } break;
  13671. case GGML_OP_MAP_CUSTOM2:
  13672. {
  13673. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13674. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13675. n_tasks = n_threads;
  13676. } else {
  13677. n_tasks = MIN(p->n_tasks, n_threads);
  13678. }
  13679. } break;
  13680. case GGML_OP_MAP_CUSTOM3:
  13681. {
  13682. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13683. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13684. n_tasks = n_threads;
  13685. } else {
  13686. n_tasks = MIN(p->n_tasks, n_threads);
  13687. }
  13688. } break;
  13689. case GGML_OP_CROSS_ENTROPY_LOSS:
  13690. {
  13691. n_tasks = n_threads;
  13692. } break;
  13693. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13694. {
  13695. n_tasks = n_threads;
  13696. } break;
  13697. case GGML_OP_NONE:
  13698. {
  13699. n_tasks = 1;
  13700. } break;
  13701. case GGML_OP_COUNT:
  13702. {
  13703. GGML_ASSERT(false);
  13704. } break;
  13705. default:
  13706. {
  13707. GGML_ASSERT(false);
  13708. } break;
  13709. }
  13710. assert(n_tasks > 0);
  13711. return n_tasks;
  13712. }
  13713. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13714. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13715. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13716. const struct ggml_cplan * cplan = state->shared->cplan;
  13717. const int n_threads = state->shared->n_threads;
  13718. set_numa_thread_affinity(state->ith, n_threads);
  13719. int node_n = -1;
  13720. while (true) {
  13721. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13722. state->shared->node_n += 1;
  13723. return (thread_ret_t) GGML_EXIT_ABORTED;
  13724. }
  13725. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13726. // all other threads are finished and spinning
  13727. // do finalize and init here so we don't have synchronize again
  13728. struct ggml_compute_params params = {
  13729. /*.type =*/ GGML_TASK_FINALIZE,
  13730. /*.ith =*/ 0,
  13731. /*.nth =*/ 0,
  13732. /*.wsize =*/ cplan->work_size,
  13733. /*.wdata =*/ cplan->work_data,
  13734. };
  13735. if (node_n != -1) {
  13736. /* FINALIZE */
  13737. struct ggml_tensor * node = cgraph->nodes[node_n];
  13738. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13739. params.nth = ggml_get_n_tasks(node, n_threads);
  13740. ggml_compute_forward(&params, node);
  13741. }
  13742. ggml_graph_compute_perf_stats_node(node, state->shared);
  13743. }
  13744. // distribute new work or execute it direct if 1T
  13745. while (++node_n < cgraph->n_nodes) {
  13746. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13747. struct ggml_tensor * node = cgraph->nodes[node_n];
  13748. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13749. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13750. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13751. params.nth = n_tasks;
  13752. /* INIT */
  13753. if (GGML_OP_HAS_INIT[node->op]) {
  13754. params.type = GGML_TASK_INIT;
  13755. ggml_compute_forward(&params, node);
  13756. }
  13757. if (n_tasks == 1) {
  13758. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13759. // they do something more efficient than spinning (?)
  13760. params.type = GGML_TASK_COMPUTE;
  13761. ggml_compute_forward(&params, node);
  13762. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13763. params.type = GGML_TASK_FINALIZE;
  13764. ggml_compute_forward(&params, node);
  13765. }
  13766. ggml_graph_compute_perf_stats_node(node, state->shared);
  13767. } else {
  13768. break;
  13769. }
  13770. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13771. break;
  13772. }
  13773. }
  13774. atomic_store(&state->shared->n_active, n_threads);
  13775. atomic_store(&state->shared->node_n, node_n);
  13776. } else {
  13777. // wait for other threads to finish
  13778. const int last = node_n;
  13779. while (true) {
  13780. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13781. // depending on the workload and the operating system.
  13782. // since it is not clear what is the best approach, it should potentially become user-configurable
  13783. // ref: https://github.com/ggerganov/ggml/issues/291
  13784. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13785. sched_yield();
  13786. #endif
  13787. node_n = atomic_load(&state->shared->node_n);
  13788. if (node_n != last) break;
  13789. };
  13790. }
  13791. // check if we should stop
  13792. if (node_n >= cgraph->n_nodes) break;
  13793. /* COMPUTE */
  13794. struct ggml_tensor * node = cgraph->nodes[node_n];
  13795. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13796. struct ggml_compute_params params = {
  13797. /*.type =*/ GGML_TASK_COMPUTE,
  13798. /*.ith =*/ state->ith,
  13799. /*.nth =*/ n_tasks,
  13800. /*.wsize =*/ cplan->work_size,
  13801. /*.wdata =*/ cplan->work_data,
  13802. };
  13803. if (state->ith < n_tasks) {
  13804. ggml_compute_forward(&params, node);
  13805. }
  13806. }
  13807. return GGML_EXIT_SUCCESS;
  13808. }
  13809. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13810. if (n_threads <= 0) {
  13811. n_threads = GGML_DEFAULT_N_THREADS;
  13812. }
  13813. size_t work_size = 0;
  13814. struct ggml_cplan cplan;
  13815. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13816. // thread scheduling for the different operations + work buffer size estimation
  13817. for (int i = 0; i < cgraph->n_nodes; i++) {
  13818. int n_tasks = 1;
  13819. struct ggml_tensor * node = cgraph->nodes[i];
  13820. size_t cur = 0;
  13821. switch (node->op) {
  13822. case GGML_OP_CPY:
  13823. case GGML_OP_DUP:
  13824. {
  13825. n_tasks = n_threads;
  13826. if (ggml_is_quantized(node->type)) {
  13827. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13828. }
  13829. } break;
  13830. case GGML_OP_ADD:
  13831. case GGML_OP_ADD1:
  13832. {
  13833. n_tasks = n_threads;
  13834. if (ggml_is_quantized(node->src[0]->type)) {
  13835. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13836. }
  13837. } break;
  13838. case GGML_OP_ACC:
  13839. {
  13840. n_tasks = n_threads;
  13841. if (ggml_is_quantized(node->src[0]->type)) {
  13842. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13843. }
  13844. } break;
  13845. case GGML_OP_MUL_MAT:
  13846. {
  13847. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13848. #if defined(GGML_USE_CLBLAST)
  13849. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13850. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13851. } else
  13852. #endif
  13853. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13854. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13855. if (node->src[0]->type != GGML_TYPE_F32) {
  13856. // here we need memory just for single 2D matrix from src0
  13857. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13858. }
  13859. } else
  13860. #endif
  13861. if (node->src[1]->type != vec_dot_type) {
  13862. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13863. }
  13864. } break;
  13865. case GGML_OP_OUT_PROD:
  13866. {
  13867. n_tasks = n_threads;
  13868. if (ggml_is_quantized(node->src[0]->type)) {
  13869. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13870. }
  13871. } break;
  13872. case GGML_OP_CONV_1D:
  13873. {
  13874. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13875. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13876. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13877. const int64_t ne00 = node->src[0]->ne[0];
  13878. const int64_t ne01 = node->src[0]->ne[1];
  13879. const int64_t ne02 = node->src[0]->ne[2];
  13880. const int64_t ne10 = node->src[1]->ne[0];
  13881. const int64_t ne11 = node->src[1]->ne[1];
  13882. const int64_t ne0 = node->ne[0];
  13883. const int64_t ne1 = node->ne[1];
  13884. const int64_t nk = ne00;
  13885. const int64_t ew0 = nk * ne01;
  13886. UNUSED(ne02);
  13887. UNUSED(ne10);
  13888. UNUSED(ne11);
  13889. if (node->src[0]->type == GGML_TYPE_F16 &&
  13890. node->src[1]->type == GGML_TYPE_F32) {
  13891. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13892. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13893. node->src[1]->type == GGML_TYPE_F32) {
  13894. cur = sizeof(float)*(ne0*ne1*ew0);
  13895. } else {
  13896. GGML_ASSERT(false);
  13897. }
  13898. } break;
  13899. case GGML_OP_CONV_TRANSPOSE_1D:
  13900. {
  13901. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13902. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13903. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13904. const int64_t ne00 = node->src[0]->ne[0]; // K
  13905. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13906. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13907. const int64_t ne10 = node->src[1]->ne[0]; // L
  13908. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13909. if (node->src[0]->type == GGML_TYPE_F16 &&
  13910. node->src[1]->type == GGML_TYPE_F32) {
  13911. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13912. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13913. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13914. node->src[1]->type == GGML_TYPE_F32) {
  13915. cur += sizeof(float)*ne00*ne01*ne02;
  13916. cur += sizeof(float)*ne10*ne11;
  13917. } else {
  13918. GGML_ASSERT(false);
  13919. }
  13920. } break;
  13921. case GGML_OP_CONV_2D:
  13922. {
  13923. const int64_t ne00 = node->src[0]->ne[0]; // W
  13924. const int64_t ne01 = node->src[0]->ne[1]; // H
  13925. const int64_t ne02 = node->src[0]->ne[2]; // C
  13926. const int64_t ne03 = node->src[0]->ne[3]; // N
  13927. const int64_t ne10 = node->src[1]->ne[0]; // W
  13928. const int64_t ne11 = node->src[1]->ne[1]; // H
  13929. const int64_t ne12 = node->src[1]->ne[2]; // C
  13930. const int64_t ne0 = node->ne[0];
  13931. const int64_t ne1 = node->ne[1];
  13932. const int64_t ne2 = node->ne[2];
  13933. const int64_t ne3 = node->ne[3];
  13934. const int64_t nk = ne00*ne01;
  13935. const int64_t ew0 = nk * ne02;
  13936. UNUSED(ne03);
  13937. UNUSED(ne2);
  13938. if (node->src[0]->type == GGML_TYPE_F16 &&
  13939. node->src[1]->type == GGML_TYPE_F32) {
  13940. // im2col: [N*OH*OW, IC*KH*KW]
  13941. cur = sizeof(ggml_fp16_t)*(ne3*ne0*ne1*ew0);
  13942. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13943. node->src[1]->type == GGML_TYPE_F32) {
  13944. cur = sizeof(float)* (ne10*ne11*ne12);
  13945. } else {
  13946. GGML_ASSERT(false);
  13947. }
  13948. } break;
  13949. case GGML_OP_CONV_TRANSPOSE_2D:
  13950. {
  13951. const int64_t ne00 = node->src[0]->ne[0]; // W
  13952. const int64_t ne01 = node->src[0]->ne[1]; // H
  13953. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13954. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13955. const int64_t ne10 = node->src[1]->ne[0]; // W
  13956. const int64_t ne11 = node->src[1]->ne[1]; // H
  13957. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13958. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13959. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13960. } break;
  13961. case GGML_OP_FLASH_ATTN:
  13962. {
  13963. n_tasks = n_threads;
  13964. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13965. if (node->src[1]->type == GGML_TYPE_F32) {
  13966. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13967. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13968. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13969. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13970. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13971. }
  13972. } break;
  13973. case GGML_OP_FLASH_FF:
  13974. {
  13975. n_tasks = n_threads;
  13976. if (node->src[1]->type == GGML_TYPE_F32) {
  13977. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13978. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13979. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13980. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13981. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13982. }
  13983. } break;
  13984. case GGML_OP_FLASH_ATTN_BACK:
  13985. {
  13986. n_tasks = n_threads;
  13987. const int64_t D = node->src[0]->ne[0];
  13988. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13989. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13990. if (node->src[1]->type == GGML_TYPE_F32) {
  13991. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13992. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13993. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13994. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13995. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13996. }
  13997. } break;
  13998. case GGML_OP_CROSS_ENTROPY_LOSS:
  13999. {
  14000. n_tasks = n_threads;
  14001. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14002. } break;
  14003. case GGML_OP_COUNT:
  14004. {
  14005. GGML_ASSERT(false);
  14006. } break;
  14007. default:
  14008. break;
  14009. }
  14010. work_size = MAX(work_size, cur);
  14011. }
  14012. if (work_size > 0) {
  14013. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14014. }
  14015. cplan.n_threads = n_threads;
  14016. cplan.work_size = work_size;
  14017. cplan.work_data = NULL;
  14018. return cplan;
  14019. }
  14020. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14021. {
  14022. GGML_ASSERT(cplan);
  14023. GGML_ASSERT(cplan->n_threads > 0);
  14024. if (cplan->work_size > 0) {
  14025. GGML_ASSERT(cplan->work_data);
  14026. }
  14027. }
  14028. const int n_threads = cplan->n_threads;
  14029. struct ggml_compute_state_shared state_shared = {
  14030. /*.cgraph =*/ cgraph,
  14031. /*.cgraph_plan =*/ cplan,
  14032. /*.perf_node_start_cycles =*/ 0,
  14033. /*.perf_node_start_time_us =*/ 0,
  14034. /*.n_threads =*/ n_threads,
  14035. /*.n_active =*/ n_threads,
  14036. /*.node_n =*/ -1,
  14037. /*.abort_callback =*/ NULL,
  14038. /*.abort_callback_data =*/ NULL,
  14039. };
  14040. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14041. // create thread pool
  14042. if (n_threads > 1) {
  14043. for (int j = 1; j < n_threads; ++j) {
  14044. workers[j] = (struct ggml_compute_state) {
  14045. .thrd = 0,
  14046. .ith = j,
  14047. .shared = &state_shared,
  14048. };
  14049. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14050. GGML_ASSERT(rc == 0);
  14051. UNUSED(rc);
  14052. }
  14053. }
  14054. workers[0].ith = 0;
  14055. workers[0].shared = &state_shared;
  14056. const int64_t perf_start_cycles = ggml_perf_cycles();
  14057. const int64_t perf_start_time_us = ggml_perf_time_us();
  14058. // this is a work thread too
  14059. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14060. // don't leave affinity set on the main thread
  14061. clear_numa_thread_affinity();
  14062. // join or kill thread pool
  14063. if (n_threads > 1) {
  14064. for (int j = 1; j < n_threads; j++) {
  14065. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14066. GGML_ASSERT(rc == 0);
  14067. }
  14068. }
  14069. // performance stats (graph)
  14070. {
  14071. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14072. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14073. cgraph->perf_runs++;
  14074. cgraph->perf_cycles += perf_cycles_cur;
  14075. cgraph->perf_time_us += perf_time_us_cur;
  14076. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14077. __func__, cgraph->perf_runs,
  14078. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14079. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14080. (double) perf_time_us_cur / 1000.0,
  14081. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14082. }
  14083. return compute_status;
  14084. }
  14085. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14086. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14087. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14088. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14089. ggml_graph_compute(cgraph, &cplan);
  14090. }
  14091. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14092. for (int i = 0; i < cgraph->n_leafs; i++) {
  14093. struct ggml_tensor * leaf = cgraph->leafs[i];
  14094. if (strcmp(leaf->name, name) == 0) {
  14095. return leaf;
  14096. }
  14097. }
  14098. for (int i = 0; i < cgraph->n_nodes; i++) {
  14099. struct ggml_tensor * node = cgraph->nodes[i];
  14100. if (strcmp(node->name, name) == 0) {
  14101. return node;
  14102. }
  14103. }
  14104. return NULL;
  14105. }
  14106. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14107. const int64_t * ne = tensor->ne;
  14108. const size_t * nb = tensor->nb;
  14109. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14110. ggml_type_name(tensor->type),
  14111. ggml_op_name (tensor->op),
  14112. tensor->n_dims,
  14113. ne[0], ne[1], ne[2], ne[3],
  14114. nb[0], nb[1], nb[2], nb[3],
  14115. tensor->data,
  14116. tensor->name);
  14117. }
  14118. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14119. const int64_t * ne = tensor->ne;
  14120. const size_t * nb = tensor->nb;
  14121. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14122. arg,
  14123. ggml_type_name(tensor->type),
  14124. ggml_op_name (tensor->op),
  14125. tensor->n_dims,
  14126. ne[0], ne[1], ne[2], ne[3],
  14127. nb[0], nb[1], nb[2], nb[3],
  14128. tensor->data,
  14129. tensor->name);
  14130. }
  14131. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14132. uint64_t size_eval = 0;
  14133. // compute size of intermediate results
  14134. // TODO: does not take into account scratch buffers !!!!
  14135. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14136. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14137. }
  14138. // print
  14139. {
  14140. FILE * fout = stdout;
  14141. fprintf(fout, "\n");
  14142. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14143. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14144. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14145. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14146. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14147. // header
  14148. fprintf(fout, "\n");
  14149. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14150. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14151. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14152. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14153. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14154. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14155. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14156. }
  14157. // header
  14158. fprintf(fout, "\n");
  14159. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14160. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14161. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14162. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14163. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14164. if (cgraph->nodes[i]->src[j]) {
  14165. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14166. }
  14167. }
  14168. fprintf(fout, "\n");
  14169. }
  14170. fprintf(fout, "\n");
  14171. }
  14172. // write binary data
  14173. {
  14174. FILE * fout = fopen(fname, "wb");
  14175. if (!fout) {
  14176. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14177. return;
  14178. }
  14179. // header
  14180. {
  14181. const uint32_t magic = GGML_FILE_MAGIC;
  14182. const uint32_t version = GGML_FILE_VERSION;
  14183. const uint32_t n_leafs = cgraph->n_leafs;
  14184. const uint32_t n_nodes = cgraph->n_nodes;
  14185. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14186. fwrite(&version, sizeof(uint32_t), 1, fout);
  14187. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14188. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14189. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14190. }
  14191. // leafs
  14192. {
  14193. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14194. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14195. const uint32_t type = tensor->type;
  14196. const uint32_t op = tensor->op;
  14197. const uint32_t n_dims = tensor->n_dims;
  14198. fwrite(&type, sizeof(uint32_t), 1, fout);
  14199. fwrite(&op, sizeof(uint32_t), 1, fout);
  14200. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14201. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14202. const uint64_t ne = tensor->ne[j];
  14203. const uint64_t nb = tensor->nb[j];
  14204. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14205. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14206. }
  14207. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14208. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14209. // dump the data
  14210. // TODO: pad this to 32 byte boundary
  14211. {
  14212. const size_t size = ggml_nbytes(tensor);
  14213. fwrite(tensor->data, sizeof(char), size, fout);
  14214. }
  14215. }
  14216. }
  14217. // nodes
  14218. {
  14219. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14220. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14221. const uint32_t type = tensor->type;
  14222. const uint32_t op = tensor->op;
  14223. const uint32_t n_dims = tensor->n_dims;
  14224. fwrite(&type, sizeof(uint32_t), 1, fout);
  14225. fwrite(&op, sizeof(uint32_t), 1, fout);
  14226. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14227. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14228. const uint64_t ne = tensor->ne[j];
  14229. const uint64_t nb = tensor->nb[j];
  14230. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14231. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14232. }
  14233. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14234. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14235. // output the op arguments
  14236. {
  14237. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14238. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14239. args[j] = tensor->src[j];
  14240. }
  14241. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14242. if (args[j]) {
  14243. int32_t idx = -1;
  14244. // check if leaf
  14245. {
  14246. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14247. if (args[j] == cgraph->leafs[k]) {
  14248. idx = k;
  14249. break;
  14250. }
  14251. }
  14252. }
  14253. // check if node
  14254. if (idx == -1) {
  14255. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14256. if (args[j] == cgraph->nodes[k]) {
  14257. idx = cgraph->n_leafs + k;
  14258. break;
  14259. }
  14260. }
  14261. }
  14262. if (idx == -1) {
  14263. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14264. fclose(fout);
  14265. return;
  14266. }
  14267. fwrite(&idx, sizeof(int32_t), 1, fout);
  14268. } else {
  14269. const int32_t nul = -1;
  14270. fwrite(&nul, sizeof(int32_t), 1, fout);
  14271. }
  14272. }
  14273. }
  14274. }
  14275. }
  14276. fclose(fout);
  14277. }
  14278. }
  14279. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14280. assert(*ctx_data == NULL);
  14281. assert(*ctx_eval == NULL);
  14282. struct ggml_cgraph * result = NULL;
  14283. struct ggml_tensor * data = NULL;
  14284. // read file into data
  14285. {
  14286. FILE * fin = fopen(fname, "rb");
  14287. if (!fin) {
  14288. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14289. return result;
  14290. }
  14291. size_t fsize = 0;
  14292. fseek(fin, 0, SEEK_END);
  14293. fsize = ftell(fin);
  14294. fseek(fin, 0, SEEK_SET);
  14295. // create the data context
  14296. {
  14297. const size_t overhead = 1*ggml_tensor_overhead();
  14298. struct ggml_init_params params = {
  14299. .mem_size = fsize + overhead,
  14300. .mem_buffer = NULL,
  14301. .no_alloc = false,
  14302. };
  14303. *ctx_data = ggml_init(params);
  14304. if (!*ctx_data) {
  14305. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14306. fclose(fin);
  14307. return result;
  14308. }
  14309. }
  14310. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14311. {
  14312. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14313. if (ret != fsize) {
  14314. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14315. fclose(fin);
  14316. return result;
  14317. }
  14318. }
  14319. fclose(fin);
  14320. }
  14321. // populate result
  14322. {
  14323. char * ptr = (char *) data->data;
  14324. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14325. if (magic != GGML_FILE_MAGIC) {
  14326. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14327. return result;
  14328. }
  14329. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14330. if (version != GGML_FILE_VERSION) {
  14331. fprintf(stderr, "%s: invalid version number\n", __func__);
  14332. return result;
  14333. }
  14334. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14335. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14336. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14337. const int graph_size = MAX(n_leafs, n_nodes);
  14338. // create the data context
  14339. {
  14340. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14341. struct ggml_init_params params = {
  14342. .mem_size = size_eval + overhead,
  14343. .mem_buffer = NULL,
  14344. .no_alloc = true,
  14345. };
  14346. *ctx_eval = ggml_init(params);
  14347. if (!*ctx_eval) {
  14348. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14349. return result;
  14350. }
  14351. }
  14352. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14353. result->n_leafs = n_leafs;
  14354. result->n_nodes = n_nodes;
  14355. // leafs
  14356. {
  14357. uint32_t type;
  14358. uint32_t op;
  14359. uint32_t n_dims;
  14360. for (uint32_t i = 0; i < n_leafs; ++i) {
  14361. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14362. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14363. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14364. int64_t ne[GGML_MAX_DIMS];
  14365. size_t nb[GGML_MAX_DIMS];
  14366. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14367. uint64_t ne_cur;
  14368. uint64_t nb_cur;
  14369. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14370. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14371. ne[j] = ne_cur;
  14372. nb[j] = nb_cur;
  14373. }
  14374. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14375. tensor->op = (enum ggml_op) op;
  14376. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14377. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14378. tensor->data = (void *) ptr;
  14379. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14380. tensor->nb[j] = nb[j];
  14381. }
  14382. result->leafs[i] = tensor;
  14383. ptr += ggml_nbytes(tensor);
  14384. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14385. }
  14386. }
  14387. ggml_set_no_alloc(*ctx_eval, false);
  14388. // nodes
  14389. {
  14390. uint32_t type;
  14391. uint32_t op;
  14392. uint32_t n_dims;
  14393. for (uint32_t i = 0; i < n_nodes; ++i) {
  14394. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14395. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14396. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14397. enum ggml_op eop = (enum ggml_op) op;
  14398. int64_t ne[GGML_MAX_DIMS];
  14399. size_t nb[GGML_MAX_DIMS];
  14400. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14401. uint64_t ne_cur;
  14402. uint64_t nb_cur;
  14403. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14404. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14405. ne[j] = ne_cur;
  14406. nb[j] = nb_cur;
  14407. }
  14408. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14409. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14410. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14411. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14412. // parse args
  14413. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14414. const int32_t arg_idx = ptr_arg_idx[j];
  14415. if (arg_idx == -1) {
  14416. continue;
  14417. }
  14418. if (arg_idx < result->n_leafs) {
  14419. args[j] = result->leafs[arg_idx];
  14420. } else {
  14421. args[j] = result->nodes[arg_idx - result->n_leafs];
  14422. }
  14423. }
  14424. // create the tensor
  14425. // "view" operations are handled differently
  14426. // TODO: handle inplace ops - currently a copy is always made
  14427. struct ggml_tensor * tensor = NULL;
  14428. switch (eop) {
  14429. // TODO: implement other view ops
  14430. case GGML_OP_RESHAPE:
  14431. {
  14432. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14433. } break;
  14434. case GGML_OP_VIEW:
  14435. {
  14436. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14437. size_t offs;
  14438. memcpy(&offs, ptr_op_params, sizeof(offs));
  14439. tensor->data = ((char *) tensor->data) + offs;
  14440. } break;
  14441. case GGML_OP_TRANSPOSE:
  14442. {
  14443. tensor = ggml_transpose(*ctx_eval, args[0]);
  14444. } break;
  14445. case GGML_OP_PERMUTE:
  14446. {
  14447. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14448. } break;
  14449. default:
  14450. {
  14451. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14452. tensor->op = eop;
  14453. } break;
  14454. }
  14455. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14456. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14457. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14458. tensor->nb[j] = nb[j];
  14459. }
  14460. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14461. tensor->src[j] = args[j];
  14462. }
  14463. result->nodes[i] = tensor;
  14464. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14465. }
  14466. }
  14467. }
  14468. return result;
  14469. }
  14470. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14471. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14472. GGML_PRINT("=== GRAPH ===\n");
  14473. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14474. for (int i = 0; i < cgraph->n_nodes; i++) {
  14475. struct ggml_tensor * node = cgraph->nodes[i];
  14476. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14477. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14478. i,
  14479. node->ne[0], node->ne[1], node->ne[2],
  14480. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14481. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14482. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14483. (double) node->perf_time_us / 1000.0,
  14484. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14485. }
  14486. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14487. for (int i = 0; i < cgraph->n_leafs; i++) {
  14488. struct ggml_tensor * node = cgraph->leafs[i];
  14489. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14490. i,
  14491. node->ne[0], node->ne[1],
  14492. ggml_op_name(node->op),
  14493. ggml_get_name(node));
  14494. }
  14495. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14496. if (perf_total_per_op_us[i] == 0) {
  14497. continue;
  14498. }
  14499. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14500. }
  14501. GGML_PRINT("========================================\n");
  14502. }
  14503. // check if node is part of the graph
  14504. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14505. if (cgraph == NULL) {
  14506. return true;
  14507. }
  14508. for (int i = 0; i < cgraph->n_nodes; i++) {
  14509. if (cgraph->nodes[i] == node) {
  14510. return true;
  14511. }
  14512. }
  14513. return false;
  14514. }
  14515. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14516. for (int i = 0; i < cgraph->n_nodes; i++) {
  14517. struct ggml_tensor * parent = cgraph->nodes[i];
  14518. if (parent->grad == node) {
  14519. return parent;
  14520. }
  14521. }
  14522. return NULL;
  14523. }
  14524. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14525. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14526. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14527. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14528. gparent0 ? (void *) gparent0 : (void *) parent,
  14529. gparent0 ? "g" : "x",
  14530. gparent ? (void *) gparent : (void *) node,
  14531. gparent ? "g" : "x",
  14532. gparent ? "empty" : "vee",
  14533. gparent ? "dashed" : "solid",
  14534. label);
  14535. }
  14536. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14537. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14538. (void *) parent, "x",
  14539. (void *) node, "x",
  14540. label);
  14541. }
  14542. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14543. char color[16];
  14544. FILE * fp = fopen(filename, "w");
  14545. GGML_ASSERT(fp);
  14546. fprintf(fp, "digraph G {\n");
  14547. fprintf(fp, " newrank = true;\n");
  14548. fprintf(fp, " rankdir = LR;\n");
  14549. for (int i = 0; i < gb->n_nodes; i++) {
  14550. struct ggml_tensor * node = gb->nodes[i];
  14551. if (ggml_graph_get_parent(gb, node) != NULL) {
  14552. continue;
  14553. }
  14554. if (node->is_param) {
  14555. snprintf(color, sizeof(color), "yellow");
  14556. } else if (node->grad) {
  14557. if (ggml_graph_find(gf, node)) {
  14558. snprintf(color, sizeof(color), "green");
  14559. } else {
  14560. snprintf(color, sizeof(color), "lightblue");
  14561. }
  14562. } else {
  14563. snprintf(color, sizeof(color), "white");
  14564. }
  14565. fprintf(fp, " \"%p\" [ "
  14566. "style = filled; fillcolor = %s; shape = record; "
  14567. "label=\"",
  14568. (void *) node, color);
  14569. if (strlen(node->name) > 0) {
  14570. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14571. } else {
  14572. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14573. }
  14574. if (node->n_dims == 2) {
  14575. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14576. } else {
  14577. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14578. }
  14579. if (node->grad) {
  14580. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14581. } else {
  14582. fprintf(fp, "\"; ]\n");
  14583. }
  14584. }
  14585. for (int i = 0; i < gb->n_leafs; i++) {
  14586. struct ggml_tensor * node = gb->leafs[i];
  14587. snprintf(color, sizeof(color), "pink");
  14588. fprintf(fp, " \"%p\" [ "
  14589. "style = filled; fillcolor = %s; shape = record; "
  14590. "label=\"<x>",
  14591. (void *) node, color);
  14592. if (strlen(node->name) > 0) {
  14593. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14594. } else {
  14595. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14596. }
  14597. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14598. if (ggml_nelements(node) < 5) {
  14599. fprintf(fp, " | (");
  14600. for (int j = 0; j < ggml_nelements(node); j++) {
  14601. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14602. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14603. }
  14604. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14605. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14606. }
  14607. else {
  14608. fprintf(fp, "#");
  14609. }
  14610. if (j < ggml_nelements(node) - 1) {
  14611. fprintf(fp, ", ");
  14612. }
  14613. }
  14614. fprintf(fp, ")");
  14615. }
  14616. fprintf(fp, "\"; ]\n");
  14617. }
  14618. for (int i = 0; i < gb->n_nodes; i++) {
  14619. struct ggml_tensor * node = gb->nodes[i];
  14620. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14621. if (node->src[j]) {
  14622. char label[16];
  14623. snprintf(label, sizeof(label), "src %d", j);
  14624. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14625. }
  14626. }
  14627. }
  14628. for (int i = 0; i < gb->n_leafs; i++) {
  14629. struct ggml_tensor * node = gb->leafs[i];
  14630. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14631. if (node->src[j]) {
  14632. char label[16];
  14633. snprintf(label, sizeof(label), "src %d", j);
  14634. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14635. }
  14636. }
  14637. }
  14638. fprintf(fp, "}\n");
  14639. fclose(fp);
  14640. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14641. }
  14642. ////////////////////////////////////////////////////////////////////////////////
  14643. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14644. int i = 0;
  14645. for (int p = 0; p < np; ++p) {
  14646. const int64_t ne = ggml_nelements(ps[p]) ;
  14647. // TODO: add function to set tensor from array
  14648. for (int64_t j = 0; j < ne; ++j) {
  14649. ggml_set_f32_1d(ps[p], j, x[i++]);
  14650. }
  14651. }
  14652. }
  14653. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14654. int i = 0;
  14655. for (int p = 0; p < np; ++p) {
  14656. const int64_t ne = ggml_nelements(ps[p]) ;
  14657. // TODO: add function to get all elements at once
  14658. for (int64_t j = 0; j < ne; ++j) {
  14659. x[i++] = ggml_get_f32_1d(ps[p], j);
  14660. }
  14661. }
  14662. }
  14663. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14664. int64_t i = 0;
  14665. for (int p = 0; p < np; ++p) {
  14666. const int64_t ne = ggml_nelements(ps[p]) ;
  14667. // TODO: add function to get all elements at once
  14668. for (int64_t j = 0; j < ne; ++j) {
  14669. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14670. }
  14671. }
  14672. }
  14673. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14674. int64_t i = 0;
  14675. for (int p = 0; p < np; ++p) {
  14676. const int64_t ne = ggml_nelements(ps[p]) ;
  14677. // TODO: add function to get all elements at once
  14678. for (int64_t j = 0; j < ne; ++j) {
  14679. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14680. }
  14681. }
  14682. }
  14683. //
  14684. // ADAM
  14685. //
  14686. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14687. //
  14688. static enum ggml_opt_result ggml_opt_adam(
  14689. struct ggml_context * ctx,
  14690. struct ggml_opt_context * opt,
  14691. struct ggml_opt_params params,
  14692. struct ggml_tensor * f,
  14693. struct ggml_cgraph * gf,
  14694. struct ggml_cgraph * gb,
  14695. ggml_opt_callback callback,
  14696. void * callback_data) {
  14697. GGML_ASSERT(ggml_is_scalar(f));
  14698. // these will store the parameters we want to optimize
  14699. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14700. int np = 0;
  14701. int64_t nx = 0;
  14702. for (int i = 0; i < gf->n_nodes; ++i) {
  14703. if (gf->nodes[i]->is_param) {
  14704. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14705. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14706. ps[np++] = gf->nodes[i];
  14707. nx += ggml_nelements(gf->nodes[i]);
  14708. }
  14709. }
  14710. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14711. int iter = opt->iter;
  14712. ggml_opt_init(opt->ctx, opt, params, nx);
  14713. opt->iter = iter;
  14714. }
  14715. // constants
  14716. float sched = params.adam.sched;
  14717. const float alpha = params.adam.alpha;
  14718. const float decay = params.adam.decay * alpha;
  14719. const float beta1 = params.adam.beta1;
  14720. const float beta2 = params.adam.beta2;
  14721. const float eps = params.adam.eps;
  14722. const float gclip = params.adam.gclip;
  14723. const int decay_min_ndim = params.adam.decay_min_ndim;
  14724. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14725. const float accum_norm = 1.0f / (float) n_accum;
  14726. float * g = opt->adam.g->data; // gradients
  14727. float * m = opt->adam.m->data; // first moment
  14728. float * v = opt->adam.v->data; // second moment
  14729. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14730. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14731. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14732. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14733. bool cancel = false;
  14734. // compute the function value
  14735. float fx = 0;
  14736. ggml_set_zero(opt->adam.g);
  14737. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14738. if (callback) {
  14739. callback(callback_data, accum_step, &sched, &cancel);
  14740. if (cancel) {
  14741. return GGML_OPT_CANCEL;
  14742. }
  14743. }
  14744. // ggml_graph_reset (gf);
  14745. ggml_set_f32 (f->grad, 1.0f);
  14746. ggml_graph_compute(gb, &cplan);
  14747. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14748. fx += ggml_get_f32_1d(f, 0);
  14749. }
  14750. fx *= accum_norm;
  14751. opt->adam.fx_prev = fx;
  14752. opt->adam.fx_best = opt->adam.fx_prev;
  14753. if (pf) {
  14754. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14755. }
  14756. opt->loss_before = opt->adam.fx_prev;
  14757. opt->loss_after = opt->adam.fx_prev;
  14758. // initialize
  14759. if (opt->just_initialized) {
  14760. opt->adam.n_no_improvement = 0;
  14761. opt->just_initialized = false;
  14762. }
  14763. float * fx_best = &opt->adam.fx_best;
  14764. float * fx_prev = &opt->adam.fx_prev;
  14765. int * n_no_improvement = &opt->adam.n_no_improvement;
  14766. int iter0 = opt->iter;
  14767. // run the optimizer
  14768. for (int t = 0; t < params.adam.n_iter; ++t) {
  14769. opt->iter = iter0 + t + 1;
  14770. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14771. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14772. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14773. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14774. for (int i = 0; i < np; ++i) {
  14775. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14776. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14777. }
  14778. const int64_t t_start_wall = ggml_time_us();
  14779. const int64_t t_start_cpu = ggml_cycles();
  14780. UNUSED(t_start_wall);
  14781. UNUSED(t_start_cpu);
  14782. {
  14783. float gnorm = 1.0f;
  14784. if (gclip > 0.0f) {
  14785. // gradient clipping
  14786. ggml_float sum = 0.0;
  14787. for (int64_t i = 0; i < nx; ++i) {
  14788. sum += (ggml_float)(g[i]*g[i]);
  14789. }
  14790. ggml_float norm = sqrt(sum);
  14791. if (norm > (ggml_float) gclip) {
  14792. gnorm = (float) ((ggml_float) gclip / norm);
  14793. }
  14794. }
  14795. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14796. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14797. int64_t i = 0;
  14798. for (int p = 0; p < np; ++p) {
  14799. const int64_t ne = ggml_nelements(ps[p]);
  14800. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  14801. for (int64_t j = 0; j < ne; ++j) {
  14802. float x = ggml_get_f32_1d(ps[p], j);
  14803. float g_ = g[i]*gnorm;
  14804. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14805. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14806. float mh = m[i]*beta1h;
  14807. float vh = v[i]*beta2h;
  14808. vh = sqrtf(vh) + eps;
  14809. x = x*(1.0f - p_decay) - mh/vh;
  14810. ggml_set_f32_1d(ps[p], j, x);
  14811. ++i;
  14812. }
  14813. }
  14814. }
  14815. fx = 0;
  14816. ggml_set_zero(opt->adam.g);
  14817. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14818. if (callback) {
  14819. callback(callback_data, accum_step, &sched, &cancel);
  14820. if (cancel) {
  14821. return GGML_OPT_CANCEL;;
  14822. }
  14823. }
  14824. // ggml_graph_reset (gf);
  14825. ggml_set_f32 (f->grad, 1.0f);
  14826. ggml_graph_compute(gb, &cplan);
  14827. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14828. fx += ggml_get_f32_1d(f, 0);
  14829. }
  14830. fx *= accum_norm;
  14831. opt->loss_after = fx;
  14832. // check convergence
  14833. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14834. GGML_PRINT_DEBUG("converged\n");
  14835. return GGML_OPT_OK;
  14836. }
  14837. // delta-based convergence test
  14838. if (pf != NULL) {
  14839. // need at least params.past iterations to start checking for convergence
  14840. if (params.past <= iter0 + t) {
  14841. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14842. if (fabsf(rate) < params.delta) {
  14843. return GGML_OPT_OK;
  14844. }
  14845. }
  14846. pf[(iter0 + t)%params.past] = fx;
  14847. }
  14848. // check for improvement
  14849. if (params.max_no_improvement > 0) {
  14850. if (fx_best[0] > fx) {
  14851. fx_best[0] = fx;
  14852. n_no_improvement[0] = 0;
  14853. } else {
  14854. ++n_no_improvement[0];
  14855. if (n_no_improvement[0] >= params.max_no_improvement) {
  14856. return GGML_OPT_OK;
  14857. }
  14858. }
  14859. }
  14860. fx_prev[0] = fx;
  14861. {
  14862. const int64_t t_end_cpu = ggml_cycles();
  14863. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14864. UNUSED(t_end_cpu);
  14865. const int64_t t_end_wall = ggml_time_us();
  14866. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14867. UNUSED(t_end_wall);
  14868. }
  14869. }
  14870. return GGML_OPT_DID_NOT_CONVERGE;
  14871. }
  14872. //
  14873. // L-BFGS
  14874. //
  14875. // the L-BFGS implementation below is based on the following implementation:
  14876. //
  14877. // https://github.com/chokkan/liblbfgs
  14878. //
  14879. struct ggml_lbfgs_iteration_data {
  14880. float alpha;
  14881. float ys;
  14882. float * s;
  14883. float * y;
  14884. };
  14885. static enum ggml_opt_result linesearch_backtracking(
  14886. const struct ggml_opt_params * params,
  14887. int nx,
  14888. float * x,
  14889. float * fx,
  14890. float * g,
  14891. float * d,
  14892. float * step,
  14893. const float * xp,
  14894. struct ggml_tensor * f,
  14895. struct ggml_cgraph * gb,
  14896. struct ggml_cplan * cplan,
  14897. const int np,
  14898. struct ggml_tensor * ps[],
  14899. bool * cancel,
  14900. ggml_opt_callback callback,
  14901. void * callback_data) {
  14902. int count = 0;
  14903. float width = 0.0f;
  14904. float dg = 0.0f;
  14905. float finit = 0.0f;
  14906. float dginit = 0.0f;
  14907. float dgtest = 0.0f;
  14908. const float dec = 0.5f;
  14909. const float inc = 2.1f;
  14910. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14911. const float accum_norm = 1.0f / (float) n_accum;
  14912. if (*step <= 0.f) {
  14913. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14914. }
  14915. // compute the initial gradient in the search direction
  14916. ggml_vec_dot_f32(nx, &dginit, g, d);
  14917. // make sure that d points to a descent direction
  14918. if (0 < dginit) {
  14919. return GGML_LINESEARCH_FAIL;
  14920. }
  14921. // initialize local variables
  14922. finit = *fx;
  14923. dgtest = params->lbfgs.ftol*dginit;
  14924. while (true) {
  14925. ggml_vec_cpy_f32(nx, x, xp);
  14926. ggml_vec_mad_f32(nx, x, d, *step);
  14927. // evaluate the function and gradient values
  14928. {
  14929. ggml_opt_set_params(np, ps, x);
  14930. *fx = 0;
  14931. memset(g, 0, sizeof(float)*nx);
  14932. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14933. if (callback) {
  14934. // LBFG-S does not support learning rate -> ignore learning schedule
  14935. float sched = 0;
  14936. callback(callback_data, accum_step, &sched, cancel);
  14937. if (*cancel) {
  14938. return GGML_OPT_CANCEL;
  14939. }
  14940. }
  14941. // ggml_graph_reset (gf);
  14942. ggml_set_f32 (f->grad, 1.0f);
  14943. ggml_graph_compute(gb, cplan);
  14944. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14945. *fx += ggml_get_f32_1d(f, 0);
  14946. }
  14947. *fx *= accum_norm;
  14948. }
  14949. ++count;
  14950. if (*fx > finit + (*step)*dgtest) {
  14951. width = dec;
  14952. } else {
  14953. // Armijo condition is satisfied
  14954. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14955. return count;
  14956. }
  14957. ggml_vec_dot_f32(nx, &dg, g, d);
  14958. // check the Wolfe condition
  14959. if (dg < params->lbfgs.wolfe * dginit) {
  14960. width = inc;
  14961. } else {
  14962. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14963. // regular Wolfe conditions
  14964. return count;
  14965. }
  14966. if(dg > -params->lbfgs.wolfe*dginit) {
  14967. width = dec;
  14968. } else {
  14969. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14970. return count;
  14971. }
  14972. }
  14973. }
  14974. if (*step < params->lbfgs.min_step) {
  14975. return GGML_LINESEARCH_MINIMUM_STEP;
  14976. }
  14977. if (*step > params->lbfgs.max_step) {
  14978. return GGML_LINESEARCH_MAXIMUM_STEP;
  14979. }
  14980. if (params->lbfgs.max_linesearch <= count) {
  14981. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14982. }
  14983. (*step) *= width;
  14984. }
  14985. GGML_UNREACHABLE();
  14986. }
  14987. static enum ggml_opt_result ggml_opt_lbfgs(
  14988. struct ggml_context * ctx,
  14989. struct ggml_opt_context * opt,
  14990. struct ggml_opt_params params,
  14991. struct ggml_tensor * f,
  14992. struct ggml_cgraph * gf,
  14993. struct ggml_cgraph * gb,
  14994. ggml_opt_callback callback,
  14995. void * callback_data) {
  14996. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14997. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14998. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14999. return GGML_OPT_INVALID_WOLFE;
  15000. }
  15001. }
  15002. const int m = params.lbfgs.m;
  15003. // these will store the parameters we want to optimize
  15004. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15005. int np = 0;
  15006. int nx = 0;
  15007. for (int i = 0; i < gf->n_nodes; ++i) {
  15008. if (gf->nodes[i]->is_param) {
  15009. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15010. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15011. ps[np++] = gf->nodes[i];
  15012. nx += ggml_nelements(gf->nodes[i]);
  15013. }
  15014. }
  15015. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15016. int iter = opt->iter;
  15017. ggml_opt_init(ctx, opt, params, nx);
  15018. opt->iter = iter;
  15019. }
  15020. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15021. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15022. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15023. float * x = opt->lbfgs.x->data; // current parameters
  15024. float * xp = opt->lbfgs.xp->data; // previous parameters
  15025. float * g = opt->lbfgs.g->data; // current gradient
  15026. float * gp = opt->lbfgs.gp->data; // previous gradient
  15027. float * d = opt->lbfgs.d->data; // search direction
  15028. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15029. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15030. const float accum_norm = 1.0f / (float) n_accum;
  15031. float fx = 0.0f; // cost function value
  15032. float xnorm = 0.0f; // ||x||
  15033. float gnorm = 0.0f; // ||g||
  15034. // initialize x from the graph nodes
  15035. ggml_opt_get_params(np, ps, x);
  15036. // the L-BFGS memory
  15037. float * lm_alpha = opt->lbfgs.lmal->data;
  15038. float * lm_ys = opt->lbfgs.lmys->data;
  15039. float * lm_s = opt->lbfgs.lms->data;
  15040. float * lm_y = opt->lbfgs.lmy->data;
  15041. bool cancel = false;
  15042. // evaluate the function value and its gradient
  15043. {
  15044. ggml_opt_set_params(np, ps, x);
  15045. fx = 0;
  15046. memset(g, 0, sizeof(float)*nx);
  15047. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15048. if (callback) {
  15049. // LBFG-S does not support learning rate -> ignore learning schedule
  15050. float sched = 0;
  15051. callback(callback_data, accum_step, &sched, &cancel);
  15052. if (cancel) {
  15053. return GGML_OPT_CANCEL;
  15054. }
  15055. }
  15056. // ggml_graph_reset (gf);
  15057. ggml_set_f32 (f->grad, 1.0f);
  15058. ggml_graph_compute(gb, &cplan);
  15059. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15060. fx += ggml_get_f32_1d(f, 0);
  15061. }
  15062. fx *= accum_norm;
  15063. opt->loss_before = fx;
  15064. opt->loss_after = fx;
  15065. }
  15066. // search direction = -gradient
  15067. ggml_vec_neg_f32(nx, d, g);
  15068. // ||x||, ||g||
  15069. ggml_vec_norm_f32(nx, &xnorm, x);
  15070. ggml_vec_norm_f32(nx, &gnorm, g);
  15071. if (xnorm < 1.0f) {
  15072. xnorm = 1.0f;
  15073. }
  15074. // already optimized
  15075. if (gnorm/xnorm <= params.lbfgs.eps) {
  15076. return GGML_OPT_OK;
  15077. }
  15078. if (opt->just_initialized) {
  15079. if (pf) {
  15080. pf[0] = fx;
  15081. }
  15082. opt->lbfgs.fx_best = fx;
  15083. // initial step
  15084. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15085. opt->lbfgs.j = 0;
  15086. opt->lbfgs.k = 1;
  15087. opt->lbfgs.end = 0;
  15088. opt->lbfgs.n_no_improvement = 0;
  15089. opt->just_initialized = false;
  15090. }
  15091. float * fx_best = &opt->lbfgs.fx_best;
  15092. float * step = &opt->lbfgs.step;
  15093. int * j = &opt->lbfgs.j;
  15094. int * k = &opt->lbfgs.k;
  15095. int * end = &opt->lbfgs.end;
  15096. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15097. int ls = 0;
  15098. int bound = 0;
  15099. float ys = 0.0f;
  15100. float yy = 0.0f;
  15101. float beta = 0.0f;
  15102. int it = 0;
  15103. while (true) {
  15104. // store the current position and gradient vectors
  15105. ggml_vec_cpy_f32(nx, xp, x);
  15106. ggml_vec_cpy_f32(nx, gp, g);
  15107. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15108. // to determine if the optimization should be cancelled
  15109. // this is a simple change, but not doing this atm, since I don't have a nice
  15110. // way to test and don't want to break something with so many changes lined up
  15111. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15112. if (cancel) {
  15113. return GGML_OPT_CANCEL;
  15114. }
  15115. if (ls < 0) {
  15116. // linesearch failed - go back to the previous point and return
  15117. ggml_vec_cpy_f32(nx, x, xp);
  15118. ggml_vec_cpy_f32(nx, g, gp);
  15119. return ls;
  15120. }
  15121. opt->loss_after = fx;
  15122. ggml_vec_norm_f32(nx, &xnorm, x);
  15123. ggml_vec_norm_f32(nx, &gnorm, g);
  15124. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15125. if (xnorm < 1.0f) {
  15126. xnorm = 1.0f;
  15127. }
  15128. if (gnorm/xnorm <= params.lbfgs.eps) {
  15129. // converged
  15130. return GGML_OPT_OK;
  15131. }
  15132. // delta-based convergence test
  15133. if (pf != NULL) {
  15134. // need at least params.past iterations to start checking for convergence
  15135. if (params.past <= k[0]) {
  15136. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15137. if (fabsf(rate) < params.delta) {
  15138. return GGML_OPT_OK;
  15139. }
  15140. }
  15141. pf[k[0]%params.past] = fx;
  15142. }
  15143. // check for improvement
  15144. if (params.max_no_improvement > 0) {
  15145. if (fx < fx_best[0]) {
  15146. fx_best[0] = fx;
  15147. n_no_improvement[0] = 0;
  15148. } else {
  15149. n_no_improvement[0]++;
  15150. if (n_no_improvement[0] >= params.max_no_improvement) {
  15151. return GGML_OPT_OK;
  15152. }
  15153. }
  15154. }
  15155. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15156. // reached the maximum number of iterations
  15157. return GGML_OPT_DID_NOT_CONVERGE;
  15158. }
  15159. // update vectors s and y:
  15160. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15161. // y_{k+1} = g_{k+1} - g_{k}.
  15162. //
  15163. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15164. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15165. // compute scalars ys and yy:
  15166. // ys = y^t \cdot s -> 1 / \rho.
  15167. // yy = y^t \cdot y.
  15168. //
  15169. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15170. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15171. lm_ys[end[0]] = ys;
  15172. // find new search direction
  15173. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15174. bound = (m <= k[0]) ? m : k[0];
  15175. k[0]++;
  15176. it++;
  15177. end[0] = (end[0] + 1)%m;
  15178. // initialize search direction with -g
  15179. ggml_vec_neg_f32(nx, d, g);
  15180. j[0] = end[0];
  15181. for (int i = 0; i < bound; ++i) {
  15182. j[0] = (j[0] + m - 1) % m;
  15183. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15184. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15185. lm_alpha[j[0]] /= lm_ys[j[0]];
  15186. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15187. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15188. }
  15189. ggml_vec_scale_f32(nx, d, ys/yy);
  15190. for (int i = 0; i < bound; ++i) {
  15191. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15192. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15193. beta /= lm_ys[j[0]];
  15194. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15195. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15196. j[0] = (j[0] + 1)%m;
  15197. }
  15198. step[0] = 1.0;
  15199. }
  15200. GGML_UNREACHABLE();
  15201. }
  15202. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15203. struct ggml_opt_params result;
  15204. switch (type) {
  15205. case GGML_OPT_ADAM:
  15206. {
  15207. result = (struct ggml_opt_params) {
  15208. .type = GGML_OPT_ADAM,
  15209. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15210. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15211. .past = 0,
  15212. .delta = 1e-5f,
  15213. .max_no_improvement = 100,
  15214. .print_forward_graph = true,
  15215. .print_backward_graph = true,
  15216. .n_gradient_accumulation = 1,
  15217. .adam = {
  15218. .n_iter = 10000,
  15219. .sched = 1.000f,
  15220. .decay = 0.0f,
  15221. .decay_min_ndim = 2,
  15222. .alpha = 0.001f,
  15223. .beta1 = 0.9f,
  15224. .beta2 = 0.999f,
  15225. .eps = 1e-8f,
  15226. .eps_f = 1e-5f,
  15227. .eps_g = 1e-3f,
  15228. .gclip = 0.0f,
  15229. },
  15230. };
  15231. } break;
  15232. case GGML_OPT_LBFGS:
  15233. {
  15234. result = (struct ggml_opt_params) {
  15235. .type = GGML_OPT_LBFGS,
  15236. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15237. .n_threads = 1,
  15238. .past = 0,
  15239. .delta = 1e-5f,
  15240. .max_no_improvement = 0,
  15241. .print_forward_graph = true,
  15242. .print_backward_graph = true,
  15243. .n_gradient_accumulation = 1,
  15244. .lbfgs = {
  15245. .m = 6,
  15246. .n_iter = 100,
  15247. .max_linesearch = 20,
  15248. .eps = 1e-5f,
  15249. .ftol = 1e-4f,
  15250. .wolfe = 0.9f,
  15251. .min_step = 1e-20f,
  15252. .max_step = 1e+20f,
  15253. .linesearch = GGML_LINESEARCH_DEFAULT,
  15254. },
  15255. };
  15256. } break;
  15257. }
  15258. return result;
  15259. }
  15260. GGML_API void ggml_opt_init(
  15261. struct ggml_context * ctx,
  15262. struct ggml_opt_context * opt,
  15263. struct ggml_opt_params params,
  15264. int64_t nx) {
  15265. opt->ctx = ctx;
  15266. opt->params = params;
  15267. opt->iter = 0;
  15268. opt->nx = nx;
  15269. opt->just_initialized = true;
  15270. if (opt->ctx == NULL) {
  15271. struct ggml_init_params ctx_opt_params;
  15272. if (opt->params.type == GGML_OPT_ADAM) {
  15273. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15274. if (opt->params.past > 0) {
  15275. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15276. }
  15277. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15278. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15279. if (opt->params.past > 0) {
  15280. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15281. }
  15282. }
  15283. ctx_opt_params.mem_buffer = NULL;
  15284. ctx_opt_params.no_alloc = false;
  15285. opt->ctx = ggml_init(ctx_opt_params);
  15286. }
  15287. switch (opt->params.type) {
  15288. case GGML_OPT_ADAM:
  15289. {
  15290. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15291. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15292. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15293. opt->adam.pf = params.past > 0
  15294. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15295. : NULL;
  15296. ggml_set_zero(opt->adam.m);
  15297. ggml_set_zero(opt->adam.v);
  15298. if (opt->adam.pf) {
  15299. ggml_set_zero(opt->adam.pf);
  15300. }
  15301. } break;
  15302. case GGML_OPT_LBFGS:
  15303. {
  15304. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15305. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15306. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15307. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15308. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15309. opt->lbfgs.pf = params.past > 0
  15310. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15311. : NULL;
  15312. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15313. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15314. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15315. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15316. ggml_set_zero(opt->lbfgs.x);
  15317. ggml_set_zero(opt->lbfgs.xp);
  15318. ggml_set_zero(opt->lbfgs.g);
  15319. ggml_set_zero(opt->lbfgs.gp);
  15320. ggml_set_zero(opt->lbfgs.d);
  15321. if (opt->lbfgs.pf) {
  15322. ggml_set_zero(opt->lbfgs.pf);
  15323. }
  15324. ggml_set_zero(opt->lbfgs.lmal);
  15325. ggml_set_zero(opt->lbfgs.lmys);
  15326. ggml_set_zero(opt->lbfgs.lms);
  15327. ggml_set_zero(opt->lbfgs.lmy);
  15328. } break;
  15329. }
  15330. }
  15331. enum ggml_opt_result ggml_opt(
  15332. struct ggml_context * ctx,
  15333. struct ggml_opt_params params,
  15334. struct ggml_tensor * f) {
  15335. bool free_ctx = false;
  15336. if (ctx == NULL) {
  15337. struct ggml_init_params params_ctx = {
  15338. .mem_size = 16*1024*1024,
  15339. .mem_buffer = NULL,
  15340. .no_alloc = false,
  15341. };
  15342. ctx = ggml_init(params_ctx);
  15343. if (ctx == NULL) {
  15344. return GGML_OPT_NO_CONTEXT;
  15345. }
  15346. free_ctx = true;
  15347. }
  15348. enum ggml_opt_result result = GGML_OPT_OK;
  15349. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15350. ggml_opt_init(ctx, opt, params, 0);
  15351. result = ggml_opt_resume(ctx, opt, f);
  15352. if (free_ctx) {
  15353. ggml_free(ctx);
  15354. }
  15355. return result;
  15356. }
  15357. enum ggml_opt_result ggml_opt_resume(
  15358. struct ggml_context * ctx,
  15359. struct ggml_opt_context * opt,
  15360. struct ggml_tensor * f) {
  15361. // build forward + backward compute graphs
  15362. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15363. ggml_build_forward_expand(gf, f);
  15364. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15365. ggml_build_backward_expand(ctx, gf, gb, true);
  15366. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15367. }
  15368. enum ggml_opt_result ggml_opt_resume_g(
  15369. struct ggml_context * ctx,
  15370. struct ggml_opt_context * opt,
  15371. struct ggml_tensor * f,
  15372. struct ggml_cgraph * gf,
  15373. struct ggml_cgraph * gb,
  15374. ggml_opt_callback callback,
  15375. void * callback_data) {
  15376. // build forward + backward compute graphs
  15377. enum ggml_opt_result result = GGML_OPT_OK;
  15378. switch (opt->params.type) {
  15379. case GGML_OPT_ADAM:
  15380. {
  15381. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15382. } break;
  15383. case GGML_OPT_LBFGS:
  15384. {
  15385. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15386. } break;
  15387. }
  15388. if (opt->params.print_forward_graph) {
  15389. ggml_graph_print (gf);
  15390. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15391. }
  15392. if (opt->params.print_backward_graph) {
  15393. ggml_graph_print (gb);
  15394. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15395. }
  15396. return result;
  15397. }
  15398. ////////////////////////////////////////////////////////////////////////////////
  15399. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15400. assert(k % QK4_0 == 0);
  15401. const int nb = k / QK4_0;
  15402. for (int b = 0; b < n; b += k) {
  15403. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15404. quantize_row_q4_0_reference(src + b, y, k);
  15405. for (int i = 0; i < nb; i++) {
  15406. for (int j = 0; j < QK4_0; j += 2) {
  15407. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15408. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15409. hist[vi0]++;
  15410. hist[vi1]++;
  15411. }
  15412. }
  15413. }
  15414. return (n/QK4_0*sizeof(block_q4_0));
  15415. }
  15416. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15417. assert(k % QK4_1 == 0);
  15418. const int nb = k / QK4_1;
  15419. for (int b = 0; b < n; b += k) {
  15420. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15421. quantize_row_q4_1_reference(src + b, y, k);
  15422. for (int i = 0; i < nb; i++) {
  15423. for (int j = 0; j < QK4_1; j += 2) {
  15424. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15425. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15426. hist[vi0]++;
  15427. hist[vi1]++;
  15428. }
  15429. }
  15430. }
  15431. return (n/QK4_1*sizeof(block_q4_1));
  15432. }
  15433. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15434. assert(k % QK5_0 == 0);
  15435. const int nb = k / QK5_0;
  15436. for (int b = 0; b < n; b += k) {
  15437. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15438. quantize_row_q5_0_reference(src + b, y, k);
  15439. for (int i = 0; i < nb; i++) {
  15440. uint32_t qh;
  15441. memcpy(&qh, &y[i].qh, sizeof(qh));
  15442. for (int j = 0; j < QK5_0; j += 2) {
  15443. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15444. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15445. // cast to 16 bins
  15446. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15447. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15448. hist[vi0]++;
  15449. hist[vi1]++;
  15450. }
  15451. }
  15452. }
  15453. return (n/QK5_0*sizeof(block_q5_0));
  15454. }
  15455. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15456. assert(k % QK5_1 == 0);
  15457. const int nb = k / QK5_1;
  15458. for (int b = 0; b < n; b += k) {
  15459. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15460. quantize_row_q5_1_reference(src + b, y, k);
  15461. for (int i = 0; i < nb; i++) {
  15462. uint32_t qh;
  15463. memcpy(&qh, &y[i].qh, sizeof(qh));
  15464. for (int j = 0; j < QK5_1; j += 2) {
  15465. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15466. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15467. // cast to 16 bins
  15468. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15469. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15470. hist[vi0]++;
  15471. hist[vi1]++;
  15472. }
  15473. }
  15474. }
  15475. return (n/QK5_1*sizeof(block_q5_1));
  15476. }
  15477. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15478. assert(k % QK8_0 == 0);
  15479. const int nb = k / QK8_0;
  15480. for (int b = 0; b < n; b += k) {
  15481. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15482. quantize_row_q8_0_reference(src + b, y, k);
  15483. for (int i = 0; i < nb; i++) {
  15484. for (int j = 0; j < QK8_0; ++j) {
  15485. const int8_t vi = y[i].qs[j];
  15486. hist[vi/16 + 8]++;
  15487. }
  15488. }
  15489. }
  15490. return (n/QK8_0*sizeof(block_q8_0));
  15491. }
  15492. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15493. size_t result = 0;
  15494. switch (type) {
  15495. case GGML_TYPE_Q4_0:
  15496. {
  15497. GGML_ASSERT(start % QK4_0 == 0);
  15498. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15499. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15500. } break;
  15501. case GGML_TYPE_Q4_1:
  15502. {
  15503. GGML_ASSERT(start % QK4_1 == 0);
  15504. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15505. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15506. } break;
  15507. case GGML_TYPE_Q5_0:
  15508. {
  15509. GGML_ASSERT(start % QK5_0 == 0);
  15510. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15511. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15512. } break;
  15513. case GGML_TYPE_Q5_1:
  15514. {
  15515. GGML_ASSERT(start % QK5_1 == 0);
  15516. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15517. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15518. } break;
  15519. case GGML_TYPE_Q8_0:
  15520. {
  15521. GGML_ASSERT(start % QK8_0 == 0);
  15522. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15523. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15524. } break;
  15525. case GGML_TYPE_Q2_K:
  15526. {
  15527. GGML_ASSERT(start % QK_K == 0);
  15528. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15529. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15530. } break;
  15531. case GGML_TYPE_Q3_K:
  15532. {
  15533. GGML_ASSERT(start % QK_K == 0);
  15534. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15535. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15536. } break;
  15537. case GGML_TYPE_Q4_K:
  15538. {
  15539. GGML_ASSERT(start % QK_K == 0);
  15540. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15541. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15542. } break;
  15543. case GGML_TYPE_Q5_K:
  15544. {
  15545. GGML_ASSERT(start % QK_K == 0);
  15546. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15547. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15548. } break;
  15549. case GGML_TYPE_Q6_K:
  15550. {
  15551. GGML_ASSERT(start % QK_K == 0);
  15552. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15553. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15554. } break;
  15555. case GGML_TYPE_F16:
  15556. {
  15557. int elemsize = sizeof(ggml_fp16_t);
  15558. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15559. result = n * elemsize;
  15560. } break;
  15561. case GGML_TYPE_F32:
  15562. {
  15563. int elemsize = sizeof(float);
  15564. result = n * elemsize;
  15565. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15566. } break;
  15567. default:
  15568. assert(false);
  15569. }
  15570. return result;
  15571. }
  15572. ////////////////////////////////////////////////////////////////////////////////
  15573. struct gguf_str {
  15574. uint64_t n; // GGUFv2
  15575. char * data;
  15576. };
  15577. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15578. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15579. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15580. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15581. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15582. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15583. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15584. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15585. [GGUF_TYPE_BOOL] = sizeof(bool),
  15586. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15587. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15588. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15589. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15590. [GGUF_TYPE_ARRAY] = 0, // undefined
  15591. };
  15592. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15593. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15594. [GGUF_TYPE_UINT8] = "u8",
  15595. [GGUF_TYPE_INT8] = "i8",
  15596. [GGUF_TYPE_UINT16] = "u16",
  15597. [GGUF_TYPE_INT16] = "i16",
  15598. [GGUF_TYPE_UINT32] = "u32",
  15599. [GGUF_TYPE_INT32] = "i32",
  15600. [GGUF_TYPE_FLOAT32] = "f32",
  15601. [GGUF_TYPE_BOOL] = "bool",
  15602. [GGUF_TYPE_STRING] = "str",
  15603. [GGUF_TYPE_ARRAY] = "arr",
  15604. [GGUF_TYPE_UINT64] = "u64",
  15605. [GGUF_TYPE_INT64] = "i64",
  15606. [GGUF_TYPE_FLOAT64] = "f64",
  15607. };
  15608. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15609. union gguf_value {
  15610. uint8_t uint8;
  15611. int8_t int8;
  15612. uint16_t uint16;
  15613. int16_t int16;
  15614. uint32_t uint32;
  15615. int32_t int32;
  15616. float float32;
  15617. uint64_t uint64;
  15618. int64_t int64;
  15619. double float64;
  15620. bool bool_;
  15621. struct gguf_str str;
  15622. struct {
  15623. enum gguf_type type;
  15624. uint64_t n; // GGUFv2
  15625. void * data;
  15626. } arr;
  15627. };
  15628. struct gguf_kv {
  15629. struct gguf_str key;
  15630. enum gguf_type type;
  15631. union gguf_value value;
  15632. };
  15633. struct gguf_header {
  15634. char magic[4];
  15635. uint32_t version;
  15636. uint64_t n_tensors; // GGUFv2
  15637. uint64_t n_kv; // GGUFv2
  15638. };
  15639. struct gguf_tensor_info {
  15640. struct gguf_str name;
  15641. uint32_t n_dims;
  15642. uint64_t ne[GGML_MAX_DIMS];
  15643. enum ggml_type type;
  15644. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15645. // for writing API
  15646. const void * data;
  15647. size_t size;
  15648. };
  15649. struct gguf_context {
  15650. struct gguf_header header;
  15651. struct gguf_kv * kv;
  15652. struct gguf_tensor_info * infos;
  15653. size_t alignment;
  15654. size_t offset; // offset of `data` from beginning of file
  15655. size_t size; // size of `data` in bytes
  15656. //uint8_t * padding;
  15657. void * data;
  15658. };
  15659. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15660. const size_t n = fread(dst, 1, size, file);
  15661. *offset += n;
  15662. return n == size;
  15663. }
  15664. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15665. p->n = 0;
  15666. p->data = NULL;
  15667. bool ok = true;
  15668. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15669. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15670. return ok;
  15671. }
  15672. struct gguf_context * gguf_init_empty(void) {
  15673. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15674. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15675. ctx->header.version = GGUF_VERSION;
  15676. ctx->header.n_tensors = 0;
  15677. ctx->header.n_kv = 0;
  15678. ctx->kv = NULL;
  15679. ctx->infos = NULL;
  15680. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15681. ctx->offset = 0;
  15682. ctx->size = 0;
  15683. ctx->data = NULL;
  15684. return ctx;
  15685. }
  15686. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15687. FILE * file = fopen(fname, "rb");
  15688. if (!file) {
  15689. return NULL;
  15690. }
  15691. // offset from start of file
  15692. size_t offset = 0;
  15693. char magic[4];
  15694. // check the magic before making allocations
  15695. {
  15696. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15697. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15698. if (magic[i] != GGUF_MAGIC[i]) {
  15699. fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
  15700. fclose(file);
  15701. return NULL;
  15702. }
  15703. }
  15704. }
  15705. bool ok = true;
  15706. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15707. // read the header
  15708. {
  15709. strncpy(ctx->header.magic, magic, 4);
  15710. ctx->kv = NULL;
  15711. ctx->infos = NULL;
  15712. ctx->data = NULL;
  15713. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15714. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15715. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15716. if (ctx->header.version == 1) {
  15717. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15718. fclose(file);
  15719. gguf_free(ctx);
  15720. return NULL;
  15721. }
  15722. if (!ok) {
  15723. fprintf(stderr, "%s: failed to read header\n", __func__);
  15724. fclose(file);
  15725. gguf_free(ctx);
  15726. return NULL;
  15727. }
  15728. }
  15729. // read the kv pairs
  15730. {
  15731. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15732. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15733. struct gguf_kv * kv = &ctx->kv[i];
  15734. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15735. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15736. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15737. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15738. switch (kv->type) {
  15739. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15740. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15741. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15742. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15743. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15744. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15745. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15746. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15747. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15748. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15749. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15750. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15751. case GGUF_TYPE_ARRAY:
  15752. {
  15753. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15754. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15755. switch (kv->value.arr.type) {
  15756. case GGUF_TYPE_UINT8:
  15757. case GGUF_TYPE_INT8:
  15758. case GGUF_TYPE_UINT16:
  15759. case GGUF_TYPE_INT16:
  15760. case GGUF_TYPE_UINT32:
  15761. case GGUF_TYPE_INT32:
  15762. case GGUF_TYPE_FLOAT32:
  15763. case GGUF_TYPE_UINT64:
  15764. case GGUF_TYPE_INT64:
  15765. case GGUF_TYPE_FLOAT64:
  15766. case GGUF_TYPE_BOOL:
  15767. {
  15768. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15769. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15770. } break;
  15771. case GGUF_TYPE_STRING:
  15772. {
  15773. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15774. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15775. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15776. }
  15777. } break;
  15778. case GGUF_TYPE_ARRAY:
  15779. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15780. }
  15781. } break;
  15782. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15783. }
  15784. if (!ok) {
  15785. break;
  15786. }
  15787. }
  15788. if (!ok) {
  15789. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15790. fclose(file);
  15791. gguf_free(ctx);
  15792. return NULL;
  15793. }
  15794. }
  15795. // read the tensor infos
  15796. {
  15797. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15798. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15799. struct gguf_tensor_info * info = &ctx->infos[i];
  15800. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15801. info->ne[j] = 1;
  15802. }
  15803. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15804. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15805. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15806. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15807. }
  15808. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15809. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15810. if (!ok) {
  15811. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15812. fclose(file);
  15813. gguf_free(ctx);
  15814. return NULL;
  15815. }
  15816. }
  15817. }
  15818. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15819. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15820. if (alignment_idx != -1) {
  15821. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15822. }
  15823. // we require the data section to be aligned, so take into account any padding
  15824. {
  15825. const size_t offset_pad = offset % ctx->alignment;
  15826. if (offset_pad != 0) {
  15827. offset += ctx->alignment - offset_pad;
  15828. fseek(file, offset, SEEK_SET);
  15829. }
  15830. }
  15831. // store the current file offset - this is where the data section starts
  15832. ctx->offset = offset;
  15833. // compute the total size of the data section, taking into account the alignment
  15834. {
  15835. ctx->size = 0;
  15836. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15837. struct gguf_tensor_info * info = &ctx->infos[i];
  15838. const int64_t ne =
  15839. (int64_t) info->ne[0] *
  15840. (int64_t) info->ne[1] *
  15841. (int64_t) info->ne[2] *
  15842. (int64_t) info->ne[3];
  15843. if (ne % ggml_blck_size(info->type) != 0) {
  15844. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15845. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15846. fclose(file);
  15847. gguf_free(ctx);
  15848. return NULL;
  15849. }
  15850. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15851. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15852. }
  15853. }
  15854. // load the tensor data only if requested
  15855. if (params.ctx != NULL) {
  15856. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15857. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15858. // the ggml_tensor structs to the appropriate locations in the binary blob
  15859. // compute the exact size needed for the new ggml_context
  15860. const size_t mem_size =
  15861. params.no_alloc ?
  15862. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15863. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15864. struct ggml_init_params pdata = {
  15865. .mem_size = mem_size,
  15866. .mem_buffer = NULL,
  15867. .no_alloc = params.no_alloc,
  15868. };
  15869. *params.ctx = ggml_init(pdata);
  15870. struct ggml_context * ctx_data = *params.ctx;
  15871. struct ggml_tensor * data = NULL;
  15872. if (!params.no_alloc) {
  15873. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15874. ok = ok && data != NULL;
  15875. // read the binary blob with the tensor data
  15876. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15877. if (!ok) {
  15878. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15879. fclose(file);
  15880. ggml_free(ctx_data);
  15881. gguf_free(ctx);
  15882. return NULL;
  15883. }
  15884. ctx->data = data->data;
  15885. }
  15886. ggml_set_no_alloc(ctx_data, true);
  15887. // create the tensors
  15888. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15889. const int64_t ne[GGML_MAX_DIMS] = {
  15890. ctx->infos[i].ne[0],
  15891. ctx->infos[i].ne[1],
  15892. ctx->infos[i].ne[2],
  15893. ctx->infos[i].ne[3],
  15894. };
  15895. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15896. ok = ok && cur != NULL;
  15897. ggml_set_name(cur, ctx->infos[i].name.data);
  15898. if (!ok) {
  15899. break;
  15900. }
  15901. // point the data member to the appropriate location in the binary blob using the tensor infos
  15902. if (!params.no_alloc) {
  15903. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15904. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15905. }
  15906. }
  15907. if (!ok) {
  15908. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15909. fclose(file);
  15910. ggml_free(ctx_data);
  15911. gguf_free(ctx);
  15912. return NULL;
  15913. }
  15914. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15915. }
  15916. fclose(file);
  15917. return ctx;
  15918. }
  15919. void gguf_free(struct gguf_context * ctx) {
  15920. if (ctx == NULL) {
  15921. return;
  15922. }
  15923. if (ctx->kv) {
  15924. // free string memory - not great..
  15925. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15926. struct gguf_kv * kv = &ctx->kv[i];
  15927. if (kv->key.data) {
  15928. free(kv->key.data);
  15929. }
  15930. if (kv->type == GGUF_TYPE_STRING) {
  15931. if (kv->value.str.data) {
  15932. free(kv->value.str.data);
  15933. }
  15934. }
  15935. if (kv->type == GGUF_TYPE_ARRAY) {
  15936. if (kv->value.arr.data) {
  15937. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15938. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15939. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15940. if (str->data) {
  15941. free(str->data);
  15942. }
  15943. }
  15944. }
  15945. free(kv->value.arr.data);
  15946. }
  15947. }
  15948. }
  15949. free(ctx->kv);
  15950. }
  15951. if (ctx->infos) {
  15952. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15953. struct gguf_tensor_info * info = &ctx->infos[i];
  15954. if (info->name.data) {
  15955. free(info->name.data);
  15956. }
  15957. }
  15958. free(ctx->infos);
  15959. }
  15960. GGML_ALIGNED_FREE(ctx);
  15961. }
  15962. const char * gguf_type_name(enum gguf_type type) {
  15963. return GGUF_TYPE_NAME[type];
  15964. }
  15965. int gguf_get_version(const struct gguf_context * ctx) {
  15966. return ctx->header.version;
  15967. }
  15968. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15969. return ctx->alignment;
  15970. }
  15971. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15972. return ctx->offset;
  15973. }
  15974. void * gguf_get_data(const struct gguf_context * ctx) {
  15975. return ctx->data;
  15976. }
  15977. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15978. return ctx->header.n_kv;
  15979. }
  15980. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15981. // return -1 if key not found
  15982. int keyfound = -1;
  15983. const int n_kv = gguf_get_n_kv(ctx);
  15984. for (int i = 0; i < n_kv; ++i) {
  15985. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15986. keyfound = i;
  15987. break;
  15988. }
  15989. }
  15990. return keyfound;
  15991. }
  15992. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15993. return ctx->kv[key_id].key.data;
  15994. }
  15995. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15996. return ctx->kv[key_id].type;
  15997. }
  15998. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15999. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16000. return ctx->kv[key_id].value.arr.type;
  16001. }
  16002. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16003. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16004. return ctx->kv[key_id].value.arr.data;
  16005. }
  16006. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16007. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16008. struct gguf_kv * kv = &ctx->kv[key_id];
  16009. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16010. return str->data;
  16011. }
  16012. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16013. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16014. return ctx->kv[key_id].value.arr.n;
  16015. }
  16016. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16017. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16018. return ctx->kv[key_id].value.uint8;
  16019. }
  16020. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16021. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16022. return ctx->kv[key_id].value.int8;
  16023. }
  16024. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16025. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16026. return ctx->kv[key_id].value.uint16;
  16027. }
  16028. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16029. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16030. return ctx->kv[key_id].value.int16;
  16031. }
  16032. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16033. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16034. return ctx->kv[key_id].value.uint32;
  16035. }
  16036. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16037. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16038. return ctx->kv[key_id].value.int32;
  16039. }
  16040. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16041. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16042. return ctx->kv[key_id].value.float32;
  16043. }
  16044. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16045. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16046. return ctx->kv[key_id].value.uint64;
  16047. }
  16048. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16049. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16050. return ctx->kv[key_id].value.int64;
  16051. }
  16052. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16053. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16054. return ctx->kv[key_id].value.float64;
  16055. }
  16056. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16057. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16058. return ctx->kv[key_id].value.bool_;
  16059. }
  16060. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16061. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16062. return ctx->kv[key_id].value.str.data;
  16063. }
  16064. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16065. return ctx->header.n_tensors;
  16066. }
  16067. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16068. // return -1 if tensor not found
  16069. int tensorfound = -1;
  16070. const int n_tensors = gguf_get_n_tensors(ctx);
  16071. for (int i = 0; i < n_tensors; ++i) {
  16072. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16073. tensorfound = i;
  16074. break;
  16075. }
  16076. }
  16077. return tensorfound;
  16078. }
  16079. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16080. return ctx->infos[i].offset;
  16081. }
  16082. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16083. return ctx->infos[i].name.data;
  16084. }
  16085. // returns the index
  16086. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16087. const int idx = gguf_find_key(ctx, key);
  16088. if (idx >= 0) {
  16089. return idx;
  16090. }
  16091. const int n_kv = gguf_get_n_kv(ctx);
  16092. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16093. ctx->kv[n_kv].key.n = strlen(key);
  16094. ctx->kv[n_kv].key.data = strdup(key);
  16095. ctx->header.n_kv++;
  16096. return n_kv;
  16097. }
  16098. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16099. const int idx = gguf_get_or_add_key(ctx, key);
  16100. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16101. ctx->kv[idx].value.uint8 = val;
  16102. }
  16103. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16104. const int idx = gguf_get_or_add_key(ctx, key);
  16105. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16106. ctx->kv[idx].value.int8 = val;
  16107. }
  16108. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16109. const int idx = gguf_get_or_add_key(ctx, key);
  16110. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16111. ctx->kv[idx].value.uint16 = val;
  16112. }
  16113. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16114. const int idx = gguf_get_or_add_key(ctx, key);
  16115. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16116. ctx->kv[idx].value.int16 = val;
  16117. }
  16118. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16119. const int idx = gguf_get_or_add_key(ctx, key);
  16120. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16121. ctx->kv[idx].value.uint32 = val;
  16122. }
  16123. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16124. const int idx = gguf_get_or_add_key(ctx, key);
  16125. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16126. ctx->kv[idx].value.int32 = val;
  16127. }
  16128. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16129. const int idx = gguf_get_or_add_key(ctx, key);
  16130. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16131. ctx->kv[idx].value.float32 = val;
  16132. }
  16133. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16134. const int idx = gguf_get_or_add_key(ctx, key);
  16135. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16136. ctx->kv[idx].value.uint64 = val;
  16137. }
  16138. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16139. const int idx = gguf_get_or_add_key(ctx, key);
  16140. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16141. ctx->kv[idx].value.int64 = val;
  16142. }
  16143. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16144. const int idx = gguf_get_or_add_key(ctx, key);
  16145. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16146. ctx->kv[idx].value.float64 = val;
  16147. }
  16148. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16149. const int idx = gguf_get_or_add_key(ctx, key);
  16150. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16151. ctx->kv[idx].value.bool_ = val;
  16152. }
  16153. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16154. const int idx = gguf_get_or_add_key(ctx, key);
  16155. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16156. ctx->kv[idx].value.str.n = strlen(val);
  16157. ctx->kv[idx].value.str.data = strdup(val);
  16158. }
  16159. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16160. const int idx = gguf_get_or_add_key(ctx, key);
  16161. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16162. ctx->kv[idx].value.arr.type = type;
  16163. ctx->kv[idx].value.arr.n = n;
  16164. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16165. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16166. }
  16167. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16168. const int idx = gguf_get_or_add_key(ctx, key);
  16169. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16170. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16171. ctx->kv[idx].value.arr.n = n;
  16172. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16173. for (int i = 0; i < n; i++) {
  16174. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16175. str->n = strlen(data[i]);
  16176. str->data = strdup(data[i]);
  16177. }
  16178. }
  16179. // set or add KV pairs from another context
  16180. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16181. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16182. switch (src->kv[i].type) {
  16183. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16184. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16185. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16186. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16187. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16188. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16189. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16190. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16191. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16192. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16193. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16194. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16195. case GGUF_TYPE_ARRAY:
  16196. {
  16197. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16198. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16199. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16200. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16201. }
  16202. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16203. free(data);
  16204. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16205. GGML_ASSERT(false && "nested arrays not supported");
  16206. } else {
  16207. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16208. }
  16209. } break;
  16210. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16211. }
  16212. }
  16213. }
  16214. void gguf_add_tensor(
  16215. struct gguf_context * ctx,
  16216. const struct ggml_tensor * tensor) {
  16217. const int idx = ctx->header.n_tensors;
  16218. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16219. ctx->infos[idx].name.n = strlen(tensor->name);
  16220. ctx->infos[idx].name.data = strdup(tensor->name);
  16221. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16222. ctx->infos[idx].ne[i] = 1;
  16223. }
  16224. ctx->infos[idx].n_dims = tensor->n_dims;
  16225. for (int i = 0; i < tensor->n_dims; i++) {
  16226. ctx->infos[idx].ne[i] = tensor->ne[i];
  16227. }
  16228. ctx->infos[idx].type = tensor->type;
  16229. ctx->infos[idx].offset = 0;
  16230. ctx->infos[idx].data = tensor->data;
  16231. ctx->infos[idx].size = ggml_nbytes(tensor);
  16232. if (ctx->header.n_tensors > 0) {
  16233. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16234. }
  16235. ctx->header.n_tensors++;
  16236. }
  16237. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16238. const int idx = gguf_find_tensor(ctx, name);
  16239. if (idx < 0) {
  16240. GGML_ASSERT(false && "tensor not found");
  16241. }
  16242. ctx->infos[idx].type = type;
  16243. }
  16244. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16245. const int idx = gguf_find_tensor(ctx, name);
  16246. if (idx < 0) {
  16247. GGML_ASSERT(false && "tensor not found");
  16248. }
  16249. ctx->infos[idx].data = data;
  16250. ctx->infos[idx].size = size;
  16251. // update offsets
  16252. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16253. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16254. }
  16255. }
  16256. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16257. // fwrite(&val->n, sizeof(val->n), 1, file);
  16258. // fwrite(val->data, sizeof(char), val->n, file);
  16259. //}
  16260. //
  16261. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16262. // fwrite(val, sizeof(char), size, file);
  16263. //}
  16264. struct gguf_buf {
  16265. void * data;
  16266. size_t size;
  16267. size_t offset;
  16268. };
  16269. static struct gguf_buf gguf_buf_init(size_t size) {
  16270. struct gguf_buf buf = {
  16271. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16272. /*buf.size =*/ size,
  16273. /*buf.offset =*/ 0,
  16274. };
  16275. return buf;
  16276. }
  16277. static void gguf_buf_free(struct gguf_buf buf) {
  16278. if (buf.data) {
  16279. free(buf.data);
  16280. }
  16281. }
  16282. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16283. if (buf->offset + size > buf->size) {
  16284. buf->size = 1.5*(buf->offset + size);
  16285. if (buf->data) {
  16286. buf->data = realloc(buf->data, buf->size);
  16287. }
  16288. }
  16289. }
  16290. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16291. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16292. if (buf->data) {
  16293. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16294. }
  16295. buf->offset += sizeof(val->n);
  16296. if (buf->data) {
  16297. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16298. }
  16299. buf->offset += val->n;
  16300. }
  16301. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16302. gguf_buf_grow(buf, el_size);
  16303. if (buf->data) {
  16304. memcpy((char *) buf->data + buf->offset, val, el_size);
  16305. }
  16306. buf->offset += el_size;
  16307. }
  16308. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16309. // write header
  16310. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16311. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16312. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16313. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16314. // write key-value pairs
  16315. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16316. struct gguf_kv * kv = &ctx->kv[i];
  16317. gguf_bwrite_str(buf, &kv->key);
  16318. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16319. switch (kv->type) {
  16320. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16321. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16322. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16323. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16324. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16325. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16326. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16327. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16328. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16329. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16330. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16331. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16332. case GGUF_TYPE_ARRAY:
  16333. {
  16334. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16335. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16336. switch (kv->value.arr.type) {
  16337. case GGUF_TYPE_UINT8:
  16338. case GGUF_TYPE_INT8:
  16339. case GGUF_TYPE_UINT16:
  16340. case GGUF_TYPE_INT16:
  16341. case GGUF_TYPE_UINT32:
  16342. case GGUF_TYPE_INT32:
  16343. case GGUF_TYPE_FLOAT32:
  16344. case GGUF_TYPE_UINT64:
  16345. case GGUF_TYPE_INT64:
  16346. case GGUF_TYPE_FLOAT64:
  16347. case GGUF_TYPE_BOOL:
  16348. {
  16349. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16350. } break;
  16351. case GGUF_TYPE_STRING:
  16352. {
  16353. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16354. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16355. }
  16356. } break;
  16357. case GGUF_TYPE_ARRAY:
  16358. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16359. }
  16360. } break;
  16361. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16362. }
  16363. }
  16364. // write tensor infos
  16365. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16366. struct gguf_tensor_info * info = &ctx->infos[i];
  16367. gguf_bwrite_str(buf, &info->name);
  16368. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16369. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16370. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16371. }
  16372. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16373. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16374. }
  16375. // we require the data section to be aligned, so take into account any padding
  16376. {
  16377. const size_t offset = buf->offset;
  16378. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16379. if (offset_pad != offset) {
  16380. uint8_t pad = 0;
  16381. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16382. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16383. }
  16384. }
  16385. }
  16386. if (only_meta) {
  16387. return;
  16388. }
  16389. size_t offset = 0;
  16390. // write tensor data
  16391. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16392. struct gguf_tensor_info * info = &ctx->infos[i];
  16393. const size_t size = info->size;
  16394. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16395. gguf_bwrite_el(buf, info->data, size);
  16396. if (size_pad != size) {
  16397. uint8_t pad = 0;
  16398. for (size_t j = 0; j < size_pad - size; ++j) {
  16399. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16400. }
  16401. }
  16402. GGML_ASSERT(offset == info->offset);
  16403. offset += size_pad;
  16404. }
  16405. }
  16406. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16407. FILE * file = fopen(fname, "wb");
  16408. if (!file) {
  16409. GGML_ASSERT(false && "failed to open file for writing");
  16410. }
  16411. struct gguf_buf buf = gguf_buf_init(16*1024);
  16412. gguf_write_to_buf(ctx, &buf, only_meta);
  16413. fwrite(buf.data, 1, buf.offset, file);
  16414. gguf_buf_free(buf);
  16415. fclose(file);
  16416. }
  16417. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16418. // no allocs - only compute size
  16419. struct gguf_buf buf = gguf_buf_init(0);
  16420. gguf_write_to_buf(ctx, &buf, true);
  16421. return buf.offset;
  16422. }
  16423. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16424. struct gguf_buf buf = gguf_buf_init(16*1024);
  16425. gguf_write_to_buf(ctx, &buf, true);
  16426. memcpy(data, buf.data, buf.offset);
  16427. gguf_buf_free(buf);
  16428. }
  16429. ////////////////////////////////////////////////////////////////////////////////
  16430. int ggml_cpu_has_avx(void) {
  16431. #if defined(__AVX__)
  16432. return 1;
  16433. #else
  16434. return 0;
  16435. #endif
  16436. }
  16437. int ggml_cpu_has_avx2(void) {
  16438. #if defined(__AVX2__)
  16439. return 1;
  16440. #else
  16441. return 0;
  16442. #endif
  16443. }
  16444. int ggml_cpu_has_avx512(void) {
  16445. #if defined(__AVX512F__)
  16446. return 1;
  16447. #else
  16448. return 0;
  16449. #endif
  16450. }
  16451. int ggml_cpu_has_avx512_vbmi(void) {
  16452. #if defined(__AVX512VBMI__)
  16453. return 1;
  16454. #else
  16455. return 0;
  16456. #endif
  16457. }
  16458. int ggml_cpu_has_avx512_vnni(void) {
  16459. #if defined(__AVX512VNNI__)
  16460. return 1;
  16461. #else
  16462. return 0;
  16463. #endif
  16464. }
  16465. int ggml_cpu_has_fma(void) {
  16466. #if defined(__FMA__)
  16467. return 1;
  16468. #else
  16469. return 0;
  16470. #endif
  16471. }
  16472. int ggml_cpu_has_neon(void) {
  16473. #if defined(__ARM_NEON)
  16474. return 1;
  16475. #else
  16476. return 0;
  16477. #endif
  16478. }
  16479. int ggml_cpu_has_arm_fma(void) {
  16480. #if defined(__ARM_FEATURE_FMA)
  16481. return 1;
  16482. #else
  16483. return 0;
  16484. #endif
  16485. }
  16486. int ggml_cpu_has_metal(void) {
  16487. #if defined(GGML_USE_METAL)
  16488. return 1;
  16489. #else
  16490. return 0;
  16491. #endif
  16492. }
  16493. int ggml_cpu_has_f16c(void) {
  16494. #if defined(__F16C__)
  16495. return 1;
  16496. #else
  16497. return 0;
  16498. #endif
  16499. }
  16500. int ggml_cpu_has_fp16_va(void) {
  16501. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16502. return 1;
  16503. #else
  16504. return 0;
  16505. #endif
  16506. }
  16507. int ggml_cpu_has_wasm_simd(void) {
  16508. #if defined(__wasm_simd128__)
  16509. return 1;
  16510. #else
  16511. return 0;
  16512. #endif
  16513. }
  16514. int ggml_cpu_has_blas(void) {
  16515. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16516. return 1;
  16517. #else
  16518. return 0;
  16519. #endif
  16520. }
  16521. int ggml_cpu_has_cublas(void) {
  16522. #if defined(GGML_USE_CUBLAS)
  16523. return 1;
  16524. #else
  16525. return 0;
  16526. #endif
  16527. }
  16528. int ggml_cpu_has_clblast(void) {
  16529. #if defined(GGML_USE_CLBLAST)
  16530. return 1;
  16531. #else
  16532. return 0;
  16533. #endif
  16534. }
  16535. int ggml_cpu_has_gpublas(void) {
  16536. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16537. }
  16538. int ggml_cpu_has_sse3(void) {
  16539. #if defined(__SSE3__)
  16540. return 1;
  16541. #else
  16542. return 0;
  16543. #endif
  16544. }
  16545. int ggml_cpu_has_ssse3(void) {
  16546. #if defined(__SSSE3__)
  16547. return 1;
  16548. #else
  16549. return 0;
  16550. #endif
  16551. }
  16552. int ggml_cpu_has_vsx(void) {
  16553. #if defined(__POWER9_VECTOR__)
  16554. return 1;
  16555. #else
  16556. return 0;
  16557. #endif
  16558. }
  16559. ////////////////////////////////////////////////////////////////////////////////