utils.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. # type: ignore[reportUnusedImport]
  4. import subprocess
  5. import os
  6. import re
  7. import json
  8. import sys
  9. import requests
  10. import time
  11. from concurrent.futures import ThreadPoolExecutor, as_completed
  12. from typing import (
  13. Any,
  14. Callable,
  15. ContextManager,
  16. Iterable,
  17. Iterator,
  18. List,
  19. Literal,
  20. Tuple,
  21. Set,
  22. )
  23. from re import RegexFlag
  24. import wget
  25. DEFAULT_HTTP_TIMEOUT = 60
  26. class ServerResponse:
  27. headers: dict
  28. status_code: int
  29. body: dict | Any
  30. class ServerProcess:
  31. # default options
  32. debug: bool = False
  33. server_port: int = 8080
  34. server_host: str = "127.0.0.1"
  35. model_hf_repo: str = "ggml-org/models"
  36. model_hf_file: str | None = "tinyllamas/stories260K.gguf"
  37. model_alias: str = "tinyllama-2"
  38. temperature: float = 0.8
  39. seed: int = 42
  40. offline: bool = False
  41. # custom options
  42. model_alias: str | None = None
  43. model_url: str | None = None
  44. model_file: str | None = None
  45. model_draft: str | None = None
  46. n_threads: int | None = None
  47. n_gpu_layer: int | None = None
  48. n_batch: int | None = None
  49. n_ubatch: int | None = None
  50. n_ctx: int | None = None
  51. n_ga: int | None = None
  52. n_ga_w: int | None = None
  53. n_predict: int | None = None
  54. n_prompts: int | None = 0
  55. slot_save_path: str | None = None
  56. id_slot: int | None = None
  57. cache_prompt: bool | None = None
  58. n_slots: int | None = None
  59. ctk: str | None = None
  60. ctv: str | None = None
  61. fa: str | None = None
  62. server_continuous_batching: bool | None = False
  63. server_embeddings: bool | None = False
  64. server_reranking: bool | None = False
  65. server_metrics: bool | None = False
  66. server_slots: bool | None = False
  67. pooling: str | None = None
  68. draft: int | None = None
  69. api_key: str | None = None
  70. lora_files: List[str] | None = None
  71. enable_ctx_shift: int | None = False
  72. draft_min: int | None = None
  73. draft_max: int | None = None
  74. no_webui: bool | None = None
  75. jinja: bool | None = None
  76. reasoning_format: Literal['deepseek', 'none', 'nothink'] | None = None
  77. reasoning_budget: int | None = None
  78. chat_template: str | None = None
  79. chat_template_file: str | None = None
  80. server_path: str | None = None
  81. mmproj_url: str | None = None
  82. # session variables
  83. process: subprocess.Popen | None = None
  84. def __init__(self):
  85. if "N_GPU_LAYERS" in os.environ:
  86. self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
  87. if "DEBUG" in os.environ:
  88. self.debug = True
  89. if "PORT" in os.environ:
  90. self.server_port = int(os.environ["PORT"])
  91. self.external_server = "DEBUG_EXTERNAL" in os.environ
  92. def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
  93. if self.external_server:
  94. print(f"[external_server]: Assuming external server running on {self.server_host}:{self.server_port}")
  95. return
  96. if self.server_path is not None:
  97. server_path = self.server_path
  98. elif "LLAMA_SERVER_BIN_PATH" in os.environ:
  99. server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
  100. elif os.name == "nt":
  101. server_path = "../../../build/bin/Release/llama-server.exe"
  102. else:
  103. server_path = "../../../build/bin/llama-server"
  104. server_args = [
  105. "--host",
  106. self.server_host,
  107. "--port",
  108. self.server_port,
  109. "--temp",
  110. self.temperature,
  111. "--seed",
  112. self.seed,
  113. ]
  114. if self.offline:
  115. server_args.append("--offline")
  116. if self.model_file:
  117. server_args.extend(["--model", self.model_file])
  118. if self.model_url:
  119. server_args.extend(["--model-url", self.model_url])
  120. if self.model_draft:
  121. server_args.extend(["--model-draft", self.model_draft])
  122. if self.model_hf_repo:
  123. server_args.extend(["--hf-repo", self.model_hf_repo])
  124. if self.model_hf_file:
  125. server_args.extend(["--hf-file", self.model_hf_file])
  126. if self.n_batch:
  127. server_args.extend(["--batch-size", self.n_batch])
  128. if self.n_ubatch:
  129. server_args.extend(["--ubatch-size", self.n_ubatch])
  130. if self.n_threads:
  131. server_args.extend(["--threads", self.n_threads])
  132. if self.n_gpu_layer:
  133. server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
  134. if self.draft is not None:
  135. server_args.extend(["--draft", self.draft])
  136. if self.server_continuous_batching:
  137. server_args.append("--cont-batching")
  138. if self.server_embeddings:
  139. server_args.append("--embedding")
  140. if self.server_reranking:
  141. server_args.append("--reranking")
  142. if self.server_metrics:
  143. server_args.append("--metrics")
  144. if self.server_slots:
  145. server_args.append("--slots")
  146. else:
  147. server_args.append("--no-slots")
  148. if self.pooling:
  149. server_args.extend(["--pooling", self.pooling])
  150. if self.model_alias:
  151. server_args.extend(["--alias", self.model_alias])
  152. if self.n_ctx:
  153. server_args.extend(["--ctx-size", self.n_ctx])
  154. if self.n_slots:
  155. server_args.extend(["--parallel", self.n_slots])
  156. if self.ctk:
  157. server_args.extend(["-ctk", self.ctk])
  158. if self.ctv:
  159. server_args.extend(["-ctv", self.ctv])
  160. if self.fa is not None:
  161. server_args.extend(["-fa", self.fa])
  162. if self.n_predict:
  163. server_args.extend(["--n-predict", self.n_predict])
  164. if self.slot_save_path:
  165. server_args.extend(["--slot-save-path", self.slot_save_path])
  166. if self.n_ga:
  167. server_args.extend(["--grp-attn-n", self.n_ga])
  168. if self.n_ga_w:
  169. server_args.extend(["--grp-attn-w", self.n_ga_w])
  170. if self.debug:
  171. server_args.append("--verbose")
  172. if self.lora_files:
  173. for lora_file in self.lora_files:
  174. server_args.extend(["--lora", lora_file])
  175. if self.enable_ctx_shift:
  176. server_args.append("--context-shift")
  177. if self.api_key:
  178. server_args.extend(["--api-key", self.api_key])
  179. if self.draft_max:
  180. server_args.extend(["--draft-max", self.draft_max])
  181. if self.draft_min:
  182. server_args.extend(["--draft-min", self.draft_min])
  183. if self.no_webui:
  184. server_args.append("--no-webui")
  185. if self.jinja:
  186. server_args.append("--jinja")
  187. if self.reasoning_format is not None:
  188. server_args.extend(("--reasoning-format", self.reasoning_format))
  189. if self.reasoning_budget is not None:
  190. server_args.extend(("--reasoning-budget", self.reasoning_budget))
  191. if self.chat_template:
  192. server_args.extend(["--chat-template", self.chat_template])
  193. if self.chat_template_file:
  194. server_args.extend(["--chat-template-file", self.chat_template_file])
  195. if self.mmproj_url:
  196. server_args.extend(["--mmproj-url", self.mmproj_url])
  197. args = [str(arg) for arg in [server_path, *server_args]]
  198. print(f"tests: starting server with: {' '.join(args)}")
  199. flags = 0
  200. if "nt" == os.name:
  201. flags |= subprocess.DETACHED_PROCESS
  202. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  203. flags |= subprocess.CREATE_NO_WINDOW
  204. self.process = subprocess.Popen(
  205. [str(arg) for arg in [server_path, *server_args]],
  206. creationflags=flags,
  207. stdout=sys.stdout,
  208. stderr=sys.stdout,
  209. env={**os.environ, "LLAMA_CACHE": "tmp"} if "LLAMA_CACHE" not in os.environ else None,
  210. )
  211. server_instances.add(self)
  212. print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
  213. # wait for server to start
  214. start_time = time.time()
  215. while time.time() - start_time < timeout_seconds:
  216. try:
  217. response = self.make_request("GET", "/health", headers={
  218. "Authorization": f"Bearer {self.api_key}" if self.api_key else None
  219. })
  220. if response.status_code == 200:
  221. self.ready = True
  222. return # server is ready
  223. except Exception as e:
  224. pass
  225. # Check if process died
  226. if self.process.poll() is not None:
  227. raise RuntimeError(f"Server process died with return code {self.process.returncode}")
  228. print(f"Waiting for server to start...")
  229. time.sleep(0.5)
  230. raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
  231. def stop(self) -> None:
  232. if self.external_server:
  233. print("[external_server]: Not stopping external server")
  234. return
  235. if self in server_instances:
  236. server_instances.remove(self)
  237. if self.process:
  238. print(f"Stopping server with pid={self.process.pid}")
  239. self.process.kill()
  240. self.process = None
  241. def make_request(
  242. self,
  243. method: str,
  244. path: str,
  245. data: dict | Any | None = None,
  246. headers: dict | None = None,
  247. timeout: float | None = None,
  248. ) -> ServerResponse:
  249. url = f"http://{self.server_host}:{self.server_port}{path}"
  250. parse_body = False
  251. if method == "GET":
  252. response = requests.get(url, headers=headers, timeout=timeout)
  253. parse_body = True
  254. elif method == "POST":
  255. response = requests.post(url, headers=headers, json=data, timeout=timeout)
  256. parse_body = True
  257. elif method == "OPTIONS":
  258. response = requests.options(url, headers=headers, timeout=timeout)
  259. else:
  260. raise ValueError(f"Unimplemented method: {method}")
  261. result = ServerResponse()
  262. result.headers = dict(response.headers)
  263. result.status_code = response.status_code
  264. result.body = response.json() if parse_body else None
  265. print("Response from server", json.dumps(result.body, indent=2))
  266. return result
  267. def make_stream_request(
  268. self,
  269. method: str,
  270. path: str,
  271. data: dict | None = None,
  272. headers: dict | None = None,
  273. ) -> Iterator[dict]:
  274. url = f"http://{self.server_host}:{self.server_port}{path}"
  275. if method == "POST":
  276. response = requests.post(url, headers=headers, json=data, stream=True)
  277. else:
  278. raise ValueError(f"Unimplemented method: {method}")
  279. for line_bytes in response.iter_lines():
  280. line = line_bytes.decode("utf-8")
  281. if '[DONE]' in line:
  282. break
  283. elif line.startswith('data: '):
  284. data = json.loads(line[6:])
  285. print("Partial response from server", json.dumps(data, indent=2))
  286. yield data
  287. def make_any_request(
  288. self,
  289. method: str,
  290. path: str,
  291. data: dict | None = None,
  292. headers: dict | None = None,
  293. timeout: float | None = None,
  294. ) -> dict:
  295. stream = data.get('stream', False)
  296. if stream:
  297. content: list[str] = []
  298. reasoning_content: list[str] = []
  299. tool_calls: list[dict] = []
  300. finish_reason: Optional[str] = None
  301. content_parts = 0
  302. reasoning_content_parts = 0
  303. tool_call_parts = 0
  304. arguments_parts = 0
  305. for chunk in self.make_stream_request(method, path, data, headers):
  306. if chunk['choices']:
  307. assert len(chunk['choices']) == 1, f'Expected 1 choice, got {len(chunk["choices"])}'
  308. choice = chunk['choices'][0]
  309. if choice['delta'].get('content') is not None:
  310. assert len(choice['delta']['content']) > 0, f'Expected non empty content delta!'
  311. content.append(choice['delta']['content'])
  312. content_parts += 1
  313. if choice['delta'].get('reasoning_content') is not None:
  314. assert len(choice['delta']['reasoning_content']) > 0, f'Expected non empty reasoning_content delta!'
  315. reasoning_content.append(choice['delta']['reasoning_content'])
  316. reasoning_content_parts += 1
  317. if choice['delta'].get('finish_reason') is not None:
  318. finish_reason = choice['delta']['finish_reason']
  319. for tc in choice['delta'].get('tool_calls', []):
  320. if 'function' not in tc:
  321. raise ValueError(f"Expected function type, got {tc['type']}")
  322. if tc['index'] >= len(tool_calls):
  323. assert 'id' in tc
  324. assert tc.get('type') == 'function'
  325. assert 'function' in tc and 'name' in tc['function'] and len(tc['function']['name']) > 0, \
  326. f"Expected function call with name, got {tc.get('function')}"
  327. tool_calls.append(dict(
  328. id="",
  329. type="function",
  330. function=dict(
  331. name="",
  332. arguments="",
  333. )
  334. ))
  335. tool_call = tool_calls[tc['index']]
  336. if tc.get('id') is not None:
  337. tool_call['id'] = tc['id']
  338. fct = tc['function']
  339. assert 'id' not in fct, f"Function call should not have id: {fct}"
  340. if fct.get('name') is not None:
  341. tool_call['function']['name'] = tool_call['function'].get('name', '') + fct['name']
  342. if fct.get('arguments') is not None:
  343. tool_call['function']['arguments'] += fct['arguments']
  344. arguments_parts += 1
  345. tool_call_parts += 1
  346. else:
  347. # When `include_usage` is True (the default), we expect the last chunk of the stream
  348. # immediately preceding the `data: [DONE]` message to contain a `choices` field with an empty array
  349. # and a `usage` field containing the usage statistics (n.b., llama-server also returns `timings` in
  350. # the last chunk)
  351. assert 'usage' in chunk, f"Expected finish_reason in chunk: {chunk}"
  352. assert 'timings' in chunk, f"Expected finish_reason in chunk: {chunk}"
  353. print(f'Streamed response had {content_parts} content parts, {reasoning_content_parts} reasoning_content parts, {tool_call_parts} tool call parts incl. {arguments_parts} arguments parts')
  354. result = dict(
  355. choices=[
  356. dict(
  357. index=0,
  358. finish_reason=finish_reason,
  359. message=dict(
  360. role='assistant',
  361. content=''.join(content) if content else None,
  362. reasoning_content=''.join(reasoning_content) if reasoning_content else None,
  363. tool_calls=tool_calls if tool_calls else None,
  364. ),
  365. )
  366. ],
  367. )
  368. print("Final response from server", json.dumps(result, indent=2))
  369. return result
  370. else:
  371. response = self.make_request(method, path, data, headers, timeout=timeout)
  372. assert response.status_code == 200, f"Server returned error: {response.status_code}"
  373. return response.body
  374. server_instances: Set[ServerProcess] = set()
  375. class ServerPreset:
  376. @staticmethod
  377. def load_all() -> None:
  378. """ Load all server presets to ensure model files are cached. """
  379. servers: List[ServerProcess] = [
  380. method()
  381. for name, method in ServerPreset.__dict__.items()
  382. if callable(method) and name != "load_all"
  383. ]
  384. for server in servers:
  385. server.offline = False
  386. server.start()
  387. server.stop()
  388. @staticmethod
  389. def tinyllama2() -> ServerProcess:
  390. server = ServerProcess()
  391. server.model_hf_repo = "ggml-org/models"
  392. server.model_hf_file = "tinyllamas/stories260K.gguf"
  393. server.model_alias = "tinyllama-2"
  394. server.n_ctx = 512
  395. server.n_batch = 32
  396. server.n_slots = 2
  397. server.n_predict = 64
  398. server.seed = 42
  399. return server
  400. @staticmethod
  401. def bert_bge_small() -> ServerProcess:
  402. server = ServerProcess()
  403. server.offline = True # will be downloaded by load_all()
  404. server.model_hf_repo = "ggml-org/models"
  405. server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
  406. server.model_alias = "bert-bge-small"
  407. server.n_ctx = 512
  408. server.n_batch = 128
  409. server.n_ubatch = 128
  410. server.n_slots = 2
  411. server.seed = 42
  412. server.server_embeddings = True
  413. return server
  414. @staticmethod
  415. def bert_bge_small_with_fa() -> ServerProcess:
  416. server = ServerProcess()
  417. server.offline = True # will be downloaded by load_all()
  418. server.model_hf_repo = "ggml-org/models"
  419. server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
  420. server.model_alias = "bert-bge-small"
  421. server.n_ctx = 1024
  422. server.n_batch = 300
  423. server.n_ubatch = 300
  424. server.n_slots = 2
  425. server.fa = "on"
  426. server.seed = 42
  427. server.server_embeddings = True
  428. return server
  429. @staticmethod
  430. def tinyllama_infill() -> ServerProcess:
  431. server = ServerProcess()
  432. server.offline = True # will be downloaded by load_all()
  433. server.model_hf_repo = "ggml-org/models"
  434. server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
  435. server.model_alias = "tinyllama-infill"
  436. server.n_ctx = 2048
  437. server.n_batch = 1024
  438. server.n_slots = 1
  439. server.n_predict = 64
  440. server.temperature = 0.0
  441. server.seed = 42
  442. return server
  443. @staticmethod
  444. def stories15m_moe() -> ServerProcess:
  445. server = ServerProcess()
  446. server.offline = True # will be downloaded by load_all()
  447. server.model_hf_repo = "ggml-org/stories15M_MOE"
  448. server.model_hf_file = "stories15M_MOE-F16.gguf"
  449. server.model_alias = "stories15m-moe"
  450. server.n_ctx = 2048
  451. server.n_batch = 1024
  452. server.n_slots = 1
  453. server.n_predict = 64
  454. server.temperature = 0.0
  455. server.seed = 42
  456. return server
  457. @staticmethod
  458. def jina_reranker_tiny() -> ServerProcess:
  459. server = ServerProcess()
  460. server.offline = True # will be downloaded by load_all()
  461. server.model_hf_repo = "ggml-org/models"
  462. server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
  463. server.model_alias = "jina-reranker"
  464. server.n_ctx = 512
  465. server.n_batch = 512
  466. server.n_slots = 1
  467. server.seed = 42
  468. server.server_reranking = True
  469. return server
  470. @staticmethod
  471. def tinygemma3() -> ServerProcess:
  472. server = ServerProcess()
  473. server.offline = True # will be downloaded by load_all()
  474. # mmproj is already provided by HF registry API
  475. server.model_hf_repo = "ggml-org/tinygemma3-GGUF"
  476. server.model_hf_file = "tinygemma3-Q8_0.gguf"
  477. server.mmproj_url = "https://huggingface.co/ggml-org/tinygemma3-GGUF/resolve/main/mmproj-tinygemma3.gguf"
  478. server.model_alias = "tinygemma3"
  479. server.n_ctx = 1024
  480. server.n_batch = 32
  481. server.n_slots = 2
  482. server.n_predict = 4
  483. server.seed = 42
  484. return server
  485. def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
  486. """
  487. Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
  488. Example usage:
  489. results = parallel_function_calls([
  490. (func1, (arg1, arg2)),
  491. (func2, (arg3, arg4)),
  492. ])
  493. """
  494. results = [None] * len(function_list)
  495. exceptions = []
  496. def worker(index, func, args):
  497. try:
  498. result = func(*args)
  499. results[index] = result
  500. except Exception as e:
  501. exceptions.append((index, str(e)))
  502. with ThreadPoolExecutor() as executor:
  503. futures = []
  504. for i, (func, args) in enumerate(function_list):
  505. future = executor.submit(worker, i, func, args)
  506. futures.append(future)
  507. # Wait for all futures to complete
  508. for future in as_completed(futures):
  509. pass
  510. # Check if there were any exceptions
  511. if exceptions:
  512. print("Exceptions occurred:")
  513. for index, error in exceptions:
  514. print(f"Function at index {index}: {error}")
  515. return results
  516. def match_regex(regex: str, text: str) -> bool:
  517. return (
  518. re.compile(
  519. regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
  520. ).search(text)
  521. is not None
  522. )
  523. def download_file(url: str, output_file_path: str | None = None) -> str:
  524. """
  525. Download a file from a URL to a local path. If the file already exists, it will not be downloaded again.
  526. output_file_path is the local path to save the downloaded file. If not provided, the file will be saved in the root directory.
  527. Returns the local path of the downloaded file.
  528. """
  529. file_name = url.split('/').pop()
  530. output_file = f'./tmp/{file_name}' if output_file_path is None else output_file_path
  531. if not os.path.exists(output_file):
  532. print(f"Downloading {url} to {output_file}")
  533. wget.download(url, out=output_file)
  534. print(f"Done downloading to {output_file}")
  535. else:
  536. print(f"File already exists at {output_file}")
  537. return output_file
  538. def is_slow_test_allowed():
  539. return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"