| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165 |
- #include "ggml.h"
- #include "llama.h"
- #include "llama-cpp.h"
- #include "get-model.h"
- #include "common.h"
- #ifdef NDEBUG
- #undef NDEBUG
- #endif
- #include <algorithm>
- #include <cstdlib>
- #include <cstring>
- #include <fstream>
- #include <map>
- #include <string>
- #include <unordered_map>
- #include <vector>
- struct test_args {
- std::string model;
- std::string test;
- std::string device = "auto";
- };
- struct test_params {
- llama_model_ptr model;
- };
- static llama_model_ptr load_model(const test_args & args) {
- auto mparams = llama_model_default_params();
- ggml_backend_dev_t devs[2] = { nullptr, nullptr };
- if (args.device != "auto") {
- if (args.device == "gpu") {
- devs[0] = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
- if (devs[0] == nullptr) {
- fprintf(stderr, "Error: GPU requested but not available\n");
- return nullptr;
- }
- mparams.n_gpu_layers = 999;
- } else if (args.device == "cpu") {
- devs[0] = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- mparams.n_gpu_layers = 0;
- } else {
- fprintf(stderr, "Error: invalid device '%s'\n", args.device.c_str());
- return nullptr;
- }
- mparams.devices = devs;
- fprintf(stderr, "Using device: %s\n", ggml_backend_dev_name(devs[0]));
- }
- llama_model_ptr res;
- res.reset(llama_model_load_from_file(args.model.c_str(), mparams));
- if (!res) {
- fprintf(stderr, "Warning: failed to load model '%s', skipping test\n", args.model.c_str());
- return nullptr;
- }
- return res;
- }
- struct test_context {
- llama_context_ptr ctx;
- int n_vocab = 0;
- const llama_vocab * vocab = nullptr;
- std::unordered_map<llama_seq_id, int32_t> seq_positions;
- std::unordered_map<llama_seq_id, int32_t> last_batch_info;
- test_context(const test_params & params, std::vector<llama_sampler_seq_config> & configs, int32_t n_seq_max = -1) {
- auto * model = params.model.get();
- GGML_ASSERT(model);
- GGML_ASSERT(!ctx);
- llama_context_params cparams = llama_context_default_params();
- cparams.n_ctx = 512;
- cparams.n_batch = 512;
- cparams.samplers = configs.data();
- cparams.n_samplers = configs.size();
- // If n_seq_max is not specified, calculate it from configs
- if (n_seq_max < 0) {
- int32_t max_seq_id = 0;
- for (const auto & config : configs) {
- max_seq_id = std::max(config.seq_id, max_seq_id);
- }
- cparams.n_seq_max = max_seq_id + 1;
- } else {
- cparams.n_seq_max = n_seq_max;
- }
- ctx.reset(llama_init_from_model(model, cparams));
- if (!ctx) {
- throw std::runtime_error("failed to create context");
- }
- llama_set_warmup(ctx.get(), false);
- vocab = llama_model_get_vocab(model);
- n_vocab = llama_vocab_n_tokens(vocab);
- }
- bool decode(const std::map<llama_seq_id, std::string> & prompts) {
- GGML_ASSERT(ctx);
- last_batch_info.clear();
- llama_batch batch = llama_batch_init(512, 0, prompts.size());
- for (const auto & [seq_id, prompt] : prompts) {
- std::vector<llama_token> tokens;
- tokens.push_back(llama_vocab_bos(vocab));
- std::vector<llama_token> prompt_tokens(32);
- int n_tokens = llama_tokenize(vocab, prompt.c_str(), prompt.length(),
- prompt_tokens.data(), prompt_tokens.size(),
- false, false);
- if (n_tokens < 0) {
- fprintf(stderr, "Warning: tokenization failed for seq_id %d\n", seq_id);
- llama_batch_free(batch);
- return false;
- }
- for (int i = 0; i < n_tokens; i++) {
- tokens.push_back(prompt_tokens[i]);
- }
- if (seq_positions.find(seq_id) == seq_positions.end()) {
- seq_positions[seq_id] = 0;
- }
- int32_t start_pos = seq_positions[seq_id];
- for (size_t i = 0; i < tokens.size(); i++) {
- common_batch_add(batch, tokens[i], start_pos + i, { seq_id }, i == tokens.size() - 1);
- }
- seq_positions[seq_id] = start_pos + tokens.size();
- }
- printf("Batch contents:\n");
- printf("n_tokens: %d\n", batch.n_tokens);
- for (int i = 0; i < batch.n_tokens; i++) {
- printf("token[%d]: tok=%-5d, pos=%d, n_seq_id=%d, seq_ids=[", i, batch.token[i], batch.pos[i], batch.n_seq_id[i]);
- for (int j = 0; j < batch.n_seq_id[i]; j++) {
- printf("%d%s", batch.seq_id[i][j], j < batch.n_seq_id[i]-1 ? ", " : "");
- }
- printf("], logits=%d\n", batch.logits[i]);
- }
- if (llama_decode(ctx.get(), batch) != 0) {
- fprintf(stderr, "Warning: llama_decode failed\n");
- llama_batch_free(batch);
- return false;
- }
- // Build mapping from seq id to batch token idx
- for (int i = 0; i < batch.n_tokens; i++) {
- if (batch.logits[i]) {
- llama_seq_id seq_id = batch.seq_id[i][0];
- last_batch_info[seq_id] = i;
- }
- }
- llama_batch_free(batch);
- return true;
- }
- int32_t idx_for_seq(llama_seq_id seq_id) {
- auto it = last_batch_info.find(seq_id);
- if (it == last_batch_info.end()) {
- fprintf(stderr, "Error: no batch index found for seq_id %d\n", seq_id);
- return -1;
- }
- return it->second;
- }
- void update_batch_info(const llama_batch & batch) {
- last_batch_info.clear();
- for (int i = 0; i < batch.n_tokens; i++) {
- if (batch.logits[i]) {
- llama_seq_id cur_seq = batch.seq_id[i][0];
- last_batch_info[cur_seq] = i;
- }
- }
- }
- bool decode_token(llama_token token, llama_seq_id seq_id = 0) {
- GGML_ASSERT(ctx);
- llama_batch batch = llama_batch_init(1, 0, 1);
- int32_t pos = seq_positions[seq_id];
- common_batch_add(batch, token, pos, { seq_id }, true);
- if (llama_decode(ctx.get(), batch) != 0) {
- fprintf(stderr, "Warning: llama_decode failed for token %d in seq %d\n", token, seq_id);
- llama_batch_free(batch);
- return false;
- }
- update_batch_info(batch);
- seq_positions[seq_id]++;
- llama_batch_free(batch);
- return true;
- }
- bool decode_tokens(const std::map<llama_seq_id, llama_token> & seq_tokens) {
- GGML_ASSERT(ctx);
- llama_batch batch = llama_batch_init(seq_tokens.size(), 0, seq_tokens.size());
- for (const auto & [seq_id, token] : seq_tokens) {
- int32_t pos = seq_positions[seq_id];
- common_batch_add(batch, token, pos, { seq_id }, true);
- }
- if (llama_decode(ctx.get(), batch) != 0) {
- fprintf(stderr, "Warning: llama_decode failed for batch tokens\n");
- llama_batch_free(batch);
- return false;
- }
- for (const auto & [seq_id, _] : seq_tokens) {
- seq_positions[seq_id]++;
- }
- update_batch_info(batch);
- llama_batch_free(batch);
- return true;
- }
- std::string token_to_piece(llama_token token, bool special) const {
- std::string piece;
- piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
- const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
- if (n_chars < 0) {
- piece.resize(-n_chars);
- int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
- GGML_ASSERT(check == -n_chars);
- } else {
- piece.resize(n_chars);
- }
- return piece;
- }
- };
- static void test_backend_greedy_sampling(const test_params & params) {
- const int seq_id = 0;
- struct llama_sampler_chain_params backend_sampler_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_sampler_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_greedy());
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Some"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
- llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
- printf("greedy sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- token = llama_get_sampled_token_ith(test_ctx.ctx.get(), -1);
- printf("greedy sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- for (int i = 0; i < 10; i++) {
- int32_t loop_idx = test_ctx.idx_for_seq(seq_id);
- llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), loop_idx);
- printf("Generation step %d: token id:%d, string: %s\n", i, token, test_ctx.token_to_piece(token, false).c_str());
- if (!test_ctx.decode_token(token, 0)) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- }
- }
- static void test_backend_top_k_sampling(const test_params & params) {
- const int seq_id = 0;
- const int32_t k = 8;
- struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_top_k(k));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Hello"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
- float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
- uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
- for (size_t i = 0; i < n_logits; ++i) {
- printf("top_k logit[%zu] = %.6f\n", i, logits[i]);
- }
- llama_token * candidates = llama_get_sampled_candidates_ith(test_ctx.ctx.get(), batch_idx);
- uint32_t n_candidates = llama_get_sampled_candidates_count_ith(test_ctx.ctx.get(), batch_idx);
- for (size_t i = 0; i < n_candidates; ++i) {
- printf("top_k candidate[%zu] = %d : %s\n", i, candidates[i],
- test_ctx.token_to_piece(candidates[i], false).c_str());
- }
- // Sample using CPU sampler for verification that it is possible to do hybrid
- // sampling, first top_k on the backend and then dist on the CPU.
- struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
- GGML_ASSERT(chain->iface->backend_apply != nullptr);
- llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
- llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- printf("backend top-k hybrid sampling test PASSED\n");
- }
- static void test_backend_temp_sampling(const test_params & params) {
- {
- const float temp_0 = 0.8f;
- struct llama_sampler_chain_params backend_chain_params_0 = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain_0(llama_sampler_chain_init(backend_chain_params_0));
- llama_sampler_chain_add(backend_sampler_chain_0.get(), llama_sampler_init_temp(temp_0));
- const float temp_1 = 0.1f;
- struct llama_sampler_chain_params backend_chain_params_1 = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain_1(llama_sampler_chain_init(backend_chain_params_1));
- llama_sampler_chain_add(backend_sampler_chain_1.get(), llama_sampler_init_temp(temp_1));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {
- { 0, backend_sampler_chain_0.get() },
- { 1, backend_sampler_chain_1.get() }
- };
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{0, "Some where over the"}, {1, "Once upon a"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- // Verfify sequence 0
- {
- int32_t batch_idx = test_ctx.idx_for_seq(0);
- int n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
- GGML_ASSERT(n_logits == test_ctx.n_vocab);
- // Sample from sequence 0 using CPU sampler
- struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
- llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
- llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf("Sequence 0 sampled token id:%d, string: '%s'\n", token, token_str.c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- }
- // Verfify sequence 1
- {
- int32_t batch_idx = test_ctx.idx_for_seq(1);
- // Sample from sequence 1 using CPU sampler
- struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
- llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
- llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf("Sequence 1 sampled token id:%d, string: '%s'\n", token, token_str.c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- }
- }
- // lambda to testing non-positive temperature values.
- auto test_argmax_temp = [&](float temp) {
- printf("\nTesting temperature = %.1f\n", temp);
- int seq_id = 0;
- struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_temp(temp));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {
- { seq_id, backend_sampler_chain.get() },
- };
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Once"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
- uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
- GGML_ASSERT(n_logits == 1);
- };
- test_argmax_temp(0.0f);
- test_argmax_temp(-1.0f);
- printf("backend temp sampling test PASSED\n");
- }
- static void test_backend_temp_ext_sampling(const test_params & params) {
- {
- int seq_id = 0;
- const float temp = 0.8f;
- const float delta = 0.5f;
- const float exponent = 1.5f;
- struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_temp_ext(temp, delta, exponent));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {
- { seq_id, backend_sampler_chain.get() },
- };
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Once upon a"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- // Verify sequence 0
- {
- int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
- int n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
- GGML_ASSERT(n_logits == test_ctx.n_vocab);
- }
- }
- // lambda to testing non-positive temp/delta/exponent values.
- auto test_argmax_temp = [&](float temp, float delta, float exponent) {
- printf("\nTesting temperature = %.1f, delta = %1.f, exponent = %1.f\n", temp, delta, exponent);
- int seq_id = 0;
- struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_temp_ext(temp, delta, exponent));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {
- { seq_id, backend_sampler_chain.get() },
- };
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Once"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
- uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
- if (temp <= 0.0f && delta >= 0.0f) {
- GGML_ASSERT(n_logits == 1);
- } else {
- GGML_ASSERT(n_logits == (uint32_t) test_ctx.n_vocab);
- }
- };
- test_argmax_temp(0.0f, 0.3f, 1.0f); // Greedy (temp=0)
- test_argmax_temp(-1.0f, 0.3f, 2.0f); // Greedy (temp<0)
- test_argmax_temp(0.8f, 0.0f, 2.0f); // Temperature scaling
- printf("backend temp_ext sampling test PASSED\n");
- }
- static void test_backend_min_p_sampling(const test_params & params) {
- const int seq_id = 0;
- const float p = 0.1;
- struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_min_p(p, 0));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Hello"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
- float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
- uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
- // Print the logits that are above the min-p threshold
- std::vector<float> filtered_logits;
- for (size_t i = 0; i < n_logits; ++i) {
- if (logits[i] > -1e9f) {
- filtered_logits.push_back(logits[i]);
- //printf("min_p logit[%zu] = %.6f\n", i, logits[i]);
- }
- }
- GGML_ASSERT(filtered_logits.size() < (size_t) test_ctx.n_vocab);
- // Sample using CPU sampler for verification to inspect they are reasonable
- struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
- llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(88));
- llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf("min-p cpu sampled token id:%d, string: '%s'\n", token, token_str.c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- // Decode and sampler 10 more tokens
- for (int i = 0; i < 10; i++) {
- int32_t loop_idx = test_ctx.idx_for_seq(seq_id);
- llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), loop_idx);
- printf("min-p gen step %d: token id :%5.d, string: %s\n", i, token, test_ctx.token_to_piece(token, false).c_str());
- if (!test_ctx.decode_token(token, 0)) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- }
- printf("min-p sampling test PASSED\n");
- }
- static void test_backend_top_p_sampling(const test_params & params) {
- const int seq_id = 0;
- const float p = 0.9;
- struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_top_p(p, 0));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Hello"}})) {
- return;
- }
- int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
- float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
- uint32_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
- // Print the logits that are above the min-p threshold
- std::vector<float> filtered_logits;
- for (size_t i = 0; i < n_logits; ++i) {
- if (logits[i] > -1e9f) {
- filtered_logits.push_back(logits[i]);
- }
- }
- GGML_ASSERT(filtered_logits.size() < (size_t) test_ctx.n_vocab);
- GGML_ASSERT(filtered_logits.size() > 0);
- // Sample using CPU sampler for verification to inspect they are reasonable
- struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
- llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(88));
- llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf("top-p cpu sampled token id:%d, string: '%s'\n", token, token_str.c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- // Decode and sampler 10 more tokens
- for (int i = 0; i < 10; i++) {
- int32_t loop_idx = test_ctx.idx_for_seq(seq_id);
- llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), loop_idx);
- printf("top-p gen step %d: token id :%5.d, string: %s\n", i, token, test_ctx.token_to_piece(token, false).c_str());
- test_ctx.decode_token(token, 0);
- }
- printf("top-p sampling test PASSED\n");
- }
- static void test_backend_multi_sequence_sampling(const test_params & params) {
- struct llama_sampler_chain_params chain_params_0 = llama_sampler_chain_default_params();
- llama_sampler_ptr sampler_chain_0(llama_sampler_chain_init(chain_params_0));
- llama_sampler_chain_add(sampler_chain_0.get(), llama_sampler_init_greedy());
- struct llama_sampler_chain_params chain_params_1 = llama_sampler_chain_default_params();
- llama_sampler_ptr sampler_chain_1(llama_sampler_chain_init(chain_params_1));
- llama_sampler_chain_add(sampler_chain_1.get(), llama_sampler_init_temp(0.8f));
- llama_sampler_chain_add(sampler_chain_1.get(), llama_sampler_init_greedy());
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {
- { 0, sampler_chain_0.get() },
- { 1, sampler_chain_1.get() }
- };
- test_context test_ctx(params, backend_sampler_configs);
- std::map<llama_seq_id, std::string> prompts = {
- {0, "Hello"},
- {1, "Some"}
- };
- if (!test_ctx.decode(prompts)) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- // Verfiy sequence 0
- {
- int32_t batch_idx = test_ctx.idx_for_seq(0);
- llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf("Seq 0 sampled token id=%d, string='%s'\n", token, token_str.c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- }
- // Verify sequence 1
- {
- int32_t batch_idx= test_ctx.idx_for_seq(1);
- llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf("Seq 1 sampled token id=%d, string='%s'\n", token, token_str.c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- }
- // Generate tokens for each sequence
- printf("\nMulti-sequence generation:\n");
- for (int step = 0; step < 4; step++) {
- std::map<llama_seq_id, llama_token> tokens;
- for (llama_seq_id seq_id : {0, 1}) {
- int32_t idx = test_ctx.idx_for_seq(seq_id);
- llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf(" Seq %d, step %d: token id=%d, string='%s'\n", seq_id, step, token, token_str.c_str());
- tokens[seq_id] = token;
- }
- // Decode all tokens in a single batch
- if (!test_ctx.decode_tokens(tokens)) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- }
- printf("backend multi-sequence sampling test PASSED\n");
- }
- static void test_backend_dist_sampling(const test_params & params) {
- const int seq_id = 189;
- const int32_t seed = 88;
- struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Some"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
- llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
- printf("dist sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- //GGML_ASSERT(llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx) == nullptr);
- token = llama_get_sampled_token_ith(test_ctx.ctx.get(), -1);
- printf("dist sampled id:%d, string:'%s'\n", token, test_ctx.token_to_piece(token, false).c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- printf("backend dist sampling test PASSED\n");
- }
- static void test_backend_dist_sampling_and_cpu(const test_params & params) {
- const int seq_id = 0;
- const int32_t seed = 88;
- struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Some"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
- // Sample using CPU sampler
- struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
- llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
- llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
- llama_token cpu_token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
- printf("dist & cpu sampled id:%d, string:'%s'\n", cpu_token, test_ctx.token_to_piece(cpu_token, false).c_str());
- GGML_ASSERT(backend_token == cpu_token);
- printf("backend dist & cpu sampling test PASSED\n");
- }
- static void test_backend_logit_bias_sampling(const test_params & params) {
- const auto * model = params.model.get();
- const auto * vocab = llama_model_get_vocab(model);
- const int seq_id = 0;
- std::vector<llama_logit_bias> logit_bias;
- // Get the token for the piece "World".
- const std::string piece = "World";
- std::vector<llama_token> tokens(16);
- llama_tokenize(vocab, piece.c_str(), piece.size(), tokens.data(), tokens.size(), false, false);
- llama_token bias_token = tokens[0];
- // TODO: biasing too much here makes the Vulkan sampling fail - should be investigated further
- // https://github.com/ggml-org/llama.cpp/actions/runs/20894267644/job/60030252675?pr=18753#step:3:23350
- //logit_bias.push_back({ bias_token, +100.0f });
- logit_bias.push_back({ bias_token, +10.0f });
- printf("biasing token piece '%s' -> token id %d\n", piece.c_str(), bias_token);
- struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_logit_bias(
- llama_vocab_n_tokens(vocab),
- logit_bias.size(),
- logit_bias.data()));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(88));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {
- { seq_id, backend_sampler_chain.get() },
- };
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Hello"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), test_ctx.idx_for_seq(seq_id));
- printf("sampled token = %d, expected = %d\n", backend_token, bias_token);
- GGML_ASSERT(backend_token == bias_token);
- printf("backend logit bias sampling test PASSED\n");
- }
- // This test verifies that it is possible to have two different backend sampler,
- // one that uses the backend dist sampler, and another that uses CPU dist sampler.
- static void test_backend_mixed_sampling(const test_params & params) {
- struct llama_sampler_chain_params chain_params_0 = llama_sampler_chain_default_params();
- llama_sampler_ptr sampler_chain_0(llama_sampler_chain_init(chain_params_0));
- llama_sampler_chain_add(sampler_chain_0.get(), llama_sampler_init_dist(88));
- int k = 40;
- struct llama_sampler_chain_params chain_params_1 = llama_sampler_chain_default_params();
- llama_sampler_ptr sampler_chain_1(llama_sampler_chain_init(chain_params_1));
- llama_sampler_chain_add(sampler_chain_1.get(), llama_sampler_init_top_k(k));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {
- { 0, sampler_chain_0.get() },
- { 1, sampler_chain_1.get() }
- };
- test_context test_ctx(params, backend_sampler_configs);
- std::map<llama_seq_id, std::string> prompts = {
- {0, "Hello"},
- {1, "Some"}
- };
- if (!test_ctx.decode(prompts)) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- // Verfiy sequence 0 that used the dist backend sampler.
- {
- int32_t batch_idx = test_ctx.idx_for_seq(0);
- llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf("sampled token id=%d, string='%s'\n", token, token_str.c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- //GGML_ASSERT(llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx) == nullptr);
- //GGML_ASSERT(llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx) == 0);
- }
- // Verfiy sequence 1 that used the top-k backend sampler.
- {
- int32_t batch_idx = test_ctx.idx_for_seq(1);
- float * logits = llama_get_sampled_logits_ith(test_ctx.ctx.get(), batch_idx);
- GGML_ASSERT(logits != nullptr);
- size_t n_logits = llama_get_sampled_logits_count_ith(test_ctx.ctx.get(), batch_idx);
- GGML_ASSERT(n_logits == (size_t) k);
- GGML_ASSERT(llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx) == LLAMA_TOKEN_NULL);
- }
- printf("backend mixed sampling test PASSED\n");
- }
- static void test_backend_set_sampler(const test_params & params) {
- const int seq_id = 0;
- const int32_t seed = 88;
- struct llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
- test_context test_ctx(params, backend_sampler_configs);
- if (!test_ctx.decode({{seq_id, "Hello"}})) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- int32_t batch_idx = test_ctx.idx_for_seq(seq_id);
- // Sample using backend sampler configured above
- llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
- const std::string backend_token_str = test_ctx.token_to_piece(backend_token, false);
- printf("dist sampled token = %d, string='%s'\n", backend_token, backend_token_str.c_str());
- // Now clear the backend sampler for this sequence.
- llama_set_sampler(test_ctx.ctx.get(), seq_id, nullptr);
- printf("Cleared backend sampler for seq_id %d\n", seq_id);
- // Sample using CPU sampler
- struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
- llama_sampler_chain_add(chain.get(), llama_sampler_init_dist(18));
- std::map<llama_seq_id, llama_token> tokens = { { seq_id, backend_token}, };
- if (!test_ctx.decode_tokens(tokens)) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- // Should not have any sampled token or probs after clearing the backend sampler.
- const int32_t idx = test_ctx.idx_for_seq(seq_id);
- GGML_ASSERT(llama_get_sampled_token_ith(test_ctx.ctx.get(), idx) == LLAMA_TOKEN_NULL);
- GGML_ASSERT(llama_get_sampled_probs_ith(test_ctx.ctx.get(), idx) == nullptr);
- // Sample the token using the CPU sampler chain.
- llama_token token2 = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), seq_id);
- const std::string token2_str = test_ctx.token_to_piece(token2, false);
- printf("CPU sampled token after clearing backend sampler: id=%d, string='%s'\n", token2, token2_str.c_str());
- std::map<llama_seq_id, llama_token> tokens2 = { { seq_id, token2}, };
- // Set a new backend sampler for the sequence.
- struct llama_sampler_chain_params new_backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr new_backend_sampler_chain(llama_sampler_chain_init(new_backend_chain_params));
- llama_sampler_chain_add(new_backend_sampler_chain.get(), llama_sampler_init_top_k(20));
- llama_sampler_chain_add(new_backend_sampler_chain.get(), llama_sampler_init_dist(seed));
- llama_set_sampler(test_ctx.ctx.get(), seq_id, new_backend_sampler_chain.get());
- if (!test_ctx.decode_tokens(tokens2)) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- llama_token new_backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), test_ctx.idx_for_seq(seq_id));
- const std::string new_backend_token_str = test_ctx.token_to_piece(new_backend_token, false);
- printf("dist sampled token = %d, string='%s'\n", new_backend_token, new_backend_token_str.c_str());
- printf("backend set sampler test PASSED\n");
- }
- static void test_backend_cpu_mixed_batch(const test_params & params) {
- // Sequence 0 uses backend sampling
- struct llama_sampler_chain_params chain_params_0 = llama_sampler_chain_default_params();
- llama_sampler_ptr sampler_chain_0(llama_sampler_chain_init(chain_params_0));
- llama_sampler_chain_add(sampler_chain_0.get(), llama_sampler_init_dist(88));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {
- { 0, sampler_chain_0.get() },
- };
- // We need 2 sequences: seq 0 with backend sampling, seq 1 with CPU sampling
- test_context test_ctx(params, backend_sampler_configs, 2);
- std::map<llama_seq_id, std::string> prompts = {
- {0, "Hello"}, // Will use backend sampling
- {1, "Some"} // Will use CPU sampling
- };
- if (!test_ctx.decode(prompts)) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- // Verify sequence 0 (backend sampled)
- {
- int32_t batch_idx = test_ctx.idx_for_seq(0);
- llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf("Seq 0 (backend) sampled token id=%d, string='%s'\n", token, token_str.c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- }
- // Verify sequence 1 (CPU sampled)
- {
- int32_t batch_idx = test_ctx.idx_for_seq(1);
- llama_token backend_token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
- GGML_ASSERT(backend_token == LLAMA_TOKEN_NULL);
- struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
- llama_sampler_chain_add(chain.get(), llama_sampler_init_greedy());
- llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf("Seq 1 (CPU) sampled token id=%d, string='%s'\n", token, token_str.c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- }
- // Clear/remove the backend sampler, and sample again
- {
- // clear the backend sampler for seq 0 so that there are no backend
- // samplers.
- llama_set_sampler(test_ctx.ctx.get(), 0, nullptr);
- // Create a CPU sampler and verify we can sampler from it.
- struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr chain(llama_sampler_chain_init(chain_params));
- llama_sampler_chain_add(chain.get(), llama_sampler_init_greedy());
- int32_t batch_idx = test_ctx.idx_for_seq(1);
- llama_token token = llama_sampler_sample(chain.get(), test_ctx.ctx.get(), batch_idx);
- if (!test_ctx.decode_token(token, 1)) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- }
- // Set a backend sampler so that we can verify that it can be reset
- {
- struct llama_sampler_chain_params chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr sampler_chain(llama_sampler_chain_init(chain_params));
- llama_sampler_chain_add(sampler_chain.get(), llama_sampler_init_dist(88));
- llama_set_sampler(test_ctx.ctx.get(), 0, sampler_chain.get());
- if (!test_ctx.decode_token(3834, 0)) {
- GGML_ASSERT(false && "Failed to decode token");
- }
- int32_t batch_idx = test_ctx.idx_for_seq(0);
- llama_token token = llama_get_sampled_token_ith(test_ctx.ctx.get(), batch_idx);
- const std::string token_str = test_ctx.token_to_piece(token, false);
- printf("re-added backend sampled token id=%d, string='%s'\n", token, token_str.c_str());
- GGML_ASSERT(token >= 0 && token < test_ctx.n_vocab);
- }
- printf("backend-cpu mixed batch test PASSED\n");
- }
- static void test_backend_max_outputs(const test_params & params) {
- const int seq_id = 0;
- const int32_t seed = 88;
- llama_sampler_chain_params backend_chain_params = llama_sampler_chain_default_params();
- llama_sampler_ptr backend_sampler_chain(llama_sampler_chain_init(backend_chain_params));
- llama_sampler_chain_add(backend_sampler_chain.get(), llama_sampler_init_dist(seed));
- std::vector<llama_sampler_seq_config> backend_sampler_configs = {{ seq_id, backend_sampler_chain.get() }};
- test_context test_ctx(params, backend_sampler_configs);
- llama_batch batch = llama_batch_init(512, 0, 1);
- std::string prompt = "Hello";
- std::vector<llama_token> tokens;
- tokens.push_back(llama_vocab_bos(test_ctx.vocab));
- std::vector<llama_token> prompt_tokens(32);
- int n_tokens = llama_tokenize(test_ctx.vocab, prompt.c_str(), prompt.length(),
- prompt_tokens.data(), prompt_tokens.size(),
- false, false);
- for (int i = 0; i < n_tokens; i++) {
- tokens.push_back(prompt_tokens[i]);
- }
- for (size_t i = 0; i < tokens.size(); i++) {
- // set all tokens as output to trigger error
- common_batch_add(batch, tokens[i], i, { seq_id }, true);
- }
- printf(">>> test_max_outputs expected error start:\n");
- const int ret = llama_decode(test_ctx.ctx.get(), batch);
- GGML_ASSERT(ret != 0 && "llama_decode should not succeed multiple outputs per sequence");
- printf("<<< test_max_outputs expected error end.\n");
- llama_batch_free(batch);
- printf("backend max outputs test PASSED\n");
- }
- struct backend_test_case {
- std::string name;
- void (*fn)(const test_params &);
- bool enabled_by_default;
- };
- static const backend_test_case BACKEND_TESTS[] = {
- { "greedy", test_backend_greedy_sampling, true },
- { "logit_bias", test_backend_logit_bias_sampling, true },
- { "temp", test_backend_temp_sampling, true },
- { "temp_ext", test_backend_temp_ext_sampling, true },
- { "top_k", test_backend_top_k_sampling, true },
- { "multi_sequence", test_backend_multi_sequence_sampling, true },
- { "dist", test_backend_dist_sampling, true },
- { "dist_and_cpu", test_backend_dist_sampling_and_cpu, true },
- { "set_sampler", test_backend_set_sampler, true },
- { "max_outputs", test_backend_max_outputs, true },
- { "mixed", test_backend_mixed_sampling, true },
- { "min_p", test_backend_min_p_sampling, true },
- { "cpu_mixed", test_backend_cpu_mixed_batch, true },
- { "top_p", test_backend_top_p_sampling, true },
- };
- static test_args parse_cli(int argc, char ** argv) {
- test_args out;
- for (int i = 1; i < argc; ++i) {
- const char * arg = argv[i];
- if (std::strcmp(arg, "--test") == 0) {
- if (i + 1 >= argc) {
- fprintf(stderr, "--test expects a value\n");
- exit(EXIT_FAILURE);
- }
- out.test = argv[++i];
- continue;
- }
- if (std::strncmp(arg, "--test=", 7) == 0) {
- out.test = arg + 7;
- continue;
- }
- if (std::strcmp(arg, "--model") == 0) {
- if (i + 1 >= argc) {
- fprintf(stderr, "--model expects a value\n");
- exit(EXIT_FAILURE);
- }
- out.model = argv[++i];
- continue;
- }
- if (std::strncmp(arg, "--model=", 8) == 0) {
- out.model = arg + 8;
- continue;
- }
- if (std::strcmp(arg, "--device") == 0) {
- if (i + 1 >= argc) {
- fprintf(stderr, "--device expects a value (cpu or gpu)\n");
- exit(EXIT_FAILURE);
- }
- out.device = argv[++i];
- continue;
- }
- if (std::strncmp(arg, "--device=", 9) == 0) {
- out.device = arg + 9;
- continue;
- }
- if (out.model.empty()) {
- out.model = arg;
- continue;
- }
- fprintf(stderr, "Unexpected argument: %s\n", arg);
- exit(EXIT_FAILURE);
- }
- if (out.device != "cpu" && out.device != "gpu" && out.device != "auto") {
- fprintf(stderr, "Invalid device '%s'. Must be 'cpu', 'gpu' or 'auto'\n", out.device.c_str());
- exit(EXIT_FAILURE);
- }
- return out;
- }
- static std::vector<const backend_test_case *> collect_tests_to_run(const std::string & requested) {
- std::vector<const backend_test_case *> selected;
- if (!requested.empty()) {
- for (const auto & test : BACKEND_TESTS) {
- if (test.name == requested) {
- selected.push_back(&test);
- break;
- }
- }
- if (selected.empty()) {
- fprintf(stderr, "Unknown test '%s'. Available tests:\n", requested.c_str());
- for (const auto & test : BACKEND_TESTS) {
- fprintf(stderr, " %s\n", test.name.c_str());
- }
- exit(EXIT_FAILURE);
- }
- } else {
- for (const auto & test : BACKEND_TESTS) {
- if (test.enabled_by_default) {
- selected.push_back(&test);
- }
- }
- }
- if (selected.empty()) {
- fprintf(stderr, "No backend sampling tests selected. Use --test=<name> to pick one.\n");
- }
- return selected;
- }
- static void run_tests(const std::vector<const backend_test_case *> & tests, const test_params & args) {
- for (const auto & test : tests) {
- fprintf(stderr, "\n=== %s ===\n", test->name.c_str());
- try {
- test->fn(args);
- } catch (const std::exception & e) {
- fprintf(stderr, "Error running test '%s': %s\n", test->name.c_str(), e.what());
- exit(EXIT_FAILURE);
- }
- }
- }
- int main(int argc, char ** argv) {
- test_args args = parse_cli(argc, argv);
- if (args.model.empty()) {
- args.model = get_model_or_exit(1, argv);
- }
- {
- std::ifstream file(args.model);
- if (!file.is_open()) {
- fprintf(stderr, "no model '%s' found\n", args.model.c_str());
- return EXIT_FAILURE;
- }
- }
- fprintf(stderr, "using '%s'\n", args.model.c_str());
- llama_backend_init();
- test_params params = {
- /*.model =*/ load_model(args),
- };
- const std::vector<const backend_test_case *> tests = collect_tests_to_run(args.test);
- if (!tests.empty()) {
- run_tests(tests, params);
- }
- return 0;
- }
|