| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197 |
- #include "kernel_operator.h"
- // optimize me. Use template to avoid copy code.
- using namespace AscendC;
- #define BUFFER_NUM 2
- class GET_ROW_F16 {
- public:
- __aicore__ inline GET_ROW_F16() {}
- __aicore__ inline void init(GM_ADDR input, GM_ADDR indices, GM_ADDR output,
- int64_t *input_ne_ub, size_t *input_nb_ub,
- int64_t *indices_ne_ub, size_t *indices_nb_ub,
- int64_t *output_ne_ub, size_t *output_nb_ub) {
- // TODO, use template for F16/f32
- int64_t op_block_num = GetBlockNum();
- op_block_idx = GetBlockIdx();
- for (int i = 0; i < 4; i++) {
- input_ne[i] = input_ne_ub[i];
- input_stride[i] = input_nb_ub[i] / input_nb_ub[0];
- indices_ne[i] = indices_ne_ub[i];
- indices_stride[i] = indices_nb_ub[i] / indices_nb_ub[0];
- output_ne[i] = output_ne_ub[i];
- output_stride[i] = output_nb_ub[i] / output_nb_ub[0];
- }
- // Indices has two dims. n_elements = all rows should get.
- // dr, all rows should this thread get.
- uint64_t n_elements =
- indices_ne[0] * indices_ne[1] * indices_ne[2] * indices_ne[3];
- dr = n_elements / op_block_num;
- uint64_t tails = n_elements % op_block_num;
- if (op_block_idx < tails) {
- dr += 1;
- ir = dr * op_block_idx;
- } else {
- ir = dr * op_block_idx + tails;
- }
- input_gm.SetGlobalBuffer((__gm__ half *)input);
- indices_gm.SetGlobalBuffer((__gm__ int32_t *)indices);
- output_gm.SetGlobalBuffer((__gm__ float *)output);
- uint64_t input_local_buffer_size = ((input_ne[0] * sizeof(half) + 31)
- & ~31);
- uint64_t output_local_buffer_size = ((input_ne[0] * sizeof(float) + 31)
- & ~31);
- local_buffer_elems = input_local_buffer_size / sizeof(half);
- // TODO, consider long row that can't put in UB.
- // All data should asign to 32. It's ok because all data is align to 32.
- pipe.InitBuffer(input_queue, BUFFER_NUM, input_local_buffer_size);
- pipe.InitBuffer(output_queue, BUFFER_NUM, output_local_buffer_size);
- }
- __aicore__ inline void copy_in(uint32_t offset, size_t len) {
- size_t origin_len = len;
- LocalTensor<half> input_local = input_queue.AllocTensor<half>();
- const size_t elem_per_block = 32 / sizeof(half);
- size_t tail = len % elem_per_block;
- len = len & ~(elem_per_block - 1);
- if(tail != 0) {
- len += elem_per_block;
- }
- DataCopy(input_local, input_gm[offset], len);
- input_queue.EnQue(input_local);
- }
- __aicore__ inline void copy_out(uint32_t offset, size_t len) {
- LocalTensor<float> output_local = output_queue.DeQue<float>();
- const size_t elem_per_block = 32 / sizeof(float);
- size_t tail = len % elem_per_block;
- len = len & ~(elem_per_block - 1);
- if (len > 0) {
- DataCopy(output_gm[offset], output_local, len);
- }
- if(tail != 0) {
- #ifdef ASCEND_310P
- for (size_t i = tail; i < elem_per_block; i++) {
- output_local[len + i].SetValue(0, 0);
- }
- SetAtomicAdd<float>();
- DataCopy(output_gm[offset + len], output_local[len], elem_per_block);
- SetAtomicNone();
- #else
- DataCopyExtParams dataCopyParams;
- dataCopyParams.blockCount = 1;
- dataCopyParams.blockLen = tail * sizeof(float);
- DataCopyPad(output_gm[offset + len], output_local[len],
- dataCopyParams);
- #endif
- }
- output_queue.FreeTensor(output_local);
- }
- __aicore__ inline void calculate_row(int64_t idx) {
- const int64_t indices_ne2_idx = idx / (indices_ne[0] * indices_ne[1]);
- const int64_t indices_ne1_idx =
- (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1]) /
- indices_ne[0];
- const int64_t indices_ne0_idx =
- (idx - indices_ne2_idx * indices_ne[0] * indices_ne[1] -
- indices_ne1_idx * indices_ne[0]);
- const int64_t indices_offset = indices_ne0_idx * indices_stride[0] +
- indices_ne1_idx * indices_stride[1] +
- indices_ne2_idx * indices_stride[2];
- const int32_t selected_row_idx = indices_gm.GetValue(indices_offset);
- const int64_t input_offset = selected_row_idx * input_stride[1] +
- indices_ne1_idx * input_stride[2] +
- indices_ne2_idx * input_stride[3];
- const int64_t output_offset = indices_ne0_idx * output_stride[1] +
- indices_ne1_idx * output_stride[2] +
- indices_ne2_idx * output_stride[3];
- copy_in(input_offset, input_ne[0]);
- LocalTensor<half> input_local = input_queue.DeQue<half>();
- LocalTensor<float> output_local = output_queue.AllocTensor<float>();
- Cast(output_local, input_local, RoundMode::CAST_NONE,
- local_buffer_elems);
- output_queue.EnQue(output_local);
- copy_out(output_offset, input_ne[0]);
- input_queue.FreeTensor(input_local);
- }
- __aicore__ inline void calculate() {
- for (int64_t i = ir; i < ir + dr; i++) {
- calculate_row(i);
- }
- }
- private:
- int64_t input_ne[4];
- size_t input_stride[4];
- int64_t indices_ne[4];
- size_t indices_stride[4];
- int64_t output_ne[4];
- size_t output_stride[4];
- size_t local_buffer_elems;
- int64_t ir;
- int64_t dr;
- TPipe pipe;
- GlobalTensor<half> input_gm;
- GlobalTensor<int32_t> indices_gm;
- GlobalTensor<float> output_gm;
- TQue<QuePosition::VECIN, BUFFER_NUM> input_queue;
- TQue<QuePosition::VECOUT, BUFFER_NUM> output_queue;
- int64_t op_block_idx;
- };
- template <typename T>
- __aicore__ inline void copy_to_ub(GM_ADDR gm, T *ub, size_t size) {
- auto gm_ptr = (__gm__ uint8_t *)gm;
- auto ub_ptr = (uint8_t *)(ub);
- for (int32_t i = 0; i < size; ++i, ++ub_ptr, ++gm_ptr) {
- *ub_ptr = *gm_ptr;
- }
- }
- extern "C" __global__ __aicore__ void ascendc_get_row_f16(
- GM_ADDR input_gm, GM_ADDR indices_gm, GM_ADDR output_gm,
- GM_ADDR input_ne_gm, GM_ADDR input_nb_gm, GM_ADDR indices_ne_gm,
- GM_ADDR indices_nb_gm, GM_ADDR output_ne_gm, GM_ADDR output_nb_gm) {
- int64_t input_ne_ub[4];
- size_t input_nb_ub[4];
- int64_t indices_ne_ub[4];
- size_t indices_nb_ub[4];
- int64_t output_ne_ub[4];
- size_t output_nb_ub[4];
- copy_to_ub(input_ne_gm, input_ne_ub, 32);
- copy_to_ub(input_nb_gm, input_nb_ub, 32);
- copy_to_ub(indices_ne_gm, indices_ne_ub, 32);
- copy_to_ub(indices_nb_gm, indices_nb_ub, 32);
- copy_to_ub(output_ne_gm, output_ne_ub, 32);
- copy_to_ub(output_nb_gm, output_nb_ub, 32);
- GET_ROW_F16 op;
- op.init(input_gm, indices_gm, output_gm, input_ne_ub, input_nb_ub,
- indices_ne_ub, indices_nb_ub, output_ne_ub, output_nb_ub);
- op.calculate();
- }
|