test-backend-ops.cpp 341 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdarg>
  23. #include <cstdint>
  24. #include <cstdio>
  25. #include <cstdlib>
  26. #include <cstring>
  27. #include <ctime>
  28. #include <future>
  29. #include <memory>
  30. #include <random>
  31. #include <regex>
  32. #include <set>
  33. #include <string>
  34. #include <string_view>
  35. #include <thread>
  36. #include <vector>
  37. #include <unordered_map>
  38. #ifdef __EMSCRIPTEN__
  39. # define N_THREADS 1
  40. #else
  41. # define N_THREADS std::thread::hardware_concurrency()
  42. #endif
  43. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  44. size_t nels = ggml_nelements(tensor);
  45. std::vector<float> data(nels);
  46. {
  47. // parallel initialization
  48. static const size_t n_threads = N_THREADS;
  49. // static RNG initialization (revisit if n_threads stops being constant)
  50. static std::vector<std::default_random_engine> generators = []() {
  51. std::random_device rd;
  52. std::vector<std::default_random_engine> vec;
  53. vec.reserve(n_threads);
  54. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  55. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  56. return vec;
  57. }();
  58. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  59. std::uniform_real_distribution<float> distribution(min, max);
  60. auto & gen = generators[ith];
  61. for (size_t i = start; i < end; i++) {
  62. data[i] = distribution(gen);
  63. }
  64. };
  65. if (n_threads == 1) {
  66. init_thread(0, 0, nels);
  67. } else {
  68. std::vector<std::future<void>> tasks;
  69. tasks.reserve(n_threads);
  70. for (size_t i = 0; i < n_threads; i++) {
  71. size_t start = i*nels/n_threads;
  72. size_t end = (i+1)*nels/n_threads;
  73. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  74. }
  75. for (auto & t : tasks) {
  76. t.get();
  77. }
  78. }
  79. }
  80. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  81. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  82. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  83. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  84. // dummy importance matrix
  85. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  86. const float * im = imatrix.data();
  87. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  88. // when the imatrix is optional, we want to test both quantization with and without imatrix
  89. // use one of the random numbers to decide
  90. if (data[0] > 0.5f*(min + max)) {
  91. im = nullptr;
  92. }
  93. }
  94. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  95. {
  96. // parallel quantization by block
  97. size_t blck_size = ggml_blck_size(tensor->type);
  98. size_t n_blocks = nels / blck_size;
  99. auto quantize_thread = [&](size_t start, size_t end) {
  100. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  101. start * blck_size, end - start, blck_size, im);
  102. };
  103. const size_t min_blocks_per_thread = 1;
  104. const size_t n_quant_threads = std::min<size_t>(std::max<size_t>(N_THREADS/2, 1),
  105. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  106. if (n_quant_threads == 1) {
  107. // single-threaded quantization: do all blocks in the current thread
  108. quantize_thread(0, n_blocks);
  109. } else {
  110. std::vector<std::future<void>> tasks;
  111. tasks.reserve(n_quant_threads);
  112. for (size_t i = 0; i < n_quant_threads; i++) {
  113. size_t start = i*n_blocks/n_quant_threads;
  114. size_t end = (i+1)*n_blocks/n_quant_threads;
  115. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  116. }
  117. for (auto & t : tasks) {
  118. t.get();
  119. }
  120. }
  121. }
  122. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  123. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  124. // This is going to create some weird integers though.
  125. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  126. } else if (tensor->type == GGML_TYPE_I64) {
  127. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  128. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  129. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  130. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  131. } else {
  132. GGML_ABORT("fatal error");
  133. }
  134. }
  135. // generate an F16 mask where certain blocks are randomly masked with -INF value
  136. static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  137. GGML_ASSERT(tensor->type == GGML_TYPE_F16);
  138. GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne);
  139. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  140. std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3);
  141. std::random_device rd;
  142. std::mt19937 gen(rd());
  143. std::uniform_real_distribution<float> dis(min, max);
  144. for (size_t i = 0; i < data_f32.size(); i++) {
  145. data_f32[i] = dis(gen);
  146. }
  147. // block size
  148. const int blck0 = 128;
  149. const int blck1 = 64;
  150. // number of INF blocks
  151. const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1);
  152. for (int b = 0; b < n_inf_blocks; b++) {
  153. const int p3 = (rd() % ne3);
  154. const int p2 = (rd() % ne2);
  155. const int p1 = (rd() % ne1);
  156. const int p0 = (rd() % ne0);
  157. for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) {
  158. const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0;
  159. for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) {
  160. data_f32[idx + i0] = -INFINITY;
  161. }
  162. }
  163. }
  164. ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3);
  165. ggml_backend_tensor_set(tensor, data_f16.data(), 0, data_f16.size()*sizeof(ggml_fp16_t));
  166. }
  167. // generate a lower triangular matrix
  168. static void init_tensor_tril(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  169. GGML_ASSERT(tensor->type == GGML_TYPE_F32);
  170. GGML_ASSERT(tensor->ne[0] == tensor->ne[1]);
  171. GGML_TENSOR_LOCALS(int32_t, ne, tensor, ne);
  172. GGML_TENSOR_LOCALS(size_t, nb, tensor, nb);
  173. std::vector<float> data_f32(ne0*ne1*ne2*ne3);
  174. std::random_device rd;
  175. std::mt19937 gen(rd());
  176. std::uniform_real_distribution<float> dis(min, max);
  177. for (int64_t i3 = 0; i3 < ne3; i3++) {
  178. for (int64_t i2 = 0; i2 < ne2; i2++) {
  179. for (int64_t i1 = 0; i1 < ne1; i1++) {
  180. for (int64_t i0 = 0; i0 < ne0; i0++) {
  181. int64_t idx = (i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3) / sizeof(float);
  182. if (i0 <= i1) {
  183. data_f32[idx] = dis(gen);
  184. } else {
  185. data_f32[idx] = 0.0f;
  186. }
  187. }
  188. }
  189. }
  190. }
  191. ggml_backend_tensor_set(tensor, data_f32.data(), 0, ggml_nbytes(tensor));
  192. }
  193. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  194. std::vector<float> tv;
  195. tv.reserve(ggml_nelements(t));
  196. std::vector<uint8_t> buf(ggml_nbytes(t));
  197. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  198. const auto * tt = ggml_get_type_traits(t->type);
  199. size_t bs = ggml_blck_size(t->type);
  200. std::vector<float> vq(ggml_blck_size(t->type));
  201. bool quantized = ggml_is_quantized(t->type);
  202. // access elements by index to avoid gaps in views
  203. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  204. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  205. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  206. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  207. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  208. if (t->type == GGML_TYPE_F16) {
  209. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  210. } else if (t->type == GGML_TYPE_BF16) {
  211. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  212. } else if (t->type == GGML_TYPE_F32) {
  213. tv.push_back(*(float *) &buf[i]);
  214. } else if (t->type == GGML_TYPE_I64) {
  215. tv.push_back((float)*(int64_t *) &buf[i]);
  216. } else if (t->type == GGML_TYPE_I32) {
  217. tv.push_back((float)*(int32_t *) &buf[i]);
  218. } else if (t->type == GGML_TYPE_I16) {
  219. tv.push_back((float)*(int16_t *) &buf[i]);
  220. } else if (t->type == GGML_TYPE_I8) {
  221. tv.push_back((float)*(int8_t *) &buf[i]);
  222. } else if (quantized) {
  223. tt->to_float(&buf[i], vq.data(), bs);
  224. tv.insert(tv.end(), vq.begin(), vq.end());
  225. } else {
  226. GGML_ABORT("fatal error");
  227. }
  228. }
  229. }
  230. }
  231. }
  232. return tv;
  233. }
  234. // normalized mean squared error = mse(a, b) / mse(a, 0)
  235. static double nmse(const float * a, const float * b, size_t n) {
  236. double mse_a_b = 0.0;
  237. double mse_a_0 = 0.0;
  238. for (size_t i = 0; i < n; i++) {
  239. float a_i = a[i];
  240. float b_i = b[i];
  241. mse_a_b += (a_i - b_i) * (a_i - b_i);
  242. mse_a_0 += a_i * a_i;
  243. }
  244. return mse_a_b / mse_a_0;
  245. }
  246. // difference between 2 sets (Jaccard distance, 0 - no difference, 1 - no overlap)
  247. template <typename T>
  248. static double jdst(const T * a, const T * b, size_t n) {
  249. std::unordered_map<T, size_t> set_a;
  250. std::unordered_map<T, size_t> set_b;
  251. for (size_t i = 0; i < n; ++i) {
  252. set_a[a[i]]++;
  253. set_b[b[i]]++;
  254. }
  255. size_t diff = 0;
  256. for (const auto & p : set_a) {
  257. const int64_t na = p.second;
  258. const int64_t nb = set_b.find(p.first) != set_b.end() ? set_b.at(p.first) : 0;
  259. diff += std::abs(na - nb);
  260. }
  261. for (const auto & p : set_b) {
  262. if (set_a.find(p.first) == set_a.end()) {
  263. diff += p.second;
  264. }
  265. }
  266. return (double) diff / (2*n);
  267. }
  268. // maximum absolute asymmetry between a and b
  269. // asymmetry: (a - b) / (a + b)
  270. // This is more stable than relative error if one of the values fluctuates towards zero.
  271. // n: number of values to compare.
  272. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  273. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  274. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  275. double sum = 0.0f;
  276. size_t nvalid = 0;
  277. for (size_t i = 0; i < n; i++) {
  278. if (!expected_vals.empty()) {
  279. bool matches_any = false;
  280. for (const float & ev : expected_vals) {
  281. if (fabsf(a[i] - ev) < 1e-3f) {
  282. matches_any = true;
  283. break;
  284. }
  285. }
  286. if (!matches_any) {
  287. continue;
  288. }
  289. }
  290. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  291. sum += fabsf(asymm);
  292. nvalid++;
  293. }
  294. return sum/nvalid;
  295. }
  296. // utils for printing the variables of the test cases
  297. static std::string var_to_str(const std::string & x) {
  298. return x;
  299. }
  300. template<typename T>
  301. static std::string var_to_str(const T & x) {
  302. return std::to_string(x);
  303. }
  304. template<typename T, size_t N>
  305. static std::string var_to_str(const T (&x)[N]) {
  306. std::string s = "[";
  307. for (size_t i = 0; i < N; i++) {
  308. if (i > 0) {
  309. s += ",";
  310. }
  311. s += var_to_str(x[i]);
  312. }
  313. s += "]";
  314. return s;
  315. }
  316. template<typename T, size_t N>
  317. static std::string var_to_str(const std::array<T, N> & x) {
  318. std::string s = "[";
  319. for (size_t i = 0; i < N; i++) {
  320. if (i > 0) {
  321. s += ",";
  322. }
  323. s += var_to_str(x[i]);
  324. }
  325. s += "]";
  326. return s;
  327. }
  328. static std::string var_to_str(ggml_type type) {
  329. return ggml_type_name(type);
  330. }
  331. static std::string var_to_str(ggml_prec prec) {
  332. return prec == GGML_PREC_F32 ? "f32" : "def";
  333. }
  334. static std::string var_to_str(ggml_op_pool pool) {
  335. switch (pool) {
  336. case GGML_OP_POOL_AVG: return "avg";
  337. case GGML_OP_POOL_MAX: return "max";
  338. default: return std::to_string(pool);
  339. }
  340. }
  341. static std::string var_to_str(ggml_scale_mode mode) {
  342. std::string str;
  343. switch (mode & 0xFF) {
  344. case GGML_SCALE_MODE_NEAREST: str = "nearest"; break;
  345. case GGML_SCALE_MODE_BILINEAR: str = "bilinear"; break;
  346. case GGML_SCALE_MODE_BICUBIC: str = "bicubic"; break;
  347. default: str = std::to_string(mode); break;
  348. }
  349. if (mode & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  350. str += "|align_corners";
  351. }
  352. if (mode & GGML_SCALE_FLAG_ANTIALIAS) {
  353. str += "|antialias";
  354. }
  355. return str;
  356. }
  357. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  358. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  359. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  360. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  361. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  362. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  363. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  364. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  365. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  366. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  367. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  368. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  369. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  370. #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m)
  371. #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n)
  372. #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o)
  373. #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p)
  374. #ifdef GGML_USE_SYCL
  375. static bool inline _isinf(float f) {
  376. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  377. }
  378. #else
  379. static bool inline _isinf(float f) { return std::isinf(f); }
  380. #endif
  381. // accept FLT_MAX as infinity
  382. static bool isinf_or_max(float f) {
  383. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  384. }
  385. static bool ggml_is_view_op(enum ggml_op op) {
  386. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  387. }
  388. static bool backend_has_feature(ggml_backend_t backend, const char * feature_name) {
  389. ggml_backend_dev_t dev = ggml_backend_get_device(backend);
  390. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  391. auto get_features = (ggml_backend_get_features_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_get_features");
  392. if (!get_features) {
  393. return false;
  394. }
  395. const ggml_backend_feature * features = get_features(reg);
  396. if (!features) {
  397. return false;
  398. }
  399. for (const ggml_backend_feature * f = features; f->name; ++f) {
  400. if (strcmp(f->name, feature_name) == 0 && strcmp(f->value, "1") == 0) {
  401. return true;
  402. }
  403. }
  404. return false;
  405. }
  406. enum test_mode {
  407. MODE_TEST,
  408. MODE_PERF,
  409. MODE_GRAD,
  410. MODE_SUPPORT,
  411. };
  412. // Output format support similar to llama-bench
  413. enum output_formats { CONSOLE, SQL, CSV };
  414. static const char * output_format_str(output_formats format) {
  415. switch (format) {
  416. case CONSOLE:
  417. return "console";
  418. case SQL:
  419. return "sql";
  420. case CSV:
  421. return "csv";
  422. default:
  423. GGML_ABORT("invalid output format");
  424. }
  425. }
  426. static bool output_format_from_str(const std::string & s, output_formats & format) {
  427. if (s == "console") {
  428. format = CONSOLE;
  429. } else if (s == "sql") {
  430. format = SQL;
  431. } else if (s == "csv") {
  432. format = CSV;
  433. } else {
  434. return false;
  435. }
  436. return true;
  437. }
  438. // Test result structure for SQL output
  439. struct test_result {
  440. std::string test_time;
  441. std::string build_commit;
  442. std::string backend_name;
  443. std::string op_name;
  444. std::string op_params;
  445. std::string test_mode;
  446. bool supported;
  447. bool passed;
  448. std::string error_message;
  449. double time_us;
  450. double flops;
  451. double bandwidth_gb_s;
  452. size_t memory_kb;
  453. int n_runs;
  454. std::string device_description;
  455. std::string backend_reg_name;
  456. test_result() {
  457. // Initialize with default values
  458. time_us = 0.0;
  459. flops = 0.0;
  460. bandwidth_gb_s = 0.0;
  461. memory_kb = 0;
  462. n_runs = 0;
  463. supported = false;
  464. passed = false;
  465. // Set test time
  466. time_t t = time(NULL);
  467. char buf[32];
  468. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  469. test_time = buf;
  470. // Set build info
  471. build_commit = ggml_commit();
  472. }
  473. test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
  474. const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
  475. double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
  476. int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
  477. backend_name(backend_name),
  478. op_name(op_name),
  479. op_params(op_params),
  480. test_mode(test_mode),
  481. supported(supported),
  482. passed(passed),
  483. error_message(error_message),
  484. time_us(time_us),
  485. flops(flops),
  486. bandwidth_gb_s(bandwidth_gb_s),
  487. memory_kb(memory_kb),
  488. n_runs(n_runs),
  489. device_description(device_description),
  490. backend_reg_name(backend_reg_name) {
  491. // Set test time
  492. time_t t = time(NULL);
  493. char buf[32];
  494. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  495. test_time = buf;
  496. // Set build info
  497. build_commit = ggml_commit();
  498. }
  499. static const std::vector<std::string> & get_fields() {
  500. static const std::vector<std::string> fields = {
  501. "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
  502. "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
  503. "device_description", "backend_reg_name"
  504. };
  505. return fields;
  506. }
  507. enum field_type { STRING, BOOL, INT, FLOAT };
  508. static field_type get_field_type(const std::string & field) {
  509. if (field == "supported" || field == "passed") {
  510. return BOOL;
  511. }
  512. if (field == "memory_kb" || field == "n_runs") {
  513. return INT;
  514. }
  515. if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
  516. return FLOAT;
  517. }
  518. return STRING;
  519. }
  520. std::vector<std::string> get_values() const {
  521. return { test_time,
  522. build_commit,
  523. backend_name,
  524. op_name,
  525. op_params,
  526. test_mode,
  527. std::to_string(supported),
  528. std::to_string(passed),
  529. error_message,
  530. std::to_string(time_us),
  531. std::to_string(flops),
  532. std::to_string(bandwidth_gb_s),
  533. std::to_string(memory_kb),
  534. std::to_string(n_runs),
  535. device_description,
  536. backend_reg_name };
  537. }
  538. };
  539. // Printer classes for different output formats
  540. enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED };
  541. struct test_operation_info {
  542. std::string op_name;
  543. std::string op_params;
  544. std::string backend_name;
  545. test_status_t status = test_status_t::OK;
  546. std::string failure_reason;
  547. // Additional information fields that were previously in separate structs
  548. std::string error_component;
  549. std::string error_details;
  550. // Gradient info
  551. int64_t gradient_index = -1;
  552. std::string gradient_param_name;
  553. float gradient_value = 0.0f;
  554. // MAA error info
  555. double maa_error = 0.0;
  556. double maa_threshold = 0.0;
  557. // Flags for different types of information
  558. bool has_error = false;
  559. bool has_gradient_info = false;
  560. bool has_maa_error = false;
  561. bool is_compare_failure = false;
  562. bool is_large_tensor_skip = false;
  563. test_operation_info() = default;
  564. test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
  565. test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
  566. op_name(op_name),
  567. op_params(op_params),
  568. backend_name(backend_name),
  569. status(status),
  570. failure_reason(failure_reason) {}
  571. // Set error information
  572. void set_error(const std::string & component, const std::string & details) {
  573. has_error = true;
  574. error_component = component;
  575. error_details = details;
  576. if (status == test_status_t::OK) {
  577. status = test_status_t::FAIL;
  578. }
  579. }
  580. // Set gradient information
  581. void set_gradient_info(int64_t index, const std::string & param_name, float value) {
  582. has_gradient_info = true;
  583. gradient_index = index;
  584. gradient_param_name = param_name;
  585. gradient_value = value;
  586. if (status == test_status_t::OK) {
  587. status = test_status_t::FAIL;
  588. }
  589. }
  590. // Set MAA error information
  591. void set_maa_error(double error, double threshold) {
  592. has_maa_error = true;
  593. maa_error = error;
  594. maa_threshold = threshold;
  595. if (status == test_status_t::OK) {
  596. status = test_status_t::FAIL;
  597. }
  598. }
  599. // Set compare failure
  600. void set_compare_failure() {
  601. is_compare_failure = true;
  602. if (status == test_status_t::OK) {
  603. status = test_status_t::FAIL;
  604. }
  605. }
  606. // Set large tensor skip
  607. void set_large_tensor_skip() { is_large_tensor_skip = true; }
  608. };
  609. struct test_summary_info {
  610. size_t tests_passed;
  611. size_t tests_total;
  612. bool is_backend_summary = false; // true for backend summary, false for test summary
  613. test_summary_info() = default;
  614. test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
  615. tests_passed(tests_passed),
  616. tests_total(tests_total),
  617. is_backend_summary(is_backend_summary) {}
  618. };
  619. struct testing_start_info {
  620. size_t device_count;
  621. testing_start_info() = default;
  622. testing_start_info(size_t device_count) : device_count(device_count) {}
  623. };
  624. struct backend_init_info {
  625. size_t device_index;
  626. size_t total_devices;
  627. std::string device_name;
  628. bool skipped = false;
  629. std::string skip_reason;
  630. std::string description;
  631. size_t memory_total_mb = 0;
  632. size_t memory_free_mb = 0;
  633. bool has_memory_info = false;
  634. backend_init_info() = default;
  635. backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
  636. const std::string & skip_reason = "", const std::string & description = "",
  637. size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
  638. device_index(device_index),
  639. total_devices(total_devices),
  640. device_name(device_name),
  641. skipped(skipped),
  642. skip_reason(skip_reason),
  643. description(description),
  644. memory_total_mb(memory_total_mb),
  645. memory_free_mb(memory_free_mb),
  646. has_memory_info(has_memory_info) {}
  647. };
  648. struct backend_status_info {
  649. std::string backend_name;
  650. test_status_t status;
  651. backend_status_info() = default;
  652. backend_status_info(const std::string & backend_name, test_status_t status) :
  653. backend_name(backend_name),
  654. status(status) {}
  655. };
  656. struct overall_summary_info {
  657. size_t backends_passed;
  658. size_t backends_total;
  659. bool all_passed;
  660. overall_summary_info() = default;
  661. overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
  662. backends_passed(backends_passed),
  663. backends_total(backends_total),
  664. all_passed(all_passed) {}
  665. };
  666. struct printer {
  667. virtual ~printer() {}
  668. FILE * fout = stdout;
  669. virtual void print_header() {}
  670. virtual void print_test_result(const test_result & result) = 0;
  671. virtual void print_footer() {}
  672. virtual void print_operation(const test_operation_info & info) { (void) info; }
  673. virtual void print_summary(const test_summary_info & info) { (void) info; }
  674. virtual void print_testing_start(const testing_start_info & info) { (void) info; }
  675. virtual void print_backend_init(const backend_init_info & info) { (void) info; }
  676. virtual void print_backend_status(const backend_status_info & info) { (void) info; }
  677. virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
  678. virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; }
  679. };
  680. struct console_printer : public printer {
  681. void print_test_result(const test_result & result) override {
  682. if (result.test_mode == "test") {
  683. print_test_console(result);
  684. } else if (result.test_mode == "perf") {
  685. print_perf_console(result);
  686. } else if (result.test_mode == "support") {
  687. print_support_console(result);
  688. }
  689. }
  690. void print_operation(const test_operation_info & info) override {
  691. printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
  692. fflush(stdout);
  693. // Handle large tensor skip first
  694. if (info.is_large_tensor_skip) {
  695. printf("skipping large tensors for speed \n");
  696. return;
  697. }
  698. // Handle not supported status
  699. if (info.status == test_status_t::NOT_SUPPORTED) {
  700. if (!info.failure_reason.empty()) {
  701. printf("not supported [%s]\n", info.failure_reason.c_str());
  702. } else {
  703. printf("not supported [%s]\n", info.backend_name.c_str());
  704. }
  705. return;
  706. }
  707. // Handle errors and additional information
  708. if (info.has_error) {
  709. if (info.error_component == "allocation") {
  710. fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
  711. } else if (info.error_component == "backend") {
  712. fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
  713. } else {
  714. fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
  715. }
  716. }
  717. // Handle gradient info
  718. if (info.has_gradient_info) {
  719. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
  720. info.gradient_param_name.c_str(), info.gradient_value);
  721. }
  722. // Handle MAA error
  723. if (info.has_maa_error) {
  724. printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
  725. }
  726. // Handle compare failure
  727. if (info.is_compare_failure) {
  728. printf("compare failed ");
  729. }
  730. // Print final status
  731. if (info.status == test_status_t::OK) {
  732. printf("\033[1;32mOK\033[0m\n");
  733. } else {
  734. printf("\033[1;31mFAIL\033[0m\n");
  735. }
  736. }
  737. void print_summary(const test_summary_info & info) override {
  738. if (info.is_backend_summary) {
  739. printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
  740. } else {
  741. printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
  742. }
  743. }
  744. void print_backend_status(const backend_status_info & info) override {
  745. printf(" Backend %s: ", info.backend_name.c_str());
  746. if (info.status == test_status_t::OK) {
  747. printf("\033[1;32mOK\033[0m\n");
  748. } else {
  749. printf("\033[1;31mFAIL\033[0m\n");
  750. }
  751. }
  752. void print_testing_start(const testing_start_info & info) override {
  753. printf("Testing %zu devices\n\n", info.device_count);
  754. }
  755. void print_backend_init(const backend_init_info & info) override {
  756. printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
  757. if (info.skipped) {
  758. printf(" %s\n", info.skip_reason.c_str());
  759. return;
  760. }
  761. if (!info.description.empty()) {
  762. printf(" Device description: %s\n", info.description.c_str());
  763. }
  764. if (info.has_memory_info) {
  765. printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
  766. }
  767. printf("\n");
  768. }
  769. void print_overall_summary(const overall_summary_info & info) override {
  770. printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
  771. if (info.all_passed) {
  772. printf("\033[1;32mOK\033[0m\n");
  773. } else {
  774. printf("\033[1;31mFAIL\033[0m\n");
  775. }
  776. }
  777. void print_failed_tests(const std::vector<std::string> & failed_tests) override {
  778. if (failed_tests.empty()) {
  779. return;
  780. }
  781. printf("\nFailing tests:\n");
  782. for (const auto & test_name : failed_tests) {
  783. printf(" %s\n", test_name.c_str());
  784. }
  785. }
  786. private:
  787. void print_test_console(const test_result & result) {
  788. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  789. fflush(stdout);
  790. if (!result.supported) {
  791. printf("not supported [%s] ", result.backend_name.c_str());
  792. printf("\n");
  793. return;
  794. }
  795. if (result.passed) {
  796. printf("\033[1;32mOK\033[0m\n");
  797. } else {
  798. printf("\033[1;31mFAIL\033[0m\n");
  799. }
  800. }
  801. void print_perf_console(const test_result & result) {
  802. int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  803. fflush(stdout);
  804. if (!result.supported) {
  805. printf("not supported\n");
  806. return;
  807. }
  808. // align while also leaving some margin for variations in parameters
  809. int align = 8;
  810. int last = (len + align - 1) / align * align;
  811. if (last - len < 5) {
  812. last += align;
  813. }
  814. printf("%*s", last - len, "");
  815. printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
  816. if (result.flops > 0) {
  817. auto format_flops = [](double flops) -> std::string {
  818. char buf[256];
  819. if (flops >= 1e12) {
  820. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  821. } else if (flops >= 1e9) {
  822. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  823. } else if (flops >= 1e6) {
  824. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  825. } else {
  826. snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
  827. }
  828. return buf;
  829. };
  830. uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
  831. printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
  832. format_flops(result.flops).c_str());
  833. } else {
  834. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
  835. }
  836. printf("\n");
  837. }
  838. void print_support_console(const test_result & result) {
  839. printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
  840. fflush(stdout);
  841. if (result.supported) {
  842. printf("\033[1;32mSUPPORTED\033[0m\n");
  843. } else {
  844. printf("\033[1;31mNOT SUPPORTED\033[0m\n");
  845. }
  846. }
  847. };
  848. struct sql_printer : public printer {
  849. static std::string get_sql_field_type(const std::string & field) {
  850. switch (test_result::get_field_type(field)) {
  851. case test_result::STRING:
  852. return "TEXT";
  853. case test_result::BOOL:
  854. case test_result::INT:
  855. return "INTEGER";
  856. case test_result::FLOAT:
  857. return "REAL";
  858. default:
  859. GGML_ABORT("invalid field type");
  860. }
  861. }
  862. void print_header() override {
  863. std::vector<std::string> fields = test_result::get_fields();
  864. fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
  865. for (size_t i = 0; i < fields.size(); i++) {
  866. fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
  867. i < fields.size() - 1 ? "," : "");
  868. }
  869. fprintf(fout, ");\n\n");
  870. }
  871. void print_test_result(const test_result & result) override {
  872. fprintf(fout, "INSERT INTO test_backend_ops (");
  873. std::vector<std::string> fields = test_result::get_fields();
  874. for (size_t i = 0; i < fields.size(); i++) {
  875. fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
  876. }
  877. fprintf(fout, ") VALUES (");
  878. std::vector<std::string> values = result.get_values();
  879. for (size_t i = 0; i < values.size(); i++) {
  880. fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
  881. }
  882. fprintf(fout, ");\n");
  883. }
  884. };
  885. struct csv_printer : public printer {
  886. void print_header() override {
  887. std::vector<std::string> fields = test_result::get_fields();
  888. std::vector<std::string> fields_csv = get_fields_csv();
  889. for (size_t i = 0; i < fields.size(); i++) {
  890. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  891. continue;
  892. }
  893. printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
  894. }
  895. printf("\n");
  896. }
  897. void print_test_result(const test_result & result) override {
  898. std::vector<std::string> values = result.get_values();
  899. std::vector<std::string> fields = test_result::get_fields();
  900. std::vector<std::string> fields_csv = get_fields_csv();
  901. for (size_t i = 0; i < values.size(); i++) {
  902. if (std::find(std::begin(fields_csv), std::end(fields_csv), fields[i]) == std::end(fields_csv)) {
  903. continue;
  904. }
  905. // Escape quotes and wrap in quotes for CSV
  906. std::string escaped_value = values[i];
  907. size_t pos = 0;
  908. while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
  909. escaped_value.replace(pos, 1, "\"\"");
  910. pos += 2;
  911. }
  912. printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
  913. }
  914. printf("\n");
  915. }
  916. static std::vector<std::string> get_fields_csv() {
  917. return {
  918. "op_name",
  919. "op_params",
  920. "supported",
  921. "error_message",
  922. "test_mode",
  923. "backend_reg_name",
  924. "backend_name",
  925. };
  926. }
  927. };
  928. static std::unique_ptr<printer> create_printer(output_formats format) {
  929. switch (format) {
  930. case CONSOLE:
  931. return std::make_unique<console_printer>();
  932. case SQL:
  933. return std::make_unique<sql_printer>();
  934. case CSV:
  935. return std::make_unique<csv_printer>();
  936. }
  937. GGML_ABORT("invalid output format");
  938. }
  939. struct test_case {
  940. virtual ~test_case() {}
  941. virtual std::string op_desc(ggml_tensor * t) {
  942. return ggml_op_desc(t);
  943. }
  944. virtual std::string vars() {
  945. return "";
  946. }
  947. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  948. virtual double max_nmse_err() {
  949. return 1e-7;
  950. }
  951. virtual double max_nmse_err(ggml_backend_t backend) {
  952. GGML_UNUSED(backend);
  953. return max_nmse_err();
  954. }
  955. virtual double max_maa_err() {
  956. return 1e-4;
  957. }
  958. virtual double max_err() {
  959. return max_nmse_err();
  960. }
  961. virtual double max_err(ggml_backend_t backend) {
  962. return max_nmse_err(backend);
  963. }
  964. virtual double err(const float * a, const float * b, size_t n) {
  965. return nmse(a, b, n);
  966. }
  967. virtual float grad_eps() {
  968. return 1e-1f;
  969. }
  970. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  971. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  972. virtual bool grad_precise() {
  973. return false;
  974. }
  975. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  976. virtual int64_t grad_nmax() {
  977. return 10000;
  978. }
  979. // No effect if empty.
  980. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  981. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  982. virtual std::vector<float> grad_expect() {
  983. return {};
  984. }
  985. virtual void initialize_tensors(ggml_context * ctx) {
  986. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  987. init_tensor_uniform(t);
  988. }
  989. }
  990. virtual size_t op_size(ggml_tensor * t) {
  991. size_t size = ggml_nbytes(t);
  992. // add source tensors
  993. for (int i = 0; i < GGML_MAX_SRC; i++) {
  994. if (t->src[i] != NULL) {
  995. size += ggml_nbytes(t->src[i]);
  996. }
  997. }
  998. return size;
  999. }
  1000. virtual uint64_t op_flops(ggml_tensor * t) {
  1001. GGML_UNUSED(t);
  1002. return 0;
  1003. }
  1004. virtual bool run_whole_graph() { return false; }
  1005. virtual std::vector<ggml_tensor *> fusion_test_nodes() { return {}; }
  1006. ggml_cgraph * gf = nullptr;
  1007. ggml_cgraph * gb = nullptr;
  1008. static const int sentinel_size = 1024;
  1009. test_mode mode;
  1010. std::vector<ggml_tensor *> sentinels;
  1011. std::string current_op_name;
  1012. void add_sentinel(ggml_context * ctx) {
  1013. if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
  1014. return;
  1015. }
  1016. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  1017. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  1018. sentinels.push_back(sentinel);
  1019. }
  1020. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  1021. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  1022. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  1023. add_sentinel(ctx);
  1024. return t;
  1025. }
  1026. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  1027. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  1028. add_sentinel(ctx);
  1029. return t;
  1030. }
  1031. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  1032. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  1033. add_sentinel(ctx);
  1034. return t;
  1035. }
  1036. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  1037. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  1038. add_sentinel(ctx);
  1039. return t;
  1040. }
  1041. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  1042. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  1043. add_sentinel(ctx);
  1044. return t;
  1045. }
  1046. // Checks an op against the test filter, which is a comma separated list of OP names or specific variations
  1047. bool matches_filter(ggml_tensor * op, const char * op_names_filter) {
  1048. if (op_names_filter) {
  1049. const auto op_name = op_desc(op);
  1050. const auto op_full_name = op_name + "(" + vars() + ")";
  1051. std::string_view filter(op_names_filter);
  1052. while (!filter.empty()) {
  1053. auto comma_pos = filter.find_first_of(',');
  1054. const auto lparen_pos = filter.find_first_of('(');
  1055. if (lparen_pos < comma_pos) {
  1056. auto rparen_pos = filter.find_first_of(')');
  1057. comma_pos = filter.find_first_of(',', rparen_pos);
  1058. const auto op_filter = filter.substr(0, comma_pos);
  1059. if (op_filter == op_full_name) {
  1060. return true;
  1061. }
  1062. } else {
  1063. const auto op_filter = filter.substr(0, comma_pos);
  1064. if (op_filter == op_name) {
  1065. return true;
  1066. }
  1067. }
  1068. filter = comma_pos != std::string_view::npos ? filter.substr(comma_pos + 1) : "";
  1069. }
  1070. return false;
  1071. } else {
  1072. return true;
  1073. }
  1074. }
  1075. test_status_t eval(ggml_backend_t backend1,
  1076. ggml_backend_t backend2,
  1077. const char * op_names_filter,
  1078. printer * output_printer) {
  1079. mode = MODE_TEST;
  1080. ggml_init_params params = {
  1081. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  1082. /* .mem_base = */ NULL,
  1083. /* .no_alloc = */ true,
  1084. };
  1085. ggml_context * ctx = ggml_init(params);
  1086. GGML_ASSERT(ctx);
  1087. gf = ggml_new_graph(ctx);
  1088. // pre-graph sentinel
  1089. add_sentinel(ctx);
  1090. ggml_tensor * out = build_graph(ctx);
  1091. current_op_name = op_desc(out);
  1092. if (!matches_filter(out, op_names_filter)) {
  1093. //printf(" %s: skipping\n", op_desc(out).c_str());
  1094. ggml_free(ctx);
  1095. return test_status_t::SKIPPED;
  1096. }
  1097. // check if the backends support the ops
  1098. bool supported = true;
  1099. for (ggml_backend_t backend : {backend1, backend2}) {
  1100. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1101. if (!ggml_backend_supports_op(backend, t)) {
  1102. supported = false;
  1103. break;
  1104. }
  1105. }
  1106. }
  1107. if (!supported) {
  1108. // Create test result for unsupported operation
  1109. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
  1110. false, false, "not supported");
  1111. if (output_printer) {
  1112. output_printer->print_test_result(result);
  1113. }
  1114. ggml_free(ctx);
  1115. return test_status_t::NOT_SUPPORTED;
  1116. }
  1117. // post-graph sentinel
  1118. add_sentinel(ctx);
  1119. // allocate
  1120. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  1121. if (buf == NULL) {
  1122. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  1123. ggml_free(ctx);
  1124. return test_status_t::FAIL;
  1125. }
  1126. // build graph
  1127. ggml_build_forward_expand(gf, out);
  1128. // add sentinels as graph nodes so that they are checked in the callback
  1129. for (ggml_tensor * sentinel : sentinels) {
  1130. ggml_graph_add_node(gf, sentinel);
  1131. }
  1132. // randomize tensors
  1133. initialize_tensors(ctx);
  1134. // compare
  1135. struct callback_userdata {
  1136. bool ok;
  1137. test_case * tc;
  1138. ggml_backend_t backend1;
  1139. ggml_backend_t backend2;
  1140. };
  1141. callback_userdata ud {
  1142. true,
  1143. this,
  1144. backend1,
  1145. backend2,
  1146. };
  1147. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  1148. callback_userdata * ud = (callback_userdata *) user_data;
  1149. const char * bn1 = ggml_backend_name(ud->backend1);
  1150. const char * bn2 = ggml_backend_name(ud->backend2);
  1151. if (t1->op == GGML_OP_NONE) {
  1152. // sentinels must be unchanged
  1153. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  1154. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  1155. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  1156. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  1157. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  1158. printf("sentinel mismatch: %s ", t1->name);
  1159. ud->ok = false;
  1160. return true;
  1161. }
  1162. }
  1163. std::vector<float> f1 = tensor_to_float(t1);
  1164. std::vector<float> f2 = tensor_to_float(t2);
  1165. for (size_t i = 0; i < f1.size(); i++) {
  1166. // check for nans
  1167. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  1168. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  1169. ud->ok = false;
  1170. return true;
  1171. }
  1172. // check for infs: both must be inf of the same sign, or both must be finite
  1173. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  1174. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  1175. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  1176. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1177. ud->ok = false;
  1178. return true;
  1179. }
  1180. } else {
  1181. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  1182. ud->ok = false;
  1183. return true;
  1184. }
  1185. }
  1186. }
  1187. double err = ud->tc->err(f1.data(), f2.data(), f1.size());
  1188. if (err > ud->tc->max_err(ud->backend1)) {
  1189. printf("[%s] ERR = %.9f > %.9f ", ggml_op_desc(t1), err, ud->tc->max_err(ud->backend1));
  1190. //for (int i = 0; i < (int) f1.size(); i++) {
  1191. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  1192. //}
  1193. //printf("\n");
  1194. //exit(1);
  1195. ud->ok = false;
  1196. }
  1197. return true;
  1198. GGML_UNUSED(index);
  1199. };
  1200. std::vector<ggml_tensor *> fused_nodes_to_verify = fusion_test_nodes();
  1201. if (fused_nodes_to_verify.size() == 0 && run_whole_graph()) {
  1202. fused_nodes_to_verify.push_back(out);
  1203. }
  1204. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud,
  1205. run_whole_graph() ? fused_nodes_to_verify.data() : nullptr,
  1206. fused_nodes_to_verify.size());
  1207. ggml_backend_buffer_free(buf);
  1208. ggml_free(ctx);
  1209. // Create test result
  1210. bool test_passed = ud.ok && cmp_ok;
  1211. std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
  1212. test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
  1213. error_msg);
  1214. if (output_printer) {
  1215. output_printer->print_test_result(result);
  1216. }
  1217. return test_passed ? test_status_t::OK : test_status_t::FAIL;
  1218. }
  1219. bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1220. mode = MODE_PERF;
  1221. static const size_t graph_nodes = 8192;
  1222. ggml_init_params params = {
  1223. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1224. /* .mem_base = */ NULL,
  1225. /* .no_alloc = */ true,
  1226. };
  1227. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1228. GGML_ASSERT(ctx);
  1229. ggml_tensor * out = build_graph(ctx.get());
  1230. current_op_name = op_desc(out);
  1231. if (!matches_filter(out, op_names_filter)) {
  1232. //printf(" %s: skipping\n", op_desc(out).c_str());
  1233. return true;
  1234. }
  1235. if (!ggml_backend_supports_op(backend, out)) {
  1236. // Create test result for unsupported performance test
  1237. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
  1238. "not supported");
  1239. output_printer->print_test_result(result);
  1240. return true;
  1241. }
  1242. // allocate
  1243. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1244. if (buf == NULL) {
  1245. printf("failed to allocate tensors\n");
  1246. return false;
  1247. }
  1248. // randomize tensors
  1249. initialize_tensors(ctx.get());
  1250. // build graph
  1251. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1252. ggml_build_forward_expand(gf, out);
  1253. // warmup run
  1254. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1255. if (status != GGML_STATUS_SUCCESS) {
  1256. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1257. return false;
  1258. }
  1259. // determine number of runs
  1260. int n_runs;
  1261. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  1262. if (op_flops(out) > 0) {
  1263. // based on flops
  1264. const uint64_t GFLOP = 1000 * 1000 * 1000;
  1265. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  1266. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  1267. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  1268. n_runs = (int)std::min<int64_t>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  1269. } else {
  1270. // based on memory size
  1271. const size_t GB = 1ULL << 30;
  1272. const size_t target_size_cpu = 8 * GB;
  1273. const size_t target_size_gpu = 32 * GB;
  1274. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  1275. n_runs = (int)std::min<int64_t>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  1276. }
  1277. // duplicate the op
  1278. for (int i = 1; i < n_runs; i++) {
  1279. ggml_graph_add_node(gf, out);
  1280. }
  1281. // calculate memory
  1282. size_t mem = n_runs * op_size(out);
  1283. auto tensor_op_size = [](ggml_tensor * t) {
  1284. size_t size = ggml_nbytes(t);
  1285. // add source tensors
  1286. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1287. if (t->src[i] != NULL) {
  1288. size += ggml_nbytes(t->src[i]);
  1289. }
  1290. }
  1291. return size;
  1292. };
  1293. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  1294. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  1295. continue;
  1296. }
  1297. mem += tensor_op_size(ggml_graph_node(gf, i));
  1298. }
  1299. // run
  1300. int64_t total_time_us = 0;
  1301. int64_t total_mem = 0;
  1302. int total_runs = 0;
  1303. do {
  1304. int64_t start_time = ggml_time_us();
  1305. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1306. if (status != GGML_STATUS_SUCCESS) {
  1307. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1308. return false;
  1309. }
  1310. int64_t end_time = ggml_time_us();
  1311. total_time_us += end_time - start_time;
  1312. total_mem += mem;
  1313. total_runs += n_runs;
  1314. } while (total_time_us < 1000*1000); // run for at least 1 second
  1315. // Create test result
  1316. double avg_time_us = (double) total_time_us / total_runs;
  1317. double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
  1318. double calculated_bandwidth =
  1319. (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
  1320. size_t calculated_memory_kb = op_size(out) / 1024;
  1321. test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
  1322. calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
  1323. if (output_printer) {
  1324. output_printer->print_test_result(result);
  1325. }
  1326. return true;
  1327. }
  1328. bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1329. mode = MODE_SUPPORT;
  1330. static const size_t graph_nodes = 8192;
  1331. ggml_init_params params = {
  1332. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  1333. /* .mem_base = */ NULL,
  1334. /* .no_alloc = */ true,
  1335. };
  1336. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1337. GGML_ASSERT(ctx);
  1338. gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  1339. ggml_tensor * out = build_graph(ctx.get());
  1340. current_op_name = op_desc(out);
  1341. if (!matches_filter(out, op_names_filter)) {
  1342. return true;
  1343. }
  1344. bool supported = ggml_backend_supports_op(backend, out);
  1345. std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
  1346. std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
  1347. test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
  1348. supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
  1349. output_printer->print_test_result(result);
  1350. return true;
  1351. }
  1352. bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) {
  1353. mode = MODE_GRAD;
  1354. const std::vector<float> expect = grad_expect();
  1355. ggml_init_params params = {
  1356. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  1357. /* .mem_base = */ NULL,
  1358. /* .no_alloc = */ true,
  1359. };
  1360. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  1361. GGML_ASSERT(ctx);
  1362. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1363. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  1364. ggml_tensor * out = build_graph(ctx.get());
  1365. if (!matches_filter(out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  1366. return true;
  1367. }
  1368. if (out->type != GGML_TYPE_F32) {
  1369. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1370. test_status_t::NOT_SUPPORTED,
  1371. out->name + std::string("->type != FP32")));
  1372. return true;
  1373. }
  1374. // Print operation info first
  1375. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
  1376. // check if the backend supports the ops
  1377. bool supported = true;
  1378. bool any_params = false;
  1379. std::string failure_reason;
  1380. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1381. if (!ggml_backend_supports_op(backend, t)) {
  1382. supported = false;
  1383. failure_reason = ggml_backend_name(backend);
  1384. break;
  1385. }
  1386. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1387. any_params = true;
  1388. if (t->type != GGML_TYPE_F32) {
  1389. supported = false;
  1390. failure_reason = std::string(t->name) + "->type != FP32";
  1391. break;
  1392. }
  1393. }
  1394. }
  1395. if (!any_params) {
  1396. supported = false;
  1397. failure_reason = op_desc(out);
  1398. }
  1399. if (!supported) {
  1400. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1401. test_status_t::NOT_SUPPORTED, failure_reason));
  1402. return true;
  1403. }
  1404. int64_t ngrads = 0;
  1405. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1406. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  1407. ngrads += ggml_nelements(t);
  1408. }
  1409. }
  1410. if (ngrads > grad_nmax()) {
  1411. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1412. info.set_large_tensor_skip();
  1413. output_printer->print_operation(info);
  1414. return true;
  1415. }
  1416. if (!ggml_is_scalar(out)) {
  1417. out = ggml_sum(ctx.get(), out);
  1418. ggml_set_name(out, "sum_of_out");
  1419. }
  1420. ggml_set_loss(out);
  1421. ggml_build_forward_expand(gf, out);
  1422. ggml_graph_cpy(gf, gb);
  1423. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  1424. if (expect.size() != 1 || expect[0] != 0.0f) {
  1425. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  1426. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1427. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  1428. }
  1429. }
  1430. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  1431. if (!ggml_backend_supports_op(backend, t)) {
  1432. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1433. test_status_t::NOT_SUPPORTED,
  1434. ggml_backend_name(backend)));
  1435. supported = false;
  1436. break;
  1437. }
  1438. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  1439. output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
  1440. test_status_t::NOT_SUPPORTED,
  1441. std::string(t->name) + "->type != FP32"));
  1442. supported = false;
  1443. break;
  1444. }
  1445. }
  1446. if (!supported) {
  1447. return true;
  1448. }
  1449. // allocate
  1450. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  1451. if (buf == NULL) {
  1452. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1453. info.set_error("allocation", "");
  1454. output_printer->print_operation(info);
  1455. return false;
  1456. }
  1457. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  1458. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  1459. ggml_status status = ggml_backend_graph_compute(backend, gf);
  1460. if (status != GGML_STATUS_SUCCESS) {
  1461. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1462. return false;
  1463. }
  1464. status = ggml_backend_graph_compute(backend, gb);
  1465. if (status != GGML_STATUS_SUCCESS) {
  1466. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1467. return false;
  1468. }
  1469. bool ok = true;
  1470. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  1471. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  1472. continue;
  1473. }
  1474. const char * bn = ggml_backend_name(backend);
  1475. const int64_t ne = ggml_nelements(t);
  1476. std::vector<float> ga;
  1477. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  1478. if (grad) {
  1479. ga = tensor_to_float(grad);
  1480. } else {
  1481. ga.resize(ne); // default value is 0.0f
  1482. }
  1483. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  1484. // check for nans
  1485. if (!std::isfinite(ga[i])) {
  1486. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1487. info.set_gradient_info(i, bn, ga[i]);
  1488. output_printer->print_operation(info);
  1489. ok = false;
  1490. break;
  1491. }
  1492. }
  1493. if (!ok) {
  1494. break;
  1495. }
  1496. std::vector<float> gn(ne); // gradient numeric
  1497. GGML_ASSERT(ga.size() == gn.size());
  1498. std::vector<float> x0 = tensor_to_float(t); // original t data
  1499. GGML_ASSERT(ggml_is_scalar(out));
  1500. GGML_ASSERT(out->type == GGML_TYPE_F32);
  1501. const float eps = grad_eps();
  1502. for (int64_t i = 0; i < ne; ++i) {
  1503. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  1504. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  1505. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  1506. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  1507. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  1508. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  1509. status = ggml_backend_graph_compute(backend, gf);
  1510. if (status != GGML_STATUS_SUCCESS) {
  1511. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1512. return false;
  1513. }
  1514. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  1515. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  1516. status = ggml_backend_graph_compute(backend, gf);
  1517. if (status != GGML_STATUS_SUCCESS) {
  1518. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1519. return false;
  1520. }
  1521. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  1522. if (grad_precise()) {
  1523. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  1524. status = ggml_backend_graph_compute(backend, gf);
  1525. if (status != GGML_STATUS_SUCCESS) {
  1526. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1527. return false;
  1528. }
  1529. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  1530. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  1531. status = ggml_backend_graph_compute(backend, gf);
  1532. if (status != GGML_STATUS_SUCCESS) {
  1533. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  1534. return false;
  1535. }
  1536. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  1537. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  1538. } else {
  1539. gn[i] = (fu - fd) / (2.0f*eps);
  1540. }
  1541. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  1542. }
  1543. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  1544. if (err > max_maa_err()) {
  1545. test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
  1546. info.set_maa_error(err, max_maa_err());
  1547. output_printer->print_operation(info);
  1548. ok = false;
  1549. break;
  1550. }
  1551. if (!ok) {
  1552. break;
  1553. }
  1554. }
  1555. // Create final test result
  1556. test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
  1557. if (!ok) {
  1558. final_info.set_compare_failure();
  1559. }
  1560. final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
  1561. output_printer->print_operation(final_info);
  1562. if (ok) {
  1563. return true;
  1564. }
  1565. return false;
  1566. }
  1567. };
  1568. // ###################################
  1569. // ## Section 2: GGML Op Defintions ##
  1570. // ###################################
  1571. // The following is an example showing the bare minimum for creating a test for a GGML op.
  1572. // GGML_OP_EXAMPLE
  1573. struct test_example : public test_case {
  1574. // Always define these 2 or variants thereof:
  1575. const ggml_type type; // The type of the input tensors.
  1576. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  1577. // For some ops it's necessary to define multiple types or shapes for the inputs.
  1578. // Or they may need additional parameters.
  1579. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  1580. // In most cases these are just the properties of the struct that you defined above.
  1581. // This is needed for info prints.
  1582. std::string vars() override {
  1583. return VARS_TO_STR2(type, ne);
  1584. }
  1585. // Define a constructor for the struct.
  1586. // In most cases it will be sufficient to have the same arguments as the struct has properties
  1587. // and just use initializer lists.
  1588. test_example(ggml_type type = GGML_TYPE_F32,
  1589. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1590. : type(type), ne(ne) {}
  1591. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  1592. ggml_tensor * build_graph(ggml_context * ctx) override {
  1593. // Step 1: create input tensors that don't depend on any other tensors:
  1594. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1595. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  1596. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1597. ggml_set_name(b, "b");
  1598. // Step 2: use the op that you want to test in the GGML compute graph.
  1599. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  1600. ggml_set_name(out, "out");
  1601. // Step 3: return the output tensor.
  1602. return out;
  1603. }
  1604. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  1605. // immediately after you create the tensors.
  1606. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  1607. };
  1608. // GGML_OP_UNARY
  1609. struct test_unary : public test_case {
  1610. const ggml_unary_op op;
  1611. const ggml_type type;
  1612. const std::array<int64_t, 4> ne_a;
  1613. int v; // view (1 : non-contiguous a)
  1614. std::string vars() override {
  1615. return VARS_TO_STR3(type, ne_a, v);
  1616. }
  1617. test_unary(ggml_unary_op op,
  1618. ggml_type type = GGML_TYPE_F32,
  1619. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1620. int v = 0)
  1621. : op(op), type(type), ne_a(ne_a), v(v) {}
  1622. ggml_tensor * build_graph(ggml_context * ctx) override {
  1623. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  1624. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU ||
  1625. op == GGML_UNARY_OP_EXPM1 || op == GGML_UNARY_OP_SOFTPLUS;
  1626. ggml_tensor * a;
  1627. if (v & 1) {
  1628. auto ne = ne_a; ne[0] *= 3;
  1629. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1630. if (grad_supported) {
  1631. ggml_set_param(a);
  1632. }
  1633. ggml_set_name(a, "a");
  1634. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1635. ggml_set_name(a, "view_of_a");
  1636. } else {
  1637. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1638. if (grad_supported) {
  1639. ggml_set_param(a);
  1640. }
  1641. ggml_set_name(a, "a");
  1642. }
  1643. ggml_tensor * out = ggml_unary(ctx, a, op);
  1644. ggml_set_name(out, "out");
  1645. return out;
  1646. }
  1647. void initialize_tensors(ggml_context * ctx) override {
  1648. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1649. // test extended range of values to check for NaNs in GELU
  1650. init_tensor_uniform(t, -150.f, 150.f);
  1651. }
  1652. }
  1653. float grad_eps() override {
  1654. return 15.0f;
  1655. }
  1656. std::vector<float> grad_expect() override {
  1657. if (op == GGML_UNARY_OP_ABS) {
  1658. return {-1.0f, 1.0f};
  1659. }
  1660. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  1661. return {0.0f};
  1662. }
  1663. if (op == GGML_UNARY_OP_RELU) {
  1664. return {0.0f, 1.0f};
  1665. }
  1666. return {};
  1667. }
  1668. };
  1669. // GGML_OP_GLU
  1670. struct test_glu : public test_case {
  1671. const ggml_glu_op op;
  1672. const ggml_type type;
  1673. const std::array<int64_t, 4> ne_a;
  1674. int v; // view (1 : non-contiguous a)
  1675. bool swapped;
  1676. std::string vars() override {
  1677. return VARS_TO_STR4(type, ne_a, v, swapped);
  1678. }
  1679. test_glu(ggml_glu_op op,
  1680. ggml_type type = GGML_TYPE_F32,
  1681. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1682. int v = 0,
  1683. bool swapped = false)
  1684. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  1685. ggml_tensor * build_graph(ggml_context * ctx) override {
  1686. ggml_tensor * a;
  1687. if (v & 1) {
  1688. auto ne = ne_a; ne[0] *= 3;
  1689. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1690. ggml_set_name(a, "a");
  1691. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1692. ggml_set_name(a, "view_of_a");
  1693. } else {
  1694. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1695. ggml_set_name(a, "a");
  1696. }
  1697. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  1698. ggml_set_name(out, "out");
  1699. return out;
  1700. }
  1701. void initialize_tensors(ggml_context * ctx) override {
  1702. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1703. // test extended range of values to check for NaNs in GELU
  1704. init_tensor_uniform(t, -150.f, 150.f);
  1705. }
  1706. }
  1707. };
  1708. struct test_glu_split : public test_case {
  1709. const ggml_glu_op op;
  1710. const ggml_type type;
  1711. const std::array<int64_t, 4> ne_a;
  1712. int v; // view (1 : non-contiguous a)
  1713. std::string vars() override {
  1714. return VARS_TO_STR3(type, ne_a, v) + ",split";
  1715. }
  1716. test_glu_split(ggml_glu_op op,
  1717. ggml_type type = GGML_TYPE_F32,
  1718. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1719. int v = 0)
  1720. : op(op), type(type), ne_a(ne_a), v(v) {}
  1721. ggml_tensor * build_graph(ggml_context * ctx) override {
  1722. ggml_tensor * a;
  1723. ggml_tensor * b;
  1724. if (v & 1) {
  1725. auto ne = ne_a; ne[0] *= 3;
  1726. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1727. ggml_set_param(a);
  1728. ggml_set_name(a, "a");
  1729. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1730. ggml_set_name(a, "view_of_a");
  1731. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1732. ggml_set_param(b);
  1733. ggml_set_name(b, "b");
  1734. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1735. ggml_set_name(a, "view_of_b");
  1736. } else {
  1737. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1738. ggml_set_param(a);
  1739. ggml_set_name(a, "a");
  1740. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1741. ggml_set_param(b);
  1742. ggml_set_name(b, "b");
  1743. }
  1744. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1745. ggml_set_name(out, "out");
  1746. return out;
  1747. }
  1748. void initialize_tensors(ggml_context * ctx) override {
  1749. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1750. // test extended range of values to check for NaNs in GELU
  1751. init_tensor_uniform(t, -150.f, 150.f);
  1752. }
  1753. }
  1754. };
  1755. struct test_swiglu_oai : public test_case {
  1756. const ggml_type type;
  1757. const std::array<int64_t, 4> ne_a;
  1758. int v; // view (1 : non-contiguous a)
  1759. float alpha;
  1760. float limit;
  1761. std::string vars() override {
  1762. return VARS_TO_STR5(type, ne_a, v, alpha, limit);
  1763. }
  1764. test_swiglu_oai(ggml_type type = GGML_TYPE_F32,
  1765. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  1766. int v = 0,
  1767. float alpha = 1.702f,
  1768. float limit = 7.0f)
  1769. : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {}
  1770. ggml_tensor * build_graph(ggml_context * ctx) override {
  1771. ggml_tensor * a;
  1772. ggml_tensor * b;
  1773. if (v & 1) {
  1774. auto ne = ne_a; ne[0] *= 3;
  1775. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1776. ggml_set_param(a);
  1777. ggml_set_name(a, "a");
  1778. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1779. ggml_set_name(a, "view_of_a");
  1780. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1781. ggml_set_param(b);
  1782. ggml_set_name(b, "b");
  1783. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1784. ggml_set_name(a, "view_of_b");
  1785. } else {
  1786. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1787. ggml_set_param(a);
  1788. ggml_set_name(a, "a");
  1789. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1790. ggml_set_param(b);
  1791. ggml_set_name(b, "b");
  1792. }
  1793. ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit);
  1794. ggml_set_name(out, "out");
  1795. return out;
  1796. }
  1797. void initialize_tensors(ggml_context * ctx) override {
  1798. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1799. // test extended range of values to check for NaNs in GELU
  1800. init_tensor_uniform(t, -150.f, 150.f);
  1801. }
  1802. }
  1803. };
  1804. // GGML_OP_GET_ROWS
  1805. struct test_get_rows : public test_case {
  1806. const ggml_type type;
  1807. const int n; // cols
  1808. const int m; // rows
  1809. const int r; // rows to get
  1810. const int be1; // batch size
  1811. const int be2; // batch size
  1812. const bool v; // view (non-contiguous src1)
  1813. std::string vars() override {
  1814. return VARS_TO_STR7(type, n, m, r, be1, be2, v);
  1815. }
  1816. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false)
  1817. : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {}
  1818. ggml_tensor * build_graph(ggml_context * ctx) override {
  1819. ggml_tensor * in = ggml_new_tensor_4d(ctx, type, n, m, be1, be2);
  1820. ggml_set_name(in, "in");
  1821. ggml_tensor * rows = ggml_new_tensor_3d(ctx, GGML_TYPE_I32, r, be1, be2);
  1822. ggml_set_name(rows, "rows");
  1823. if (v) {
  1824. rows = ggml_view_3d(ctx, rows, r/2, be1, be2, rows->nb[1], rows->nb[2], 0);
  1825. ggml_set_name(rows, "view_of_rows");
  1826. }
  1827. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1828. if (grad_supported) {
  1829. ggml_set_param(in);
  1830. // rows is a constant input -> no gradients
  1831. }
  1832. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1833. ggml_set_name(out, "out");
  1834. return out;
  1835. }
  1836. void initialize_tensors(ggml_context * ctx) override {
  1837. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1838. if (t->type == GGML_TYPE_I32) {
  1839. if (ggml_is_view_op(t->op)) { continue; }
  1840. // rows
  1841. std::vector<int> data(r*be1*be2);
  1842. for (int i = 0; i < r*be1*be2; i++) {
  1843. data[i] = rand() % m;
  1844. }
  1845. ggml_backend_tensor_set(t, data.data(), 0, r * be1 * be2 * sizeof(int));
  1846. } else {
  1847. init_tensor_uniform(t);
  1848. }
  1849. }
  1850. }
  1851. };
  1852. // GGML_OP_GET_ROWS_BACK
  1853. struct test_get_rows_back : public test_case {
  1854. const ggml_type type;
  1855. const int n; // cols
  1856. const int m; // rows
  1857. const int r; // rows to get
  1858. const int b; // batch size
  1859. const bool v; // view (non-contiguous src1)
  1860. std::string vars() override {
  1861. return VARS_TO_STR6(type, n, m, r, b, v);
  1862. }
  1863. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1864. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1865. ggml_tensor * build_graph(ggml_context * ctx) override {
  1866. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1867. ggml_set_name(in_forward, "in_forward");
  1868. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1869. ggml_set_name(rows, "rows");
  1870. if (v) {
  1871. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1872. ggml_set_name(rows, "view_of_rows");
  1873. }
  1874. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1875. ggml_set_name(grad, "grad");
  1876. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1877. ggml_set_name(out, "out");
  1878. return out;
  1879. }
  1880. void initialize_tensors(ggml_context * ctx) override {
  1881. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1882. if (t->type == GGML_TYPE_I32) {
  1883. if (ggml_is_view_op(t->op)) { continue; }
  1884. // rows
  1885. std::vector<int> data(r*b);
  1886. for (int i = 0; i < r*b; i++) {
  1887. data[i] = rand() % m;
  1888. }
  1889. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1890. } else {
  1891. init_tensor_uniform(t);
  1892. }
  1893. }
  1894. }
  1895. };
  1896. static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) {
  1897. std::random_device rd;
  1898. std::default_random_engine rng(rd());
  1899. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1900. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1901. // generate a shuffled subset of row indices
  1902. std::vector<int64_t> data(num_rows);
  1903. for (int i = 0; i < num_rows; i++) {
  1904. data[i] = i;
  1905. }
  1906. std::shuffle(data.begin(), data.end(), rng);
  1907. data.resize(t->ne[0]);
  1908. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1909. if (t->type == GGML_TYPE_I32) {
  1910. // TODO: Make a template or something
  1911. std::vector<int32_t> data_i32(t->ne[0]);
  1912. for (int i = 0; i < t->ne[0]; i++) {
  1913. data_i32[i] = static_cast<int32_t>(data[i]);
  1914. }
  1915. ggml_backend_tensor_set(t, data_i32.data(), offs, t->ne[0]*sizeof(int32_t));
  1916. } else {
  1917. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1918. }
  1919. }
  1920. }
  1921. }
  1922. // GGML_OP_SET_ROWS
  1923. struct test_set_rows : public test_case {
  1924. const ggml_type type;
  1925. const ggml_type type_idx;
  1926. const std::array<int64_t, 4> ne;
  1927. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1928. const int r; // rows to set
  1929. const bool v; // view (non-contiguous src1)
  1930. std::string vars() override {
  1931. return VARS_TO_STR6(type, type_idx, ne, nr23, r, v);
  1932. }
  1933. test_set_rows(ggml_type type,
  1934. ggml_type type_idx,
  1935. std::array<int64_t, 4> ne,
  1936. std::array<int, 2> nr23,
  1937. int r, bool v = false)
  1938. : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {}
  1939. ggml_tensor * build_graph(ggml_context * ctx) override {
  1940. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1941. ggml_set_name(dst, "dst");
  1942. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1943. ggml_set_name(src, "src");
  1944. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, r, ne[2], ne[3]);
  1945. ggml_set_name(row_idxs, "row_idxs");
  1946. if (v) {
  1947. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1948. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1949. ggml_set_name(row_idxs, "view_of_rows");
  1950. }
  1951. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1952. ggml_set_name(out, "out");
  1953. return out;
  1954. }
  1955. void initialize_tensors(ggml_context * ctx) override {
  1956. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1957. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  1958. if (ggml_is_view_op(t->op)) {
  1959. continue;
  1960. }
  1961. init_set_rows_row_ids(t, ne[1]);
  1962. } else {
  1963. init_tensor_uniform(t);
  1964. }
  1965. }
  1966. }
  1967. double max_nmse_err() override {
  1968. if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL ||
  1969. type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) {
  1970. // estimate what the max nmse error would be if one quantized value is
  1971. // off by one. The test values are distributed in [-1,1], so it'll be
  1972. // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference,
  1973. // which is roughly 0.25 times the number of elements.
  1974. double err_estimate = 1.0f/8.0f;
  1975. if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) {
  1976. err_estimate /= 2.0f;
  1977. }
  1978. if (type == GGML_TYPE_Q8_0) {
  1979. err_estimate /= 8.0f;
  1980. }
  1981. err_estimate *= err_estimate;
  1982. err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]);
  1983. return err_estimate;
  1984. }
  1985. return 1e-7;
  1986. }
  1987. };
  1988. // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS
  1989. struct test_rope_set_rows : public test_case {
  1990. const ggml_type type;
  1991. const ggml_type type_idx;
  1992. const std::array<int64_t, 4> ne_a;
  1993. int mode;
  1994. const int n_ctx{512};
  1995. const int n_dims{128};
  1996. std::string vars() override {
  1997. return VARS_TO_STR4(type, type_idx, ne_a, mode);
  1998. }
  1999. std::string op_desc(ggml_tensor * t) override {
  2000. GGML_UNUSED(t);
  2001. return "ROPE_SET_ROWS";
  2002. }
  2003. bool run_whole_graph() override { return true; }
  2004. test_rope_set_rows(ggml_type type,
  2005. ggml_type type_idx,
  2006. std::array<int64_t, 4> ne_a,
  2007. int mode)
  2008. : type(type), type_idx(type_idx), ne_a(ne_a), mode(mode) {}
  2009. ggml_tensor * build_graph(ggml_context * ctx) override {
  2010. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne_a[0], ne_a[1], ne_a[2], 1);
  2011. ggml_set_name(a, "a");
  2012. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2013. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2014. ggml_tensor * pos;
  2015. if (is_mrope || is_vision) {
  2016. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2017. } else {
  2018. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2019. }
  2020. ggml_set_name(pos, "pos");
  2021. float fs = 1.4245f;
  2022. float ef = 0.7465f;
  2023. float af = 1.4245f;
  2024. ggml_tensor * freq = nullptr;
  2025. ggml_tensor * rope = nullptr;
  2026. if (is_mrope) {
  2027. if (is_vision) {
  2028. GGML_ASSERT(n_dims/4 > 0);
  2029. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2030. rope = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2031. } else {
  2032. GGML_ASSERT(n_dims/3 > 0);
  2033. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2034. rope = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2035. }
  2036. } else {
  2037. rope = ggml_rope(ctx, a, pos, ne_a[0], mode);
  2038. }
  2039. ggml_tensor * view = ggml_view_2d(ctx, rope, ne_a[0] * ne_a[1], ne_a[2], rope->nb[2], 0);
  2040. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne_a[0] * ne_a[1], ne_a[2] * ne_a[3], 1, 1);
  2041. ggml_set_name(dst, "dst");
  2042. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type_idx, ne_a[2], 1, 1);
  2043. ggml_set_name(row_idxs, "row_idxs");
  2044. ggml_tensor * out = ggml_set_rows(ctx, dst, view, row_idxs);
  2045. ggml_set_name(out, "out");
  2046. return out;
  2047. }
  2048. void initialize_tensors(ggml_context * ctx) override {
  2049. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2050. if (strcmp(t->name, "row_idxs") == 0) {
  2051. if (ggml_is_view_op(t->op)) {
  2052. continue;
  2053. }
  2054. init_set_rows_row_ids(t, ne_a[2]);
  2055. } else if (t->type == GGML_TYPE_I32) {
  2056. // pos
  2057. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2058. std::vector<int> data(num_pos_ids);
  2059. for (int i = 0; i < num_pos_ids; i++) {
  2060. data[i] = rand() % n_ctx;
  2061. }
  2062. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2063. } else {
  2064. if (t->ne[0] == n_dims/2) {
  2065. // frequency factors in the range [0.9f, 1.1f]
  2066. init_tensor_uniform(t, 0.9f, 1.1f);
  2067. } else {
  2068. init_tensor_uniform(t);
  2069. }
  2070. }
  2071. }
  2072. }
  2073. };
  2074. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ROPE (+ GGML_OP_VIEW + GGML_OP_SET_ROWS)
  2075. struct test_rms_norm_mul_rope : public test_case {
  2076. const std::array<int64_t, 4> ne;
  2077. const float eps;
  2078. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2079. const bool set_rows;
  2080. int mode;
  2081. std::string op_desc(ggml_tensor * t) override {
  2082. GGML_UNUSED(t);
  2083. return "RMS_NORM_MUL_ROPE";
  2084. }
  2085. bool run_whole_graph() override { return true; }
  2086. std::string vars() override {
  2087. return VARS_TO_STR5(ne, eps, multi_add, set_rows, mode);
  2088. }
  2089. test_rms_norm_mul_rope(std::array<int64_t, 4> ne, float eps = 1e-6f, bool multi_add = false,
  2090. bool set_rows = false, int mode = GGML_ROPE_TYPE_NORMAL)
  2091. : ne(ne), eps(eps), multi_add(multi_add), set_rows(set_rows), mode(mode) {}
  2092. ggml_tensor * build_graph(ggml_context * ctx) override {
  2093. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2094. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2095. ggml_tensor * c = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], ne[1], ne[2], 1);
  2096. if (multi_add) {
  2097. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2098. }
  2099. a = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
  2100. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne[2]);
  2101. ggml_tensor * rope = ggml_rope(ctx, a, pos, ne[0], mode);
  2102. ggml_tensor * out;
  2103. if (set_rows) {
  2104. ggml_tensor * view = ggml_view_2d(ctx, rope, ne[0] * ne[1], ne[2], rope->nb[2], 0);
  2105. ggml_tensor * dst = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, ne[0] * ne[1], ne[2] * ne[3], 1, 1);
  2106. ggml_set_name(dst, "dst");
  2107. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, ne[2], 1, 1);
  2108. ggml_set_name(row_idxs, "row_idxs");
  2109. out = ggml_set_rows(ctx, dst, view, row_idxs);
  2110. ggml_set_name(out, "out");
  2111. } else {
  2112. out = rope;
  2113. }
  2114. return out;
  2115. }
  2116. void initialize_tensors(ggml_context * ctx) override {
  2117. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2118. if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) {
  2119. if (ggml_is_view_op(t->op)) {
  2120. continue;
  2121. }
  2122. init_set_rows_row_ids(t, ne[2]);
  2123. } else {
  2124. init_tensor_uniform(t);
  2125. }
  2126. }
  2127. }
  2128. };
  2129. // GGML_OP_ARGMAX
  2130. struct test_argmax : public test_case {
  2131. const ggml_type type;
  2132. const std::array<int64_t, 4> ne;
  2133. std::string vars() override {
  2134. return VARS_TO_STR2(type, ne);
  2135. }
  2136. test_argmax(ggml_type type = GGML_TYPE_F32,
  2137. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  2138. : type(type), ne(ne) {}
  2139. ggml_tensor * build_graph(ggml_context * ctx) override {
  2140. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2141. ggml_set_name(a, "a");
  2142. ggml_tensor * out = ggml_argmax(ctx, a);
  2143. ggml_set_name(out, "out");
  2144. return out;
  2145. }
  2146. void initialize_tensors(ggml_context * ctx) override {
  2147. std::random_device rd;
  2148. std::default_random_engine rng(rd());
  2149. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2150. if (t->type == GGML_TYPE_F32) {
  2151. // initialize with unique values to avoid ties
  2152. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2153. std::vector<float> data(t->ne[0]);
  2154. for (int i = 0; i < t->ne[0]; i++) {
  2155. data[i] = i;
  2156. }
  2157. std::shuffle(data.begin(), data.end(), rng);
  2158. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2159. }
  2160. } else {
  2161. init_tensor_uniform(t);
  2162. }
  2163. }
  2164. }
  2165. double max_nmse_err() override {
  2166. return 0.0;
  2167. }
  2168. };
  2169. // GGML_OP_COUNT_EQUAL
  2170. struct test_count_equal : public test_case {
  2171. const ggml_type type;
  2172. const std::array<int64_t, 4> ne;
  2173. std::string vars() override {
  2174. return VARS_TO_STR2(type, ne);
  2175. }
  2176. test_count_equal(ggml_type type = GGML_TYPE_F32,
  2177. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  2178. : type(type), ne(ne) {}
  2179. ggml_tensor * build_graph(ggml_context * ctx) override {
  2180. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2181. ggml_set_name(a, "a");
  2182. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  2183. ggml_set_name(a_argmax, "a_argmax");
  2184. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2185. ggml_set_name(b, "b");
  2186. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  2187. ggml_set_name(b_argmax, "b_argmax");
  2188. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  2189. ggml_set_name(out, "out");
  2190. return out;
  2191. }
  2192. double max_nmse_err() override {
  2193. return 0.0;
  2194. }
  2195. void initialize_tensors(ggml_context * ctx) override {
  2196. std::random_device rd;
  2197. std::default_random_engine rng(rd());
  2198. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2199. if (t->type == GGML_TYPE_F32) {
  2200. // initialize with unique values to avoid ties
  2201. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2202. std::vector<float> data(t->ne[0]);
  2203. for (int i = 0; i < t->ne[0]; i++) {
  2204. data[i] = i;
  2205. }
  2206. std::shuffle(data.begin(), data.end(), rng);
  2207. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2208. }
  2209. } else {
  2210. init_tensor_uniform(t);
  2211. }
  2212. }
  2213. }
  2214. };
  2215. // GGML_OP_REPEAT
  2216. struct test_repeat : public test_case {
  2217. const ggml_type type;
  2218. const std::array<int64_t, 4> ne;
  2219. const std::array<int, 4> nr;
  2220. std::string vars() override {
  2221. return VARS_TO_STR3(type, ne, nr);
  2222. }
  2223. size_t op_size(ggml_tensor * t) override {
  2224. return ggml_nbytes(t) * 2;
  2225. }
  2226. test_repeat(ggml_type type = GGML_TYPE_F32,
  2227. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2228. std::array<int, 4> nr = {2, 2, 2, 2})
  2229. : type(type), ne(ne), nr(nr) {}
  2230. ggml_tensor * build_graph(ggml_context * ctx) override {
  2231. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2232. ggml_set_name(target, "target");
  2233. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2234. ggml_set_param(src);
  2235. ggml_set_name(src, "src");
  2236. ggml_tensor * out = ggml_repeat(ctx, src, target);
  2237. ggml_set_name(out, "out");
  2238. return out;
  2239. }
  2240. };
  2241. // GGML_OP_REPEAT_BACK
  2242. struct test_repeat_back : public test_case {
  2243. const ggml_type type;
  2244. const std::array<int64_t, 4> ne;
  2245. const std::array<int, 4> nr;
  2246. const bool v; // whether src is a noncontiguous view
  2247. std::string vars() override {
  2248. return VARS_TO_STR4(type, ne, nr, v);
  2249. }
  2250. size_t op_size(ggml_tensor * t) override {
  2251. return ggml_nbytes(t) * 2;
  2252. }
  2253. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  2254. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  2255. std::array<int, 4> nr = {2, 2, 2, 2},
  2256. bool v = false)
  2257. : type(type), ne(ne), nr(nr), v(v) {}
  2258. ggml_tensor * build_graph(ggml_context * ctx) override {
  2259. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2260. ggml_set_name(src, "src");
  2261. if (v) {
  2262. GGML_ASSERT(ne[0] % 2 == 0);
  2263. GGML_ASSERT(ne[1] % 2 == 0);
  2264. GGML_ASSERT(ne[2] % 2 == 0);
  2265. GGML_ASSERT(ne[3] % 2 == 0);
  2266. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  2267. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  2268. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  2269. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  2270. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  2271. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  2272. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  2273. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  2274. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  2275. }
  2276. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  2277. ggml_set_name(target, "target");
  2278. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  2279. ggml_set_name(out, "out");
  2280. return out;
  2281. }
  2282. };
  2283. // GGML_OP_DUP
  2284. struct test_dup : public test_case {
  2285. const ggml_type type;
  2286. const std::array<int64_t, 4> ne;
  2287. const std::array<int64_t, 4> permute;
  2288. bool _use_permute;
  2289. std::string vars() override {
  2290. std::string v = VARS_TO_STR2(type, ne);
  2291. if (_use_permute) v += "," + VAR_TO_STR(permute);
  2292. return v;
  2293. }
  2294. test_dup(ggml_type type = GGML_TYPE_F32,
  2295. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  2296. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  2297. : type(type), ne(ne), permute(permute),
  2298. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  2299. ggml_tensor * build_graph(ggml_context * ctx) override {
  2300. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2301. ggml_set_param(src);
  2302. ggml_set_name(src, "src");
  2303. if (_use_permute) {
  2304. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  2305. ggml_set_name(src, "src_permuted");
  2306. }
  2307. ggml_tensor * out = ggml_dup(ctx, src);
  2308. ggml_set_name(out, "out");
  2309. return out;
  2310. }
  2311. };
  2312. // GGML_OP_SET
  2313. struct test_set : public test_case {
  2314. const ggml_type type_src;
  2315. const ggml_type type_dst;
  2316. const std::array<int64_t, 4> ne;
  2317. const int dim;
  2318. std::string vars() override {
  2319. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  2320. }
  2321. size_t op_size(ggml_tensor * t) override {
  2322. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2323. }
  2324. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2325. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  2326. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  2327. ggml_tensor * build_graph(ggml_context * ctx) override {
  2328. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2329. ggml_set_param(src);
  2330. ggml_set_name(src, "src");
  2331. auto ne_dst = ne;
  2332. for (int i = 0; i < dim; ++i) {
  2333. ne_dst[i] *= 2;
  2334. }
  2335. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  2336. ggml_set_param(dst);
  2337. ggml_set_name(dst, "dst");
  2338. size_t offset = 0;
  2339. for (int i = 0; i < dim; ++i) {
  2340. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  2341. }
  2342. ggml_tensor * out = ggml_set(ctx, dst, src,
  2343. // The backward pass requires setting a contiguous region:
  2344. src->nb[1], src->nb[2], src->nb[3], offset);
  2345. ggml_set_name(out, "out");
  2346. return out;
  2347. }
  2348. };
  2349. // GGML_OP_CPY
  2350. struct test_cpy : public test_case {
  2351. const ggml_type type_src;
  2352. const ggml_type type_dst;
  2353. const std::array<int64_t, 4> ne;
  2354. const std::array<int64_t, 4> permute_src;
  2355. const std::array<int64_t, 4> permute_dst;
  2356. bool _src_use_permute;
  2357. bool _dst_use_permute;
  2358. bool _src_transpose;
  2359. std::string vars() override {
  2360. return VARS_TO_STR6(type_src, type_dst, ne, permute_src, permute_dst, _src_transpose);
  2361. }
  2362. double max_nmse_err() override {
  2363. if (type_src == type_dst) {
  2364. return 0.0;
  2365. }
  2366. if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL ||
  2367. type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) {
  2368. // estimate what the max nmse error would be if one quantized value is
  2369. // off by one. The test values are distributed in [-150,150], so it'll be
  2370. // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference,
  2371. // which is roughly 0.25*150^2 times the number of elements.
  2372. double err_estimate = 1.0f/8.0f * 150.0f;
  2373. if (type_dst == GGML_TYPE_IQ4_NL) {
  2374. // iq4_nl values are a bit more spread out
  2375. err_estimate *= 2.0f;
  2376. }
  2377. if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) {
  2378. err_estimate /= 2.0f;
  2379. }
  2380. if (type_dst == GGML_TYPE_Q8_0) {
  2381. err_estimate /= 8.0f;
  2382. }
  2383. err_estimate *= err_estimate;
  2384. err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]);
  2385. return err_estimate;
  2386. }
  2387. return 1e-6;
  2388. }
  2389. size_t op_size(ggml_tensor * t) override {
  2390. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  2391. }
  2392. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  2393. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2394. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  2395. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0},
  2396. bool transpose_src = false)
  2397. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  2398. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  2399. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0),
  2400. _src_transpose(transpose_src){}
  2401. ggml_tensor * build_graph(ggml_context * ctx) override {
  2402. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  2403. ggml_set_param(src);
  2404. ggml_set_name(src, "src");
  2405. if (_src_use_permute) {
  2406. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  2407. ggml_set_name(src, "src_permuted");
  2408. }
  2409. if (_src_transpose) {
  2410. src = ggml_transpose(ctx, src);
  2411. ggml_set_name(src, "src_transposed");
  2412. }
  2413. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  2414. ggml_set_name(dst, "dst");
  2415. if (_dst_use_permute) {
  2416. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  2417. ggml_set_name(dst, "dst_permuted");
  2418. }
  2419. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  2420. ggml_set_name(out, "out");
  2421. return out;
  2422. }
  2423. void initialize_tensors(ggml_context * ctx) override {
  2424. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2425. // test extended range of values to check if casting between f32 and i32 is consistent
  2426. init_tensor_uniform(t, -150.f, 150.f);
  2427. }
  2428. }
  2429. };
  2430. // GGML_OP_CONT
  2431. struct test_cont : public test_case {
  2432. const ggml_type type;
  2433. const std::array<int64_t, 4> ne;
  2434. bool use_view_slice;
  2435. std::string vars() override {
  2436. return VARS_TO_STR3(type, ne, use_view_slice);
  2437. }
  2438. test_cont(ggml_type type = GGML_TYPE_F32,
  2439. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  2440. bool use_view_slice = false)
  2441. : type(type), ne(ne), use_view_slice(use_view_slice) {}
  2442. ggml_tensor * build_graph(ggml_context * ctx) override {
  2443. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  2444. ggml_set_param(src);
  2445. ggml_set_name(src, "src");
  2446. ggml_tensor * dst;
  2447. if (use_view_slice) {
  2448. dst = ggml_view_4d(ctx, src, src->ne[0], 1, src->ne[2], src->ne[3],
  2449. src->nb[1], src->nb[2], src->nb[3], src->nb[0] * (src->ne[1] - 1));
  2450. ggml_set_name(dst, "src_view_slice");
  2451. } else {
  2452. dst = ggml_transpose(ctx, src);
  2453. ggml_set_name(dst, "src_transposed");
  2454. }
  2455. ggml_tensor * out = ggml_cont(ctx, dst);
  2456. ggml_set_name(out, "out");
  2457. return out;
  2458. }
  2459. };
  2460. // GGML_OP_ADD
  2461. // GGML_OP_SUB
  2462. // GGML_OP_MUL
  2463. // GGML_OP_DIV
  2464. struct test_bin_bcast : public test_case {
  2465. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  2466. op_t op;
  2467. const ggml_type type;
  2468. const std::array<int64_t, 4> ne;
  2469. const std::array<int, 4> nr;
  2470. int nf; // number of fused ops, nf == 1 -> single op (no fusion)
  2471. bool run_whole_graph() override { return nf > 1; }
  2472. std::string vars() override {
  2473. return VARS_TO_STR4(type, ne, nr, nf);
  2474. }
  2475. size_t op_size(ggml_tensor * t) override {
  2476. return ggml_nbytes(t) * 3;
  2477. }
  2478. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  2479. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  2480. std::array<int, 4> nr = {1, 2, 1, 1},
  2481. int nf = 1)
  2482. : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
  2483. ggml_tensor * build_graph(ggml_context * ctx) override {
  2484. GGML_ASSERT(nf <= 16);
  2485. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  2486. ggml_set_name(a, "a");
  2487. ggml_tensor * b[16];
  2488. for (int i = 0; i < nf; ++i) {
  2489. b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
  2490. ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
  2491. }
  2492. // The backward pass supports broadcasting only for GGML_ADD:
  2493. const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
  2494. if (grad_supported) {
  2495. ggml_set_param(a);
  2496. ggml_set_param(b[0]);
  2497. }
  2498. ggml_tensor * out = a;
  2499. for (int i = 0; i < nf; ++i) {
  2500. out = op(ctx, out, b[i]);
  2501. }
  2502. ggml_set_name(out, "out");
  2503. return out;
  2504. }
  2505. void initialize_tensors(ggml_context * ctx) override {
  2506. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2507. if (op == ggml_mul || op == ggml_div) {
  2508. // MUL and DIV have numerical issues around zero:
  2509. init_tensor_uniform(t, 0.9f, 1.1f);
  2510. } else {
  2511. init_tensor_uniform(t);
  2512. }
  2513. }
  2514. }
  2515. float grad_eps() override {
  2516. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  2517. }
  2518. bool grad_precise() override {
  2519. return op == ggml_div;
  2520. }
  2521. double max_maa_err() override {
  2522. return op == ggml_add ? 1e-4 : 1e-3;
  2523. }
  2524. };
  2525. // GGML_OP_ADD_ID
  2526. struct test_add_id : public test_case {
  2527. const ggml_type type_a;
  2528. const ggml_type type_b;
  2529. const int64_t n_embd;
  2530. const int64_t n_experts;
  2531. const int64_t n_experts_used;
  2532. const int64_t n_token;
  2533. std::string vars() override {
  2534. return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token);
  2535. }
  2536. size_t op_size(ggml_tensor * t) override {
  2537. return ggml_nbytes(t) + ggml_nbytes(t->src[0]) + ggml_nbytes(t->src[2]);
  2538. }
  2539. test_add_id(ggml_type type_a = GGML_TYPE_F32,
  2540. ggml_type type_b = GGML_TYPE_F32,
  2541. int64_t n_embd = 128,
  2542. int64_t n_experts = 16,
  2543. int64_t n_experts_used = 8,
  2544. int64_t n_token = 10)
  2545. : type_a(type_a), type_b(type_b), n_embd(n_embd),
  2546. n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {}
  2547. ggml_tensor * build_graph(ggml_context * ctx) override {
  2548. ggml_tensor * a = ggml_new_tensor_3d(ctx, type_a, n_embd, n_experts_used, n_token);
  2549. ggml_tensor * b = ggml_new_tensor_2d(ctx, type_b, n_embd, n_experts);
  2550. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_experts, n_token);
  2551. if (n_experts_used != n_experts) {
  2552. ids = ggml_view_2d(ctx, ids, n_experts_used, n_token, ids->nb[1], 0);
  2553. ggml_set_name(ids, "view_of_ids");
  2554. }
  2555. ggml_tensor * out = ggml_add_id(ctx, a, b, ids);
  2556. ggml_set_name(out, "out");
  2557. return out;
  2558. }
  2559. void initialize_tensors(ggml_context * ctx) override {
  2560. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2561. if (t->type == GGML_TYPE_I32) {
  2562. if (ggml_is_view_op(t->op)) { continue; }
  2563. std::random_device rd;
  2564. std::default_random_engine rng(rd());
  2565. // ids
  2566. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2567. std::vector<int32_t> data(t->ne[0]);
  2568. for (int i = 0; i < t->ne[0]; i++) {
  2569. data[i] = i % n_experts;
  2570. }
  2571. std::shuffle(data.begin(), data.end(), rng);
  2572. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2573. }
  2574. } else {
  2575. init_tensor_uniform(t);
  2576. }
  2577. }
  2578. }
  2579. };
  2580. // GGML_OP_ADD1
  2581. struct test_add1 : public test_case {
  2582. const ggml_type type;
  2583. const std::array<int64_t, 4> ne;
  2584. std::string vars() override {
  2585. return VARS_TO_STR2(type, ne);
  2586. }
  2587. test_add1(ggml_type type = GGML_TYPE_F32,
  2588. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2589. : type(type), ne(ne) {}
  2590. ggml_tensor * build_graph(ggml_context * ctx) override {
  2591. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2592. ggml_set_param(a);
  2593. ggml_set_name(a, "a");
  2594. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  2595. // ggml_set_param(b); // TODO: implement
  2596. ggml_set_name(b, "b");
  2597. ggml_tensor * out = ggml_add1(ctx, a, b);
  2598. ggml_set_name(out, "out");
  2599. return out;
  2600. }
  2601. float grad_eps() override {
  2602. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2603. }
  2604. };
  2605. // GGML_OP_SCALE
  2606. struct test_scale : public test_case {
  2607. const ggml_type type;
  2608. const std::array<int64_t, 4> ne;
  2609. float scale;
  2610. float bias;
  2611. bool inplace;
  2612. std::string vars() override {
  2613. return VARS_TO_STR5(type, ne, scale, bias, inplace);
  2614. }
  2615. test_scale(ggml_type type = GGML_TYPE_F32,
  2616. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2617. float scale = 2.0f,
  2618. float bias = 0.0f,
  2619. bool inplace = false)
  2620. : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {}
  2621. ggml_tensor * build_graph(ggml_context * ctx) override {
  2622. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2623. ggml_set_param(a);
  2624. ggml_set_name(a, "a");
  2625. ggml_tensor * out;
  2626. if (inplace) {
  2627. out = ggml_scale_bias_inplace(ctx, a, scale, bias);
  2628. } else {
  2629. out = ggml_scale_bias(ctx, a, scale, bias);
  2630. }
  2631. ggml_set_name(out, "out");
  2632. return out;
  2633. }
  2634. };
  2635. // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE
  2636. struct test_softcap : public test_case {
  2637. const ggml_type type;
  2638. const std::array<int64_t, 4> ne;
  2639. float softcap;
  2640. std::string op_desc(ggml_tensor * t) override {
  2641. GGML_UNUSED(t);
  2642. return "SOFTCAP";
  2643. }
  2644. bool run_whole_graph() override { return true; }
  2645. std::string vars() override {
  2646. return VARS_TO_STR3(type, ne, softcap);
  2647. }
  2648. test_softcap(ggml_type type = GGML_TYPE_F32,
  2649. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  2650. float softcap = 30.0f)
  2651. : type(type), ne(ne), softcap(softcap) {}
  2652. ggml_tensor * build_graph(ggml_context * ctx) override {
  2653. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2654. ggml_set_param(a);
  2655. ggml_set_name(a, "a");
  2656. ggml_tensor * out = ggml_scale(ctx, ggml_tanh(ctx, ggml_scale(ctx, a, 1.0f / softcap)), softcap);
  2657. ggml_set_name(out, "out");
  2658. return out;
  2659. }
  2660. };
  2661. // GGML_OP_SILU_BACK
  2662. struct test_silu_back : public test_case {
  2663. const ggml_type type;
  2664. const std::array<int64_t, 4> ne;
  2665. float eps;
  2666. std::string vars() override {
  2667. return VARS_TO_STR3(type, ne, eps);
  2668. }
  2669. test_silu_back(ggml_type type = GGML_TYPE_F32,
  2670. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2671. float eps = 1e-6f)
  2672. : type(type), ne(ne), eps(eps) {}
  2673. ggml_tensor * build_graph(ggml_context * ctx) override {
  2674. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2675. ggml_set_name(a, "a");
  2676. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  2677. ggml_set_name(grad, "grad");
  2678. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  2679. ggml_set_name(out, "out");
  2680. return out;
  2681. }
  2682. bool grad_precise() override {
  2683. return true;
  2684. }
  2685. };
  2686. // GGML_OP_NORM
  2687. struct test_norm : public test_case {
  2688. const ggml_type type;
  2689. const std::array<int64_t, 4> ne;
  2690. const bool v; // whether a is a non-contiguous view
  2691. const float eps;
  2692. std::string vars() override {
  2693. return VARS_TO_STR4(type, ne, v, eps);
  2694. }
  2695. test_norm(ggml_type type = GGML_TYPE_F32,
  2696. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2697. bool v = false,
  2698. float eps = 1e-6f)
  2699. : type(type), ne(ne), v(v), eps(eps) {}
  2700. ggml_tensor * build_graph(ggml_context * ctx) override {
  2701. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2702. ggml_set_name(a, "a");
  2703. if (v) {
  2704. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2705. ggml_set_name(a, "view of a");
  2706. }
  2707. ggml_tensor * out = ggml_norm(ctx, a, eps);
  2708. ggml_set_name(out, "out");
  2709. return out;
  2710. }
  2711. };
  2712. // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD
  2713. struct test_norm_mul_add : public test_case {
  2714. const ggml_type type;
  2715. const std::array<int64_t, 4> ne;
  2716. float eps;
  2717. const bool broadcast;
  2718. std::string op_desc(ggml_tensor * t) override {
  2719. GGML_UNUSED(t);
  2720. return "NORM_MUL_ADD";
  2721. }
  2722. bool run_whole_graph() override { return true; }
  2723. std::string vars() override {
  2724. return VARS_TO_STR4(type, ne, eps, broadcast);
  2725. }
  2726. test_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2727. std::array<int64_t, 4> ne = {128, 2, 1, 1},
  2728. float eps = 1e-5f,
  2729. bool broadcast = false)
  2730. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2731. ggml_tensor * build_graph(ggml_context * ctx) override {
  2732. std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2};
  2733. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2734. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  2735. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2736. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  2737. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  2738. // Use a, w and b early to avoid OP_NONE in graph
  2739. a = ggml_add(ctx, ggml_add(ctx, a, w), b);
  2740. ggml_tensor * n = ggml_norm(ctx, a, eps);
  2741. ggml_tensor * m = ggml_mul(ctx, n, w);
  2742. ggml_tensor * out = ggml_add(ctx, m, b);
  2743. ggml_set_name(out, "out");
  2744. return out;
  2745. }
  2746. };
  2747. // GGML_OP_RMS_NORM
  2748. struct test_rms_norm : public test_case {
  2749. const ggml_type type;
  2750. const std::array<int64_t, 4> ne;
  2751. const bool v; // whether a is a non-contiguous view
  2752. const float eps;
  2753. const bool inplace; // whether to do the operation inplace
  2754. std::string vars() override {
  2755. return VARS_TO_STR5(type, ne, v, eps, inplace);
  2756. }
  2757. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  2758. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2759. bool v = false,
  2760. float eps = 1e-6f,
  2761. bool inplace = false)
  2762. : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {}
  2763. ggml_tensor * build_graph(ggml_context * ctx) override {
  2764. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2765. ggml_set_param(a);
  2766. ggml_set_name(a, "a");
  2767. if (v) {
  2768. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  2769. ggml_set_name(a, "view of a");
  2770. }
  2771. ggml_tensor * out;
  2772. if (inplace) {
  2773. out = ggml_rms_norm_inplace(ctx, a, eps);
  2774. } else {
  2775. out = ggml_rms_norm(ctx, a, eps);
  2776. }
  2777. ggml_set_name(out, "out");
  2778. return out;
  2779. }
  2780. void initialize_tensors(ggml_context * ctx) override {
  2781. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2782. init_tensor_uniform(t, -10.f, 10.f);
  2783. }
  2784. }
  2785. float grad_eps() override {
  2786. return 1.0f;
  2787. }
  2788. bool grad_precise() override {
  2789. return true;
  2790. }
  2791. };
  2792. // GGML_OP_RMS_NORM_BACK
  2793. struct test_rms_norm_back : public test_case {
  2794. const ggml_type type;
  2795. const std::array<int64_t, 4> ne;
  2796. const float eps;
  2797. std::string vars() override {
  2798. return VARS_TO_STR3(type, ne, eps);
  2799. }
  2800. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  2801. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2802. float eps = 1e-6f)
  2803. : type(type), ne(ne), eps(eps) {}
  2804. ggml_tensor * build_graph(ggml_context * ctx) override {
  2805. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2806. ggml_set_name(a, "a");
  2807. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2808. ggml_set_name(b, "b");
  2809. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  2810. ggml_set_name(out, "out");
  2811. return out;
  2812. }
  2813. void initialize_tensors(ggml_context * ctx) override {
  2814. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2815. init_tensor_uniform(t, -10.f, 10.f);
  2816. }
  2817. }
  2818. };
  2819. // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
  2820. struct test_rms_norm_mul_add : public test_case {
  2821. const ggml_type type;
  2822. const std::array<int64_t, 4> ne;
  2823. const float eps;
  2824. const bool broadcast;
  2825. const bool multi_add; // test a sequence of adds feeding into rms_norm
  2826. std::string op_desc(ggml_tensor * t) override {
  2827. GGML_UNUSED(t);
  2828. return "RMS_NORM_MUL_ADD";
  2829. }
  2830. bool run_whole_graph() override { return true; }
  2831. std::string vars() override {
  2832. return VARS_TO_STR5(type, ne, eps, broadcast, multi_add);
  2833. }
  2834. test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  2835. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2836. float eps = 1e-6f, bool broadcast = false, bool multi_add = false)
  2837. : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {}
  2838. ggml_tensor * build_graph(ggml_context * ctx) override {
  2839. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2840. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2841. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2842. ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
  2843. ggml_set_param(a);
  2844. ggml_set_name(a, "a");
  2845. ggml_set_param(b);
  2846. ggml_set_name(b, "b");
  2847. ggml_set_param(c);
  2848. ggml_set_name(c, "c");
  2849. // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
  2850. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2851. if (multi_add) {
  2852. a = ggml_add(ctx, ggml_add(ctx, a, b), c);
  2853. }
  2854. ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
  2855. ggml_set_name(out, "out");
  2856. return out;
  2857. }
  2858. void initialize_tensors(ggml_context * ctx) override {
  2859. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2860. init_tensor_uniform(t, -10.f, 10.f);
  2861. }
  2862. }
  2863. float grad_eps() override {
  2864. return 1.0f;
  2865. }
  2866. bool grad_precise() override {
  2867. return true;
  2868. }
  2869. };
  2870. // GGML_OP_ADD + GGML_OP_RMS_NORM (fused operation)
  2871. struct test_add_rms_norm : public test_case {
  2872. const ggml_type type;
  2873. const std::array<int64_t, 4> ne;
  2874. const float eps;
  2875. const bool broadcast;
  2876. std::string op_desc(ggml_tensor * t) override {
  2877. GGML_UNUSED(t);
  2878. return "ADD_RMS_NORM";
  2879. }
  2880. bool run_whole_graph() override { return true; }
  2881. std::string vars() override {
  2882. return VARS_TO_STR4(type, ne, eps, broadcast);
  2883. }
  2884. test_add_rms_norm(ggml_type type = GGML_TYPE_F32,
  2885. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  2886. float eps = 1e-6f, bool broadcast = false)
  2887. : type(type), ne(ne), eps(eps), broadcast(broadcast) {}
  2888. ggml_tensor * build_graph(ggml_context * ctx) override {
  2889. std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4};
  2890. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, broadcast ? broadcast_dims.data() : ne.data());
  2891. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2892. ggml_set_param(a);
  2893. ggml_set_name(a, "a");
  2894. ggml_set_param(b);
  2895. ggml_set_name(b, "b");
  2896. // ADD operation followed by RMS_NORM
  2897. ggml_tensor * add_result = ggml_add(ctx, a, b);
  2898. ggml_set_name(add_result, "add_result");
  2899. ggml_tensor * out = ggml_rms_norm(ctx, add_result, eps);
  2900. ggml_set_name(out, "out");
  2901. return out;
  2902. }
  2903. void initialize_tensors(ggml_context * ctx) override {
  2904. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2905. init_tensor_uniform(t, -10.f, 10.f);
  2906. }
  2907. }
  2908. float grad_eps() override {
  2909. return 1.0f;
  2910. }
  2911. bool grad_precise() override {
  2912. return true;
  2913. }
  2914. };
  2915. // GGML_OP_SSM_CONV
  2916. struct test_ssm_conv : public test_case {
  2917. const ggml_type type;
  2918. const std::array<int64_t, 4> ne_a;
  2919. const std::array<int64_t, 4> ne_b;
  2920. std::string vars() override {
  2921. return VARS_TO_STR3(type, ne_a, ne_b);
  2922. }
  2923. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  2924. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  2925. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  2926. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2927. ggml_tensor * build_graph(ggml_context * ctx) override {
  2928. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2929. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2930. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  2931. return out;
  2932. }
  2933. };
  2934. // GGML_OP_SSM_SCAN
  2935. struct test_ssm_scan : public test_case {
  2936. const ggml_type type;
  2937. const int64_t d_state;
  2938. const int64_t head_dim;
  2939. const int64_t n_head;
  2940. const int64_t n_group;
  2941. const int64_t n_seq_tokens;
  2942. const int64_t n_seqs;
  2943. std::string vars() override {
  2944. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  2945. }
  2946. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  2947. int64_t d_state = 32,
  2948. int64_t head_dim = 1, // non-zero for Mamba-2
  2949. int64_t n_head = 32,
  2950. int64_t n_group = 1,
  2951. int64_t n_seq_tokens = 32,
  2952. int64_t n_seqs = 32)
  2953. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  2954. ggml_tensor * build_graph(ggml_context * ctx) override {
  2955. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  2956. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  2957. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  2958. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  2959. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2960. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  2961. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  2962. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  2963. return out;
  2964. }
  2965. // similar to test_mul_mat_id
  2966. void initialize_tensors(ggml_context * ctx) override {
  2967. std::random_device rd;
  2968. std::default_random_engine rng(rd());
  2969. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2970. if (t->type == GGML_TYPE_I32) {
  2971. if (ggml_is_view_op(t->op)) { continue; }
  2972. // ids
  2973. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2974. std::vector<int32_t> data(t->ne[0]);
  2975. for (int i = 0; i < t->ne[0]; i++) {
  2976. data[i] = i;
  2977. }
  2978. std::shuffle(data.begin(), data.end(), rng);
  2979. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  2980. }
  2981. } else {
  2982. init_tensor_uniform(t);
  2983. }
  2984. }
  2985. }
  2986. };
  2987. // GGML_OP_RWKV_WKV6
  2988. struct test_rwkv_wkv6 : public test_case {
  2989. const ggml_type type;
  2990. const int64_t head_count;
  2991. const int64_t head_size;
  2992. const int64_t n_seq_tokens;
  2993. const int64_t n_seqs;
  2994. std::string vars() override {
  2995. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  2996. }
  2997. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  2998. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  2999. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  3000. ggml_tensor * build_graph(ggml_context * ctx) override {
  3001. const int64_t n_tokens = n_seq_tokens * n_seqs;
  3002. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3003. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3004. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3005. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  3006. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3007. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  3008. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  3009. return out;
  3010. }
  3011. };
  3012. // GGML_OP_GATED_LINEAR_ATTN
  3013. struct test_gla : public test_case {
  3014. const ggml_type type;
  3015. const int64_t head_count;
  3016. const int64_t head_size;
  3017. const int64_t n_seq_tokens;
  3018. const int64_t n_seqs;
  3019. std::string vars() override {
  3020. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  3021. }
  3022. test_gla(ggml_type type = GGML_TYPE_F32,
  3023. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  3024. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  3025. ggml_tensor * build_graph(ggml_context * ctx) override {
  3026. const int64_t n_tokens = n_seq_tokens * n_seqs;
  3027. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3028. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3029. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3030. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3031. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  3032. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  3033. return out;
  3034. }
  3035. };
  3036. // GGML_OP_RWKV_WKV7
  3037. struct test_rwkv_wkv7 : public test_case {
  3038. const ggml_type type;
  3039. const int64_t head_count;
  3040. const int64_t head_size;
  3041. const int64_t n_seq_tokens;
  3042. const int64_t n_seqs;
  3043. std::string vars() override {
  3044. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  3045. }
  3046. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  3047. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  3048. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  3049. ggml_tensor * build_graph(ggml_context * ctx) override {
  3050. const int64_t n_tokens = n_seq_tokens * n_seqs;
  3051. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3052. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3053. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3054. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3055. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3056. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  3057. // Outputs may become NaN with long seqlen without these normalization
  3058. a = ggml_l2_norm(ctx, a, 1e-7F);
  3059. b = ggml_l2_norm(ctx, b, 1e-7F);
  3060. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  3061. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  3062. return out;
  3063. }
  3064. };
  3065. // GGML_OP_MUL_MAT
  3066. struct test_mul_mat : public test_case {
  3067. const ggml_type type_a;
  3068. const ggml_type type_b;
  3069. const int64_t m;
  3070. const int64_t n;
  3071. const int64_t k;
  3072. const std::array<int64_t, 2> bs; // dims 3 and 4
  3073. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  3074. const std::array<int64_t, 4> per; // permutation of dimensions
  3075. const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0
  3076. const uint32_t o; // number of outputs
  3077. std::string vars() override {
  3078. return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o);
  3079. }
  3080. double max_nmse_err() override {
  3081. return 5e-4;
  3082. }
  3083. double max_nmse_err(ggml_backend_t backend) override {
  3084. // for blackwell we quantize activations to mxfp4 instead of q8_1 so we add higher tolerance
  3085. if (type_a == GGML_TYPE_MXFP4 && backend_has_feature(backend, "BLACKWELL_NATIVE_FP4")) {
  3086. return 2e-2;
  3087. }
  3088. return max_nmse_err();
  3089. }
  3090. int64_t grad_nmax() override {
  3091. return 20000;
  3092. }
  3093. uint64_t op_flops(ggml_tensor * t) override {
  3094. GGML_UNUSED(t);
  3095. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  3096. }
  3097. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3098. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  3099. std::array<int64_t, 2> bs = {10, 10},
  3100. std::array<int64_t, 2> nr = {2, 2},
  3101. std::array<int64_t, 4> per = {0, 1, 2, 3},
  3102. int64_t k_v = 0, uint32_t o = 1)
  3103. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {}
  3104. ggml_tensor * build_graph(ggml_context * ctx) override {
  3105. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3106. ggml_tensor * a;
  3107. ggml_tensor * b;
  3108. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  3109. if (npermuted > 0) {
  3110. GGML_ASSERT(npermuted == 2);
  3111. GGML_ASSERT(k_v == 0); // not handled
  3112. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  3113. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  3114. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  3115. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  3116. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  3117. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  3118. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  3119. if (!ggml_is_quantized(type_a)) {
  3120. if (bs[1] == 1 && nr[1] == 1) {
  3121. ggml_set_param(a);
  3122. }
  3123. ggml_set_param(b);
  3124. }
  3125. ggml_set_name(a, "a");
  3126. ggml_set_name(b, "b");
  3127. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  3128. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  3129. ggml_set_name(a, "a_permuted");
  3130. ggml_set_name(b, "b_permuted");
  3131. } else {
  3132. const int64_t k_physical = k_v == 0 ? k : k_v;
  3133. a = ggml_new_tensor_4d(ctx, type_a, k_physical, m, bs[0], bs[1]);
  3134. b = ggml_new_tensor_4d(ctx, type_b, k_physical, n, bs[0]*nr[0], bs[1]*nr[1]);
  3135. if (!ggml_is_quantized(type_a)) {
  3136. if (bs[1] == 1 && nr[1] == 1) {
  3137. ggml_set_param(a);
  3138. }
  3139. ggml_set_param(b);
  3140. }
  3141. if (k_v != 0) {
  3142. GGML_ASSERT(k_v > k);
  3143. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  3144. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  3145. }
  3146. ggml_set_name(a, "a");
  3147. ggml_set_name(b, "b");
  3148. }
  3149. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  3150. ggml_set_name(out, "out");
  3151. for (uint32_t i = 1; i < o; ++i) {
  3152. ggml_tensor * out2 = ggml_mul_mat(ctx, a, b);
  3153. ggml_set_name(out2, "out2");
  3154. out = ggml_add(ctx, out, out2);
  3155. }
  3156. return out;
  3157. }
  3158. bool run_whole_graph() override { return o > 1; }
  3159. std::string op_desc(ggml_tensor * t) override {
  3160. GGML_UNUSED(t);
  3161. return ggml_op_name(GGML_OP_MUL_MAT);
  3162. }
  3163. };
  3164. static void init_mul_mat_id_tensors(ggml_context * ctx, int n_mats) {
  3165. std::random_device rd;
  3166. std::default_random_engine rng(rd());
  3167. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3168. if (t->type == GGML_TYPE_I32) {
  3169. if (ggml_is_view_op(t->op)) { continue; }
  3170. // ids
  3171. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  3172. std::vector<int32_t> data(t->ne[0]);
  3173. for (int i = 0; i < t->ne[0]; i++) {
  3174. data[i] = i % n_mats;
  3175. }
  3176. std::shuffle(data.begin(), data.end(), rng);
  3177. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  3178. }
  3179. } else {
  3180. init_tensor_uniform(t);
  3181. }
  3182. }
  3183. }
  3184. // GGML_OP_MUL_MAT_ID
  3185. struct test_mul_mat_id : public test_case {
  3186. const ggml_type type_a;
  3187. const ggml_type type_b;
  3188. const int n_mats;
  3189. const int n_used;
  3190. const bool b; // broadcast b matrix
  3191. const int64_t m;
  3192. const int64_t n;
  3193. const int64_t k;
  3194. std::string vars() override {
  3195. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  3196. }
  3197. double max_nmse_err() override {
  3198. return 5e-4;
  3199. }
  3200. double max_nmse_err(ggml_backend_t backend) override {
  3201. // for blackwell we quantize activations to mxfp4 instead of q8_1 so we add higher tolerance
  3202. if (type_a == GGML_TYPE_MXFP4 && backend_has_feature(backend, "BLACKWELL_NATIVE_FP4")) {
  3203. return 2e-2;
  3204. }
  3205. return max_nmse_err();
  3206. }
  3207. uint64_t op_flops(ggml_tensor * t) override {
  3208. GGML_UNUSED(t);
  3209. return 2 * m * k * n * n_used;
  3210. }
  3211. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3212. int n_mats = 8, int n_used = 2, bool b = false,
  3213. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  3214. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3215. m(m), n(n), k(k) {
  3216. GGML_ASSERT(n_used <= n_mats);
  3217. }
  3218. ggml_tensor * build_graph(ggml_context * ctx) override {
  3219. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3220. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3221. ggml_set_name(as, "as");
  3222. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3223. ggml_set_name(ids, "ids");
  3224. if (n_used != n_mats) {
  3225. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3226. ggml_set_name(ids, "view_of_ids");
  3227. }
  3228. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3229. ggml_set_name(b, "b");
  3230. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3231. ggml_set_name(out, "out");
  3232. return out;
  3233. }
  3234. void initialize_tensors(ggml_context * ctx) override {
  3235. init_mul_mat_id_tensors(ctx, n_mats);
  3236. }
  3237. };
  3238. // GGML_OP_MUL_MAT_ID + GGML_OP_ADD or GGML_OP_MUL
  3239. struct test_mul_mat_id_fusion : public test_case {
  3240. const ggml_type type_a;
  3241. const ggml_type type_b;
  3242. const int n_mats;
  3243. const int n_used;
  3244. const bool b; // broadcast b matrix
  3245. const int64_t m;
  3246. const int64_t n;
  3247. const int64_t k;
  3248. const uint32_t o; // number of outputs
  3249. const bool mul;
  3250. std::string vars() override {
  3251. return VARS_TO_STR10(type_a, type_b, n_mats, n_used, b, m, n, k, o, mul);
  3252. }
  3253. double max_nmse_err() override {
  3254. return 5e-4;
  3255. }
  3256. uint64_t op_flops(ggml_tensor * t) override {
  3257. GGML_UNUSED(t);
  3258. return 2 * m * k * n * n_used;
  3259. }
  3260. test_mul_mat_id_fusion(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3261. int n_mats = 8, int n_used = 2, bool b = false,
  3262. int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1, bool mul = false)
  3263. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  3264. m(m), n(n), k(k), o(o), mul(mul) {
  3265. GGML_ASSERT(n_used <= n_mats);
  3266. }
  3267. ggml_tensor * build_graph(ggml_context * ctx) override {
  3268. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  3269. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3270. ggml_set_name(as, "as");
  3271. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  3272. ggml_set_name(ids, "ids");
  3273. if (n_used != n_mats) {
  3274. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  3275. ggml_set_name(ids, "view_of_ids");
  3276. }
  3277. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  3278. ggml_set_name(b, "b");
  3279. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  3280. ggml_set_name(out, "out");
  3281. for (uint32_t i = 1; i < o; ++i) {
  3282. ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  3283. ggml_tensor * out2 = ggml_mul_mat_id(ctx, a2, b, ids);
  3284. ggml_set_name(out2, "out2");
  3285. out = ggml_add(ctx, out, out2);
  3286. }
  3287. if (mul) {
  3288. std::array<int64_t, 4> ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  3289. ne[0] = 1;
  3290. ggml_tensor * m = ggml_new_tensor(ctx, out->type, 4, ne.data());
  3291. out = ggml_mul(ctx, out, m);
  3292. }
  3293. return out;
  3294. }
  3295. void initialize_tensors(ggml_context * ctx) override {
  3296. init_mul_mat_id_tensors(ctx, n_mats);
  3297. }
  3298. bool run_whole_graph() override { return true; }
  3299. std::string op_desc(ggml_tensor * t) override {
  3300. GGML_UNUSED(t);
  3301. return "MUL_MAT_ID_FUSION";
  3302. }
  3303. };
  3304. // GGML_OP_OUT_PROD
  3305. struct test_out_prod : public test_case {
  3306. const ggml_type type_a;
  3307. const ggml_type type_b;
  3308. const int64_t m;
  3309. const int64_t n;
  3310. const int64_t k;
  3311. const std::array<int64_t, 2> bs; // dims 3 and 4
  3312. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  3313. const bool trans_b;
  3314. std::string vars() override {
  3315. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  3316. }
  3317. double max_nmse_err() override {
  3318. return 5e-4;
  3319. }
  3320. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  3321. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  3322. std::array<int64_t, 2> bs = {10, 10},
  3323. std::array<int64_t, 2> nr = {2, 2},
  3324. bool trans_b = false)
  3325. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  3326. ggml_tensor * build_graph(ggml_context * ctx) override {
  3327. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  3328. ggml_set_name(a, "a");
  3329. ggml_tensor * b;
  3330. if (trans_b) {
  3331. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  3332. b = ggml_transpose(ctx, b);
  3333. } else {
  3334. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  3335. }
  3336. ggml_set_name(b, "b");
  3337. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  3338. ggml_set_name(out, "out");
  3339. return out;
  3340. }
  3341. };
  3342. // GGML_OP_SQR
  3343. struct test_sqr : public test_case {
  3344. const ggml_type type;
  3345. const std::array<int64_t, 4> ne;
  3346. std::string vars() override {
  3347. return VARS_TO_STR2(type, ne);
  3348. }
  3349. test_sqr(ggml_type type = GGML_TYPE_F32,
  3350. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3351. : type(type), ne(ne) {}
  3352. ggml_tensor * build_graph(ggml_context * ctx) override {
  3353. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3354. ggml_set_param(a);
  3355. ggml_set_name(a, "a");
  3356. ggml_tensor * out = ggml_sqr(ctx, a);
  3357. ggml_set_name(out, "out");
  3358. return out;
  3359. }
  3360. float grad_eps() override {
  3361. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  3362. }
  3363. };
  3364. // GGML_OP_SQRT
  3365. struct test_sqrt : public test_case {
  3366. const ggml_type type;
  3367. const std::array<int64_t, 4> ne;
  3368. std::string vars() override {
  3369. return VARS_TO_STR2(type, ne);
  3370. }
  3371. test_sqrt(ggml_type type = GGML_TYPE_F32,
  3372. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  3373. : type(type), ne(ne) {}
  3374. ggml_tensor * build_graph(ggml_context * ctx) override {
  3375. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3376. ggml_set_param(a);
  3377. ggml_set_name(a, "a");
  3378. ggml_tensor * out = ggml_sqrt(ctx, a);
  3379. ggml_set_name(out, "out");
  3380. return out;
  3381. }
  3382. void initialize_tensors(ggml_context * ctx) override {
  3383. // fill with positive values
  3384. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3385. init_tensor_uniform(t, 50.0f, 100.0f);
  3386. }
  3387. }
  3388. float grad_eps() override {
  3389. return 20.0f;
  3390. }
  3391. bool grad_precise() override {
  3392. return true;
  3393. }
  3394. };
  3395. // GGML_OP_LOG
  3396. struct test_log : public test_case {
  3397. const ggml_type type;
  3398. const std::array<int64_t, 4> ne;
  3399. std::string vars() override {
  3400. return VARS_TO_STR2(type, ne);
  3401. }
  3402. test_log(ggml_type type = GGML_TYPE_F32,
  3403. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3404. : type(type), ne(ne) {}
  3405. ggml_tensor * build_graph(ggml_context * ctx) override {
  3406. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3407. ggml_set_param(a);
  3408. ggml_set_name(a, "a");
  3409. ggml_tensor * out = ggml_log(ctx, a);
  3410. ggml_set_name(out, "out");
  3411. return out;
  3412. }
  3413. void initialize_tensors(ggml_context * ctx) override {
  3414. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3415. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  3416. init_tensor_uniform(t, 0.9f, 1.1f);
  3417. }
  3418. }
  3419. bool grad_precise() override {
  3420. return true;
  3421. }
  3422. };
  3423. // GGML_OP_SIN
  3424. struct test_sin : public test_case {
  3425. const ggml_type type;
  3426. const std::array<int64_t, 4> ne;
  3427. std::string vars() override {
  3428. return VARS_TO_STR2(type, ne);
  3429. }
  3430. test_sin(ggml_type type = GGML_TYPE_F32,
  3431. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3432. : type(type), ne(ne) {}
  3433. ggml_tensor * build_graph(ggml_context * ctx) override {
  3434. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3435. ggml_set_param(a);
  3436. ggml_set_name(a, "a");
  3437. ggml_tensor * out = ggml_sin(ctx, a);
  3438. ggml_set_name(out, "out");
  3439. return out;
  3440. }
  3441. void initialize_tensors(ggml_context * ctx) override {
  3442. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3443. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3444. }
  3445. }
  3446. double max_maa_err() override {
  3447. return 1e-3;
  3448. }
  3449. float grad_eps() override {
  3450. return 0.2f;
  3451. }
  3452. bool grad_precise() override {
  3453. return true;
  3454. }
  3455. };
  3456. // GGML_OP_COS
  3457. struct test_cos : public test_case {
  3458. const ggml_type type;
  3459. const std::array<int64_t, 4> ne;
  3460. std::string vars() override {
  3461. return VARS_TO_STR2(type, ne);
  3462. }
  3463. test_cos(ggml_type type = GGML_TYPE_F32,
  3464. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3465. : type(type), ne(ne) {}
  3466. ggml_tensor * build_graph(ggml_context * ctx) override {
  3467. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3468. ggml_set_param(a);
  3469. ggml_set_name(a, "a");
  3470. ggml_tensor * out = ggml_cos(ctx, a);
  3471. ggml_set_name(out, "out");
  3472. return out;
  3473. }
  3474. void initialize_tensors(ggml_context * ctx) override {
  3475. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3476. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  3477. }
  3478. }
  3479. double max_maa_err() override {
  3480. return 1e-3;
  3481. }
  3482. float grad_eps() override {
  3483. return 0.2f;
  3484. }
  3485. bool grad_precise() override {
  3486. return true;
  3487. }
  3488. };
  3489. // GGML_OP_CLAMP
  3490. struct test_clamp : public test_case {
  3491. const ggml_type type;
  3492. const std::array<int64_t, 4> ne;
  3493. float min;
  3494. float max;
  3495. std::string vars() override {
  3496. return VARS_TO_STR4(type, ne, min, max);
  3497. }
  3498. test_clamp(ggml_type type = GGML_TYPE_F32,
  3499. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3500. float min = -0.5f, float max = 0.5f)
  3501. : type(type), ne(ne), min(min), max(max) {}
  3502. ggml_tensor * build_graph(ggml_context * ctx) override {
  3503. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3504. ggml_set_name(a, "a");
  3505. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  3506. ggml_set_name(out, "out");
  3507. return out;
  3508. }
  3509. float grad_eps() override {
  3510. return 1e-2f;
  3511. }
  3512. std::vector<float> grad_expect() override {
  3513. return {0.0f, 1.0f};
  3514. }
  3515. };
  3516. // GGML_OP_FLOOR
  3517. struct test_floor : public test_case {
  3518. const ggml_type type;
  3519. const std::array<int64_t, 4> ne;
  3520. std::string vars() override {
  3521. return VARS_TO_STR2(type, ne);
  3522. }
  3523. test_floor(ggml_type type = GGML_TYPE_F32,
  3524. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3525. : type(type), ne(ne) {}
  3526. ggml_tensor * build_graph(ggml_context * ctx) override {
  3527. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3528. ggml_set_param(a);
  3529. ggml_set_name(a, "a");
  3530. ggml_tensor * out = ggml_floor(ctx, a);
  3531. ggml_set_name(out, "out");
  3532. return out;
  3533. }
  3534. void initialize_tensors(ggml_context * ctx) override {
  3535. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3536. init_tensor_uniform(t, -10.0f, 10.0f);
  3537. }
  3538. }
  3539. };
  3540. // GGML_OP_CEIL
  3541. struct test_ceil : public test_case {
  3542. const ggml_type type;
  3543. const std::array<int64_t, 4> ne;
  3544. std::string vars() override {
  3545. return VARS_TO_STR2(type, ne);
  3546. }
  3547. test_ceil(ggml_type type = GGML_TYPE_F32,
  3548. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3549. : type(type), ne(ne) {}
  3550. ggml_tensor * build_graph(ggml_context * ctx) override {
  3551. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3552. ggml_set_param(a);
  3553. ggml_set_name(a, "a");
  3554. ggml_tensor * out = ggml_ceil(ctx, a);
  3555. ggml_set_name(out, "out");
  3556. return out;
  3557. }
  3558. void initialize_tensors(ggml_context * ctx) override {
  3559. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3560. init_tensor_uniform(t, -10.0f, 10.0f);
  3561. }
  3562. }
  3563. };
  3564. // GGML_OP_ROUND
  3565. struct test_round : public test_case {
  3566. const ggml_type type;
  3567. const std::array<int64_t, 4> ne;
  3568. std::string vars() override {
  3569. return VARS_TO_STR2(type, ne);
  3570. }
  3571. test_round(ggml_type type = GGML_TYPE_F32,
  3572. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3573. : type(type), ne(ne) {}
  3574. ggml_tensor * build_graph(ggml_context * ctx) override {
  3575. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3576. ggml_set_param(a);
  3577. ggml_set_name(a, "a");
  3578. ggml_tensor * out = ggml_round(ctx, a);
  3579. ggml_set_name(out, "out");
  3580. return out;
  3581. }
  3582. void initialize_tensors(ggml_context * ctx) override {
  3583. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3584. init_tensor_uniform(t, -10.0f, 10.0f);
  3585. }
  3586. }
  3587. };
  3588. // GGML_OP_TRUNC
  3589. struct test_trunc : public test_case {
  3590. const ggml_type type;
  3591. const std::array<int64_t, 4> ne;
  3592. std::string vars() override {
  3593. return VARS_TO_STR2(type, ne);
  3594. }
  3595. test_trunc(ggml_type type = GGML_TYPE_F32,
  3596. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  3597. : type(type), ne(ne) {}
  3598. ggml_tensor * build_graph(ggml_context * ctx) override {
  3599. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3600. ggml_set_param(a);
  3601. ggml_set_name(a, "a");
  3602. ggml_tensor * out = ggml_trunc(ctx, a);
  3603. ggml_set_name(out, "out");
  3604. return out;
  3605. }
  3606. void initialize_tensors(ggml_context * ctx) override {
  3607. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3608. init_tensor_uniform(t, -10.0f, 10.0f);
  3609. }
  3610. }
  3611. };
  3612. // GGML_OP_DIAG_MASK_INF
  3613. struct test_diag_mask_inf : public test_case {
  3614. const ggml_type type;
  3615. const std::array<int64_t, 4> ne;
  3616. const int n_past;
  3617. std::string vars() override {
  3618. return VARS_TO_STR3(type, ne, n_past);
  3619. }
  3620. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  3621. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  3622. int n_past = 5)
  3623. : type(type), ne(ne), n_past(n_past) {}
  3624. ggml_tensor * build_graph(ggml_context * ctx) override {
  3625. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3626. ggml_set_param(a);
  3627. ggml_set_name(a, "a");
  3628. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  3629. ggml_set_name(out, "out");
  3630. return out;
  3631. }
  3632. };
  3633. // GGML_OP_SOFT_MAX
  3634. struct test_soft_max : public test_case {
  3635. const ggml_type type;
  3636. const std::array<int64_t, 4> ne;
  3637. const bool mask;
  3638. const bool sinks;
  3639. const ggml_type m_prec;
  3640. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  3641. const float scale;
  3642. const float max_bias;
  3643. const bool inplace;
  3644. std::string vars() override {
  3645. return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace);
  3646. }
  3647. // the 1024 test with bias occasionally fails:
  3648. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  3649. virtual double max_nmse_err() override {
  3650. return 1e-6;
  3651. }
  3652. test_soft_max(ggml_type type = GGML_TYPE_F32,
  3653. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3654. bool mask = false,
  3655. bool sinks = false,
  3656. ggml_type m_prec = GGML_TYPE_F32,
  3657. std::array<int64_t, 2> nr23 = {1, 1},
  3658. float scale = 1.0f,
  3659. float max_bias = 0.0f,
  3660. bool inplace = false)
  3661. : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {}
  3662. ggml_tensor * build_graph(ggml_context * ctx) override {
  3663. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  3664. ggml_set_param(a);
  3665. ggml_set_name(a, "a");
  3666. ggml_tensor * mask = nullptr;
  3667. if (this->mask) {
  3668. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  3669. ggml_set_name(mask, "mask");
  3670. }
  3671. ggml_tensor * sinks = nullptr;
  3672. if (this->sinks) {
  3673. sinks = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[2]*nr23[0]);
  3674. ggml_set_name(sinks, "sinks");
  3675. }
  3676. ggml_tensor * out;
  3677. if (inplace) {
  3678. out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias);
  3679. } else {
  3680. out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  3681. }
  3682. ggml_soft_max_add_sinks(out, sinks);
  3683. ggml_set_name(out, "out");
  3684. return out;
  3685. }
  3686. bool grad_precise() override {
  3687. return true;
  3688. }
  3689. };
  3690. // GGML_OP_SOFT_MAX_BACK
  3691. struct test_soft_max_back : public test_case {
  3692. const ggml_type type;
  3693. const std::array<int64_t, 4> ne;
  3694. const float scale;
  3695. const float max_bias;
  3696. std::string vars() override {
  3697. return VARS_TO_STR4(type, ne, scale, max_bias);
  3698. }
  3699. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  3700. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  3701. float scale = 1.0f,
  3702. float max_bias = 0.0f)
  3703. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  3704. ggml_tensor * build_graph(ggml_context * ctx) override {
  3705. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  3706. ggml_set_name(a, "a");
  3707. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  3708. ggml_set_name(a, "a");
  3709. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  3710. ggml_set_name(out, "out");
  3711. return out;
  3712. }
  3713. };
  3714. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  3715. struct test_rope : public test_case {
  3716. const ggml_type type;
  3717. const std::array<int64_t, 4> ne_a;
  3718. int n_dims;
  3719. int mode;
  3720. int n_ctx; // used to generate positions
  3721. float fs; // freq_scale
  3722. float ef; // ext_factor
  3723. float af; // attn_factor
  3724. bool ff;
  3725. int v; // view (1 : non-contiguous a)
  3726. bool forward;
  3727. bool inplace;
  3728. std::string vars() override {
  3729. // forward can be inferred from the op, does not need to be printed
  3730. return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace);
  3731. }
  3732. test_rope(ggml_type type = GGML_TYPE_F32,
  3733. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  3734. int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f,
  3735. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false)
  3736. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {}
  3737. ggml_tensor * build_graph(ggml_context * ctx) override {
  3738. ggml_tensor * a;
  3739. if (v & 1) {
  3740. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  3741. a = ggml_new_tensor(ctx, type, 4, ne.data());
  3742. if (forward) {
  3743. ggml_set_param(a);
  3744. }
  3745. ggml_set_name(a, "a");
  3746. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  3747. ggml_set_name(a, "view_of_a");
  3748. } else {
  3749. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  3750. if (forward) {
  3751. ggml_set_param(a);
  3752. }
  3753. ggml_set_name(a, "a");
  3754. }
  3755. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  3756. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  3757. ggml_tensor * pos;
  3758. if (is_mrope || is_vision) {
  3759. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  3760. } else {
  3761. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  3762. }
  3763. ggml_set_name(pos, "pos");
  3764. ggml_tensor * freq = nullptr;
  3765. if (ff) {
  3766. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  3767. ggml_set_name(freq, "freq");
  3768. }
  3769. ggml_tensor * out;
  3770. if (is_mrope) {
  3771. if (is_vision) {
  3772. GGML_ASSERT(n_dims/4 > 0);
  3773. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  3774. if (forward) {
  3775. if (inplace) {
  3776. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3777. } else {
  3778. out = ggml_rope_multi(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3779. }
  3780. } else {
  3781. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3782. }
  3783. } else {
  3784. GGML_ASSERT(n_dims/3 > 0);
  3785. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  3786. if (forward) {
  3787. if (inplace) {
  3788. out = ggml_rope_multi_inplace(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3789. } else {
  3790. out = ggml_rope_multi(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3791. }
  3792. } else {
  3793. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3794. }
  3795. }
  3796. } else {
  3797. if (forward) {
  3798. if (inplace) {
  3799. out = ggml_rope_ext_inplace(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3800. } else {
  3801. out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3802. }
  3803. } else {
  3804. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  3805. }
  3806. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  3807. }
  3808. ggml_set_name(out, "out");
  3809. return out;
  3810. }
  3811. void initialize_tensors(ggml_context * ctx) override {
  3812. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3813. if (t->type == GGML_TYPE_I32) {
  3814. // pos
  3815. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  3816. std::vector<int> data(num_pos_ids);
  3817. for (int i = 0; i < num_pos_ids; i++) {
  3818. data[i] = rand() % n_ctx;
  3819. }
  3820. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  3821. } else {
  3822. if (t->ne[0] == n_dims/2) {
  3823. // frequency factors in the range [0.9f, 1.1f]
  3824. init_tensor_uniform(t, 0.9f, 1.1f);
  3825. } else {
  3826. init_tensor_uniform(t);
  3827. }
  3828. }
  3829. }
  3830. }
  3831. double max_maa_err() override {
  3832. return 1e-3;
  3833. }
  3834. bool grad_precise() override {
  3835. return true;
  3836. }
  3837. };
  3838. // GGML_OP_POOL2D
  3839. struct test_pool2d : public test_case {
  3840. enum ggml_op_pool pool_type;
  3841. const ggml_type type_input;
  3842. const std::array<int64_t, 4> ne_input;
  3843. // kernel size
  3844. const int k0;
  3845. const int k1;
  3846. // stride
  3847. const int s0;
  3848. const int s1;
  3849. // padding
  3850. const int p0;
  3851. const int p1;
  3852. std::string vars() override {
  3853. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  3854. }
  3855. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  3856. ggml_type type_input = GGML_TYPE_F32,
  3857. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3858. int k0 = 3, int k1 = 3,
  3859. int s0 = 1, int s1 = 1,
  3860. int p0 = 1, int p1 = 1)
  3861. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  3862. ggml_tensor * build_graph(ggml_context * ctx) override {
  3863. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3864. ggml_set_param(input);
  3865. ggml_set_name(input, "input");
  3866. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  3867. ggml_set_name(out, "out");
  3868. return out;
  3869. }
  3870. };
  3871. // GGML_OP_CONV_TRANSPOSE_1D
  3872. struct test_conv_transpose_1d : public test_case {
  3873. const std::array<int64_t, 4> ne_input;
  3874. const std::array<int64_t, 4> ne_kernel;
  3875. const int s0; // stride
  3876. const int p0; // padding
  3877. const int d0; // dilation
  3878. std::string vars() override {
  3879. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  3880. }
  3881. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  3882. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  3883. int s0 = 1, int p0 = 0, int d0 = 1)
  3884. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  3885. ggml_tensor * build_graph(ggml_context * ctx) override {
  3886. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3887. ggml_set_name(input, "input");
  3888. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  3889. ggml_set_name(kernel, "kernel");
  3890. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  3891. ggml_set_name(out, "out");
  3892. return out;
  3893. }
  3894. };
  3895. // GGML_OP_CONV_TRANSPOSE_2D
  3896. struct test_conv_transpose_2d : public test_case {
  3897. const std::array<int64_t, 4> ne_input;
  3898. const std::array<int64_t, 4> ne_kernel;
  3899. const int stride;
  3900. std::string vars() override {
  3901. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  3902. }
  3903. double max_nmse_err() override {
  3904. return 5e-4; // The default 1e-7 is too small for Vulkan.
  3905. }
  3906. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3907. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3908. int stride = 1)
  3909. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  3910. ggml_tensor * build_graph(ggml_context * ctx) override {
  3911. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  3912. ggml_set_name(input, "input");
  3913. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  3914. ggml_set_name(kernel, "kernel");
  3915. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  3916. ggml_set_name(out, "out");
  3917. return out;
  3918. }
  3919. };
  3920. // GGML_OP_IM2COL
  3921. struct test_im2col : public test_case {
  3922. const ggml_type type_input;
  3923. const ggml_type type_kernel;
  3924. const ggml_type dst_type;
  3925. const std::array<int64_t, 4> ne_input;
  3926. const std::array<int64_t, 4> ne_kernel;
  3927. // stride
  3928. const int s0;
  3929. const int s1;
  3930. // padding
  3931. const int p0;
  3932. const int p1;
  3933. // dilation
  3934. const int d0;
  3935. const int d1;
  3936. // mode
  3937. const bool is_2D;
  3938. std::string vars() override {
  3939. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  3940. }
  3941. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3942. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  3943. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  3944. int s0 = 1, int s1 = 1,
  3945. int p0 = 1, int p1 = 1,
  3946. int d0 = 1, int d1 = 1,
  3947. bool is_2D = true)
  3948. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  3949. ggml_tensor * build_graph(ggml_context * ctx) override {
  3950. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3951. ggml_set_param(input);
  3952. ggml_set_name(input, "input");
  3953. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  3954. ggml_set_name(kernel, "kernel");
  3955. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  3956. ggml_set_name(out, "out");
  3957. return out;
  3958. }
  3959. };
  3960. // GGML_OP_IM2COL_3D
  3961. struct test_im2col_3d : public test_case {
  3962. const ggml_type type_input;
  3963. const ggml_type type_kernel;
  3964. const ggml_type dst_type;
  3965. const std::array<int64_t, 4> ne_input;
  3966. const std::array<int64_t, 4> ne_kernel;
  3967. // stride
  3968. const int s0;
  3969. const int s1;
  3970. const int s2;
  3971. // padding
  3972. const int p0;
  3973. const int p1;
  3974. const int p2;
  3975. // dilation
  3976. const int d0;
  3977. const int d1;
  3978. const int d2;
  3979. const int64_t IC;
  3980. const bool v;
  3981. std::string vars() override {
  3982. return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v);
  3983. }
  3984. test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  3985. std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW]
  3986. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW]
  3987. int64_t IC = 3,
  3988. int s0 = 1, int s1 = 1, int s2 = 1,
  3989. int p0 = 1, int p1 = 1, int p2 = 1,
  3990. int d0 = 1, int d1 = 1, int d2 = 1,
  3991. bool v = false)
  3992. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {}
  3993. ggml_tensor * build_graph(ggml_context * ctx) override {
  3994. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  3995. ggml_set_param(input);
  3996. ggml_set_name(input, "input");
  3997. if (v) {
  3998. input = ggml_view_4d(ctx, input, ne_input[0] - 2, ne_input[1] - 2, ne_input[2] - 2, ne_input[3] - 2, input->nb[1], input->nb[2], input->nb[3], 0);
  3999. ggml_set_name(input, "view_of_input");
  4000. }
  4001. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  4002. ggml_set_name(kernel, "kernel");
  4003. ggml_tensor * out = ggml_im2col_3d(ctx, kernel, input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type);
  4004. ggml_set_name(out, "out");
  4005. return out;
  4006. }
  4007. };
  4008. // CONV_2D
  4009. struct test_conv_2d : public test_case {
  4010. const std::array<int64_t, 4> ne_input;
  4011. const std::array<int64_t, 4> ne_kernel;
  4012. const ggml_type type_kernel;
  4013. const int stride0;
  4014. const int stride1;
  4015. const int padding0;
  4016. const int padding1;
  4017. const int dilation0;
  4018. const int dilation1;
  4019. // Whether the inputs are contiguous in the channel dim or the width dim
  4020. const bool cwhn;
  4021. // If true, the direct CONV_2D will be used in the graph, otherwise it
  4022. // uses ggml_conv_2d:
  4023. // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
  4024. // CONV_2D graph will be built, while
  4025. // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
  4026. // IM2COL -> MUL_MM graph will be built.
  4027. std::string vars() override {
  4028. return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
  4029. }
  4030. double max_nmse_err() override {
  4031. return 5e-4;
  4032. }
  4033. uint64_t op_flops(ggml_tensor * t) override {
  4034. GGML_UNUSED(t);
  4035. // Just counting matmul costs:
  4036. // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
  4037. // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
  4038. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4039. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4040. };
  4041. int64_t W = ne_input[0];
  4042. int64_t H = ne_input[1];
  4043. int64_t KW = ne_kernel[0];
  4044. int64_t KH = ne_kernel[1];
  4045. int64_t Cin = ne_kernel[2];
  4046. int64_t Cout = ne_kernel[3];
  4047. int64_t N = ne_input[3];
  4048. int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
  4049. int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
  4050. int64_t K = Cout;
  4051. int64_t CRS = Cin * KH * KW;
  4052. int64_t NPQ = N * OH * OW;
  4053. return K * NPQ * (2 * CRS - 1);
  4054. }
  4055. test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
  4056. std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1,
  4057. int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
  4058. ne_input(ne_input),
  4059. ne_kernel(ne_kernel),
  4060. type_kernel(type_kernel),
  4061. stride0(stride0),
  4062. stride1(stride1),
  4063. padding0(padding0),
  4064. padding1(padding1),
  4065. dilation0(dilation0),
  4066. dilation1(dilation1),
  4067. cwhn(cwhn) {}
  4068. ggml_tensor * build_graph(ggml_context * ctx) override {
  4069. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  4070. ggml_set_name(input, "input");
  4071. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  4072. ggml_set_name(kernel, "kernel");
  4073. if (cwhn) {
  4074. // change memory layout to channel-most-contiguous (CWHN),
  4075. // then permute it back so NE matches the original input
  4076. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  4077. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  4078. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  4079. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  4080. }
  4081. ggml_tensor * out =
  4082. ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
  4083. ggml_set_name(out, "out");
  4084. return out;
  4085. }
  4086. };
  4087. // GGML_OP_CONV_2D_DW
  4088. struct test_conv_2d_dw : public test_case {
  4089. const std::array<int64_t, 4> ne_input;
  4090. const std::array<int64_t, 4> ne_kernel;
  4091. const int stride;
  4092. const int padding;
  4093. const int dilation;
  4094. const bool cwhn;
  4095. std::string vars() override {
  4096. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  4097. }
  4098. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  4099. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  4100. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  4101. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  4102. ggml_tensor * build_graph(ggml_context * ctx) override {
  4103. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  4104. ggml_set_name(input, "input");
  4105. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  4106. ggml_set_name(kernel, "kernel");
  4107. if (cwhn) {
  4108. // change memory layout to channel-most-contiguous (CWHN),
  4109. // then permute it back so NE matches the original input
  4110. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  4111. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  4112. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  4113. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  4114. }
  4115. ggml_tensor * out = ggml_conv_2d_dw_direct(
  4116. ctx, kernel, input,
  4117. stride, stride, padding, padding, dilation, dilation);
  4118. ggml_set_name(out, "out");
  4119. return out;
  4120. }
  4121. };
  4122. // GGML_OP_CONV_3D
  4123. struct test_conv_3d : public test_case {
  4124. // Logical 5D dimensions
  4125. const int64_t N, IC, ID, IH, IW;
  4126. const int64_t OC, KD, KH, KW;
  4127. // Conv params
  4128. const int s0, s1, s2;
  4129. const int p0, p1, p2;
  4130. const int d0, d1, d2;
  4131. // Types
  4132. const ggml_type type_kernel;
  4133. std::string op_desc(ggml_tensor * t) override {
  4134. GGML_UNUSED(t);
  4135. return "CONV_3D";
  4136. }
  4137. std::string vars() override {
  4138. return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," +
  4139. VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel);
  4140. }
  4141. double max_nmse_err() override {
  4142. return 5e-4;
  4143. }
  4144. uint64_t op_flops(ggml_tensor * t) override {
  4145. GGML_UNUSED(t);
  4146. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  4147. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4148. };
  4149. const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2);
  4150. const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1);
  4151. const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0);
  4152. return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1);
  4153. }
  4154. test_conv_3d(
  4155. int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW,
  4156. int64_t OC, int64_t KD, int64_t KH, int64_t KW,
  4157. int s0, int s1, int s2,
  4158. int p0, int p1, int p2,
  4159. int d0, int d1, int d2,
  4160. ggml_type type_kernel
  4161. ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW),
  4162. OC(OC), KD(KD), KH(KH), KW(KW),
  4163. s0(s0), s1(s1), s2(s2),
  4164. p0(p0), p1(p1), p2(p2),
  4165. d0(d0), d1(d1), d2(d2),
  4166. type_kernel(type_kernel) {}
  4167. ggml_tensor * build_graph(ggml_context * ctx) override {
  4168. // GGML input tensor is packed as [W, H, D, C*N]
  4169. const int64_t ne_input[] = {IW, IH, ID, IC * N};
  4170. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input);
  4171. ggml_set_name(input, "input");
  4172. // GGML kernel tensor is packed as [KW, KH, KD, IC*OC]
  4173. const int64_t ne_kernel[] = {KW, KH, KD, IC * OC};
  4174. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel);
  4175. ggml_set_name(kernel, "kernel");
  4176. ggml_tensor * out = ggml_conv_3d_direct(ctx, kernel, input, s0, s1, s2, p0, p1, p2, d0, d1, d2, (int)IC, (int)N, (int)OC);
  4177. ggml_set_name(out, "out");
  4178. return out;
  4179. }
  4180. };
  4181. // GGML_OP_CONCAT
  4182. struct test_concat : public test_case {
  4183. const ggml_type type;
  4184. const std::array<int64_t, 4> ne_a;
  4185. const int64_t ne_b_d;
  4186. const int dim;
  4187. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  4188. std::string vars() override {
  4189. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  4190. }
  4191. test_concat(ggml_type type = GGML_TYPE_F32,
  4192. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  4193. int64_t ne_b_d = 5,
  4194. int dim = 2, int v = 0)
  4195. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  4196. ggml_tensor * build_graph(ggml_context * ctx) override {
  4197. auto ne_b = ne_a;
  4198. ne_b[dim] = ne_b_d;
  4199. ggml_tensor * a;
  4200. if (v & 1) {
  4201. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  4202. a = ggml_new_tensor(ctx, type, 4, ne.data());
  4203. ggml_set_name(a, "a");
  4204. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  4205. ggml_set_name(a, "view_of_a");
  4206. } else {
  4207. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4208. ggml_set_name(a, "a");
  4209. }
  4210. ggml_tensor * b;
  4211. if (v & 2) {
  4212. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  4213. b = ggml_new_tensor(ctx, type, 4, ne.data());
  4214. ggml_set_name(b, "b");
  4215. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  4216. ggml_set_name(b, "view_of_b");
  4217. } else {
  4218. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4219. ggml_set_name(b, "b");
  4220. }
  4221. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  4222. ggml_set_name(out, "out");
  4223. return out;
  4224. }
  4225. };
  4226. // GGML_OP_ARGSORT
  4227. struct test_argsort : public test_case {
  4228. const ggml_type type;
  4229. const std::array<int64_t, 4> ne;
  4230. ggml_sort_order order;
  4231. std::string vars() override {
  4232. return VARS_TO_STR3(type, ne, order);
  4233. }
  4234. test_argsort(ggml_type type = GGML_TYPE_F32,
  4235. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4236. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  4237. : type(type), ne(ne), order(order) {}
  4238. ggml_tensor * build_graph(ggml_context * ctx) override {
  4239. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4240. ggml_set_name(a, "a");
  4241. ggml_tensor * out = ggml_argsort(ctx, a, order);
  4242. ggml_set_name(out, "out");
  4243. return out;
  4244. }
  4245. void initialize_tensors(ggml_context * ctx) override {
  4246. std::random_device rd;
  4247. std::default_random_engine rng(rd());
  4248. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4249. if (t->type == GGML_TYPE_I32) {
  4250. // indices
  4251. std::vector<int> data(ggml_nelements(t));
  4252. for (int i = 0; i < ggml_nelements(t); i++) {
  4253. data[i] = rand();
  4254. }
  4255. std::shuffle(data.begin(), data.end(), rng);
  4256. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  4257. } else if (t->type == GGML_TYPE_F32) {
  4258. // initialize with unique values to avoid ties
  4259. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4260. std::vector<float> data(t->ne[0]);
  4261. for (int i = 0; i < t->ne[0]; i++) {
  4262. data[i] = i;
  4263. }
  4264. std::shuffle(data.begin(), data.end(), rng);
  4265. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4266. }
  4267. } else {
  4268. GGML_ABORT("fatal error");
  4269. }
  4270. }
  4271. }
  4272. };
  4273. // GGML_OP_TOP_K
  4274. struct test_top_k : public test_case {
  4275. const ggml_type type;
  4276. const std::array<int64_t, 4> ne;
  4277. const int k;
  4278. const bool ties;
  4279. ggml_tensor * input {};
  4280. std::string vars() override {
  4281. return VARS_TO_STR4(type, ne, k, ties);
  4282. }
  4283. test_top_k(ggml_type type = GGML_TYPE_F32,
  4284. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  4285. int k = 4, bool ties = false)
  4286. : type(type), ne(ne), k(k), ties(ties) {}
  4287. double max_err() override {
  4288. return 0.0;
  4289. }
  4290. // When there are ties, only validate the final result.
  4291. // The logic in err can't handle the sentinel tensors.
  4292. bool run_whole_graph() override { return ties; }
  4293. double err(const float * a, const float * b, size_t n) override {
  4294. // When there are no ties, we expect the exact same set of indices,
  4295. // but possibly in a different order. When there are ties, the indices
  4296. // can be different but the input values they correspond to should be
  4297. // the same. The logic for ties could work for non-ties, but only for
  4298. // the output tensor, not for the sentinel tensors.
  4299. if (ties) {
  4300. std::vector<float> src(ggml_nelements(input));
  4301. ggml_backend_tensor_get(input, src.data(), 0, ggml_nelements(input) * ggml_type_size(type));
  4302. double diff = 0.0f;
  4303. GGML_ASSERT(n == (size_t)(ggml_nrows(input) * k));
  4304. int64_t cols = input->ne[0];
  4305. std::vector<int32_t> ia(k);
  4306. std::vector<int32_t> ib(k);
  4307. std::vector<float> asrc(k);
  4308. std::vector<float> bsrc(k);
  4309. for (int64_t r = 0; r < ggml_nrows(input); r++) {
  4310. // Convert indices for the row back to integer
  4311. for (int64_t c = 0; c < k; c++) {
  4312. ia[c] = (int32_t)a[r * k + c];
  4313. ib[c] = (int32_t)b[r * k + c];
  4314. }
  4315. // The src values for each row should match.
  4316. for (int64_t c = 0; c < k; c++) {
  4317. asrc[c] = src[r * cols + ia[c]];
  4318. bsrc[c] = src[r * cols + ib[c]];
  4319. }
  4320. diff += jdst(asrc.data(), bsrc.data(), k);
  4321. // There should be no duplicate indices
  4322. std::sort(ia.begin(), ia.end());
  4323. std::sort(ib.begin(), ib.end());
  4324. if (std::adjacent_find(ia.begin(), ia.end()) != ia.end()) {
  4325. diff += 1;
  4326. }
  4327. if (std::adjacent_find(ib.begin(), ib.end()) != ib.end()) {
  4328. diff += 1;
  4329. }
  4330. }
  4331. return diff;
  4332. } else {
  4333. std::vector<int32_t> ia(n);
  4334. std::vector<int32_t> ib(n);
  4335. double diff = 0.0f;
  4336. for (size_t i = 0; i < n; i++) {
  4337. ia[i] = (int32_t) a[i];
  4338. ib[i] = (int32_t) b[i];
  4339. // penalize the result if the data is not integer valued
  4340. diff += std::fabs(a[i] - ia[i]);
  4341. diff += std::fabs(b[i] - ib[i]);
  4342. }
  4343. return diff + jdst(ia.data(), ib.data(), n);
  4344. }
  4345. }
  4346. ggml_tensor * build_graph(ggml_context * ctx) override {
  4347. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4348. ggml_set_name(a, "a");
  4349. // Save 'a' for err()
  4350. input = a;
  4351. ggml_tensor * out = ggml_top_k(ctx, a, k);
  4352. ggml_set_name(out, "out");
  4353. return out;
  4354. }
  4355. void initialize_tensors(ggml_context * ctx) override {
  4356. std::random_device rd;
  4357. std::default_random_engine rng(rd());
  4358. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4359. int tie_denom = std::max(1, std::min(10, k / 2));
  4360. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  4361. std::vector<float> data(t->ne[0]);
  4362. for (int i = 0; i < t->ne[0]; i++) {
  4363. if (ties) {
  4364. // integer division to introduce duplicates
  4365. data[i] = i / tie_denom;
  4366. } else {
  4367. data[i] = i;
  4368. }
  4369. }
  4370. std::shuffle(data.begin(), data.end(), rng);
  4371. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  4372. }
  4373. }
  4374. }
  4375. };
  4376. enum MoeGatingFunc {
  4377. GATING_FUNC_SOFTMAX,
  4378. GATING_FUNC_SIGMOID,
  4379. GATING_FUNC_SOFTMAX_WEIGHT,
  4380. };
  4381. struct test_topk_moe : public test_case {
  4382. const std::array<int64_t, 4> ne;
  4383. const int n_expert_used;
  4384. const bool with_norm;
  4385. const bool bias_probs;
  4386. const MoeGatingFunc gating_func;
  4387. const float scale_w;
  4388. ggml_tensor * weights {};
  4389. ggml_tensor * selected_experts {};
  4390. test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 },
  4391. int n_expert_used = 1,
  4392. bool with_norm = false,
  4393. bool bias_probs = false,
  4394. MoeGatingFunc gating_func = GATING_FUNC_SOFTMAX,
  4395. float scale_w = 0.0f) :
  4396. ne(ne),
  4397. n_expert_used(n_expert_used),
  4398. with_norm(with_norm),
  4399. bias_probs(bias_probs),
  4400. gating_func(gating_func),
  4401. scale_w(scale_w) {
  4402. GGML_ASSERT(n_expert_used <= ne[0]);
  4403. }
  4404. std::string vars() override { return VARS_TO_STR6(ne, n_expert_used, with_norm, bias_probs, gating_func, scale_w); }
  4405. std::string op_desc(ggml_tensor * t) override {
  4406. GGML_UNUSED(t);
  4407. return "TOPK_MOE";
  4408. }
  4409. bool run_whole_graph() override { return true; }
  4410. ggml_tensor * build_graph(ggml_context * ctx) override {
  4411. const int n_expert = ne[0];
  4412. const int n_tokens = ne[1];
  4413. ggml_tensor * logits = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4414. ggml_tensor * probs =
  4415. (gating_func == GATING_FUNC_SOFTMAX) ? ggml_soft_max(ctx, logits) :
  4416. (gating_func == GATING_FUNC_SIGMOID) ? ggml_sigmoid(ctx, logits) : logits;
  4417. ggml_set_name(probs, "probs");
  4418. ggml_tensor * selection_probs = probs;
  4419. if (bias_probs) {
  4420. ggml_tensor * exp_probs_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ne[0]);
  4421. ggml_set_name(exp_probs_b, "exp_probs_b");
  4422. selection_probs = ggml_add(ctx, probs, exp_probs_b);
  4423. ggml_set_name(selection_probs, "selection_probs");
  4424. }
  4425. selected_experts = ggml_argsort_top_k(ctx, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
  4426. ggml_set_name(selected_experts, "selected_experts");
  4427. weights = ggml_get_rows(ctx, ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  4428. ggml_set_name(weights, "weights");
  4429. if (gating_func == GATING_FUNC_SOFTMAX_WEIGHT) {
  4430. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  4431. weights = ggml_soft_max(ctx, weights); // [n_expert_used, n_tokens]
  4432. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  4433. }
  4434. if (with_norm) {
  4435. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  4436. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  4437. ggml_set_name(weights_sum, "weights_sum");
  4438. weights_sum = ggml_clamp(ctx, weights_sum, 6.103515625e-5, INFINITY);
  4439. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  4440. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  4441. }
  4442. if (scale_w) {
  4443. weights = ggml_scale(ctx, weights, scale_w);
  4444. }
  4445. ggml_set_name(weights, "weights");
  4446. return weights;
  4447. }
  4448. // Verify two outputs
  4449. std::vector<ggml_tensor *> fusion_test_nodes() override { return { selected_experts, weights }; }
  4450. // allow output in arbitrary order
  4451. double err(const float * a, const float * b, size_t n) override {
  4452. std::vector<float> a2(n);
  4453. std::vector<float> b2(n);
  4454. for (size_t i = 0; i < n; ++i) {
  4455. a2[i] = a[i];
  4456. b2[i] = b[i];
  4457. }
  4458. std::sort(a2.begin(), a2.end());
  4459. std::sort(b2.begin(), b2.end());
  4460. return nmse(a2.data(), b2.data(), n);
  4461. }
  4462. };
  4463. struct test_mul_mat_vec_fusion : public test_case {
  4464. const ggml_type type;
  4465. const ggml_glu_op glu_op;
  4466. const int64_t m;
  4467. const int64_t n;
  4468. const int64_t k;
  4469. const bool use_id;
  4470. const int n_mats;
  4471. const int n_used;
  4472. const bool b; // broadcast b matrix (only for use_id)
  4473. const bool with_bias;
  4474. const bool with_gate;
  4475. std::array<int64_t, 2> batch_dims;
  4476. test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
  4477. bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true,
  4478. std::array<int64_t, 2> batch_dims = {4, 2})
  4479. : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate), batch_dims(batch_dims) {
  4480. if (use_id) {
  4481. GGML_ASSERT(n_used <= n_mats);
  4482. }
  4483. }
  4484. std::string vars() override {
  4485. return VARS_TO_STR12(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate, batch_dims);
  4486. }
  4487. std::string op_desc(ggml_tensor * t) override {
  4488. GGML_UNUSED(t);
  4489. return "MUL_MAT_VEC_FUSION";
  4490. }
  4491. bool run_whole_graph() override { return true; }
  4492. ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
  4493. ggml_tensor * out = nullptr;
  4494. if (with_gate) {
  4495. if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  4496. constexpr float alpha = 1.702f;
  4497. constexpr float limit = 7.0f;
  4498. out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
  4499. } else {
  4500. out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
  4501. }
  4502. }
  4503. return out;
  4504. }
  4505. ggml_tensor * build_graph(ggml_context * ctx) override {
  4506. if (!use_id) {
  4507. const int channels = batch_dims[0];
  4508. const int samples = batch_dims[1];
  4509. std::array<int64_t, 4> ne = { k, m, channels, samples };
  4510. std::array<int64_t, 4> ne0 = { k, n, channels, samples };
  4511. ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
  4512. ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
  4513. ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
  4514. ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
  4515. if (with_bias) {
  4516. std::array<int64_t, 4> bias_ne = { ffn_up->ne[0], 1, channels, samples };
  4517. ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4518. ffn_up = ggml_add(ctx, ffn_up, up_bias);
  4519. }
  4520. ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
  4521. if (with_bias && with_gate) {
  4522. std::array<int64_t, 4> bias_ne = { ffn_gate->ne[0], 1, channels, samples };
  4523. ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
  4524. ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
  4525. }
  4526. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4527. std::array<int64_t, 4> bias2_ne = { out->ne[0], 1, channels, samples };
  4528. ggml_tensor * bias2 = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias2_ne.data());
  4529. out = ggml_add(ctx, out, bias2);
  4530. ggml_set_name(out, "out");
  4531. return out;
  4532. } else {
  4533. ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4534. ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
  4535. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
  4536. if (n_used != n_mats) {
  4537. ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
  4538. }
  4539. ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
  4540. ggml_set_name(cur, "cur");
  4541. ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
  4542. if (with_bias) {
  4543. ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
  4544. ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
  4545. }
  4546. ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
  4547. if (with_bias && with_gate) {
  4548. ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
  4549. ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
  4550. }
  4551. ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
  4552. std::array<int64_t, 4> scale_ne { 1, out->ne[1], out->ne[2], out->ne[3] };
  4553. ggml_tensor * scale = ggml_new_tensor(ctx, out->type, 4, scale_ne.data());
  4554. out = ggml_mul(ctx, out, scale);
  4555. ggml_set_name(out, "out");
  4556. return out;
  4557. }
  4558. }
  4559. void initialize_tensors(ggml_context * ctx) override {
  4560. if (!use_id) {
  4561. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  4562. init_tensor_uniform(t);
  4563. }
  4564. } else {
  4565. init_mul_mat_id_tensors(ctx, n_mats);
  4566. }
  4567. }
  4568. double max_nmse_err() override {
  4569. return 5e-3;
  4570. }
  4571. };
  4572. // GGML_OP_SUM
  4573. struct test_sum : public test_case {
  4574. const ggml_type type;
  4575. const std::array<int64_t, 4> ne;
  4576. const std::array<int64_t, 4> permute;
  4577. bool _use_permute;
  4578. std::string vars() override {
  4579. std::string v = VARS_TO_STR2(type, ne);
  4580. if (_use_permute) v += "," + VAR_TO_STR(permute);
  4581. return v;
  4582. }
  4583. test_sum(ggml_type type = GGML_TYPE_F32,
  4584. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4585. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  4586. : type(type), ne(ne), permute(permute),
  4587. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  4588. ggml_tensor * build_graph(ggml_context * ctx) override {
  4589. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4590. ggml_set_param(a);
  4591. ggml_set_name(a, "a");
  4592. if (_use_permute) {
  4593. a = ggml_permute(ctx, a, permute[0], permute[1], permute[2], permute[3]);
  4594. ggml_set_name(a, "a_permuted");
  4595. }
  4596. ggml_tensor * out = ggml_sum(ctx, a);
  4597. ggml_set_name(out, "out");
  4598. return out;
  4599. }
  4600. float grad_eps() override {
  4601. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  4602. }
  4603. // Don't center the distribution around zero. Helps to avoid catastrophic cancellation.
  4604. void initialize_tensors(ggml_context * ctx) override {
  4605. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  4606. init_tensor_uniform(t, -0.9f, 1.1f);
  4607. }
  4608. }
  4609. };
  4610. // GGML_OP_SUM_ROWS
  4611. struct test_sum_rows : public test_case {
  4612. const ggml_type type;
  4613. const std::array<int64_t, 4> ne;
  4614. const bool permute;
  4615. const bool slice;
  4616. std::string vars() override {
  4617. return VARS_TO_STR4(type, ne, permute, slice);
  4618. }
  4619. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  4620. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  4621. bool permute = false, bool slice = false)
  4622. : type(type), ne(ne), permute(permute), slice(slice) {}
  4623. ggml_tensor * build_graph(ggml_context * ctx) override {
  4624. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4625. ggml_set_param(a);
  4626. ggml_set_name(a, "a");
  4627. if (slice) {
  4628. a = ggml_view_4d(ctx, a,
  4629. ne[0], ne[1], ne[2] / 2, ne[3] - 1,
  4630. a->nb[1], a->nb[2] * 2, a->nb[3], /*offset=*/a->nb[3]);
  4631. }
  4632. if (permute) {
  4633. a = ggml_permute(ctx, a, 0, 2, 3, 1);
  4634. }
  4635. ggml_tensor * out = ggml_sum_rows(ctx, a);
  4636. ggml_set_name(out, "out");
  4637. return out;
  4638. }
  4639. };
  4640. // GGML_OP_MEAN
  4641. struct test_mean : public test_case {
  4642. const ggml_type type;
  4643. const std::array<int64_t, 4> ne;
  4644. std::string vars() override {
  4645. return VARS_TO_STR2(type, ne);
  4646. }
  4647. test_mean(ggml_type type = GGML_TYPE_F32,
  4648. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  4649. : type(type), ne(ne) {}
  4650. ggml_tensor * build_graph(ggml_context * ctx) override {
  4651. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4652. ggml_set_param(a);
  4653. ggml_set_name(a, "a");
  4654. ggml_tensor * out = ggml_mean(ctx, a);
  4655. ggml_set_name(out, "out");
  4656. return out;
  4657. }
  4658. float grad_eps() override {
  4659. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  4660. }
  4661. // Don't center the distribution around zero. Helps to avoid catastrophic cancellation.
  4662. void initialize_tensors(ggml_context * ctx) override {
  4663. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  4664. init_tensor_uniform(t, -0.9f, 1.1f);
  4665. }
  4666. }
  4667. };
  4668. // GGML_OP_UPSCALE
  4669. struct test_upscale : public test_case {
  4670. const ggml_type type;
  4671. const std::array<int64_t, 4> ne;
  4672. const int32_t scale_factor;
  4673. const bool transpose;
  4674. const ggml_scale_mode mode;
  4675. std::string vars() override {
  4676. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  4677. }
  4678. test_upscale(ggml_type type = GGML_TYPE_F32,
  4679. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  4680. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  4681. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  4682. ggml_tensor * build_graph(ggml_context * ctx) override {
  4683. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4684. ggml_set_name(a, "a");
  4685. if (transpose) {
  4686. a = ggml_transpose(ctx, a);
  4687. ggml_set_name(a, "a_transposed");
  4688. }
  4689. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  4690. ggml_set_name(out, "out");
  4691. return out;
  4692. }
  4693. };
  4694. // GGML_OP_UPSCALE (via ggml_interpolate)
  4695. struct test_interpolate : public test_case {
  4696. const ggml_type type;
  4697. const std::array<int64_t, 4> ne;
  4698. const std::array<int64_t, 4> ne_tgt;
  4699. const ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST;
  4700. std::string vars() override {
  4701. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  4702. }
  4703. test_interpolate(ggml_type type = GGML_TYPE_F32,
  4704. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  4705. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  4706. ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST)
  4707. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  4708. ggml_tensor * build_graph(ggml_context * ctx) override {
  4709. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4710. ggml_set_name(a, "a");
  4711. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  4712. ggml_set_name(out, "out");
  4713. return out;
  4714. }
  4715. };
  4716. // GGML_OP_GROUP_NORM
  4717. struct test_group_norm : public test_case {
  4718. const ggml_type type;
  4719. const std::array<int64_t, 4> ne;
  4720. const int32_t num_groups;
  4721. const float eps;
  4722. std::string vars() override {
  4723. return VARS_TO_STR4(type, ne, num_groups, eps);
  4724. }
  4725. test_group_norm(ggml_type type = GGML_TYPE_F32,
  4726. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4727. int32_t num_groups = 32,
  4728. float eps = 1e-6f)
  4729. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4730. ggml_tensor * build_graph(ggml_context * ctx) override {
  4731. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4732. ggml_set_name(a, "a");
  4733. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  4734. ggml_set_name(out, "out");
  4735. return out;
  4736. }
  4737. };
  4738. // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD
  4739. struct test_group_norm_mul_add : public test_case {
  4740. const ggml_type type;
  4741. const std::array<int64_t, 4> ne;
  4742. int num_groups;
  4743. float eps;
  4744. std::string op_desc(ggml_tensor * t) override {
  4745. GGML_UNUSED(t);
  4746. return "GROUP_NORM_MUL_ADD";
  4747. }
  4748. bool run_whole_graph() override { return true; }
  4749. std::string vars() override {
  4750. return VARS_TO_STR4(type, ne, num_groups, eps);
  4751. }
  4752. test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32,
  4753. std::array<int64_t, 4> ne = {128, 1, 1, 1},
  4754. int num_groups = 4,
  4755. float eps = 1e-5f)
  4756. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  4757. ggml_tensor * build_graph(ggml_context * ctx) override {
  4758. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4759. ggml_tensor * w = ggml_new_tensor(ctx, type, 4, ne.data());
  4760. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  4761. ggml_set_param(a); ggml_set_param(w); ggml_set_param(b);
  4762. ggml_set_name(a, "a"); ggml_set_name(w, "w"); ggml_set_name(b, "b");
  4763. ggml_tensor * n = ggml_group_norm(ctx, a, num_groups, eps);
  4764. ggml_tensor * m = ggml_mul(ctx, n, w);
  4765. ggml_tensor * out = ggml_add(ctx, m, b);
  4766. ggml_set_name(out, "out");
  4767. return out;
  4768. }
  4769. };
  4770. // GGML_OP_L2_NORM
  4771. struct test_l2_norm : public test_case {
  4772. const ggml_type type;
  4773. const std::array<int64_t, 4> ne;
  4774. const float eps;
  4775. std::string vars() override {
  4776. return VARS_TO_STR2(type, ne);
  4777. }
  4778. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  4779. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  4780. float eps = 1e-12f)
  4781. : type(type), ne(ne), eps(eps) {}
  4782. ggml_tensor * build_graph(ggml_context * ctx) override {
  4783. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  4784. ggml_set_name(a, "a");
  4785. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  4786. ggml_set_name(out, "out");
  4787. return out;
  4788. }
  4789. };
  4790. // GGML_OP_ACC
  4791. struct test_acc : public test_case {
  4792. const ggml_type type;
  4793. const std::array<int64_t, 4> ne_a;
  4794. const std::array<int64_t, 4> ne_b;
  4795. std::string vars() override {
  4796. return VARS_TO_STR3(type, ne_a, ne_b);
  4797. }
  4798. test_acc(ggml_type type = GGML_TYPE_F32,
  4799. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  4800. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  4801. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  4802. ggml_tensor * build_graph(ggml_context * ctx) override {
  4803. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4804. ggml_set_param(a);
  4805. ggml_set_name(a, "a");
  4806. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  4807. ggml_set_param(b);
  4808. ggml_set_name(b, "b");
  4809. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  4810. ggml_set_name(out, "out");
  4811. return out;
  4812. }
  4813. };
  4814. // GGML_OP_PAD
  4815. struct test_pad : public test_case {
  4816. const ggml_type type;
  4817. const std::array<int64_t, 4> ne_a;
  4818. const int pad_0;
  4819. const int pad_1;
  4820. const bool circular;
  4821. std::string vars() override {
  4822. return VARS_TO_STR5(type, ne_a, pad_0, pad_1, circular);
  4823. }
  4824. test_pad(ggml_type type = GGML_TYPE_F32,
  4825. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  4826. int pad_0 = 1, int pad_1 = 1, bool circular = false)
  4827. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1), circular(circular) {}
  4828. ggml_tensor * build_graph(ggml_context * ctx) override {
  4829. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4830. ggml_set_name(a, "a");
  4831. ggml_tensor * out = circular
  4832. ? ggml_pad_circular(ctx, a, pad_0, pad_1, 0, 0)
  4833. : ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  4834. ggml_set_name(out, "out");
  4835. return out;
  4836. }
  4837. };
  4838. // GGML_OP_PAD (with extension)
  4839. struct test_pad_ext : public test_case {
  4840. const ggml_type type;
  4841. const std::array<int64_t, 4> ne_a;
  4842. const int lp0;
  4843. const int rp0;
  4844. const int lp1;
  4845. const int rp1;
  4846. const int lp2;
  4847. const int rp2;
  4848. const int lp3;
  4849. const int rp3;
  4850. const bool v;
  4851. const bool circular;
  4852. std::string vars() override {
  4853. return VARS_TO_STR12(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v, circular);
  4854. }
  4855. test_pad_ext(ggml_type type = GGML_TYPE_F32,
  4856. std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
  4857. int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
  4858. int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
  4859. bool v = false, bool circular = false)
  4860. : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3),
  4861. v(v), circular(circular) {}
  4862. ggml_tensor * build_graph(ggml_context * ctx) override {
  4863. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4864. ggml_set_name(a, "a");
  4865. if (v) {
  4866. a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
  4867. ggml_set_name(a, "view of a");
  4868. }
  4869. ggml_tensor * out = circular
  4870. ? ggml_pad_ext_circular(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3)
  4871. : ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
  4872. ggml_set_name(out, "out");
  4873. return out;
  4874. }
  4875. };
  4876. // GGML_OP_PAD_REFLECT_1D
  4877. struct test_pad_reflect_1d : public test_case {
  4878. const ggml_type type;
  4879. const std::array<int64_t, 4> ne_a;
  4880. const int pad_0;
  4881. const int pad_1;
  4882. std::string vars() override {
  4883. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  4884. }
  4885. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  4886. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  4887. int pad_0 = 10, int pad_1 = 9)
  4888. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  4889. ggml_tensor * build_graph(ggml_context * ctx) override {
  4890. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  4891. ggml_set_name(a, "a");
  4892. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  4893. ggml_set_name(out, "out");
  4894. return out;
  4895. }
  4896. };
  4897. // GGML_OP_ROLL
  4898. struct test_roll : public test_case {
  4899. const int shift0;
  4900. const int shift1;
  4901. const int shift3;
  4902. const int shift4;
  4903. std::string vars() override {
  4904. return VARS_TO_STR4(shift0, shift1, shift3, shift4);
  4905. }
  4906. test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
  4907. : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
  4908. ggml_tensor * build_graph(ggml_context * ctx) override {
  4909. int64_t ne[4] = {10, 5, 4, 3};
  4910. ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4911. ggml_set_name(a, "a");
  4912. ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
  4913. ggml_set_name(out, "out");
  4914. return out;
  4915. }
  4916. };
  4917. // GGML_OP_ARANGE
  4918. struct test_arange : public test_case {
  4919. const ggml_type type;
  4920. const float start;
  4921. const float stop;
  4922. const float step;
  4923. std::string vars() override {
  4924. return VARS_TO_STR4(type, start, stop, step);
  4925. }
  4926. test_arange(ggml_type type = GGML_TYPE_F32,
  4927. float start = 0.f, float stop = 10.f, float step = 1.f)
  4928. : type(type), start(start), stop(stop), step(step) {}
  4929. ggml_tensor * build_graph(ggml_context * ctx) override {
  4930. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  4931. ggml_set_name(out, "out");
  4932. return out;
  4933. }
  4934. };
  4935. // GGML_OP_TIMESTEP_EMBEDDING
  4936. struct test_timestep_embedding : public test_case {
  4937. const ggml_type type;
  4938. const std::array<int64_t, 4> ne_a;
  4939. const int dim;
  4940. const int max_period;
  4941. std::string vars() override {
  4942. return VARS_TO_STR4(type, ne_a, dim, max_period);
  4943. }
  4944. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  4945. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  4946. int dim = 320, int max_period=10000)
  4947. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  4948. ggml_tensor * build_graph(ggml_context * ctx) override {
  4949. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4950. ggml_set_name(a, "a");
  4951. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  4952. ggml_set_name(out, "out");
  4953. return out;
  4954. }
  4955. };
  4956. // GGML_OP_LEAKY_RELU
  4957. struct test_leaky_relu : public test_case {
  4958. const ggml_type type;
  4959. const std::array<int64_t, 4> ne_a;
  4960. const float negative_slope;
  4961. std::string vars() override {
  4962. return VARS_TO_STR3(type, ne_a, negative_slope);
  4963. }
  4964. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  4965. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  4966. float negative_slope = 0.1f)
  4967. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  4968. ggml_tensor * build_graph(ggml_context * ctx) override {
  4969. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  4970. ggml_set_name(a, "a");
  4971. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  4972. ggml_set_name(out, "out");
  4973. return out;
  4974. }
  4975. };
  4976. // GGML_OP_FLASH_ATTN_EXT
  4977. struct test_flash_attn_ext : public test_case {
  4978. const int64_t hsk; // K head size
  4979. const int64_t hsv; // V head size
  4980. const int64_t nh; // num heads
  4981. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  4982. const int64_t kv; // kv size
  4983. const int64_t nb; // batch size
  4984. const bool mask; // use mask
  4985. const bool sinks; // use sinks
  4986. const float max_bias; // ALiBi
  4987. const float logit_softcap; // Gemma 2
  4988. const ggml_prec prec;
  4989. const ggml_type type_KV;
  4990. std::array<int32_t, 4> permute;
  4991. std::string vars() override {
  4992. return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute);
  4993. }
  4994. double max_nmse_err() override {
  4995. return 5e-4;
  4996. }
  4997. uint64_t op_flops(ggml_tensor * t) override {
  4998. GGML_UNUSED(t);
  4999. // Just counting matmul costs:
  5000. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  5001. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  5002. }
  5003. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  5004. bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  5005. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  5006. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  5007. ggml_tensor * build_graph(ggml_context * ctx) override {
  5008. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  5009. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  5010. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * {
  5011. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  5012. int64_t ne_perm[4];
  5013. for (int i = 0; i < 4; ++i) {
  5014. ne_perm[permute[i]] = ne[i];
  5015. }
  5016. ggml_tensor * t;
  5017. if (is_view) {
  5018. ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne_perm[0], 2*ne_perm[1], ne_perm[2], ne_perm[3]);
  5019. t = ggml_view_4d(ctx, t0, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3], t0->nb[1], t0->nb[2], t0->nb[3], 0);
  5020. } else {
  5021. t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  5022. }
  5023. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  5024. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  5025. }
  5026. return t;
  5027. };
  5028. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false);
  5029. ggml_set_name(q, "q");
  5030. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache
  5031. ggml_set_name(k, "k");
  5032. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache
  5033. ggml_set_name(v, "v");
  5034. ggml_tensor * m = nullptr;
  5035. if (mask) {
  5036. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, nb, 1, nr23[1]);
  5037. ggml_set_name(m, "m");
  5038. }
  5039. ggml_tensor * s = nullptr;
  5040. if (sinks) {
  5041. s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, q->ne[2]);
  5042. ggml_set_name(s, "s");
  5043. }
  5044. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  5045. ggml_flash_attn_ext_add_sinks(out, s);
  5046. ggml_flash_attn_ext_set_prec (out, prec);
  5047. ggml_set_name(out, "out");
  5048. return out;
  5049. }
  5050. void initialize_tensors(ggml_context * ctx) override {
  5051. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5052. if (strcmp(t->name, "s") == 0) {
  5053. // make the sink values more noticable in order to trigger a test failure when the implementation is wrong
  5054. init_tensor_uniform(t, -10.0f, 10.0f);
  5055. } else if (strcmp(t->name, "m") == 0) {
  5056. init_tensor_kq_mask(t);
  5057. } else {
  5058. init_tensor_uniform(t);
  5059. }
  5060. }
  5061. }
  5062. bool grad_precise() override {
  5063. return true;
  5064. }
  5065. };
  5066. // GGML_OP_CROSS_ENTROPY_LOSS
  5067. struct test_cross_entropy_loss : public test_case {
  5068. const ggml_type type;
  5069. const std::array<int64_t, 4> ne;
  5070. std::string vars() override {
  5071. return VARS_TO_STR2(type, ne);
  5072. }
  5073. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  5074. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  5075. : type(type), ne(ne) {}
  5076. ggml_tensor * build_graph(ggml_context * ctx) override {
  5077. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  5078. ggml_set_param(logits);
  5079. ggml_set_name(logits, "logits");
  5080. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  5081. // The labels are assumed to be constant -> no gradients.
  5082. ggml_set_name(labels, "labels");
  5083. // Ensure labels add up to 1:
  5084. labels = ggml_soft_max(ctx, labels);
  5085. ggml_set_name(labels, "labels_normalized");
  5086. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  5087. ggml_set_name(out, "out");
  5088. return out;
  5089. }
  5090. void initialize_tensors(ggml_context * ctx) override {
  5091. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  5092. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5093. init_tensor_uniform(t, -100.0f, 100.0f);
  5094. }
  5095. }
  5096. float grad_eps() override {
  5097. return 1.0f;
  5098. }
  5099. bool grad_precise() override {
  5100. return true;
  5101. }
  5102. };
  5103. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  5104. struct test_cross_entropy_loss_back : public test_case {
  5105. const ggml_type type;
  5106. const std::array<int64_t, 4> ne;
  5107. std::string vars() override {
  5108. return VARS_TO_STR2(type, ne);
  5109. }
  5110. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  5111. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  5112. : type(type), ne(ne) {}
  5113. ggml_tensor * build_graph(ggml_context * ctx) override {
  5114. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  5115. ggml_set_name(grad, "grad");
  5116. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  5117. ggml_set_name(logits, "logits");
  5118. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  5119. ggml_set_name(labels, "labels");
  5120. // Ensure labels add up to 1:
  5121. labels = ggml_soft_max(ctx, labels);
  5122. ggml_set_name(labels, "labels_normalized");
  5123. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  5124. ggml_set_name(out, "out");
  5125. return out;
  5126. }
  5127. };
  5128. // GGML_OP_OPT_STEP_ADAMW
  5129. struct test_opt_step_adamw : public test_case {
  5130. const ggml_type type;
  5131. const std::array<int64_t, 4> ne;
  5132. std::string vars() override {
  5133. return VARS_TO_STR2(type, ne);
  5134. }
  5135. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  5136. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  5137. : type(type), ne(ne) {}
  5138. ggml_tensor * build_graph(ggml_context * ctx) override {
  5139. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5140. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  5141. ggml_set_name(a, "a");
  5142. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5143. ggml_set_name(grad, "grad");
  5144. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5145. ggml_set_name(grad_m, "grad_m");
  5146. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5147. ggml_set_name(grad_v, "grad_v");
  5148. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  5149. ggml_set_name(adamw_params, "adamw_params");
  5150. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  5151. ggml_set_name(out, "out");
  5152. return out;
  5153. }
  5154. void initialize_tensors(ggml_context * ctx) override {
  5155. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5156. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  5157. }
  5158. }
  5159. bool grad_precise() override {
  5160. return true;
  5161. }
  5162. };
  5163. // GGML_OP_OPT_STEP_SGD
  5164. struct test_opt_step_sgd : public test_case {
  5165. const ggml_type type;
  5166. const std::array<int64_t, 4> ne;
  5167. std::string vars() override { return VARS_TO_STR2(type, ne); }
  5168. test_opt_step_sgd(ggml_type type = GGML_TYPE_F32,
  5169. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  5170. : type(type), ne(ne) {}
  5171. ggml_tensor * build_graph(ggml_context * ctx) override {
  5172. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5173. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  5174. ggml_set_name(a, "a");
  5175. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5176. ggml_set_name(grad, "grad");
  5177. ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5178. ggml_set_name(sgd_params, "sgd_params");
  5179. ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params);
  5180. ggml_set_name(out, "out");
  5181. return out;
  5182. }
  5183. void initialize_tensors(ggml_context * ctx) override {
  5184. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5185. init_tensor_uniform(t, 0.0f, 1.0f); // sgd_params need non-negative values.
  5186. }
  5187. }
  5188. bool grad_precise() override {
  5189. return true;
  5190. }
  5191. };
  5192. // GGML_OP_CUMSUM
  5193. struct test_cumsum : public test_case {
  5194. const ggml_type type;
  5195. const std::array<int64_t, 4> ne;
  5196. std::string vars() override { return VARS_TO_STR2(type, ne); }
  5197. test_cumsum(ggml_type type = GGML_TYPE_F32,
  5198. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  5199. : type(type), ne(ne) {}
  5200. ggml_tensor * build_graph(ggml_context * ctx) override {
  5201. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5202. ggml_set_param(a);
  5203. ggml_set_name(a, "a");
  5204. ggml_tensor * out = ggml_cumsum(ctx, a);
  5205. ggml_set_name(out, "out");
  5206. return out;
  5207. }
  5208. void initialize_tensors(ggml_context * ctx) override {
  5209. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5210. init_tensor_uniform(t, -1.0f, 1.0f);
  5211. }
  5212. }
  5213. };
  5214. // GGML_OP_XIELU
  5215. struct test_xielu : public test_case {
  5216. const ggml_type type;
  5217. const std::array<int64_t, 4> ne;
  5218. std::string vars() override { return VARS_TO_STR2(type, ne); }
  5219. test_xielu(ggml_type type = GGML_TYPE_F32,
  5220. std::array<int64_t, 4> ne = { 10, 5, 4, 3 })
  5221. : type(type), ne(ne) {}
  5222. ggml_tensor * build_graph(ggml_context * ctx) override {
  5223. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5224. ggml_set_param(a);
  5225. ggml_set_name(a, "a");
  5226. float alpha_n = 4.0f;
  5227. float alpha_p = 20.0f;
  5228. float beta = 0.5f;
  5229. float eps = 0.0000001f;
  5230. ggml_tensor * out = ggml_xielu(ctx, a, alpha_n, alpha_p, beta, eps);
  5231. ggml_set_name(out, "out");
  5232. return out;
  5233. }
  5234. void initialize_tensors(ggml_context * ctx) override {
  5235. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5236. init_tensor_uniform(t, -1.0f, 1.0f);
  5237. }
  5238. }
  5239. };
  5240. // GGML_OP_TRI
  5241. struct test_tri : public test_case {
  5242. const ggml_type type;
  5243. const std::array<int64_t, 4> ne;
  5244. const ggml_tri_type tri_type;
  5245. std::string vars() override { return VARS_TO_STR3(type, ne, tri_type); }
  5246. test_tri(ggml_tri_type tri_type, ggml_type type = GGML_TYPE_F32,
  5247. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  5248. : type(type), ne(ne), tri_type(tri_type) {
  5249. GGML_ASSERT(ne[0] == ne[1]);
  5250. }
  5251. ggml_tensor * build_graph(ggml_context * ctx) override {
  5252. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5253. ggml_set_param(a);
  5254. ggml_set_name(a, "a");
  5255. ggml_tensor * out = ggml_tri(ctx, a, tri_type);
  5256. ggml_set_name(out, "out");
  5257. return out;
  5258. }
  5259. void initialize_tensors(ggml_context * ctx) override {
  5260. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5261. init_tensor_uniform(t, -1.0f, 1.0f);
  5262. }
  5263. }
  5264. };
  5265. // GGML_OP_FILL
  5266. struct test_fill : public test_case {
  5267. const ggml_type type;
  5268. const std::array<int64_t, 4> ne;
  5269. float c;
  5270. std::string vars() override { return VARS_TO_STR3(type, ne, c); }
  5271. test_fill(float c, ggml_type type = GGML_TYPE_F32,
  5272. std::array<int64_t, 4> ne = { 10, 10, 4, 3 })
  5273. : type(type), ne(ne), c(c) {}
  5274. ggml_tensor * build_graph(ggml_context * ctx) override {
  5275. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5276. ggml_set_param(a);
  5277. ggml_set_name(a, "a");
  5278. ggml_tensor * out = ggml_fill(ctx, a, c);
  5279. ggml_set_name(out, "out");
  5280. return out;
  5281. }
  5282. };
  5283. // GGML_OP_SOLVE_TRI
  5284. struct test_solve_tri : public test_case {
  5285. const ggml_type type;
  5286. const std::array<int64_t, 4> ne_lhs;
  5287. const std::array<int64_t, 4> ne_rhs;
  5288. std::string vars() override { return VARS_TO_STR3(type, ne_lhs, ne_rhs); }
  5289. uint64_t op_flops(ggml_tensor * t) override {
  5290. GGML_UNUSED(t);
  5291. int64_t n = ne_lhs[0];
  5292. int64_t k = ne_rhs[0];
  5293. int64_t batch = ne_lhs[2] * ne_lhs[3];
  5294. // n * (n + 1) / 2 non-zero elements of lhs, 2 flops each, for each col of rhs
  5295. return n * (n + 1) * k * batch;
  5296. }
  5297. test_solve_tri(ggml_type type = GGML_TYPE_F32,
  5298. std::array<int64_t, 4> ne_lhs = { 10, 10, 4, 3 },
  5299. std::array<int64_t, 4> ne_rhs = { 3, 10, 4, 3 }
  5300. )
  5301. : type(type), ne_lhs(ne_lhs), ne_rhs(ne_rhs) {}
  5302. ggml_tensor * build_graph(ggml_context * ctx) override {
  5303. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne_lhs[0], ne_lhs[1], ne_lhs[2], ne_lhs[3]);
  5304. ggml_set_param(a);
  5305. ggml_set_name(a, "a");
  5306. ggml_tensor * b = ggml_new_tensor_4d(ctx, type, ne_rhs[0], ne_rhs[1], ne_rhs[2], ne_rhs[3]);
  5307. ggml_set_param(b);
  5308. ggml_set_name(b, "b");
  5309. ggml_tensor * out = ggml_solve_tri(ctx, a, b, true, true, false);
  5310. ggml_set_name(out, "out");
  5311. return out;
  5312. }
  5313. void initialize_tensors(ggml_context * ctx) override {
  5314. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5315. if (strcmp(t->name, "a") == 0) {
  5316. // note: avoid zeros in the diagonal
  5317. init_tensor_tril(t, 0.1, 1.0f);
  5318. } else {
  5319. init_tensor_uniform(t, -1.0f, 1.0f);
  5320. }
  5321. }
  5322. }
  5323. };
  5324. // GGML_OP_DIAG
  5325. struct test_diag : public test_case {
  5326. const ggml_type type;
  5327. const std::array<int64_t, 4> ne;
  5328. std::string vars() override { return VARS_TO_STR2(type, ne); }
  5329. test_diag(ggml_type type = GGML_TYPE_F32,
  5330. std::array<int64_t, 4> ne = { 10, 1, 4, 3 })
  5331. : type(type), ne(ne) {}
  5332. ggml_tensor * build_graph(ggml_context * ctx) override {
  5333. GGML_ASSERT(ne[1] == 1);
  5334. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  5335. ggml_set_param(a);
  5336. ggml_set_name(a, "a");
  5337. ggml_tensor * out = ggml_diag(ctx, a);
  5338. ggml_set_name(out, "out");
  5339. return out;
  5340. }
  5341. };
  5342. enum llm_norm_type {
  5343. LLM_NORM,
  5344. LLM_NORM_RMS,
  5345. };
  5346. struct llama_hparams {
  5347. uint32_t n_vocab;
  5348. uint32_t n_embd;
  5349. uint32_t n_head;
  5350. uint32_t n_head_kv;
  5351. static constexpr uint32_t n_layer = 1;
  5352. uint32_t n_rot;
  5353. uint32_t n_embd_head; // dimension of values (d_v)
  5354. uint32_t n_ff;
  5355. float f_norm_eps;
  5356. float f_norm_rms_eps;
  5357. // cparams
  5358. static constexpr uint32_t n_ctx = 512; // user-specified context size
  5359. static constexpr uint32_t n_ctx_orig = n_ctx;
  5360. // batch
  5361. int32_t n_tokens;
  5362. // llm_build_context
  5363. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  5364. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  5365. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  5366. return n_embd_head * n_head_kv;
  5367. }
  5368. };
  5369. // LLM base class
  5370. struct test_llm : public test_case {
  5371. llama_hparams hp;
  5372. protected:
  5373. test_llm(llama_hparams hp)
  5374. : hp(std::move(hp)) {
  5375. }
  5376. public:
  5377. struct ggml_tensor * llm_build_norm(
  5378. struct ggml_context * ctx,
  5379. struct ggml_tensor * cur,
  5380. struct ggml_tensor * mw,
  5381. struct ggml_tensor * mb,
  5382. llm_norm_type type) {
  5383. switch (type) {
  5384. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  5385. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  5386. }
  5387. cur = ggml_mul(ctx, cur, mw);
  5388. if (mb) {
  5389. cur = ggml_add(ctx, cur, mb);
  5390. }
  5391. return cur;
  5392. }
  5393. void llm_build_kv_store(
  5394. struct ggml_context * ctx,
  5395. struct ggml_tensor * k_l,
  5396. struct ggml_tensor * v_l,
  5397. struct ggml_tensor * k_cur,
  5398. struct ggml_tensor * v_cur) {
  5399. // compute the transposed [n_tokens, n_embd] V matrix
  5400. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  5401. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  5402. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  5403. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  5404. ( hp.n_ctx)*ggml_element_size(v_l),
  5405. (hp.kv_head)*ggml_element_size(v_l));
  5406. // important: storing RoPE-ed version of K in the KV cache!
  5407. ggml_cpy(ctx, k_cur, k_cache_view);
  5408. ggml_cpy(ctx, v_cur_t, v_cache_view);
  5409. }
  5410. struct ggml_tensor * llm_build_kqv(
  5411. struct ggml_context * ctx,
  5412. struct ggml_tensor * k_l,
  5413. struct ggml_tensor * v_l,
  5414. struct ggml_tensor * q_cur,
  5415. struct ggml_tensor * kq_mask,
  5416. float kq_scale) {
  5417. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5418. struct ggml_tensor * k =
  5419. ggml_view_3d(ctx, k_l,
  5420. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  5421. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  5422. ggml_row_size(k_l->type, hp.n_embd_head),
  5423. 0);
  5424. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5425. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  5426. // split cached v into n_head heads
  5427. struct ggml_tensor * v =
  5428. ggml_view_3d(ctx, v_l,
  5429. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  5430. ggml_element_size(v_l)*hp.n_ctx,
  5431. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  5432. 0);
  5433. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5434. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5435. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  5436. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5437. cur = ggml_mul_mat(ctx, wo, cur);
  5438. return cur;
  5439. }
  5440. void initialize_tensors(ggml_context * ctx) override {
  5441. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  5442. if (t->type == GGML_TYPE_I32) {
  5443. // pos
  5444. std::vector<int> data(hp.n_tokens);
  5445. for (int i = 0; i < hp.n_tokens; i++) {
  5446. data[i] = rand() % hp.n_ctx;
  5447. }
  5448. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  5449. } else {
  5450. init_tensor_uniform(t);
  5451. }
  5452. }
  5453. }
  5454. };
  5455. // Llama
  5456. struct test_llama : public test_llm {
  5457. static constexpr float freq_base = 10000.0f;
  5458. static constexpr float freq_scale = 1.0f;
  5459. static constexpr float ext_factor = 0.0f;
  5460. static constexpr float attn_factor = 1.0f;
  5461. static constexpr float beta_fast = 32.0f;
  5462. static constexpr float beta_slow = 1.0f;
  5463. bool fused;
  5464. std::string op_desc(ggml_tensor * t) override {
  5465. GGML_UNUSED(t);
  5466. return "LLAMA";
  5467. }
  5468. std::string vars() override {
  5469. auto n_tokens = hp.n_tokens;
  5470. return VARS_TO_STR1(n_tokens);
  5471. }
  5472. double max_nmse_err() override {
  5473. return 2e-3;
  5474. }
  5475. bool run_whole_graph() override { return fused; }
  5476. test_llama(int n_tokens = 1, bool fused = false)
  5477. : test_llm({
  5478. /*n_vocab =*/ 32000,
  5479. /*n_embd =*/ 3200,
  5480. /*n_head =*/ 32,
  5481. /*n_head_kv =*/ 32,
  5482. /*n_rot =*/ 100,
  5483. /*n_embd_head =*/ 100,
  5484. /*n_ff =*/ 8640,
  5485. /*f_norm_eps =*/ 0.f,
  5486. /*f_norm_rms_eps =*/ 1e-5f,
  5487. /*n_tokens =*/ n_tokens,
  5488. })
  5489. , fused(fused)
  5490. {
  5491. }
  5492. ggml_tensor * build_graph(ggml_context * ctx) override {
  5493. struct ggml_tensor * cur;
  5494. struct ggml_tensor * inpL;
  5495. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5496. // inp_pos - contains the positions
  5497. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5498. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5499. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5500. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5501. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5502. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5503. struct ggml_tensor * inpSA = inpL;
  5504. // norm
  5505. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5506. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  5507. // self-attention
  5508. {
  5509. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  5510. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5511. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  5512. // compute Q and K and RoPE them
  5513. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  5514. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  5515. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  5516. Qcur = ggml_rope_ext(
  5517. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  5518. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5519. ext_factor, attn_factor, beta_fast, beta_slow
  5520. );
  5521. Kcur = ggml_rope_ext(
  5522. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  5523. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  5524. ext_factor, attn_factor, beta_fast, beta_slow
  5525. );
  5526. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5527. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5528. }
  5529. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  5530. // feed-forward network
  5531. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5532. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  5533. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5534. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5535. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5536. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  5537. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  5538. cur = ggml_silu(ctx, cur);
  5539. cur = ggml_mul(ctx, cur, tmp);
  5540. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5541. cur = ggml_add(ctx, cur, ffn_inp);
  5542. // input for next layer
  5543. inpL = cur;
  5544. }
  5545. cur = inpL;
  5546. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5547. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  5548. // lm_head
  5549. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  5550. cur = ggml_mul_mat(ctx, output, cur);
  5551. return cur;
  5552. }
  5553. };
  5554. // Falcon
  5555. struct test_falcon : public test_llm {
  5556. static constexpr float freq_base = 10000.0f;
  5557. static constexpr float freq_scale = 1.0f;
  5558. static constexpr float ext_factor = 0.0f;
  5559. static constexpr float attn_factor = 1.0f;
  5560. static constexpr float beta_fast = 32.0f;
  5561. static constexpr float beta_slow = 1.0f;
  5562. std::string op_desc(ggml_tensor * t) override {
  5563. GGML_UNUSED(t);
  5564. return "FALCON";
  5565. }
  5566. std::string vars() override {
  5567. auto n_tokens = hp.n_tokens;
  5568. return VARS_TO_STR1(n_tokens);
  5569. }
  5570. double max_nmse_err() override {
  5571. return 2e-3;
  5572. }
  5573. test_falcon(int n_tokens = 1)
  5574. : test_llm({
  5575. /*n_vocab =*/ 32000,
  5576. /*n_embd =*/ 3200,
  5577. /*n_head =*/ 50,
  5578. /*n_head_kv =*/ 1,
  5579. /*n_rot =*/ 64,
  5580. /*n_embd_head =*/ 64,
  5581. /*n_ff =*/ 8640,
  5582. /*f_norm_eps =*/ 1e-5f,
  5583. /*f_norm_rms_eps =*/ 0.f,
  5584. /*n_tokens =*/ n_tokens,
  5585. }) {
  5586. }
  5587. ggml_tensor * build_graph(ggml_context * ctx) override {
  5588. struct ggml_tensor * cur;
  5589. struct ggml_tensor * inpL;
  5590. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  5591. // inp_pos - contains the positions
  5592. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  5593. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5594. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  5595. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5596. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  5597. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  5598. // norm
  5599. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5600. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5601. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  5602. // self-attention
  5603. {
  5604. cur = attn_norm;
  5605. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  5606. cur = ggml_mul_mat(ctx, wqkv, cur);
  5607. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  5608. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  5609. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  5610. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  5611. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  5612. // using mode = 2 for neox mode
  5613. Qcur = ggml_rope_ext(
  5614. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5615. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5616. );
  5617. Kcur = ggml_rope_ext(
  5618. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  5619. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5620. );
  5621. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  5622. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  5623. }
  5624. struct ggml_tensor * ffn_inp = cur;
  5625. // feed forward
  5626. {
  5627. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  5628. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  5629. cur = attn_norm;
  5630. cur = ggml_mul_mat(ctx, ffn_up, cur);
  5631. cur = ggml_gelu(ctx, cur);
  5632. cur = ggml_mul_mat(ctx, ffn_down, cur);
  5633. }
  5634. cur = ggml_add(ctx, cur, ffn_inp);
  5635. cur = ggml_add(ctx, cur, inpL);
  5636. // input for next layer
  5637. inpL = cur;
  5638. }
  5639. cur = inpL;
  5640. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5641. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  5642. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  5643. // lm_head
  5644. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  5645. cur = ggml_mul_mat(ctx, output, cur);
  5646. return cur;
  5647. }
  5648. };
  5649. // ###########################################
  5650. // ## Section 3: GGML Op Test Instantiation ##
  5651. // ###########################################
  5652. static const ggml_type all_types[] = {
  5653. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  5654. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  5655. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5656. GGML_TYPE_Q8_0,
  5657. GGML_TYPE_MXFP4,
  5658. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5659. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  5660. GGML_TYPE_Q6_K,
  5661. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5662. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5663. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5664. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5665. };
  5666. static const ggml_type base_types[] = {
  5667. GGML_TYPE_F32, GGML_TYPE_F16,
  5668. GGML_TYPE_Q8_0, // for I8MM tests
  5669. GGML_TYPE_Q4_0,
  5670. GGML_TYPE_Q4_1, // for I8MM tests
  5671. GGML_TYPE_Q4_K,
  5672. GGML_TYPE_MXFP4, // TODO: or "other"
  5673. GGML_TYPE_IQ2_XXS
  5674. };
  5675. static const ggml_type other_types[] = {
  5676. GGML_TYPE_Q4_1,
  5677. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  5678. GGML_TYPE_Q8_0,
  5679. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  5680. GGML_TYPE_Q5_K,
  5681. GGML_TYPE_Q6_K,
  5682. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  5683. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  5684. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  5685. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  5686. GGML_TYPE_BF16,
  5687. };
  5688. #ifdef _MSC_VER
  5689. // Workaround long compile time with msvc
  5690. #pragma optimize("", off)
  5691. #endif
  5692. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  5693. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  5694. std::vector<std::unique_ptr<test_case>> test_cases;
  5695. std::default_random_engine rng(0);
  5696. // unary ops
  5697. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5698. for (int v : {0, 1}) {
  5699. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  5700. if (op == GGML_UNARY_OP_XIELU) {
  5701. continue; // need extra params, separate test
  5702. }
  5703. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  5704. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  5705. }
  5706. }
  5707. }
  5708. // glu ops
  5709. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5710. for (int v : {0, 1}) {
  5711. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  5712. if (op == GGML_GLU_OP_SWIGLU_OAI) {
  5713. // SWIGLU_OAI is handled separately
  5714. continue;
  5715. }
  5716. for (bool swapped : {false, true}) {
  5717. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  5718. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  5719. }
  5720. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  5721. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  5722. }
  5723. }
  5724. }
  5725. for (int v : {0, 1}) {
  5726. for (float alpha : {.5f, 1.702f}) {
  5727. for (float limit : {2.0f, 7.0f}) {
  5728. test_cases.emplace_back(new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit));
  5729. }
  5730. }
  5731. }
  5732. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) {
  5733. test_cases.emplace_back(new test_get_rows(type, 300*256, 5, 4, 1, 2, false));
  5734. test_cases.emplace_back(new test_get_rows(type, 256, 80000, 70000, 2, 1, false));
  5735. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, 700, 100, false));
  5736. }
  5737. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false));
  5738. for (ggml_type type : all_types) {
  5739. for (int b : {1, 7}) {
  5740. for (bool v : {false, true}) {
  5741. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, 1, v));
  5742. }
  5743. }
  5744. }
  5745. for (int b : {1, 7}) {
  5746. for (bool v : {false, true}) {
  5747. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v));
  5748. }
  5749. }
  5750. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  5751. for (ggml_type type : all_types) {
  5752. for (bool v : {false, true}) {
  5753. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  5754. }
  5755. }
  5756. for (bool v : {false, true}) {
  5757. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  5758. }
  5759. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5760. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  5761. test_cases.emplace_back(new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false));
  5762. for (ggml_type type : all_types) {
  5763. for (int b : {1, 7}) {
  5764. for (bool v : {false, true}) {
  5765. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  5766. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  5767. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  5768. if (ggml_blck_size(type) == 1) {
  5769. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  5770. test_cases.emplace_back(new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  5771. }
  5772. }
  5773. }
  5774. }
  5775. for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_VISION }) {
  5776. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  5777. for (int ne2 : {1, 8, 512}) {
  5778. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, ne2, 1 }, mode));
  5779. test_cases.emplace_back(new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, ne2, 3 }, mode));
  5780. }
  5781. }
  5782. }
  5783. for (ggml_type type_input : {GGML_TYPE_F32}) {
  5784. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  5785. for (int k0 : {1, 3}) {
  5786. for (int k1 : {1, 3}) {
  5787. for (int s0 : {1, 2}) {
  5788. for (int s1 : {1, 2}) {
  5789. for (int p0 : {0, 1}) {
  5790. for (int p1 : {0, 1}) {
  5791. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  5792. }
  5793. }
  5794. }
  5795. }
  5796. }
  5797. }
  5798. }
  5799. }
  5800. #if 0
  5801. // >4GB im2col destination. Too slow to run by default.
  5802. // Test cases taken from Wan2.1 T2V 1.3B.
  5803. test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true));
  5804. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false));
  5805. #endif
  5806. // im2col 1D
  5807. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5808. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5809. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  5810. for (int s0 : {1, 3}) {
  5811. for (int p0 : {0, 3}) {
  5812. for (int d0 : {1, 3}) {
  5813. test_cases.emplace_back(new test_im2col(
  5814. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  5815. s0, 0, p0, 0, d0, 0, false));
  5816. }
  5817. }
  5818. }
  5819. // im2col 2D
  5820. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5821. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5822. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5823. for (int s0 : {1, 3}) {
  5824. for (int s1 : {1, 3}) {
  5825. for (int p0 : {0, 3}) {
  5826. for (int p1 : {0, 3}) {
  5827. for (int d0 : {1, 3}) {
  5828. for (int d1 : {1, 3}) {
  5829. test_cases.emplace_back(new test_im2col(
  5830. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  5831. s0, s1, p0, p1, d0, d1, true));
  5832. }
  5833. }
  5834. }
  5835. }
  5836. }
  5837. }
  5838. // extra tests for im2col 2D
  5839. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  5840. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  5841. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  5842. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  5843. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  5844. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  5845. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  5846. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  5847. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
  5848. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {2, 2, 1536, 729}, {2, 2, 1536, 4096}, 1, 1, 0, 0, 1, 1, true));
  5849. // im2col 3D
  5850. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  5851. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  5852. test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  5853. for (int s0 : {1, 3}) {
  5854. for (int s1 : {1, 3}) {
  5855. for (int s2 : {1, 3}) {
  5856. for (int p0 : {0, 3}) {
  5857. for (int p1 : {0, 3}) {
  5858. for (int p2 : {0, 3}) {
  5859. for (int d0 : {1, 3}) {
  5860. for (int d1 : {1, 3}) {
  5861. for (int d2 : {1, 3}) {
  5862. for (int IC : {1, 3}) {
  5863. for (bool v : {false, true}) {
  5864. test_cases.emplace_back(new test_im2col_3d(
  5865. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3},
  5866. IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v));
  5867. }
  5868. }
  5869. }
  5870. }
  5871. }
  5872. }
  5873. }
  5874. }
  5875. }
  5876. }
  5877. }
  5878. // Conv_2D test cases
  5879. #ifdef DETAILED_TESTS
  5880. // Probably we do not have enough time to execute these in the pipeline.
  5881. uint32_t iwh_idx = 0;
  5882. uint32_t kwh_idx = 1;
  5883. uint32_t Cout_idx = 2;
  5884. uint32_t Cin_idx = 3;
  5885. uint32_t B_idx = 4;
  5886. std::vector<std::array<int, 5>> cases = {
  5887. //{IWH, KWH, Cout, Cin, B}
  5888. // K=CRS=NPQ=4096 conv_2d matmul performance
  5889. {19, 4, 4096, 256, 16},
  5890. // K=128, CRS=128, NPQ=4096
  5891. { 19, 4, 128, 8, 16},
  5892. // K=130, CRS=128, NPQ=4096
  5893. { 19, 4, 130, 8, 16},
  5894. // Edge case: K x CRS is small
  5895. { 19, 2, 4, 4, 16},
  5896. // A ConvNet's first layer
  5897. { 224, 3, 8, 3, 1 },
  5898. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  5899. { 224, 2, 8, 1, 1 },
  5900. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  5901. { 224, 2, 8, 1, 8 },
  5902. // A middle layer of a ConvNet
  5903. { 58, 3, 64, 32, 1 },
  5904. // A middle layer of a ConvNet, several images in the batch
  5905. { 58, 3, 64, 32, 8 },
  5906. // A deep layer of a ConvNet, several images in the batch
  5907. { 16, 3, 256, 128, 8 }
  5908. };
  5909. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5910. for (auto act_case : cases) {
  5911. test_cases.emplace_back(new test_conv_2d(
  5912. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  5913. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  5914. kernel_type, 1, 1, 0, 0, 1, 1, false));
  5915. }
  5916. }
  5917. #endif
  5918. // CONV_2D:
  5919. auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5920. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5921. };
  5922. //uint32_t s0 = 3;
  5923. uint32_t s1 = 5;
  5924. uint32_t p0 = 5;
  5925. //uint32_t p1 = 2;
  5926. uint32_t d0 = 2;
  5927. uint32_t d1 = 4;
  5928. for (uint32_t s0 : { 1, 3 }) {
  5929. for (uint32_t p1 : { 2, 5 }) {
  5930. for (uint32_t Cin : { 1, 25 }) {
  5931. for (uint32_t Cout : { 1, 12 }) {
  5932. for (uint32_t KH : { 1, 2, 3, 11 }) {
  5933. for (uint32_t KW : { 1, 2, 3, 11 }) {
  5934. for (uint32_t H : { 1, 133 }) {
  5935. for (uint32_t W : { 1, 141 }) {
  5936. if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
  5937. calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
  5938. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5939. test_cases.emplace_back(new test_conv_2d(
  5940. { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false));
  5941. }
  5942. }
  5943. }
  5944. }
  5945. }
  5946. }
  5947. }
  5948. }
  5949. }
  5950. }
  5951. // sycl backend will limit task global_range < MAX_INT
  5952. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  5953. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  5954. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  5955. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5956. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  5957. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  5958. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  5959. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  5960. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  5961. // CONV_3D
  5962. auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
  5963. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5964. };
  5965. for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  5966. for (int N : {1, 2}) {
  5967. for (int IC : {1, 3}) {
  5968. for (int OC : {1, 4}) {
  5969. for (int s0 : {1, 2}) {
  5970. for (int p1 : {0, 1}) {
  5971. for (int d2 : {1, 2}) {
  5972. int64_t IW = 20, IH = 22, ID = 18;
  5973. int64_t KW = 3, KH = 3, KD = 3;
  5974. int s1 = s0, s2 = s0;
  5975. int p0 = p1, p2 = p1;
  5976. int d0 = d2, d1 = d2;
  5977. if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 ||
  5978. calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 ||
  5979. calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) {
  5980. continue;
  5981. }
  5982. test_cases.emplace_back(new test_conv_3d(
  5983. N, IC, ID, IH, IW,
  5984. OC, KD, KH, KW,
  5985. s0, s1, s2, p0, p1, p2, d0, d1, d2,
  5986. kernel_type));
  5987. // Asymmetric kernel and params
  5988. int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3;
  5989. int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1;
  5990. int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1;
  5991. int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2;
  5992. if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 ||
  5993. calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 ||
  5994. calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) {
  5995. continue;
  5996. }
  5997. test_cases.emplace_back(new test_conv_3d(
  5998. N, IC, ID, IH, IW,
  5999. OC, asym_KD, asym_KH, asym_KW,
  6000. asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2,
  6001. kernel_type));
  6002. }
  6003. }
  6004. }
  6005. }
  6006. }
  6007. }
  6008. // Case with kernel size 1
  6009. test_cases.emplace_back(new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type));
  6010. }
  6011. for(uint32_t Cout : {1, 9}){
  6012. for(uint32_t Cin : {1, 7}){
  6013. for(uint32_t K : {1, 3, 1337}){
  6014. for(uint32_t L : {1, 2, 13}){
  6015. for(uint32_t s0: {1, 2, 3}){
  6016. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  6017. }
  6018. }
  6019. }
  6020. }
  6021. }
  6022. test_cases.emplace_back(new test_conv_transpose_1d());
  6023. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  6024. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  6025. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  6026. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  6027. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  6028. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  6029. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  6030. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  6031. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  6032. test_cases.emplace_back(new test_conv_transpose_2d({129, 63, 35, 1}, {3, 3, 48, 35}, 1));
  6033. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  6034. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  6035. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  6036. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1}));
  6037. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  6038. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6039. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  6040. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  6041. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  6042. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  6043. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  6044. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  6045. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  6046. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  6047. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  6048. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  6049. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  6050. }
  6051. for (bool view : {false, true}) {
  6052. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  6053. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  6054. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  6055. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  6056. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  6057. }
  6058. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  6059. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  6060. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  6061. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  6062. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  6063. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  6064. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  6065. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  6066. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  6067. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  6068. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  6069. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  6070. }
  6071. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  6072. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  6073. }
  6074. // same-type copy
  6075. for (ggml_type type : all_types) {
  6076. const auto nk = ggml_blck_size(type);
  6077. for (int k = 1; k < 4; ++k) {
  6078. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  6079. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  6080. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  6081. }
  6082. }
  6083. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  6084. for (ggml_type type_dst : all_types) {
  6085. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  6086. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  6087. }
  6088. }
  6089. for (ggml_type type_src : all_types) {
  6090. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  6091. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  6092. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  6093. }
  6094. }
  6095. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6096. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6097. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  6098. }
  6099. }
  6100. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}));
  6101. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  6102. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}));
  6103. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3}));
  6104. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6105. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6106. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6107. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6108. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6109. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6110. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6111. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6112. test_cases.emplace_back(new test_cpy(GGML_TYPE_I32, GGML_TYPE_I32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  6113. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0}));
  6114. for (ggml_type type_dst : { GGML_TYPE_F32, GGML_TYPE_I32, GGML_TYPE_F16, GGML_TYPE_BF16 }) {
  6115. for (bool use_view_slice : { true, false }) {
  6116. for (std::array<int64_t, 4> ne : std::initializer_list<std::array<int64_t, 4>>{ {2, 1, 1, 1}, {2, 1, 3, 5},
  6117. {2, 3, 5, 7}, {1, 4, 4, 1}, {1, 8, 17, 1}, {10, 10, 10, 1} }) {
  6118. if (use_view_slice && (type_dst == GGML_TYPE_F16 || type_dst == GGML_TYPE_BF16)) {
  6119. continue; // TODO: add after WebGPU is fixed
  6120. }
  6121. test_cases.emplace_back(new test_cont(type_dst, ne, use_view_slice));
  6122. }
  6123. }
  6124. }
  6125. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  6126. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  6127. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  6128. }
  6129. };
  6130. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6131. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  6132. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  6133. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  6134. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  6135. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  6136. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  6137. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  6138. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  6139. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  6140. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  6141. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  6142. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  6143. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  6144. // test case for k_bin_bcast_unravel in CUDA backend
  6145. add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1});
  6146. // stable diffusion
  6147. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  6148. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  6149. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  6150. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  6151. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  6152. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  6153. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  6154. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  6155. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  6156. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  6157. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  6158. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  6159. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  6160. add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
  6161. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  6162. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  6163. }
  6164. // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different
  6165. test_cases.emplace_back(new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  6166. test_cases.emplace_back(new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  6167. test_cases.emplace_back(new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  6168. test_cases.emplace_back(new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  6169. // fusion
  6170. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
  6171. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
  6172. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
  6173. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
  6174. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
  6175. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
  6176. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
  6177. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16));
  6178. test_cases.emplace_back(new test_add1());
  6179. test_cases.emplace_back(new test_add1(GGML_TYPE_F32, {1024, 1024, 1, 1}));
  6180. test_cases.emplace_back(new test_scale());
  6181. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
  6182. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test
  6183. test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f));
  6184. test_cases.emplace_back(new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f));
  6185. test_cases.emplace_back(new test_silu_back());
  6186. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  6187. for (bool v : {false, true}) {
  6188. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  6189. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  6190. }
  6191. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  6192. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  6193. }
  6194. // in-place tests
  6195. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true));
  6196. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
  6197. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  6198. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  6199. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  6200. test_cases.emplace_back(new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  6201. test_cases.emplace_back(new test_add_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false));
  6202. test_cases.emplace_back(new test_add_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true));
  6203. }
  6204. for (uint32_t n : {1, 511, 1025, 8192, 33*512}) {
  6205. for (bool multi_add : {false, true}) {
  6206. test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add));
  6207. }
  6208. test_cases.emplace_back(new test_add_rms_norm(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false));
  6209. }
  6210. for (auto multi_add : {false, true}) {
  6211. for (auto set_rows : {false, true}) {
  6212. for (auto rope : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX}) {
  6213. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 1, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  6214. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 1, 1}, 1e-6f, multi_add, set_rows, rope));
  6215. test_cases.emplace_back(new test_rms_norm_mul_rope({768, 3, 5, 1}, 1e-6f, multi_add, set_rows, rope));
  6216. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  6217. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  6218. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 32, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  6219. test_cases.emplace_back(new test_rms_norm_mul_rope({128, 4, 50, 1}, 1e-6f, multi_add, set_rows, rope));
  6220. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  6221. test_cases.emplace_back(new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope));
  6222. }
  6223. }
  6224. }
  6225. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  6226. for (int64_t d_conv : {3, 4, 9}) {
  6227. for (int64_t d_inner: {1024, 1536, 2048}) {
  6228. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {d_conv, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  6229. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {2 * d_conv, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
  6230. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {d_conv, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
  6231. }
  6232. }
  6233. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  6234. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  6235. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
  6236. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  6237. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  6238. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  6239. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  6240. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  6241. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  6242. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  6243. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  6244. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  6245. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  6246. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  6247. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  6248. #if 0
  6249. // > 4GB A matrix. Too slow to be enabled by default.
  6250. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1}));
  6251. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1}));
  6252. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1}));
  6253. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1}));
  6254. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_Q8_0, GGML_TYPE_F32, 128, 128, false, 8192, 2, 5120)); // Llama-4-Maverick-17B-128E-PAB-Q8_0
  6255. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_Q8_0, GGML_TYPE_F32, 128, 128, false, 8192, 1, 5120)); // Llama-4-Maverick-17B-128E-PAB-Q8_0
  6256. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 8192, 1, 5120, {128, 1}, {1, 1}));
  6257. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 8192, 512, 5120, {128, 1}, {1, 1}));
  6258. #endif
  6259. for (ggml_type type_a : all_types) {
  6260. for (int i = 1; i < 10; ++i) {
  6261. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  6262. }
  6263. }
  6264. #if 0
  6265. {
  6266. // Test paths in OpenCL
  6267. std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096};
  6268. std::vector<int> ks = {896, 1536, 4096};
  6269. for (auto n : ns) {
  6270. for (auto k : ks) {
  6271. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1}));
  6272. }
  6273. }
  6274. }
  6275. #endif
  6276. #if 1
  6277. for (ggml_type type_a : base_types) {
  6278. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6279. std::vector<int> ks = { 256 };
  6280. if (ggml_blck_size(type_a) == 1) {
  6281. ks.push_back(4);
  6282. }
  6283. for (auto k : ks) {
  6284. // test cases without permutation
  6285. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  6286. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  6287. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  6288. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  6289. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  6290. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  6291. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  6292. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  6293. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  6294. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  6295. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  6296. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  6297. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  6298. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  6299. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  6300. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  6301. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  6302. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  6303. // test cases with permutation
  6304. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6305. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6306. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6307. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6308. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6309. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6310. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  6311. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  6312. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  6313. }
  6314. // test cases with large ne00/ne10 to cover stream-k fixup
  6315. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  6316. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  6317. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  6318. // test cases with large batch size
  6319. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1}));
  6320. }
  6321. }
  6322. for (ggml_type type_a : other_types) {
  6323. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6324. if (ggml_blck_size(type_a) != 256) {
  6325. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  6326. }
  6327. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  6328. }
  6329. }
  6330. #else
  6331. // m = a rows
  6332. // n = b rows
  6333. // k = cols
  6334. std::uniform_int_distribution<> dist_m(1, 128);
  6335. std::uniform_int_distribution<> dist_n(16, 128);
  6336. std::uniform_int_distribution<> dist_k(1, 16);
  6337. for (int i = 0; i < 1000; i++) {
  6338. for (ggml_type type_a : all_types) {
  6339. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6340. int m = dist_m(rng);
  6341. int n = dist_n(rng);
  6342. int k = dist_k(rng) * ggml_blck_size(type_a);
  6343. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  6344. }
  6345. }
  6346. }
  6347. #endif
  6348. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  6349. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  6350. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  6351. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  6352. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  6353. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  6354. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  6355. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  6356. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3));
  6357. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1}));
  6358. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 576, 512, 576, {1,1}, {1,1}));
  6359. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q4_0, GGML_TYPE_F32, 1, 2048, 8192, {1, 1}, {1, 1}));
  6360. for (ggml_type type_a : all_types) {
  6361. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 1, 64, 256, {1, 1}, {1, 1}));
  6362. }
  6363. #if 0
  6364. // test the mat-mat path for Metal
  6365. for (int k = 1; k < 512; ++k) {
  6366. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  6367. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1}));
  6368. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  6369. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1}));
  6370. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  6371. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1}));
  6372. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  6373. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  6374. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k));
  6375. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k));
  6376. }
  6377. #endif
  6378. for (auto bs2 : {1,3}) {
  6379. for (auto bs : {1,2,4,8}) {
  6380. for (auto nr : {1,4}) {
  6381. for (uint32_t m = 0; m < 2; ++m) {
  6382. for (uint32_t k = 0; k < 2; ++k) {
  6383. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  6384. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3}));
  6385. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k));
  6386. }
  6387. }
  6388. }
  6389. }
  6390. }
  6391. }
  6392. // sycl backend will limit task global_range < MAX_INT
  6393. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  6394. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  6395. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  6396. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  6397. // test large experts*tokens
  6398. for (bool b : {false, true}) {
  6399. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  6400. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64));
  6401. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64));
  6402. }
  6403. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1));
  6404. test_cases.emplace_back(new test_mul_mat_id_fusion(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3));
  6405. // gpt-oss issue with Vulkan mmq_id
  6406. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880));
  6407. for (ggml_type type_a : base_types) {
  6408. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6409. for (int n_mats : {4, 8}) {
  6410. for (int n_used : {1, 2, 4}) {
  6411. for (bool b : {false, true}) {
  6412. for (int n : {1, 4, 5, 17, 32, 129}) {
  6413. int m = 512;
  6414. int k = 256;
  6415. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6416. }
  6417. }
  6418. }
  6419. }
  6420. }
  6421. }
  6422. for (ggml_type type_a : other_types) {
  6423. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  6424. for (int n_mats : {4}) {
  6425. for (int n_used : {2}) {
  6426. for (bool b : {false}) {
  6427. for (int n : {1, 32}) {
  6428. int m = 512;
  6429. int k = 256;
  6430. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  6431. }
  6432. }
  6433. }
  6434. }
  6435. }
  6436. }
  6437. for (int bs : {1, 4, 512}) {
  6438. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q4_K}) {
  6439. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6440. // test with mul after (ffn_moe_weighted)
  6441. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1, true));
  6442. }
  6443. }
  6444. }
  6445. for (ggml_type type_a : base_types) {
  6446. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6447. for (int n : {1, 16}) {
  6448. for (int k : {1, 16}) {
  6449. for (int bs2 : {1, 3}) {
  6450. for (int bs3 : {1, 3}) {
  6451. for (int nr2 : {1, 2}) {
  6452. for (int nr3 : {1, 2}) {
  6453. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  6454. }
  6455. }
  6456. }
  6457. }
  6458. }
  6459. }
  6460. }
  6461. }
  6462. // add_id
  6463. for (ggml_type type_a : {GGML_TYPE_F32}) {
  6464. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6465. for (int n_mats : {4, 8}) {
  6466. for (int n_used : {1, 2, 4}) {
  6467. for (int n_embd : {32, 129}) {
  6468. for (int n_token : {1, 32, 129}) {
  6469. test_cases.emplace_back(new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token));
  6470. }
  6471. }
  6472. }
  6473. }
  6474. }
  6475. }
  6476. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  6477. test_cases.emplace_back(new test_sqr (type));
  6478. test_cases.emplace_back(new test_sqrt (type));
  6479. test_cases.emplace_back(new test_log (type));
  6480. test_cases.emplace_back(new test_sin (type));
  6481. test_cases.emplace_back(new test_cos (type));
  6482. test_cases.emplace_back(new test_clamp (type));
  6483. test_cases.emplace_back(new test_leaky_relu(type));
  6484. test_cases.emplace_back(new test_floor (type));
  6485. test_cases.emplace_back(new test_ceil (type));
  6486. test_cases.emplace_back(new test_round (type));
  6487. test_cases.emplace_back(new test_trunc (type));
  6488. test_cases.emplace_back(new test_sqr (type, {7, 1, 5, 3}));
  6489. test_cases.emplace_back(new test_sqrt (type, {7, 1, 5, 3}));
  6490. test_cases.emplace_back(new test_log (type, {7, 1, 5, 3}));
  6491. test_cases.emplace_back(new test_sin (type, {7, 1, 5, 3}));
  6492. test_cases.emplace_back(new test_cos (type, {7, 1, 5, 3}));
  6493. test_cases.emplace_back(new test_clamp (type, {7, 1, 5, 3}));
  6494. test_cases.emplace_back(new test_leaky_relu(type, {7, 1, 5, 3}));
  6495. test_cases.emplace_back(new test_floor (type, {7, 1, 5, 3}));
  6496. test_cases.emplace_back(new test_floor (type, { 1024, 1024, 1, 1 }));
  6497. test_cases.emplace_back(new test_ceil (type, {7, 1, 5, 3}));
  6498. test_cases.emplace_back(new test_ceil (type, { 1024, 1024, 1, 1 }));
  6499. test_cases.emplace_back(new test_round (type, {7, 1, 5, 3}));
  6500. test_cases.emplace_back(new test_round (type, { 1024, 1024, 1, 1 }));
  6501. test_cases.emplace_back(new test_trunc (type, {7, 1, 5, 3}));
  6502. test_cases.emplace_back(new test_trunc (type, { 1024, 1024, 1, 1 }));
  6503. }
  6504. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  6505. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  6506. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  6507. #if 0
  6508. std::uniform_int_distribution<> dist_ne1(1, 50);
  6509. int exponent = 1;
  6510. while (exponent < (1 << 17)) {
  6511. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  6512. for (int n = 0; n < 10; ++n) {
  6513. int64_t ne0 = dist_ne0(rng);
  6514. int64_t ne1 = dist_ne1(rng);
  6515. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  6516. }
  6517. exponent <<= 1;
  6518. }
  6519. #endif
  6520. for (bool mask : {false, true}) {
  6521. for (bool sinks : {false, true}) {
  6522. for (float max_bias : {0.0f, 8.0f}) {
  6523. if (!mask && max_bias > 0.0f) continue;
  6524. for (float scale : {1.0f, 0.1f}) {
  6525. for (int64_t ne0 : {16, 1024}) {
  6526. for (int64_t ne1 : {16, 1024}) {
  6527. if (mask) {
  6528. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6529. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6530. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias));
  6531. if (ne0 <= 32 && ne1 <= 32) {
  6532. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias));
  6533. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias));
  6534. }
  6535. }
  6536. } else {
  6537. /* The precision of mask here doesn't matter as boolean mask is false */
  6538. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6539. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  6540. }
  6541. }
  6542. }
  6543. }
  6544. }
  6545. // inplace tests
  6546. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true));
  6547. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true));
  6548. }
  6549. }
  6550. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6551. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6552. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6553. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  6554. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  6555. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  6556. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  6557. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200001, 2, 3, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  6558. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200001, 2, 3, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  6559. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200000, 1, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6560. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200000, 4, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6561. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {643251, 3, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6562. for (float max_bias : {0.0f, 8.0f}) {
  6563. for (float scale : {1.0f, 0.1f}) {
  6564. for (int64_t ne0 : {16, 1024}) {
  6565. for (int64_t ne1 : {16, 1024}) {
  6566. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  6567. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  6568. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias));
  6569. }
  6570. }
  6571. }
  6572. }
  6573. for (bool fw : {true, false}) { // fw == forward
  6574. bool all = true;
  6575. for (float fs : { 1.0f, 1.4245f }) {
  6576. for (float ef : { 0.0f, 0.7465f }) {
  6577. for (float af : { 1.0f, 1.4245f }) {
  6578. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6579. for (bool ff : {false, true}) { // freq_factors
  6580. for (float v : { 0, 1 }) {
  6581. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B
  6582. if (all) {
  6583. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B
  6584. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B
  6585. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B
  6586. test_cases.emplace_back(new test_rope(type, {16, 16, 8192, 1}, 16, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6587. }
  6588. if (all) {
  6589. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6590. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  6591. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6592. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6593. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6594. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw));
  6595. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  6596. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6597. test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  6598. test_cases.emplace_back(new test_rope(type, { 16, 16, 8192, 1}, 16, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw));
  6599. }
  6600. if (all) {
  6601. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  6602. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  6603. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6604. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
  6605. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  6606. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B)
  6607. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6608. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6609. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  6610. test_cases.emplace_back(new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl)
  6611. test_cases.emplace_back(new test_rope(type, {16, 16, 8192, 1}, 16, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw));
  6612. }
  6613. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  6614. }
  6615. }
  6616. all = false;
  6617. }
  6618. }
  6619. }
  6620. }
  6621. }
  6622. // single inplace test per type/mode/ff
  6623. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6624. for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) {
  6625. for (bool ff : {false, true}) {
  6626. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true));
  6627. }
  6628. }
  6629. }
  6630. for (int v : { 0, 1, 2, 3 }) {
  6631. for (int dim : { 0, 1, 2, 3, }) {
  6632. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  6633. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  6634. }
  6635. }
  6636. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  6637. for (uint32_t i = 4; i <= 1024*1024; i *= 2) {
  6638. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i-1, 1, 1, 1}));
  6639. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {i, 1, 1, 1}));
  6640. }
  6641. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  6642. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  6643. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1023, 2, 1, 3}, order));
  6644. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1024, 2, 1, 3}, order));
  6645. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {1025, 2, 1, 3}, order));
  6646. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2047, 2, 1, 3}, order));
  6647. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2048, 2, 1, 3}, order));
  6648. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2049, 2, 1, 3}, order));
  6649. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection)
  6650. }
  6651. for (int n = 1; n < 5; ++n) {
  6652. for (int k = 1; k <= n; ++k) {
  6653. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {n, 2, 1, 3}, k, true));
  6654. }
  6655. }
  6656. for (int i = 0; i < 20; ++i) {
  6657. for (int k : {1, 2, 3, 7, 15, 100, 500, 1023, 9999}) {
  6658. if (k <= 1<<i) {
  6659. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i), 1, 1, 1}, k));
  6660. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i) + 11, 1, 2, 1}, k));
  6661. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {(1<<i) + 11, 1, 2, 1}, k, true));
  6662. }
  6663. }
  6664. }
  6665. for (int k : {1, 2, 3, 7, 15}) {
  6666. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {16, 10, 10, 10}, k));
  6667. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {60, 10, 10, 10}, k));
  6668. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1023, 2, 1, 3}, k));
  6669. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1024, 2, 1, 3}, k));
  6670. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {1025, 2, 1, 3}, k));
  6671. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {16384, 1, 1, 1}, k));
  6672. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2047, 2, 1, 3}, k));
  6673. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2048, 2, 1, 3}, k));
  6674. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2049, 2, 1, 3}, k));
  6675. }
  6676. // exhaustive top_k tests
  6677. //for (int i = 1; i < 9999; ++i) {
  6678. // test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {i, 2, 1, 3}, rand() % i + 1));
  6679. //}
  6680. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC, ggml_scale_mode(GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS)}) {
  6681. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  6682. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  6683. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  6684. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  6685. }
  6686. for (ggml_scale_mode mode : {GGML_SCALE_MODE_BILINEAR, GGML_SCALE_MODE_BICUBIC}) {
  6687. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, (ggml_scale_mode)(mode | GGML_SCALE_FLAG_ALIGN_CORNERS)));
  6688. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, (ggml_scale_mode)(mode | GGML_SCALE_FLAG_ALIGN_CORNERS)));
  6689. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, (ggml_scale_mode)(mode | GGML_SCALE_FLAG_ALIGN_CORNERS)));
  6690. }
  6691. test_cases.emplace_back(new test_sum());
  6692. test_cases.emplace_back(new test_sum_rows());
  6693. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous
  6694. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1}));
  6695. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2}));
  6696. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false));
  6697. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true));
  6698. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true));
  6699. test_cases.emplace_back(new test_mean());
  6700. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6701. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6702. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 }));
  6703. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6704. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 }));
  6705. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6706. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous
  6707. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6708. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 }));
  6709. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 }));
  6710. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  6711. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6712. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1}));
  6713. test_cases.emplace_back(new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1}));
  6714. test_cases.emplace_back(new test_acc());
  6715. test_cases.emplace_back(new test_pad());
  6716. test_cases.emplace_back(new test_pad(GGML_TYPE_F32, {33, 17, 2, 1}, 4, 3, true)); // circular
  6717. test_cases.emplace_back(new test_pad_ext());
  6718. test_cases.emplace_back(new test_pad_reflect_1d());
  6719. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6720. test_cases.emplace_back(new test_roll());
  6721. test_cases.emplace_back(new test_arange());
  6722. test_cases.emplace_back(new test_arange(GGML_TYPE_F32, 0.0f, 1048576.0f, 1.0f));
  6723. test_cases.emplace_back(new test_timestep_embedding());
  6724. test_cases.emplace_back(new test_leaky_relu());
  6725. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 10, 5, 4, 3 }));
  6726. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 127, 5, 4, 3 }));
  6727. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 5, 4, 3 }));
  6728. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 128, 4, 4 }));
  6729. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 255, 5, 4, 3 }));
  6730. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 256, 5, 4, 3 }));
  6731. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 511, 5, 4, 3 }));
  6732. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 512, 5, 4, 3 }));
  6733. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1023, 5, 4, 3 }));
  6734. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 1024, 5, 4, 3 }));
  6735. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2047, 5, 4, 3 }));
  6736. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 5, 4, 3 }));
  6737. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 201*1204, 1, 1, 1 }));
  6738. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 312*1205, 1, 1, 1 }));
  6739. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 20481, 4, 1, 1 }));
  6740. test_cases.emplace_back(new test_xielu());
  6741. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER));
  6742. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER_DIAG));
  6743. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER));
  6744. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG));
  6745. test_cases.emplace_back(new test_fill(0.0f));
  6746. test_cases.emplace_back(new test_fill(2.0f, GGML_TYPE_F32, { 303, 207, 11, 3 }));
  6747. test_cases.emplace_back(new test_fill(-152.0f, GGML_TYPE_F32, { 800, 600, 4, 4 }));
  6748. test_cases.emplace_back(new test_fill(3.5f, GGML_TYPE_F32, { 2048, 512, 2, 2 }));
  6749. test_cases.emplace_back(new test_diag());
  6750. test_cases.emplace_back(new test_diag(GGML_TYPE_F32, { 79, 1, 19, 13 }));
  6751. test_cases.emplace_back(new test_diag(GGML_TYPE_F32, { 256, 1, 8, 16 }));
  6752. test_cases.emplace_back(new test_solve_tri());
  6753. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 11, 11, 1, 1 }, { 5, 11, 1, 1 }));
  6754. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 17, 17, 2, 4 }, { 9, 17, 2, 4 }));
  6755. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 30, 30, 7, 1 }, { 8, 30, 7, 1 }));
  6756. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 42, 42, 5, 2 }, { 10, 42, 5, 2 }));
  6757. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 2, 2 }, { 10, 64, 2, 2 }));
  6758. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 2, 2 }, { 64, 64, 2, 2 }));
  6759. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 79, 79, 5, 3 }, { 417, 79, 5, 3 }));
  6760. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 2 }, { 32, 128, 4, 2 }));
  6761. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 2, 8 }, { 80, 80, 2, 8 }));
  6762. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 2, 8 }, { 79, 80, 2, 8 }));
  6763. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 2, 8 }, { 81, 80, 2, 8 }));
  6764. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 8, 8 }, { 80, 80, 8, 8 }));
  6765. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 8, 8 }, { 79, 80, 8, 8 }));
  6766. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 80, 80, 8, 8 }, { 81, 80, 8, 8 }));
  6767. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 84, 84, 4, 4 }, { 32, 84, 4, 4 }));
  6768. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 95, 95, 8, 8 }, { 40, 95, 8, 8 }));
  6769. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 100, 100, 4, 4 }, { 41, 100, 4, 4 }));
  6770. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 4 }, { 31, 128, 4, 4 }));
  6771. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 4 }, { 32, 128, 4, 4 }));
  6772. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 3, 4 }, { 32, 128, 3, 4 }));
  6773. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 1 }, { 32, 128, 4, 1 }));
  6774. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 200, 64, 4, 4 }));
  6775. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 384, 64, 4, 4 }));
  6776. for (bool v : {false, true}) {
  6777. for (bool circular : {false, true}) {
  6778. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v, circular));
  6779. test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v, circular));
  6780. }
  6781. }
  6782. for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) {
  6783. for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) {
  6784. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  6785. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  6786. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  6787. for (bool mask : { true, false } ) {
  6788. for (bool sinks : { true, false } ) {
  6789. for (float max_bias : { 0.0f, 8.0f }) {
  6790. if (!mask && max_bias > 0.0f) continue;
  6791. for (float logit_softcap : {0.0f, 10.0f}) {
  6792. if (hsk != 128 && logit_softcap != 0.0f) continue;
  6793. for (int nh : { 4, }) {
  6794. for (int nr3 : { 1, 3, }) {
  6795. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  6796. for (int nr2 : { 1, 4, 16 }) {
  6797. if (nr2 == 16 && hsk != 128) continue;
  6798. //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) {
  6799. for (int kv : { 113, 512, 1024, }) {
  6800. if (nr2 != 1 && kv != 512) continue;
  6801. for (int nb : { 1, 3, 32, 35, }) {
  6802. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  6803. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  6804. for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  6805. test_cases.emplace_back(new test_flash_attn_ext(
  6806. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
  6807. // run fewer test cases permuted
  6808. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  6809. test_cases.emplace_back(new test_flash_attn_ext(
  6810. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  6811. }
  6812. }
  6813. }
  6814. }
  6815. }
  6816. }
  6817. }
  6818. }
  6819. }
  6820. }
  6821. }
  6822. }
  6823. }
  6824. }
  6825. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  6826. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  6827. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  6828. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  6829. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  6830. test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
  6831. for (ggml_type type : base_types) {
  6832. for (bool with_gate : {false, true}) {
  6833. for (bool use_id : {false, true}) {
  6834. for (bool b : {false, true}) {
  6835. if (!use_id && b) {
  6836. continue;
  6837. }
  6838. for (bool with_bias : {false, true}) {
  6839. if (!with_gate && !with_bias) {
  6840. continue;
  6841. }
  6842. for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
  6843. if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
  6844. continue;
  6845. }
  6846. if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
  6847. continue;
  6848. }
  6849. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6850. use_id, 16, 8, b, with_bias, with_gate));
  6851. test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
  6852. use_id, 16, 8, b, with_bias, with_gate, {1, 1}));
  6853. }
  6854. }
  6855. }
  6856. }
  6857. }
  6858. }
  6859. for (auto gate : {GATING_FUNC_SOFTMAX, GATING_FUNC_SIGMOID, GATING_FUNC_SOFTMAX_WEIGHT}) {
  6860. for (bool with_norm : {false, true}) {
  6861. for (bool bias_probs : {false, true}) {
  6862. for (float scale_w : {0.0f, 2.0f}) {
  6863. test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm, bias_probs, gate, scale_w));
  6864. test_cases.emplace_back(new test_topk_moe({31, 22, 1, 1}, 8, with_norm, bias_probs, gate, scale_w));
  6865. test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm, bias_probs, gate, scale_w));
  6866. test_cases.emplace_back(new test_topk_moe({40, 22, 1, 1}, 8, with_norm, bias_probs, gate, scale_w));
  6867. test_cases.emplace_back(new test_topk_moe({71, 22, 1, 1}, 8, with_norm, bias_probs, gate, scale_w));
  6868. test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm, bias_probs, gate, scale_w));
  6869. test_cases.emplace_back(new test_topk_moe({129, 1, 1, 1}, 128, with_norm, bias_probs, gate, scale_w));
  6870. test_cases.emplace_back(new test_topk_moe({160, 4, 1, 1}, 160, with_norm, bias_probs, gate, scale_w));
  6871. }
  6872. }
  6873. }
  6874. }
  6875. #if 0
  6876. // these tests are disabled to save execution time, sbut they can be handy for debugging
  6877. test_cases.emplace_back(new test_llama(2, true));
  6878. test_cases.emplace_back(new test_llama(1));
  6879. test_cases.emplace_back(new test_llama(2));
  6880. test_cases.emplace_back(new test_falcon(1));
  6881. test_cases.emplace_back(new test_falcon(2));
  6882. #endif
  6883. return test_cases;
  6884. }
  6885. #ifdef _MSC_VER
  6886. #pragma optimize("", on)
  6887. #endif
  6888. // Test cases for performance evaluation: should be representative of real-world use cases
  6889. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  6890. std::vector<std::unique_ptr<test_case>> test_cases;
  6891. // Conv2d: K=CRS=NPQ=4096 matmul performance
  6892. uint32_t iwh_idx = 0;
  6893. uint32_t kwh_idx = 1;
  6894. uint32_t Cout_idx = 2;
  6895. uint32_t Cin_idx = 3;
  6896. uint32_t B_idx = 4;
  6897. std::vector<std::array<int, 5>> cases = {
  6898. //{IWH, KWH, Cout, Cin, B}
  6899. // K=CRS=NPQ=4096 conv2d matmul performance
  6900. {19, 4, 4096, 256, 16},
  6901. // K=128, CRS=128, NPQ=4096
  6902. { 19, 4, 128, 8, 16},
  6903. // K=130, CRS=128, NPQ=4096
  6904. { 19, 4, 130, 8, 16},
  6905. // Edge case: K x CRS is small
  6906. { 19, 2, 4, 4, 16},
  6907. // A ConvNet's first layer
  6908. { 224, 3, 8, 3, 1 },
  6909. // A ConvNet's first layer with 2x2 convolution, and 1 channel
  6910. { 224, 2, 8, 1, 1 },
  6911. // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
  6912. { 224, 2, 8, 1, 8 },
  6913. // A middle layer of a ConvNet
  6914. { 58, 3, 64, 32, 1 },
  6915. // A middle layer of a ConvNet, several images in the batch
  6916. { 58, 3, 64, 32, 8 },
  6917. // A deep layer of a ConvNet, several images in the batch
  6918. { 16, 3, 512, 128, 8 },
  6919. // High resolution output (large NPQ)
  6920. {1536, 3, 64, 32, 1 },
  6921. };
  6922. for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  6923. for (auto act_case : cases) {
  6924. // Direct CONV_2D
  6925. test_cases.emplace_back(new test_conv_2d(
  6926. { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
  6927. { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] },
  6928. kernel_type, 1, 1, 0, 0, 1, 1, false));
  6929. }
  6930. }
  6931. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  6932. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  6933. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  6934. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  6935. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  6936. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1}));
  6937. test_cases.emplace_back(new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1}));
  6938. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6939. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6940. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6941. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0}));
  6942. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6943. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6944. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6945. test_cases.emplace_back(new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6946. test_cases.emplace_back(new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true));
  6947. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6948. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6949. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6950. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6951. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6952. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6953. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6954. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  6955. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  6956. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  6957. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  6958. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1}));
  6959. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1}));
  6960. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1}));
  6961. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1}));
  6962. test_cases.emplace_back(new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1}));
  6963. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  6964. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416));
  6965. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 32, 64, 4, 4 }));
  6966. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 2 }, { 32, 128, 4, 2 }));
  6967. // qwen3next with CHUNK_SIZE 64
  6968. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 8, 32 }, { 64, 64, 8, 32 }));
  6969. // qwen3next with CHUNK_SIZE 128
  6970. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 128, 128, 4, 32 }, { 128, 128, 4, 32 }));
  6971. test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 256, 256, 4, 2 }, { 128, 256, 4, 2 }));
  6972. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_LOWER, GGML_TYPE_F32, { 256, 256, 4, 4 }));
  6973. test_cases.emplace_back(new test_tri(GGML_TRI_TYPE_UPPER_DIAG, GGML_TYPE_F32, { 1024, 1024, 8, 4 }));
  6974. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 128, 128, 4, 4 }));
  6975. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 2048, 16, 5, 4 }));
  6976. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, { 20000, 10, 4, 1 }));
  6977. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  6978. for (ggml_type type_a : all_types) {
  6979. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6980. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  6981. }
  6982. }
  6983. }
  6984. // qwen3-30b-a3b
  6985. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6986. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6987. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6988. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048));
  6989. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 128, 8, false, 768, bs, 2048, 1));
  6990. }
  6991. }
  6992. }
  6993. for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) {
  6994. for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) {
  6995. for (ggml_type type_b : {GGML_TYPE_F32}) {
  6996. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048));
  6997. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1));
  6998. }
  6999. }
  7000. }
  7001. // gpt-oss-20b
  7002. for (int bs : {1, 4, 8, 512}) {
  7003. for (ggml_type type_a : {GGML_TYPE_MXFP4}) {
  7004. for (ggml_type type_b : {GGML_TYPE_F32}) {
  7005. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880));
  7006. test_cases.emplace_back(new test_mul_mat_id_fusion(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1));
  7007. }
  7008. }
  7009. }
  7010. for (int K : {3, 5}) {
  7011. for (int IC : {256, 2560}) {
  7012. for (int IW_IH : {32, 64, 256}) {
  7013. if (IC == 2560 && IW_IH == 256) {
  7014. // too big
  7015. continue;
  7016. }
  7017. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  7018. }
  7019. }
  7020. }
  7021. // Qwen3-VL-8B https://github.com/ggml-org/llama.cpp/issues/17012
  7022. test_cases.emplace_back(new test_flash_attn_ext(72, 72, 16, {1, 1}, 5776, 5776, false, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  7023. for (int kv : { 4096, 8192, 16384, }) {
  7024. for (int hs : { 64, 128, }) {
  7025. for (int nr : { 1, 4, }) {
  7026. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  7027. }
  7028. }
  7029. }
  7030. for (int col : {8192, 16384, 32768, 65536, 131072, 262144, 524288}) {
  7031. for (int rows : {1, 4, 16}){
  7032. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {col, rows, 1, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  7033. }
  7034. }
  7035. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  7036. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  7037. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  7038. test_cases.emplace_back(new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1));
  7039. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  7040. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  7041. for (int n_token : {1, 512}) {
  7042. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token));
  7043. test_cases.emplace_back(new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token));
  7044. }
  7045. for (bool fw : {true, false}) { // fw == forward
  7046. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  7047. for (bool ff : {false, true}) { // freq_factors
  7048. for (float v : { 0, 1 }) {
  7049. test_cases.emplace_back(new test_rope(type, {128, 32, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 7B
  7050. test_cases.emplace_back(new test_rope(type, {128, 64, 512, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // llama 65B
  7051. test_cases.emplace_back(new test_rope(type, { 80, 32, 512, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (stablelm)
  7052. test_cases.emplace_back(new test_rope(type, { 64, 8, 512, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // neox (falcon 40B)
  7053. test_cases.emplace_back(new test_rope(type, {128, 12, 512, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  7054. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B)
  7055. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, 1.0f, 0.0f, 1.0f, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  7056. }
  7057. }
  7058. }
  7059. }
  7060. std::vector<std::array<int64_t, 4>> reduce_rows_cases = {
  7061. { 8192, 1, 1, 1 },
  7062. { 8192, 8192, 1, 1 },
  7063. { 128, 8192, 1, 1 },
  7064. };
  7065. for (auto it: reduce_rows_cases){
  7066. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, it));
  7067. test_cases.emplace_back(new test_sum_rows(GGML_TYPE_F32, it));
  7068. test_cases.emplace_back(new test_sum(GGML_TYPE_F32, it));
  7069. }
  7070. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {65000, 16, 1, 1}));
  7071. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {200000, 1, 1, 1}));
  7072. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {200000, 16, 1, 1}));
  7073. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {2, 1, 1, 1}, 1));
  7074. for (auto k : {1, 10, 40, 400}) {
  7075. for (auto nrows : {1, 16}) {
  7076. for (auto cols : {k, 1000, 65000, 200000}) {
  7077. test_cases.emplace_back(new test_top_k(GGML_TYPE_F32, {cols, nrows, 1, 1}, k));
  7078. }
  7079. }
  7080. }
  7081. for (auto nrows : {1, 4, 8, 16}) {
  7082. for (auto cols : {128, 1024, 4096, 8192, 16384, 32768, 65536, 131072, 200000, 2000000}) {
  7083. test_cases.emplace_back(new test_cumsum(GGML_TYPE_F32, {cols, nrows, 1, 1}));
  7084. }
  7085. }
  7086. // Examples from granite-4.0-h-1b/ggml-model-Q8_0.gguf
  7087. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {515, 3328, 1, 1}, {4, 3328, 1, 1})); // prefill
  7088. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 3328, 1, 1}, {4, 3328, 1, 1})); // generate
  7089. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 48, 1, 512, 1)); // prefill
  7090. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 48, 1, 1, 1)); // generate
  7091. return test_cases;
  7092. }
  7093. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter,
  7094. printer * output_printer) {
  7095. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  7096. if (params_filter == nullptr) {
  7097. return;
  7098. }
  7099. std::regex params_filter_regex(params_filter);
  7100. for (auto it = test_cases.begin(); it != test_cases.end();) {
  7101. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  7102. it = test_cases.erase(it);
  7103. continue;
  7104. }
  7105. it++;
  7106. }
  7107. };
  7108. if (mode == MODE_TEST) {
  7109. auto test_cases = make_test_cases_eval();
  7110. filter_test_cases(test_cases, params_filter);
  7111. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  7112. if (backend_cpu == NULL) {
  7113. test_operation_info info("", "", "CPU");
  7114. info.set_error("backend", "Failed to initialize CPU backend");
  7115. output_printer->print_operation(info);
  7116. return false;
  7117. }
  7118. size_t n_ok = 0;
  7119. size_t tests_run = 0;
  7120. std::vector<std::string> failed_tests;
  7121. for (auto & test : test_cases) {
  7122. test_status_t status = test->eval(backend, backend_cpu, op_names_filter, output_printer);
  7123. if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) {
  7124. continue;
  7125. }
  7126. tests_run++;
  7127. if (status == test_status_t::OK) {
  7128. n_ok++;
  7129. } else if (status == test_status_t::FAIL) {
  7130. failed_tests.push_back(test->current_op_name + "(" + test->vars() + ")");
  7131. }
  7132. }
  7133. output_printer->print_summary(test_summary_info(n_ok, tests_run, false));
  7134. output_printer->print_failed_tests(failed_tests);
  7135. ggml_backend_free(backend_cpu);
  7136. return n_ok == tests_run;
  7137. }
  7138. if (mode == MODE_GRAD) {
  7139. auto test_cases = make_test_cases_eval();
  7140. filter_test_cases(test_cases, params_filter);
  7141. size_t n_ok = 0;
  7142. for (auto & test : test_cases) {
  7143. if (test->eval_grad(backend, op_names_filter, output_printer)) {
  7144. n_ok++;
  7145. }
  7146. }
  7147. output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
  7148. return n_ok == test_cases.size();
  7149. }
  7150. if (mode == MODE_PERF) {
  7151. auto test_cases = make_test_cases_perf();
  7152. filter_test_cases(test_cases, params_filter);
  7153. for (auto & test : test_cases) {
  7154. test->eval_perf(backend, op_names_filter, output_printer);
  7155. }
  7156. return true;
  7157. }
  7158. if (mode == MODE_SUPPORT) {
  7159. auto test_cases = make_test_cases_eval();
  7160. filter_test_cases(test_cases, params_filter);
  7161. // Filter out fusion cases
  7162. test_cases.erase(
  7163. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  7164. return tc->run_whole_graph();
  7165. }),
  7166. test_cases.end()
  7167. );
  7168. for (auto & test : test_cases) {
  7169. test->eval_support(backend, op_names_filter, output_printer);
  7170. }
  7171. return true;
  7172. }
  7173. GGML_ABORT("fatal error");
  7174. }
  7175. static void list_all_ops() {
  7176. printf("GGML operations:\n");
  7177. std::set<std::string> all_ops;
  7178. for (int i = 1; i < GGML_OP_COUNT; i++) {
  7179. all_ops.insert(ggml_op_name((enum ggml_op)i));
  7180. }
  7181. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  7182. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  7183. }
  7184. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  7185. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  7186. }
  7187. for (const auto & op : all_ops) {
  7188. printf(" %s\n", op.c_str());
  7189. }
  7190. printf("\nTotal: %zu operations\n", all_ops.size());
  7191. }
  7192. static void show_test_coverage() {
  7193. std::set<std::string> all_ops;
  7194. for (int i = 1; i < GGML_OP_COUNT; i++) {
  7195. auto op = (enum ggml_op)i;
  7196. if (op == GGML_OP_VIEW ||
  7197. op == GGML_OP_RESHAPE ||
  7198. op == GGML_OP_PERMUTE ||
  7199. op == GGML_OP_TRANSPOSE ||
  7200. op == GGML_OP_CONT ||
  7201. op == GGML_OP_GLU ||
  7202. op == GGML_OP_UNARY) {
  7203. continue;
  7204. }
  7205. all_ops.insert(ggml_op_name(op));
  7206. }
  7207. for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) {
  7208. all_ops.insert(ggml_unary_op_name((enum ggml_unary_op)i));
  7209. }
  7210. for (int i = 0; i < GGML_GLU_OP_COUNT; i++) {
  7211. all_ops.insert(ggml_glu_op_name((enum ggml_glu_op)i));
  7212. }
  7213. auto test_cases = make_test_cases_eval();
  7214. // Filter out fusion cases
  7215. test_cases.erase(
  7216. std::remove_if(test_cases.begin(), test_cases.end(), [](const std::unique_ptr<test_case> & tc) {
  7217. return tc->run_whole_graph();
  7218. }),
  7219. test_cases.end()
  7220. );
  7221. std::set<std::string> tested_ops;
  7222. ggml_init_params params = {
  7223. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  7224. /* .mem_base = */ NULL,
  7225. /* .no_alloc = */ true,
  7226. };
  7227. for (auto & test_case : test_cases) {
  7228. ggml_context * ctx = ggml_init(params);
  7229. if (ctx) {
  7230. test_case->mode = MODE_TEST;
  7231. ggml_tensor * out = test_case->build_graph(ctx);
  7232. if (out && out->op != GGML_OP_NONE) {
  7233. if (out->op == GGML_OP_UNARY) {
  7234. tested_ops.insert(ggml_unary_op_name(ggml_get_unary_op(out)));
  7235. } else if (out->op == GGML_OP_GLU) {
  7236. tested_ops.insert(ggml_glu_op_name(ggml_get_glu_op(out)));
  7237. } else {
  7238. tested_ops.insert(ggml_op_name(out->op));
  7239. }
  7240. }
  7241. ggml_free(ctx);
  7242. }
  7243. }
  7244. std::set<std::string> covered_ops;
  7245. std::set<std::string> uncovered_ops;
  7246. for (const auto & op : all_ops) {
  7247. if (tested_ops.count(op) > 0) {
  7248. covered_ops.insert(op);
  7249. } else {
  7250. uncovered_ops.insert(op);
  7251. }
  7252. }
  7253. printf("Operations covered by tests (%zu):\n", covered_ops.size());
  7254. for (const auto & op : covered_ops) {
  7255. printf(" ✓ %s\n", op.c_str());
  7256. }
  7257. printf("\nOperations without tests (%zu):\n", uncovered_ops.size());
  7258. for (const auto & op : uncovered_ops) {
  7259. printf(" ✗ %s\n", op.c_str());
  7260. }
  7261. printf("\nCoverage Summary:\n");
  7262. printf(" Total operations: %zu\n", all_ops.size());
  7263. printf(" Tested operations: %zu\n", covered_ops.size());
  7264. printf(" Untested operations: %zu\n", uncovered_ops.size());
  7265. printf(" Coverage: %.1f%%\n", (double)covered_ops.size() / all_ops.size() * 100.0);
  7266. }
  7267. static void usage(char ** argv) {
  7268. printf("Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n", argv[0]);
  7269. printf(" valid modes:\n");
  7270. printf(" - test (default, compare with CPU backend for correctness)\n");
  7271. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  7272. printf(" - perf (performance evaluation)\n");
  7273. printf(" - support (probe backend operation support)\n");
  7274. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n");
  7275. printf(" optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n");
  7276. printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
  7277. printf(" --list-ops lists all available GGML operations\n");
  7278. printf(" --show-coverage shows test coverage\n");
  7279. }
  7280. int main(int argc, char ** argv) {
  7281. test_mode mode = MODE_TEST;
  7282. output_formats output_format = CONSOLE;
  7283. const char * op_names_filter = nullptr;
  7284. const char * backend_filter = nullptr;
  7285. const char * params_filter = nullptr;
  7286. for (int i = 1; i < argc; i++) {
  7287. if (strcmp(argv[i], "test") == 0) {
  7288. mode = MODE_TEST;
  7289. } else if (strcmp(argv[i], "perf") == 0) {
  7290. mode = MODE_PERF;
  7291. } else if (strcmp(argv[i], "grad") == 0) {
  7292. mode = MODE_GRAD;
  7293. } else if (strcmp(argv[i], "support") == 0) {
  7294. mode = MODE_SUPPORT;
  7295. } else if (strcmp(argv[i], "-o") == 0) {
  7296. if (i + 1 < argc) {
  7297. op_names_filter = argv[++i];
  7298. } else {
  7299. usage(argv);
  7300. return 1;
  7301. }
  7302. } else if (strcmp(argv[i], "-b") == 0) {
  7303. if (i + 1 < argc) {
  7304. backend_filter = argv[++i];
  7305. } else {
  7306. usage(argv);
  7307. return 1;
  7308. }
  7309. } else if (strcmp(argv[i], "-p") == 0) {
  7310. if (i + 1 < argc) {
  7311. params_filter = argv[++i];
  7312. } else {
  7313. usage(argv);
  7314. return 1;
  7315. }
  7316. } else if (strcmp(argv[i], "--output") == 0) {
  7317. if (i + 1 < argc) {
  7318. if (!output_format_from_str(argv[++i], output_format)) {
  7319. usage(argv);
  7320. return 1;
  7321. }
  7322. } else {
  7323. usage(argv);
  7324. return 1;
  7325. }
  7326. } else if (strcmp(argv[i], "--list-ops") == 0) {
  7327. list_all_ops();
  7328. return 0;
  7329. } else if (strcmp(argv[i], "--show-coverage") == 0) {
  7330. show_test_coverage();
  7331. return 0;
  7332. } else {
  7333. usage(argv);
  7334. return 1;
  7335. }
  7336. }
  7337. // load and enumerate backends
  7338. ggml_backend_load_all();
  7339. // Create printer for output format
  7340. std::unique_ptr<printer> output_printer = create_printer(output_format);
  7341. if (output_printer) {
  7342. output_printer->print_header();
  7343. }
  7344. output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
  7345. size_t n_ok = 0;
  7346. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  7347. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  7348. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  7349. output_printer->print_backend_init(
  7350. backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
  7351. n_ok++;
  7352. continue;
  7353. }
  7354. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  7355. output_printer->print_backend_init(backend_init_info(
  7356. i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
  7357. n_ok++;
  7358. continue;
  7359. }
  7360. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  7361. GGML_ASSERT(backend != NULL);
  7362. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  7363. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  7364. if (ggml_backend_set_n_threads_fn) {
  7365. // TODO: better value for n_threads
  7366. ggml_backend_set_n_threads_fn(backend, N_THREADS);
  7367. }
  7368. size_t free, total; // NOLINT
  7369. ggml_backend_dev_memory(dev, &free, &total);
  7370. output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
  7371. false, "", ggml_backend_dev_description(dev),
  7372. total / 1024 / 1024, free / 1024 / 1024, true));
  7373. bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer.get());
  7374. if (ok) {
  7375. n_ok++;
  7376. }
  7377. output_printer->print_backend_status(
  7378. backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
  7379. ggml_backend_free(backend);
  7380. }
  7381. ggml_quantize_free();
  7382. if (output_printer) {
  7383. output_printer->print_footer();
  7384. }
  7385. output_printer->print_overall_summary(
  7386. overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
  7387. if (n_ok != ggml_backend_dev_count()) {
  7388. return 1;
  7389. }
  7390. return 0;
  7391. }