| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882 |
- //
- // MIT license
- // Copyright (C) 2024 Intel Corporation
- // SPDX-License-Identifier: MIT
- //
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- #include <algorithm>
- #include <assert.h>
- #include <atomic>
- #include <cinttypes>
- #include <cstddef>
- #include <cstdint>
- #include <cstdlib>
- #include <float.h>
- #include <limits>
- #include <stdint.h>
- #include <stdio.h>
- #include <vector>
- #include <cmath>
- #include <iostream>
- #include <fstream>
- #include <stdio.h>
- #include <stdlib.h>
- #include <regex>
- #include <sycl/sycl.hpp>
- #include <sycl/half_type.hpp>
- #include "ggml-sycl.h"
- #include "ggml.h"
- #include "ggml-backend-impl.h"
- /*
- Following definition copied from DPCT head files, which are used by ggml-sycl.cpp
- */
- // COPY from DPCT head files
- #include <sycl/sycl.hpp>
- #include <oneapi/mkl.hpp>
- #include <map>
- #if defined(__linux__)
- #include <sys/mman.h>
- #elif defined(_WIN64)
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #else
- #error "Only support Windows and Linux."
- #endif
- #if defined(__linux__)
- #include <unistd.h>
- #include <sys/syscall.h>
- #endif
- #if defined(_WIN64)
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #endif
- #define DPCT_COMPATIBILITY_TEMP (900)
- #if defined(_MSC_VER)
- #define __dpct_align__(n) __declspec(align(n))
- #define __dpct_inline__ __forceinline
- #else
- #define __dpct_align__(n) __attribute__((aligned(n)))
- #define __dpct_inline__ __inline__ __attribute__((always_inline))
- #endif
- #if defined(_MSC_VER)
- #define __dpct_noinline__ __declspec(noinline)
- #else
- #define __dpct_noinline__ __attribute__((noinline))
- #endif
- std::string get_device_type_name(const sycl::device &Device) {
- auto DeviceType = Device.get_info<sycl::info::device::device_type>();
- switch (DeviceType) {
- case sycl::info::device_type::cpu:
- return "cpu";
- case sycl::info::device_type::gpu:
- return "gpu";
- case sycl::info::device_type::host:
- return "host";
- case sycl::info::device_type::accelerator:
- return "acc";
- default:
- return "unknown";
- }
- }
- std::string get_device_backend_and_type(const sycl::device &device) {
- std::stringstream device_type;
- sycl::backend backend = device.get_backend();
- device_type << backend << ":" << get_device_type_name(device);
- return device_type.str();
- }
- namespace dpct
- {
- typedef sycl::queue *queue_ptr;
- typedef sycl::event *event_ptr;
- typedef char *device_ptr;
- typedef uint8_t byte_t;
- typedef sycl::buffer<byte_t> buffer_t;
- /// SYCL default exception handler
- inline auto exception_handler = [](sycl::exception_list exceptions)
- {
- for (std::exception_ptr const &e : exceptions)
- {
- try
- {
- std::rethrow_exception(e);
- }
- catch (sycl::exception const &e)
- {
- std::cerr << "Caught asynchronous SYCL exception:" << std::endl
- << e.what() << std::endl
- << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- }
- }
- };
- enum error_code
- {
- success = 0,
- default_error = 999
- };
- enum memcpy_direction
- {
- host_to_host,
- host_to_device,
- device_to_host,
- device_to_device,
- automatic
- };
- enum memory_region
- {
- global = 0, // device global memory
- constant, // device constant memory
- local, // device local memory
- shared, // memory which can be accessed by host and device
- };
- enum class library_data_t : unsigned char
- {
- real_float = 0,
- complex_float,
- real_double,
- complex_double,
- real_half,
- complex_half,
- real_bfloat16,
- complex_bfloat16,
- real_int4,
- complex_int4,
- real_uint4,
- complex_uint4,
- real_int8,
- complex_int8,
- real_uint8,
- complex_uint8,
- real_int16,
- complex_int16,
- real_uint16,
- complex_uint16,
- real_int32,
- complex_int32,
- real_uint32,
- complex_uint32,
- real_int64,
- complex_int64,
- real_uint64,
- complex_uint64,
- real_int8_4,
- real_int8_32,
- real_uint8_4,
- library_data_t_size
- };
- template <typename T>
- struct DataType
- {
- using T2 = T;
- };
- template <typename T>
- struct DataType<sycl::vec<T, 2>>
- {
- using T2 = std::complex<T>;
- };
- static void destroy_event(event_ptr event)
- {
- delete event;
- }
- static inline unsigned int get_tid()
- {
- #if defined(__linux__)
- return syscall(SYS_gettid);
- #elif defined(_WIN64)
- return GetCurrentThreadId();
- #else
- #error "Only support Windows and Linux."
- #endif
- }
- namespace detail
- {
- static void get_version(const sycl::device &dev, int &major, int &minor)
- {
- // Version string has the following format:
- // a. OpenCL<space><major.minor><space><vendor-specific-information>
- // b. <major.minor>
- // c. <AmdGcnArchName> e.g gfx1030
- std::string ver;
- ver = dev.get_info<sycl::info::device::version>();
- std::string::size_type i = 0;
- while (i < ver.size()) {
- if (isdigit(ver[i]))
- break;
- i++;
- }
- major = std::stoi(&(ver[i]));
- while (i < ver.size()) {
- if (ver[i] == '.')
- break;
- i++;
- }
- if (i < ver.size()) {
- // a. and b.
- i++;
- minor = std::stoi(&(ver[i]));
- } else {
- // c.
- minor = 0;
- }
- }
- template <typename tag, typename T>
- class generic_error_type
- {
- public:
- generic_error_type() = default;
- generic_error_type(T value) : value{value} {}
- operator T() const { return value; }
- private:
- T value;
- };
- } // namespace detail
- /// Pitched 2D/3D memory data.
- class pitched_data
- {
- public:
- pitched_data() : pitched_data(nullptr, 0, 0, 0) {}
- pitched_data(void *data, size_t pitch, size_t x, size_t y)
- : _data(data), _pitch(pitch), _x(x), _y(y) {}
- void *get_data_ptr() { return _data; }
- void set_data_ptr(void *data) { _data = data; }
- size_t get_pitch() { return _pitch; }
- void set_pitch(size_t pitch) { _pitch = pitch; }
- size_t get_x() { return _x; }
- void set_x(size_t x) { _x = x; };
- size_t get_y() { return _y; }
- void set_y(size_t y) { _y = y; }
- private:
- void *_data;
- size_t _pitch, _x, _y;
- };
- class device_info
- {
- public:
- // get interface
- const char *get_name() const { return _name; }
- char *get_name() { return _name; }
- template <typename WorkItemSizesTy = sycl::range<3>,
- std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
- std::is_same_v<WorkItemSizesTy, int *>,
- int> = 0>
- auto get_max_work_item_sizes() const
- {
- if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
- return sycl::range<3>(_max_work_item_sizes_i[0],
- _max_work_item_sizes_i[1],
- _max_work_item_sizes_i[2]);
- else
- {
- return _max_work_item_sizes_i;
- }
- }
- template <typename WorkItemSizesTy = sycl::range<3>,
- std::enable_if_t<std::is_same_v<WorkItemSizesTy, sycl::range<3>> ||
- std::is_same_v<WorkItemSizesTy, int *>,
- int> = 0>
- auto get_max_work_item_sizes()
- {
- if constexpr (std::is_same_v<WorkItemSizesTy, sycl::range<3>>)
- return sycl::range<3>(_max_work_item_sizes_i[0],
- _max_work_item_sizes_i[1],
- _max_work_item_sizes_i[2]);
- else
- {
- return _max_work_item_sizes_i;
- }
- }
- bool get_host_unified_memory() const { return _host_unified_memory; }
- int get_major_version() const { return _major; }
- int get_minor_version() const { return _minor; }
- int get_integrated() const { return _integrated; }
- int get_max_clock_frequency() const { return _frequency; }
- int get_max_compute_units() const { return _max_compute_units; }
- int get_max_work_group_size() const { return _max_work_group_size; }
- int get_max_sub_group_size() const { return _max_sub_group_size; }
- int get_max_work_items_per_compute_unit() const
- {
- return _max_work_items_per_compute_unit;
- }
- int get_max_register_size_per_work_group() const
- {
- return _max_register_size_per_work_group;
- }
- template <typename NDRangeSizeTy = size_t *,
- std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
- std::is_same_v<NDRangeSizeTy, int *>,
- int> = 0>
- auto get_max_nd_range_size() const
- {
- if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
- return _max_nd_range_size;
- else
- return _max_nd_range_size_i;
- }
- template <typename NDRangeSizeTy = size_t *,
- std::enable_if_t<std::is_same_v<NDRangeSizeTy, size_t *> ||
- std::is_same_v<NDRangeSizeTy, int *>,
- int> = 0>
- auto get_max_nd_range_size()
- {
- if constexpr (std::is_same_v<NDRangeSizeTy, size_t *>)
- return _max_nd_range_size;
- else
- return _max_nd_range_size_i;
- }
- size_t get_global_mem_size() const { return _global_mem_size; }
- size_t get_local_mem_size() const { return _local_mem_size; }
- size_t get_max_mem_alloc_size() const { return _max_mem_alloc_size; }
- /// Returns the maximum clock rate of device's global memory in kHz. If
- /// compiler does not support this API then returns default value 3200000 kHz.
- unsigned int get_memory_clock_rate() const { return _memory_clock_rate; }
- /// Returns the maximum bus width between device and memory in bits. If
- /// compiler does not support this API then returns default value 64 bits.
- unsigned int get_memory_bus_width() const { return _memory_bus_width; }
- uint32_t get_device_id() const { return _device_id; }
- std::array<unsigned char, 16> get_uuid() const { return _uuid; }
- /// Returns global memory cache size in bytes.
- unsigned int get_global_mem_cache_size() const
- {
- return _global_mem_cache_size;
- }
- // set interface
- void set_name(const char *name)
- {
- size_t length = strlen(name);
- if (length < 256)
- {
- std::memcpy(_name, name, length + 1);
- }
- else
- {
- std::memcpy(_name, name, 255);
- _name[255] = '\0';
- }
- }
- void set_max_work_item_sizes(const sycl::range<3> max_work_item_sizes)
- {
- for (int i = 0; i < 3; ++i)
- _max_work_item_sizes_i[i] = max_work_item_sizes[i];
- }
- [[deprecated]] void
- set_max_work_item_sizes(const sycl::id<3> max_work_item_sizes)
- {
- for (int i = 0; i < 3; ++i)
- {
- _max_work_item_sizes_i[i] = max_work_item_sizes[i];
- }
- }
- void set_host_unified_memory(bool host_unified_memory)
- {
- _host_unified_memory = host_unified_memory;
- }
- void set_major_version(int major) { _major = major; }
- void set_minor_version(int minor) { _minor = minor; }
- void set_integrated(int integrated) { _integrated = integrated; }
- void set_max_clock_frequency(int frequency) { _frequency = frequency; }
- void set_max_compute_units(int max_compute_units)
- {
- _max_compute_units = max_compute_units;
- }
- void set_global_mem_size(size_t global_mem_size)
- {
- _global_mem_size = global_mem_size;
- }
- void set_local_mem_size(size_t local_mem_size)
- {
- _local_mem_size = local_mem_size;
- }
- void set_max_mem_alloc_size(size_t max_mem_alloc_size)
- {
- _max_mem_alloc_size = max_mem_alloc_size;
- }
- void set_max_work_group_size(int max_work_group_size)
- {
- _max_work_group_size = max_work_group_size;
- }
- void set_max_sub_group_size(int max_sub_group_size)
- {
- _max_sub_group_size = max_sub_group_size;
- }
- void
- set_max_work_items_per_compute_unit(int max_work_items_per_compute_unit)
- {
- _max_work_items_per_compute_unit = max_work_items_per_compute_unit;
- }
- void set_max_nd_range_size(int max_nd_range_size[])
- {
- for (int i = 0; i < 3; i++)
- {
- _max_nd_range_size[i] = max_nd_range_size[i];
- _max_nd_range_size_i[i] = max_nd_range_size[i];
- }
- }
- void set_memory_clock_rate(unsigned int memory_clock_rate)
- {
- _memory_clock_rate = memory_clock_rate;
- }
- void set_memory_bus_width(unsigned int memory_bus_width)
- {
- _memory_bus_width = memory_bus_width;
- }
- void
- set_max_register_size_per_work_group(int max_register_size_per_work_group)
- {
- _max_register_size_per_work_group = max_register_size_per_work_group;
- }
- void set_device_id(uint32_t device_id)
- {
- _device_id = device_id;
- }
- void set_uuid(std::array<unsigned char, 16> uuid)
- {
- _uuid = std::move(uuid);
- }
- void set_global_mem_cache_size(unsigned int global_mem_cache_size)
- {
- _global_mem_cache_size = global_mem_cache_size;
- }
- private:
- char _name[256];
- int _max_work_item_sizes_i[3];
- bool _host_unified_memory = false;
- int _major;
- int _minor;
- int _integrated = 0;
- int _frequency;
- // Set estimated value 3200000 kHz as default value.
- unsigned int _memory_clock_rate = 3200000;
- // Set estimated value 64 bits as default value.
- unsigned int _memory_bus_width = 64;
- unsigned int _global_mem_cache_size;
- int _max_compute_units;
- int _max_work_group_size;
- int _max_sub_group_size;
- int _max_work_items_per_compute_unit;
- int _max_register_size_per_work_group;
- size_t _global_mem_size;
- size_t _local_mem_size;
- size_t _max_mem_alloc_size;
- size_t _max_nd_range_size[3];
- int _max_nd_range_size_i[3];
- uint32_t _device_id;
- std::array<unsigned char, 16> _uuid;
- };
- static int get_major_version(const sycl::device &dev)
- {
- int major, minor;
- detail::get_version(dev, major, minor);
- return major;
- }
- static int get_minor_version(const sycl::device &dev)
- {
- int major, minor;
- detail::get_version(dev, major, minor);
- return minor;
- }
- static void get_device_info(device_info &out, const sycl::device &dev)
- {
- device_info prop;
- prop.set_name(dev.get_info<sycl::info::device::name>().c_str());
- int major, minor;
- detail::get_version(dev, major, minor);
- prop.set_major_version(major);
- prop.set_minor_version(minor);
- prop.set_max_work_item_sizes(
- #if (__SYCL_COMPILER_VERSION && __SYCL_COMPILER_VERSION < 20220902)
- // oneAPI DPC++ compiler older than 2022/09/02, where max_work_item_sizes
- // is an enum class element
- dev.get_info<sycl::info::device::max_work_item_sizes>());
- #else
- // SYCL 2020-conformant code, max_work_item_sizes is a struct templated by
- // an int
- dev.get_info<sycl::info::device::max_work_item_sizes<3>>());
- #endif
- prop.set_host_unified_memory(dev.has(sycl::aspect::usm_host_allocations));
- prop.set_max_clock_frequency(
- dev.get_info<sycl::info::device::max_clock_frequency>() * 1000);
- prop.set_max_compute_units(
- dev.get_info<sycl::info::device::max_compute_units>());
- prop.set_max_work_group_size(
- dev.get_info<sycl::info::device::max_work_group_size>());
- prop.set_global_mem_size(dev.get_info<sycl::info::device::global_mem_size>());
- prop.set_local_mem_size(dev.get_info<sycl::info::device::local_mem_size>());
- prop.set_max_mem_alloc_size(dev.get_info<sycl::info::device::max_mem_alloc_size>());
- #if (defined(SYCL_EXT_INTEL_DEVICE_INFO) && SYCL_EXT_INTEL_DEVICE_INFO >= 6)
- if (dev.has(sycl::aspect::ext_intel_memory_clock_rate))
- {
- unsigned int tmp =
- dev.get_info<sycl::ext::intel::info::device::memory_clock_rate>();
- if (tmp != 0)
- prop.set_memory_clock_rate(1000 * tmp);
- }
- if (dev.has(sycl::aspect::ext_intel_memory_bus_width))
- {
- prop.set_memory_bus_width(
- dev.get_info<sycl::ext::intel::info::device::memory_bus_width>());
- }
- if (dev.has(sycl::aspect::ext_intel_device_id))
- {
- prop.set_device_id(
- dev.get_info<sycl::ext::intel::info::device::device_id>());
- }
- if (dev.has(sycl::aspect::ext_intel_device_info_uuid))
- {
- prop.set_uuid(dev.get_info<sycl::ext::intel::info::device::uuid>());
- }
- #elif defined(_MSC_VER) && !defined(__clang__)
- #pragma message("get_device_info: querying memory_clock_rate and \
- memory_bus_width are not supported by the compiler used. \
- Use 3200000 kHz as memory_clock_rate default value. \
- Use 64 bits as memory_bus_width default value.")
- #else
- #warning "get_device_info: querying memory_clock_rate and \
- memory_bus_width are not supported by the compiler used. \
- Use 3200000 kHz as memory_clock_rate default value. \
- Use 64 bits as memory_bus_width default value."
- #endif
- size_t max_sub_group_size = 1;
- std::vector<size_t> sub_group_sizes =
- dev.get_info<sycl::info::device::sub_group_sizes>();
- for (const auto &sub_group_size : sub_group_sizes)
- {
- if (max_sub_group_size < sub_group_size)
- max_sub_group_size = sub_group_size;
- }
- prop.set_max_sub_group_size(max_sub_group_size);
- prop.set_max_work_items_per_compute_unit(
- dev.get_info<sycl::info::device::max_work_group_size>());
- int max_nd_range_size[] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
- prop.set_max_nd_range_size(max_nd_range_size);
- // Estimates max register size per work group, feel free to update the value
- // according to device properties.
- prop.set_max_register_size_per_work_group(65536);
- prop.set_global_mem_cache_size(
- dev.get_info<sycl::info::device::global_mem_cache_size>());
- out = prop;
- }
- /// dpct device extension
- class device_ext : public sycl::device
- {
- typedef std::mutex mutex_type;
- public:
- device_ext() : sycl::device(), _ctx(*this) {}
- ~device_ext()
- {
- std::lock_guard<mutex_type> lock(m_mutex);
- clear_queues();
- }
- device_ext(const sycl::device &base) : sycl::device(base), _ctx(*this)
- {
- std::lock_guard<mutex_type> lock(m_mutex);
- init_queues();
- }
- int is_native_atomic_supported() { return 0; }
- int get_major_version() const
- {
- return dpct::get_major_version(*this);
- }
- int get_minor_version() const
- {
- return dpct::get_minor_version(*this);
- }
- int get_max_compute_units() const
- {
- return get_device_info().get_max_compute_units();
- }
- /// Return the maximum clock frequency of this device in KHz.
- int get_max_clock_frequency() const
- {
- return get_device_info().get_max_clock_frequency();
- }
- int get_integrated() const { return get_device_info().get_integrated(); }
- int get_max_sub_group_size() const
- {
- return get_device_info().get_max_sub_group_size();
- }
- int get_max_register_size_per_work_group() const
- {
- return get_device_info().get_max_register_size_per_work_group();
- }
- int get_max_work_group_size() const
- {
- return get_device_info().get_max_work_group_size();
- }
- int get_mem_base_addr_align() const
- {
- return get_info<sycl::info::device::mem_base_addr_align>();
- }
- size_t get_global_mem_size() const
- {
- return get_device_info().get_global_mem_size();
- }
- size_t get_max_mem_alloc_size() const
- {
- return get_device_info().get_max_mem_alloc_size();
- }
- /// Get the number of bytes of free and total memory on the SYCL device.
- /// \param [out] free_memory The number of bytes of free memory on the SYCL device.
- /// \param [out] total_memory The number of bytes of total memory on the SYCL device.
- void get_memory_info(size_t &free_memory, size_t &total_memory)
- {
- total_memory = get_device_info().get_global_mem_size();
- const char *warning_info = "get_memory_info: [warning] ext_intel_free_memory is not "
- "supported (export/set ZES_ENABLE_SYSMAN=1 to support), "
- "use total memory as free memory";
- #if (defined(__SYCL_COMPILER_VERSION) && __SYCL_COMPILER_VERSION >= 20221105)
- if (!has(sycl::aspect::ext_intel_free_memory))
- {
- std::cerr << warning_info << std::endl;
- free_memory = total_memory;
- }
- else
- {
- free_memory = get_info<sycl::ext::intel::info::device::free_memory>();
- }
- #else
- std::cerr << warning_info << std::endl;
- free_memory = total_memory;
- #if defined(_MSC_VER) && !defined(__clang__)
- #pragma message("Querying the number of bytes of free memory is not supported")
- #else
- #warning "Querying the number of bytes of free memory is not supported"
- #endif
- #endif
- }
- void get_device_info(device_info &out) const
- {
- dpct::get_device_info(out, *this);
- }
- device_info get_device_info() const
- {
- device_info prop;
- dpct::get_device_info(prop, *this);
- return prop;
- }
- void reset()
- {
- std::lock_guard<mutex_type> lock(m_mutex);
- clear_queues();
- init_queues();
- }
- sycl::queue &in_order_queue() { return *_q_in_order; }
- sycl::queue &out_of_order_queue() { return *_q_out_of_order; }
- sycl::queue &default_queue()
- {
- return in_order_queue();
- }
- void queues_wait_and_throw()
- {
- std::unique_lock<mutex_type> lock(m_mutex);
- std::vector<std::shared_ptr<sycl::queue>> current_queues(
- _queues);
- lock.unlock();
- for (const auto &q : current_queues)
- {
- q->wait_and_throw();
- }
- // Guard the destruct of current_queues to make sure the ref count is safe.
- lock.lock();
- }
- sycl::queue *create_queue(bool enable_exception_handler = false)
- {
- return create_in_order_queue(enable_exception_handler);
- }
- sycl::queue *create_queue(sycl::context context, sycl::device device,
- bool enable_exception_handler = false) {
- return create_in_order_queue(context, device, enable_exception_handler);
- }
- sycl::queue *create_in_order_queue(bool enable_exception_handler = false) {
- std::lock_guard<mutex_type> lock(m_mutex);
- return create_queue_impl(enable_exception_handler,
- sycl::property::queue::in_order());
- }
- sycl::queue *create_in_order_queue(sycl::context context, sycl::device device,
- bool enable_exception_handler = false) {
- std::lock_guard<mutex_type> lock(m_mutex);
- return create_queue_impl(context, device, enable_exception_handler,
- sycl::property::queue::in_order());
- }
- sycl::queue *create_out_of_order_queue(bool enable_exception_handler = false) {
- std::lock_guard<mutex_type> lock(m_mutex);
- return create_queue_impl(enable_exception_handler);
- }
- void destroy_queue(sycl::queue *&queue)
- {
- std::lock_guard<mutex_type> lock(m_mutex);
- _queues.erase(std::remove_if(_queues.begin(), _queues.end(),
- [=](const std::shared_ptr<sycl::queue> &q) -> bool
- {
- return q.get() == queue;
- }),
- _queues.end());
- queue = nullptr;
- }
- void set_saved_queue(sycl::queue *q)
- {
- std::lock_guard<mutex_type> lock(m_mutex);
- _saved_queue = q;
- }
- sycl::queue *get_saved_queue() const
- {
- std::lock_guard<mutex_type> lock(m_mutex);
- return _saved_queue;
- }
- sycl::context get_context() const { return _ctx; }
- private:
- void clear_queues()
- {
- _queues.clear();
- _q_in_order = _q_out_of_order = _saved_queue = nullptr;
- }
- void init_queues()
- {
- _q_in_order = create_queue_impl(true, sycl::property::queue::in_order());
- _q_out_of_order = create_queue_impl(true);
- _saved_queue = &default_queue();
- }
- /// Caller should acquire resource \p m_mutex before calling this function.
- template <class... Properties>
- sycl::queue *create_queue_impl(bool enable_exception_handler,
- Properties... properties)
- {
- sycl::async_handler eh = {};
- if (enable_exception_handler)
- {
- eh = exception_handler;
- }
- _queues.push_back(std::make_shared<sycl::queue>(
- _ctx, *this, eh,
- sycl::property_list(
- #ifdef DPCT_PROFILING_ENABLED
- sycl::property::queue::enable_profiling(),
- #endif
- properties...)));
- return _queues.back().get();
- }
- template <class... Properties>
- sycl::queue *create_queue_impl(sycl::context context, sycl::device device,
- bool enable_exception_handler,
- Properties... properties) {
- sycl::async_handler eh = {};
- if (enable_exception_handler) {
- eh = exception_handler;
- }
- _queues.push_back(std::make_shared<sycl::queue>(
- context, device, eh,
- sycl::property_list(
- #ifdef DPCT_PROFILING_ENABLED
- sycl::property::queue::enable_profiling(),
- #endif
- properties...)));
- return _queues.back().get();
- }
- void get_version(int &major, int &minor) const
- {
- detail::get_version(*this, major, minor);
- }
- sycl::queue *_q_in_order, *_q_out_of_order;
- sycl::queue *_saved_queue;
- sycl::context _ctx;
- std::vector<std::shared_ptr<sycl::queue>> _queues;
- mutable mutex_type m_mutex;
- };
- /// device manager
- class dev_mgr
- {
- public:
- device_ext ¤t_device()
- {
- unsigned int dev_id = current_device_id();
- check_id(dev_id);
- return *_devs[dev_id];
- }
- device_ext &cpu_device() const
- {
- std::lock_guard<std::recursive_mutex> lock(m_mutex);
- if (_cpu_device == -1)
- {
- throw std::runtime_error("no valid cpu device");
- }
- else
- {
- return *_devs[_cpu_device];
- }
- }
- device_ext &get_device(unsigned int id) const
- {
- std::lock_guard<std::recursive_mutex> lock(m_mutex);
- check_id(id);
- return *_devs[id];
- }
- unsigned int current_device_id() const
- {
- std::lock_guard<std::recursive_mutex> lock(m_mutex);
- auto it = _thread2dev_map.find(get_tid());
- if (it != _thread2dev_map.end())
- return it->second;
- return DEFAULT_DEVICE_ID;
- }
- /// Select device with a device ID.
- /// \param [in] id The id of the device which can
- /// be obtained through get_device_id(const sycl::device).
- void select_device(unsigned int id)
- {
- std::lock_guard<std::recursive_mutex> lock(m_mutex);
- check_id(id);
- _thread2dev_map[get_tid()] = id;
- }
- unsigned int device_count() { return _devs.size(); }
- unsigned int get_device_id(const sycl::device &dev)
- {
- unsigned int id = 0;
- for (auto dev_item : _devs)
- {
- if (*dev_item == dev)
- {
- break;
- }
- id++;
- }
- return id;
- }
- template <class DeviceSelector>
- std::enable_if_t<
- std::is_invocable_r_v<int, DeviceSelector, const sycl::device &>>
- select_device(const DeviceSelector &selector = sycl::gpu_selector_v)
- {
- sycl::device selected_device = sycl::device(selector);
- unsigned int selected_device_id = get_device_id(selected_device);
- select_device(selected_device_id);
- }
- /// Returns the instance of device manager singleton.
- static dev_mgr &instance()
- {
- static dev_mgr d_m;
- return d_m;
- }
- dev_mgr(const dev_mgr &) = delete;
- dev_mgr &operator=(const dev_mgr &) = delete;
- dev_mgr(dev_mgr &&) = delete;
- dev_mgr &operator=(dev_mgr &&) = delete;
- private:
- mutable std::recursive_mutex m_mutex;
- static bool compare_dev(sycl::device &device1, sycl::device &device2)
- {
- dpct::device_info prop1;
- dpct::get_device_info(prop1, device1);
- dpct::device_info prop2;
- dpct::get_device_info(prop2, device2);
- return prop1.get_max_compute_units() > prop2.get_max_compute_units();
- }
- static int convert_backend_index(std::string & backend) {
- if (backend == "ext_oneapi_level_zero:gpu") return 0;
- if (backend == "opencl:gpu") return 1;
- if (backend == "ext_oneapi_cuda:gpu") return 2;
- if (backend == "ext_oneapi_hip:gpu") return 3;
- if (backend == "opencl:cpu") return 4;
- if (backend == "opencl:acc") return 5;
- printf("convert_backend_index: can't handle backend=%s\n", backend.c_str());
- GGML_ASSERT(false);
- }
- static bool compare_backend(std::string &backend1, std::string &backend2) {
- return convert_backend_index(backend1) < convert_backend_index(backend2);
- }
- dev_mgr()
- {
- sycl::device default_device =
- sycl::device(sycl::default_selector_v);
- _devs.push_back(std::make_shared<device_ext>(default_device));
- std::vector<sycl::device> sycl_all_devs;
- // Collect other devices except for the default device.
- if (default_device.is_cpu())
- _cpu_device = 0;
- auto Platforms = sycl::platform::get_platforms();
- // Keep track of the number of devices per backend
- std::map<sycl::backend, size_t> DeviceNums;
- std::map<std::string, std::vector<sycl::device>> backend_devices;
- while (!Platforms.empty()) {
- auto Platform = Platforms.back();
- Platforms.pop_back();
- auto devices = Platform.get_devices();
- std::string backend_type = get_device_backend_and_type(devices[0]);
- for (const auto &device : devices) {
- backend_devices[backend_type].push_back(device);
- }
- }
- std::vector<std::string> keys;
- for(auto it = backend_devices.begin(); it != backend_devices.end(); ++it) {
- keys.push_back(it->first);
- }
- std::sort(keys.begin(), keys.end(), compare_backend);
- for (auto &key : keys) {
- std::vector<sycl::device> devs = backend_devices[key];
- std::sort(devs.begin(), devs.end(), compare_dev);
- for (const auto &dev : devs) {
- sycl_all_devs.push_back(dev);
- }
- }
- for (auto &dev : sycl_all_devs)
- {
- if (dev == default_device)
- {
- continue;
- }
- _devs.push_back(std::make_shared<device_ext>(dev));
- if (_cpu_device == -1 && dev.is_cpu())
- {
- _cpu_device = _devs.size() - 1;
- }
- }
- }
- void check_id(unsigned int id) const
- {
- if (id >= _devs.size())
- {
- throw std::runtime_error("invalid device id");
- }
- }
- std::vector<std::shared_ptr<device_ext>> _devs;
- /// DEFAULT_DEVICE_ID is used, if current_device_id() can not find current
- /// thread id in _thread2dev_map, which means default device should be used
- /// for the current thread.
- const unsigned int DEFAULT_DEVICE_ID = 0;
- /// thread-id to device-id map.
- std::map<unsigned int, unsigned int> _thread2dev_map;
- int _cpu_device = -1;
- };
- static inline sycl::queue &get_default_queue()
- {
- return dev_mgr::instance().current_device().default_queue();
- }
- namespace detail
- {
- enum class pointer_access_attribute
- {
- host_only = 0,
- device_only,
- host_device,
- end
- };
- static pointer_access_attribute get_pointer_attribute(sycl::queue &q,
- const void *ptr)
- {
- switch (sycl::get_pointer_type(ptr, q.get_context()))
- {
- case sycl::usm::alloc::unknown:
- return pointer_access_attribute::host_only;
- case sycl::usm::alloc::device:
- return pointer_access_attribute::device_only;
- case sycl::usm::alloc::shared:
- case sycl::usm::alloc::host:
- return pointer_access_attribute::host_device;
- }
- }
- template <typename ArgT>
- inline constexpr std::uint64_t get_type_combination_id(ArgT Val)
- {
- static_assert((unsigned char)library_data_t::library_data_t_size <=
- std::numeric_limits<unsigned char>::max() &&
- "library_data_t size exceeds limit.");
- static_assert(std::is_same_v<ArgT, library_data_t>, "Unsupported ArgT");
- return (std::uint64_t)Val;
- }
- template <typename FirstT, typename... RestT>
- inline constexpr std::uint64_t get_type_combination_id(FirstT FirstVal,
- RestT... RestVal)
- {
- static_assert((std::uint8_t)library_data_t::library_data_t_size <=
- std::numeric_limits<unsigned char>::max() &&
- "library_data_t size exceeds limit.");
- static_assert(sizeof...(RestT) <= 8 && "Too many parameters");
- static_assert(std::is_same_v<FirstT, library_data_t>, "Unsupported FirstT");
- return get_type_combination_id(RestVal...) << 8 | ((std::uint64_t)FirstVal);
- }
- class mem_mgr
- {
- mem_mgr()
- {
- // Reserved address space, no real memory allocation happens here.
- #if defined(__linux__)
- mapped_address_space =
- (byte_t *)mmap(nullptr, mapped_region_size, PROT_NONE,
- MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
- #elif defined(_WIN64)
- mapped_address_space = (byte_t *)VirtualAlloc(
- NULL, // NULL specified as the base address parameter
- mapped_region_size, // Size of allocation
- MEM_RESERVE, // Allocate reserved pages
- PAGE_NOACCESS); // Protection = no access
- #else
- #error "Only support Windows and Linux."
- #endif
- next_free = mapped_address_space;
- };
- public:
- using buffer_id_t = int;
- struct allocation
- {
- buffer_t buffer;
- byte_t *alloc_ptr;
- size_t size;
- };
- ~mem_mgr()
- {
- #if defined(__linux__)
- munmap(mapped_address_space, mapped_region_size);
- #elif defined(_WIN64)
- VirtualFree(mapped_address_space, 0, MEM_RELEASE);
- #else
- #error "Only support Windows and Linux."
- #endif
- };
- mem_mgr(const mem_mgr &) = delete;
- mem_mgr &operator=(const mem_mgr &) = delete;
- mem_mgr(mem_mgr &&) = delete;
- mem_mgr &operator=(mem_mgr &&) = delete;
- /// Allocate
- void *mem_alloc(size_t size)
- {
- if (!size)
- return nullptr;
- std::lock_guard<std::mutex> lock(m_mutex);
- if (next_free + size > mapped_address_space + mapped_region_size)
- {
- throw std::runtime_error("dpct_malloc: out of memory for virtual memory pool");
- }
- // Allocation
- sycl::range<1> r(size);
- buffer_t buf(r);
- allocation A{buf, next_free, size};
- // Map allocation to device pointer
- void *result = next_free;
- m_map.emplace(next_free + size, A);
- // Update pointer to the next free space.
- next_free += (size + extra_padding + alignment - 1) & ~(alignment - 1);
- return result;
- }
- /// Deallocate
- void mem_free(const void *ptr)
- {
- if (!ptr)
- return;
- std::lock_guard<std::mutex> lock(m_mutex);
- auto it = get_map_iterator(ptr);
- m_map.erase(it);
- }
- /// map: device pointer -> allocation(buffer, alloc_ptr, size)
- allocation translate_ptr(const void *ptr)
- {
- std::lock_guard<std::mutex> lock(m_mutex);
- auto it = get_map_iterator(ptr);
- return it->second;
- }
- /// Check if the pointer represents device pointer or not.
- bool is_device_ptr(const void *ptr) const
- {
- std::lock_guard<std::mutex> lock(m_mutex);
- return (mapped_address_space <= ptr) &&
- (ptr < mapped_address_space + mapped_region_size);
- }
- /// Returns the instance of memory manager singleton.
- static mem_mgr &instance()
- {
- static mem_mgr m;
- return m;
- }
- private:
- std::map<byte_t *, allocation> m_map;
- mutable std::mutex m_mutex;
- byte_t *mapped_address_space;
- byte_t *next_free;
- const size_t mapped_region_size = 128ull * 1024 * 1024 * 1024;
- const size_t alignment = 256;
- /// This padding may be defined to some positive value to debug
- /// out of bound accesses.
- const size_t extra_padding = 0;
- std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr)
- {
- auto it = m_map.upper_bound((byte_t *)ptr);
- if (it == m_map.end())
- {
- // Not a virtual pointer.
- throw std::runtime_error("can not get buffer from non-virtual pointer");
- }
- const allocation &alloc = it->second;
- if (ptr < alloc.alloc_ptr)
- {
- // Out of bound.
- // This may happen if there's a gap between allocations due to alignment
- // or extra padding and pointer points to this gap.
- throw std::runtime_error("invalid virtual pointer");
- }
- return it;
- }
- };
- template <class T, memory_region Memory, size_t Dimension>
- class accessor;
- template <memory_region Memory, class T = byte_t>
- class memory_traits
- {
- public:
- static constexpr sycl::access::target target =
- sycl::access::target::device;
- static constexpr sycl::access_mode mode =
- (Memory == constant) ? sycl::access_mode::read
- : sycl::access_mode::read_write;
- static constexpr size_t type_size = sizeof(T);
- using element_t =
- typename std::conditional<Memory == constant, const T, T>::type;
- using value_t = typename std::remove_cv<T>::type;
- template <size_t Dimension = 1>
- using accessor_t = typename std::conditional<
- Memory == local, sycl::local_accessor<value_t, Dimension>,
- sycl::accessor<T, Dimension, mode, target>>::type;
- using pointer_t = T *;
- };
- static inline void *dpct_malloc(size_t size, sycl::queue &q)
- {
- return sycl::malloc_device(size, q.get_device(), q.get_context());
- }
- #define PITCH_DEFAULT_ALIGN(x) (((x) + 31) & ~(0x1F))
- static inline void *dpct_malloc(size_t &pitch, size_t x, size_t y, size_t z,
- sycl::queue &q)
- {
- pitch = PITCH_DEFAULT_ALIGN(x);
- return dpct_malloc(pitch * y * z, q);
- }
- /**
- * @brief Sets \p value to the first \p size elements starting from \p dev_ptr in \p q.
- * @tparam valueT The type of the element to be set.
- * @param [in] q The queue in which the operation is done.
- * @param [in] dev_ptr Pointer to the virtual device memory address.
- * @param [in] value The value to be set.
- * @param [in] size Number of elements to be set to the value.
- * @return An event representing the memset operation.
- */
- template <typename valueT>
- static inline sycl::event dpct_memset(sycl::queue &q, void *dev_ptr,
- valueT value, size_t size)
- {
- return q.fill(dev_ptr, value, size);
- }
- /**
- * @brief Sets \p value to the 3D memory region pointed by \p data in \p q.
- * @tparam valueT The type of the element to be set.
- * @param [in] q The queue in which the operation is done.
- * @param [in] data Pointer to the pitched device memory region.
- * @param [in] value The value to be set.
- * @param [in] size 3D memory region by number of elements.
- * @return An event list representing the memset operations.
- */
- template <typename valueT>
- static inline std::vector<sycl::event>
- dpct_memset(sycl::queue &q, pitched_data data, valueT value,
- sycl::range<3> size)
- {
- std::vector<sycl::event> event_list;
- size_t slice = data.get_pitch() * data.get_y();
- unsigned char *data_surface = (unsigned char *)data.get_data_ptr();
- for (size_t z = 0; z < size.get(2); ++z)
- {
- unsigned char *data_ptr = data_surface;
- for (size_t y = 0; y < size.get(1); ++y)
- {
- event_list.push_back(dpct_memset(q, data_ptr, value, size.get(0)));
- data_ptr += data.get_pitch();
- }
- data_surface += slice;
- }
- return event_list;
- }
- /**
- * @brief Sets \p val to the pitched 2D memory region pointed by \p ptr in \p q.
- * @tparam valueT The type of the element to be set.
- * @param [in] q The queue in which the operation is done.
- * @param [in] ptr Pointer to the virtual device memory.
- * @param [in] pitch The pitch size by number of elements, including padding.
- * @param [in] val The value to be set.
- * @param [in] x The width of memory region by number of elements.
- * @param [in] y The height of memory region by number of elements.
- * @return An event list representing the memset operations.
- */
- template <typename valueT>
- static inline std::vector<sycl::event>
- dpct_memset(sycl::queue &q, void *ptr, size_t pitch, valueT val, size_t x,
- size_t y)
- {
- return dpct_memset(q, pitched_data(ptr, pitch, x, 1), val,
- sycl::range<3>(x, y, 1));
- }
- static memcpy_direction deduce_memcpy_direction(sycl::queue &q, void *to_ptr,
- const void *from_ptr,
- memcpy_direction dir)
- {
- switch (dir)
- {
- case memcpy_direction::host_to_host:
- case memcpy_direction::host_to_device:
- case memcpy_direction::device_to_host:
- case memcpy_direction::device_to_device:
- return dir;
- case memcpy_direction::automatic:
- {
- // table[to_attribute][from_attribute]
- static const memcpy_direction
- direction_table[static_cast<unsigned>(pointer_access_attribute::end)]
- [static_cast<unsigned>(pointer_access_attribute::end)] =
- {{memcpy_direction::host_to_host,
- memcpy_direction::device_to_host,
- memcpy_direction::host_to_host},
- {memcpy_direction::host_to_device,
- memcpy_direction::device_to_device,
- memcpy_direction::device_to_device},
- {memcpy_direction::host_to_host,
- memcpy_direction::device_to_device,
- memcpy_direction::device_to_device}};
- return direction_table[static_cast<unsigned>(get_pointer_attribute(
- q, to_ptr))][static_cast<unsigned>(get_pointer_attribute(q, from_ptr))];
- }
- default:
- throw std::runtime_error("dpct_memcpy: invalid direction value");
- }
- }
- static sycl::event
- dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
- memcpy_direction direction,
- const std::vector<sycl::event> &dep_events = {})
- {
- if (!size)
- return sycl::event{};
- return q.memcpy(to_ptr, from_ptr, size, dep_events);
- GGML_UNUSED(direction);
- }
- // Get actual copy range and make sure it will not exceed range.
- static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
- size_t pitch)
- {
- return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
- }
- static inline size_t get_offset(sycl::id<3> id, size_t slice,
- size_t pitch)
- {
- return slice * id.get(2) + pitch * id.get(1) + id.get(0);
- }
- /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
- /// and \p from_range to another specified by \p to_ptr and \p to_range.
- static inline std::vector<sycl::event>
- dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
- sycl::range<3> to_range, sycl::range<3> from_range,
- sycl::id<3> to_id, sycl::id<3> from_id,
- sycl::range<3> size, memcpy_direction direction,
- const std::vector<sycl::event> &dep_events = {})
- {
- // RAII for host pointer
- class host_buffer
- {
- void *_buf;
- size_t _size;
- sycl::queue &_q;
- const std::vector<sycl::event> &_deps; // free operation depends
- public:
- host_buffer(size_t size, sycl::queue &q,
- const std::vector<sycl::event> &deps)
- : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
- void *get_ptr() const { return _buf; }
- size_t get_size() const { return _size; }
- ~host_buffer()
- {
- if (_buf)
- {
- _q.submit([&](sycl::handler &cgh)
- {
- cgh.depends_on(_deps);
- cgh.host_task([buf = _buf] { std::free(buf); }); });
- }
- }
- };
- std::vector<sycl::event> event_list;
- size_t to_slice = to_range.get(1) * to_range.get(0),
- from_slice = from_range.get(1) * from_range.get(0);
- unsigned char *to_surface =
- (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
- const unsigned char *from_surface =
- (const unsigned char *)from_ptr +
- get_offset(from_id, from_slice, from_range.get(0));
- if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
- {
- return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
- direction, dep_events)};
- }
- direction = deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
- size_t size_slice = size.get(1) * size.get(0);
- switch (direction)
- {
- case host_to_host:
- for (size_t z = 0; z < size.get(2); ++z)
- {
- unsigned char *to_ptr = to_surface;
- const unsigned char *from_ptr = from_surface;
- if (to_range.get(0) == from_range.get(0) &&
- to_range.get(0) == size.get(0))
- {
- event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
- direction, dep_events));
- }
- else
- {
- for (size_t y = 0; y < size.get(1); ++y)
- {
- event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
- direction, dep_events));
- to_ptr += to_range.get(0);
- from_ptr += from_range.get(0);
- }
- }
- to_surface += to_slice;
- from_surface += from_slice;
- }
- break;
- case host_to_device:
- {
- host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
- event_list);
- std::vector<sycl::event> host_events;
- if (to_slice == size_slice)
- {
- // Copy host data to a temp host buffer with the shape of target.
- host_events =
- dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
- sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
- host_to_host, dep_events);
- }
- else
- {
- // Copy host data to a temp host buffer with the shape of target.
- host_events = dpct_memcpy(
- q, buf.get_ptr(), from_surface, to_range, from_range,
- sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
- // If has padding data, not sure whether it is useless. So fill temp
- // buffer with it.
- std::vector<sycl::event>{
- dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
- device_to_host, dep_events)});
- }
- // Copy from temp host buffer to device with only one submit.
- event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
- buf.get_size(), host_to_device,
- host_events));
- break;
- }
- case device_to_host:
- {
- host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
- event_list);
- // Copy from host temp buffer to host target with reshaping.
- event_list = dpct_memcpy(
- q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
- sycl::id<3>(0, 0, 0), size, host_to_host,
- // Copy from device to temp host buffer with only one submit.
- std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
- buf.get_size(),
- device_to_host, dep_events)});
- break;
- }
- case device_to_device:
- event_list.push_back(q.submit([&](sycl::handler &cgh){
- cgh.depends_on(dep_events);
- cgh.parallel_for<class dpct_memcpy_3d_detail>(
- size,
- [=](sycl::id<3> id) {
- to_surface[get_offset(id, to_slice, to_range.get(0))] =
- from_surface[get_offset(id, from_slice, from_range.get(0))];
- }); }));
- break;
- default:
- throw std::runtime_error("dpct_memcpy: invalid direction value");
- }
- return event_list;
- }
- /// memcpy 2D/3D matrix specified by pitched_data.
- static inline std::vector<sycl::event>
- dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
- pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
- memcpy_direction direction = automatic)
- {
- return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
- sycl::range<3>(to.get_pitch(), to.get_y(), 1),
- sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
- size, direction);
- }
- /// memcpy 2D matrix with pitch.
- static inline std::vector<sycl::event>
- dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
- size_t to_pitch, size_t from_pitch, size_t x, size_t y,
- memcpy_direction direction = automatic)
- {
- return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
- sycl::range<3>(from_pitch, y, 1),
- sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
- sycl::range<3>(x, y, 1), direction);
- }
- namespace deprecated
- {
- template <typename T, sycl::usm::alloc AllocKind>
- class usm_allocator
- {
- private:
- using Alloc = sycl::usm_allocator<T, AllocKind>;
- Alloc _impl;
- public:
- using value_type = typename std::allocator_traits<Alloc>::value_type;
- using pointer = typename std::allocator_traits<Alloc>::pointer;
- using const_pointer = typename std::allocator_traits<Alloc>::const_pointer;
- using void_pointer = typename std::allocator_traits<Alloc>::void_pointer;
- using const_void_pointer =
- typename std::allocator_traits<Alloc>::const_void_pointer;
- using reference = typename std::allocator_traits<Alloc>::value_type &;
- using const_reference =
- const typename std::allocator_traits<Alloc>::value_type &;
- using difference_type =
- typename std::allocator_traits<Alloc>::difference_type;
- using size_type = typename std::allocator_traits<Alloc>::size_type;
- using propagate_on_container_copy_assignment = typename std::allocator_traits<
- Alloc>::propagate_on_container_copy_assignment;
- using propagate_on_container_move_assignment = typename std::allocator_traits<
- Alloc>::propagate_on_container_move_assignment;
- using propagate_on_container_swap =
- typename std::allocator_traits<Alloc>::propagate_on_container_swap;
- using is_always_equal =
- typename std::allocator_traits<Alloc>::is_always_equal;
- template <typename U>
- struct rebind
- {
- typedef usm_allocator<U, AllocKind> other;
- };
- usm_allocator() : _impl(dpct::get_default_queue()) {}
- ~usm_allocator() {}
- usm_allocator(const usm_allocator &other) : _impl(other._impl) {}
- usm_allocator(usm_allocator &&other) : _impl(std::move(other._impl)) {}
- pointer address(reference r) { return &r; }
- const_pointer address(const_reference r) { return &r; }
- pointer allocate(size_type cnt, const_void_pointer hint = nullptr)
- {
- return std::allocator_traits<Alloc>::allocate(_impl, cnt, hint);
- }
- void deallocate(pointer p, size_type cnt)
- {
- std::allocator_traits<Alloc>::deallocate(_impl, p, cnt);
- }
- size_type max_size() const
- {
- return std::allocator_traits<Alloc>::max_size(_impl);
- }
- bool operator==(const usm_allocator &other) const { return _impl == other._impl; }
- bool operator!=(const usm_allocator &other) const { return _impl != other._impl; }
- };
- } // namespace deprecated
- inline void dpct_free(void *ptr,
- const sycl::queue &q)
- {
- if (ptr)
- {
- sycl::free(ptr, q.get_context());
- }
- }
- template <typename T>
- inline auto get_memory(const void *x)
- {
- T *new_x = reinterpret_cast<T *>(const_cast<void *>(x));
- return new_x;
- }
- template <typename T>
- inline typename DataType<T>::T2 get_value(const T *s, sycl::queue &q)
- {
- using Ty = typename DataType<T>::T2;
- Ty s_h;
- if (get_pointer_attribute(q, s) == pointer_access_attribute::device_only)
- detail::dpct_memcpy(q, (void *)&s_h, (const void *)s, sizeof(T), device_to_host)
- .wait();
- else
- s_h = *reinterpret_cast<const Ty *>(s);
- return s_h;
- }
- } // namespace detail
- template <typename T>
- inline auto get_value(const T *s, sycl::queue &q)
- {
- return detail::get_value(s, q);
- }
- namespace detail
- {
- template <class Ta, class Tb, class Tc, class Ts>
- inline void gemm_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
- oneapi::mkl::transpose b_trans, int m, int n, int k,
- const void *alpha, const void *a, int lda, const void *b,
- int ldb, const void *beta, void *c, int ldc)
- {
- Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
- Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
- auto data_a = get_memory<const Ta>(a);
- auto data_b = get_memory<const Tb>(b);
- auto data_c = get_memory<Tc>(c);
- oneapi::mkl::blas::column_major::gemm(
- q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
- data_b, ldb, beta_value, data_c, ldc);
- }
- template <typename VecT, class BinaryOperation, class = void>
- class vectorized_binary
- {
- public:
- inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
- {
- VecT v4;
- for (size_t i = 0; i < v4.size(); ++i)
- {
- v4[i] = binary_op(a[i], b[i]);
- }
- return v4;
- }
- };
- template <typename VecT, class BinaryOperation>
- class vectorized_binary<
- VecT, BinaryOperation,
- std::void_t<std::invoke_result_t<BinaryOperation, VecT, VecT>>>
- {
- public:
- inline VecT operator()(VecT a, VecT b, const BinaryOperation binary_op)
- {
- return binary_op(a, b).template as<VecT>();
- }
- };
- template <class Ta, class Tb, class Tc, class Ts>
- inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
- oneapi::mkl::transpose b_trans, int m, int n, int k,
- const void *alpha, const void **a, int lda,
- const void **b, int ldb, const void *beta, void **c,
- int ldc, int batch_size)
- {
- struct matrix_info_t
- {
- oneapi::mkl::transpose transpose_info[2];
- Ts value_info[2];
- std::int64_t size_info[3];
- std::int64_t ld_info[3];
- std::int64_t groupsize_info;
- };
- Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
- Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
- matrix_info_t *matrix_info =
- (matrix_info_t *)std::malloc(sizeof(matrix_info_t));
- matrix_info->transpose_info[0] = a_trans;
- matrix_info->transpose_info[1] = b_trans;
- matrix_info->value_info[0] = alpha_value;
- matrix_info->value_info[1] = beta_value;
- matrix_info->size_info[0] = m;
- matrix_info->size_info[1] = n;
- matrix_info->size_info[2] = k;
- matrix_info->ld_info[0] = lda;
- matrix_info->ld_info[1] = ldb;
- matrix_info->ld_info[2] = ldc;
- matrix_info->groupsize_info = batch_size;
- sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
- q, matrix_info->transpose_info, matrix_info->transpose_info + 1,
- matrix_info->size_info, matrix_info->size_info + 1,
- matrix_info->size_info + 2, matrix_info->value_info,
- reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
- reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
- matrix_info->value_info + 1, reinterpret_cast<Tc **>(c),
- matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
- q.submit([&](sycl::handler &cgh)
- {
- cgh.depends_on(e);
- cgh.host_task([=] { std::free(matrix_info); }); });
- }
- template <class Ta, class Tb, class Tc, class Ts>
- inline void
- gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
- oneapi::mkl::transpose b_trans, int m, int n,
- int k, const void *alpha, const void *a, int lda,
- long long int stride_a, const void *b, int ldb,
- long long int stride_b, const void *beta, void *c,
- int ldc, long long int stride_c, int batch_size)
- {
- Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
- Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
- auto data_a = get_memory<const Ta>(a);
- auto data_b = get_memory<const Tb>(b);
- auto data_c = get_memory<Tc>(c);
- oneapi::mkl::blas::column_major::gemm_batch(
- q, a_trans, b_trans, m, n, k, alpha_value, data_a, lda,
- stride_a, data_b, ldb, stride_b, beta_value,
- data_c, ldc, stride_c, batch_size);
- }
- } // namespace detail
- template <typename VecT, class BinaryOperation>
- inline unsigned vectorized_binary(unsigned a, unsigned b,
- const BinaryOperation binary_op)
- {
- sycl::vec<unsigned, 1> v0{a}, v1{b};
- auto v2 = v0.as<VecT>();
- auto v3 = v1.as<VecT>();
- auto v4 =
- detail::vectorized_binary<VecT, BinaryOperation>()(v2, v3, binary_op);
- v0 = v4.template as<sycl::vec<unsigned, 1>>();
- return v0;
- }
- static void async_dpct_memcpy(void *to_ptr, const void *from_ptr, size_t size,
- memcpy_direction direction = automatic,
- sycl::queue &q = dpct::get_default_queue())
- {
- detail::dpct_memcpy(q, to_ptr, from_ptr, size, direction);
- }
- static inline unsigned int select_device(unsigned int id)
- {
- dev_mgr::instance().select_device(id);
- return id;
- }
- template <typename T>
- T permute_sub_group_by_xor(sycl::sub_group g, T x, unsigned int mask,
- unsigned int logical_sub_group_size = 32)
- {
- unsigned int id = g.get_local_linear_id();
- unsigned int start_index =
- id / logical_sub_group_size * logical_sub_group_size;
- unsigned int target_offset = (id % logical_sub_group_size) ^ mask;
- return sycl::select_from_group(g, x,
- target_offset < logical_sub_group_size
- ? start_index + target_offset
- : id);
- }
- template <typename T>
- sycl::vec<T, 4> extract_and_sign_or_zero_extend4(T val)
- {
- return sycl::vec<T, 1>(val)
- .template as<sycl::vec<
- std::conditional_t<std::is_signed_v<T>, int8_t, uint8_t>, 4>>()
- .template convert<T>();
- }
- template <typename T1, typename T2>
- using dot_product_acc_t =
- std::conditional_t<std::is_unsigned_v<T1> && std::is_unsigned_v<T2>,
- uint32_t, int32_t>;
- template <typename T1, typename T2, typename T3>
- inline auto dp4a(T1 a, T2 b, T3 c)
- {
- dot_product_acc_t<T1, T2> res = c;
- auto va = extract_and_sign_or_zero_extend4(a);
- auto vb = extract_and_sign_or_zero_extend4(b);
- res += va[0] * vb[0];
- res += va[1] * vb[1];
- res += va[2] * vb[2];
- res += va[3] * vb[3];
- return res;
- }
- struct sub_sat
- {
- template <typename T>
- auto operator()(const T x, const T y) const
- {
- return sycl::sub_sat(x, y);
- }
- };
- template <typename S, typename T>
- inline T vectorized_min(T a, T b)
- {
- sycl::vec<T, 1> v0{a}, v1{b};
- auto v2 = v0.template as<S>();
- auto v3 = v1.template as<S>();
- auto v4 = sycl::min(v2, v3);
- v0 = v4.template as<sycl::vec<T, 1>>();
- return v0;
- }
- inline float pow(const float a, const int b) { return sycl::pown(a, b); }
- inline double pow(const double a, const int b) { return sycl::pown(a, b); }
- inline float pow(const float a, const float b) { return sycl::pow(a, b); }
- inline double pow(const double a, const double b) { return sycl::pow(a, b); }
- template <typename T, typename U>
- inline typename std::enable_if_t<std::is_floating_point_v<T>, T>
- pow(const T a, const U b)
- {
- return sycl::pow(a, static_cast<T>(b));
- }
- template <typename T, typename U>
- inline typename std::enable_if_t<!std::is_floating_point_v<T>, double>
- pow(const T a, const U b)
- {
- return sycl::pow(static_cast<double>(a), static_cast<double>(b));
- }
- inline double min(const double a, const float b)
- {
- return sycl::fmin(a, static_cast<double>(b));
- }
- inline double min(const float a, const double b)
- {
- return sycl::fmin(static_cast<double>(a), b);
- }
- inline float min(const float a, const float b) { return sycl::fmin(a, b); }
- inline double min(const double a, const double b) { return sycl::fmin(a, b); }
- inline std::uint32_t min(const std::uint32_t a, const std::int32_t b)
- {
- return sycl::min(a, static_cast<std::uint32_t>(b));
- }
- inline std::uint32_t min(const std::int32_t a, const std::uint32_t b)
- {
- return sycl::min(static_cast<std::uint32_t>(a), b);
- }
- inline std::int32_t min(const std::int32_t a, const std::int32_t b)
- {
- return sycl::min(a, b);
- }
- inline std::uint32_t min(const std::uint32_t a, const std::uint32_t b)
- {
- return sycl::min(a, b);
- }
- inline std::uint64_t min(const std::uint64_t a, const std::int64_t b)
- {
- return sycl::min(a, static_cast<std::uint64_t>(b));
- }
- inline std::uint64_t min(const std::int64_t a, const std::uint64_t b)
- {
- return sycl::min(static_cast<std::uint64_t>(a), b);
- }
- inline std::int64_t min(const std::int64_t a, const std::int64_t b)
- {
- return sycl::min(a, b);
- }
- inline std::uint64_t min(const std::uint64_t a, const std::uint64_t b)
- {
- return sycl::min(a, b);
- }
- inline std::uint64_t min(const std::uint64_t a, const std::int32_t b)
- {
- return sycl::min(a, static_cast<std::uint64_t>(b));
- }
- inline std::uint64_t min(const std::int32_t a, const std::uint64_t b)
- {
- return sycl::min(static_cast<std::uint64_t>(a), b);
- }
- inline std::uint64_t min(const std::uint64_t a, const std::uint32_t b)
- {
- return sycl::min(a, static_cast<std::uint64_t>(b));
- }
- inline std::uint64_t min(const std::uint32_t a, const std::uint64_t b)
- {
- return sycl::min(static_cast<std::uint64_t>(a), b);
- }
- // max function overloads.
- // For floating-point types, `float` or `double` arguments are acceptable.
- // For integer types, `std::uint32_t`, `std::int32_t`, `std::uint64_t` or
- // `std::int64_t` type arguments are acceptable.
- inline double max(const double a, const float b)
- {
- return sycl::fmax(a, static_cast<double>(b));
- }
- inline double max(const float a, const double b)
- {
- return sycl::fmax(static_cast<double>(a), b);
- }
- inline float max(const float a, const float b) { return sycl::fmax(a, b); }
- inline double max(const double a, const double b) { return sycl::fmax(a, b); }
- inline std::uint32_t max(const std::uint32_t a, const std::int32_t b)
- {
- return sycl::max(a, static_cast<std::uint32_t>(b));
- }
- inline std::uint32_t max(const std::int32_t a, const std::uint32_t b)
- {
- return sycl::max(static_cast<std::uint32_t>(a), b);
- }
- inline std::int32_t max(const std::int32_t a, const std::int32_t b)
- {
- return sycl::max(a, b);
- }
- inline std::uint32_t max(const std::uint32_t a, const std::uint32_t b)
- {
- return sycl::max(a, b);
- }
- inline std::uint64_t max(const std::uint64_t a, const std::int64_t b)
- {
- return sycl::max(a, static_cast<std::uint64_t>(b));
- }
- inline std::uint64_t max(const std::int64_t a, const std::uint64_t b)
- {
- return sycl::max(static_cast<std::uint64_t>(a), b);
- }
- inline std::int64_t max(const std::int64_t a, const std::int64_t b)
- {
- return sycl::max(a, b);
- }
- inline std::uint64_t max(const std::uint64_t a, const std::uint64_t b)
- {
- return sycl::max(a, b);
- }
- inline std::uint64_t max(const std::uint64_t a, const std::int32_t b)
- {
- return sycl::max(a, static_cast<std::uint64_t>(b));
- }
- inline std::uint64_t max(const std::int32_t a, const std::uint64_t b)
- {
- return sycl::max(static_cast<std::uint64_t>(a), b);
- }
- inline std::uint64_t max(const std::uint64_t a, const std::uint32_t b)
- {
- return sycl::max(a, static_cast<std::uint64_t>(b));
- }
- inline std::uint64_t max(const std::uint32_t a, const std::uint64_t b)
- {
- return sycl::max(static_cast<std::uint64_t>(a), b);
- }
- inline void
- has_capability_or_fail(const sycl::device &dev,
- const std::initializer_list<sycl::aspect> &props)
- {
- for (const auto &it : props)
- {
- if (dev.has(it))
- continue;
- switch (it)
- {
- case sycl::aspect::fp64:
- throw std::runtime_error("'double' is not supported in '" +
- dev.get_info<sycl::info::device::name>() +
- "' device");
- break;
- case sycl::aspect::fp16:
- throw std::runtime_error("'half' is not supported in '" +
- dev.get_info<sycl::info::device::name>() +
- "' device");
- break;
- default:
- #define __SYCL_ASPECT(ASPECT, ID) \
- case sycl::aspect::ASPECT: \
- return #ASPECT;
- #define __SYCL_ASPECT_DEPRECATED(ASPECT, ID, MESSAGE) __SYCL_ASPECT(ASPECT, ID)
- #define __SYCL_ASPECT_DEPRECATED_ALIAS(ASPECT, ID, MESSAGE)
- auto getAspectNameStr = [](sycl::aspect AspectNum) -> std::string
- {
- switch (AspectNum)
- {
- #include <sycl/info/aspects.def>
- #include <sycl/info/aspects_deprecated.def>
- default:
- return "unknown aspect";
- }
- };
- #undef __SYCL_ASPECT_DEPRECATED_ALIAS
- #undef __SYCL_ASPECT_DEPRECATED
- #undef __SYCL_ASPECT
- throw std::runtime_error(
- "'" + getAspectNameStr(it) + "' is not supported in '" +
- dev.get_info<sycl::info::device::name>() + "' device");
- }
- break;
- }
- }
- static inline unsigned int get_current_device_id()
- {
- return dev_mgr::instance().current_device_id();
- }
- static inline device_ext &get_current_device()
- {
- return dev_mgr::instance().current_device();
- }
- static inline sycl::queue &get_in_order_queue()
- {
- return dev_mgr::instance().current_device().in_order_queue();
- }
- static sycl::event
- dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr, size_t size,
- memcpy_direction direction,
- const std::vector<sycl::event> &dep_events = {})
- {
- if (!size)
- return sycl::event{};
- return q.memcpy(to_ptr, from_ptr, size, dep_events);
- GGML_UNUSED(direction);
- }
- // Get actual copy range and make sure it will not exceed range.
- static inline size_t get_copy_range(sycl::range<3> size, size_t slice,
- size_t pitch)
- {
- return slice * (size.get(2) - 1) + pitch * (size.get(1) - 1) + size.get(0);
- }
- static inline size_t get_offset(sycl::id<3> id, size_t slice,
- size_t pitch)
- {
- return slice * id.get(2) + pitch * id.get(1) + id.get(0);
- }
- /// copy 3D matrix specified by \p size from 3D matrix specified by \p from_ptr
- /// and \p from_range to another specified by \p to_ptr and \p to_range.
- static inline std::vector<sycl::event>
- dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
- sycl::range<3> to_range, sycl::range<3> from_range,
- sycl::id<3> to_id, sycl::id<3> from_id,
- sycl::range<3> size, memcpy_direction direction,
- const std::vector<sycl::event> &dep_events = {})
- {
- // RAII for host pointer
- class host_buffer
- {
- void *_buf;
- size_t _size;
- sycl::queue &_q;
- const std::vector<sycl::event> &_deps; // free operation depends
- public:
- host_buffer(size_t size, sycl::queue &q,
- const std::vector<sycl::event> &deps)
- : _buf(std::malloc(size)), _size(size), _q(q), _deps(deps) {}
- void *get_ptr() const { return _buf; }
- size_t get_size() const { return _size; }
- ~host_buffer()
- {
- if (_buf)
- {
- _q.submit([&](sycl::handler &cgh)
- {
- cgh.depends_on(_deps);
- cgh.host_task([buf = _buf] { std::free(buf); }); });
- }
- }
- };
- std::vector<sycl::event> event_list;
- size_t to_slice = to_range.get(1) * to_range.get(0),
- from_slice = from_range.get(1) * from_range.get(0);
- unsigned char *to_surface =
- (unsigned char *)to_ptr + get_offset(to_id, to_slice, to_range.get(0));
- const unsigned char *from_surface =
- (const unsigned char *)from_ptr +
- get_offset(from_id, from_slice, from_range.get(0));
- if (to_slice == from_slice && to_slice == size.get(1) * size.get(0))
- {
- return {dpct_memcpy(q, to_surface, from_surface, to_slice * size.get(2),
- direction, dep_events)};
- }
- direction = detail::deduce_memcpy_direction(q, to_ptr, from_ptr, direction);
- size_t size_slice = size.get(1) * size.get(0);
- switch (direction)
- {
- case host_to_host:
- for (size_t z = 0; z < size.get(2); ++z)
- {
- unsigned char *to_ptr = to_surface;
- const unsigned char *from_ptr = from_surface;
- if (to_range.get(0) == from_range.get(0) &&
- to_range.get(0) == size.get(0))
- {
- event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size_slice,
- direction, dep_events));
- }
- else
- {
- for (size_t y = 0; y < size.get(1); ++y)
- {
- event_list.push_back(dpct_memcpy(q, to_ptr, from_ptr, size.get(0),
- direction, dep_events));
- to_ptr += to_range.get(0);
- from_ptr += from_range.get(0);
- }
- }
- to_surface += to_slice;
- from_surface += from_slice;
- }
- break;
- case host_to_device:
- {
- host_buffer buf(get_copy_range(size, to_slice, to_range.get(0)), q,
- event_list);
- std::vector<sycl::event> host_events;
- if (to_slice == size_slice)
- {
- // Copy host data to a temp host buffer with the shape of target.
- host_events =
- dpct_memcpy(q, buf.get_ptr(), from_surface, to_range, from_range,
- sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size,
- host_to_host, dep_events);
- }
- else
- {
- // Copy host data to a temp host buffer with the shape of target.
- host_events = dpct_memcpy(
- q, buf.get_ptr(), from_surface, to_range, from_range,
- sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0), size, host_to_host,
- // If has padding data, not sure whether it is useless. So fill temp
- // buffer with it.
- std::vector<sycl::event>{
- dpct_memcpy(q, buf.get_ptr(), to_surface, buf.get_size(),
- device_to_host, dep_events)});
- }
- // Copy from temp host buffer to device with only one submit.
- event_list.push_back(dpct_memcpy(q, to_surface, buf.get_ptr(),
- buf.get_size(), host_to_device,
- host_events));
- break;
- }
- case device_to_host:
- {
- host_buffer buf(get_copy_range(size, from_slice, from_range.get(0)), q,
- event_list);
- // Copy from host temp buffer to host target with reshaping.
- event_list = dpct_memcpy(
- q, to_surface, buf.get_ptr(), to_range, from_range, sycl::id<3>(0, 0, 0),
- sycl::id<3>(0, 0, 0), size, host_to_host,
- // Copy from device to temp host buffer with only one submit.
- std::vector<sycl::event>{dpct_memcpy(q, buf.get_ptr(), from_surface,
- buf.get_size(),
- device_to_host, dep_events)});
- break;
- }
- case device_to_device:
- event_list.push_back(q.submit([&](sycl::handler &cgh)
- {
- cgh.depends_on(dep_events);
- cgh.parallel_for<class dpct_memcpy_3d_detail>(
- size,
- [=](sycl::id<3> id) {
- to_surface[get_offset(id, to_slice, to_range.get(0))] =
- from_surface[get_offset(id, from_slice, from_range.get(0))];
- }); }));
- break;
- default:
- throw std::runtime_error("dpct_memcpy: invalid direction value");
- }
- return event_list;
- }
- /// memcpy 2D/3D matrix specified by pitched_data.
- static inline std::vector<sycl::event>
- dpct_memcpy(sycl::queue &q, pitched_data to, sycl::id<3> to_id,
- pitched_data from, sycl::id<3> from_id, sycl::range<3> size,
- memcpy_direction direction = automatic)
- {
- return dpct_memcpy(q, to.get_data_ptr(), from.get_data_ptr(),
- sycl::range<3>(to.get_pitch(), to.get_y(), 1),
- sycl::range<3>(from.get_pitch(), from.get_y(), 1), to_id, from_id,
- size, direction);
- }
- /// memcpy 2D matrix with pitch.
- static inline std::vector<sycl::event>
- dpct_memcpy(sycl::queue &q, void *to_ptr, const void *from_ptr,
- size_t to_pitch, size_t from_pitch, size_t x, size_t y,
- memcpy_direction direction = automatic)
- {
- return dpct_memcpy(q, to_ptr, from_ptr, sycl::range<3>(to_pitch, y, 1),
- sycl::range<3>(from_pitch, y, 1),
- sycl::id<3>(0, 0, 0), sycl::id<3>(0, 0, 0),
- sycl::range<3>(x, y, 1), direction);
- }
- inline void gemm(sycl::queue &q, oneapi::mkl::transpose a_trans,
- oneapi::mkl::transpose b_trans, int m, int n, int k,
- const void *alpha, const void *a, library_data_t a_type,
- int lda, const void *b, library_data_t b_type, int ldb,
- const void *beta, void *c, library_data_t c_type, int ldc,
- library_data_t scaling_type)
- {
- if (scaling_type == library_data_t::real_float &&
- c_type == library_data_t::complex_float)
- {
- scaling_type = library_data_t::complex_float;
- }
- else if (scaling_type == library_data_t::real_double &&
- c_type == library_data_t::complex_double)
- {
- scaling_type = library_data_t::complex_double;
- }
- std::uint64_t key =
- detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
- switch (key)
- {
- case detail::get_type_combination_id(
- library_data_t::real_float, library_data_t::real_float,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_impl<float, float, float, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_double, library_data_t::real_double,
- library_data_t::real_double, library_data_t::real_double):
- {
- detail::gemm_impl<double, double, double, double>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::complex_float, library_data_t::complex_float,
- library_data_t::complex_float, library_data_t::complex_float):
- {
- detail::gemm_impl<std::complex<float>, std::complex<float>,
- std::complex<float>, std::complex<float>>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::complex_double, library_data_t::complex_double,
- library_data_t::complex_double, library_data_t::complex_double):
- {
- detail::gemm_impl<std::complex<double>, std::complex<double>,
- std::complex<double>, std::complex<double>>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_half, library_data_t::real_half,
- library_data_t::real_half, library_data_t::real_half):
- {
- detail::gemm_impl<sycl::half, sycl::half, sycl::half,
- sycl::half>(q, a_trans, b_trans, m, n, k, alpha, a,
- lda, b, ldb, beta, c, ldc);
- break;
- }
- #ifdef __INTEL_MKL__
- case detail::get_type_combination_id(
- library_data_t::real_bfloat16, library_data_t::real_bfloat16,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
- float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b,
- ldb, beta, c, ldc);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_half, library_data_t::real_half,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_impl<sycl::half, sycl::half, float, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_half, library_data_t::real_half,
- library_data_t::real_half, library_data_t::real_float):
- {
- float alpha_value =
- dpct::get_value(reinterpret_cast<const float *>(alpha), q);
- float beta_value =
- dpct::get_value(reinterpret_cast<const float *>(beta), q);
- sycl::half alpha_half(alpha_value);
- sycl::half beta_half(beta_value);
- detail::gemm_impl<sycl::half, sycl::half, sycl::half,
- sycl::half>(q, a_trans, b_trans, m, n, k, &alpha_half,
- a, lda, b, ldb, &beta_half, c, ldc);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_int8, library_data_t::real_int8,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_impl<std::int8_t, std::int8_t, float, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_bfloat16, library_data_t::real_bfloat16,
- library_data_t::real_bfloat16, library_data_t::real_float):
- {
- detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
- oneapi::mkl::bfloat16, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_int8, library_data_t::real_int8,
- library_data_t::real_int32, library_data_t::real_int32):
- {
- float alpha_float =
- dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
- float beta_float =
- dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
- detail::gemm_impl<std::int8_t, std::int8_t, std::int32_t, float>(
- q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc);
- break;
- }
- #endif // __INTEL_MKL__
- default:
- throw std::runtime_error("the combination of data type is unsupported");
- }
- } // gemm()
- /// Computes a batch of matrix-matrix product with general matrices.
- /// \param [in] q The queue where the routine should be executed.
- /// \param [in] a_trans Specifies the operation applied to A.
- /// \param [in] b_trans Specifies the operation applied to B.
- /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
- /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
- /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
- /// \param [in] alpha Scaling factor for the matrix-matrix product.
- /// \param [in] a Input matrix A.
- /// \param [in] a_type Data type of the matrix A.
- /// \param [in] lda Leading dimension of A.
- /// \param [in] b Input matrix B.
- /// \param [in] b_type Data type of the matrix B.
- /// \param [in] ldb Leading dimension of B.
- /// \param [in] beta Scaling factor for matrix C.
- /// \param [in, out] c Input/Output matrix C.
- /// \param [in] c_type Data type of the matrix C.
- /// \param [in] ldc Leading dimension of C.
- /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
- /// \param [in] scaling_type Data type of the scaling factors.
- inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
- oneapi::mkl::transpose b_trans, int m, int n, int k,
- const void *alpha, const void *a[],
- library_data_t a_type, int lda, const void *b[],
- library_data_t b_type, int ldb, const void *beta,
- void *c[], library_data_t c_type, int ldc,
- int batch_size, library_data_t scaling_type)
- {
- if (scaling_type == library_data_t::real_float &&
- c_type == library_data_t::complex_float)
- {
- scaling_type = library_data_t::complex_float;
- }
- else if (scaling_type == library_data_t::real_double &&
- c_type == library_data_t::complex_double)
- {
- scaling_type = library_data_t::complex_double;
- }
- std::uint64_t key =
- detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
- switch (key)
- {
- case detail::get_type_combination_id(
- library_data_t::real_float, library_data_t::real_float,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_batch_impl<float, float, float, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
- batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_double, library_data_t::real_double,
- library_data_t::real_double, library_data_t::real_double):
- {
- detail::gemm_batch_impl<double, double, double, double>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
- batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::complex_float, library_data_t::complex_float,
- library_data_t::complex_float, library_data_t::complex_float):
- {
- detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
- std::complex<float>, std::complex<float>>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
- batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::complex_double, library_data_t::complex_double,
- library_data_t::complex_double, library_data_t::complex_double):
- {
- detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
- std::complex<double>, std::complex<double>>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
- batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_half, library_data_t::real_half,
- library_data_t::real_half, library_data_t::real_half):
- {
- detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
- sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
- a, lda, b, ldb, beta, c, ldc,
- batch_size);
- break;
- }
- #ifdef __INTEL_MKL__
- case detail::get_type_combination_id(
- library_data_t::real_bfloat16, library_data_t::real_bfloat16,
- library_data_t::real_bfloat16, library_data_t::real_float):
- {
- detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
- oneapi::mkl::bfloat16, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
- batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_bfloat16, library_data_t::real_bfloat16,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
- float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
- b, ldb, beta, c, ldc, batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_int8, library_data_t::real_int8,
- library_data_t::real_int32, library_data_t::real_int32):
- {
- float alpha_float =
- dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
- float beta_float =
- dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
- detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
- float>(q, a_trans, b_trans, m, n, k, &alpha_float,
- a, lda, b, ldb, &beta_float, c, ldc,
- batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_int8, library_data_t::real_int8,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
- batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_half, library_data_t::real_half,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
- batch_size);
- break;
- }
- #endif
- case detail::get_type_combination_id(
- library_data_t::real_half, library_data_t::real_half,
- library_data_t::real_half, library_data_t::real_float):
- {
- float alpha_value =
- dpct::get_value(reinterpret_cast<const float *>(alpha), q);
- float beta_value =
- dpct::get_value(reinterpret_cast<const float *>(beta), q);
- sycl::half alpha_half(alpha_value);
- sycl::half beta_half(beta_value);
- detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
- q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc,
- batch_size);
- break;
- }
- default:
- throw std::runtime_error("the combination of data type is unsupported");
- }
- }
- /// Computes a batch of matrix-matrix product with general matrices.
- /// \param [in] q The queue where the routine should be executed.
- /// \param [in] a_trans Specifies the operation applied to A.
- /// \param [in] b_trans Specifies the operation applied to B.
- /// \param [in] m Specifies the number of rows of the matrix op(A) and of the matrix C.
- /// \param [in] n Specifies the number of columns of the matrix op(B) and of the matrix C.
- /// \param [in] k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B).
- /// \param [in] alpha Scaling factor for the matrix-matrix product.
- /// \param [in] a Input matrix A.
- /// \param [in] a_type Data type of the matrix A.
- /// \param [in] lda Leading dimension of A.
- /// \param [in] stride_a Stride between the different A matrices.
- /// \param [in] b Input matrix B.
- /// \param [in] b_type Data type of the matrix B.
- /// \param [in] ldb Leading dimension of B.
- /// \param [in] stride_b Stride between the different B matrices.
- /// \param [in] beta Scaling factor for matrix C.
- /// \param [in, out] c Input/Output matrix C.
- /// \param [in] c_type Data type of the matrix C.
- /// \param [in] ldc Leading dimension of C.
- /// \param [in] stride_c Stride between the different C matrices.
- /// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
- /// \param [in] scaling_type Data type of the scaling factors.
- inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
- oneapi::mkl::transpose b_trans, int m, int n, int k,
- const void *alpha, const void *a, library_data_t a_type,
- int lda, long long int stride_a, const void *b,
- library_data_t b_type, int ldb, long long int stride_b,
- const void *beta, void *c, library_data_t c_type,
- int ldc, long long int stride_c, int batch_size,
- library_data_t scaling_type)
- {
- if (scaling_type == library_data_t::real_float &&
- c_type == library_data_t::complex_float)
- {
- scaling_type = library_data_t::complex_float;
- }
- else if (scaling_type == library_data_t::real_double &&
- c_type == library_data_t::complex_double)
- {
- scaling_type = library_data_t::complex_double;
- }
- std::uint64_t key =
- detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
- switch (key)
- {
- case detail::get_type_combination_id(
- library_data_t::real_float, library_data_t::real_float,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_batch_impl<float, float, float, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
- beta, c, ldc, stride_c, batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_double, library_data_t::real_double,
- library_data_t::real_double, library_data_t::real_double):
- {
- detail::gemm_batch_impl<double, double, double, double>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
- beta, c, ldc, stride_c, batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::complex_float, library_data_t::complex_float,
- library_data_t::complex_float, library_data_t::complex_float):
- {
- detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
- std::complex<float>, std::complex<float>>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
- beta, c, ldc, stride_c, batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::complex_double, library_data_t::complex_double,
- library_data_t::complex_double, library_data_t::complex_double):
- {
- detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
- std::complex<double>, std::complex<double>>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
- beta, c, ldc, stride_c, batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_half, library_data_t::real_half,
- library_data_t::real_half, library_data_t::real_half):
- {
- detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
- sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
- a, lda, stride_a, b, ldb, stride_b,
- beta, c, ldc, stride_c, batch_size);
- break;
- }
- #ifdef __INTEL_MKL__
- case detail::get_type_combination_id(
- library_data_t::real_bfloat16, library_data_t::real_bfloat16,
- library_data_t::real_bfloat16, library_data_t::real_float):
- {
- detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
- oneapi::mkl::bfloat16, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
- beta, c, ldc, stride_c, batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_bfloat16, library_data_t::real_bfloat16,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
- float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
- stride_a, b, ldb, stride_b, beta, c, ldc,
- stride_c, batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_int8, library_data_t::real_int8,
- library_data_t::real_int32, library_data_t::real_int32):
- {
- detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
- std::int32_t>(q, a_trans, b_trans, m, n, k, alpha,
- a, lda, stride_a, b, ldb, stride_b,
- beta, c, ldc, stride_c, batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_int8, library_data_t::real_int8,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
- beta, c, ldc, stride_c, batch_size);
- break;
- }
- case detail::get_type_combination_id(
- library_data_t::real_half, library_data_t::real_half,
- library_data_t::real_float, library_data_t::real_float):
- {
- detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
- q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b,
- beta, c, ldc, stride_c, batch_size);
- break;
- }
- #endif
- case detail::get_type_combination_id(
- library_data_t::real_half, library_data_t::real_half,
- library_data_t::real_half, library_data_t::real_float):
- {
- float alpha_value =
- dpct::get_value(reinterpret_cast<const float *>(alpha), q);
- float beta_value =
- dpct::get_value(reinterpret_cast<const float *>(beta), q);
- sycl::half alpha_half(alpha_value);
- sycl::half beta_half(beta_value);
- detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
- q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, stride_a, b, ldb, stride_b,
- &beta_half, c, ldc, stride_c, batch_size);
- break;
- }
- default:
- throw std::runtime_error("the combination of data type is unsupported");
- }
- }
- static inline void
- async_dpct_memcpy(void *to_ptr, size_t to_pitch, const void *from_ptr,
- size_t from_pitch, size_t x, size_t y,
- memcpy_direction direction = automatic,
- sycl::queue &q = get_default_queue())
- {
- detail::dpct_memcpy(q, to_ptr, from_ptr, to_pitch, from_pitch, x, y,
- direction);
- }
- using err0 = detail::generic_error_type<struct err0_tag, int>;
- using err1 = detail::generic_error_type<struct err1_tag, int>;
- static inline void dpct_free(void *ptr, sycl::queue &q = get_default_queue()) {
- detail::dpct_free(ptr, q);
- }
- /// dpct accessor used as device function parameter.
- template <class T, memory_region Memory, size_t Dimension> class accessor;
- template <class T, memory_region Memory> class accessor<T, Memory, 3> {
- public:
- using memory_t = detail::memory_traits<Memory, T>;
- using element_t = typename memory_t::element_t;
- using pointer_t = typename memory_t::pointer_t;
- using accessor_t = typename memory_t::template accessor_t<3>;
- accessor(pointer_t data, const sycl::range<3> &in_range)
- : _data(data), _range(in_range) {}
- template <memory_region M = Memory>
- accessor(typename std::enable_if<M != local, const accessor_t>::type &acc)
- : accessor(acc, acc.get_range()) {}
- accessor(const accessor_t &acc, const sycl::range<3> &in_range)
- : accessor(acc.get_pointer(), in_range) {}
- accessor<T, Memory, 2> operator[](size_t index) const {
- sycl::range<2> sub(_range.get(1), _range.get(2));
- return accessor<T, Memory, 2>(_data + index * sub.size(), sub);
- }
- pointer_t get_ptr() const { return _data; }
- private:
- pointer_t _data;
- sycl::range<3> _range;
- };
- template <class T, memory_region Memory> class accessor<T, Memory, 2> {
- public:
- using memory_t = detail::memory_traits<Memory, T>;
- using element_t = typename memory_t::element_t;
- using pointer_t = typename memory_t::pointer_t;
- using accessor_t = typename memory_t::template accessor_t<2>;
- accessor(pointer_t data, const sycl::range<2> &in_range)
- : _data(data), _range(in_range) {}
- template <memory_region M = Memory>
- accessor(typename std::enable_if<M != local, const accessor_t>::type &acc)
- : accessor(acc, acc.get_range()) {}
- accessor(const accessor_t &acc, const sycl::range<2> &in_range)
- : accessor(acc.get_pointer(), in_range) {}
- pointer_t operator[](size_t index) const {
- return _data + _range.get(1) * index;
- }
- pointer_t get_ptr() const { return _data; }
- private:
- pointer_t _data;
- sycl::range<2> _range;
- };
- namespace detail {
- /// Device variable with address space of shared, global or constant.
- template <class T, memory_region Memory, size_t Dimension> class device_memory {
- public:
- using accessor_t =
- typename detail::memory_traits<Memory,
- T>::template accessor_t<Dimension>;
- using value_t = typename detail::memory_traits<Memory, T>::value_t;
- using dpct_accessor_t = dpct::accessor<T, Memory, Dimension>;
- device_memory() : device_memory(sycl::range<Dimension>(1)) {}
- /// Constructor of 1-D array with initializer list
- device_memory(const sycl::range<Dimension> &in_range,
- std::initializer_list<value_t> &&init_list)
- : device_memory(in_range) {
- assert(init_list.size() <= in_range.size());
- _host_ptr = (value_t *)std::malloc(_size);
- std::memset(_host_ptr, 0, _size);
- std::memcpy(_host_ptr, init_list.begin(), init_list.size() * sizeof(T));
- }
- /// Constructor of 2-D array with initializer list
- template <size_t D = Dimension>
- device_memory(
- const typename std::enable_if<D == 2, sycl::range<2>>::type &in_range,
- std::initializer_list<std::initializer_list<value_t>> &&init_list)
- : device_memory(in_range) {
- assert(init_list.size() <= in_range[0]);
- _host_ptr = (value_t *)std::malloc(_size);
- std::memset(_host_ptr, 0, _size);
- auto tmp_data = _host_ptr;
- for (auto sub_list : init_list) {
- assert(sub_list.size() <= in_range[1]);
- std::memcpy(tmp_data, sub_list.begin(),
- sub_list.size() * sizeof(T));
- tmp_data += in_range[1];
- }
- }
- /// Constructor with range
- device_memory(const sycl::range<Dimension> &range_in)
- : _size(range_in.size() * sizeof(T)), _range(range_in),
- _reference(false), _host_ptr(nullptr), _device_ptr(nullptr) {
- static_assert(
- (Memory == global) || (Memory == constant) || (Memory == shared),
- "device memory region should be global, constant or shared");
- // Make sure that singleton class mem_mgr and dev_mgr will destruct
- // later than this.
- detail::mem_mgr::instance();
- dev_mgr::instance();
- }
- /// Constructor with range
- template <class... Args>
- device_memory(Args... Arguments)
- : device_memory(sycl::range<Dimension>(Arguments...)) {}
- ~device_memory() {
- if (_device_ptr && !_reference)
- dpct::dpct_free(_device_ptr);
- if (_host_ptr)
- std::free(_host_ptr);
- }
- /// Allocate memory with default queue, and init memory if has initial
- /// value.
- void init() { init(dpct::get_default_queue()); }
- /// Allocate memory with specified queue, and init memory if has initial
- /// value.
- void init(sycl::queue &q) {
- if (_device_ptr)
- return;
- if (!_size)
- return;
- allocate_device(q);
- if (_host_ptr)
- detail::dpct_memcpy(q, _device_ptr, _host_ptr, _size,
- host_to_device);
- }
- /// The variable is assigned to a device pointer.
- void assign(value_t *src, size_t size) {
- this->~device_memory();
- new (this) device_memory(src, size);
- }
- /// Get memory pointer of the memory object, which is virtual pointer when
- /// usm is not used, and device pointer when usm is used.
- value_t *get_ptr() { return get_ptr(get_default_queue()); }
- /// Get memory pointer of the memory object, which is virtual pointer when
- /// usm is not used, and device pointer when usm is used.
- value_t *get_ptr(sycl::queue &q) {
- init(q);
- return _device_ptr;
- }
- /// Get the device memory object size in bytes.
- size_t get_size() { return _size; }
- template <size_t D = Dimension>
- typename std::enable_if<D == 1, T>::type &operator[](size_t index) {
- init();
- return _device_ptr[index];
- }
- /// Get dpct::accessor with dimension info for the device memory object
- /// when usm is used and dimension is greater than 1.
- template <size_t D = Dimension>
- typename std::enable_if<D != 1, dpct_accessor_t>::type
- get_access(sycl::handler &cgh) {
- return dpct_accessor_t((T *)_device_ptr, _range);
- }
- private:
- device_memory(value_t *memory_ptr, size_t size)
- : _size(size), _range(size / sizeof(T)), _reference(true),
- _device_ptr(memory_ptr) {}
- void allocate_device(sycl::queue &q) {
- #ifndef DPCT_USM_LEVEL_NONE
- if (Memory == shared) {
- _device_ptr = (value_t *)sycl::malloc_shared(_size, q.get_device(),
- q.get_context());
- return;
- }
- #ifdef SYCL_EXT_ONEAPI_USM_DEVICE_READ_ONLY
- if (Memory == constant) {
- _device_ptr = (value_t *)sycl::malloc_device(
- _size, q.get_device(), q.get_context(),
- sycl::ext::oneapi::property::usm::device_read_only());
- return;
- }
- #endif
- #endif
- _device_ptr = (value_t *)detail::dpct_malloc(_size, q);
- }
- size_t _size;
- sycl::range<Dimension> _range;
- bool _reference;
- value_t *_host_ptr;
- value_t *_device_ptr;
- };
- template <class T, memory_region Memory>
- class device_memory<T, Memory, 0> : public device_memory<T, Memory, 1> {
- public:
- using base = device_memory<T, Memory, 1>;
- using value_t = typename base::value_t;
- using accessor_t =
- typename detail::memory_traits<Memory, T>::template accessor_t<0>;
- /// Constructor with initial value.
- device_memory(const value_t &val) : base(sycl::range<1>(1), {val}) {}
- /// Default constructor
- device_memory() : base(1) {}
- };
- } // namespace detail
- template <class T, size_t Dimension>
- using global_memory = detail::device_memory<T, global, Dimension>;
- template <class T, size_t Dimension>
- using constant_memory = detail::device_memory<T, constant, Dimension>;
- template <class T, size_t Dimension>
- using shared_memory = detail::device_memory<T, shared, Dimension>;
- } // COPY from DPCT head files
- #define GGML_COMMON_DECL_SYCL
- #define GGML_COMMON_IMPL_SYCL
- #include "ggml-common.h"
- static int g_ggml_sycl_debug=0;
- #define GGML_SYCL_DEBUG(...) do{if(g_ggml_sycl_debug) fprintf(stderr, __VA_ARGS__);}while(0)
- #define CHECK_TRY_ERROR(expr) \
- [&]() { \
- try { \
- expr; \
- return dpct::success; \
- } catch (std::exception const &e) { \
- std::cerr << e.what()<< "\nException caught at file:" << __FILE__ \
- << ", line:" << __LINE__ <<", func:"<<__func__<< std::endl; \
- return dpct::default_error; \
- } \
- }()
- // #define DEBUG_SYCL_MALLOC
- static int g_work_group_size = 0;
- // typedef sycl::half ggml_fp16_t;
- #define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
- #define VER_4VEC 610 //todo for hardward optimize.
- #define VER_GEN9 700 //todo for hardward optimize.
- #define VER_GEN12 1000000 //todo for hardward optimize.
- #define VER_GEN13 (VER_GEN12 + 1030) //todo for hardward optimize.
- #define GGML_SYCL_MAX_NODES 8192 //TODO: adapt to hardwares
- //define for XMX in Intel GPU
- //TODO: currently, it's not used for XMX really.
- #define SYCL_USE_XMX
- // max batch size to use MMQ kernels when tensor cores are available
- #define XMX_MAX_BATCH_SIZE 32
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- // dmmv = dequantize_mul_mat_vec
- #ifndef GGML_SYCL_DMMV_X
- #define GGML_SYCL_DMMV_X 32
- #endif
- #ifndef GGML_SYCL_MMV_Y
- #define GGML_SYCL_MMV_Y 1
- #endif
- enum ggml_sycl_backend_gpu_mode {
- SYCL_UNSET_GPU_MODE = -1,
- SYCL_SINGLE_GPU_MODE = 0,
- SYCL_MUL_GPU_MODE
- };
- static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- static void crash(){
- int *ptr = NULL;
- *ptr = 0;
- }
- static void ggml_sycl_error(const char * stmt, const char * func, const char * file, const int line, const char * msg) {
- fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg);
- fprintf(stderr, " in function %s at %s:%d\n", func, file, line);
- GGML_ASSERT(!"SYCL error");
- }
- #define SYCL_CHECK(err) do { \
- auto err_ = (err); if (err_ != 0) ggml_sycl_error( \
- #err, __func__, __FILE__, __LINE__, \
- "Meet error in this line code!"); \
- } while (0)
- #if DPCT_COMPAT_RT_VERSION >= 11100
- #define GGML_SYCL_ASSUME(x) __builtin_assume(x)
- #else
- #define GGML_SYCL_ASSUME(x)
- #endif // DPCT_COMPAT_RT_VERSION >= 11100
- #ifdef GGML_SYCL_F16
- typedef sycl::half dfloat; // dequantize float
- typedef sycl::half2 dfloat2;
- #else
- typedef float dfloat; // dequantize float
- typedef sycl::float2 dfloat2;
- #endif //GGML_SYCL_F16
- #define MMVQ_MAX_BATCH_SIZE 8
- static const int8_t kvalues_iq4nl[16]={-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
- bool ggml_sycl_loaded(void);
- void * ggml_sycl_host_malloc(size_t size);
- void ggml_sycl_host_free(void * ptr);
- bool ggml_sycl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
- void ggml_sycl_free_data(struct ggml_tensor * tensor);
- void ggml_sycl_assign_buffers(struct ggml_tensor * tensor);
- void ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor);
- void ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor);
- void ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor);
- void ggml_sycl_copy_to_device(struct ggml_tensor * tensor);
- void ggml_sycl_set_main_device(int main_device);
- void ggml_sycl_set_mul_mat_q(bool mul_mat_q);
- void ggml_sycl_set_scratch_size(size_t scratch_size);
- void ggml_sycl_free_scratch(void);
- void ggml_sycl_get_device_description(int device, char * description, size_t description_size);
- bool ggml_backend_is_sycl(ggml_backend_t backend);
- int ggml_backend_sycl_get_device(ggml_backend_t backend);
- int get_main_device();
- void print_ggml_tensor(const char*name, struct ggml_tensor *src);
- void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt);
- void dev2dev_memcpy(sycl::queue &q_dst, sycl::queue &q_src, void *ptr_dst,
- const void *ptr_src, size_t size) {
- char *host_buf = (char *)malloc(size);
- q_src.memcpy(host_buf, (const char *)ptr_src, size).wait();
- q_dst.memcpy((char *)ptr_dst, host_buf, size).wait();
- free(host_buf);
- }
- static __dpct_inline__ int get_int_from_int8(const int8_t *x8, const int &i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __dpct_inline__ int get_int_from_uint8(const uint8_t *x8,
- const int &i32) {
- const uint16_t * x16 = (const uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
- int x32 = 0;
- x32 |= x16[0] << 0;
- x32 |= x16[1] << 16;
- return x32;
- }
- static __dpct_inline__ int get_int_from_int8_aligned(const int8_t *x8,
- const int &i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- static __dpct_inline__ int get_int_from_uint8_aligned(const uint8_t *x8,
- const int &i32) {
- return *((const int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
- }
- template <typename T>
- using to_t_sycl_t = void (*)(const void *__restrict__ x, T *__restrict__ y,
- int k, dpct::queue_ptr stream);
- typedef to_t_sycl_t<float> to_fp32_sycl_t;
- typedef to_t_sycl_t<sycl::half> to_fp16_sycl_t;
- typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
- typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
- typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
- typedef void (*ggml_sycl_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- typedef void (*ggml_sycl_op_mul_mat_t)(
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const dpct::queue_ptr &stream);
- typedef void (*ggml_sycl_op_flatten_t)(const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream);
- typedef float (*vec_dot_q_sycl_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
- typedef void (*allocate_tiles_sycl_t)(int **x_ql, sycl::half2 **x_dm,
- int **x_qh, int **x_sc);
- typedef void (*load_tiles_sycl_t)(const void *__restrict__ vx,
- int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm,
- int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset,
- const int &i_max, const int &k,
- const int &blocks_per_row);
- typedef float (*vec_dot_q_mul_mat_sycl_t)(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ms,
- const int &i, const int &j, const int &k);
- #define WARP_SIZE 32
- #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
- #define SYCL_GELU_BLOCK_SIZE 256
- #define SYCL_SILU_BLOCK_SIZE 256
- #define SYCL_TANH_BLOCK_SIZE 256
- #define SYCL_RELU_BLOCK_SIZE 256
- #define SYCL_HARDSIGMOID_BLOCK_SIZE 256
- #define SYCL_HARDSWISH_BLOCK_SIZE 256
- #define SYCL_SQR_BLOCK_SIZE 256
- #define SYCL_CPY_BLOCK_SIZE 32
- #define SYCL_SCALE_BLOCK_SIZE 256
- #define SYCL_CLAMP_BLOCK_SIZE 256
- #define SYCL_ROPE_BLOCK_SIZE 256
- #define SYCL_ALIBI_BLOCK_SIZE 32
- #define SYCL_DIAG_MASK_INF_BLOCK_SIZE 32
- #define SYCL_QUANTIZE_BLOCK_SIZE 256
- #define SYCL_DEQUANTIZE_BLOCK_SIZE 256
- #define SYCL_GET_ROWS_BLOCK_SIZE 256
- #define SYCL_UPSCALE_BLOCK_SIZE 256
- #define SYCL_CONCAT_BLOCK_SIZE 256
- #define SYCL_PAD_BLOCK_SIZE 256
- #define SYCL_ACC_BLOCK_SIZE 256
- #define SYCL_IM2COL_BLOCK_SIZE 256
- #define SYCL_POOL2D_BLOCK_SIZE 256
- // dmmv = dequantize_mul_mat_vec
- #ifndef GGML_SYCL_DMMV_X
- #define GGML_SYCL_DMMV_X 32
- #endif
- #ifndef GGML_SYCL_MMV_Y
- #define GGML_SYCL_MMV_Y 1
- #endif
- #ifndef K_QUANTS_PER_ITERATION
- #define K_QUANTS_PER_ITERATION 2
- #else
- static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
- #endif
- #ifndef GGML_SYCL_PEER_MAX_BATCH_SIZE
- #define GGML_SYCL_PEER_MAX_BATCH_SIZE 128
- #endif // GGML_SYCL_PEER_MAX_BATCH_SIZE
- #define MUL_MAT_SRC1_COL_STRIDE 128
- #define MAX_STREAMS 8
- static dpct::queue_ptr g_syclStreams[GGML_SYCL_MAX_DEVICES][MAX_STREAMS] = {{0}};
- struct ggml_tensor_extra_gpu {
- void * data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split tensors
- dpct::event_ptr
- events[GGML_SYCL_MAX_DEVICES]
- [MAX_STREAMS]; // events for synchronizing multiple GPUs
- };
- class sycl_gpu_mgr {
- public:
- std::vector<int> gpus;
- std::vector<sycl::device> devices;
- sycl::queue *first_queue;
- sycl::context co_ctx;
- int max_compute_units = 0;
- int work_group_size = 0;
- std::string gpus_list = "";
- /*
- Use all GPUs with same top max compute units
- */
- sycl_gpu_mgr() {
- detect_sycl_gpu_list_with_max_cu();
- get_allow_gpus();
- create_context_with_gpus();
- }
- /*
- Only use the assigned GPU
- */
- sycl_gpu_mgr(int main_gpu_id) {
- sycl::device device = dpct::dev_mgr::instance().get_device(main_gpu_id);
- dpct::device_info prop;
- dpct::get_device_info(prop, device);
- gpus.push_back(main_gpu_id);
- devices.push_back(device);
- work_group_size = prop.get_max_work_group_size();
- max_compute_units = prop.get_max_compute_units();
- get_allow_gpus();
- create_context_with_gpus();
- }
- void create_context_with_gpus() {
- sycl::context ctx = sycl::context(devices);
- assert(gpus.size() > 0);
- first_queue = dpct::get_current_device().create_queue(ctx, devices[0]);
- co_ctx = first_queue->get_context();
- }
- sycl::context &get_co_ctx() { return co_ctx; }
- void get_allow_gpus() {
- gpus_list = "";
- for (size_t i = 0; i < gpus.size(); ++i) {
- gpus_list += std::to_string(gpus[i]);
- gpus_list += ",";
- }
- if (gpus_list.length() > 1) {
- gpus_list.pop_back();
- }
- }
- bool is_allowed_gpu(int device_id) {
- return std::find(gpus.begin(), gpus.end(), device_id) != gpus.end();
- }
- void detect_sycl_gpu_list_with_max_cu() try {
- int device_count = dpct::dev_mgr::instance().device_count();
- for (int id = 0; id < device_count; id++) {
- sycl::device device = dpct::dev_mgr::instance().get_device(id);
- if (!device.is_gpu())
- continue;
- dpct::device_info prop;
- dpct::get_device_info(prop, device);
- if (max_compute_units < prop.get_max_compute_units())
- max_compute_units = prop.get_max_compute_units();
- }
- for (int id = 0; id < device_count; id++) {
- sycl::device device = dpct::dev_mgr::instance().get_device(id);
- if (!device.is_gpu())
- continue;
- dpct::device_info prop;
- dpct::get_device_info(prop, device);
- if (max_compute_units == prop.get_max_compute_units() &&
- is_ext_oneapi_device(device)) {
- gpus.push_back(id);
- devices.push_back(device);
- work_group_size = prop.get_max_work_group_size();
- }
- }
- return;
- } catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- int get_gpu_count() { return (int)gpus.size(); }
- int get_index(int id) {
- for (int i = 0; i < (int)gpus.size(); i++) {
- if (gpus[i] == id)
- return i;
- }
- printf("miss to get device index by id=%d\n", id);
- GGML_ASSERT(false);
- }
- int get_next_index(int id) {
- int cur_index = get_index(id);
- for (int i = cur_index + 1; i < (int)gpus.size(); i++) {
- if (gpus[i] == id)
- return i;
- }
- GGML_ASSERT(false);
- }
- bool is_ext_oneapi_device(const sycl::device &dev) {
- sycl::backend dev_backend = dev.get_backend();
- if (dev_backend == sycl::backend::ext_oneapi_level_zero ||
- dev_backend == sycl::backend::ext_oneapi_cuda ||
- dev_backend == sycl::backend::ext_oneapi_hip)
- return true;
- return false;
- }
- };
- static sycl_gpu_mgr *g_sycl_gpu_mgr = NULL;
- static int g_device_count = -1;
- static int g_all_sycl_device_count = -1;
- static int g_main_device = -1;
- static int g_main_device_id = -1;
- static bool g_ggml_backend_sycl_buffer_type_initialized = false;
- static std::array<float, GGML_SYCL_MAX_DEVICES> g_default_tensor_split = {};
- static float g_tensor_split[GGML_SYCL_MAX_DEVICES] = {0};
- static ggml_sycl_backend_gpu_mode g_ggml_sycl_backend_gpu_mode = SYCL_UNSET_GPU_MODE;
- struct sycl_device_capabilities {
- int cc; // compute capability
- bool vmm; // virtual memory support
- size_t vmm_granularity; // granularity of virtual memory
- int device_id;
- };
- static sycl_device_capabilities g_device_caps[GGML_SYCL_MAX_DEVICES] = { {0, false, 0, -1} };
- struct sycl_device_id2index {
- int index;
- };
- static void * g_scratch_buffer = nullptr;
- static size_t g_scratch_size = 0; // disabled by default
- static size_t g_scratch_offset = 0;
- static dpct::queue_ptr g_sycl_handles[GGML_SYCL_MAX_DEVICES] = {nullptr};
- int get_main_device(){
- return g_main_device;
- }
- [[noreturn]]
- static void bad_arch(const sycl::stream &stream_ct1) {
- stream_ct1 << "ERROR: ggml-sycl was compiled without support for the "
- "current GPU architecture.\n";
- // __trap();
- std::exit(1);
- (void) bad_arch; // suppress unused function warning
- }
- /*
- device_index: device index from 0 to n (continue numbers).
- It is used for device select/set in SYCL backend internal data structure.
- */
- void check_allow_gpu_index(const int device_index) {
- if (device_index >= g_device_count) {
- char error_buf[256];
- snprintf(error_buf, sizeof(error_buf),
- "%s error: device_index:%d is out of range: [0-%d]", __func__,
- device_index, g_device_count - 1);
- fprintf(stderr, "%s\n", error_buf);
- assert(false);
- }
- }
- /*
- device_id: device ID is shown by ggml_backend_sycl_print_sycl_devices().
- It is only used to set current working device.
- */
- void check_allow_gpu_id(const int device_id) {
- if (!g_sycl_gpu_mgr->is_allowed_gpu(device_id)) {
- char error_buf[256];
- snprintf(error_buf, sizeof(error_buf),
- "error: cannot set device=%d, which is not allowed. Please "
- "set GPU ID in: [%s]",
- device_id, g_sycl_gpu_mgr->gpus_list.c_str());
- fprintf(stderr, "%s\n", error_buf);
- throw std::invalid_argument(error_buf);
- }
- }
- int get_current_device_id() {
- return dpct::dev_mgr::instance().current_device_id();
- }
- inline dpct::err0 ggml_sycl_set_device(const int device) try {
- int device_id = g_sycl_gpu_mgr->gpus[device];
- check_allow_gpu_id(device_id);
- int current_device_id;
- SYCL_CHECK(CHECK_TRY_ERROR(current_device_id = get_current_device_id()));
- // GGML_SYCL_DEBUG("ggml_sycl_set_device device_id=%d,
- // current_device_id=%d\n", device, current_device);
- if (device_id == current_device_id) {
- return 0;
- }
- return CHECK_TRY_ERROR(dpct::select_device(device_id));
- } catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- crash();
- std::exit(1);
- }
- void log_ggml_var_device(const char*name, float *src, size_t total_elements, bool src_on_device){
- if(!g_ggml_sycl_debug) return;
- if(!src){
- printf("GGML Tensor:%s skip to save for NULL pointer\n", name);
- return;
- }
- char filename[1024];
- sprintf(filename, "%s.txt", name);
- printf("GGML Tensor:%s save to %s\n", name, filename);
- size_t total_size = total_elements*sizeof(float);
- float *local_buf = NULL;
- if(src_on_device) {
- local_buf = (float *) ggml_sycl_host_malloc(total_size);
- ggml_sycl_set_device(g_main_device);
- dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0];
- main_stream->memcpy(local_buf, src, total_size).wait();
- }
- else {
- local_buf = (float *)src;
- }
- std::ofstream logfile;
- logfile.open(filename);
- for(size_t i=0; i<total_elements; i++){
- logfile << local_buf[i] <<" ";
- if((i+1)%20 ==0) logfile <<std::endl;
- }
- logfile <<std::endl;
- logfile.close();
- if(src_on_device) ggml_sycl_host_free(local_buf);
- }
- void log_ggml_var_device_fp16(const char*name, sycl::half *src, size_t total_elements, bool src_on_device){
- if(!g_ggml_sycl_debug) return;
- if(!src){
- printf("GGML Tensor:%s skip to save for NULL pointer\n", name);
- return;
- }
- char filename[1024];
- sprintf(filename, "%s.txt", name);
- printf("GGML Tensor:%s save to %s\n", name, filename);
- size_t total_size = total_elements*sizeof(sycl::half);
- sycl::half *local_buf = NULL;
- if(src_on_device) {
- local_buf = (sycl::half *) ggml_sycl_host_malloc(total_size);
- ggml_sycl_set_device(g_main_device);
- dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0];
- main_stream->memcpy(local_buf, src, total_size).wait();
- }
- else {
- local_buf = (sycl::half *)src;
- }
- std::ofstream logfile;
- logfile.open(filename);
- for(size_t i=0; i<total_elements; i++){
- logfile << local_buf[i] <<" ";
- if((i+1)%20 ==0) logfile <<std::endl;
- }
- logfile <<std::endl;
- logfile.close();
- if(src_on_device) ggml_sycl_host_free(local_buf);
- }
- //todo: debug for crash in some case
- void print_ggml_tensor(const char*name, struct ggml_tensor *src){
- if(!g_ggml_sycl_debug) return;
- if(!src){
- printf("GGML Tensor:%s skip to save for NULL pointer\n", name);
- return;
- }
- size_t total_elements = ggml_nelements(src);
- const bool src_on_device = src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- float *src_data =NULL;
- if(src_on_device) {
- ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
- src_data = (float*)src_extra->data_device[g_main_device];
- }
- else {
- src_data = (float *)src->data;
- }
- log_ggml_var_device(name, src_data, total_elements, src_on_device);
- }
- static int log_file_name_idx=0;
- void log_tensor_with_cnt(const char* name, struct ggml_tensor * src, int stop_cnt) {
- stop_cnt = 4;
- if(log_file_name_idx>=stop_cnt) return;
- char filename[1280];
- sprintf(filename, "%s_%07d", name, log_file_name_idx);
- log_file_name_idx++;
- print_ggml_tensor(filename, src);
- }
- static __dpct_inline__ float warp_reduce_sum(float x,
- const sycl::nd_item<3> &item_ct1) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- /*
- DPCT1096:98: The right-most dimension of the work-group used in the SYCL
- kernel that calls this function may be less than "32". The function
- "dpct::permute_sub_group_by_xor" may return an unexpected result on the
- CPU device. Modify the size of the work-group to ensure that the value
- of the right-most dimension is a multiple of "32".
- */
- x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
- }
- return x;
- }
- static __dpct_inline__ sycl::float2
- warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3> &item_ct1) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
- mask);
- a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
- mask);
- }
- return a;
- }
- static __dpct_inline__ float warp_reduce_max(float x,
- const sycl::nd_item<3> &item_ct1) {
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- /*
- DPCT1096:97: The right-most dimension of the work-group used in the SYCL
- kernel that calls this function may be less than "32". The function
- "dpct::permute_sub_group_by_xor" may return an unexpected result on the
- CPU device. Modify the size of the work-group to ensure that the value
- of the right-most dimension is a multiple of "32".
- */
- x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
- item_ct1.get_sub_group(), x, mask));
- }
- return x;
- }
- static __dpct_inline__ float op_repeat(const float a, const float b) {
- return b;
- GGML_UNUSED(a);
- }
- static __dpct_inline__ float op_add(const float a, const float b) {
- return a + b;
- }
- static __dpct_inline__ float op_mul(const float a, const float b) {
- return a * b;
- }
- static __dpct_inline__ float op_div(const float a, const float b) {
- return a / b;
- }
- template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
- static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3,
- int ne10, int ne11, int ne12, int ne13,
- /*int s0, */ int s1, int s2, int s3,
- /*int s10,*/ int s11, int s12, int s13,
- const sycl::nd_item<3> &item_ct1) {
- const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
- const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
- item_ct1.get_local_id(0)) /
- ne3;
- const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
- item_ct1.get_local_id(0)) %
- ne3;
- if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
- return;
- }
- const int i11 = i1 % ne11;
- const int i12 = i2 % ne12;
- const int i13 = i3 % ne13;
- const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
- const size_t i_dst = i_src0;
- const src0_t * src0_row = src0 + i_src0;
- const src1_t * src1_row = src1 + i_src1;
- dst_t * dst_row = dst + i_dst;
- for (int i0 = i0s; i0 < ne0;
- i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
- const int i10 = i0 % ne10;
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
- }
- }
- template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
- static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
- int ne0, int ne1, int ne2, int ne3,
- int ne10, int ne11, int ne12, int ne13,
- /*int s0, */ int s1, int s2, int s3,
- /*int s10,*/ int s11, int s12, int s13,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int i3 = i/(ne2*ne1*ne0);
- const int i2 = (i/(ne1*ne0)) % ne2;
- const int i1 = (i/ne0) % ne1;
- const int i0 = i % ne0;
- if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
- return;
- }
- const int i11 = i1 % ne11;
- const int i12 = i2 % ne12;
- const int i13 = i3 % ne13;
- const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
- const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
- const size_t i_dst = i_src0;
- const src0_t * src0_row = src0 + i_src0;
- const src1_t * src1_row = src1 + i_src1;
- dst_t * dst_row = dst + i_dst;
- const int i10 = i0 % ne10;
- dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
- }
- static void acc_f32(const float * x, const float * y, float * dst, const int ne,
- const int ne10, const int ne11, const int ne12,
- const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= ne) {
- return;
- }
- int src1_idx = i - offset;
- int oz = src1_idx / nb2;
- int oy = (src1_idx - (oz * nb2)) / nb1;
- int ox = src1_idx % nb1;
- if (src1_idx >= 0 && ox < ne10 && oy < ne11 && oz < ne12) {
- dst[i] = x[i] + y[ox + oy * ne10 + oz * ne10 * ne11];
- } else {
- dst[i] = x[i];
- }
- }
- static void gelu_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const float GELU_COEF_A = 0.044715f;
- const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- float xi = x[i];
- dst[i] = 0.5f * xi *
- (1.0f +
- sycl::tanh(SQRT_2_OVER_PI * xi * (1.0f + GELU_COEF_A * xi * xi)));
- }
- static void silu_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = x[i] / (1.0f + sycl::native::exp(-x[i]));
- }
- static void gelu_quick_f32(const float *x, float *dst, int k,
- const sycl::nd_item<3> &item_ct1) {
- const float GELU_QUICK_COEF = -1.702f;
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * (1.0f / (1.0f + sycl::native::exp(GELU_QUICK_COEF * x[i])));
- }
- static void tanh_f32(const float *x, float *dst, int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = sycl::tanh((float)(x[i]));
- }
- static void relu_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = sycl::fmax((float)(x[i]), (float)0);
- }
- static void hardsigmoid_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
- }
- static void hardswish_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * sycl::fmin(1.0f, sycl::fmax(0.0f, (x[i] + 3.0f) / 6.0f));
- }
- static void leaky_relu_f32(const float *x, float *dst, const int k, const float negative_slope,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = sycl::fmax((float)(x[i]), (float)0) +
- sycl::fmin((float)(x[i]), 0.0f) * negative_slope;
- }
- static void sqr_f32(const float * x, float * dst, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = x[i] * x[i];
- }
- static void norm_f32(const float * x, float * dst, const int ncols, const float eps,
- const sycl::nd_item<3> &item_ct1, sycl::float2 *s_sum, int block_size) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- const int tid = item_ct1.get_local_id(2);
- sycl::float2 mean_var = sycl::float2(0.f, 0.f);
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- mean_var.x() += xi;
- mean_var.y() += xi * xi;
- }
- // sum up partial sums
- mean_var = warp_reduce_sum(mean_var, item_ct1);
- if (block_size > WARP_SIZE) {
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = mean_var;
- }
- /*
- DPCT1118:0: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- item_ct1.barrier(sycl::access::fence_space::local_space);
- mean_var = s_sum[lane_id];
- mean_var = warp_reduce_sum(mean_var, item_ct1);
- }
- const float mean = mean_var.x() / ncols;
- const float var = mean_var.y() / ncols - mean * mean;
- const float inv_std = sycl::rsqrt(var + eps);
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
- }
- }
- static void concat_f32(const float *x,const float *y, float *dst, const int ne0, const int ne02,
- const sycl::nd_item<3> &item_ct1) {
- int nidx = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
- item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
- if (item_ct1.get_group(0) < ne02) { // src0
- int offset_src =
- nidx + item_ct1.get_group(1) * ne0 +
- item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
- dst[offset_dst] = x[offset_src];
- } else {
- int offset_src =
- nidx + item_ct1.get_group(1) * ne0 +
- (item_ct1.get_group(0) - ne02) * ne0 * item_ct1.get_group_range(1);
- dst[offset_dst] = y[offset_src];
- }
- }
- static void upscale_f32(const float *x, float *dst, const int ne00, const int nb02, const int scale_factor,
- const sycl::nd_item<3> &item_ct1) {
- int ne0 = ne00 * scale_factor;
- int nidx = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (nidx >= ne0) {
- return;
- }
- // operation
- int i00 = nidx / scale_factor;
- int i01 = item_ct1.get_group(1) / scale_factor;
- int offset_src = i00 + i01 * ne00 + item_ct1.get_group(0) * nb02;
- int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
- item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
- dst[offset_dst] = x[offset_src];
- }
- static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
- const sycl::nd_item<3> &item_ct1) {
- int nidx = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (nidx >= ne0) {
- return;
- }
- // operation
- int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
- item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
- if (nidx < ne00 && item_ct1.get_group(1) < ne01 &&
- item_ct1.get_group(0) < ne02) {
- int offset_src = nidx + item_ct1.get_group(1) * ne00 +
- item_ct1.get_group(0) * ne00 * ne01;
- dst[offset_dst] = x[offset_src];
- } else {
- dst[offset_dst] = 0.0f;
- }
- }
- static void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps,
- const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
- int start = item_ct1.get_group(2) * group_size;
- int end = start + group_size;
- start += item_ct1.get_local_id(2);
- if (end >= ne_elements) {
- end = ne_elements;
- }
- float tmp = 0.0f; // partial sum for thread in warp
- for (int j = start; j < end; j += block_size) {
- tmp += x[j];
- }
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- /*
- DPCT1118:1: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
- float mean = tmp / group_size;
- tmp = 0.0f;
- for (int j = start; j < end; j += block_size) {
- float xi = x[j] - mean;
- dst[j] = xi;
- tmp += xi * xi;
- }
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- /*
- DPCT1118:2: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
- float variance = tmp / group_size;
- float scale = sycl::rsqrt(variance + eps);
- for (int j = start; j < end; j += block_size) {
- dst[j] *= scale;
- }
- }
- static void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps,
- const sycl::nd_item<3> &item_ct1, float *s_sum, int block_size) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- const int tid = item_ct1.get_local_id(2);
- float tmp = 0.0f; // partial sum for thread in warp
- for (int col = tid; col < ncols; col += block_size) {
- const float xi = x[row*ncols + col];
- tmp += xi * xi;
- }
- // sum up partial sums
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- if (lane_id == 0) {
- s_sum[warp_id] = tmp;
- }
- /*
- DPCT1118:3: SYCL group functions and algorithms must be encountered in
- converged control flow. You may need to adjust the code.
- */
- item_ct1.barrier(sycl::access::fence_space::local_space);
- tmp = s_sum[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
- const float mean = tmp / ncols;
- const float scale = sycl::rsqrt(mean + eps);
- for (int col = tid; col < ncols; col += block_size) {
- dst[row*ncols + col] = scale * x[row*ncols + col];
- }
- }
- static __dpct_inline__ void dequantize_q4_0(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const dfloat d = x[ib].d;
- const int vui = x[ib].qs[iqs];
- v.x() = vui & 0xF;
- v.y() = vui >> 4;
- #ifdef GGML_SYCL_F16
- // v = v - {8.0f, 8.0f};
- // v = v * {d, d};
- v.s0() = (v.s0() - 8.0f) * d;
- v.s1() = (v.s1() - 8.0f) * d;
- #else
- v.x() = (v.x() - 8.0f) * d;
- v.y() = (v.y() - 8.0f) * d;
- #endif // GGML_SYCL_F16
- }
- static __dpct_inline__ void dequantize_q4_1(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const dfloat d = x[ib].dm[0];
- const dfloat m = x[ib].dm[1];
- const int vui = x[ib].qs[iqs];
- v.x() = vui & 0xF;
- v.y() = vui >> 4;
- #ifdef GGML_SYCL_F16
- // v = v * {d, d};
- // v = v + {m, m};
- v.s0() = (v.s0() * d) + m;
- v.s1() = (v.s1() * d) + m;
- #else
- v.x() = (v.x() * d) + m;
- v.y() = (v.y() * d) + m;
- #endif // GGML_SYCL_F16
- }
- static __dpct_inline__ void dequantize_q5_0(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const dfloat d = x[ib].d;
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_SYCL_F16
- // v = v - {16.0f, 16.0f};
- // v = v * {d, d};
- v.s0() = (v.s0() - 16.0f) * d;
- v.s1() = (v.s1() - 16.0f) * d;
- #else
- v.x() = (v.x() - 16.0f) * d;
- v.y() = (v.y() - 16.0f) * d;
- #endif // GGML_SYCL_F16
- }
- static __dpct_inline__ void dequantize_q5_1(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const dfloat d = x[ib].dm[0];
- const dfloat m = x[ib].dm[1];
- uint32_t qh;
- memcpy(&qh, x[ib].qh, sizeof(qh));
- const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
- const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
- v.x() = ((x[ib].qs[iqs] & 0xf) | xh_0);
- v.y() = ((x[ib].qs[iqs] >> 4) | xh_1);
- #ifdef GGML_SYCL_F16
- // v = v * {d, d};
- // v = v + {m, m};
- v.s0() = (v.s0() * d) + m;
- v.s1() = (v.s1() * d) + m;
- #else
- v.x() = (v.x() * d) + m;
- v.y() = (v.y() * d) + m;
- #endif // GGML_SYCL_F16
- }
- static __dpct_inline__ void dequantize_q8_0(const void *vx, const int ib,
- const int iqs, dfloat2 &v) {
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const dfloat d = x[ib].d;
- v.x() = x[ib].qs[iqs + 0];
- v.y() = x[ib].qs[iqs + 1];
- #ifdef GGML_SYCL_F16
- // v = v * {d, d};
- v.s0() *= d;
- v.s1() *= d;
- #else
- v.x() *= d;
- v.y() *= d;
- #endif // GGML_SYCL_F16
- }
- template<typename dst_t>
- static void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- // assume 32 threads
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8;
- const int ir = tid%8;
- const int ib = 8*i + ir;
- if (ib >= nb32) {
- return;
- }
- dst_t * y = yy + 256*i + 32*ir + 4*il;
- const block_q4_0 * x = (const block_q4_0 *)vx + ib;
- const float d = sycl::vec<sycl::half, 1>(x->d)
- .convert<float, sycl::rounding_mode::automatic>()[0];
- const float dm = -8*d;
- const uint8_t * q = x->qs + 4*il;
- for (int l = 0; l < 4; ++l) {
- y[l+ 0] = d * (q[l] & 0xF) + dm;
- y[l+16] = d * (q[l] >> 4) + dm;
- }
- }
- template<typename dst_t>
- static void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- // assume 32 threads
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8;
- const int ir = tid%8;
- const int ib = 8*i + ir;
- if (ib >= nb32) {
- return;
- }
- dst_t * y = yy + 256*i + 32*ir + 4*il;
- const block_q4_1 * x = (const block_q4_1 *)vx + ib;
- const sycl::float2 d =
- x->dm.convert<float, sycl::rounding_mode::automatic>();
- const uint8_t * q = x->qs + 4*il;
- for (int l = 0; l < 4; ++l) {
- y[l + 0] = d.x() * (q[l] & 0xF) + d.y();
- y[l + 16] = d.x() * (q[l] >> 4) + d.y();
- }
- }
- //================================== k-quants
- template<typename dst_t>
- static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_q2_K * x = (const block_q2_K *) vx;
- const int tid = item_ct1.get_local_id(2);
- #if QK_K == 256
- const int n = tid/32;
- const int l = tid - 32*n;
- const int is = 8*n + l/16;
- const uint8_t q = x[i].qs[32*n + l];
- dst_t * y = yy + i*QK_K + 128*n;
- float dall = x[i].dm[0];
- float dmin = x[i].dm[1];
- y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
- y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
- y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
- #else
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const uint8_t q = x[i].qs[il] >> (2*is);
- dst_t * y = yy + i*QK_K + 16*is + il;
- float dall = x[i].dm[0];
- float dmin = x[i].dm[1];
- y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
- y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
- #endif
- }
- template<typename dst_t>
- static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_q3_K * x = (const block_q3_K *) vx;
- #if QK_K == 256
- const int r = item_ct1.get_local_id(2) / 4;
- const int tid = r/2;
- const int is0 = r%2;
- const int l0 = 16 * is0 + 4 * (item_ct1.get_local_id(2) % 4);
- const int n = tid / 4;
- const int j = tid - 4*n;
- uint8_t m = 1 << (4*n + j);
- int is = 8*n + 2*j + is0;
- int shift = 2*j;
- int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
- is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
- is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
- (x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
- float d_all = x[i].d;
- float dl = d_all * (us - 32);
- dst_t * y = yy + i*QK_K + 128*n + 32*j;
- const uint8_t * q = x[i].qs + 32*n;
- const uint8_t * hm = x[i].hmask;
- for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
- #else
- const int tid = item_ct1.get_local_id(2);
- const int is = tid/16; // 0 or 1
- const int il = tid%16; // 0...15
- const int im = il/8; // 0...1
- const int in = il%8; // 0...7
- dst_t * y = yy + i*QK_K + 16*is + il;
- const uint8_t q = x[i].qs[il] >> (2*is);
- const uint8_t h = x[i].hmask[in] >> (2*is + im);
- const float d = (float)x[i].d;
- if (is == 0) {
- y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- } else {
- y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
- y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
- }
- #endif
- }
- #if QK_K == 256
- static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
- if (j < 4) {
- d = q[j] & 63; m = q[j + 4] & 63;
- } else {
- d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
- }
- }
- #endif
- template<typename dst_t>
- static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const block_q4_K * x = (const block_q4_K *) vx;
- const int i = item_ct1.get_group(2);
- #if QK_K == 256
- // assume 32 threads
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8;
- const int ir = tid%8;
- const int is = 2*il;
- const int n = 4;
- dst_t * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
- const uint8_t * q = x[i].qs + 32*il + n*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- for (int l = 0; l < n; ++l) {
- y[l + 0] = d1 * (q[l] & 0xF) - m1;
- y[l +32] = d2 * (q[l] >> 4) - m2;
- }
- #else
- const int tid = item_ct1.get_local_id(2);
- const uint8_t * q = x[i].qs;
- dst_t * y = yy + i*QK_K;
- const float d = (float)x[i].dm[0];
- const float m = (float)x[i].dm[1];
- y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
- y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
- #endif
- }
- template<typename dst_t>
- static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const block_q5_K * x = (const block_q5_K *) vx;
- const int i = item_ct1.get_group(2);
- #if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/16; // il is in 0...3
- const int ir = tid%16; // ir is in 0...15
- const int is = 2*il; // is is in 0...6
- dst_t * y = yy + i*QK_K + 64*il + 2*ir;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
- const uint8_t * ql = x[i].qs + 32*il + 2*ir;
- const uint8_t * qh = x[i].qh + 2*ir;
- uint8_t sc, m;
- get_scale_min_k4(is + 0, x[i].scales, sc, m);
- const float d1 = dall * sc; const float m1 = dmin * m;
- get_scale_min_k4(is + 1, x[i].scales, sc, m);
- const float d2 = dall * sc; const float m2 = dmin * m;
- uint8_t hm = 1 << (2*il);
- y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
- y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
- hm <<= 1;
- y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
- y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
- #else
- const int tid = item_ct1.get_local_id(2);
- const uint8_t q = x[i].qs[tid];
- const int im = tid/8; // 0...3
- const int in = tid%8; // 0...7
- const int is = tid/16; // 0 or 1
- const uint8_t h = x[i].qh[in] >> im;
- const float d = x[i].d;
- dst_t * y = yy + i*QK_K + tid;
- y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
- y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
- #endif
- }
- template<typename dst_t>
- static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const block_q6_K * x = (const block_q6_K *) vx;
- const int i = item_ct1.get_group(2);
- #if QK_K == 256
- // assume 64 threads - this is very slightly better than the one below
- const int tid = item_ct1.get_local_id(2);
- const int ip = tid/32; // ip is 0 or 1
- const int il = tid - 32*ip; // 0...32
- const int is = 8*ip + il/16;
- dst_t * y = yy + i*QK_K + 128*ip + il;
- const float d = x[i].d;
- const uint8_t * ql = x[i].ql + 64*ip + il;
- const uint8_t qh = x[i].qh[32*ip + il];
- const int8_t * sc = x[i].scales + is;
- y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
- y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
- #else
- // assume 32 threads
- const int tid = item_ct1.get_local_id(2);
- const int ip = tid/16; // 0 or 1
- const int il = tid - 16*ip; // 0...15
- dst_t * y = yy + i*QK_K + 16*ip + il;
- const float d = x[i].d;
- const uint8_t ql = x[i].ql[16*ip + il];
- const uint8_t qh = x[i].qh[il] >> (2*ip);
- const int8_t * sc = x[i].scales;
- y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
- y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
- #endif
- }
- template<typename dst_t>
- static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint64_t *iq2xxs_grid_ptr,
- const uint8_t *ksigns_iq2xs_ptr,
- const uint8_t *kmask_iq2xs_ptr) {
- const int i = item_ct1.get_group(2);
- const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
- const int tid = item_ct1.get_local_id(2);
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * q2 = x[i].qs + 4*ib;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid_ptr + aux8[il]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
- const uint8_t signs = ksigns_iq2xs_ptr[(aux32 >> 7*il) & 127];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs_ptr[j] ? -1.f : 1.f);
- #else
- assert(false);
- #endif
- }
- template<typename dst_t>
- static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint64_t *iq2xs_grid,
- const uint8_t *ksigns_iq2xs,
- const uint8_t *kmask_iq2xs) {
- const int i = item_ct1.get_group(2);
- const block_iq2_xs * x = (const block_iq2_xs *) vx;
- const int tid = item_ct1.get_local_id(2);
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * q2 = x[i].qs + 4*ib;
- const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
- const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
- const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
- for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
- #else
- assert(false);
- #endif
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_iq2_s * x = (const block_iq2_s *) vx;
- const int tid = item_ct1.get_local_id(2);
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
- const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
- const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
- #pragma unroll
- for (int j = 0; j < 8; ++j)
- y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
- #else
- assert(false);
- #endif
- }
- template<typename dst_t>
- static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint32_t *iq3xxs_grid,
- const uint8_t *ksigns_iq2xs,
- const uint8_t *kmask_iq2xs) {
- const int i = item_ct1.get_group(2);
- const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
- const int tid = item_ct1.get_local_id(2);
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * q3 = x[i].qs + 8*ib;
- const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
- const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
- const uint32_t aux32 = gas[0] | (gas[1] << 16);
- const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
- const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
- for (int j = 0; j < 4; ++j) {
- y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
- y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
- }
- #else
- assert(false);
- #endif
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint8_t *kmask_iq2xs, const uint32_t *iq3s_grid) {
- const int i = item_ct1.get_group(2);
- const block_iq3_s * x = (const block_iq3_s *) vx;
- const int tid = item_ct1.get_local_id(2);
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint8_t * qs = x[i].qs + 8*ib;
- const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
- const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
- const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
- const uint8_t signs = x[i].signs[4*ib + il];
- #pragma unroll
- for (int j = 0; j < 4; ++j) {
- y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
- y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
- }
- #else
- assert(false);
- #endif
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint32_t *iq1s_grid_gpu) {
- const int i = item_ct1.get_group(2);
- const block_iq1_s * x = (const block_iq1_s *) vx;
- const int tid = item_ct1.get_local_id(2);
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
- const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
- uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
- grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
- grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
- grid32[0] &= 0x0f0f0f0f;
- #pragma unroll
- for (int j = 0; j < 8; ++j) {
- y[j] = d * (q[j] + delta);
- }
- #else
- assert(false);
- #endif
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1,
- const uint32_t *iq1s_grid_gpu) {
- const int i = item_ct1.get_group(2);
- const block_iq1_m * x = (const block_iq1_m *) vx;
- const int tid = item_ct1.get_local_id(2);
- #if QK_K == 256
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 8*il;
- const uint16_t * sc = (const uint16_t *)x[i].scales;
- iq1m_scale_t scale;
- scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
- const int ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
- const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
- const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
- uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
- grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
- grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
- grid32[0] &= 0x0f0f0f0f;
- #pragma unroll
- for (int j = 0; j < 8; ++j) {
- y[j] = d * (q[j] + delta);
- }
- #else
- assert(false);
- #endif
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq4_nl(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 4*il;
- const uint8_t * q4 = x[ib].qs + 4*il;
- const float d = (float)x[ib].d;
- #pragma unroll
- for (int j = 0; j < 4; ++j) {
- y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
- y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
- }
- }
- template <typename dst_t>
- __dpct_inline__ static void
- dequantize_block_iq4_xs(const void *__restrict__ vx, dst_t *__restrict__ yy,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_group(2);
- const block_iq4_xs * x = (const block_iq4_xs *)vx;
- const int tid = item_ct1.get_local_id(2);
- const int il = tid/8; // 0...3
- const int ib = tid%8; // 0...7
- dst_t * y = yy + i*QK_K + 32*ib + 4*il;
- const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
- const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
- #pragma unroll
- for (int j = 0; j < 4; ++j) {
- y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
- y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
- }
- }
- /*
- DPCT1110:4: The total declared local variable size in device function
- dequantize_mul_mat_vec_q2_k exceeds 128 bytes and may cause high register
- pressure. Consult with your hardware vendor to find the total register size
- available and adjust the code, or use smaller sub-group size to avoid high
- register pressure.
- */
- static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q2_K * x = (const block_q2_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int s_offset = 8*im;
- const int y_offset = 128*im + l0;
- uint32_t aux[4];
- const uint8_t * d = (const uint8_t *)aux;
- const uint8_t * m = (const uint8_t *)(aux + 2);
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
- const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
- aux[0] = a[0] & 0x0f0f0f0f;
- aux[1] = a[1] & 0x0f0f0f0f;
- aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
- aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
- + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
- + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
- + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
- + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
- + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
- + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
- +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
- sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
- + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
- }
- tmp += dall * sum1 - dmin * sum2;
- }
- #else
- const int tid = item_ct1.get_local_id(2) /
- (2 * K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = item_ct1.get_local_id(2) %
- (2 * K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION;
- uint32_t uaux[2];
- const uint8_t * d = (const uint8_t *)uaux;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint32_t * s = (const uint32_t *)x[i].scales;
- uaux[0] = s[0] & 0x0f0f0f0f;
- uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
- const sycl::float2 dall =
- x[i].dm.convert<float, sycl::rounding_mode::automatic>();
- float sum1 = 0, sum2 = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t ql = q[l];
- sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
- + y[l+16] * d[1] * ((ql >> 2) & 3)
- + y[l+32] * d[2] * ((ql >> 4) & 3)
- + y[l+48] * d[3] * ((ql >> 6) & 3);
- sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
- }
- tmp += dall.x() * sum1 - dall.y() * sum2;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- /*
- DPCT1110:5: The total declared local variable size in device function
- dequantize_mul_mat_vec_q3_k exceeds 128 bytes and may cause high register
- pressure. Consult with your hardware vendor to find the total register size
- available and adjust the code, or use smaller sub-group size to avoid high
- register pressure.
- */
- static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q3_K * x = (const block_q3_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const uint16_t kmask1 = 0x0303;
- const uint16_t kmask2 = 0x0f0f;
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
- const int step = 16/K_QUANTS_PER_ITERATION;
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0....15 or 0...7
- const uint8_t m = 1 << (4*im);
- const int l0 = n*in; // 0...15 or 0...14 in steps of 2
- const int q_offset = 32*im + l0;
- const int y_offset = 128*im + l0;
- uint16_t utmp[4];
- const int8_t * s = (const int8_t *)utmp;
- const uint16_t s_shift = 4*im;
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * q = x[i].qs + q_offset;
- const uint8_t * h = x[i].hmask + l0;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
- utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
- utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
- utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
- const float d = x[i].d;
- float sum = 0;
- for (int l = 0; l < n; ++l) {
- sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
- + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
- + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
- + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
- sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
- + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
- + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
- + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
- }
- tmp += d * sum;
- }
- #else
- const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
- const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
- const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
- const int in = offset/8; // 0 or 1
- const int im = offset%8; // 0...7
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + offset;
- const uint8_t * q = x[i].qs + offset;
- const uint8_t * s = x[i].scales;
- const float dall = (float)x[i].d;
- float sum = 0;
- for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
- const uint8_t hl = x[i].hmask[im+l] >> in;
- const uint8_t ql = q[l];
- sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
- + y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
- + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
- + y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- /*
- DPCT1110:6: The total declared local variable size in device function
- dequantize_mul_mat_vec_q4_k exceeds 128 bytes and may cause high register
- pressure. Consult with your hardware vendor to find the total register size
- available and adjust the code, or use smaller sub-group size to avoid high
- register pressure.
- */
- static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q4_K * x = (const block_q4_K *)vx + ib0;
- #if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0,1
- const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
- const int il = tid/step; // 0...3
- const int ir = tid - step*il; // 0...7 or 0...3
- const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- #if K_QUANTS_PER_ITERATION == 2
- uint32_t q32[4];
- const uint8_t * q4 = (const uint8_t *)q32;
- #else
- uint16_t q16[4];
- const uint8_t * q4 = (const uint8_t *)q16;
- #endif
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- #if K_QUANTS_PER_ITERATION == 2
- const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
- const uint32_t * q2 = q1 + 16;
- q32[0] = q1[0] & 0x0f0f0f0f;
- q32[1] = q1[0] & 0xf0f0f0f0;
- q32[2] = q2[0] & 0x0f0f0f0f;
- q32[3] = q2[0] & 0xf0f0f0f0;
- sycl::float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 4; ++l) {
- s.x() += y1[l] * q4[l + 0]; s.y() += y1[l + 32] * q4[l + 4];
- s.z() += y2[l] * q4[l + 8]; s.w() += y2[l + 32] * q4[l + 12];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x() * sc[0] + s.y() * sc[1] * 1.f / 16.f +
- s.z() * sc[4] + s.w() * sc[5] * 1.f / 16.f) -
- dmin * smin;
- #else
- const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[0] & 0xf0f0;
- q16[2] = q2[0] & 0x0f0f;
- q16[3] = q2[0] & 0xf0f0;
- float4 s = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- for (int l = 0; l < 2; ++l) {
- s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
- s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
- smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
- }
- tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
- #endif
- }
- #else
- const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- float tmp = 0;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const float * y = yy + i*QK_K + step;
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float d = (float)x[i].dm[0];
- const float m = (float)x[i].dm[1];
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
- + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
- + y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
- + y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- /*
- DPCT1110:7: The total declared local variable size in device function
- dequantize_mul_mat_vec_q5_k exceeds 128 bytes and may cause high register
- pressure. Consult with your hardware vendor to find the total register size
- available and adjust the code, or use smaller sub-group size to avoid high
- register pressure.
- */
- static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
- const float *__restrict__ yy,
- float *__restrict__ dst,
- const int ncols,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2);
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q5_K * x = (const block_q5_K *)vx + ib0;
- float tmp = 0; // partial sum for thread in warp
- #if QK_K == 256
- const uint16_t kmask1 = 0x3f3f;
- const uint16_t kmask2 = 0x0f0f;
- const uint16_t kmask3 = 0xc0c0;
- const int tid = item_ct1.get_local_id(2) / 2; // 0...15
- const int ix = item_ct1.get_local_id(2) % 2;
- const int il = tid/4; // 0...3
- const int ir = tid - 4*il;// 0...3
- const int n = 2;
- const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
- const int in = il%2;
- const int l0 = n*(2*ir + in);
- const int q_offset = 32*im + l0;
- const int y_offset = 64*im + l0;
- const uint8_t hm1 = 1 << (2*im);
- const uint8_t hm2 = hm1 << 4;
- uint16_t aux[4];
- const uint8_t * sc = (const uint8_t *)aux;
- uint16_t q16[8];
- const uint8_t * q4 = (const uint8_t *)q16;
- for (int i = ix; i < num_blocks_per_row; i += 2) {
- const uint8_t * ql1 = x[i].qs + q_offset;
- const uint8_t * qh = x[i].qh + l0;
- const float * y1 = yy + i*QK_K + y_offset;
- const float * y2 = y1 + 128;
- const float dall = x[i].dm[0];
- const float dmin = x[i].dm[1];
- const uint16_t * a = (const uint16_t *)x[i].scales;
- aux[0] = a[im+0] & kmask1;
- aux[1] = a[im+2] & kmask1;
- aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
- aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
- sycl::float4 sum = {0.f, 0.f, 0.f, 0.f};
- float smin = 0;
- const uint16_t * q1 = (const uint16_t *)ql1;
- const uint16_t * q2 = q1 + 32;
- q16[0] = q1[0] & 0x0f0f;
- q16[1] = q1[8] & 0x0f0f;
- q16[2] = (q1[0] >> 4) & 0x0f0f;
- q16[3] = (q1[8] >> 4) & 0x0f0f;
- q16[4] = q2[0] & 0x0f0f;
- q16[5] = q2[8] & 0x0f0f;
- q16[6] = (q2[0] >> 4) & 0x0f0f;
- q16[7] = (q2[8] >> 4) & 0x0f0f;
- for (int l = 0; l < n; ++l) {
- sum.x() +=
- y1[l + 0] * (q4[l + 0] + (qh[l + 0] & (hm1 << 0) ? 16 : 0)) +
- y1[l + 16] * (q4[l + 2] + (qh[l + 16] & (hm1 << 0) ? 16 : 0));
- sum.y() +=
- y1[l + 32] * (q4[l + 4] + (qh[l + 0] & (hm1 << 1) ? 16 : 0)) +
- y1[l + 48] * (q4[l + 6] + (qh[l + 16] & (hm1 << 1) ? 16 : 0));
- sum.z() +=
- y2[l + 0] * (q4[l + 8] + (qh[l + 0] & (hm2 << 0) ? 16 : 0)) +
- y2[l + 16] * (q4[l + 10] + (qh[l + 16] & (hm2 << 0) ? 16 : 0));
- sum.w() +=
- y2[l + 32] * (q4[l + 12] + (qh[l + 0] & (hm2 << 1) ? 16 : 0)) +
- y2[l + 48] * (q4[l + 14] + (qh[l + 16] & (hm2 << 1) ? 16 : 0));
- smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
- + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
- }
- tmp += dall * (sum.x() * sc[0] + sum.y() * sc[1] + sum.z() * sc[4] +
- sum.w() * sc[5]) -
- dmin * smin;
- }
- #else
- const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15
- const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);
- const int step = tid * K_QUANTS_PER_ITERATION;
- const int im = step/8;
- const int in = step%8;
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const uint8_t * q = x[i].qs + step;
- const int8_t * s = x[i].scales;
- const float * y = yy + i*QK_K + step;
- const float d = x[i].d;
- float sum = 0.f;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- const uint8_t h = x[i].qh[in+j] >> im;
- sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
- + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
- + y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
- + y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows,
- const sycl::nd_item<3> &item_ct1) {
- static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row > nrows) return;
- const int num_blocks_per_row = ncols / QK_K;
- const int ib0 = row*num_blocks_per_row;
- const block_q6_K * x = (const block_q6_K *)vx + ib0;
- #if QK_K == 256
- const int tid =
- item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
- const int ix =
- item_ct1.get_local_id(2) % K_QUANTS_PER_ITERATION; // 0 or 0, 1
- const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
- const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
- const int in = tid - step*im; // 0...15 or 0...7
- #if K_QUANTS_PER_ITERATION == 1
- const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
- const int is = 0;
- #else
- const int l0 = 4 * in; // 0, 4, 8, ..., 28
- const int is = in / 4;
- #endif
- const int ql_offset = 64*im + l0;
- const int qh_offset = 32*im + l0;
- const int s_offset = 8*im + is;
- const int y_offset = 128*im + l0;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + y_offset;
- const uint8_t * ql = x[i].ql + ql_offset;
- const uint8_t * qh = x[i].qh + qh_offset;
- const int8_t * s = x[i].scales + s_offset;
- const float d = x[i].d;
- #if K_QUANTS_PER_ITERATION == 1
- float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
- + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
- + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
- + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
- + y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
- + y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
- + y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
- +y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
- tmp += sum;
- #else
- float sum = 0;
- for (int l = 0; l < 4; ++l) {
- sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
- + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
- + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
- + y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
- }
- tmp += sum;
- #endif
- }
- #else
- const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...7
- const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); // 0...3
- const int step = tid * K_QUANTS_PER_ITERATION;
- float tmp = 0; // partial sum for thread in warp
- for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
- const float * y = yy + i * QK_K + step;
- const uint8_t * ql = x[i].ql + step;
- const uint8_t * qh = x[i].qh + step;
- const int8_t * s = x[i].scales;
- const float d = x[i+0].d;
- float sum = 0;
- for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
- sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
- + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
- + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
- + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
- }
- tmp += sum;
- }
- #endif
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (tid == 0) {
- dst[row] = tmp;
- }
- }
- static void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const sycl::half *x = (const sycl::half *)vx;
- // automatic half -> float type cast if dfloat == float
- v.x() = x[ib + iqs + 0];
- v.y() = x[ib + iqs + 1];
- }
- static void convert_f32(const void * vx, const int ib, const int iqs, dfloat2 & v){
- const float * x = (const float *) vx;
- // automatic half -> float type cast if dfloat == float
- v.x() = x[ib + iqs + 0];
- v.y() = x[ib + iqs + 1];
- }
- static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded,
- const sycl::nd_item<3> &item_ct1) {
- const int ix = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (ix >= kx_padded) {
- return;
- }
- const int iy = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i_padded = iy*kx_padded + ix;
- block_q8_1 * y = (block_q8_1 *) vy;
- const int ib = i_padded / QK8_1; // block index
- const int iqs = i_padded % QK8_1; // quant index
- const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
- float amax = sycl::fabs((float)xi);
- float sum = xi;
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- amax = sycl::fmax(amax, dpct::permute_sub_group_by_xor(
- item_ct1.get_sub_group(), amax, mask));
- sum +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), sum, mask);
- }
- const float d = amax / 127;
- const int8_t q = amax == 0.0f ? 0 : sycl::round(xi / d);
- y[ib].qs[iqs] = q;
- if (iqs > 0) {
- return;
- }
- reinterpret_cast<sycl::half &>(y[ib].ds.x()) = d;
- reinterpret_cast<sycl::half &>(y[ib].ds.y()) = sum;
- }
- template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static void k_get_rows(
- const void * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12,
- const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
- const int i00 = (item_ct1.get_group(2) * item_ct1.get_local_range(2) +
- item_ct1.get_local_id(2)) *
- 2;
- const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) /
- ne12;
- const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) %
- ne12;
- if (i00 >= ne00) {
- return;
- }
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
- const int ib = i00/qk; // block index
- const int iqs = (i00%qk)/qr; // quant index
- const int iybs = i00 - i00%qk; // dst block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(src0_row, ib, iqs, v);
- dst_row[iybs + iqs + 0] = v.x();
- dst_row[iybs + iqs + y_offset] = v.y();
- }
- template<typename src0_t, typename dst_t>
- static void k_get_rows_float(
- const src0_t * src0, const int32_t * src1, dst_t * dst,
- int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
- /*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
- /*size_t s0,*/ size_t s1, size_t s2, size_t s3,
- /*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
- size_t s10, size_t s11, size_t s12,
- const sycl::nd_item<3> &item_ct1/*, size_t s13*/) {
- const int i00 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
- item_ct1.get_local_id(2);
- const int i10 = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i11 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) /
- ne12;
- const int i12 = (item_ct1.get_group(0) * item_ct1.get_local_range(0) +
- item_ct1.get_local_id(0)) %
- ne12;
- if (i00 >= ne00) {
- return;
- }
- const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
- dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
- const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
- dst_row[i00] = src0_row[i00];
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = 2 * (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2));
- if (i >= k) {
- return;
- }
- const int ib = i/qk; // block index
- const int iqs = (i%qk)/qr; // quant index
- const int iybs = i - i%qk; // y block start index
- const int y_offset = qr == 1 ? 1 : qk/2;
- // dequantize
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs, v);
- y[iybs + iqs + 0] = v.x();
- y[iybs + iqs + y_offset] = v.y();
- }
- template <typename src_t, typename dst_t>
- static void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- const src_t * x = (src_t *) vx;
- y[i] = x[i];
- }
- // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
- // MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
- #define VDR_Q4_0_Q8_1_MMVQ 2
- #define VDR_Q4_0_Q8_1_MMQ 4
- template <int vdr>
- static __dpct_inline__ float vec_dot_q4_0_q8_1_impl(const int *v, const int *u,
- const float &d4,
- const sycl::half2 &ds8) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
- sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
- }
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- // second part effectively subtracts 8 from each quant value
- return d4 * (sumi * ds8f.x() - (8 * vdr / QI4_0) * ds8f.y());
- }
- #define VDR_Q4_1_Q8_1_MMVQ 2
- #define VDR_Q4_1_Q8_1_MMQ 4
- template <int vdr>
- static __dpct_inline__ float vec_dot_q4_1_q8_1_impl(const int *v, const int *u,
- const sycl::half2 &dm4,
- const sycl::half2 &ds8) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
- const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(vi0, u[2 * i + 0], sumi);
- sumi = dpct::dp4a(vi1, u[2 * i + 1], sumi);
- }
- #ifdef GGML_SYCL_F16
- const sycl::float2 tmp =
- (dm4 * ds8).convert<float, sycl::rounding_mode::automatic>();
- const float d4d8 = tmp.x();
- const float m4s8 = tmp.y();
- #else
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- const float d4d8 = dm4f.x() * ds8f.x();
- const float m4s8 = dm4f.y() * ds8f.y();
- #endif // GGML_SYCL_F16
- // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
- return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
- }
- #define VDR_Q5_0_Q8_1_MMVQ 2
- #define VDR_Q5_0_Q8_1_MMQ 4
- template <int vdr>
- static __dpct_inline__ float
- vec_dot_q5_0_q8_1_impl(const int *vl, const int *vh, const int *u,
- const float &d5, const sycl::half2 &ds8) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = dpct::dp4a(vi0, u[2 * i + 0],
- sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = dpct::dp4a(vi1, u[2 * i + 1],
- sumi); // SIMD dot product of quantized values
- }
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- // second part effectively subtracts 16 from each quant value
- return d5 * (sumi * ds8f.x() - (16 * vdr / QI5_0) * ds8f.y());
- }
- #define VDR_Q5_1_Q8_1_MMVQ 2
- #define VDR_Q5_1_Q8_1_MMQ 4
- template <int vdr>
- static __dpct_inline__ float
- vec_dot_q5_1_q8_1_impl(const int *vl, const int *vh, const int *u,
- const sycl::half2 &dm5, const sycl::half2 &ds8) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
- vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
- vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
- vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
- vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
- sumi = dpct::dp4a(vi0, u[2 * i + 0],
- sumi); // SIMD dot product of quantized values
- int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
- vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
- vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
- vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
- vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
- sumi = dpct::dp4a(vi1, u[2 * i + 1],
- sumi); // SIMD dot product of quantized values
- }
- #ifdef GGML_SYCL_F16
- const sycl::float2 tmp =
- (dm5 * ds8).convert<float, sycl::rounding_mode::automatic>();
- const float d5d8 = tmp.x();
- const float m5s8 = tmp.y();
- #else
- const sycl::float2 dm5f =
- dm5.convert<float, sycl::rounding_mode::automatic>();
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- const float d5d8 = dm5f.x() * ds8f.x();
- const float m5s8 = dm5f.y() * ds8f.y();
- #endif // GGML_SYCL_F16
- // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
- return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
- }
- #define VDR_Q8_0_Q8_1_MMVQ 2
- #define VDR_Q8_0_Q8_1_MMQ 8
- template <int vdr>
- static __dpct_inline__ float vec_dot_q8_0_q8_1_impl(const int *v, const int *u,
- const float &d8_0,
- const float &d8_1) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(v[i], u[i], sumi);
- }
- return d8_0*d8_1 * sumi;
- }
- template <int vdr>
- static __dpct_inline__ float vec_dot_q8_1_q8_1_impl(const int *v, const int *u,
- const sycl::half2 &dm8,
- const sycl::half2 &ds8) {
- int sumi = 0;
- #pragma unroll
- for (int i = 0; i < vdr; ++i) {
- // SIMD dot product of quantized values
- sumi = dpct::dp4a(v[i], u[i], sumi);
- }
- #ifdef GGML_SYCL_F16
- const sycl::float2 tmp =
- (dm8 * ds8).convert<float, sycl::rounding_mode::automatic>();
- const float d8d8 = tmp.x();
- const float m8s8 = tmp.y();
- #else
- const sycl::float2 dm8f =
- dm8.convert<float, sycl::rounding_mode::automatic>();
- const sycl::float2 ds8f =
- ds8.convert<float, sycl::rounding_mode::automatic>();
- const float d8d8 = dm8f.x() * ds8f.x();
- const float m8s8 = dm8f.y() * ds8f.y();
- #endif // GGML_SYCL_F16
- // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
- return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
- }
- #define VDR_Q2_K_Q8_1_MMVQ 1
- #define VDR_Q2_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __dpct_inline__ float vec_dot_q2_K_q8_1_impl_mmvq(
- const int &v, const int *__restrict__ u, const uint8_t *__restrict__ scales,
- const sycl::half2 &dm2, const float *__restrict__ d8) {
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR2_K; ++i) {
- const int sc = scales[2*i];
- const int vi = (v >> (2*i)) & 0x03030303;
- sumf_d +=
- d8[i] * (dpct::dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- sumf_m += d8[i] *
- dpct::dp4a(
- m, u[i],
- 0); // multiply constant q2_K part with sum of q8_1 values
- }
- const sycl::float2 dm2f =
- dm2.convert<float, sycl::rounding_mode::automatic>();
- return dm2f.x() * sumf_d - dm2f.y() * sumf_m;
- }
- // contiguous u/y values
- static __dpct_inline__ float
- vec_dot_q2_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ scales,
- const sycl::half2 &dm2, const float &d8) {
- int sumi_d = 0;
- int sumi_m = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
- int sumi_d_sc = 0;
- const int sc = scales[i0 / (QI8_1/2)];
- // fill int with 4x m
- int m = sc >> 4;
- m |= m << 8;
- m |= m << 16;
- #pragma unroll
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_d_sc = dpct::dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
- sumi_m = dpct::dp4a(m, u[i],
- sumi_m); // multiply sum of q8_1 values with m
- }
- sumi_d += sumi_d_sc * (sc & 0xF);
- }
- const sycl::float2 dm2f =
- dm2.convert<float, sycl::rounding_mode::automatic>();
- return d8 * (dm2f.x() * sumi_d - dm2f.y() * sumi_m);
- }
- #define VDR_Q3_K_Q8_1_MMVQ 1
- #define VDR_Q3_K_Q8_1_MMQ 2
- // contiguous v/x values
- static __dpct_inline__ float vec_dot_q3_K_q8_1_impl_mmvq(
- const int &vl, const int &vh, const int *__restrict__ u,
- const uint8_t *__restrict__ scales, const int &scale_offset,
- const float &d3, const float *__restrict__ d8) {
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- const int isc = scale_offset + 2*i;
- const int isc_low = isc % (QK_K/32);
- const int sc_shift_low = 4 * (isc / (QK_K/32));
- const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
- const int isc_high = isc % (QK_K/64);
- const int sc_shift_high = 2 * (isc / (QK_K/64));
- const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
- const int sc = (sc_low | sc_high) - 32;
- const int vil = (vl >> (2*i)) & 0x03030303;
- const int vih = ((vh >> i) << 2) & 0x04040404;
- const int vi =
- dpct::vectorized_binary<sycl::char4>(vil, vih, dpct::sub_sat());
- sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d3 * sumf;
- }
- // contiguous u/y values
- static __dpct_inline__ float
- vec_dot_q3_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
- const int8_t *__restrict__ scales, const float &d3,
- const float &d8) {
- int sumi = 0;
- #pragma unroll
- for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
- int sumi_sc = 0;
- for (int i = i0; i < i0 + QI8_1/2; ++i) {
- sumi_sc = dpct::dp4a(v[i], u[i], sumi_sc); // SIMD dot product
- }
- sumi += sumi_sc * scales[i0 / (QI8_1/2)];
- }
- return d3*d8 * sumi;
- }
- #define VDR_Q4_K_Q8_1_MMVQ 2
- #define VDR_Q4_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_vmmq(
- const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
- const sycl::half2 &dm4, const float *__restrict__ d8) {
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K; ++i) {
- const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
- const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
- const int dot1 =
- dpct::dp4a(v1i, u[2 * i + 1],
- dpct::dp4a(v0i, u[2 * i + 0], 0)); // SIMD dot product
- const int dot2 =
- dpct::dp4a(0x01010101, u[2 * i + 1],
- dpct::dp4a(0x01010101, u[2 * i + 0], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
- }
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
- return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
- }
- // contiguous u/y values
- static __dpct_inline__ float vec_dot_q4_K_q8_1_impl_mmq(
- const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
- const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = dpct::dp4a((v[j] >> (4 * i)) & 0x0F0F0F0F,
- u[i * QI8_1 + j], sumi_d); // SIMD dot product
- }
- const sycl::float2 ds8f =
- ds8[i].convert<float, sycl::rounding_mode::automatic>();
- sumf_d += ds8f.x() * (sc[i] * sumi_d);
- sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
- }
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
- return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
- }
- #define VDR_Q5_K_Q8_1_MMVQ 2
- #define VDR_Q5_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_vmmq(
- const int *__restrict__ vl, const int *__restrict__ vh,
- const int *__restrict__ u, const uint8_t *__restrict__ sc,
- const uint8_t *__restrict__ m, const sycl::half2 &dm5,
- const float *__restrict__ d8) {
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
- const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
- const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
- const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
- const int v0i = vl0i | vh0i;
- const int v1i = vl1i | vh1i;
- const int dot1 =
- dpct::dp4a(v0i, u[2 * i + 0],
- dpct::dp4a(v1i, u[2 * i + 1], 0)); // SIMD dot product
- const int dot2 =
- dpct::dp4a(0x01010101, u[2 * i + 0],
- dpct::dp4a(0x01010101, u[2 * i + 1], 0)); // sum of u
- sumf_d += d8[i] * (dot1 * sc[i]);
- sumf_m += d8[i] * (dot2 * m[i]);
- }
- const sycl::float2 dm5f =
- dm5.convert<float, sycl::rounding_mode::automatic>();
- return dm5f.x() * sumf_d - dm5f.y() * sumf_m;
- }
- // contiguous u/y values
- static __dpct_inline__ float vec_dot_q5_K_q8_1_impl_mmq(
- const int *__restrict__ v, const int *__restrict__ u,
- const uint8_t *__restrict__ sc, const uint8_t *__restrict__ m,
- const sycl::half2 &dm4, const sycl::half2 *__restrict__ ds8) {
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
- int sumi_d = 0;
- #pragma unroll
- for (int j = 0; j < QI8_1; ++j) {
- sumi_d = dpct::dp4a(v[i * QI8_1 + j], u[i * QI8_1 + j],
- sumi_d); // SIMD dot product
- }
- const sycl::float2 ds8f =
- ds8[i].convert<float, sycl::rounding_mode::automatic>();
- sumf_d += ds8f.x() * (sc[i] * sumi_d);
- sumf_m += ds8f.y() * m[i]; // sum of q8_1 block * q4_K min val
- }
- const sycl::float2 dm4f =
- dm4.convert<float, sycl::rounding_mode::automatic>();
- return dm4f.x() * sumf_d - dm4f.y() * sumf_m;
- }
- #define VDR_Q6_K_Q8_1_MMVQ 1
- #define VDR_Q6_K_Q8_1_MMQ 8
- // contiguous v/x values
- static __dpct_inline__ float
- vec_dot_q6_K_q8_1_impl_mmvq(const int &vl, const int &vh,
- const int *__restrict__ u,
- const int8_t *__restrict__ scales, const float &d,
- const float *__restrict__ d8) {
- float sumf = 0.0f;
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- const int sc = scales[4*i];
- const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
- const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
- const int vi = dpct::vectorized_binary<sycl::char4>(
- (vil | vih), 0x20202020, dpct::sub_sat()); // vi = (vil | vih) - 32
- sumf += d8[i] * (dpct::dp4a(vi, u[i], 0) * sc); // SIMD dot product
- }
- return d*sumf;
- }
- // contiguous u/y values
- static __dpct_inline__ float
- vec_dot_q6_K_q8_1_impl_mmq(const int *__restrict__ v, const int *__restrict__ u,
- const int8_t *__restrict__ sc, const float &d6,
- const float *__restrict__ d8) {
- float sumf_d = 0.0f;
- #pragma unroll
- for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
- sycl::int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
- #pragma unroll
- for (int i = i0; i < i0 + 2; ++i) {
- sumi_d.x() = dpct::dp4a(v[2 * i + 0], u[2 * i + 0],
- sumi_d.x()); // SIMD dot product
- sumi_d.x() = dpct::dp4a(v[2 * i + 1], u[2 * i + 1],
- sumi_d.x()); // SIMD dot product
- sumi_d.y() = dpct::dp4a(v[2 * i + 4], u[2 * i + 4],
- sumi_d.y()); // SIMD dot product
- sumi_d.y() = dpct::dp4a(v[2 * i + 5], u[2 * i + 5],
- sumi_d.y()); // SIMD dot product
- }
- sumf_d += d8[i0 / 4] *
- (sc[i0 / 2 + 0] * sumi_d.x() + sc[i0 / 2 + 1] * sumi_d.y());
- }
- return d6 * sumf_d;
- }
- static __dpct_inline__ float
- vec_dot_q4_0_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
- int v[VDR_Q4_0_Q8_1_MMVQ];
- int u[2*VDR_Q4_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q4_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_qs_q4_0, float *tile_x_d_q4_0) {
- (void)x_qh; (void)x_sc;
- *x_ql = tile_x_qs_q4_0;
- *x_dm = (sycl::half2 *)tile_x_d_q4_0;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q4_0(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_0;
- const int kqsx = k % QI4_0;
- const block_q4_0 * bx0 = (const block_q4_0 *) vx;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
- int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
- }
- }
- static __dpct_inline__ float vec_dot_q4_0_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const float * x_dmf = (const float *) x_dm;
- int u[2*VDR_Q4_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
- }
- return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __dpct_inline__ float
- vec_dot_q4_1_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
- int v[VDR_Q4_1_Q8_1_MMVQ];
- int u[2*VDR_Q4_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q4_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_qs_q4_1, sycl::half2 *tile_x_dm_q4_1) {
- (void)x_qh; (void)x_sc;
- *x_ql = tile_x_qs_q4_1;
- *x_dm = tile_x_dm_q4_1;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q4_1(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_1;
- const int kqsx = k % QI4_1;
- const block_q4_1 * bx0 = (const block_q4_1 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
- int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
- }
- }
- static __dpct_inline__ float vec_dot_q4_1_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- int u[2*VDR_Q4_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
- }
- return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
- y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __dpct_inline__ float
- vec_dot_q5_0_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
- int vl[VDR_Q5_0_Q8_1_MMVQ];
- int vh[VDR_Q5_0_Q8_1_MMVQ];
- int u[2*VDR_Q5_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
- vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
- }
- return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q5_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q5_0, float *tile_x_d_q5_0) {
- (void)x_qh; (void)x_sc;
- *x_ql = tile_x_ql_q5_0;
- *x_dm = (sycl::half2 *)tile_x_d_q5_0;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q5_0(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_0;
- const int kqsx = k % QI5_0;
- const block_q5_0 * bx0 = (const block_q5_0 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8(bxi->qs, kqsx);
- const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- qs0 = dpct::vectorized_binary<sycl::char4>(
- qs0, 0x10101010, dpct::sub_sat()); // subtract 16
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- qs1 = dpct::vectorized_binary<sycl::char4>(
- qs1, 0x10101010, dpct::sub_sat()); // subtract 16
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
- int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
- }
- }
- static __dpct_inline__ float vec_dot_q5_0_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- int u[2*VDR_Q5_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
- }
- return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __dpct_inline__ float
- vec_dot_q5_1_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
- int vl[VDR_Q5_1_Q8_1_MMVQ];
- int vh[VDR_Q5_1_Q8_1_MMVQ];
- int u[2*VDR_Q5_1_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
- vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
- vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
- u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
- }
- return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q5_1(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q5_1, sycl::half2 *tile_x_dm_q5_1) {
- (void)x_qh; (void)x_sc;
- *x_ql = tile_x_ql_q5_1;
- *x_dm = tile_x_dm_q5_1;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q5_1(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_1;
- const int kqsx = k % QI5_1;
- const block_q5_1 * bx0 = (const block_q5_1 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
- int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
- }
- }
- static __dpct_inline__ float vec_dot_q5_1_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
- const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
- const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
- int u[2*VDR_Q5_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
- u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
- }
- return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
- (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- static __dpct_inline__ float
- vec_dot_q8_0_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
- int v[VDR_Q8_0_Q8_1_MMVQ];
- int u[VDR_Q8_0_Q8_1_MMVQ];
- #pragma unroll
- for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
- v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
- u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
- }
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d,
- bq8_1->ds[0]);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q8_0(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_qs_q8_0, float *tile_x_d_q8_0) {
- (void)x_qh; (void)x_sc;
- *x_ql = tile_x_qs_q8_0;
- *x_dm = (sycl::half2 *)tile_x_d_q8_0;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q8_0(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh; (void)x_sc;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI8_0;
- const int kqsx = k % QI8_0;
- float * x_dmf = (float *) x_dm;
- const block_q8_0 * bx0 = (const block_q8_0 *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
- int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
- }
- }
- static __dpct_inline__ float vec_dot_q8_0_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh; (void)x_sc;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
- (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
- y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_q2_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q2_K * bq2_K = (const block_q2_K *) vbq;
- const int bq8_offset = QR2_K * (iqs / QI8_1);
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const uint8_t * scales = bq2_K->scales + scale_offset;
- const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
- int u[QR2_K];
- float d8[QR2_K];
- #pragma unroll
- for (int i = 0; i < QR2_K; ++ i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + i].ds[0];
- }
- return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q2_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q2_K, sycl::half2 *tile_x_dm_q2_K,
- int *tile_x_sc_q2_K) {
- (void)x_qh;
- *x_ql = tile_x_ql_q2_K;
- *x_dm = tile_x_dm_q2_K;
- *x_sc = tile_x_sc_q2_K;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q2_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI2_K;
- const int kqsx = k % QI2_K;
- const block_q2_K * bx0 = (const block_q2_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
- const int kbxd = k % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
- int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
- }
- }
- static __dpct_inline__ float vec_dot_q2_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
- const int kbx = k / QI2_K;
- const int ky = (k % QI2_K) * QR2_K;
- const float * y_df = (const float *) y_ds;
- int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
- const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
- #pragma unroll
- for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
- v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
- }
- const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
- const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
- return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_q3_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q3_K * bq3_K = (const block_q3_K *) vbq;
- const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
- const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
- const float d = bq3_K->d;
- const int vl = get_int_from_uint8(bq3_K->qs, iqs);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
- int u[QR3_K];
- float d8[QR3_K];
- #pragma unroll
- for (int i = 0; i < QR3_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + i].ds[0];
- }
- return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q3_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q3_K, sycl::half2 *tile_x_dm_q3_K,
- int *tile_x_qh_q3_K, int *tile_x_sc_q3_K) {
- *x_ql = tile_x_ql_q3_K;
- *x_dm = tile_x_dm_q3_K;
- *x_qh = tile_x_qh_q3_K;
- *x_sc = tile_x_sc_q3_K;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q3_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI3_K;
- const int kqsx = k % QI3_K;
- const block_q3_K * bx0 = (const block_q3_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
- const int kbxd = k % blocks_per_tile_x_row;
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
- int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
- int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
- // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
- x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
- const int ksc = k % (QI3_K/4);
- const int ksc_low = ksc % (QI3_K/8);
- const int shift_low = 4 * (ksc / (QI3_K/8));
- const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
- const int ksc_high = QI3_K/8;
- const int shift_high = 2 * ksc;
- const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
- const int sc = dpct::vectorized_binary<sycl::char4>(
- sc_low | sc_high, 0x20202020, dpct::sub_sat());
- x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
- }
- }
- static __dpct_inline__ float vec_dot_q3_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- const int kbx = k / QI3_K;
- const int ky = (k % QI3_K) * QR3_K;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
- int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
- const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
- const int shift = 2 * ((ky % 32) / 8);
- const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
- const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
- const int vlh = (vh << 2) & 0x04040404;
- v[l] = dpct::vectorized_binary<sycl::char4>(vll, vlh, dpct::sub_sat());
- }
- const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
- return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- #ifndef GGML_QKK_64
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- int v[2];
- int u[2*QR4_K];
- float d8[QR4_K];
- // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
- const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
- // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
- // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
- // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
- // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
- const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- v[0] = q4[0];
- v[1] = q4[4];
- const uint16_t * scales = (const uint16_t *)bq4_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- for (int i = 0; i < QR4_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = bq8i->ds[0];
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
- #else
- #if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
- const block_q4_K * bq4_K = (const block_q4_K *) vbq;
- float sumf_d = 0.0f;
- float sumf_m = 0.0f;
- uint16_t aux16[2];
- const uint8_t * s = (const uint8_t *)aux16;
- const uint16_t * a = (const uint16_t *)bq4_K->scales;
- aux16[0] = a[0] & 0x0f0f;
- aux16[1] = (a[0] >> 4) & 0x0f0f;
- const float dall = bq4_K->dm[0];
- const float dmin = bq4_K->dm[1];
- const float d8_1 = bq8_1[0].ds[0];
- const float d8_2 = bq8_1[1].ds[1];
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- const int * q4 = (const int *)bq4_K->qs + (iqs/2);
- const int v1 = q4[0];
- const int v2 = q4[4];
- const int dot1 = dpct::dp4a(ui2, v2 & 0x0f0f0f0f, dpct::dp4a(ui1, v1 & 0x0f0f0f0f, 0));
- const int dot2 = dpct::dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, dpct::dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
- const int dot3 = dpct::dp4a(0x01010101, ui2, dpct::dp4a(0x01010101, ui1, 0));
- const int dot4 = dpct::dp4a(0x01010101, ui4, dpct::dp4a(0x01010101, ui3, 0));
- sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
- sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
- return dall * sumf_d - dmin * sumf_m;
- #else
- bad_arch();
- #endif // __SYCL_ARCH__ >= VER_4VEC
- #endif
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q4_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q4_K, sycl::half2 *tile_x_dm_q4_K,
- int *tile_x_sc_q4_K) {
- (void)x_qh;
- *x_ql = tile_x_ql_q4_K;
- *x_dm = tile_x_dm_q4_K;
- *x_sc = tile_x_sc_q4_K;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI4_K; // == 0 if QK_K == 256
- const int kqsx = k % QI4_K; // == k if QK_K == 256
- const block_q4_K * bx0 = (const block_q4_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
- x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
- int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
- #if QK_K == 256
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
- #else
- x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
- #endif
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
- const int * scales = (const int *) bxi->scales;
- const int ksc = k % (WARP_SIZE/8);
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
- }
- static __dpct_inline__ float vec_dot_q4_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
- const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
- return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- #ifndef GGML_QKK_64
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- int vl[2];
- int vh[2];
- int u[2*QR5_K];
- float d8[QR5_K];
- const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
- const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
- const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
- vl[0] = ql[0];
- vl[1] = ql[4];
- vh[0] = qh[0] >> bq8_offset;
- vh[1] = qh[4] >> bq8_offset;
- const uint16_t * scales = (const uint16_t *)bq5_K->scales;
- uint16_t aux[2];
- const int j = bq8_offset/2;
- if (j < 2) {
- aux[0] = scales[j+0] & 0x3f3f;
- aux[1] = scales[j+2] & 0x3f3f;
- } else {
- aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
- aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
- }
- const uint8_t * sc = (const uint8_t *)aux;
- const uint8_t * m = sc + 2;
- #pragma unroll
- for (int i = 0; i < QR5_K; ++i) {
- const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
- d8[i] = bq8i->ds[0];
- const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
- u[2*i+0] = q8[0];
- u[2*i+1] = q8[4];
- }
- return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
- #else
- #if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
- const block_q5_K * bq5_K = (const block_q5_K *) vbq;
- const int8_t * s = bq5_K->scales;
- const float d = bq5_K->d;
- const float d8_1 = bq8_1[0].ds[0];
- const float d8_2 = bq8_1[1].ds[1];
- const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
- const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
- const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
- const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
- const int * ql = (const int *)bq5_K->qs + (iqs/2);
- const int vl1 = ql[0];
- const int vl2 = ql[4];
- const int step = 4 * (iqs/2); // 0, 4, 8, 12
- const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
- const int in = step%8; // 0, 4, 0, 4
- const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
- const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
- const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
- const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
- const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
- const float sumf_d = d8_1 * (dpct::dp4a(ui1, v1, 0) * s[0] + dpct::dp4a(ui2, v2, 0) * s[1])
- + d8_2 * (dpct::dp4a(ui3, v3, 0) * s[2] + dpct::dp4a(ui4, v4, 0) * s[3]);
- return d * sumf_d;
- #else
- bad_arch();
- #endif // __SYCL_ARCH__ >= VER_4VEC
- #endif
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q5_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql_q5_K, sycl::half2 *tile_x_dm_q5_K,
- int *tile_x_sc_q5_K) {
- (void)x_qh;
- *x_ql = tile_x_ql_q5_K;
- *x_dm = tile_x_dm_q5_K;
- *x_sc = tile_x_sc_q5_K;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI5_K; // == 0 if QK_K == 256
- const int kqsx = k % QI5_K; // == k if QK_K == 256
- const block_q5_K * bx0 = (const block_q5_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR5_K*kqsx;
- const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
- const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
- const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
- const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
- const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
- x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
- x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
- int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
- #if QK_K == 256
- x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
- #endif
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
- const int * scales = (const int *) bxi->scales;
- const int ksc = k % (WARP_SIZE/8);
- // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
- int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
- scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
- x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
- }
- }
- static __dpct_inline__ float vec_dot_q5_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
- const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
- const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
- return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
- x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_q6_K_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_q6_K * bq6_K = (const block_q6_K *) vbq;
- const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
- const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
- const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
- const int vl = get_int_from_uint8(bq6_K->ql, iqs);
- const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
- const int8_t * scales = bq6_K->scales + scale_offset;
- int u[QR6_K];
- float d8[QR6_K];
- #pragma unroll
- for (int i = 0; i < QR6_K; ++i) {
- u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
- d8[i] = bq8_1[bq8_offset + 2 * i].ds[0];
- }
- return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
- }
- template <int mmq_y>
- static __dpct_inline__ void
- allocate_tiles_q6_K(int **x_ql, sycl::half2 **x_dm, int **x_qh, int **x_sc,
- int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_sc) {
- (void)x_qh;
- *x_ql = tile_x_ql;
- *x_dm = tile_x_dm;
- *x_sc = tile_x_sc;
- }
- template <int mmq_y, int nwarps, bool need_check>
- static __dpct_inline__ void
- load_tiles_q6_K(const void *__restrict__ vx, int *__restrict__ x_ql,
- sycl::half2 *__restrict__ x_dm, int *__restrict__ x_qh,
- int *__restrict__ x_sc, const int &i_offset, const int &i_max,
- const int &k, const int &blocks_per_row) {
- (void)x_qh;
- GGML_SYCL_ASSUME(i_offset >= 0);
- GGML_SYCL_ASSUME(i_offset < nwarps);
- GGML_SYCL_ASSUME(k >= 0);
- GGML_SYCL_ASSUME(k < WARP_SIZE);
- const int kbx = k / QI6_K; // == 0 if QK_K == 256
- const int kqsx = k % QI6_K; // == k if QK_K == 256
- const block_q6_K * bx0 = (const block_q6_K *) vx;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + i_offset;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
- const int ky = QR6_K*kqsx;
- const int ql = get_int_from_uint8(bxi->ql, kqsx);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
- const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
- const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
- const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
- const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
- x_ql[i * (2 * WARP_SIZE + 1) + kq0] =
- dpct::vectorized_binary<sycl::char4>(ql0 | qh0, 0x20202020,
- dpct::sub_sat());
- x_ql[i * (2 * WARP_SIZE + 1) + kq1] =
- dpct::vectorized_binary<sycl::char4>(ql1 | qh1, 0x20202020,
- dpct::sub_sat());
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
- const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
- float * x_dmf = (float *) x_dm;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
- int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
- x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = sycl::min(i, i_max);
- }
- const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
- x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
- }
- }
- static __dpct_inline__ float vec_dot_q6_K_q8_1_mul_mat(
- const int *__restrict__ x_ql, const sycl::half2 *__restrict__ x_dm,
- const int *__restrict__ x_qh, const int *__restrict__ x_sc,
- const int *__restrict__ y_qs, const sycl::half2 *__restrict__ y_ds,
- const int &i, const int &j, const int &k) {
- (void)x_qh;
- const float * x_dmf = (const float *) x_dm;
- const float * y_df = (const float *) y_ds;
- const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
- const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
- const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
- return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
- }
- static __dpct_inline__ float
- vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint64_t *iq2xxs_grid, const uint8_t *ksigns_iq2xs,
- const uint8_t *kmask_iq2xs) {
- #if QK_K == 256
- const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
- #if QR2_XXS == 8
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = q2[2] | (q2[3] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
- const uint8_t signs = ksigns_iq2xs[aux32 & 127];
- for (int j = 0; j < 8; ++j) {
- sumi += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
- }
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * bq8_1[ib32].ds[0] * 0.25f;
- return d * sumi;
- #else
- // iqs is 0...15
- const int ib32 = iqs/2;
- const int il = iqs%2;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const uint8_t * aux8 = (const uint8_t *)q2;
- const uint8_t * grid1 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+0]);
- const uint8_t * grid2 = (const uint8_t *)(iq2xxs_grid + aux8[2*il+1]);
- const uint32_t aux32 = q2[2] | (q2[3] << 16);
- const float d = (float)bq2->d * (0.5f + (aux32 >> 28)) * bq8_1[ib32].ds[0] * 0.25f;
- const uint8_t signs1 = ksigns_iq2xs[(aux32 >> 14*il) & 127];
- const uint8_t signs2 = ksigns_iq2xs[(aux32 >> (14*il + 7)) & 127];
- const int8_t * q8 = bq8_1[ib32].qs + 16*il;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 8; ++j) {
- sumi1 += q8[j+0] * grid1[j] * (signs1 & kmask_iq2xs[j] ? -1 : 1);
- sumi2 += q8[j+8] * grid2[j] * (signs2 & kmask_iq2xs[j] ? -1 : 1);
- }
- return d * (sumi1 + sumi2);
- #endif
- #else
- assert(false);
- return 0.f;
- #endif
- }
- static __dpct_inline__ float
- vec_dot_iq2_xs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint64_t *iq2xs_grid, const uint64_t *ksigns64) {
- #if DPCT_COMPATIBILITY_TEMP >= \
- MIN_CC_DP4A // lowest compute capability for integer intrinsics
- #if QK_K == 256
- const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
- const int ib32 = iqs;
- const uint16_t * q2 = bq2->qs + 4*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs[0], signs[0], std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs[1], signs[1], std::minus<>());
- sumi1 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs[0], signs[0], std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs[1], signs[1], std::minus<>());
- sumi2 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
- #else
- assert(false);
- return 0.f;
- #endif
- #else
- assert(false);
- return 0.f;
- #endif
- }
- static __dpct_inline__ float
- vec_dot_iq2_s_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- #if QK_K == 256
- const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
- const int ib32 = iqs;
- const int8_t * q8 = bq8_1[ib32].qs;
- const uint8_t * signs = bq2->qs + QK_K/8 + 4*ib32;
- const uint8_t ls1 = bq2->scales[ib32] & 0xf;
- const uint8_t ls2 = bq2->scales[ib32] >> 4;
- int sumi1 = 0;
- for (int l = 0; l < 2; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const uint32_t signs1 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs0, signs0, std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs1, signs1, std::minus<>());
- sumi1 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi1);
- sumi1 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi1);
- q8 += 8;
- }
- int sumi2 = 0;
- for (int l = 2; l < 4; ++l) {
- const uint32_t * grid = (const uint32_t *)(iq2s_grid + (bq2->qs[4*ib32+l] | ((bq2->qh[ib32] << (8-2*l)) & 0x300)));
- const uint32_t signs0 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] & 0xf) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const uint32_t signs1 = dpct::vectorized_binary<sycl::uchar4>(
- ((signs[l] >> 4) * 0x01010101) & 0x08040201, 0x08040201,
- std::equal_to<>());
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid[0] ^ signs0, signs0, std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid[1] ^ signs1, signs1, std::minus<>());
- sumi2 = dpct::dp4a(grid_l, *((const int *)q8 + 0), sumi2);
- sumi2 = dpct::dp4a(grid_h, *((const int *)q8 + 1), sumi2);
- q8 += 8;
- }
- const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f;
- return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
- #else
- assert(false);
- #endif
- }
- static __dpct_inline__ float
- vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint32_t *iq3xxs_grid, const uint64_t *ksigns64) {
- #if DPCT_COMPATIBILITY_TEMP >= \
- MIN_CC_DP4A // lowest compute capability for integer intrinsics
- #if QK_K == 256
- const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
- const int ib32 = iqs;
- const uint8_t * q3 = bq2->qs + 8*ib32;
- const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- uint32_t aux32 = gas[0] | (gas[1] << 16);
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
- const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid1[0] ^ signs[0], signs[0], std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid2[0] ^ signs[1], signs[1], std::minus<>());
- sumi = dpct::dp4a(grid_l, *((int *)q8 + 0), sumi);
- sumi = dpct::dp4a(grid_h, *((int *)q8 + 1), sumi);
- q8 += 8;
- aux32 >>= 7;
- }
- const float d = (float)bq2->d * (0.5f + aux32) * bq8_1[ib32].ds[0] * 0.5f;
- return d * sumi;
- #else
- assert(false);
- return 0.f;
- #endif
- #else
- assert(false);
- return 0.f;
- #endif
- }
- static __dpct_inline__ float
- vec_dot_iq3_s_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint32_t *iq3s_grid) {
- #if QK_K == 256
- const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
- const int ib32 = iqs;
- const uint8_t * qs = bq2->qs + 8*ib32;
- const int8_t * q8 = bq8_1[ib32].qs;
- int sumi = 0;
- for (int l = 0; l < 4; ++l) {
- const uint32_t * grid1 = iq3s_grid + (qs[2*l+0] | ((bq2->qh[ib32] << (8 - 2*l)) & 256));
- const uint32_t * grid2 = iq3s_grid + (qs[2*l+1] | ((bq2->qh[ib32] << (7 - 2*l)) & 256));
- uint32_t signs0 = dpct::vectorized_binary<sycl::uchar4>(
- ((bq2->signs[4 * ib32 + l] & 0xf) * 0x01010101) & 0x08040201,
- 0x08040201, std::equal_to<>());
- uint32_t signs1 = dpct::vectorized_binary<sycl::uchar4>(
- ((bq2->signs[4 * ib32 + l] >> 4) * 0x01010101) & 0x08040201,
- 0x08040201, std::equal_to<>());
- const int grid_l = dpct::vectorized_binary<sycl::uchar4>(
- grid1[0] ^ signs0, signs0, std::minus<>());
- const int grid_h = dpct::vectorized_binary<sycl::uchar4>(
- grid2[0] ^ signs1, signs1, std::minus<>());
- sumi = dpct::dp4a(grid_l, *((int *)q8 + 0), sumi);
- sumi = dpct::dp4a(grid_h, *((int *)q8 + 1), sumi);
- q8 += 8;
- }
- const float d =
- (float)bq2->d *
- (1 + 2 * ((bq2->scales[ib32 / 2] >> 4 * (ib32 % 2)) & 0xf)) *
- bq8_1[ib32].ds[0];
- return d * sumi;
- #else
- assert(false);
- #endif
- }
- static __dpct_inline__ float
- vec_dot_iq1_s_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs,
- const uint32_t *iq1s_grid_gpu) {
- #if QK_K == 256
- const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
- const int ib32 = iqs;
- int sumi = 0;
- const int * q8 = (const int *)bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[ib32] >> 3*l) & 7) << 8)));
- int grid0 = grid[0] & 0x0f0f0f0f;
- int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
- sumi = dpct::dp4a(q8[2 * l + 1], grid1,
- dpct::dp4a(q8[2 * l + 0], grid0, sumi));
- }
- const float delta = bq1->qh[ib32] & 0x8000 ? -1-IQ1S_DELTA : -1+IQ1S_DELTA;
- const float d1q = (float)bq1->d * (2*((bq1->qh[ib32] >> 12) & 7) + 1);
- const float d = d1q * bq8_1[ib32].ds[0];
- const float m = d1q * bq8_1[ib32].ds[1];
- return d * sumi + m * delta;
- #else
- assert(false);
- #endif
- }
- static __dpct_inline__ float
- vec_dot_iq1_m_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- #if QK_K == 256
- const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
- const int ib32 = iqs;
- int sumi[2] = {0, 0};
- float sumf[2] = {0.f, 0.f};
- const int * q8 = (const int *)bq8_1[ib32].qs;
- for (int l = 0; l < 4; ++l) {
- const int * grid = (const int *)(iq1s_grid_gpu + (bq1->qs[4*ib32+l] | (((bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 7) << 8)));
- int grid0 = grid[0] & 0x0f0f0f0f;
- int grid1 = (grid[0] >> 4) & 0x0f0f0f0f;
- sumi[l / 2] = dpct::dp4a(q8[2 * l + 1], grid1,
- dpct::dp4a(q8[2 * l + 0], grid0, sumi[l / 2]));
- const float delta = (bq1->qh[2*ib32+l/2] >> 4*(l%2)) & 0x08 ? -1-IQ1M_DELTA : -1+IQ1M_DELTA;
- const int sumy = dpct::dp4a(q8[2 * l + 1], 0x01010101,
- dpct::dp4a(q8[2 * l + 0], 0x01010101, 0));
- sumf[l/2] += delta*sumy;
- }
- iq1m_scale_t scale;
- const uint16_t * sc = (const uint16_t *)bq1->scales;
- scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
- const float d = (float)scale.f16 * bq8_1[ib32].ds[0];
- return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
- #else
- assert(false);
- #endif
- }
- static __dpct_inline__ void get_int_from_table_16(const uint32_t &q4,
- const uint8_t *values,
- int &val1, int &val2) {
- uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
- aux32 = q4 & 0x0f0f0f0f;
- uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
- uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
- val1 = v1 | (v2 << 16);
- aux32 = (q4 >> 4) & 0x0f0f0f0f;
- v1 = values[q8[0]] | (values[q8[1]] << 8);
- v2 = values[q8[2]] | (values[q8[3]] << 8);
- val2 = v1 | (v2 << 16);
- }
- static __dpct_inline__ float
- vec_dot_iq4_nl_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- const block_iq4_nl * bq = (const block_iq4_nl *) vbq;
- const uint16_t * q4 = (const uint16_t *)bq->qs + 2*iqs;
- const int32_t * q8 = (const int32_t *)bq8_1->qs + iqs;
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMVQ; ++l) {
- const uint32_t aux = q4[2*l] | (q4[2*l+1] << 16);
- get_int_from_table_16(aux, values, v1, v2);
- sumi1 = dpct::dp4a(v1, q8[l + 0], sumi1);
- sumi2 = dpct::dp4a(v2, q8[l + 4], sumi2);
- }
- const float d = (float)bq->d * bq8_1->ds[0];
- return d * (sumi1 + sumi2);
- }
- static __dpct_inline__ float
- vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq,
- const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
- #if QK_K == 256
- const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
- const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
- // iqs is 0...7
- const int ib32 = iqs;
- const int32_t * q8 = (const int *)bq8_1[ib32].qs;
- const uint32_t * q4 = (const uint32_t *)bq4->qs + 4*ib32;
- const int8_t ls = ((bq4->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((bq4->scales_h >> 2*ib32) & 3) << 4);
- const float d = (float)bq4->d * (ls - 32) * bq8_1[ib32].ds[0];
- int v1, v2;
- int sumi1 = 0, sumi2 = 0;
- for (int j = 0; j < 4; ++j) {
- get_int_from_table_16(q4[j], values, v1, v2);
- sumi1 = dpct::dp4a(v1, q8[j + 0], sumi1);
- sumi2 = dpct::dp4a(v2, q8[j + 4], sumi2);
- }
- return d * (sumi1 + sumi2);
- #else
- assert(false);
- #endif
- }
- template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x,
- int mmq_y, int nwarps, load_tiles_sycl_t load_tiles, int vdr,
- vec_dot_q_mul_mat_sycl_t vec_dot>
- /*
- DPCT1110:8: The total declared local variable size in device function mul_mat_q
- exceeds 128 bytes and may cause high register pressure. Consult with your
- hardware vendor to find the total register size available and adjust the code,
- or use smaller sub-group size to avoid high register pressure.
- */
- static __dpct_inline__ void
- mul_mat_q(const void *__restrict__ vx, const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols_x, const int nrows_x,
- const int ncols_y, const int nrows_y, const int nrows_dst,
- int *tile_x_ql, sycl::half2 *tile_x_dm, int *tile_x_qh,
- int *tile_x_sc, const sycl::nd_item<3> &item_ct1, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- const int blocks_per_warp = WARP_SIZE / qi;
- const int & ncols_dst = ncols_y;
- const int row_dst_0 = item_ct1.get_group(2) * mmq_y;
- const int & row_x_0 = row_dst_0;
- const int col_dst_0 = item_ct1.get_group(1) * mmq_x;
- const int & col_y_0 = col_dst_0;
- float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
- for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
- load_tiles(x + row_x_0 * blocks_per_row_x + ib0, tile_x_ql, tile_x_dm,
- tile_x_qh, tile_x_sc, item_ct1.get_local_id(1),
- nrows_x - row_x_0 - 1, item_ct1.get_local_id(2),
- blocks_per_row_x);
- #pragma unroll
- for (int ir = 0; ir < qr; ++ir) {
- const int kqs = ir * WARP_SIZE + item_ct1.get_local_id(2);
- const int kbxd = kqs / QI8_1;
- #pragma unroll
- for (int i = 0; i < mmq_x; i += nwarps) {
- const int col_y_eff = dpct::min(
- (unsigned int)(col_y_0 + item_ct1.get_local_id(1) + i),
- ncols_y - 1); // to prevent out-of-bounds memory accesses
- const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
- const int index_y = (item_ct1.get_local_id(1) + i) * WARP_SIZE +
- kqs % WARP_SIZE;
- tile_y_qs[index_y] = get_int_from_int8_aligned(
- by0->qs, item_ct1.get_local_id(2) % QI8_1);
- }
- #pragma unroll
- for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
- const int ids =
- (ids0 + item_ct1.get_local_id(1) * QI8_1 +
- item_ct1.get_local_id(2) / (WARP_SIZE / QI8_1)) %
- mmq_x;
- const int kby = item_ct1.get_local_id(2) % (WARP_SIZE / QI8_1);
- const int col_y_eff = sycl::min(col_y_0 + ids, ncols_y - 1);
- // if the sum is not needed it's faster to transform the scale to f32 ahead of time
- const sycl::half2 *dsi_src =
- &y[col_y_eff * blocks_per_col_y + ib0 * (qk / QK8_1) +
- ir * (WARP_SIZE / QI8_1) + kby]
- .ds;
- sycl::half2 *dsi_dst =
- &tile_y_ds[ids * (WARP_SIZE / QI8_1) + kby];
- if (need_sum) {
- *dsi_dst = *dsi_src;
- } else {
- float * dfi_dst = (float *) dsi_dst;
- *dfi_dst = (*dsi_src)[0];
- }
- }
- /*
- DPCT1118:9: SYCL group functions and algorithms must be encountered
- in converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:56: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- // #pragma unroll // unrolling this loop causes too much register pressure
- for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
- #pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- #pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- sum[i / WARP_SIZE][j / nwarps] += vec_dot(
- tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
- tile_y_qs, tile_y_ds, item_ct1.get_local_id(2) + i,
- item_ct1.get_local_id(1) + j, k);
- }
- }
- }
- /*
- DPCT1118:10: SYCL group functions and algorithms must be encountered
- in converged control flow. You may need to adjust the code.
- */
- /*
- DPCT1065:57: Consider replacing sycl::nd_item::barrier() with
- sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
- better performance if there is no access to global memory.
- */
- item_ct1.barrier();
- }
- }
- #pragma unroll
- for (int j = 0; j < mmq_x; j += nwarps) {
- const int col_dst = col_dst_0 + j + item_ct1.get_local_id(1);
- if (col_dst >= ncols_dst) {
- return;
- }
- #pragma unroll
- for (int i = 0; i < mmq_y; i += WARP_SIZE) {
- const int row_dst = row_dst_0 + item_ct1.get_local_id(2) + i;
- if (row_dst >= nrows_dst) {
- continue;
- }
- dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
- }
- }
- }
- #define MMQ_X_Q4_0_RDNA2 64
- #define MMQ_Y_Q4_0_RDNA2 128
- #define NWARPS_Q4_0_RDNA2 8
- #define MMQ_X_Q4_0_RDNA1 64
- #define MMQ_Y_Q4_0_RDNA1 64
- #define NWARPS_Q4_0_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q4_0_AMPERE 4
- #define MMQ_Y_Q4_0_AMPERE 32
- #define NWARPS_Q4_0_AMPERE 4
- #else
- #define MMQ_X_Q4_0_AMPERE 64
- #define MMQ_Y_Q4_0_AMPERE 128
- #define NWARPS_Q4_0_AMPERE 4
- #endif
- #define MMQ_X_Q4_0_PASCAL 64
- #define MMQ_Y_Q4_0_PASCAL 64
- #define NWARPS_Q4_0_PASCAL 8
- template <bool need_check> static void
- mul_mat_q4_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_0, float *tile_x_d_q4_0,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q4_0_AMPERE;
- const int mmq_y = MMQ_Y_Q4_0_AMPERE;
- const int nwarps = NWARPS_Q4_0_AMPERE;
- allocate_tiles_q4_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_qs_q4_0, tile_x_d_q4_0);
- mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps,
- load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ,
- vec_dot_q4_0_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q4_1_RDNA2 64
- #define MMQ_Y_Q4_1_RDNA2 128
- #define NWARPS_Q4_1_RDNA2 8
- #define MMQ_X_Q4_1_RDNA1 64
- #define MMQ_Y_Q4_1_RDNA1 64
- #define NWARPS_Q4_1_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q4_1_AMPERE 4
- #define MMQ_Y_Q4_1_AMPERE 32
- #define NWARPS_Q4_1_AMPERE 4
- #else
- #define MMQ_X_Q4_1_AMPERE 64
- #define MMQ_Y_Q4_1_AMPERE 128
- #define NWARPS_Q4_1_AMPERE 4
- #endif
- #define MMQ_X_Q4_1_PASCAL 64
- #define MMQ_Y_Q4_1_PASCAL 64
- #define NWARPS_Q4_1_PASCAL 8
- template <bool need_check> static void
- mul_mat_q4_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q4_1,
- sycl::half2 *tile_x_dm_q4_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q4_1_AMPERE;
- const int mmq_y = MMQ_Y_Q4_1_AMPERE;
- const int nwarps = NWARPS_Q4_1_AMPERE;
- allocate_tiles_q4_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_qs_q4_1, tile_x_dm_q4_1);
- mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps,
- load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ,
- vec_dot_q4_1_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q5_0_RDNA2 64
- #define MMQ_Y_Q5_0_RDNA2 128
- #define NWARPS_Q5_0_RDNA2 8
- #define MMQ_X_Q5_0_RDNA1 64
- #define MMQ_Y_Q5_0_RDNA1 64
- #define NWARPS_Q5_0_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q5_0_AMPERE 4
- #define MMQ_Y_Q5_0_AMPERE 32
- #define NWARPS_Q5_0_AMPERE 4
- #else
- #define MMQ_X_Q5_0_AMPERE 128
- #define MMQ_Y_Q5_0_AMPERE 64
- #define NWARPS_Q5_0_AMPERE 4
- #endif
- #define MMQ_X_Q5_0_PASCAL 64
- #define MMQ_Y_Q5_0_PASCAL 64
- #define NWARPS_Q5_0_PASCAL 8
- template <bool need_check> static void
- mul_mat_q5_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_0, float *tile_x_d_q5_0,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q5_0_AMPERE;
- const int mmq_y = MMQ_Y_Q5_0_AMPERE;
- const int nwarps = NWARPS_Q5_0_AMPERE;
- allocate_tiles_q5_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q5_0, tile_x_d_q5_0);
- mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps,
- load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ,
- vec_dot_q5_0_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q5_1_RDNA2 64
- #define MMQ_Y_Q5_1_RDNA2 128
- #define NWARPS_Q5_1_RDNA2 8
- #define MMQ_X_Q5_1_RDNA1 64
- #define MMQ_Y_Q5_1_RDNA1 64
- #define NWARPS_Q5_1_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q5_1_AMPERE 4
- #define MMQ_Y_Q5_1_AMPERE 32
- #define NWARPS_Q5_1_AMPERE 4
- #else
- #define MMQ_X_Q5_1_AMPERE 128
- #define MMQ_Y_Q5_1_AMPERE 64
- #define NWARPS_Q5_1_AMPERE 4
- #endif
- #define MMQ_X_Q5_1_PASCAL 64
- #define MMQ_Y_Q5_1_PASCAL 64
- #define NWARPS_Q5_1_PASCAL 8
- template <bool need_check> static void
- mul_mat_q5_1(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_1,
- sycl::half2 *tile_x_dm_q5_1, int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q5_1_AMPERE;
- const int mmq_y = MMQ_Y_Q5_1_AMPERE;
- const int nwarps = NWARPS_Q5_1_AMPERE;
- allocate_tiles_q5_1<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q5_1, tile_x_dm_q5_1);
- mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps,
- load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ,
- vec_dot_q5_1_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q8_0_RDNA2 64
- #define MMQ_Y_Q8_0_RDNA2 128
- #define NWARPS_Q8_0_RDNA2 8
- #define MMQ_X_Q8_0_RDNA1 64
- #define MMQ_Y_Q8_0_RDNA1 64
- #define NWARPS_Q8_0_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q8_0_AMPERE 4
- #define MMQ_Y_Q8_0_AMPERE 32
- #define NWARPS_Q8_0_AMPERE 4
- #else
- #define MMQ_X_Q8_0_AMPERE 128
- #define MMQ_Y_Q8_0_AMPERE 64
- #define NWARPS_Q8_0_AMPERE 4
- #endif
- #define MMQ_X_Q8_0_PASCAL 64
- #define MMQ_Y_Q8_0_PASCAL 64
- #define NWARPS_Q8_0_PASCAL 8
- template <bool need_check> static void
- mul_mat_q8_0(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_qs_q8_0, float *tile_x_d_q8_0,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q8_0_AMPERE;
- const int mmq_y = MMQ_Y_Q8_0_AMPERE;
- const int nwarps = NWARPS_Q8_0_AMPERE;
- allocate_tiles_q8_0<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_qs_q8_0, tile_x_d_q8_0);
- mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps,
- load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ,
- vec_dot_q8_0_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q2_K_RDNA2 64
- #define MMQ_Y_Q2_K_RDNA2 128
- #define NWARPS_Q2_K_RDNA2 8
- #define MMQ_X_Q2_K_RDNA1 128
- #define MMQ_Y_Q2_K_RDNA1 32
- #define NWARPS_Q2_K_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q2_K_AMPERE 4
- #define MMQ_Y_Q2_K_AMPERE 32
- #define NWARPS_Q2_K_AMPERE 4
- #else
- #define MMQ_X_Q2_K_AMPERE 64
- #define MMQ_Y_Q2_K_AMPERE 128
- #define NWARPS_Q2_K_AMPERE 4
- #endif
- #define MMQ_X_Q2_K_PASCAL 64
- #define MMQ_Y_Q2_K_PASCAL 64
- #define NWARPS_Q2_K_PASCAL 8
- template <bool need_check> static void
- mul_mat_q2_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q2_K,
- sycl::half2 *tile_x_dm_q2_K, int *tile_x_sc_q2_K, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q2_K_AMPERE;
- const int mmq_y = MMQ_Y_Q2_K_AMPERE;
- const int nwarps = NWARPS_Q2_K_AMPERE;
- allocate_tiles_q2_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q2_K, tile_x_dm_q2_K, tile_x_sc_q2_K);
- mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps,
- load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ,
- vec_dot_q2_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q3_K_RDNA2 128
- #define MMQ_Y_Q3_K_RDNA2 64
- #define NWARPS_Q3_K_RDNA2 8
- #define MMQ_X_Q3_K_RDNA1 32
- #define MMQ_Y_Q3_K_RDNA1 128
- #define NWARPS_Q3_K_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q3_K_AMPERE 4
- #define MMQ_Y_Q3_K_AMPERE 32
- #define NWARPS_Q3_K_AMPERE 4
- #else
- #define MMQ_X_Q3_K_AMPERE 128
- #define MMQ_Y_Q3_K_AMPERE 128
- #define NWARPS_Q3_K_AMPERE 4
- #endif
- #define MMQ_X_Q3_K_PASCAL 64
- #define MMQ_Y_Q3_K_PASCAL 64
- #define NWARPS_Q3_K_PASCAL 8
- template <bool need_check> static void
- mul_mat_q3_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q3_K,
- sycl::half2 *tile_x_dm_q3_K, int *tile_x_qh_q3_K, int *tile_x_sc_q3_K,
- int *tile_y_qs, sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q3_K_AMPERE;
- const int mmq_y = MMQ_Y_Q3_K_AMPERE;
- const int nwarps = NWARPS_Q3_K_AMPERE;
- allocate_tiles_q3_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q3_K, tile_x_dm_q3_K, tile_x_qh_q3_K,
- tile_x_sc_q3_K);
- mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps,
- load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ,
- vec_dot_q3_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q4_K_RDNA2 64
- #define MMQ_Y_Q4_K_RDNA2 128
- #define NWARPS_Q4_K_RDNA2 8
- #define MMQ_X_Q4_K_RDNA1 32
- #define MMQ_Y_Q4_K_RDNA1 64
- #define NWARPS_Q4_K_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q4_K_AMPERE 4
- #define MMQ_Y_Q4_K_AMPERE 32
- #define NWARPS_Q4_K_AMPERE 4
- #else
- #define MMQ_X_Q4_K_AMPERE 64
- #define MMQ_Y_Q4_K_AMPERE 128
- #define NWARPS_Q4_K_AMPERE 4
- #endif
- #define MMQ_X_Q4_K_PASCAL 64
- #define MMQ_Y_Q4_K_PASCAL 64
- #define NWARPS_Q4_K_PASCAL 8
- template <bool need_check> static void
- mul_mat_q4_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q4_K,
- sycl::half2 *tile_x_dm_q4_K, int *tile_x_sc_q4_K, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q4_K_AMPERE;
- const int mmq_y = MMQ_Y_Q4_K_AMPERE;
- const int nwarps = NWARPS_Q4_K_AMPERE;
- allocate_tiles_q4_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q4_K, tile_x_dm_q4_K, tile_x_sc_q4_K);
- mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps,
- load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ,
- vec_dot_q4_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q5_K_RDNA2 64
- #define MMQ_Y_Q5_K_RDNA2 128
- #define NWARPS_Q5_K_RDNA2 8
- #define MMQ_X_Q5_K_RDNA1 32
- #define MMQ_Y_Q5_K_RDNA1 64
- #define NWARPS_Q5_K_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q5_K_AMPERE 4
- #define MMQ_Y_Q5_K_AMPERE 32
- #define NWARPS_Q5_K_AMPERE 4
- #else
- #define MMQ_X_Q5_K_AMPERE 64
- #define MMQ_Y_Q5_K_AMPERE 128
- #define NWARPS_Q5_K_AMPERE 4
- #endif
- #define MMQ_X_Q5_K_PASCAL 64
- #define MMQ_Y_Q5_K_PASCAL 64
- #define NWARPS_Q5_K_PASCAL 8
- template <bool need_check> static void
- mul_mat_q5_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql_q5_K,
- sycl::half2 *tile_x_dm_q5_K, int *tile_x_sc_q5_K, int *tile_y_qs,
- sycl::half2 *tile_y_ds) {
- int * tile_x_ql = nullptr;
- sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q5_K_AMPERE;
- const int mmq_y = MMQ_Y_Q5_K_AMPERE;
- const int nwarps = NWARPS_Q5_K_AMPERE;
- allocate_tiles_q5_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql_q5_K, tile_x_dm_q5_K, tile_x_sc_q5_K);
- mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps,
- load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ,
- vec_dot_q5_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- #define MMQ_X_Q6_K_RDNA2 64
- #define MMQ_Y_Q6_K_RDNA2 128
- #define NWARPS_Q6_K_RDNA2 8
- #define MMQ_X_Q6_K_RDNA1 32
- #define MMQ_Y_Q6_K_RDNA1 64
- #define NWARPS_Q6_K_RDNA1 8
- #if defined(SYCL_USE_XMX)
- #define MMQ_X_Q6_K_AMPERE 4
- #define MMQ_Y_Q6_K_AMPERE 32
- #define NWARPS_Q6_K_AMPERE 4
- #else
- #define MMQ_X_Q6_K_AMPERE 64
- #define MMQ_Y_Q6_K_AMPERE 64
- #define NWARPS_Q6_K_AMPERE 4
- #endif
- #define MMQ_X_Q6_K_PASCAL 64
- #define MMQ_Y_Q6_K_PASCAL 64
- #define NWARPS_Q6_K_PASCAL 8
- template <bool need_check> static void
- mul_mat_q6_K(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst,
- const sycl::nd_item<3> &item_ct1, int *tile_x_ql, sycl::half2 *tile_x_dm,
- int *tile_x_sc, int *tile_y_qs, sycl::half2 *tile_y_ds) {
- // int * tile_x_ql = nullptr;
- // sycl::half2 *tile_x_dm = nullptr;
- int * tile_x_qh = nullptr;
- // int * tile_x_sc = nullptr;
- //sycl_todo: change according to hardware
- const int mmq_x = MMQ_X_Q6_K_AMPERE;
- const int mmq_y = MMQ_Y_Q6_K_AMPERE;
- const int nwarps = NWARPS_Q6_K_AMPERE;
- allocate_tiles_q6_K<mmq_y>(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc,
- tile_x_ql, tile_x_dm, tile_x_sc);
- mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps,
- load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ,
- vec_dot_q6_K_q8_1_mul_mat>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst, tile_x_ql,
- tile_x_dm, tile_x_qh, tile_x_sc, item_ct1, tile_y_qs, tile_y_ds);
- }
- template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_sycl_t vec_dot_q_sycl>
- static void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_q_sycl(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq2_xxs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq2_xxs_q8_1(&x[ibx], &y[iby], iqs, iq2xxs_grid, ksigns_iq2xs, kmask_iq2xs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq2_xs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq2_xs_q8_1(&x[ibx], &y[iby], iqs, iq2xs_grid, ksigns64);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq2_s_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq2_s_q8_1(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq3_xxs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq3_xxs_q8_1(&x[ibx], &y[iby], iqs, iq3xxs_grid, ksigns64);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq3_s_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq3_s_q8_1(&x[ibx], &y[iby], iqs, iq3s_grid);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq1_s_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq1_s_q8_1(&x[ibx], &y[iby], iqs, iq1s_grid_gpu);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq1_m_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq1_m_q8_1(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq4_nl_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq4_nl_q8_1(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qi, typename block_q_t, int vdr>
- static void mul_mat_vec_q_iq4_xs_q8_1(const void *__restrict__ vx,
- const void *__restrict__ vy,
- float *__restrict__ dst, const int ncols,
- const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = vdr * WARP_SIZE / qi;
- // partial sum for each thread
- float tmp = 0.0f;
- const block_q_t * x = (const block_q_t *) vx;
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int i = item_ct1.get_local_id(2) / (qi / vdr); i < blocks_per_row;
- i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i; // x block index
- const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs =
- vdr *
- (item_ct1.get_local_id(2) %
- (qi / vdr)); // x block quant index when casting the quants to int
- tmp += vec_dot_iq4_xs_q8_1(&x[ibx], &y[iby], iqs);
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[row] = tmp;
- }
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
- static void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows,
- const sycl::nd_item<3> &item_ct1) {
- // qk = quantized weights per x block
- // qr = number of quantized weights per data value in x block
- const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (row >= nrows) {
- return;
- }
- const int tid = item_ct1.get_local_id(2);
- const int iter_stride = 2*GGML_SYCL_DMMV_X;
- const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
- const int y_offset = qr == 1 ? 1 : qk/2;
- // partial sum for each thread
- #ifdef GGML_SYCL_F16
- sycl::half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
- #else
- float tmp = 0.0f;
- #endif // GGML_SYCL_F16
- for (int i = 0; i < ncols; i += iter_stride) {
- const int col = i + vals_per_iter*tid;
- const int ib = (row*ncols + col)/qk; // x block index
- const int iqs = (col%qk)/qr; // x quant index
- const int iybs = col - col%qk; // y block start index
- // processing >2 values per i iter is faster for fast GPUs
- #pragma unroll
- for (int j = 0; j < vals_per_iter; j += 2) {
- // process 2 vals per j iter
- // dequantize
- // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
- dfloat2 v;
- dequantize_kernel(vx, ib, iqs + j/qr, v);
- // matrix multiplication
- // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
- #ifdef GGML_SYCL_F16
- dfloat2 t1{y[iybs + iqs + j / qr + 0],
- y[iybs + iqs + j / qr + y_offset]};
- tmp += v * t1;
- #else
- tmp += v.x() * y[iybs + iqs + j / qr + 0];
- tmp += v.y() * y[iybs + iqs + j / qr + y_offset];
- #endif // GGML_SYCL_F16
- }
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (tid == 0) {
- #ifdef GGML_SYCL_F16
- dst[row] = tmp.x() + tmp.y();
- #else
- dst[row] = tmp;
- #endif // GGML_SYCL_F16
- }
- }
- static void mul_mat_p021_f16_f32(
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y,
- const sycl::nd_item<3> &item_ct1) {
- const sycl::half *x = (const sycl::half *)vx;
- const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
- item_ct1.get_local_id(0);
- const int channel_x = channel / (nchannels_y / nchannels_x);
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x;
- col_x0 += item_ct1.get_local_range(2)) {
- const int col_x = col_x0 + item_ct1.get_local_id(2);
- if (col_x >= ncols_x) {
- break;
- }
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
- const float xi =
- sycl::vec<sycl::half, 1>(x[ix])
- .convert<float, sycl::rounding_mode::automatic>()[0];
- const int row_y = col_x;
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[idst] = tmp;
- }
- }
- static void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x, const int channel_x_divisor,
- const sycl::nd_item<3> &item_ct1) {
- const sycl::half *x = (const sycl::half *)vx;
- const int row_x = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int channel = item_ct1.get_local_range(0) * item_ct1.get_group(0) +
- item_ct1.get_local_id(0);
- const int channel_x = channel / channel_x_divisor;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- const int idst = channel*nrows_dst + row_dst;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x;
- col_x0 += item_ct1.get_local_range(2)) {
- const int col_x = col_x0 + item_ct1.get_local_id(2);
- if (col_x >= ncols_x) {
- break;
- }
- const int row_y = col_x;
- const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
- const int iy = channel*nrows_y + row_y;
- const float xi =
- sycl::vec<sycl::half, 1>(x[ix])
- .convert<float, sycl::rounding_mode::automatic>()[0];
- tmp += xi * y[iy];
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int mask = 16; mask > 0; mask >>= 1) {
- tmp +=
- dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), tmp, mask);
- }
- if (item_ct1.get_local_id(2) == 0) {
- dst[idst] = tmp;
- }
- }
- static void cpy_1_f32_f32(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- float * dsti = (float *) cdsti;
- *dsti = *xi;
- }
- static void cpy_1_f32_f16(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- sycl::half *dsti = (sycl::half *)cdsti;
- *dsti = sycl::vec<float, 1>(*xi)
- .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
- }
- static void cpy_1_f16_f16(const char * cxi, char * cdsti) {
- const sycl::half *xi = (const sycl::half *)cxi;
- sycl::half *dsti = (sycl::half *)cdsti;
- *dsti = *xi;
- }
- static void cpy_1_f16_f32(const char * cxi, char * cdsti) {
- const sycl::half *xi = (const sycl::half *)cxi;
- float * dsti = (float *) cdsti;
- *dsti = *xi;
- }
- static void cpy_1_i16_i16(const char * cxi, char * cdsti) {
- const int16_t *xi = (const int16_t *)cxi;
- int16_t *dsti = (int16_t *)cdsti;
- *dsti = *xi;
- }
- static void cpy_1_i32_i32(const char * cxi, char * cdsti) {
- const int32_t *xi = (const int32_t *)cxi;
- int32_t *dsti = (int32_t *)cdsti;
- *dsti = *xi;
- }
- template <cpy_kernel_t cpy_1>
- static void cpy_f32_f16(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= ne) {
- return;
- }
- // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
- // then combine those indices with the corresponding byte offsets to get the total offsets
- const int i03 = i/(ne00 * ne01 * ne02);
- const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
- const int i13 = i/(ne10 * ne11 * ne12);
- const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
- cpy_1(cx + x_offset, cdst + dst_offset);
- }
- static void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q8_0 * dsti = (block_q8_0 *) cdsti;
- float amax = 0.0f; // absolute max
- for (int j = 0; j < QK8_0; j++) {
- const float v = xi[j];
- amax = sycl::fmax(amax, sycl::fabs((float)v));
- }
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- dsti->d = d;
- for (int j = 0; j < QK8_0; ++j) {
- const float x0 = xi[j]*id;
- dsti->qs[j] = sycl::round((float)x0);
- }
- }
- static void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_0 * dsti = (block_q4_0 *) cdsti;
- float amax = 0.0f;
- float vmax = 0.0f;
- for (int j = 0; j < QK4_0; ++j) {
- const float v = xi[j];
- if (amax < sycl::fabs((float)v)) {
- amax = sycl::fabs((float)v);
- vmax = v;
- }
- }
- const float d = vmax / -8;
- const float id = d ? 1.0f/d : 0.0f;
- dsti->d = d;
- for (int j = 0; j < QK4_0/2; ++j) {
- const float x0 = xi[0 + j]*id;
- const float x1 = xi[QK4_0/2 + j]*id;
- const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 8.5f));
- const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 8.5f));
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
- }
- static void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
- const float * xi = (const float *) cxi;
- block_q4_1 * dsti = (block_q4_1 *) cdsti;
- float vmin = FLT_MAX;
- float vmax = -FLT_MAX;
- for (int j = 0; j < QK4_1; ++j) {
- const float v = xi[j];
- if (v < vmin) vmin = v;
- if (v > vmax) vmax = v;
- }
- const float d = (vmax - vmin) / ((1 << 4) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- dsti->dm.x() = d;
- dsti->dm.y() = vmin;
- for (int j = 0; j < QK4_1/2; ++j) {
- const float x0 = (xi[0 + j] - vmin)*id;
- const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
- const uint8_t xi0 = dpct::min(15, (int8_t)(x0 + 0.5f));
- const uint8_t xi1 = dpct::min(15, (int8_t)(x1 + 0.5f));
- dsti->qs[j] = xi0;
- dsti->qs[j] |= xi1 << 4;
- }
- }
- template <cpy_kernel_t cpy_blck, int qk>
- static void cpy_f32_q(const char * cx, char * cdst, const int ne,
- const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
- const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
- const int nb12, const int nb13, const sycl::nd_item<3> &item_ct1) {
- const int i = (item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2)) *
- qk;
- if (i >= ne) {
- return;
- }
- const int i03 = i/(ne00 * ne01 * ne02);
- const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
- const int i13 = i/(ne10 * ne11 * ne12);
- const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
- cpy_blck(cx + x_offset, cdst + dst_offset);
- }
- static float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
- return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
- }
- struct rope_corr_dims {
- float v[4];
- };
- // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
- // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
- static void rope_yarn(
- float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta
- ) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * sycl::log(1.0f / freq_scale);
- }
- *cos_theta = sycl::cos(theta) * mscale;
- *sin_theta = sycl::sin(theta) * mscale;
- }
- // rope == RoPE == rotary positional embedding
- template<typename T, bool has_pos>
- static void rope(
- const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims
- ,
- const sycl::nd_item<3> &item_ct1) {
- const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
- if (col >= ncols) {
- return;
- }
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base = p * dpct::pow(freq_base, -float(col) / ncols);
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + 1];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + 1] = x0*sin_theta + x1*cos_theta;
- }
- template<typename T, bool has_pos>
- static void rope_neox(
- const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
- float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
- ,
- const sycl::nd_item<3> &item_ct1) {
- const int col = 2 * (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1));
- if (col >= ncols) {
- return;
- }
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int ib = col / n_dims;
- const int ic = col % n_dims;
- if (ib > 0) {
- const int i = row*ncols + ib*n_dims + ic;
- dst[i + 0] = x[i + 0];
- dst[i + 1] = x[i + 1];
- return;
- }
- const int i = row*ncols + ib*n_dims + ic/2;
- const int i2 = row/p_delta_rows;
- float cur_rot = inv_ndims * ic - ib;
- const int p = has_pos ? pos[i2] : 0;
- const float theta_base =
- p * freq_scale * dpct::pow(theta_scale, col / 2.0f);
- float cos_theta, sin_theta;
- rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + n_dims/2];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
- }
- static void rope_glm_f32(
- const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
- int n_ctx
- , const sycl::nd_item<3> &item_ct1) {
- const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- const int half_n_dims = ncols/4;
- if (col >= half_n_dims) {
- return;
- }
- const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i = row*ncols + col;
- const int i2 = row/p_delta_rows;
- const float col_theta_scale = dpct::pow(freq_base, -2.0f * col / ncols);
- // FIXME: this is likely wrong
- const int p = pos != nullptr ? pos[i2] : 0;
- const float theta = sycl::min(p, n_ctx - 2) * freq_scale * col_theta_scale;
- const float sin_theta = sycl::sin((float)theta);
- const float cos_theta = sycl::cos((float)theta);
- const float x0 = x[i + 0];
- const float x1 = x[i + half_n_dims];
- dst[i + 0] = x0*cos_theta - x1*sin_theta;
- dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
- const float block_theta =
- ((float)sycl::max(p - n_ctx - 2, 0)) * col_theta_scale;
- const float sin_block_theta = sycl::sin((float)block_theta);
- const float cos_block_theta = sycl::cos((float)block_theta);
- const float x2 = x[i + half_n_dims * 2];
- const float x3 = x[i + half_n_dims * 3];
- dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
- dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
- }
- static void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows,
- const int n_heads_log2_floor, const float m0, const float m1,
- const sycl::nd_item<3> &item_ct1) {
- const int col = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (col >= ncols) {
- return;
- }
- const int row = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int i = row*ncols + col;
- const int k = row/k_rows;
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = dpct::pow(m0, k + 1);
- } else {
- m_k = dpct::pow(m1, 2 * (k - n_heads_log2_floor) + 1);
- }
- dst[i] = col * m_k + x[i];
- }
- static void k_sum_rows_f32(const float * x, float * dst, const int ncols,
- const sycl::nd_item<3> &item_ct1) {
- const int row = item_ct1.get_group(1);
- const int col = item_ct1.get_local_id(2);
- float sum = 0.0f;
- for (int i = col; i < ncols; i += item_ct1.get_local_range(2)) {
- sum += x[row * ncols + i];
- }
- sum = warp_reduce_sum(sum, item_ct1);
- if (col == 0) {
- dst[row] = sum;
- }
- }
- template<typename T>
- static inline void ggml_sycl_swap(T & a, T & b) {
- T tmp = a;
- a = b;
- b = tmp;
- }
- template <ggml_sort_order order>
- __dpct_inline__ static void
- k_argsort_f32_i32(const float *x, int *dst, const int ncols, int ncols_pad,
- const sycl::nd_item<3> &item_ct1, uint8_t *dpct_local) {
- // bitonic sort
- int col = item_ct1.get_local_id(2);
- int row = item_ct1.get_group(1);
- if (col >= ncols_pad) {
- return;
- }
- const float * x_row = x + row * ncols;
- auto dst_row = (int *)dpct_local;
- // initialize indices
- dst_row[col] = col;
- item_ct1.barrier(sycl::access::fence_space::local_space);
- for (int k = 2; k <= ncols_pad; k *= 2) {
- for (int j = k / 2; j > 0; j /= 2) {
- int ixj = col ^ j;
- if (ixj > col) {
- if ((col & k) == 0) {
- if (dst_row[col] >= ncols ||
- (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ?
- x_row[dst_row[col]] > x_row[dst_row[ixj]] :
- x_row[dst_row[col]] < x_row[dst_row[ixj]]))
- ) {
- ggml_sycl_swap(dst_row[col], dst_row[ixj]);
- }
- } else {
- if (dst_row[ixj] >= ncols ||
- (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ?
- x_row[dst_row[col]] < x_row[dst_row[ixj]] :
- x_row[dst_row[col]] > x_row[dst_row[ixj]]))
- ) {
- ggml_sycl_swap(dst_row[col], dst_row[ixj]);
- }
- }
- }
- /*
- DPCT1118:1: SYCL group functions and algorithms must be encountered
- in converged control flow. You may need to adjust the code.
- */
- item_ct1.barrier(sycl::access::fence_space::local_space);
- }
- }
- // copy the result to dst without the padding
- if (col < ncols) {
- dst[row * ncols + col] = dst_row[col];
- }
- }
- static void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past,
- const sycl::nd_item<3> &item_ct1) {
- const int col = item_ct1.get_local_range(1) * item_ct1.get_group(1) +
- item_ct1.get_local_id(1);
- const int row = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (col >= ncols) {
- return;
- }
- const int i = row*ncols + col;
- //dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
- //dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
- dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
- }
- template <bool vals_smem, int ncols_template, int block_size_template>
- static void soft_max_f32(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par,
- const int nrows_y, const float scale, const float max_bias, const float m0,
- const float m1, uint32_t n_head_log2, const sycl::nd_item<3> &item_ct1, float *buf) {
- const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
- const int tid = item_ct1.get_local_id(2);
- const int rowx = item_ct1.get_group(2);
- const int rowy = rowx % nrows_y; // broadcast the mask (y) in the row dimension
- const int block_size = block_size_template == 0 ? item_ct1.get_local_range(2) : block_size_template;
- const int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
- const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
- float slope = 0.0f;
- // ALiBi
- if (max_bias > 0.0f) {
- const uint32_t h = rowx/nrows_y; // head index
- const float base = h < n_head_log2 ? m0 : m1;
- const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
- slope = sycl::pow(base, float(exp));
- }
- float * vals = vals_smem ? buf + WARP_SIZE : dst + rowx*ncols;
- float max_val = -INFINITY;
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
- const int ix = rowx*ncols + col;
- const int iy = rowy*ncols + col;
- const float val = x[ix]*scale + (mask ? mask[iy] : 0.0f) + (pos ? slope*pos[col] : 0.0f);
- vals[col] = val;
- max_val = sycl::max(max_val, val);
- }
- // find the max value in the block
- max_val = warp_reduce_max(max_val, item_ct1);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf[lane_id] = -INFINITY;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
- if (lane_id == 0) {
- buf[warp_id] = max_val;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
- max_val = buf[lane_id];
- max_val = warp_reduce_max(max_val, item_ct1);
- }
- float tmp = 0.f;
- #pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
- const float val = sycl::native::exp(vals[col] - max_val);
- tmp += val;
- vals[col] = val;
- }
- // find the sum of exps in the block
- tmp = warp_reduce_sum(tmp, item_ct1);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf[lane_id] = 0.f;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
- if (lane_id == 0) {
- buf[warp_id] = tmp;
- }
- item_ct1.barrier(sycl::access::fence_space::local_space);
- tmp = buf[lane_id];
- tmp = warp_reduce_sum(tmp, item_ct1);
- }
- const float inv_sum = 1.f / tmp;
- #pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- return;
- }
- const int idst = rowx*ncols + col;
- dst[idst] = vals[col] * inv_sum;
- }
- }
- static void scale_f32(const float * x, float * dst, const float scale, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = scale * x[i];
- }
- static void clamp_f32(const float * x, float * dst, const float min, const float max, const int k,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
- item_ct1.get_local_id(2);
- if (i >= k) {
- return;
- }
- dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
- }
- template <typename T>
- static void im2col_kernel(const float *x, T *dst, int offset_delta,
- int IW, int IH, int OW, int KW, int KH,
- int pelements, int CHW, int s0, int s1, int p0,
- int p1, int d0, int d1,
- const sycl::nd_item<3> &item_ct1) {
- const int i = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (i >= pelements) {
- return;
- }
- const int ksize = OW * (KH > 1 ? KW : 1);
- const int kx = i / ksize;
- const int kd = kx * ksize;
- const int ky = (i - kd) / OW;
- const int ix = i % OW;
- const int64_t iiw = ix * s0 + kx * d0 - p0;
- const int64_t iih = item_ct1.get_group(1) * s1 + ky * d1 - p1;
- const int64_t offset_dst =
- (item_ct1.get_group(1) * OW + ix) * CHW +
- (item_ct1.get_group(0) * (KW * KH) + ky * KW + kx);
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst[offset_dst] =
- sycl::vec<float, 1>(0.0f)
- .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
- } else {
- const int64_t offset_src = item_ct1.get_group(0) * offset_delta;
- dst[offset_dst] =
- sycl::vec<float, 1>(x[offset_src + iih * IW + iiw])
- .convert<sycl::half, sycl::rounding_mode::automatic>()[0];
- }
- }
- template <typename Ti, typename To>
- static void pool2d_nchw_kernel(
- const int ih, const int iw, const int oh, const int ow,
- const int kh, const int kw, const int sh, const int sw,
- const int ph, const int pw, const int parallel_elements,
- const Ti* src, To* dst, const enum ggml_op_pool op,
- const sycl::nd_item<3> &item_ct1) {
- int idx = item_ct1.get_local_id(2) +
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
- if (idx >= parallel_elements) {
- return;
- }
- const int I_HW = ih * iw;
- const int O_HW = oh * ow;
- const int nc = idx / O_HW;
- const int cur_oh = idx % O_HW / ow;
- const int cur_ow = idx % O_HW % ow;
- const Ti* i_ptr = src + nc * I_HW;
- To* o_ptr = dst + nc * O_HW;
- const int start_h = cur_oh * sh - ph;
- const int bh = sycl::max(0, start_h);
- const int eh = sycl::min(ih, start_h + kh);
- const int start_w = cur_ow * sw - pw;
- const int bw = sycl::max(0, start_w);
- const int ew = sycl::min(iw, start_w + kw);
- To res = 0;
- switch (op) {
- case GGML_OP_POOL_AVG: res = 0; break;
- case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
- }
- for (int i = bh; i < eh; i += 1) {
- for (int j = bw; j < ew; j += 1) {
- #if DPCT_COMPATIBILITY_TEMP >= 350
- /*
- DPCT1098:106: The '*' expression is used instead of the __ldg
- call. These two expressions do not provide the exact same
- functionality. Check the generated code for potential precision
- and/or performance issues.
- */
- Ti cur = *(i_ptr + i * iw + j);
- #else
- Ti cur = i_ptr[i * iw + j];
- #endif
- switch (op) {
- case GGML_OP_POOL_AVG: res += (cur / (kh * kw)); break;
- case GGML_OP_POOL_MAX: res = sycl::max(res, (To)cur); break;
- }
- }
- }
- o_ptr[cur_oh * ow + cur_ow] = res;
- }
- template <int qk, int qr, dequantize_kernel_t dq>
- static void get_rows_sycl(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const void *src0_dd,
- const int32_t *src1_dd, float *dst_dd,
- dpct::queue_ptr stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
- const int block_num_x = (ne00 + 2*SYCL_GET_ROWS_BLOCK_SIZE - 1) / (2*SYCL_GET_ROWS_BLOCK_SIZE);
- const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
- GGML_ASSERT(ne00 % 2 == 0);
- stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_get_rows<qk, qr, dq>(
- src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
- s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
- });
- (void) dst;
- }
- template <typename src0_t>
- static void get_rows_sycl_float(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const src0_t *src0_dd, const int32_t *src1_dd,
- float *dst_dd, dpct::queue_ptr stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- const sycl::range<3> block_dims(1, 1, SYCL_GET_ROWS_BLOCK_SIZE);
- const int block_num_x = (ne00 + SYCL_GET_ROWS_BLOCK_SIZE - 1) / SYCL_GET_ROWS_BLOCK_SIZE;
- const sycl::range<3> block_nums(ne11 * ne12, ne10, block_num_x);
- // strides in elements
- //const size_t s0 = nb0 / ggml_element_size(dst);
- const size_t s1 = nb1 / ggml_element_size(dst);
- const size_t s2 = nb2 / ggml_element_size(dst);
- const size_t s3 = nb3 / ggml_element_size(dst);
- const size_t s10 = nb10 / ggml_element_size(src1);
- const size_t s11 = nb11 / ggml_element_size(src1);
- const size_t s12 = nb12 / ggml_element_size(src1);
- //const size_t s13 = nb13 / ggml_element_size(src1);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_get_rows_float(src0_dd, src1_dd, dst_dd, ne00, ne12, s1, s2,
- s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
- });
- }
- (void) dst;
- }
- template<float (*bin_op)(const float, const float)>
- struct bin_bcast_sycl {
- template <typename src0_t, typename src1_t, typename dst_t>
- void operator()(const struct ggml_tensor *src0,
- const struct ggml_tensor *src1, struct ggml_tensor *dst,
- const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
- dpct::queue_ptr stream) {
- GGML_TENSOR_BINARY_OP_LOCALS
- int nr0 = ne10/ne0;
- int nr1 = ne11/ne1;
- int nr2 = ne12/ne2;
- int nr3 = ne13/ne3;
- int nr[4] = { nr0, nr1, nr2, nr3 };
- // collapse dimensions until first broadcast dimension
- int64_t cne0[] = {ne0, ne1, ne2, ne3};
- int64_t cne1[] = {ne10, ne11, ne12, ne13};
- size_t cnb0[] = {nb0, nb1, nb2, nb3};
- size_t cnb1[] = {nb10, nb11, nb12, nb13};
- auto collapse = [](int64_t cne[]) {
- cne[0] *= cne[1];
- cne[1] = cne[2];
- cne[2] = cne[3];
- cne[3] = 1;
- };
- auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
- cnb[1] *= cne[1];
- cnb[2] *= cne[2];
- cnb[3] *= cne[3];
- };
- for (int i = 0; i < 4; i++) {
- if (nr[i] != 1) {
- break;
- }
- if (i > 0) {
- collapse_nb(cnb0, cne0);
- collapse_nb(cnb1, cne1);
- collapse(cne0);
- collapse(cne1);
- }
- }
- {
- int64_t ne0 = cne0[0];
- int64_t ne1 = cne0[1];
- int64_t ne2 = cne0[2];
- int64_t ne3 = cne0[3];
- int64_t ne10 = cne1[0];
- int64_t ne11 = cne1[1];
- int64_t ne12 = cne1[2];
- int64_t ne13 = cne1[3];
- size_t nb0 = cnb0[0];
- size_t nb1 = cnb0[1];
- size_t nb2 = cnb0[2];
- size_t nb3 = cnb0[3];
- size_t nb10 = cnb1[0];
- size_t nb11 = cnb1[1];
- size_t nb12 = cnb1[2];
- size_t nb13 = cnb1[3];
- size_t s0 = nb0 / sizeof(dst_t);
- size_t s1 = nb1 / sizeof(dst_t);
- size_t s2 = nb2 / sizeof(dst_t);
- size_t s3 = nb3 / sizeof(dst_t);
- size_t s10 = nb10 / sizeof(src1_t);
- size_t s11 = nb11 / sizeof(src1_t);
- size_t s12 = nb12 / sizeof(src1_t);
- size_t s13 = nb13 / sizeof(src1_t);
- GGML_ASSERT(s0 == 1);
- GGML_ASSERT(s10 == 1);
- const int block_size = 128;
- int64_t hne0 = std::max(ne0/2LL, 1LL);
- sycl::range<3> block_dims(1, 1, 1);
- block_dims[2] = std::min<unsigned int>(hne0, block_size);
- block_dims[1] = std::min<unsigned int>(
- ne1, block_size / (unsigned int)block_dims[2]);
- block_dims[0] = std::min(
- std::min<unsigned int>(
- ne2 * ne3, block_size / (unsigned int)block_dims[2] /
- (unsigned int)block_dims[1]),
- 64U);
- sycl::range<3> block_nums(
- (ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
- (ne1 + block_dims[1] - 1) / block_dims[1],
- (hne0 + block_dims[2] - 1) / block_dims[2]);
- if (block_nums[0] > 65535) {
- // this is the maximum number of blocks in z direction, fallback to 1D grid kernel
- int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
- sycl::range<3>(1, 1, block_size),
- sycl::range<3>(1, 1, block_size)),
- [=](sycl::nd_item<3> item_ct1) {
- k_bin_bcast_unravel<bin_op>(
- src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
- ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
- s13, item_ct1);
- });
- }
- } else {
- /*
- DPCT1049:16: The work-group size passed to the SYCL kernel may
- exceed the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if
- needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
- ne2, ne3, ne10, ne11, ne12, ne13,
- s1, s2, s3, s11, s12, s13,
- item_ct1);
- });
- }
- }
- }
- };
- static void acc_f32_sycl(const float *x, const float *y, float *dst,
- const int n_elements, const int ne10, const int ne11,
- const int ne12, const int nb1, const int nb2,
- const int offset, dpct::queue_ptr stream) {
- int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
- item_ct1);
- });
- }
- static void gelu_f32_sycl(const float *x, float *dst, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- gelu_f32(x, dst, k, item_ct1);
- });
- }
- static void silu_f32_sycl(const float *x, float *dst, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- silu_f32(x, dst, k, item_ct1);
- });
- }
- static void gelu_quick_f32_sycl(const float *x, float *dst, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- gelu_quick_f32(x, dst, k, item_ct1);
- });
- }
- static void tanh_f32_sycl(const float *x, float *dst, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- tanh_f32(x, dst, k, item_ct1);
- });
- }
- static void relu_f32_sycl(const float *x, float *dst, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- relu_f32(x, dst, k, item_ct1);
- });
- }
- static void hardsigmoid_f32_sycl(const float *x, float *dst, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- hardsigmoid_f32(x, dst, k, item_ct1);
- });
- }
- static void hardswish_f32_sycl(const float *x, float *dst, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- hardswish_f32(x, dst, k, item_ct1);
- });
- }
- static void leaky_relu_f32_sycl(const float *x, float *dst, const int k,
- const float negative_slope,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- leaky_relu_f32(x, dst, k, negative_slope, item_ct1);
- });
- }
- static void sqr_f32_sycl(const float *x, float *dst, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- sqr_f32(x, dst, k, item_ct1);
- });
- }
- static void norm_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, const float eps,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- if (ncols < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
- sycl::range<1>(32), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- const int work_group_size = g_work_group_size;
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
- sycl::range<1>(32), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
- }
- static void group_norm_f32_sycl(const float *x, float *dst,
- const int num_groups, const int group_size,
- const int ne_elements, dpct::queue_ptr stream) {
- static const float eps = 1e-6f;
- if (group_size < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
- const float eps_ct4 = eps;
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- group_norm_f32(
- x, dst, group_size, ne_elements, eps_ct4, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- const int work_group_size = g_work_group_size;
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
- const float eps_ct4 = eps;
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- group_norm_f32(x, dst, group_size, ne_elements,
- eps_ct4, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
- }
- static void concat_f32_sycl(const float *x, const float *y, float *dst,
- const int ne0, int ne1, int ne2, int ne02,
- dpct::queue_ptr stream) {
- int num_blocks = (ne0 + SYCL_CONCAT_BLOCK_SIZE - 1) / SYCL_CONCAT_BLOCK_SIZE;
- sycl::range<3> gridDim(ne2, ne1, num_blocks);
- stream->parallel_for(
- sycl::nd_range<3>(gridDim *
- sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CONCAT_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- concat_f32(x, y, dst, ne0, ne02, item_ct1);
- });
- }
- static void upscale_f32_sycl(const float *x, float *dst, const int ne00,
- const int ne01, const int ne02,
- const int scale_factor, dpct::queue_ptr stream) {
- int ne0 = (ne00 * scale_factor);
- int num_blocks = (ne0 + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
- sycl::range<3> gridDim(ne02, (ne01 * scale_factor), num_blocks);
- stream->parallel_for(
- sycl::nd_range<3>(gridDim *
- sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- upscale_f32(x, dst, ne00, ne00 * ne01, scale_factor, item_ct1);
- });
- }
- static void pad_f32_sycl(const float *x, float *dst, const int ne00,
- const int ne01, const int ne02, const int ne0,
- const int ne1, const int ne2, dpct::queue_ptr stream) {
- int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
- sycl::range<3> gridDim(ne2, ne1, num_blocks);
- stream->parallel_for(
- sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- pad_f32(x, dst, ne0, ne00, ne01, ne02, item_ct1);
- });
- }
- static void rms_norm_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, const float eps,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % WARP_SIZE == 0);
- // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
- if (ncols < 1024) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- rms_norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), WARP_SIZE);
- });
- });
- } else {
- const int work_group_size = g_work_group_size;
- const sycl::range<3> block_dims(1, 1, work_group_size);
- /*
- DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(32),
- cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims,
- block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- rms_norm_f32(x, dst, ncols, eps, item_ct1,
- s_sum_acc_ct1.get_pointer(), work_group_size);
- });
- });
- }
- }
- static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
- const int ky, const int kx_padded,
- dpct::queue_ptr stream) {
- const int block_num_x = (kx_padded + SYCL_QUANTIZE_BLOCK_SIZE - 1) / SYCL_QUANTIZE_BLOCK_SIZE;
- const sycl::range<3> num_blocks(1, ky, block_num_x);
- const sycl::range<3> block_size(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(num_blocks * block_size, block_size),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- quantize_q8_1(x, vy, kx, kx_padded, item_ct1);
- });
- }
- }
- template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
- static void dequantize_block_sycl(const void *__restrict__ vx,
- dst_t *__restrict__ y, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + 2*SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / (2*SYCL_DEQUANTIZE_BLOCK_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(
- sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block<qk, qr, dequantize_kernel>(vx, y, k, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q2_K(vx, y, item_ct1);
- });
- }
- #else
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q2_K(vx, y, item_ct1);
- });
- }
- #endif
- }
- template <typename dst_t>
- static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q3_K(vx, y, item_ct1);
- });
- }
- #else
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q3_K(vx, y, item_ct1);
- });
- }
- #endif
- }
- template <typename dst_t>
- static void dequantize_row_q4_0_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb32 = k / 32;
- const int nb = (k + 255) / 256;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q4_0(vx, y, nb32, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q4_1_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb32 = k / 32;
- const int nb = (k + 255) / 256;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q4_1(vx, y, nb32, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q4_K_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q4_K(vx, y, item_ct1);
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q5_K(vx, y, item_ct1);
- });
- }
- #else
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q5_K(vx, y, item_ct1);
- });
- }
- #endif
- }
- template <typename dst_t>
- static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- #if QK_K == 256
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 64),
- sycl::range<3>(1, 1, 64)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q6_K(vx, y, item_ct1);
- });
- }
- #else
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_q6_K(vx, y, item_ct1);
- });
- }
- #endif
- }
- template <typename dst_t>
- static void dequantize_row_iq1_s_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq1_s(
- vx, y, item_ct1, iq1s_grid_gpu
- );
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq1_m_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq1_m(
- vx, y, item_ct1, iq1s_grid_gpu
- );
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq2_xxs_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq2_xxs(
- vx, y, item_ct1, iq2xxs_grid,
- ksigns_iq2xs, kmask_iq2xs);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq2_xs_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq2_xs(
- vx, y, item_ct1, iq2xs_grid,
- ksigns_iq2xs, kmask_iq2xs);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq2_s_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq2_s(vx, y, item_ct1);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq3_xxs_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq3_xxs(
- vx, y, item_ct1, iq3xxs_grid,
- ksigns_iq2xs, kmask_iq2xs);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq3_s_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = k / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq3_s(
- vx, y, item_ct1, kmask_iq2xs, iq3s_grid);
- });
- });
- }
- }
- template <typename dst_t>
- static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = (k + QK_K - 1) / QK_K;
- #if QK_K == 64
- dequantize_row_iq4_nl_sycl(vx, y, k, stream);
- #else
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq4_xs(vx, y, item_ct1);
- });
- });
- }
- #endif
- }
- template <typename dst_t>
- static void dequantize_row_iq4_nl_sycl(const void *vx, dst_t *y, const int k,
- dpct::queue_ptr stream) {
- const int nb = (k + QK_K - 1) / QK_K;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
- sycl::range<3>(1, 1, 32),
- sycl::range<3>(1, 1, 32)),
- [=](sycl::nd_item<3> item_ct1) {
- dequantize_block_iq4_nl(vx, y, item_ct1);
- });
- });
- }
- }
- template <typename src_t, typename dst_t>
- static void convert_unary_sycl(const void *__restrict__ vx,
- dst_t *__restrict__ y, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_DEQUANTIZE_BLOCK_SIZE - 1) / SYCL_DEQUANTIZE_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(
- sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_DEQUANTIZE_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- convert_unary<src_t>(vx, y, k, item_ct1);
- });
- }
- }
- static to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type) try {
- int id;
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_block_sycl<QK4_0, QR4_0, dequantize_q4_0>;
- case GGML_TYPE_Q4_1:
- return dequantize_block_sycl<QK4_1, QR4_1, dequantize_q4_1>;
- case GGML_TYPE_Q5_0:
- return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_sycl;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_sycl;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_sycl;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_sycl;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_sycl;
- case GGML_TYPE_IQ1_S:
- return dequantize_row_iq1_s_sycl;
- case GGML_TYPE_IQ1_M:
- return dequantize_row_iq1_m_sycl;
- case GGML_TYPE_IQ2_XXS:
- return dequantize_row_iq2_xxs_sycl;
- case GGML_TYPE_IQ2_XS:
- return dequantize_row_iq2_xs_sycl;
- case GGML_TYPE_IQ2_S:
- return dequantize_row_iq2_s_sycl;
- case GGML_TYPE_IQ3_XXS:
- return dequantize_row_iq3_xxs_sycl;
- case GGML_TYPE_IQ3_S:
- return dequantize_row_iq3_s_sycl;
- case GGML_TYPE_IQ4_XS:
- return dequantize_row_iq4_xs_sycl;
- case GGML_TYPE_IQ4_NL:
- return dequantize_row_iq4_nl_sycl;
- case GGML_TYPE_F32:
- return convert_unary_sycl<float>;
- default:
- return nullptr;
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- return dequantize_row_q4_0_sycl;
- case GGML_TYPE_Q4_1:
- return dequantize_row_q4_1_sycl;
- case GGML_TYPE_Q5_0:
- return dequantize_block_sycl<QK5_0, QR5_0, dequantize_q5_0>;
- case GGML_TYPE_Q5_1:
- return dequantize_block_sycl<QK5_1, QR5_1, dequantize_q5_1>;
- case GGML_TYPE_Q8_0:
- return dequantize_block_sycl<QK8_0, QR8_0, dequantize_q8_0>;
- case GGML_TYPE_Q2_K:
- return dequantize_row_q2_K_sycl;
- case GGML_TYPE_Q3_K:
- return dequantize_row_q3_K_sycl;
- case GGML_TYPE_Q4_K:
- return dequantize_row_q4_K_sycl;
- case GGML_TYPE_Q5_K:
- return dequantize_row_q5_K_sycl;
- case GGML_TYPE_Q6_K:
- return dequantize_row_q6_K_sycl;
- case GGML_TYPE_IQ1_S:
- return dequantize_row_iq1_s_sycl;
- case GGML_TYPE_IQ1_M:
- return dequantize_row_iq1_m_sycl;
- case GGML_TYPE_IQ2_XXS:
- return dequantize_row_iq2_xxs_sycl;
- case GGML_TYPE_IQ2_XS:
- return dequantize_row_iq2_xs_sycl;
- case GGML_TYPE_IQ2_S:
- return dequantize_row_iq2_s_sycl;
- case GGML_TYPE_IQ3_XXS:
- return dequantize_row_iq3_xxs_sycl;
- case GGML_TYPE_IQ3_S:
- return dequantize_row_iq3_s_sycl;
- case GGML_TYPE_IQ4_XS:
- return dequantize_row_iq4_xs_sycl;
- case GGML_TYPE_IQ4_NL:
- return dequantize_row_iq4_nl_sycl;
- case GGML_TYPE_F16:
- return convert_unary_sycl<sycl::half>;
- default:
- return nullptr;
- }
- }
- static void dequantize_mul_mat_vec_q4_0_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- // the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- }
- static void dequantize_mul_mat_vec_q4_1_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- }
- static void dequantize_mul_mat_vec_q5_0_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- }
- static void dequantize_mul_mat_vec_q5_1_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- }
- static void dequantize_mul_mat_vec_q8_0_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>(
- vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- }
- static void dequantize_mul_mat_vec_q2_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q2_k(vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- static void dequantize_mul_mat_vec_q3_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q3_k(vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- static void dequantize_mul_mat_vec_q4_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q4_k(vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- static void dequantize_mul_mat_vec_q5_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const sycl::range<3> block_dims(1, 1, 32);
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q5_k(vx, y, dst, ncols, item_ct1);
- });
- }
- static void dequantize_mul_mat_vec_q6_K_sycl(const void *vx, const float *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int ny = 2 / K_QUANTS_PER_ITERATION;
- const int block_num_y = (nrows + ny - 1) / ny;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, ny, 32);
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec_q6_k(vx, y, dst, ncols, nrows, item_ct1);
- });
- }
- static void convert_mul_mat_vec_f16_sycl(const void *vx, const dfloat *y,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % GGML_SYCL_DMMV_X == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- dequantize_mul_mat_vec<1, 1, convert_f16>(vx, y, dst, ncols,
- nrows, item_ct1);
- });
- }
- }
- static void mul_mat_vec_q4_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK4_0 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK4_0, QI4_0, block_q4_0,
- VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q4_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK4_1 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK4_0, QI4_1, block_q4_1,
- VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q5_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK5_0 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK5_0, QI5_0, block_q5_0,
- VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q5_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK5_1 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK5_1, QI5_1, block_q5_1,
- VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q8_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK8_0 == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK8_0, QI8_0, block_q8_0,
- VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q2_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI2_K, block_q2_K,
- VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q3_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI3_K, block_q3_K,
- VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q4_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI4_K, block_q4_K,
- VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q5_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI5_K, block_q5_K,
- VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_q6_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q<QK_K, QI6_K, block_q6_K,
- VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq2_xxs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_xxs_q8_1<QK_K, QI2_XXS, block_iq2_xxs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_xs_q8_1<QK_K, QI2_XS, block_iq2_xs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq2_s_q8_1<QK_K, QI2_S, block_iq2_s, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- auto iq3xxs_grid_ptr_ct1 = &iq3xxs_grid[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq3_xxs_q8_1<QK_K, QI3_XXS, block_iq3_xxs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- auto iq3s_grid_ptr_ct1 = &iq3s_grid[0];
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq3_s_q8_1<QK_K, QI3_XS, block_iq3_s, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- auto iq1s_grid_ptr_ct1 = &iq1s_grid_gpu[0];
- auto ksigns64_ptr_ct1 = &ksigns64[0];
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq1_s_q8_1<QK_K, QI1_S, block_iq1_s, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq1_m_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq1_m_q8_1<QK_K, QI1_S, block_iq1_m, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq4_nl_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK4_NL == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq4_nl_q8_1<QK4_NL, QI4_NL, block_iq4_nl, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void mul_mat_vec_iq4_xs_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols,
- const int nrows,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % QK_K == 0);
- const int block_num_y = (nrows + GGML_SYCL_MMV_Y - 1) / GGML_SYCL_MMV_Y;
- const sycl::range<3> block_nums(1, 1, block_num_y);
- const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, WARP_SIZE);
- {
- stream->submit([&](sycl::handler &cgh) {
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_q_iq4_xs_q8_1<QK_K, QI4_XS, block_iq4_xs, 1>(
- vx, vy, dst, ncols, nrows, item_ct1);
- });
- });
- }
- }
- static void ggml_mul_mat_q4_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- dpct::queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q4_0_RDNA2;
- mmq_y = MMQ_Y_Q4_0_RDNA2;
- nwarps = NWARPS_Q4_0_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q4_0_RDNA1;
- mmq_y = MMQ_Y_Q4_0_RDNA1;
- nwarps = NWARPS_Q4_0_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q4_0_AMPERE;
- mmq_y = MMQ_Y_Q4_0_AMPERE;
- nwarps = NWARPS_Q4_0_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q4_0_PASCAL;
- mmq_y = MMQ_Y_Q4_0_PASCAL;
- nwarps = NWARPS_Q4_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:20: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_0_acc_ct1.get_pointer(),
- tile_x_d_q4_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:21: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q4_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_0) + mmq_y / QI4_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_0_acc_ct1.get_pointer(),
- tile_x_d_q4_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q4_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- dpct::queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q4_1_RDNA2;
- mmq_y = MMQ_Y_Q4_1_RDNA2;
- nwarps = NWARPS_Q4_1_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q4_1_RDNA1;
- mmq_y = MMQ_Y_Q4_1_RDNA1;
- nwarps = NWARPS_Q4_1_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q4_1_AMPERE;
- mmq_y = MMQ_Y_Q4_1_AMPERE;
- nwarps = NWARPS_Q4_1_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q4_1_PASCAL;
- mmq_y = MMQ_Y_Q4_1_PASCAL;
- nwarps = NWARPS_Q4_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:22: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_1_acc_ct1.get_pointer(),
- tile_x_dm_q4_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:23: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + +mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_1) + mmq_y / QI4_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q4_1_acc_ct1.get_pointer(),
- tile_x_dm_q4_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q5_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- dpct::queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q5_0_RDNA2;
- mmq_y = MMQ_Y_Q5_0_RDNA2;
- nwarps = NWARPS_Q5_0_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q5_0_RDNA1;
- mmq_y = MMQ_Y_Q5_0_RDNA1;
- nwarps = NWARPS_Q5_0_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q5_0_AMPERE;
- mmq_y = MMQ_Y_Q5_0_AMPERE;
- nwarps = NWARPS_Q5_0_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q5_0_PASCAL;
- mmq_y = MMQ_Y_Q5_0_PASCAL;
- nwarps = NWARPS_Q5_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:24: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_0_acc_ct1.get_pointer(),
- tile_x_d_q5_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:25: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q5_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_0) + mmq_y / QI5_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_0_acc_ct1.get_pointer(),
- tile_x_d_q5_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q5_1_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- dpct::queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q5_1_RDNA2;
- mmq_y = MMQ_Y_Q5_1_RDNA2;
- nwarps = NWARPS_Q5_1_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q5_1_RDNA1;
- mmq_y = MMQ_Y_Q5_1_RDNA1;
- nwarps = NWARPS_Q5_1_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q5_1_AMPERE;
- mmq_y = MMQ_Y_Q5_1_AMPERE;
- nwarps = NWARPS_Q5_1_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q5_1_PASCAL;
- mmq_y = MMQ_Y_Q5_1_PASCAL;
- nwarps = NWARPS_Q5_1_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:26: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_1_acc_ct1.get_pointer(),
- tile_x_dm_q5_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:27: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_1_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_1) + mmq_y / QI5_1),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_1<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_1_acc_ct1.get_pointer(),
- tile_x_dm_q5_1_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q8_0_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- dpct::queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q8_0_RDNA2;
- mmq_y = MMQ_Y_Q8_0_RDNA2;
- nwarps = NWARPS_Q8_0_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q8_0_RDNA1;
- mmq_y = MMQ_Y_Q8_0_RDNA1;
- nwarps = NWARPS_Q8_0_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q8_0_AMPERE;
- mmq_y = MMQ_Y_Q8_0_AMPERE;
- nwarps = NWARPS_Q8_0_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q8_0_PASCAL;
- mmq_y = MMQ_Y_Q8_0_PASCAL;
- nwarps = NWARPS_Q8_0_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:28: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q8_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q8_0_acc_ct1.get_pointer(),
- tile_x_d_q8_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:29: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_qs_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<float, 1> tile_x_d_q8_0_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI8_0) + mmq_y / QI8_0),
- cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q8_0<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_qs_q8_0_acc_ct1.get_pointer(),
- tile_x_d_q8_0_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q2_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- dpct::queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q2_K_RDNA2;
- mmq_y = MMQ_Y_Q2_K_RDNA2;
- nwarps = NWARPS_Q2_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q2_K_RDNA1;
- mmq_y = MMQ_Y_Q2_K_RDNA1;
- nwarps = NWARPS_Q2_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q2_K_AMPERE;
- mmq_y = MMQ_Y_Q2_K_AMPERE;
- nwarps = NWARPS_Q2_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q2_K_PASCAL;
- mmq_y = MMQ_Y_Q2_K_PASCAL;
- nwarps = NWARPS_Q2_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:30: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q2_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q2_K_acc_ct1.get_pointer(),
- tile_x_dm_q2_K_acc_ct1.get_pointer(),
- tile_x_sc_q2_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:31: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI2_K) + mmq_y / QI2_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q2_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q2_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q2_K_acc_ct1.get_pointer(),
- tile_x_dm_q2_K_acc_ct1.get_pointer(),
- tile_x_sc_q2_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- dpct::queue_ptr stream) try {
- #if QK_K == 256
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q3_K_RDNA2;
- mmq_y = MMQ_Y_Q3_K_RDNA2;
- nwarps = NWARPS_Q3_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q3_K_RDNA1;
- mmq_y = MMQ_Y_Q3_K_RDNA1;
- nwarps = NWARPS_Q3_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q3_K_AMPERE;
- mmq_y = MMQ_Y_Q3_K_AMPERE;
- nwarps = NWARPS_Q3_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q3_K_PASCAL;
- mmq_y = MMQ_Y_Q3_K_PASCAL;
- nwarps = NWARPS_Q3_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:32: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q3_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q3_K_acc_ct1.get_pointer(),
- tile_x_dm_q3_K_acc_ct1.get_pointer(),
- tile_x_qh_q3_K_acc_ct1.get_pointer(),
- tile_x_sc_q3_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:33: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI3_K) + mmq_y / QI3_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_qh_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 2) + mmq_y / 2), cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q3_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 4) + mmq_y / 4), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q3_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q3_K_acc_ct1.get_pointer(),
- tile_x_dm_q3_K_acc_ct1.get_pointer(),
- tile_x_qh_q3_K_acc_ct1.get_pointer(),
- tile_x_sc_q3_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- #endif
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q4_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- dpct::queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q4_K_RDNA2;
- mmq_y = MMQ_Y_Q4_K_RDNA2;
- nwarps = NWARPS_Q4_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q4_K_RDNA1;
- mmq_y = MMQ_Y_Q4_K_RDNA1;
- nwarps = NWARPS_Q4_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q4_K_AMPERE;
- mmq_y = MMQ_Y_Q4_K_AMPERE;
- nwarps = NWARPS_Q4_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q4_K_PASCAL;
- mmq_y = MMQ_Y_Q4_K_PASCAL;
- nwarps = NWARPS_Q4_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:34: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q4_K_acc_ct1.get_pointer(),
- tile_x_dm_q4_K_acc_ct1.get_pointer(),
- tile_x_sc_q4_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:35: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI4_K) + mmq_y / QI4_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q4_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q4_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q4_K_acc_ct1.get_pointer(),
- tile_x_dm_q4_K_acc_ct1.get_pointer(),
- tile_x_sc_q4_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q5_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- dpct::queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q5_K_RDNA2;
- mmq_y = MMQ_Y_Q5_K_RDNA2;
- nwarps = NWARPS_Q5_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q5_K_RDNA1;
- mmq_y = MMQ_Y_Q5_K_RDNA1;
- nwarps = NWARPS_Q5_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q5_K_AMPERE;
- mmq_y = MMQ_Y_Q5_K_AMPERE;
- nwarps = NWARPS_Q5_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q5_K_PASCAL;
- mmq_y = MMQ_Y_Q5_K_PASCAL;
- nwarps = NWARPS_Q5_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:36: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_K_acc_ct1.get_pointer(),
- tile_x_dm_q5_K_acc_ct1.get_pointer(),
- tile_x_sc_q5_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:37: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI5_K) + mmq_y / QI5_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_q5_K_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q5_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_q5_K_acc_ct1.get_pointer(),
- tile_x_dm_q5_K_acc_ct1.get_pointer(),
- tile_x_sc_q5_K_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_q6_K_q8_1_sycl(const void *vx, const void *vy,
- float *dst, const int ncols_x,
- const int nrows_x, const int ncols_y,
- const int nrows_y, const int nrows_dst,
- dpct::queue_ptr stream) try {
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- const int compute_capability = g_device_caps[id].cc;
- int mmq_x, mmq_y, nwarps;
- if (compute_capability >= VER_GEN13) {
- mmq_x = MMQ_X_Q6_K_RDNA2;
- mmq_y = MMQ_Y_Q6_K_RDNA2;
- nwarps = NWARPS_Q6_K_RDNA2;
- } else if (compute_capability >= VER_GEN12) {
- mmq_x = MMQ_X_Q6_K_RDNA1;
- mmq_y = MMQ_Y_Q6_K_RDNA1;
- nwarps = NWARPS_Q6_K_RDNA1;
- } else if (compute_capability >= VER_GEN9) {
- mmq_x = MMQ_X_Q6_K_AMPERE;
- mmq_y = MMQ_Y_Q6_K_AMPERE;
- nwarps = NWARPS_Q6_K_AMPERE;
- } else if (compute_capability >= VER_4VEC) {
- mmq_x = MMQ_X_Q6_K_PASCAL;
- mmq_y = MMQ_Y_Q6_K_PASCAL;
- nwarps = NWARPS_Q6_K_PASCAL;
- } else {
- GGML_ASSERT(false);
- }
- const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
- const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
- const sycl::range<3> block_nums(1, block_num_y, block_num_x);
- const sycl::range<3> block_dims(1, nwarps, WARP_SIZE);
- if (nrows_x % mmq_y == 0) {
- const bool need_check = false;
- /*
- DPCT1049:38: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q6_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_acc_ct1.get_pointer(),
- tile_x_dm_acc_ct1.get_pointer(),
- tile_x_sc_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- } else {
- const bool need_check = true;
- /*
- DPCT1049:39: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<int, 1> tile_x_ql_acc_ct1(
- sycl::range<1>(mmq_y * (2 * WARP_SIZE) + mmq_y), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_x_dm_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / QI6_K) + mmq_y / QI6_K),
- cgh);
- sycl::local_accessor<int, 1> tile_x_sc_acc_ct1(
- sycl::range<1>(mmq_y * (WARP_SIZE / 8) + mmq_y / 8), cgh);
- sycl::local_accessor<int, 1> tile_y_qs_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE), cgh);
- sycl::local_accessor<sycl::half2, 1> tile_y_ds_acc_ct1(
- sycl::range<1>(mmq_x * WARP_SIZE / QI8_1), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- mul_mat_q6_K<need_check>(
- vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y,
- nrows_dst, item_ct1,
- tile_x_ql_acc_ct1.get_pointer(),
- tile_x_dm_acc_ct1.get_pointer(),
- tile_x_sc_acc_ct1.get_pointer(),
- tile_y_qs_acc_ct1.get_pointer(),
- tile_y_ds_acc_ct1.get_pointer());
- });
- });
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_mul_mat_p021_f16_f32_sycl(const void *vx, const float *y,
- float *dst, const int ncols_x,
- const int nrows_x,
- const int nchannels_x,
- const int nchannels_y,
- dpct::queue_ptr stream) {
- const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- mul_mat_p021_f16_f32(vx, y, dst, ncols_x, nrows_x, nchannels_x,
- nchannels_y, item_ct1);
- });
- }
- }
- static void ggml_mul_mat_vec_nc_f16_f32_sycl(
- const void *vx, const float *y, float *dst, const int ncols_x,
- const int nrows_x, const int row_stride_x, const int nchannels_x,
- const int nchannels_y, const int channel_stride_x, dpct::queue_ptr stream) {
- const sycl::range<3> block_nums(nchannels_y, nrows_x, 1);
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- mul_mat_vec_nc_f16_f32(vx, y, dst, ncols_x, nrows_x,
- row_stride_x, channel_stride_x,
- nchannels_y / nchannels_x, item_ct1);
- });
- }
- }
- static void
- ggml_cpy_f16_f32_sycl(const char *cx, char *cdst, const int ne, const int ne00,
- const int ne01, const int ne02, const int nb00,
- const int nb01, const int nb02, const int nb03,
- const int ne10, const int ne11, const int ne12,
- const int nb10, const int nb11, const int nb12,
- const int nb13, dpct::queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_f16_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00,
- nb01, nb02, nb03, ne10, ne11, ne12,
- nb10, nb11, nb12, nb13, item_ct1);
- });
- }
- }
- static void ggml_cpy_f32_f32_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- dpct::queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_f32_f32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- }
- static void ggml_cpy_f32_f16_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- dpct::queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_f32_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- }
- static void ggml_cpy_f32_q8_0_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ne % QK8_0 == 0);
- const int num_blocks = ne / QK8_0;
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
- sycl::range<3>(1, 1, 1)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>(
- cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- static void ggml_cpy_f32_q4_0_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ne % QK4_0 == 0);
- const int num_blocks = ne / QK4_0;
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
- sycl::range<3>(1, 1, 1)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>(
- cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- static void ggml_cpy_f32_q4_1_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ne % QK4_1 == 0);
- const int num_blocks = ne / QK4_1;
- stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks),
- sycl::range<3>(1, 1, 1)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>(
- cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- static void ggml_cpy_f16_f16_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- dpct::queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_f16_f16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- }
- static void ggml_cpy_i16_i16_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- dpct::queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- // dpct::has_capability_or_fail(stream->get_device(),
- // {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_i16_i16>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- }
- static void ggml_cpy_i32_i32_sycl(const char *cx, char *cdst, const int ne,
- const int ne00, const int ne01,
- const int ne02, const int nb00,
- const int nb01, const int nb02,
- const int nb03, const int ne10,
- const int ne11, const int ne12,
- const int nb10, const int nb11,
- const int nb12, const int nb13,
- dpct::queue_ptr stream) {
- const int num_blocks = (ne + SYCL_CPY_BLOCK_SIZE - 1) / SYCL_CPY_BLOCK_SIZE;
- {
- // dpct::has_capability_or_fail(stream->get_device(),
- // {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CPY_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- cpy_f32_f16<cpy_1_i32_i32>(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02,
- nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13,
- item_ct1);
- });
- }
- }
- static void scale_f32_sycl(const float *x, float *dst, const float scale,
- const int k, dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_SCALE_BLOCK_SIZE - 1) / SYCL_SCALE_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_SCALE_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- scale_f32(x, dst, scale, k, item_ct1);
- });
- }
- static void clamp_f32_sycl(const float *x, float *dst, const float min,
- const float max, const int k,
- dpct::queue_ptr stream) {
- const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
- stream->parallel_for(
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
- sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- clamp_f32(x, dst, min, max, k, item_ct1);
- });
- }
- template <typename T>
- static void rope_sycl(const T *x, T *dst, int ncols, int nrows,
- const int32_t *pos, float freq_scale, int p_delta_rows,
- float freq_base, float ext_factor, float attn_factor,
- rope_corr_dims corr_dims, dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % 2 == 0);
- const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
- const sycl::range<3> block_nums(1, num_blocks_x, nrows);
- if (pos == nullptr) {
- /*
- DPCT1049:40: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope<T, false>(x, dst, ncols, pos, freq_scale, p_delta_rows,
- freq_base, ext_factor, attn_factor, corr_dims,
- item_ct1);
- });
- } else {
- /*
- DPCT1049:41: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope<T, true>(x, dst, ncols, pos, freq_scale, p_delta_rows,
- freq_base, ext_factor, attn_factor, corr_dims,
- item_ct1);
- });
- }
- }
- template <typename T>
- static void rope_neox_sycl(const T *x, T *dst, int ncols, int n_dims, int nrows,
- const int32_t *pos, float freq_scale,
- int p_delta_rows, float freq_base, float ext_factor,
- float attn_factor, rope_corr_dims corr_dims,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % 2 == 0);
- const sycl::range<3> block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
- const int num_blocks_x = (ncols + 2*SYCL_ROPE_BLOCK_SIZE - 1) / (2*SYCL_ROPE_BLOCK_SIZE);
- const sycl::range<3> block_nums(1, num_blocks_x, nrows);
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const float inv_ndims = -1.0f / n_dims;
- if (pos == nullptr) {
- /*
- DPCT1049:42: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, false>(x, dst, ncols, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, inv_ndims,
- item_ct1);
- });
- } else {
- /*
- DPCT1049:43: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_neox<T, true>(x, dst, ncols, n_dims, pos, freq_scale,
- p_delta_rows, ext_factor, attn_factor,
- corr_dims, theta_scale, inv_ndims, item_ct1);
- });
- }
- }
- static void rope_glm_f32_sycl(const float *x, float *dst, int ncols, int nrows,
- const int32_t *pos, float freq_scale,
- int p_delta_rows, float freq_base, int n_ctx,
- dpct::queue_ptr stream) {
- GGML_ASSERT(ncols % 4 == 0);
- const sycl::range<3> block_dims(1, 1, SYCL_ROPE_BLOCK_SIZE / 4);
- const int num_blocks_x = (ncols + SYCL_ROPE_BLOCK_SIZE - 1) / SYCL_ROPE_BLOCK_SIZE;
- const sycl::range<3> block_nums(1, nrows, num_blocks_x);
- stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rope_glm_f32(x, dst, ncols, pos, freq_scale,
- p_delta_rows, freq_base, n_ctx,
- item_ct1);
- });
- }
- static void alibi_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, const int k_rows,
- const int n_heads_log2_floor, const float m0,
- const float m1, dpct::queue_ptr stream) {
- const sycl::range<3> block_dims(1, 1, SYCL_ALIBI_BLOCK_SIZE);
- const int num_blocks_x = (ncols + SYCL_ALIBI_BLOCK_SIZE - 1) / (SYCL_ALIBI_BLOCK_SIZE);
- const sycl::range<3> block_nums(1, nrows, num_blocks_x);
- stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- alibi_f32(x, dst, ncols, k_rows,
- n_heads_log2_floor, m0, m1, item_ct1);
- });
- }
- static void sum_rows_f32_sycl(const float *x, float *dst, const int ncols,
- const int nrows, dpct::queue_ptr stream) {
- const sycl::range<3> block_dims(1, 1, WARP_SIZE);
- const sycl::range<3> block_nums(1, nrows, 1);
- stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1)
- [[intel::reqd_sub_group_size(32)]] {
- k_sum_rows_f32(x, dst, ncols, item_ct1);
- });
- }
- static int next_power_of_2(int x) {
- int n = 1;
- while (n < x) {
- n *= 2;
- }
- return n;
- }
- static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
- const int nrows, ggml_sort_order order,
- dpct::queue_ptr stream) {
- // bitonic sort requires ncols to be power of 2
- const int ncols_pad = next_power_of_2(ncols);
- const sycl::range<3> block_dims(1, 1, ncols_pad);
- const sycl::range<3> block_nums(1, nrows, 1);
- const size_t shared_mem = ncols_pad * sizeof(int);
- // GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
- if (order == GGML_SORT_ORDER_ASC) {
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
- sycl::range<1>(shared_mem), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_argsort_f32_i32<GGML_SORT_ORDER_ASC>(
- x, dst, ncols, ncols_pad, item_ct1,
- dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
- .get());
- });
- });
- } else if (order == GGML_SORT_ORDER_DESC) {
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<uint8_t, 1> dpct_local_acc_ct1(
- sycl::range<1>(shared_mem), cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_argsort_f32_i32<GGML_SORT_ORDER_DESC>(
- x, dst, ncols, ncols_pad, item_ct1,
- dpct_local_acc_ct1.get_multi_ptr<sycl::access::decorated::no>()
- .get());
- });
- });
- } else {
- GGML_ASSERT(false);
- }
- }
- static void diag_mask_inf_f32_sycl(const float *x, float *dst,
- const int ncols_x, const int nrows_x,
- const int rows_per_channel, const int n_past,
- dpct::queue_ptr stream) {
- const sycl::range<3> block_dims(1, SYCL_DIAG_MASK_INF_BLOCK_SIZE, 1);
- const int block_num_x = (ncols_x + SYCL_DIAG_MASK_INF_BLOCK_SIZE - 1) / SYCL_DIAG_MASK_INF_BLOCK_SIZE;
- const sycl::range<3> block_nums(1, block_num_x, nrows_x);
- stream->parallel_for(sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- diag_mask_inf_f32(x, dst, ncols_x,
- rows_per_channel, n_past,
- item_ct1);
- });
- }
- template <bool vals_smem, int ncols_template, int block_size_template>
- static void soft_max_f32_submitter(const float * x, const float * mask, const float *pos, float * dst, const int ncols_par,
- const int nrows_y, const float scale, const float max_bias, const float m0,
- const float m1, uint32_t n_head_log2, sycl::range<3> block_nums, sycl::range<3> block_dims,
- const size_t n_local_scratch, dpct::queue_ptr stream) {
- stream->submit([&](sycl::handler &cgh) {
- sycl::local_accessor<float, 1> local_buf_acc(n_local_scratch, cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(block_nums * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) [[intel::reqd_sub_group_size(32)]] {
- soft_max_f32<vals_smem, ncols_template, block_size_template>(x, mask, pos, dst, ncols_par,
- nrows_y, scale, max_bias, m0,
- m1, n_head_log2, item_ct1,
- local_buf_acc.get_pointer());
- });
- });
- }
- static void soft_max_f32_sycl(const float * x, const float * mask, const float * pos,
- float * dst, const int ncols_x, const int nrows_x,
- const int nrows_y, const float scale, const float max_bias,
- dpct::queue_ptr stream) {
- int nth = WARP_SIZE;
- int max_block_size = g_work_group_size;
- while (nth < ncols_x && nth < max_block_size) nth *= 2;
- if (nth>max_block_size) nth = max_block_size;
- const sycl::range<3> block_dims(1, 1, nth);
- const sycl::range<3> block_nums(1, 1, nrows_x);
- const size_t n_local_scratch = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE);
- const uint32_t n_head_kv = nrows_x/nrows_y;
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- const size_t local_mem_size = stream->get_device().get_info<sycl::info::device::local_mem_size>();
- if (n_local_scratch*sizeof(float) < local_mem_size) {
- if (ncols_x > max_block_size) {
- soft_max_f32_submitter<true, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- return;
- }
- switch (ncols_x) {
- case 32:
- soft_max_f32_submitter<true, 32, 32>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 64:
- soft_max_f32_submitter<true, 64, 64>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 128:
- soft_max_f32_submitter<true, 128, 128>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 256:
- soft_max_f32_submitter<true, 256, 256>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 512:
- soft_max_f32_submitter<true, 512, 512>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 1024:
- soft_max_f32_submitter<true, 1024, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 2048:
- soft_max_f32_submitter<true, 2048, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- case 4096:
- soft_max_f32_submitter<true, 4096, 1024>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- default:
- soft_max_f32_submitter<true, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, n_local_scratch, stream);
- break;
- }
- } else {
- soft_max_f32_submitter<false, 0, 0>(x, mask, pos, dst, ncols_x, nrows_y, scale,
- max_bias, m0, m1, n_head_log2, block_nums,
- block_dims, WARP_SIZE, stream);
- }
- }
- template <typename T>
- static void im2col_sycl(const float *x, T *dst, int IW, int IH,
- int OW, int OH, int KW, int KH, int IC,
- int offset_delta, int s0, int s1, int p0,
- int p1, int d0, int d1,
- dpct::queue_ptr stream) {
- const int parallel_elements = OW * KW * KH;
- const int num_blocks = (parallel_elements + SYCL_IM2COL_BLOCK_SIZE - 1) / SYCL_IM2COL_BLOCK_SIZE;
- sycl::range<3> block_nums(IC, OH, num_blocks);
- {
- dpct::has_capability_or_fail(stream->get_device(),
- {sycl::aspect::fp16});
- stream->parallel_for(
- sycl::nd_range<3>(block_nums *
- sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- im2col_kernel(x, dst, offset_delta, IW, IH, OW, KW, KH,
- parallel_elements, (IC * KH * KW), s0, s1, p0,
- p1, d0, d1, item_ct1);
- });
- }
- }
- // buffer pool for sycl
- #define MAX_SYCL_BUFFERS 256
- struct scoped_spin_lock {
- std::atomic_flag& lock;
- scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
- while (lock.test_and_set(std::memory_order_acquire)) {
- ; // spin
- }
- }
- ~scoped_spin_lock() {
- lock.clear(std::memory_order_release);
- }
- scoped_spin_lock(const scoped_spin_lock&) = delete;
- scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
- };
- static std::atomic_flag g_sycl_pool_lock = ATOMIC_FLAG_INIT;
- // #define DEBUG_SYCL_MALLOC
- struct sycl_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- static sycl_buffer g_sycl_buffer_pool[GGML_SYCL_MAX_DEVICES][MAX_SYCL_BUFFERS];
- static size_t g_sycl_pool_size[GGML_SYCL_MAX_DEVICES] = {0};
- static void *ggml_sycl_pool_malloc_leg(int device_index, size_t size, size_t *actual_size) try {
- scoped_spin_lock lock(g_sycl_pool_lock);
- // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg device_index %d size=%lu\n", device_index, size);
- #ifdef DEBUG_SYCL_MALLOC
- int nnz = 0;
- size_t max_size = 0;
- #endif
- size_t best_diff = 1ull << 36;
- int ibest = -1;
- for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
- sycl_buffer& b = g_sycl_buffer_pool[device_index][i];
- if (b.ptr != nullptr) {
- #ifdef DEBUG_SYCL_MALLOC
- ++nnz;
- if (b.size > max_size) max_size = b.size;
- #endif
- if (b.size >= size) {
- size_t diff = b.size - size;
- if (diff < best_diff) {
- best_diff = diff;
- ibest = i;
- if (!best_diff) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 1 %p and rm in pool\n", ptr);
- return ptr;
- }
- }
- }
- }
- }
- if (ibest >= 0) {
- sycl_buffer& b = g_sycl_buffer_pool[device_index][ibest];
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg return 2 %p and rm in pool\n", ptr);
- return ptr;
- }
- void * ptr;
- size_t look_ahead_size = (size_t) (1.05 * size);
- look_ahead_size = 256 * ((look_ahead_size + 255)/256);
- const dpct::queue_ptr stream = g_syclStreams[device_index][0];
- SYCL_CHECK(
- CHECK_TRY_ERROR(ptr = (void *)sycl::malloc_device(
- look_ahead_size, *stream)));
- *actual_size = look_ahead_size;
- g_sycl_pool_size[device_index] += look_ahead_size;
- #ifdef DEBUG_SYCL_MALLOC
- fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, id, nnz,
- (uint32_t)(max_size/1024/1024), (uint32_t)(g_sycl_pool_size[id]/1024/1024), (uint32_t)(size/1024/1024));
- #endif
- // GGML_SYCL_DEBUG("ggml_sycl_pool_malloc_leg look_ahead_size=%lu, return %p\n", look_ahead_size, ptr);
- return ptr;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_pool_free_leg(int device_index, void *ptr, size_t size) try {
- scoped_spin_lock lock(g_sycl_pool_lock);
- const dpct::queue_ptr stream = g_syclStreams[device_index][0];
- for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
- sycl_buffer& b = g_sycl_buffer_pool[device_index][i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: sycl buffer pool full, increase MAX_SYCL_BUFFERS\n");
- SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, *stream)));
- g_sycl_pool_size[device_index] -= size;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- // pool with virtual memory
- /*
- DPCT1082:64: Migration of CUmemGenericAllocationHandle type is not supported.
- */
- // static std::vector<CUmemGenericAllocationHandle>
- // g_sycl_pool_handles[GGML_SYCL_MAX_DEVICES];
- static dpct::device_ptr g_sycl_pool_addr[GGML_SYCL_MAX_DEVICES] = {0};
- static size_t g_sycl_pool_used[GGML_SYCL_MAX_DEVICES] = {0};
- static void *ggml_sycl_pool_malloc_vmm(int device_index, size_t size, size_t *actual_size) try {
- GGML_UNUSED(device_index);
- GGML_UNUSED(size);
- GGML_UNUSED(actual_size);
- return NULL;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_pool_free_vmm(int device_index, void *ptr, size_t size) try {
- scoped_spin_lock lock(g_sycl_pool_lock);
- #ifdef DEBUG_SYCL_MALLOC
- printf("sycl pool[%d]: freed %llu bytes at %llx\n", device_index, (unsigned long long) size, ptr);
- #endif
- g_sycl_pool_used[device_index] -= size;
- // all deallocations must be in reverse order of the allocations
- GGML_ASSERT(ptr == (void *) (g_sycl_pool_addr[device_index] + g_sycl_pool_used[device_index]));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void *ggml_sycl_pool_malloc(int device_index, size_t size, size_t *actual_size) try {
- if (g_device_caps[device_index].vmm) {
- return ggml_sycl_pool_malloc_vmm(device_index, size, actual_size);
- } else {
- return ggml_sycl_pool_malloc_leg(device_index, size, actual_size);
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_pool_free(int device_index, void *ptr, size_t size) try {
- if (g_device_caps[device_index].vmm) {
- ggml_sycl_pool_free_vmm(device_index, ptr, size);
- } else {
- ggml_sycl_pool_free_leg(device_index, ptr, size);
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- template<typename T>
- struct sycl_pool_alloc {
- int device_index = -1;
- int device_id = -1;
- T * ptr = nullptr;
- size_t actual_size = 0;
- // size is in number of elements
- T * alloc(size_t size) {
- GGML_ASSERT(ptr == nullptr);
- device_id = get_current_device_id();
- device_index = g_sycl_gpu_mgr->get_index(device_id);
- ptr = (T *) ggml_sycl_pool_malloc(device_index, size * sizeof(T), &this->actual_size);
- // GGML_SYCL_DEBUG("sycl_pool_alloc %lu return %p actual size=%lu\n", size * sizeof(T), ptr, this->actual_size);
- return ptr;
- }
- sycl_pool_alloc(size_t size) {
- alloc(size);
- }
- ~sycl_pool_alloc() {
- if (ptr != nullptr) {
- ggml_sycl_pool_free(device_index, ptr, actual_size);
- }
- }
- T * get() {
- return ptr;
- }
- sycl_pool_alloc() = default;
- sycl_pool_alloc(const sycl_pool_alloc &) = delete;
- sycl_pool_alloc(sycl_pool_alloc &&) = delete;
- sycl_pool_alloc& operator=(const sycl_pool_alloc &) = delete;
- sycl_pool_alloc& operator=(sycl_pool_alloc &&) = delete;
- };
- static bool g_sycl_loaded = false;
- bool ggml_sycl_loaded(void) {
- return g_sycl_loaded;
- }
- void print_device_detail(int id, sycl::device &device, std::string device_type) {
- dpct::device_info prop;
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::get_device_info(prop, device)));
- std::string version;
- version += std::to_string(prop.get_major_version());
- version += ".";
- version += std::to_string(prop.get_minor_version());
- device_type = std::regex_replace(device_type, std::regex("ext_oneapi_"), "");
- fprintf(stderr, "|%2d|%18s|%45s|%10s|%11d|%8d|%7d|%15lu|\n", id, device_type.c_str(),
- prop.get_name(), version.c_str(), prop.get_max_compute_units(),
- prop.get_max_work_group_size(), prop.get_max_sub_group_size(),
- prop.get_global_mem_size());
- }
- void ggml_backend_sycl_print_sycl_devices() {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_print_sycl_devices\n");
- int device_count = dpct::dev_mgr::instance().device_count();
- std::map<std::string, size_t> DeviceNums;
- fprintf(stderr, "found %d SYCL devices:\n", device_count);
- fprintf(stderr, "| | | |Compute |Max compute|Max work|Max sub| |\n");
- fprintf(stderr, "|ID| Device Type| Name|capability|units |group |group |Global mem size|\n");
- fprintf(stderr, "|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|\n");
- for (int id = 0; id < device_count; ++id) {
- sycl::device device = dpct::dev_mgr::instance().get_device(id);
- sycl::backend backend = device.get_backend();
- std::string backend_type = get_device_backend_and_type(device);
- int type_id=DeviceNums[backend_type]++;
- std::stringstream device_type;
- device_type << "[" << backend_type << ":" << std::to_string(type_id) << "]";
- print_device_detail(id, device, device_type.str());
- }
- }
- void print_gpu_device_list() {
- GGML_ASSERT(g_sycl_gpu_mgr);
- char* hint=NULL;
- if (g_ggml_sycl_backend_gpu_mode == SYCL_SINGLE_GPU_MODE) {
- hint = "use %d SYCL GPUs: [%s] with Max compute units:%d\n";
- } else {
- hint = "detect %d SYCL GPUs: [%s] with top Max compute units:%d\n";
- }
- fprintf(stderr, hint,
- g_sycl_gpu_mgr->get_gpu_count(),
- g_sycl_gpu_mgr->gpus_list.c_str(),
- g_sycl_gpu_mgr->max_compute_units);
- }
- int get_sycl_env(const char *env_name, int default_val) {
- char *user_device_string = getenv(env_name);
- int user_number = default_val;
- unsigned n;
- if (user_device_string != NULL &&
- sscanf(user_device_string, " %u", &n) == 1) {
- user_number = (int)n;
- } else {
- user_number = default_val;
- }
- return user_number;
- }
- int get_work_group_size(int user_device_id) {
- dpct::device_info prop;
- dpct::get_device_info(prop,
- dpct::dev_mgr::instance().get_device(user_device_id));
- return prop.get_max_work_group_size();
- }
- static void ggml_init_sycl() try {
- static bool initialized = false;
- if (!initialized) {
- fprintf(stderr, "[SYCL] call ggml_init_sycl\n");
- g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
- fprintf(stderr, "%s: GGML_SYCL_DEBUG: %d\n", __func__, g_ggml_sycl_debug);
- #if defined(GGML_SYCL_F16)
- fprintf(stderr, "%s: GGML_SYCL_F16: yes\n", __func__);
- #else
- fprintf(stderr, "%s: GGML_SYCL_F16: no\n", __func__);
- #endif
- /* NOT REMOVE, keep it for next optimize for XMX.
- #if defined(SYCL_USE_XMX)
- fprintf(stderr, "%s: SYCL_USE_XMX: yes\n", __func__);
- #else
- fprintf(stderr, "%s: SYCL_USE_XMX: no\n", __func__);
- #endif
- */
- if (CHECK_TRY_ERROR(g_all_sycl_device_count =
- dpct::dev_mgr::instance().device_count()) != 0) {
- initialized = true;
- g_sycl_loaded = false;
- return;
- }
- GGML_ASSERT(g_all_sycl_device_count <= GGML_SYCL_MAX_DEVICES);
- ggml_backend_sycl_print_sycl_devices();
- initialized = true;
- g_sycl_loaded = true;
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- void ggml_init_by_gpus(int device_count) try {
- g_device_count = device_count;
- g_work_group_size = g_sycl_gpu_mgr->work_group_size;
- int64_t total_vram = 0;
- print_gpu_device_list();
- for (int id = 0; id < GGML_SYCL_MAX_DEVICES; ++id) {
- g_device_caps[id].vmm = 0;
- g_device_caps[id].device_id = -1;
- g_device_caps[id].cc = 0;
- g_tensor_split[id] = 0;
- g_default_tensor_split[id] = 0;
- }
- for (int i = 0; i < g_device_count; ++i) {
- int device_id = g_sycl_gpu_mgr->gpus[i];
- g_device_caps[i].vmm = 0;
- dpct::device_info prop;
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
- prop, dpct::dev_mgr::instance().get_device(device_id))));
- g_default_tensor_split[i] = total_vram;
- total_vram += prop.get_global_mem_size();
- g_device_caps[i].cc =
- 100 * prop.get_major_version() + 10 * prop.get_minor_version();
- }
- for (int i = 0; i < g_device_count; ++i) {
- g_default_tensor_split[i] /= total_vram;
- }
- for (int i = 0; i < g_device_count; ++i) {
- SYCL_CHECK(ggml_sycl_set_device(i));
- // create sycl streams
- for (int is = 0; is < MAX_STREAMS; ++is) {
- SYCL_CHECK(CHECK_TRY_ERROR(
- g_syclStreams[i][is] =
- dpct::get_current_device().create_queue(
- g_sycl_gpu_mgr->get_co_ctx(), dpct::get_current_device())));
- }
- const dpct::queue_ptr stream = g_syclStreams[i][0];
- // create sycl handle
- SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[i] = stream));
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- void *ggml_sycl_host_malloc(size_t size) try {
- if (getenv("GGML_SYCL_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- //allow to use dpct::get_in_order_queue() for host malloc
- dpct::err0 err = CHECK_TRY_ERROR(
- ptr = (void *)sycl::malloc_host(size, dpct::get_in_order_queue()));
- if (err != 0) {
- // clear the error
- fprintf(
- stderr,
- "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
- size / 1024.0 / 1024.0,
- "syclGetErrorString is not supported");
- return nullptr;
- }
- return ptr;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- void ggml_sycl_host_free(void *ptr) try {
- //allow to use dpct::get_in_order_queue() for host malloc
- SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(ptr, dpct::get_in_order_queue())));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static dpct::err0 ggml_sycl_cpy_tensor_2d(void *dst,
- const struct ggml_tensor *src,
- int64_t i3, int64_t i2,
- int64_t i1_low, int64_t i1_high,
- dpct::queue_ptr stream) try {
- dpct::memcpy_direction kind;
- char * src_ptr;
- if (src->backend == GGML_BACKEND_TYPE_CPU) {
- kind = dpct::host_to_device;
- src_ptr = (char *) src->data;
- // GGML_SYCL_DEBUG("ggml_sycl_cpy_tensor_2d GGML_BACKEND_TYPE_CPU src_ptr %p\n", src_ptr);
- } else if (src->backend == GGML_BACKEND_TYPE_GPU || src->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
- GGML_ASSERT(src->backend != GGML_BACKEND_TYPE_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
- kind = dpct::device_to_device;
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
- int id;
- SYCL_CHECK(CHECK_TRY_ERROR(
- id = get_current_device_id()));
- // GGML_SYCL_DEBUG("current device index %d\n", id);
- src_ptr = (char *) extra->data_device[id];
- } else {
- // GGML_SYCL_DEBUG("GGML_ASSERT(false)\n");
- GGML_ASSERT(false);
- }
- char * dst_ptr = (char *) dst;
- GGML_TENSOR_LOCALS_1(int64_t, ne, src, ne);
- GGML_TENSOR_LOCALS(int64_t, nb, src, nb);
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
- const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- // GGML_SYCL_DEBUG("stream->memcpy: dst_ptr=%p, x=%p, size=%lu\n", dst_ptr, x, i1_diff * nb1);
- // return CHECK_TRY_ERROR(stream->memcpy(dst_ptr, x, i1_diff * nb1));
- return CHECK_TRY_ERROR(dpct::async_dpct_memcpy(dst_ptr, x, i1_diff * nb1,
- kind, *stream));
- } else if (nb0 == ts) {
- return CHECK_TRY_ERROR(
- dpct::async_dpct_memcpy(dst_ptr, ts * ne0 / bs, x, nb1,
- ts * ne0 / bs, i1_diff, kind, *stream));
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- dpct::err0 r = CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
- rd, ts / bs, rx, nb0, ts / bs, ne0, kind, *stream));
- /*
- DPCT1001:85: The statement could not be removed.
- */
- /*
- DPCT1000:86: Error handling if-stmt was detected but could not be
- rewritten.
- */
- if (r != 0) return r;
- }
- return 0;
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_op_get_rows(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_d, const float *src1_d,
- float *dst_d, const dpct::queue_ptr &stream) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
- GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
- const int32_t * src1_i32 = (const int32_t *) src1_d;
- switch (src0->type) {
- case GGML_TYPE_F16:
- get_rows_sycl_float(src0, src1, dst, (const sycl::half *)src0_d,
- src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_F32:
- get_rows_sycl_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q4_0:
- get_rows_sycl<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q4_1:
- get_rows_sycl<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q5_0:
- get_rows_sycl<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q5_1:
- get_rows_sycl<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- case GGML_TYPE_Q8_0:
- get_rows_sycl<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
- break;
- default:
- // TODO: k-quants
- fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
- GGML_ASSERT(false);
- break;
- }
- }
- template <class op>
- inline void ggml_sycl_op_bin_bcast(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- op()(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
- op()(src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
- (sycl::half *)dst_dd, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
- op()(src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
- main_stream);
- } else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
- op()(src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
- main_stream);
- } else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
- op()(src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
- main_stream);
- } else {
- fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
- ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
- GGML_ASSERT(false);
- }
- }
- static void ggml_sycl_op_repeat(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_d, const float *src1_d,
- float *dst_d,
- const dpct::queue_ptr &main_stream) {
- ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
- (void) src1;
- (void) src1_d;
- }
- inline void ggml_sycl_op_add(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_add>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- inline void ggml_sycl_op_acc(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->ne[3] == 1); // just 3D tensors supported
- int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
- int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
- // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
- int offset = dst->op_params[3] / 4; // offset in bytes
- acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
- (void) dst;
- }
- inline void ggml_sycl_op_mul(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_mul>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- inline void ggml_sycl_op_div(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_div>>(src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
- }
- inline void ggml_sycl_op_gelu(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_silu(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_gelu_quick(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_tanh(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_relu(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_sycl_op_hardsigmoid(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_sycl_op_hardswish(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd, const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_leaky_relu(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
- leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_sqr(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_norm(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_group_norm(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int num_groups = dst->op_params[0];
- int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
- group_norm_f32_sycl(src0_dd, dst_dd, num_groups, group_size, src0->ne[0] * src0->ne[1] * src0->ne[2], main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_concat(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- for (int i3 = 0; i3 < dst->ne[3]; i3++) {
- concat_f32_sycl(src0_dd + i3 * (src0->nb[3] / 4), src1_dd + i3 * (src1->nb[3] / 4), dst_dd + i3 * (dst->nb[3] / 4), dst->ne[0], dst->ne[1], dst->ne[2], src0->ne[2], main_stream);
- }
- (void) src1;
- (void) dst;
- }
- inline void ggml_sycl_op_upscale(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- const int scale_factor = dst->op_params[0];
- upscale_f32_sycl(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_pad(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
- pad_f32_sycl(src0_dd, dst_dd,
- src0->ne[0], src0->ne[1], src0->ne[2],
- dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_rms_norm(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- rms_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_mul_mat_q(
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const dpct::queue_ptr &stream) try {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
- const int64_t ne0 = dst->ne[0];
- const int64_t row_diff = row_high - row_low;
- int device_id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(device_id = get_current_device_id()));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
- const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && device_id == g_main_device ? ne0 : row_diff;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- ggml_mul_mat_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_1:
- ggml_mul_mat_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_0:
- ggml_mul_mat_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_1:
- ggml_mul_mat_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q8_0:
- ggml_mul_mat_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q2_K:
- ggml_mul_mat_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q3_K:
- ggml_mul_mat_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_K:
- ggml_mul_mat_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_K:
- ggml_mul_mat_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- case GGML_TYPE_Q6_K:
- ggml_mul_mat_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split) {
- int64_t min_compute_capability = INT_MAX;
- int64_t max_compute_capability = INT_MIN;
- for (int i = 0; i < g_device_count; ++i) {
- if (tensor_split[i] < (i + 1 < g_device_count ? tensor_split[i + 1] : 1.0f)) {
- if (min_compute_capability > g_device_caps[i].cc) {
- min_compute_capability = g_device_caps[i].cc;
- }
- if (max_compute_capability < g_device_caps[i].cc) {
- max_compute_capability = g_device_caps[i].cc;
- }
- }
- }
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return max_compute_capability >= VER_GEN9 ? 128 : 64;
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- return max_compute_capability >= VER_GEN9 ? 128 : 64;
- case GGML_TYPE_IQ3_S:
- return max_compute_capability >= VER_GEN9 ? 128 : 64;
- case GGML_TYPE_Q6_K:
- return 64;
- default:
- GGML_ASSERT(false);
- }
- }
- inline void ggml_sycl_op_mul_mat_vec_q(
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const dpct::queue_ptr &stream) {
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the kernel writes into
- const int64_t nrows_dst = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne00 : row_diff;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- mul_mat_vec_q4_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_1:
- mul_mat_vec_q4_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_0:
- mul_mat_vec_q5_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_1:
- mul_mat_vec_q5_1_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q8_0:
- mul_mat_vec_q8_0_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q2_K:
- mul_mat_vec_q2_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q3_K:
- mul_mat_vec_q3_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_K:
- mul_mat_vec_q4_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_K:
- mul_mat_vec_q5_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q6_K:
- mul_mat_vec_q6_K_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ1_S:
- mul_mat_vec_iq1_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ1_M:
- mul_mat_vec_iq1_m_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ2_XXS:
- mul_mat_vec_iq2_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ2_XS:
- mul_mat_vec_iq2_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ2_S:
- mul_mat_vec_iq2_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ3_XXS:
- mul_mat_vec_iq3_xxs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ3_S:
- mul_mat_vec_iq3_s_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ4_NL:
- mul_mat_vec_iq4_nl_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_IQ4_XS:
- mul_mat_vec_iq4_xs_q8_1_sycl(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddf_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
- }
- inline void ggml_sycl_op_dequantize_mul_mat_vec(
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const dpct::queue_ptr &stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
- #ifdef GGML_SYCL_F16
- sycl_pool_alloc<sycl::half> src1_dfloat_a;
- sycl::half *src1_dfloat = nullptr; // dfloat == half
- bool src1_convert_f16 =
- src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
- src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
- src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
- if (src1_convert_f16) {
- src1_dfloat = src1_dfloat_a.alloc(ne00);
- const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
- GGML_ASSERT(to_fp16_sycl != nullptr);
- to_fp16_sycl(src1_ddf_i, src1_dfloat, ne00, stream);
- }
- #else
- const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
- #endif // GGML_SYCL_F16
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- dequantize_mul_mat_vec_q4_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_1:
- dequantize_mul_mat_vec_q4_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_0:
- dequantize_mul_mat_vec_q5_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_1:
- dequantize_mul_mat_vec_q5_1_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q8_0:
- dequantize_mul_mat_vec_q8_0_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q2_K:
- dequantize_mul_mat_vec_q2_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q3_K:
- dequantize_mul_mat_vec_q3_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q4_K:
- dequantize_mul_mat_vec_q4_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q5_K:
- dequantize_mul_mat_vec_q5_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_Q6_K:
- dequantize_mul_mat_vec_q6_K_sycl(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
- break;
- case GGML_TYPE_F16:
- convert_mul_mat_vec_f16_sycl(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
- break;
- default:
- printf("ggml_sycl_op_dequantize_mul_mat_vec unsupported GGML_TYPE %d\n", src0->type);
- GGML_ASSERT(false);
- break;
- }
- (void) src1;
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_ncols;
- (void) src1_padded_row_size;
- }
- inline void ggml_sycl_op_mul_mat_sycl(
- const ggml_tensor *src0, const ggml_tensor *src1, ggml_tensor *dst,
- const char *src0_dd_i, const float *src1_ddf_i, const char *src1_ddq_i,
- float *dst_dd_i, const int64_t row_low, const int64_t row_high,
- const int64_t src1_ncols, const int64_t src1_padded_row_size,
- const dpct::queue_ptr &stream) try {
- GGML_ASSERT(src0_dd_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_dd_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t row_diff = row_high - row_low;
- int id;
- SYCL_CHECK(
- CHECK_TRY_ERROR(id = get_current_device_id()));
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int ldc = dst->backend == GGML_BACKEND_TYPE_GPU && id == g_main_device ? ne0 : row_diff;
- #ifdef GGML_SYCL_F16
- bool use_fp16 = true; // TODO(Yu) SYCL capability check
- #else
- bool use_fp16 = false;
- #endif
- if ((src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- use_fp16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1] &&
- dst->op_params[0] == GGML_PREC_DEFAULT) {
- // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp16 path\n");
- sycl_pool_alloc<sycl::half> src0_as_f16;
- if (src0->type != GGML_TYPE_F16) {
- const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src0->type);
- GGML_ASSERT(to_fp16_sycl != nullptr);
- size_t ne = row_diff*ne00;
- src0_as_f16.alloc(ne);
- to_fp16_sycl(src0_dd_i, src0_as_f16.get(), ne, stream);
- }
- const sycl::half *src0_ptr = src0->type == GGML_TYPE_F16
- ? (const sycl::half *)src0_dd_i
- : src0_as_f16.get();
- sycl_pool_alloc<sycl::half> src1_as_f16;
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
- GGML_ASSERT(to_fp16_sycl != nullptr);
- size_t ne = src1_ncols*ne10;
- src1_as_f16.alloc(ne);
- to_fp16_sycl(src1_ddf_i, src1_as_f16.get(), ne, stream);
- }
- const sycl::half *src1_ptr = src1->type == GGML_TYPE_F16
- ? (const sycl::half *)src1->data + src1_padded_row_size
- : src1_as_f16.get();
- sycl_pool_alloc<sycl::half> dst_f16(row_diff * src1_ncols);
- const sycl::half alpha_f16 = 1.0f;
- const sycl::half beta_f16 = 0.0f;
- SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[id] = stream));
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
- *g_sycl_handles[id], oneapi::mkl::transpose::trans,
- oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
- &alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
- src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
- dst_f16.get(), dpct::library_data_t::real_half, ldc,
- dpct::library_data_t::real_half)));
- g_sycl_handles[id]->wait();
- const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
- to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
- }
- else {
- // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
- sycl_pool_alloc<float> src0_ddq_as_f32;
- sycl_pool_alloc<float> src1_ddq_as_f32;
- if (src0->type != GGML_TYPE_F32) {
- const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src0->type);
- GGML_ASSERT(to_fp32_sycl != nullptr);
- src0_ddq_as_f32.alloc(row_diff*ne00);
- to_fp32_sycl(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
- }
- if (src1->type != GGML_TYPE_F32) {
- const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(src1->type);
- GGML_ASSERT(to_fp32_sycl != nullptr);
- src1_ddq_as_f32.alloc(src1_ncols*ne10);
- to_fp32_sycl(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
- }
- const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
- const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
- const float alpha = 1.0f;
- const float beta = 0.0f;
- SYCL_CHECK(CHECK_TRY_ERROR(g_sycl_handles[id] = stream));
- SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
- *g_sycl_handles[id], oneapi::mkl::transpose::trans,
- oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
- dpct::get_value(&alpha, *g_sycl_handles[id]), src0_ddf_i, ne00,
- src1_ddf1_i, ne10, dpct::get_value(&beta, *g_sycl_handles[id]),
- dst_dd_i, ldc)));
- g_sycl_handles[id]->wait();
- }
- (void) dst;
- (void) src1_ddq_i;
- (void) src1_padded_row_size;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- GGML_ASSERT(src0->type == dst->type);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne2 = dst->ne[2];
- const int64_t nrows = ggml_nrows(src0);
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
- // RoPE alteration for extended context
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- const int32_t * pos = nullptr;
- if ((mode & 1) == 0) {
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(src1->ne[0] == ne2);
- pos = (const int32_t *) src1_dd;
- }
- const bool is_neox = mode & 2;
- const bool is_glm = mode & 4;
- rope_corr_dims corr_dims;
- ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
- // compute
- if (is_glm) {
- GGML_ASSERT(false);
- rope_glm_f32_sycl(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
- } else if (is_neox) {
- if (src0->type == GGML_TYPE_F32) {
- rope_neox_sycl(
- (const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_neox_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd,
- ne00, n_dims, nrows, pos, freq_scale, ne01,
- freq_base, ext_factor, attn_factor, corr_dims,
- main_stream);
- } else {
- GGML_ASSERT(false);
- }
- } else {
- if (src0->type == GGML_TYPE_F32) {
- rope_sycl(
- (const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream
- );
- } else if (src0->type == GGML_TYPE_F16) {
- rope_sycl((const sycl::half *)src0_dd, (sycl::half *)dst_dd, ne00,
- nrows, pos, freq_scale, ne01, freq_base, ext_factor,
- attn_factor, corr_dims, main_stream);
- } else {
- GGML_ASSERT(false);
- }
- }
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_alibi(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_TENSOR_LOCALS_3(int64_t, ne0, src0, ne);
- const int64_t nrows = ggml_nrows(src0);
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_head = ((int32_t *) dst->op_params)[1];
- float max_bias;
- memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
- //GGML_ASSERT(ne01 + n_past == ne00);
- GGML_ASSERT(n_head == ne02);
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- alibi_f32_sycl(src0_dd, dst_dd, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, main_stream);
- (void) src1;
- (void) src1_dd;
- }
- static void ggml_sycl_op_pool2d(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd, const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- const int64_t IH = src0->ne[1];
- const int64_t IW = src0->ne[0];
- const int64_t N = dst->ne[3];
- const int64_t OC = dst->ne[2];
- const int64_t OH = dst->ne[1];
- const int64_t OW = dst->ne[0];
- const int parallel_elements = N * OC * OH * OW;
- const int num_blocks = (parallel_elements + SYCL_POOL2D_BLOCK_SIZE - 1) / SYCL_POOL2D_BLOCK_SIZE;
- sycl::range<3> block_nums(1, 1, num_blocks);
- main_stream->parallel_for(
- sycl::nd_range<3>(block_nums *
- sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE),
- sycl::range<3>(1, 1, SYCL_IM2COL_BLOCK_SIZE)),
- [=](sycl::nd_item<3> item_ct1) {
- pool2d_nchw_kernel(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0,
- parallel_elements, src0_dd, dst_dd, op,
- item_ct1);
- });
- (void) src1;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_im2col(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
- const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
- const int64_t IC = src1->ne[is_2D ? 2 : 1];
- const int64_t IH = is_2D ? src1->ne[1] : 1;
- const int64_t IW = src1->ne[0];
- const int64_t KH = is_2D ? src0->ne[1] : 1;
- const int64_t KW = src0->ne[0];
- const int64_t OH = is_2D ? dst->ne[2] : 1;
- const int64_t OW = dst->ne[1];
- const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
- if (dst->type == GGML_TYPE_F16) {
- im2col_sycl(src1_dd, (sycl::half *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
- } else {
- im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
- }
- (void) src0;
- (void) src0_dd;
- }
- inline void ggml_sycl_op_sum_rows(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_argsort(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_I32);
- const int64_t ncols = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
- argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_diag_mask_inf(const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int nrows0 = ggml_nrows(src0);
- const int n_past = ((int32_t *) dst->op_params)[0];
- diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_soft_max(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const float *src0_dd, const float *src1_dd,
- float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows_x = ggml_nrows(src0);
- const int64_t nrows_y = src0->ne[1];
- float scale = 1.0f;
- float max_bias = 0.0f;
- memcpy(&scale, dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, dst->op_params + 1, sizeof(float));
- // positions tensor
- float * src2_dd = nullptr;
- sycl_pool_alloc<float> src2_f;
- ggml_tensor * src2 = dst->src[2];
- const bool use_src2 = src2 != nullptr;
- if (use_src2) {
- const bool src2_on_device = src2->backend == GGML_BACKEND_TYPE_GPU;
- if (src2_on_device) {
- ggml_tensor_extra_gpu * src2_extra = (ggml_tensor_extra_gpu *) src2->extra;
- src2_dd = (float *) src2_extra->data_device[g_main_device];
- } else {
- src2_dd = src2_f.alloc(ggml_nelements(src2));
- SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src2_dd, src2, 0, 0, 0, 1, main_stream));
- }
- }
- soft_max_f32_sycl(src0_dd, src1 ? src1_dd : nullptr, src2_dd, dst_dd, ne00,
- nrows_x, nrows_y, scale, max_bias, main_stream);
- }
- inline void ggml_sycl_op_scale(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float scale;
- memcpy(&scale, dst->op_params, sizeof(float));
- scale_f32_sycl(src0_dd, dst_dd, scale, ggml_nelements(src0), main_stream);
- /*
- DPCT1010:87: SYCL uses exceptions to report errors and does not use the
- error codes. The call was replaced with 0. You need to rewrite this code.
- */
- SYCL_CHECK(0);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- inline void ggml_sycl_op_clamp(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst, const float *src0_dd,
- const float *src1_dd, float *dst_dd,
- const dpct::queue_ptr &main_stream) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- float min;
- float max;
- memcpy(&min, dst->op_params, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
- clamp_f32_sycl(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
- /*
- DPCT1010:88: SYCL uses exceptions to report errors and does not use the
- error codes. The call was replaced with 0. You need to rewrite this code.
- */
- SYCL_CHECK(0);
- (void) src1;
- (void) dst;
- (void) src1_dd;
- }
- static void ggml_sycl_op_flatten(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- const ggml_sycl_op_flatten_t op) try {
- const int64_t nrows0 = ggml_nrows(src0);
- const bool use_src1 = src1 != nullptr;
- const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
- GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU;
- const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU;
- // dd = data device
- float * src0_ddf = nullptr;
- float * src1_ddf = nullptr;
- float * dst_ddf = nullptr;
- sycl_pool_alloc<float> src0_f;
- sycl_pool_alloc<float> src1_f;
- sycl_pool_alloc<float> dst_f;
- ggml_sycl_set_device(g_main_device);
- dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0];
- // GGML_SYCL_DEBUG("g_main_device=%d, main_stream=%p src0_on_device=%d, src1_on_device=%d, dst_on_device=%d\n",
- // g_main_device, main_stream, src0_on_device, src1_on_device, dst_on_device);
- if (src0_on_device) {
- src0_ddf = (float *) src0_extra->data_device[g_main_device];
- } else {
- src0_ddf = src0_f.alloc(ggml_nelements(src0));
- // GGML_SYCL_DEBUG("before ggml_sycl_cpy_tensor_2d src0_ddf=%p, src0=%p\n", src0_ddf, src0);
- SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_ddf, src0, 0, 0, 0, nrows0, main_stream));
- }
- if (use_src1) {
- if (src1_on_device) {
- src1_ddf = (float *) src1_extra->data_device[g_main_device];
- } else {
- src1_ddf = src1_f.alloc(ggml_nelements(src1));
- SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src1_ddf, src1, 0, 0, 0, nrows1, main_stream));
- }
- }
- if (dst_on_device) {
- dst_ddf = (float *) dst_extra->data_device[g_main_device];
- } else {
- dst_ddf = dst_f.alloc(ggml_nelements(dst));
- }
- // GGML_SYCL_DEBUG("op src0=%p, src1=%p, dst=%p, src0_ddf=%p, src1_ddf=%p, dst_ddf=%p, main_stream=%p\n",
- // src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
- // do the computation
- op(src0, src1, dst, src0_ddf, src1_ddf, dst_ddf, main_stream);
- /*
- DPCT1010:89: SYCL uses exceptions to report errors and does not use the
- error codes. The call was replaced with 0. You need to rewrite this code.
- */
- SYCL_CHECK(0);
- // copy dst to host if necessary
- if (!dst_on_device) {
- SYCL_CHECK(CHECK_TRY_ERROR(
- main_stream->memcpy(dst->data, dst_ddf, ggml_nbytes(dst)).wait()));
- }
- if (dst->backend == GGML_BACKEND_TYPE_CPU) {
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::get_current_device().queues_wait_and_throw()));
- }
- // print_ggml_tensor("tensor", dst);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_set_peer_access(const int n_tokens) {
- static bool peer_access_enabled = false;
- const bool enable_peer_access = n_tokens <= GGML_SYCL_PEER_MAX_BATCH_SIZE;
- if (peer_access_enabled == enable_peer_access) {
- return;
- }
- #ifdef NDEBUG
- for (int i = 0; i < g_device_count; ++i) {
- SYCL_CHECK(ggml_sycl_set_device(i));
- // SYCL_CHECK(syclDeviceSynchronize());
- }
- for (int i = 0; i < g_device_count; ++i) {
- SYCL_CHECK(ggml_sycl_set_device(i));
- for (int id_other = 0; id_other < g_device_count; ++id_other) {
- if (i == id_other) {
- continue;
- }
- if (i != g_main_device && id_other != g_main_device) {
- continue;
- }
- // int can_access_peer;
- // SYCL_CHECK(syclDeviceCanAccessPeer(&can_access_peer, id, id_other));
- // if (can_access_peer) {
- // if (enable_peer_access) {
- // SYCL_CHECK(syclDeviceEnablePeerAccess(id_other, 0));
- // } else {
- // SYCL_CHECK(syclDeviceDisablePeerAccess(id_other));
- // }
- // }
- }
- }
- #endif // NDEBUG
- peer_access_enabled = enable_peer_access;
- }
- struct ggml_backend_sycl_split_buffer_type_context {
- std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
- };
- static void ggml_sycl_op_mul_mat(const ggml_tensor *src0,
- const ggml_tensor *src1, ggml_tensor *dst,
- ggml_sycl_op_mul_mat_t op,
- const bool convert_src1_to_q8_1) try {
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
- const int64_t nrows1 = ggml_nrows(src1);
- GGML_ASSERT(ne03 == ne13);
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- GGML_ASSERT(dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
- GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
- const int64_t i02_divisor = ne12 / ne02;
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- const size_t q8_1_ts = sizeof(block_q8_1);
- const size_t q8_1_bs = QK8_1;
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- const bool src0_on_device = src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- const bool src0_is_contiguous = ggml_is_contiguous(src0);
- const bool src1_is_contiguous = ggml_is_contiguous(src1);
- int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
- const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- GGML_ASSERT(!(split && ne02 > 1));
- GGML_ASSERT(!(split && ne03 > 1));
- GGML_ASSERT(!(split && ne02 < ne12));
- std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split;
- if (split) {
- // TODO: check that src0->buffer->buft is a split buffer type, replace GGML_BACKEND_TYPE_GPU_SPLIT check
- // GGML_ASSERT(src0->buffer != nullptr && src0->buffer->buft == ...);
- ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *) src0->buffer->buft->context;
- tensor_split = buft_ctx->tensor_split;
- }
- struct dev_data {
- sycl_pool_alloc<char> src0_dd_alloc;
- sycl_pool_alloc<float> src1_ddf_alloc;
- sycl_pool_alloc<char> src1_ddq_alloc;
- sycl_pool_alloc<float> dst_dd_alloc;
- char *src0_dd = nullptr;
- float *src1_ddf = nullptr; // float
- char *src1_ddq = nullptr; // q8_1
- float *dst_dd = nullptr;
- int64_t row_low;
- int64_t row_high;
- };
- dev_data dev[GGML_SYCL_MAX_DEVICES];
- int used_devices = 0;
- dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0];
- for (int i = 0; i < g_device_count; ++i) {
- // by default, use all rows
- dev[i].row_low = 0;
- dev[i].row_high = ne01;
- // for multi GPU, get the row boundaries from tensor split
- // and round to mul_mat_q tile sizes
- if (split) {
- const int64_t rounding = get_row_rounding(src0->type, tensor_split);
- if (i != 0) {
- dev[i].row_low = ne01*tensor_split[i];
- if (dev[i].row_low < ne01) {
- dev[i].row_low -= dev[i].row_low % rounding;
- }
- }
- if (i != g_device_count - 1) {
- dev[i].row_high = ne01*tensor_split[i + 1];
- if (dev[i].row_high < ne01) {
- dev[i].row_high -= dev[i].row_high % rounding;
- }
- }
- }
- }
- for (int i = 0; i < g_device_count; ++i) {
- if ((!split && i != g_main_device) || dev[i].row_low == dev[i].row_high) {
- continue;
- }
- used_devices++;
- const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && i == g_main_device;
- const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && i == g_main_device;
- ggml_sycl_set_device(i);
- dpct::queue_ptr stream = g_syclStreams[i][0];
- if (src0_on_device && src0_is_contiguous) {
- dev[i].src0_dd = (char *) src0_extra->data_device[i];
- } else {
- dev[i].src0_dd = dev[i].src0_dd_alloc.alloc(ggml_nbytes(src0));
- }
- if (src1_on_device && src1_is_contiguous) {
- dev[i].src1_ddf = (float *) src1_extra->data_device[i];
- } else {
- dev[i].src1_ddf = dev[i].src1_ddf_alloc.alloc(ggml_nelements(src1));
- }
- if (convert_src1_to_q8_1) {
- dev[i].src1_ddq = dev[i].src1_ddq_alloc.alloc(nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
- if (src1_on_device && src1_is_contiguous) {
- quantize_row_q8_1_sycl(dev[i].src1_ddf, dev[i].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
- /*
- DPCT1010:90: SYCL uses exceptions to report errors and does not
- use the error codes. The call was replaced with 0. You need to
- rewrite this code.
- */
- SYCL_CHECK(0);
- }
- }
- if (dst_on_device) {
- dev[i].dst_dd = (float *) dst_extra->data_device[i];
- } else {
- const size_t size_dst_ddf = split ? (dev[i].row_high - dev[i].row_low)*ne1 : ggml_nelements(dst);
- dev[i].dst_dd = dev[i].dst_dd_alloc.alloc(size_dst_ddf);
- }
- }
- // if multiple devices are used they need to wait for the main device
- // here an event is recorded that signals that the main device has finished calculating the input data
- if (split && used_devices > 1) {
- ggml_sycl_set_device(g_main_device);
- /*
- DPCT1024:91: The original code returned the error code that was further
- consumed by the program logic. This original code was replaced with 0.
- You may need to rewrite the program logic consuming the error code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- *src0_extra->events[g_main_device][0] =
- g_syclStreams[g_main_device][0]->ext_oneapi_submit_barrier()));
- }
- const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
- for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
- const int64_t is = split ? (src1_col_0/src1_col_stride) % MAX_STREAMS : 0;
- const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
- for (int i = 0; i < g_device_count; ++i) {
- if ((!split && i != g_main_device) || dev[i].row_low == dev[i].row_high) {
- continue;
- }
- const bool src1_on_device = src1->backend == GGML_BACKEND_TYPE_GPU && i == g_main_device;
- const bool dst_on_device = dst->backend == GGML_BACKEND_TYPE_GPU && i == g_main_device;
- const int64_t row_diff = dev[i].row_high - dev[i].row_low;
- ggml_sycl_set_device(i);
- dpct::queue_ptr stream = g_syclStreams[i][is];
- // wait for main GPU data if necessary
- if (split && (i != g_main_device || is != 0)) {
- /*
- DPCT1009:163: SYCL uses exceptions to report errors and does not
- use the error codes. The original code was commented out and a
- warning string was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(stream->ext_oneapi_submit_barrier(
- {*src0_extra->events[g_main_device][0]})));
- }
- for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
- const int64_t i03 = i0 / ne12;
- const int64_t i02 = i0 % ne12;
- const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_dd_i = dev[i].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
- float * src1_ddf_i = dev[i].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
- char * src1_ddq_i = dev[i].src1_ddq + src1_ddq_i_offset;
- float * dst_dd_i = dev[i].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (dst->backend == GGML_BACKEND_TYPE_GPU && i == g_main_device) {
- dst_dd_i += dev[i].row_low; // offset is 0 if no tensor split
- }
- // copy src0, src1 to device if necessary
- if (src1->backend == GGML_BACKEND_TYPE_GPU && src1_is_contiguous) {
- if (i != g_main_device) {
- if (convert_src1_to_q8_1) {
- char * src1_ddq_i_source = dev[g_main_device].src1_ddq + src1_ddq_i_offset;
- SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
- src1_ddq_i, src1_ddq_i_source,
- src1_ncols * src1_padded_col_size * q8_1_ts /
- q8_1_bs).wait()));
- } else {
- float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
- src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
- SYCL_CHECK(CHECK_TRY_ERROR(dev2dev_memcpy(*stream, *main_stream,
- src1_ddf_i, src1_ddf_i_source,
- src1_ncols * ne10 * sizeof(float))));
- }
- }
- } else if (src1->backend == GGML_BACKEND_TYPE_CPU || (src1_on_device && !src1_is_contiguous)) {
- SYCL_CHECK(ggml_sycl_cpy_tensor_2d(
- src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
- } else {
- GGML_ASSERT(false);
- }
- if (convert_src1_to_q8_1 && (src1->backend == GGML_BACKEND_TYPE_CPU || !src1_is_contiguous)) {
- quantize_row_q8_1_sycl(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
- /*
- DPCT1010:92: SYCL uses exceptions to report errors and does
- not use the error codes. The call was replaced with 0. You
- need to rewrite this code.
- */
- SYCL_CHECK(0);
- }
- if (src1_col_0 == 0 && (!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
- SYCL_CHECK(ggml_sycl_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[i].row_low, dev[i].row_high, stream));
- }
- if (src1->type == GGML_TYPE_F16) {
- src1_padded_col_size = (i0 * ne11 + src1_col_0) * ne10;
- }
- // do the computation
- SYCL_CHECK(CHECK_TRY_ERROR(op(src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
- dev[i].row_low, dev[i].row_high, src1_ncols, src1_padded_col_size, stream)));
- /*
- DPCT1010:93: SYCL uses exceptions to report errors and does not
- use the error codes. The call was replaced with 0. You need to
- rewrite this code.
- */
- SYCL_CHECK(0);
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device;
- dpct::memcpy_direction kind;
- if (dst->backend == GGML_BACKEND_TYPE_CPU) {
- dst_off_device = dst->data;
- kind = dpct::device_to_host;
- } else if (dst->backend == GGML_BACKEND_TYPE_GPU) {
- dst_off_device = dst_extra->data_device[g_main_device];
- kind = dpct::device_to_device;
- } else {
- GGML_ASSERT(false);
- }
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0 + dev[i].row_low;
- //todo, dirty solution. Need be updated when device2device memcpy() is supported.
- if (kind == dpct::device_to_device) {
- size_t dst_size = ggml_nbytes_pad(dst);
- float *host_buf = (float *)malloc(dst_size);
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
- host_buf, ne0 * sizeof(float), dst_dd_i,
- row_diff * sizeof(float), row_diff * sizeof(float),
- src1_ncols, dpct::device_to_host, *stream)));
- dpct::dev_mgr::instance().get_device(g_sycl_gpu_mgr->gpus[i]).queues_wait_and_throw();
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
- dhf_dst_i, ne0 * sizeof(float), host_buf,
- row_diff * sizeof(float), row_diff * sizeof(float),
- src1_ncols, dpct::host_to_device, *main_stream)));
- dpct::dev_mgr::instance().get_device(g_sycl_gpu_mgr->gpus[g_main_device]).queues_wait_and_throw();
- free(host_buf);
- } else {
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::async_dpct_memcpy(
- dhf_dst_i, ne0 * sizeof(float), dst_dd_i,
- row_diff * sizeof(float), row_diff * sizeof(float),
- src1_ncols, kind, *stream)));
- }
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0;
- SYCL_CHECK(CHECK_TRY_ERROR(
- stream->memcpy(dhf_dst_i, dst_dd_i,
- src1_ncols * ne0 * sizeof(float)).wait()));
- }
- }
- // add event for the main device to wait on until other device is done
- if (split && (i != g_main_device || is != 0)) {
- /*
- DPCT1024:94: The original code returned the error code that
- was further consumed by the program logic. This original
- code was replaced with 0. You may need to rewrite the
- program logic consuming the error code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- *src0_extra->events[i][is] =
- stream->ext_oneapi_submit_barrier()));
- }
- }
- }
- }
- // main device waits for all other devices to be finished
- if (split && g_device_count > 1) {
- int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
- is_max = is_max <= MAX_STREAMS ? is_max : MAX_STREAMS;
- ggml_sycl_set_device(g_main_device);
- for (int i = 0; i < g_device_count; ++i) {
- if (dev[i].row_low == dev[i].row_high) {
- continue;
- }
- for (int64_t is = 0; is < is_max; ++is) {
- SYCL_CHECK(CHECK_TRY_ERROR(
- g_syclStreams[g_main_device][0]->ext_oneapi_submit_barrier(
- {*src0_extra->events[i][is]})));
- }
- }
- }
- if (dst->backend == GGML_BACKEND_TYPE_CPU) {
- SYCL_CHECK(ggml_sycl_set_device(g_main_device));
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::get_current_device().queues_wait_and_throw()));
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_repeat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_repeat);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_get_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_get_rows);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_add);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_acc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_acc);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_mul);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_div(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_div);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_gelu);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_silu);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_gelu_quick(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_gelu_quick);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_tanh(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_tanh);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_relu);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_hardsigmoid(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_hardsigmoid);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_hardswish(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_hardswish);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_leaky_relu);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_sqr(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_sqr);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_norm);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_group_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_group_norm);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_concat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_concat);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_upscale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_upscale);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_pad(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_pad);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- static void ggml_sycl_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_SYCL_DEBUG("call %s\n", __func__);
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rms_norm);
- GGML_SYCL_DEBUG("call %s done\n", __func__);
- }
- bool ggml_sycl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- if (!g_sycl_loaded) return false;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
- }
- static void ggml_sycl_mul_mat_vec_p021(const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst) try {
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne12 = src1->ne[2];
- SYCL_CHECK(ggml_sycl_set_device(g_main_device));
- dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0];
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- ggml_mul_mat_p021_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_mul_mat_vec_nc(const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst) try {
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t ne12 = src1->ne[2];
- SYCL_CHECK(ggml_sycl_set_device(g_main_device));
- dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0];
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- const int64_t row_stride_x = nb01 / sizeof(sycl::half);
- const int64_t channel_stride_x = nb02 / sizeof(sycl::half);
- ggml_mul_mat_vec_nc_f16_f32_sycl(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void k_compute_batched_ptrs(const sycl::half *src0_as_f16,
- const sycl::half *src1_as_f16, char *dst,
- const void **ptrs_src, void **ptrs_dst,
- int64_t ne12, int64_t ne13, int64_t ne23,
- size_t nb02, size_t nb03, size_t nb12,
- size_t nb13, size_t nbd2, size_t nbd3,
- int64_t r2, int64_t r3,
- const sycl::nd_item<3> &item_ct1) {
- int64_t i13 = item_ct1.get_group(2) * item_ct1.get_local_range(2) +
- item_ct1.get_local_id(2);
- int64_t i12 = item_ct1.get_group(1) * item_ct1.get_local_range(1) +
- item_ct1.get_local_id(1);
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
- int64_t i03 = i13 / r3;
- int64_t i02 = i12 / r2;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
- }
- static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst) try {
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t ne_dst = ggml_nelements(dst);
- SYCL_CHECK(ggml_sycl_set_device(g_main_device));
- dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0];
- bool no_mixed_dtypes = main_stream->get_backend() == sycl::backend::ext_oneapi_cuda ||
- main_stream->get_backend() == sycl::backend::ext_oneapi_hip;
- SYCL_CHECK(
- CHECK_TRY_ERROR(g_sycl_handles[g_main_device] = main_stream));
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- void * src0_ddq = src0_extra->data_device[g_main_device];
- sycl::half *src0_as_f16 = (sycl::half *)src0_ddq;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- // convert src1 to fp16
- sycl_pool_alloc<sycl::half> src1_f16_alloc;
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
- const int64_t ne_src1 = ggml_nelements(src1);
- src1_f16_alloc.alloc(ne_src1);
- GGML_ASSERT(to_fp16_sycl != nullptr);
- to_fp16_sycl(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
- }
- sycl::half *src1_f16 = src1->type == GGML_TYPE_F16 ? (sycl::half *)src1_ddf
- : src1_f16_alloc.get();
- sycl_pool_alloc<sycl::half> dst_f16;
- char * dst_t;
- dpct::library_data_t cu_compute_type = dpct::library_data_t::real_float;
- dpct::library_data_t cu_data_type = dpct::library_data_t::real_float;
- if (no_mixed_dtypes) {
- cu_compute_type = dpct::library_data_t::real_half;
- cu_data_type = dpct::library_data_t::real_half;
- }
- // dst strides
- size_t nbd2 = dst->nb[2];
- size_t nbd3 = dst->nb[3];
- const float alpha_f32 = 1.0f;
- const float beta_f32 = 0.0f;
- const sycl::half alpha_f16 = 1.0f;
- const sycl::half beta_f16 = 0.0f;
- const void * alpha = &alpha_f32;
- const void * beta = &beta_f32;
- if (no_mixed_dtypes) {
- alpha = &alpha_f16;
- beta = &beta_f16;
- }
- // TODO: Renable (dst->op_params[0] =! GGML_PREC_DEFAULT) pathway
- // when oneMKL open source supports half, half, float, float: datatypes
- dst_t = (char *) dst_ddf;
- if (no_mixed_dtypes) {
- dst_t = (char *) dst_f16.alloc(ne_dst);
- nbd2 /= sizeof(float) / sizeof(sycl::half);
- nbd3 /= sizeof(float) / sizeof(sycl::half);
- }
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- #if 0
- // use syclGemmEx
- {
- for (int i13 = 0; i13 < ne13; ++i13) {
- for (int i12 = 0; i12 < ne12; ++i12) {
- int i03 = i13 / r3;
- int i02 = i12 / r2;
- SYCL_CHECK(
- syclGemmEx(g_sycl_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , SYCL_R_16F, nb01/sizeof(half),
- (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, SYCL_R_16F, nb11/sizeof(float),
- beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- }
- }
- }
- #else
- if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
- // there is no broadcast and src0, src1 are contiguous across dims 2, 3
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
- *g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans,
- oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
- (const char *)src0_as_f16, dpct::library_data_t::real_half,
- nb01 / nb00, nb02 / nb00,
- (const char *)src1_f16, dpct::library_data_t::real_half,
- nb11 / nb10, nb12 / nb10, beta,
- (char *)dst_t, cu_data_type, ne01, nb2 / nb0,
- ne12 * ne13, cu_compute_type)));
- g_sycl_handles[g_main_device]->wait();
- } else {
- const int ne23 = ne12*ne13;
- sycl_pool_alloc<const void *> ptrs_src(2*ne23);
- sycl_pool_alloc< void *> ptrs_dst(1*ne23);
- sycl::range<3> block_dims(1, ne12, ne13);
- /*
- DPCT1049:47: The work-group size passed to the SYCL kernel may exceed
- the limit. To get the device limit, query
- info::device::max_work_group_size. Adjust the work-group size if needed.
- */
- {
- dpct::has_capability_or_fail(main_stream->get_device(),
- {sycl::aspect::fp16});
- main_stream->submit([&](sycl::handler &cgh) {
- const void **ptrs_src_get = ptrs_src.get();
- void **ptrs_dst_get = ptrs_dst.get();
- size_t nb12_scaled = src1->type == GGML_TYPE_F16 ? nb12 : nb12 / 2;
- size_t nb13_scaled = src1->type == GGML_TYPE_F16 ? nb13 : nb13 / 2;
- cgh.parallel_for(sycl::nd_range<3>(block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- k_compute_batched_ptrs(
- src0_as_f16, src1_f16,
- dst_t, ptrs_src_get,
- ptrs_dst_get, ne12, ne13, ne23,
- nb02, nb03, nb12_scaled, nb13_scaled,
- nbd2, nbd3, r2, r3, item_ct1);
- });
- }).wait();
- }
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
- *g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans,
- oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
- (const void **)(ptrs_src.get() + 0 * ne23),
- dpct::library_data_t::real_half, nb01 / nb00,
- (const void **)(ptrs_src.get() + 1 * ne23),
- dpct::library_data_t::real_half, nb11 / nb10, beta,
- (void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
- cu_compute_type)));
- g_sycl_handles[g_main_device]->wait();
- }
- #endif
- if (no_mixed_dtypes) {
- const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
- to_fp32_sycl(dst_f16.get(), dst_ddf, ne_dst, main_stream);
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const bool all_on_device =
- (src0->backend == GGML_BACKEND_TYPE_GPU || src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT) &&
- (src1->backend == GGML_BACKEND_TYPE_GPU) &&
- ( dst->backend == GGML_BACKEND_TYPE_GPU);
- const bool split = src0->backend == GGML_BACKEND_TYPE_GPU_SPLIT;
- int64_t min_compute_capability = INT_MAX;
- for (int i = 0; i < g_device_count; ++i) {
- if (min_compute_capability > g_device_caps[i].cc && g_tensor_split[i] < (i + 1 < g_device_count ? g_tensor_split[i + 1] : 1.0f)) {
- min_compute_capability = g_device_caps[i].cc;
- }
- }
- #ifdef SYCL_USE_XMX
- const bool use_xmx = true;
- #else
- const bool use_xmx = false;
- #endif
- // debug helpers
- //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
- //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
- //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
- //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
- if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
- // KQ single-batch
- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_p021\n");
- ggml_sycl_mul_mat_vec_p021(src0, src1, dst);
- } else if (!split && all_on_device && !use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
- // KQV single-batch
- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_vec_nc\n");
- ggml_sycl_mul_mat_vec_nc(src0, src1, dst);
- } else if (!split && all_on_device && use_xmx && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1)) {
- // KQ + KQV multi-batch
- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat_batched_sycl\n");
- ggml_sycl_mul_mat_batched_sycl(src0, src1, dst);
- } else if (src0->type == GGML_TYPE_F32) {
- // GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat\n");
- ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
- } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
- // GGML_SYCL_DEBUG("ggml_is_quantized or GGML_TYPE_F16\n");
- if (src1->ne[1] == 1 && src0->ne[0] % GGML_SYCL_DMMV_X == 0) {
- #ifdef GGML_SYCL_FORCE_DMMV
- const bool use_mul_mat_vec_q = false;
- #else
- bool use_mul_mat_vec_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
- use_mul_mat_vec_q = use_mul_mat_vec_q ||
- (src0->type == GGML_TYPE_IQ2_XXS) || (src0->type == GGML_TYPE_IQ2_XS) || (src0->type == GGML_TYPE_IQ2_S) ||
- (src0->type == GGML_TYPE_IQ3_XXS) || (src0->type == GGML_TYPE_IQ3_S) ||
- (src0->type == GGML_TYPE_IQ4_NL) || (src0->type == GGML_TYPE_IQ4_XS) ||
- (src0->type == GGML_TYPE_IQ1_S) || (src0->type == GGML_TYPE_IQ1_M);
- #endif // GGML_SYCL_FORCE_DMMV
- if (use_mul_mat_vec_q) {
- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_vec_q path\n");
- ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_vec_q, true);
- } else {
- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_dequantize_mul_mat_vec path\n");
- ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_dequantize_mul_mat_vec, false);
- }
- } else {
- bool use_mul_mat_q = min_compute_capability >= VER_4VEC && ggml_is_quantized(src0->type);
- if (use_xmx && min_compute_capability >= VER_GEN9 && src1->ne[1] > XMX_MAX_BATCH_SIZE) {
- use_mul_mat_q = false;
- }
- if (use_mul_mat_q) {
- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_q path\n");
- ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_q, true);
- } else {
- // GGML_SYCL_DEBUG("ggml_sycl_mul_mat ggml_sycl_op_mul_mat_sycl path\n");
- ggml_sycl_op_mul_mat(src0, src1, dst, ggml_sycl_op_mul_mat_sycl, false);
- }
- }
- } else {
- GGML_ASSERT(false);
- }
- }
- #if 0
- template<typename ... Srcs>
- static __global__ void k_compute_batched_ptrs_id(
- const void ** ptrs_src, void ** ptrs_dst,
- int ne12, int ne13,
- int ne23,
- int nb02, int nb03,
- int nb12, int nb13,
- int nb2, int nb3,
- int r2, int r3,
- ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
- const half * src1_f16, half * dst_f16,
- const int32_t * ids, const int id,
- Srcs... src0s) {
- int i = ids[id];
- half * src0_f16;
- const void * srcs_ar[] = { (const half *) src0s... };
- if (src0_type == GGML_TYPE_F16) {
- src0_f16 = (half *) srcs_ar[i];
- } else {
- src0_f16 = src0_as_f16;
- if (item_ct1.get_local_id(2) == 0 && threadIdx.y == 0) {
- const to_fp16_sycl_t to_fp16 = ggml_get_to_fp16_sycl(src0_type);
- to_fp16(srcs_ar[i], src0_f16, src0_ne, syclStreamFireAndForget);
- }
- }
- int i13 = blockIdx.x * blockDim.x + item_ct1.get_local_id(2);
- int i12 = blockIdx.y * blockDim.y + threadIdx.y;
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
- int i03 = i13 / r3;
- int i02 = i12 / r2;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
- }
- static void ggml_sycl_mul_mat_id_sycl(ggml_tensor * dst) {
- const struct ggml_tensor * ids = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src00 = dst->src[2];
- const int id = dst->op_params[0];
- GGML_ASSERT(!ggml_is_transposed(src00));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_TENSOR_LOCALS(int64_t, ne0, src00, ne);
- //const int64_t nb01 = src00->nb[1];
- GGML_TENSOR_LOCALS(int64_t, nb0, src00, nb);
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
- GGML_TENSOR_LOCALS(int64_t, nb1, src1, nb);
- //const int64_t nb11 = src1->nb[1];
- const int64_t ne1 = ggml_nelements(src1);
- const int64_t ne = ggml_nelements(dst);
- SYCL_CHECK(ggml_sycl_set_device(g_main_device));
- syclStream_t main_stream = g_syclStreams[g_main_device][0];
- SYCL_CHECK(syclSetStream(g_sycl_handles[g_main_device], main_stream));
- //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- //void * src0_ddq = src0_extra->data_device[g_main_device];
- //half * src0_as_f16 = (half *) src0_ddq;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- // convert src1 to fp16
- const to_fp16_sycl_t to_fp16_sycl = ggml_get_to_fp16_sycl(src1->type);
- GGML_ASSERT(to_fp16_sycl != nullptr);
- size_t src1_as = 0;
- half * src1_as_f16 = (half *) ggml_sycl_pool_malloc(g_main_device, ne1 * sizeof(half), &src1_as);
- to_fp16_sycl(src1_ddf, src1_as_f16, ne1, main_stream);
- size_t dst_as = 0;
- half * dst_f16 = (half *) ggml_sycl_pool_malloc(g_main_device, ne * sizeof(half), &dst_as);
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- // use syclGemmBatchedEx
- const int ne23 = ne12*ne13;
- const void ** ptrs_src = nullptr;
- void ** ptrs_dst = nullptr;
- size_t ptrs_src_s = 0;
- size_t ptrs_dst_s = 0;
- ptrs_src = (const void **) ggml_sycl_pool_malloc(g_main_device, 2*ne23*sizeof(void *), &ptrs_src_s);
- ptrs_dst = ( void **) ggml_sycl_pool_malloc(g_main_device, 1*ne23*sizeof(void *), &ptrs_dst_s);
- int64_t src0_ne = ggml_nelements(src00);
- half * src0_as_f16 = nullptr;
- size_t src0_as = 0;
- if (src00->type != GGML_TYPE_F16) {
- src0_as_f16 = (half *) ggml_sycl_pool_malloc(g_main_device, src0_ne * sizeof(half), &src0_as);
- }
- static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
- dim3 block_dims(ne13, ne12);
- k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
- ptrs_src, ptrs_dst,
- ne12, ne13,
- ne23,
- ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
- nb12, nb13,
- dst->nb[2], dst->nb[3],
- r2, r3,
- src00->type, src0_as_f16, src0_ne,
- src1_as_f16, dst_f16,
- (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id,
- dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr,
- dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr,
- dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr,
- dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr
- );
- SYCL_CHECK(syclGetLastError());
- SYCL_CHECK(
- syclGemmBatchedEx(g_sycl_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha_f16, (const void **) (ptrs_src + 0*ne23), SYCL_R_16F, ne00,
- (const void **) (ptrs_src + 1*ne23), SYCL_R_16F, ne10,
- &beta_f16, ( void **) (ptrs_dst + 0*ne23), SYCL_R_16F, ne01,
- ne23,
- CUBLAS_COMPUTE_16F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- if (src0_as != 0) {
- ggml_sycl_pool_free(g_main_device, src0_as_f16, src0_as);
- }
- if (ptrs_src_s != 0) {
- ggml_sycl_pool_free(g_main_device, ptrs_src, ptrs_src_s);
- }
- if (ptrs_dst_s != 0) {
- ggml_sycl_pool_free(g_main_device, ptrs_dst, ptrs_dst_s);
- }
- const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
- to_fp32_sycl(dst_f16, dst_ddf, ne, main_stream);
- ggml_sycl_pool_free(g_main_device, src1_as_f16, src1_as);
- ggml_sycl_pool_free(g_main_device, dst_f16, dst_as);
- }
- #endif
- static void ggml_sycl_mul_mat_id(const ggml_tensor *src0,
- const ggml_tensor *src1,
- ggml_tensor *dst) try {
- GGML_ASSERT(src0->backend != GGML_BACKEND_TYPE_GPU_SPLIT &&
- "mul_mat_id does not support split buffers");
- const ggml_tensor *ids = dst->src[2];
- const dpct::queue_ptr stream = g_syclStreams[g_main_device][0];
- const size_t nb11 = src1->nb[1];
- const size_t nb1 = dst->nb[1];
- const int32_t id = ((int32_t *)dst->op_params)[0];
- const int32_t n_as = src0->ne[2];
- std::vector<char> ids_host(ggml_nbytes(ids));
- const char *ids_dev = (const char *)ids->data;
- SYCL_CHECK(CHECK_TRY_ERROR(
- stream->memcpy(ids_host.data(), ids_dev, ggml_nbytes(ids))));
- SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
- const ggml_tensor_extra_gpu *src0_extra =
- (const ggml_tensor_extra_gpu *)src0->extra;
- const ggml_tensor_extra_gpu *src1_extra =
- (const ggml_tensor_extra_gpu *)src1->extra;
- const ggml_tensor_extra_gpu *dst_extra =
- (const ggml_tensor_extra_gpu *)dst->extra;
- ggml_tensor_extra_gpu src0_row_extra;
- ggml_tensor_extra_gpu src1_row_extra;
- ggml_tensor_extra_gpu dst_row_extra;
- ggml_tensor src0_row = *src0;
- ggml_tensor src1_row = *src1;
- ggml_tensor dst_row = *dst;
- src1_row.backend = GGML_BACKEND_TYPE_GPU;
- dst_row.backend = GGML_BACKEND_TYPE_GPU;
- src0_row.extra = &src0_row_extra;
- src1_row.extra = &src1_row_extra;
- dst_row.extra = &dst_row_extra;
- char *src0_original = src1->backend == GGML_BACKEND_TYPE_CPU
- ? (char *)src0->data
- : (char *)src0_extra->data_device[g_main_device];
- char *src1_original = src1->backend == GGML_BACKEND_TYPE_CPU
- ? (char *)src1->data
- : (char *)src1_extra->data_device[g_main_device];
- char *dst_original = dst->backend == GGML_BACKEND_TYPE_CPU
- ? (char *)dst->data
- : (char *)dst_extra->data_device[g_main_device];
- src0_row.ne[2] = 1;
- src0_row.ne[3] = 1;
- src0_row.nb[3] = src0->nb[2];
- if (src1->ne[1] == 1) {
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id =
- *(const int32_t *)(ids_host.data() + i01 * ids->nb[1] +
- id * ids->nb[0]);
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- src0_row_extra.data_device[g_main_device] =
- src0_original + row_id * src0->nb[2];
- src1_row_extra.data_device[g_main_device] =
- src1_original + i01 * src1->nb[1];
- dst_row_extra.data_device[g_main_device] =
- dst_original + i01 * dst->nb[1];
- ggml_sycl_mul_mat(&src0_row, &src1_row, &dst_row);
- }
- } else {
- sycl_pool_alloc<char> src1_contiguous(sizeof(float)*ggml_nelements(src1));
- sycl_pool_alloc<char> dst_contiguous(sizeof(float)*ggml_nelements(dst));
- src1_row_extra.data_device[g_main_device] = src1_contiguous.get();
- dst_row_extra.data_device[g_main_device] = dst_contiguous.get();
- for (int32_t row_id = 0; row_id < n_as; ++row_id) {
- int64_t num_src1_rows = 0;
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- if (row_id_i != row_id) {
- continue;
- }
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- SYCL_CHECK(CHECK_TRY_ERROR(
- stream->memcpy(src1_contiguous.get() + num_src1_rows * nb11,
- src1_original + i01 * nb11, nb11)));
- num_src1_rows++;
- }
- if (num_src1_rows == 0) {
- continue;
- }
- src0_row_extra.data_device[g_main_device] =
- src0_original + row_id * src0->nb[2];
- src1_row.ne[1] = num_src1_rows;
- dst_row.ne[1] = num_src1_rows;
- src1_row.nb[1] = nb11;
- src1_row.nb[2] = num_src1_rows*nb11;
- src1_row.nb[3] = num_src1_rows*nb11;
- dst_row.nb[1] = nb1;
- dst_row.nb[2] = num_src1_rows*nb1;
- dst_row.nb[3] = num_src1_rows*nb1;
- ggml_sycl_mul_mat(&src0_row, &src1_row, &dst_row);
- num_src1_rows = 0;
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- if (row_id_i != row_id) {
- continue;
- }
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- SYCL_CHECK(CHECK_TRY_ERROR(stream->memcpy(
- dst_original + i01 * nb1,
- dst_contiguous.get() + num_src1_rows * nb1, nb1)));
- num_src1_rows++;
- }
- }
- }
- if (dst->backend == GGML_BACKEND_TYPE_CPU) {
- SYCL_CHECK(CHECK_TRY_ERROR(stream->wait()));
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_scale);
- }
- static void ggml_sycl_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_clamp);
- }
- static void ggml_sycl_cpy(const ggml_tensor *src0, const ggml_tensor *src1,
- ggml_tensor *dst) try {
- const int64_t ne = ggml_nelements(src0);
- GGML_ASSERT(ne == ggml_nelements(src1));
- GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
- GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
- GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
- GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
- GGML_TENSOR_BINARY_OP_LOCALS;
- SYCL_CHECK(ggml_sycl_set_device(g_main_device));
- dpct::queue_ptr main_stream = g_syclStreams[g_main_device][0];
- const ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- const ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
- if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f32_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f32_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
- ggml_cpy_f32_q8_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
- ggml_cpy_f32_q4_0_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
- ggml_cpy_f32_q4_1_sycl(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
- ggml_cpy_f16_f32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
- ggml_cpy_f16_f16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_I16 && src1->type == GGML_TYPE_I16) {
- ggml_cpy_i16_i16_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
- ggml_cpy_i32_i32_sycl (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
- } else {
- fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
- ggml_type_name(src0->type), ggml_type_name(src1->type));
- GGML_ASSERT(false);
- }
- (void) dst;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_sycl_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- // TODO: why do we pass dst as src1 here?
- ggml_sycl_cpy(src0, dst, nullptr);
- (void) src1;
- }
- static void ggml_sycl_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_diag_mask_inf);
- }
- static void ggml_sycl_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_soft_max);
- }
- static void ggml_sycl_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_rope);
- }
- static void ggml_sycl_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_alibi);
- }
- static void ggml_sycl_pool2d(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_pool2d);
- }
- static void ggml_sycl_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_im2col);
- }
- static void ggml_sycl_sum_rows(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_sum_rows);
- }
- static void ggml_sycl_argsort(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_sycl_op_flatten(src0, src1, dst, ggml_sycl_op_argsort);
- }
- static void ggml_sycl_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- (void) src0;
- (void) src1;
- (void) dst;
- }
- static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
- }
- void ggml_sycl_free_data(struct ggml_tensor *tensor) try {
- if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_TYPE_GPU && tensor->backend != GGML_BACKEND_TYPE_GPU_SPLIT) ) {
- return;
- }
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
- for (int i = 0; i < g_device_count; ++i) {
- const dpct::queue_ptr stream = g_syclStreams[i][0];
- if (extra->data_device[i] != nullptr) {
- SYCL_CHECK(ggml_sycl_set_device(i));
- SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(extra->data_device[i], *stream)));
- }
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- if (extra->events[i][is] != nullptr) {
- SYCL_CHECK(ggml_sycl_set_device(i));
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::destroy_event(extra->events[i][is])));
- }
- }
- }
- delete extra;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
- static size_t g_temp_tensor_extra_index = 0;
- static ggml_tensor_extra_gpu * ggml_sycl_alloc_temp_tensor_extra() {
- if (g_temp_tensor_extras == nullptr) {
- g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_SYCL_MAX_NODES];
- }
- size_t alloc_index = g_temp_tensor_extra_index;
- g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_SYCL_MAX_NODES;
- ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
- memset(extra, 0, sizeof(*extra));
- return extra;
- }
- static void ggml_sycl_assign_buffers_impl(struct ggml_tensor *tensor,
- bool scratch, bool force_inplace,
- bool no_alloc) try {
- if (scratch && g_scratch_size == 0) {
- return;
- }
- tensor->backend = GGML_BACKEND_TYPE_GPU;
- if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU) {
- const ggml_op src0_op = tensor->src[0]->op;
- if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
- ggml_sycl_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc);
- }
- }
- if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU) {
- ggml_sycl_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc);
- }
- if (scratch && no_alloc) {
- return;
- }
- ggml_tensor_extra_gpu * extra;
- const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
- tensor->op == GGML_OP_VIEW ||
- force_inplace;
- const size_t size = ggml_nbytes(tensor);
- SYCL_CHECK(ggml_sycl_set_device(g_main_device));
- const dpct::queue_ptr stream = g_syclStreams[g_main_device][0];
- if (inplace && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT)) {
- ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
- char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
- size_t offset = 0;
- if (tensor->op == GGML_OP_VIEW) {
- memcpy(&offset, tensor->op_params, sizeof(size_t));
- }
- extra = ggml_sycl_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = src0_ddc + offset;
- } else if (tensor->op == GGML_OP_CPY) {
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
- void * src1_ddv = src1_extra->data_device[g_main_device];
- extra = ggml_sycl_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = src1_ddv;
- } else if (scratch) {
- GGML_ASSERT(size <= g_scratch_size);
- if (g_scratch_offset + size > g_scratch_size) {
- g_scratch_offset = 0;
- }
- char * data = (char *) g_scratch_buffer;
- if (data == nullptr) {
- SYCL_CHECK(CHECK_TRY_ERROR(
- data = (char *)sycl::malloc_device(
- g_scratch_size, *stream)));
- g_scratch_buffer = data;
- }
- extra = ggml_sycl_alloc_temp_tensor_extra();
- extra->data_device[g_main_device] = data + g_scratch_offset;
- g_scratch_offset += size;
- GGML_ASSERT(g_scratch_offset <= g_scratch_size);
- } else { // allocate new buffers outside of scratch
- void * data;
- SYCL_CHECK(CHECK_TRY_ERROR(data = (void *)sycl::malloc_device(
- size, *stream)));
- SYCL_CHECK(CHECK_TRY_ERROR(
- (*stream).memset(data, 0, size).wait()));
- extra = new ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
- extra->data_device[g_main_device] = data;
- }
- tensor->extra = extra;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- void ggml_sycl_copy_to_device(struct ggml_tensor *tensor) try {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- GGML_ASSERT(ggml_is_contiguous(tensor));
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
- SYCL_CHECK(ggml_sycl_set_device(g_main_device));
- const dpct::queue_ptr stream = g_syclStreams[g_main_device][0];
- SYCL_CHECK(CHECK_TRY_ERROR((*stream)
- .memcpy(extra->data_device[g_main_device],
- tensor->data, ggml_nbytes(tensor))
- .wait()));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- void ggml_sycl_assign_buffers(struct ggml_tensor * tensor) {
- ggml_sycl_assign_buffers_impl(tensor, true, false, false);
- }
- void ggml_sycl_assign_buffers_no_alloc(struct ggml_tensor * tensor) {
- ggml_sycl_assign_buffers_impl(tensor, true, false, true);
- }
- void ggml_sycl_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
- ggml_sycl_assign_buffers_impl(tensor, false, false, false);
- }
- void ggml_sycl_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
- ggml_sycl_assign_buffers_impl(tensor, false, true, false);
- }
- void ggml_sycl_set_main_device(const int main_device) try {
- if (g_main_device == main_device) return;
- check_allow_gpu_index(main_device);
- g_main_device = main_device;
- g_main_device_id = g_sycl_gpu_mgr->gpus[main_device];
- if (g_ggml_sycl_debug) {
- dpct::device_info prop;
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
- prop, dpct::dev_mgr::instance().get_device(g_main_device_id))));
- fprintf(stderr, "Using device %d (%s) as main device\n",
- g_main_device_id, prop.get_name());
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- void ggml_sycl_set_scratch_size(const size_t scratch_size) {
- // this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously
- // it still won't always work as expected, but it's better than nothing
- if (scratch_size > g_scratch_size) {
- ggml_sycl_free_scratch();
- }
- g_scratch_size = std::max(g_scratch_size, scratch_size);
- }
- void ggml_sycl_free_scratch() try {
- if (g_scratch_buffer == nullptr) {
- return;
- }
- ggml_sycl_set_device(g_main_device);
- const dpct::queue_ptr stream = g_syclStreams[g_main_device][0];
- SYCL_CHECK(CHECK_TRY_ERROR(
- sycl::free(g_scratch_buffer, *stream)));
- g_scratch_buffer = nullptr;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- bool ggml_sycl_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
- if (!g_sycl_loaded) return false;
- ggml_sycl_func_t func;
- const bool any_on_device = tensor->backend == GGML_BACKEND_TYPE_GPU
- || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU || tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT))
- || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_TYPE_GPU);
- if (!any_on_device && tensor->op != GGML_OP_MUL_MAT && tensor->op != GGML_OP_MUL_MAT_ID) {
- return false;
- }
- if (tensor->op == GGML_OP_MUL_MAT) {
- if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) {
- #ifndef NDEBUG
- fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]);
- #endif
- return false;
- }
- }
- switch (tensor->op) {
- case GGML_OP_REPEAT:
- func = ggml_sycl_repeat;
- break;
- case GGML_OP_GET_ROWS:
- func = ggml_sycl_get_rows;
- break;
- case GGML_OP_DUP:
- func = ggml_sycl_dup;
- break;
- case GGML_OP_ADD:
- func = ggml_sycl_add;
- break;
- case GGML_OP_ACC:
- func = ggml_sycl_acc;
- break;
- case GGML_OP_MUL:
- func = ggml_sycl_mul;
- break;
- case GGML_OP_DIV:
- func = ggml_sycl_div;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_GELU:
- func = ggml_sycl_gelu;
- break;
- case GGML_UNARY_OP_SILU:
- func = ggml_sycl_silu;
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- func = ggml_sycl_gelu_quick;
- break;
- case GGML_UNARY_OP_TANH:
- func = ggml_sycl_tanh;
- break;
- case GGML_UNARY_OP_RELU:
- func = ggml_sycl_relu;
- break;
- case GGML_UNARY_OP_HARDSIGMOID:
- func = ggml_sycl_hardsigmoid;
- break;
- case GGML_UNARY_OP_HARDSWISH:
- func = ggml_sycl_hardswish;
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_NORM:
- func = ggml_sycl_norm;
- break;
- case GGML_OP_GROUP_NORM:
- func = ggml_sycl_group_norm;
- break;
- case GGML_OP_CONCAT:
- func = ggml_sycl_concat;
- break;
- case GGML_OP_UPSCALE:
- func = ggml_sycl_upscale;
- break;
- case GGML_OP_PAD:
- func = ggml_sycl_pad;
- break;
- case GGML_OP_LEAKY_RELU:
- func = ggml_sycl_leaky_relu;
- break;
- case GGML_OP_RMS_NORM:
- func = ggml_sycl_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_sycl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_sycl_mul_mat;
- break;
- case GGML_OP_MUL_MAT_ID:
- if (!any_on_device && !ggml_sycl_can_mul_mat(tensor->src[2], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_sycl_mul_mat_id;
- break;
- case GGML_OP_SCALE:
- func = ggml_sycl_scale;
- break;
- case GGML_OP_SQR:
- func = ggml_sycl_sqr;
- break;
- case GGML_OP_CLAMP:
- func = ggml_sycl_clamp;
- break;
- case GGML_OP_CPY:
- func = ggml_sycl_cpy;
- break;
- case GGML_OP_CONT:
- func = ggml_sycl_dup;
- break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- func = ggml_sycl_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- func = ggml_sycl_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- func = ggml_sycl_soft_max;
- break;
- case GGML_OP_ROPE:
- func = ggml_sycl_rope;
- break;
- case GGML_OP_ALIBI:
- func = ggml_sycl_alibi;
- break;
- case GGML_OP_IM2COL:
- func = ggml_sycl_im2col;
- break;
- case GGML_OP_POOL_2D:
- func = ggml_sycl_pool2d;
- break;
- case GGML_OP_SUM_ROWS:
- func = ggml_sycl_sum_rows;
- break;
- case GGML_OP_ARGSORT:
- func = ggml_sycl_argsort;
- break;
- default:
- return false;
- }
- if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_TYPE_GPU_SPLIT) {
- ggml_sycl_set_peer_access(tensor->src[1]->ne[1]);
- }
- if (params->ith != 0) {
- return true;
- }
- if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
- return true;
- }
- func(tensor->src[0], tensor->src[1], tensor);
- return true;
- }
- GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
- GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_gpu_list\n");
- for(int i=0;i<max_len;i++) id_list[i] = -1;
- if (!g_sycl_gpu_mgr) {
- g_sycl_gpu_mgr = new sycl_gpu_mgr();
- }
- for (int i=0;i< g_sycl_gpu_mgr->gpus.size();i++){
- if (i>=max_len) break;
- id_list[i] = g_sycl_gpu_mgr->gpus[i];
- }
- return;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- int ggml_sycl_get_device_count() try {
- int device_count;
- if (CHECK_TRY_ERROR(device_count =
- dpct::dev_mgr::instance().device_count()) != 0) {
- return 0;
- }
- return device_count;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
- size_t description_size) try {
- GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_device_description\n");
- dpct::device_info prop;
- int device_id = g_sycl_gpu_mgr->gpus[device];
- SYCL_CHECK(CHECK_TRY_ERROR(dpct::get_device_info(
- prop, dpct::dev_mgr::instance().get_device(device_id))));
- snprintf(description, description_size, "%s", prop.get_name());
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free,
- size_t *total) try {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n");
- ggml_sycl_set_device(device);
- /*
- DPCT1009:218: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string was
- inserted. You need to rewrite this code.
- */
- /*
- DPCT1106:217: 'cudaMemGetInfo' was migrated with the Intel extensions for
- device information which may not be supported by all compilers or runtimes.
- You may need to adjust the code.
- */
- int device_id = g_sycl_gpu_mgr->gpus[device];
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::dev_mgr::instance().get_device(device_id).get_memory_info(*free, *total)));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- ////////////////////////////////////////////////////////////////////////////////
- // backend interface
- #define UNUSED GGML_UNUSED
- // sycl buffer
- struct ggml_backend_sycl_buffer_context {
- int device;
- void * dev_ptr = nullptr;
- ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
- size_t temp_tensor_extra_index = 0;
- std::string name;
- ggml_backend_sycl_buffer_context(int device, void * dev_ptr) :
- device(device), dev_ptr(dev_ptr) {
- check_allow_gpu_index(device);
- int id = g_sycl_gpu_mgr->gpus[device];
- name = (GGML_SYCL_NAME + std::to_string(id));
- }
- ~ ggml_backend_sycl_buffer_context() {
- delete[] temp_tensor_extras;
- }
- ggml_tensor_extra_gpu * ggml_sycl_alloc_temp_tensor_extra() {
- if (temp_tensor_extras == nullptr) {
- temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_SYCL_MAX_NODES];
- }
- size_t alloc_index = temp_tensor_extra_index;
- temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_SYCL_MAX_NODES;
- ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
- memset(extra, 0, sizeof(*extra));
- return extra;
- }
- };
- GGML_CALL static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
- ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
- return ctx->name.c_str();
- }
- GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
- }
- static void
- ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
- ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
- ggml_sycl_set_device(ctx->device);
- const dpct::queue_ptr stream = g_syclStreams[ctx->device][0];
- SYCL_CHECK(
- CHECK_TRY_ERROR(sycl::free(ctx->dev_ptr, *stream)));
- delete ctx;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
- return ctx->dev_ptr;
- }
- GGML_CALL static void
- ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
- ggml_tensor *tensor) try {
- ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
- if (tensor->view_src != NULL && tensor->view_offs == 0) {
- assert(tensor->view_src->buffer->buft == buffer->buft);
- tensor->backend = tensor->view_src->backend;
- tensor->extra = tensor->view_src->extra;
- return;
- }
- ggml_tensor_extra_gpu * extra = ctx->ggml_sycl_alloc_temp_tensor_extra();
- extra->data_device[ctx->device] = tensor->data;
- tensor->backend = GGML_BACKEND_TYPE_GPU;
- tensor->extra = extra;
- if (ggml_is_quantized(tensor->type)) {
- // initialize padding to 0 to avoid possible NaN values
- size_t original_size = ggml_nbytes(tensor);
- size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
- if (padded_size > original_size && tensor->view_src == nullptr) {
- SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[ctx->device][0]->memset(
- (char *)tensor->data + original_size, 0,
- padded_size - original_size).wait()));
- }
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
- ggml_tensor *tensor,
- const void *data, size_t offset,
- size_t size) try {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
- ggml_sycl_set_device(ctx->device);
- const dpct::queue_ptr stream = g_syclStreams[ctx->device][0];
- SYCL_CHECK(
- CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw()));
- char* host_buf = (char*)malloc(size);
- memcpy(host_buf, data, size);
- SYCL_CHECK(
- CHECK_TRY_ERROR((*stream)
- .memcpy((char *)tensor->data + offset, host_buf, size)
- .wait()));
- free(host_buf);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_backend_sycl_buffer_get_tensor(ggml_backend_buffer_t buffer,
- const ggml_tensor *tensor,
- void *data, size_t offset,
- size_t size) try {
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
- ggml_sycl_set_device(ctx->device);
- const dpct::queue_ptr stream = g_syclStreams[ctx->device][0];
- SYCL_CHECK(
- CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw()));
- SYCL_CHECK(CHECK_TRY_ERROR(
- (*stream)
- .memcpy(data, (const char *)tensor->data + offset, size)
- .wait()));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static bool
- ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
- const ggml_tensor *src,
- ggml_tensor *dst) try {
- if (ggml_backend_buffer_is_sycl(src->buffer)) {
- ggml_backend_sycl_buffer_context * src_ctx = (ggml_backend_sycl_buffer_context *)src->buffer->context;
- ggml_backend_sycl_buffer_context * dst_ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
- ggml_sycl_set_device(src_ctx->device);
- /*
- DPCT1009:198: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::dev_mgr::instance().get_device(src_ctx->device).queues_wait_and_throw()));
- ggml_sycl_set_device(dst_ctx->device);
- /*
- DPCT1009:199: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
- /*
- DPCT1009:200: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- dpct::queue_ptr stream_dst = g_syclStreams[dst_ctx->device][0];
- dpct::queue_ptr stream_src = g_syclStreams[src_ctx->device][0];
- size_t size = ggml_nbytes(src);
- //todo. it's dirty solutino to walkaroud known issue:device2device cross GPUs.
- dev2dev_memcpy(*stream_dst, *stream_src, dst->data, src->data, size);
- //todo, it's known issue:error in device2device cross GPUs. reused when the issue is fixed. DON"T remove
- #if 0
- SYCL_CHECK(CHECK_TRY_ERROR((*stream).memcpy(
- (char *)dst->data, (const char *)src->data, size).wait()));
- /*
- DPCT1009:201: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::dev_mgr::instance().get_device(dst_ctx->device).queues_wait_and_throw()));
- #endif
- return true;
- }
- return false;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
- uint8_t value) try {
- ggml_backend_sycl_buffer_context * ctx = ( ggml_backend_sycl_buffer_context *)buffer->context;
- ggml_sycl_set_device(ctx->device);
- const dpct::queue_ptr stream = g_syclStreams[ctx->device][0];
- SYCL_CHECK(
- CHECK_TRY_ERROR(dpct::get_current_device().queues_wait_and_throw()));
- SYCL_CHECK(CHECK_TRY_ERROR((*stream)
- .memset(ctx->dev_ptr, value, buffer->size)
- .wait()));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static struct ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
- /* .get_name = */ ggml_backend_sycl_buffer_get_name,
- /* .free_buffer = */ ggml_backend_sycl_buffer_free_buffer,
- /* .get_base = */ ggml_backend_sycl_buffer_get_base,
- /* .init_tensor = */ ggml_backend_sycl_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_sycl_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_sycl_buffer_get_tensor,
- /* .cpy_tensor = */ ggml_backend_sycl_buffer_cpy_tensor,
- /* .clear = */ ggml_backend_sycl_buffer_clear,
- /* .reset = */ NULL,
- };
- // sycl buffer type
- struct ggml_backend_sycl_buffer_type_context {
- int device;
- std::string name;
- };
- struct ggml_backend_sycl_context {
- int device;
- std::string name;
- };
- GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
- ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
- return ctx->name.c_str();
- }
- GGML_CALL static ggml_backend_buffer_t
- ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
- size_t size) try {
- ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
- ggml_sycl_set_device(buft_ctx->device);
- const dpct::queue_ptr stream = g_syclStreams[buft_ctx->device][0];
- size = std::max(size, (size_t)1); // syclMalloc returns null for size 0
- void * dev_ptr;
- SYCL_CHECK(CHECK_TRY_ERROR(dev_ptr = (void *)sycl::malloc_device(
- size, *stream)));
- ggml_backend_sycl_buffer_context * ctx = new ggml_backend_sycl_buffer_context(buft_ctx->device, dev_ptr);
- return ggml_backend_buffer_init(buft, ggml_backend_sycl_buffer_interface, ctx, size);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- UNUSED(buft);
- }
- static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
- return dpct::get_current_device().get_max_mem_alloc_size();
- UNUSED(buft);
- }
- GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- size_t size = ggml_nbytes(tensor);
- int64_t ne0 = tensor->ne[0];
- if (ggml_is_quantized(tensor->type)) {
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return size;
- UNUSED(buft);
- }
- GGML_CALL static bool ggml_backend_sycl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- if (!ggml_backend_is_sycl(backend)) {
- return false;
- }
- ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- return buft_ctx->device == sycl_ctx->device;
- }
- static ggml_backend_buffer_type_i ggml_backend_sycl_buffer_type_interface = {
- /* .get_name = */ ggml_backend_sycl_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_sycl_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_sycl_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_sycl_buffer_type_get_max_size,
- /* .get_alloc_size = */ ggml_backend_sycl_buffer_type_get_alloc_size,
- /* .supports_backend = */ ggml_backend_sycl_buffer_type_supports_backend,
- /* .is_host = */ nullptr,
- };
- ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device_index) {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_buffer_type\n");
- if (device_index>=g_device_count or device_index<0) {
- printf("ggml_backend_sycl_buffer_type error: device_index:%d is out of range [0, %d], miss to call ggml_backend_sycl_set_single_device()\n",
- device_index, g_device_count-1);
- GGML_ASSERT(device_index<g_device_count);
- }
- static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_types[GGML_SYCL_MAX_DEVICES];
- if (!g_ggml_backend_sycl_buffer_type_initialized) {
- for (int i = 0; i < g_device_count; i++) {
- ggml_backend_sycl_buffer_types[i] = {
- /* .iface = */ ggml_backend_sycl_buffer_type_interface,
- /* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(g_sycl_gpu_mgr->gpus[i])},
- };
- }
- g_ggml_backend_sycl_buffer_type_initialized = true;
- }
- return &ggml_backend_sycl_buffer_types[device_index];
- }
- // sycl split buffer type
- static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_SYCL_MAX_DEVICES> & tensor_split, int id) {
- const int64_t nrows = ggml_nrows(tensor);
- const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
- *row_low = id == 0 ? 0 : nrows*tensor_split[id];
- *row_low -= *row_low % rounding;
- if (id == g_device_count - 1) {
- *row_high = nrows;
- } else {
- *row_high = nrows*tensor_split[id + 1];
- *row_high -= *row_high % rounding;
- }
- }
- struct ggml_backend_sycl_split_buffer_context {
- ~ggml_backend_sycl_split_buffer_context() try {
- for (ggml_tensor_extra_gpu * extra : tensor_extras) {
- for (int i = 0; i < g_device_count; ++i) {
- // int id = g_sycl_gpu_mgr->gpus[i];
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- if (extra->events[i][is] != nullptr) {
- /*
- DPCT1009:206: SYCL uses exceptions to report errors and
- does not use the error codes. The original code was
- commented out and a warning string was inserted. You
- need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- dpct::destroy_event(extra->events[i][is])));
- }
- }
- if (extra->data_device[i] != nullptr) {
- /*
- DPCT1009:207: SYCL uses exceptions to report errors and does
- not use the error codes. The original code was commented out
- and a warning string was inserted. You need to rewrite this
- code.
- */
- ggml_sycl_set_device(i);
- SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(
- extra->data_device[i], *g_syclStreams[i][0])));
- }
- }
- delete extra;
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- std::vector<ggml_tensor_extra_gpu *> tensor_extras;
- };
- GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
- return GGML_SYCL_NAME "_Split";
- UNUSED(buffer);
- }
- // unused at the moment
- //static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
- // return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
- //}
- GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
- delete ctx;
- }
- GGML_CALL static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
- // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
- return (void *)0x1000;
- UNUSED(buffer);
- }
- GGML_CALL static void
- ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
- ggml_tensor *tensor) try {
- GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
- ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
- ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
- ctx->tensor_extras.push_back(extra);
- for (int i = 0; i < g_device_count; ++i) {
- // int id = g_sycl_gpu_mgr->gpus[i];
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- // FIXME: do not crash if cudaMalloc fails
- // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
- ggml_sycl_set_device(i);
- char * buf;
- /*
- DPCT1009:208: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(buf = (char *)sycl::malloc_device(
- size, *g_syclStreams[i][0])));
- // set padding to 0 to avoid possible NaN values
- if (size > original_size) {
- /*
- DPCT1009:209: SYCL uses exceptions to report errors and does not use
- the error codes. The original code was commented out and a warning
- string was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(
- (*g_syclStreams[i][0])
- .memset(buf + original_size, 0, size - original_size)
- .wait()));
- }
- extra->data_device[i] = buf;
- for (int64_t is = 0; is < MAX_STREAMS; ++is) {
- /*
- DPCT1009:210: SYCL uses exceptions to report errors and does not use
- the error codes. The original code was commented out and a warning
- string was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(
- CHECK_TRY_ERROR(extra->events[i][is] = new sycl::event()));
- }
- }
- tensor->backend = GGML_BACKEND_TYPE_GPU_SPLIT;
- tensor->extra = extra;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static void
- ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer,
- ggml_tensor *tensor, const void *data,
- size_t offset, size_t size) try {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- for (int i = 0; i < g_device_count; ++i) {
- // int id = g_sycl_gpu_mgr->gpus[i];
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- const char * buf_host = (const char *)data + offset_split;
- /*
- DPCT1009:211: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- ggml_sycl_set_device(i);
- SYCL_CHECK(CHECK_TRY_ERROR(
- (*g_syclStreams[i][0])
- .memcpy(extra->data_device[i], buf_host, original_size)
- .wait()));
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static void
- ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer,
- const ggml_tensor *tensor, void *data,
- size_t offset, size_t size) try {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- ggml_backend_sycl_split_buffer_type_context * buft_ctx = (ggml_backend_sycl_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- for (int i = 0; i < g_device_count; ++i) {
- // int id = g_sycl_gpu_mgr->gpus[i];
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, i);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- char * buf_host = (char *)data + offset_split;
- /*
- DPCT1009:212: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- ggml_sycl_set_device(i);
- SYCL_CHECK(CHECK_TRY_ERROR(
- (*g_syclStreams[i][0])
- .memcpy(buf_host, extra->data_device[i], original_size)
- .wait()));
- }
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- UNUSED(buffer);
- UNUSED(value);
- }
- static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = {
- /* .get_name = */ ggml_backend_sycl_split_buffer_get_name,
- /* .free_buffer = */ ggml_backend_sycl_split_buffer_free_buffer,
- /* .get_base = */ ggml_backend_sycl_split_buffer_get_base,
- /* .init_tensor = */ ggml_backend_sycl_split_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_sycl_split_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_sycl_split_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_sycl_split_buffer_clear,
- /* .reset = */ NULL,
- };
- GGML_CALL static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_SYCL_NAME "_Split";
- UNUSED(buft);
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
- // instead, we allocate them for each tensor separately in init_tensor
- // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
- // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
- ggml_backend_sycl_split_buffer_context * ctx = new ggml_backend_sycl_split_buffer_context();
- return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size);
- }
- GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- UNUSED(buft);
- }
- GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context;
- size_t total_size = 0;
- const int64_t ne0 = tensor->ne[0];
- for (int i = 0; i < g_device_count; ++i) {
- // int id = g_sycl_gpu_mgr->gpus[i];
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, i);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- total_size += ggml_nbytes_split(tensor, nrows_split);
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return total_size;
- }
- GGML_CALL static bool ggml_backend_sycl_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_sycl(backend);
- UNUSED(buft);
- }
- GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
- return false;
- UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface = {
- /* .get_name = */ ggml_backend_sycl_split_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_sycl_split_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_sycl_split_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_sycl_split_buffer_type_get_alloc_size,
- /* .supports_backend = */ ggml_backend_sycl_split_buffer_type_supports_backend,
- /* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host,
- };
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_split_buffer_type\n");
- ggml_init_sycl();
- // FIXME: this is not thread safe
- static std::map<std::array<float, GGML_SYCL_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
- std::array<float, GGML_SYCL_MAX_DEVICES> tensor_split_arr = {};
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_SYCL_MAX_DEVICES, [](float x) { return x == 0.0f; });
- if (all_zero) {
- tensor_split_arr = g_default_tensor_split;
- } else {
- float split_sum = 0.0f;
- for (int i = 0; i < g_device_count; ++i) {
- // int id = g_sycl_gpu_mgr->gpus[i];
- tensor_split_arr[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < g_device_count; ++i) {
- // int id = g_sycl_gpu_mgr->gpus[i];
- tensor_split_arr[i] /= split_sum;
- }
- }
- auto it = buft_map.find(tensor_split_arr);
- if (it != buft_map.end()) {
- return &it->second;
- }
- struct ggml_backend_buffer_type buft {
- /* .iface = */ ggml_backend_sycl_split_buffer_type_interface,
- /* .context = */ new ggml_backend_sycl_split_buffer_type_context{tensor_split_arr},
- };
- auto result = buft_map.emplace(tensor_split_arr, buft);
- return &result.first->second;
- }
- // host buffer type
- GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_SYCL_NAME "_Host";
- UNUSED(buft);
- }
- GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
- return GGML_SYCL_NAME "_Host";
- UNUSED(buffer);
- }
- static void ggml_backend_sycl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_sycl_host_free(buffer->context);
- }
- static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- void * ptr = ggml_sycl_host_malloc(size);
- if (ptr == nullptr) {
- // fallback to cpu buffer
- return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
- }
- // FIXME: this is a hack to avoid having to implement a new buffer type
- ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
- buffer->buft = buft;
- buffer->iface.get_name = ggml_backend_sycl_host_buffer_name;
- buffer->iface.free_buffer = ggml_backend_sycl_host_buffer_free_buffer;
- return buffer;
- }
- ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_host_buffer_type\n");
- static struct ggml_backend_buffer_type ggml_backend_sycl_buffer_type_host = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_sycl_host_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_sycl_host_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
- /* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
- /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
- /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
- /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
- },
- /* .context = */ nullptr,
- };
- return &ggml_backend_sycl_buffer_type_host;
- }
- // backend
- GGML_CALL static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- return sycl_ctx->name.c_str();
- }
- GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- delete sycl_ctx;
- delete backend;
- }
- GGML_CALL static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- return ggml_backend_sycl_buffer_type(sycl_ctx->device);
- }
- GGML_CALL static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
- ggml_tensor *tensor,
- const void *data, size_t offset,
- size_t size) try {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
- (char *)tensor->data + offset, data, size).wait()));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
- const ggml_tensor *tensor,
- void *data, size_t offset,
- size_t size) try {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- GGML_ASSERT(tensor->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && "unsupported buffer type");
- GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
- SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
- data, (const char *)tensor->data + offset, size).wait()));
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
- const ggml_tensor *src,
- ggml_tensor *dst) try {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) {
- /*
- DPCT1009:215: SYCL uses exceptions to report errors and does not use the
- error codes. The original code was commented out and a warning string
- was inserted. You need to rewrite this code.
- */
- SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->memcpy(
- dst->data, src->data, ggml_nbytes(dst)).wait()));
- return true;
- }
- return false;
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- static void ggml_backend_sycl_synchronize(ggml_backend_t backend) try {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- SYCL_CHECK(CHECK_TRY_ERROR(g_syclStreams[sycl_ctx->device][0]->wait()));
- UNUSED(backend);
- }
- catch (sycl::exception const &exc) {
- std::cerr << exc.what() << "Exception caught at file:" << __FILE__
- << ", line:" << __LINE__ << std::endl;
- std::exit(1);
- }
- GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
- ggml_sycl_set_main_device(sycl_ctx->device);
- ggml_compute_params params = {};
- params.type = GGML_TASK_TYPE_COMPUTE;
- params.ith = 0;
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
- continue;
- }
- #ifndef NDEBUG
- assert(node->backend == GGML_BACKEND_TYPE_GPU || node->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
- assert(node->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
- assert(node->extra != nullptr);
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j] != nullptr) {
- assert(node->src[j]->backend == GGML_BACKEND_TYPE_GPU || node->src[j]->backend == GGML_BACKEND_TYPE_GPU_SPLIT);
- assert(node->src[j]->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device));
- assert(node->src[j]->extra != nullptr);
- }
- }
- #endif
- bool ok = ggml_sycl_compute_forward(¶ms, node);
- if (!ok) {
- fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
- }
- GGML_ASSERT(ok);
- }
- return GGML_STATUS_SUCCESS;
- }
- GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
- switch (op->op) {
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_TANH:
- return true;
- default:
- return false;
- }
- break;
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- {
- struct ggml_tensor * a;
- struct ggml_tensor * b;
- if (op->op == GGML_OP_MUL_MAT) {
- a = op->src[0];
- b = op->src[1];
- } else {
- a = op->src[2];
- b = op->src[1];
- }
- if (a->ne[3] != b->ne[3]) {
- return false;
- }
- ggml_type a_type = a->type;
- if (a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ4_XS ||
- a_type == GGML_TYPE_IQ3_XXS || a_type == GGML_TYPE_IQ3_S ||
- a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ2_S ||
- a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ1_M
- ) {
- if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
- return false;
- }
- }
- return true;
- } break;
- case GGML_OP_GET_ROWS:
- {
- switch (op->src[0]->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return true;
- default:
- return false;
- }
- } break;
- case GGML_OP_CPY:
- {
- ggml_type src0_type = op->src[0]->type;
- ggml_type src1_type = op->src[1]->type;
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- return false;
- } break;
- case GGML_OP_CONCAT:
- {
- ggml_type src0_type = op->src[0]->type;
- return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
- } break;
- case GGML_OP_DUP:
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_REPEAT:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_NORM:
- case GGML_OP_ADD:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_RMS_NORM:
- case GGML_OP_SCALE:
- case GGML_OP_SQR:
- case GGML_OP_CLAMP:
- case GGML_OP_CONT:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_ROPE:
- case GGML_OP_ALIBI:
- case GGML_OP_IM2COL:
- case GGML_OP_POOL_2D:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_ARGSORT:
- case GGML_OP_ACC:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_UPSCALE:
- case GGML_OP_PAD:
- case GGML_OP_LEAKY_RELU:
- return true;
- default:
- return false;
- }
- UNUSED(backend);
- }
- GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
- const int min_batch_size = 32;
- return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS && op->op != GGML_OP_MUL_MAT_ID;
- GGML_UNUSED(backend);
- }
- static ggml_backend_i ggml_backend_sycl_interface = {
- /* .get_name = */ ggml_backend_sycl_name,
- /* .free = */ ggml_backend_sycl_free,
- /* .get_default_buffer_type = */ ggml_backend_sycl_get_default_buffer_type,
- /* .set_tensor_async = */ ggml_backend_sycl_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_sycl_get_tensor_async,
- /* .cpy_tensor_async = */ NULL, //ggml_backend_sycl_cpy_tensor_async, // TODO: update for the new interface
- /* .synchronize = */ ggml_backend_sycl_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_sycl_graph_compute,
- /* .supports_op = */ ggml_backend_sycl_supports_op,
- /* .offload_op = */ ggml_backend_sycl_offload_op,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
- };
- static ggml_guid_t ggml_backend_sycl_guid() {
- static ggml_guid guid = { 0x58, 0x05, 0x13, 0x8f, 0xcd, 0x3a, 0x61, 0x9d, 0xe7, 0xcd, 0x98, 0xa9, 0x03, 0xfd, 0x7c, 0x53 };
- return &guid;
- }
- GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_init\n");
- ggml_init_sycl();
- check_allow_gpu_index(device);
- // not strictly necessary, but it may reduce the overhead of the first graph_compute
- ggml_sycl_set_main_device(device);
- int id = g_sycl_gpu_mgr->gpus[device];
- ggml_backend_sycl_context * ctx = new ggml_backend_sycl_context {
- /* .device = */ device,
- /* .name = */ GGML_SYCL_NAME + std::to_string(id),
- };
- ggml_backend_t sycl_backend = new ggml_backend {
- /* .guid = */ ggml_backend_sycl_guid(),
- /* .interface = */ ggml_backend_sycl_interface,
- /* .context = */ ctx
- };
- return sycl_backend;
- }
- bool ggml_backend_is_sycl(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid());
- }
- GGML_CALL int ggml_backend_sycl_get_device_count() {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_count\n");
- if (!g_sycl_gpu_mgr) g_sycl_gpu_mgr = new sycl_gpu_mgr();
- return g_sycl_gpu_mgr->get_gpu_count();
- }
- GGML_CALL static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
- ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
- return sycl_backend;
- UNUSED(params);
- }
- GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id) {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_index\n");
- return g_sycl_gpu_mgr->get_index(device_id);
- }
- GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index) {
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_id\n");
- return g_sycl_gpu_mgr->gpus[device_index];
- }
- GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id) {
- ggml_init_sycl();
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_set_single_device_mode\n");
- fprintf(stderr, "ggml_backend_sycl_set_single_device: use single device: [%d]\n", main_gpu_id);
- GGML_ASSERT(main_gpu_id<g_all_sycl_device_count);
- if (g_sycl_gpu_mgr) {
- delete g_sycl_gpu_mgr;
- }
- g_sycl_gpu_mgr = new sycl_gpu_mgr(main_gpu_id);
- g_ggml_sycl_backend_gpu_mode = SYCL_SINGLE_GPU_MODE;
- ggml_init_by_gpus(g_sycl_gpu_mgr->get_gpu_count());
- g_ggml_backend_sycl_buffer_type_initialized = false;
- }
- GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode() {
- ggml_init_sycl();
- GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_set_mul_device_mode\n");
- if (g_ggml_sycl_backend_gpu_mode == SYCL_MUL_GPU_MODE) {
- return;
- }
- fprintf(stderr, "ggml_backend_sycl_set_mul_device_mode: true\n");
- if (g_sycl_gpu_mgr) {
- delete g_sycl_gpu_mgr;
- }
- g_sycl_gpu_mgr = new sycl_gpu_mgr();
- g_ggml_sycl_backend_gpu_mode = SYCL_MUL_GPU_MODE;
- ggml_init_by_gpus(g_sycl_gpu_mgr->get_gpu_count());
- g_ggml_backend_sycl_buffer_type_initialized = false;
- }
- extern "C" int ggml_backend_sycl_reg_devices();
- int ggml_backend_sycl_reg_devices() {
- ggml_backend_sycl_set_mul_device_mode();
- assert(g_device_count>0);
- for (int i = 0; i < g_device_count; i++) {
- int id = g_sycl_gpu_mgr->gpus[i];
- char name[128];
- snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, id);
- ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
- }
- return g_device_count;
- }
|