ggml.c 520 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #include "ggml-quants-k.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #ifdef GGML_USE_METAL
  22. #include <unistd.h>
  23. #endif
  24. // if C99 - static_assert is noop
  25. // ref: https://stackoverflow.com/a/53923785/4039976
  26. #ifndef static_assert
  27. #define static_assert(cond, msg) struct global_scope_noop_trick
  28. #endif
  29. #if defined(_WIN32)
  30. #include <windows.h>
  31. typedef volatile LONG atomic_int;
  32. typedef atomic_int atomic_bool;
  33. static void atomic_store(atomic_int* ptr, LONG val) {
  34. InterlockedExchange(ptr, val);
  35. }
  36. static LONG atomic_load(atomic_int* ptr) {
  37. return InterlockedCompareExchange(ptr, 0, 0);
  38. }
  39. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  40. return InterlockedExchangeAdd(ptr, inc);
  41. }
  42. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  43. return atomic_fetch_add(ptr, -(dec));
  44. }
  45. typedef HANDLE pthread_t;
  46. typedef DWORD thread_ret_t;
  47. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  48. (void) unused;
  49. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  50. if (handle == NULL)
  51. {
  52. return EAGAIN;
  53. }
  54. *out = handle;
  55. return 0;
  56. }
  57. static int pthread_join(pthread_t thread, void* unused) {
  58. (void) unused;
  59. return (int) WaitForSingleObject(thread, INFINITE);
  60. }
  61. static int sched_yield (void) {
  62. Sleep (0);
  63. return 0;
  64. }
  65. #else
  66. #include <pthread.h>
  67. #include <stdatomic.h>
  68. typedef void* thread_ret_t;
  69. #endif
  70. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  71. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  72. #ifndef __FMA__
  73. #define __FMA__
  74. #endif
  75. #ifndef __F16C__
  76. #define __F16C__
  77. #endif
  78. #ifndef __SSE3__
  79. #define __SSE3__
  80. #endif
  81. #endif
  82. #ifdef __HAIKU__
  83. #define static_assert(cond, msg) _Static_assert(cond, msg)
  84. #endif
  85. /*#define GGML_PERF*/
  86. #define GGML_DEBUG 0
  87. #define GGML_GELU_FP16
  88. #define GGML_SILU_FP16
  89. #define GGML_SOFT_MAX_UNROLL 4
  90. #define GGML_VEC_DOT_UNROLL 2
  91. #ifdef GGML_USE_ACCELERATE
  92. // uncomment to use vDSP for soft max computation
  93. // note: not sure if it is actually faster
  94. //#define GGML_SOFT_MAX_ACCELERATE
  95. #endif
  96. #if UINTPTR_MAX == 0xFFFFFFFF
  97. #define GGML_MEM_ALIGN 4
  98. #else
  99. #define GGML_MEM_ALIGN 16
  100. #endif
  101. #if defined(_MSC_VER) || defined(__MINGW32__)
  102. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  103. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  104. #else
  105. inline static void* ggml_aligned_malloc(size_t size) {
  106. void* aligned_memory = NULL;
  107. #ifdef GGML_USE_METAL
  108. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  109. #else
  110. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  111. #endif
  112. if (result != 0) {
  113. // Handle allocation failure
  114. return NULL;
  115. }
  116. return aligned_memory;
  117. }
  118. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  119. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  120. #endif
  121. #define UNUSED(x) (void)(x)
  122. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  123. #if defined(GGML_USE_ACCELERATE)
  124. #include <Accelerate/Accelerate.h>
  125. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  126. #include "ggml-opencl.h"
  127. #endif
  128. #elif defined(GGML_USE_OPENBLAS)
  129. #include <cblas.h>
  130. #elif defined(GGML_USE_CUBLAS)
  131. #include "ggml-cuda.h"
  132. #elif defined(GGML_USE_CLBLAST)
  133. #include "ggml-opencl.h"
  134. #endif
  135. #undef MIN
  136. #undef MAX
  137. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  138. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  139. // floating point type used to accumulate sums
  140. typedef double ggml_float;
  141. // 16-bit float
  142. // on Arm, we use __fp16
  143. // on x86, we use uint16_t
  144. #ifdef __ARM_NEON
  145. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  146. //
  147. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  148. //
  149. #include <arm_neon.h>
  150. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  151. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  152. #define GGML_FP16_TO_FP32(x) ((float) (x))
  153. #define GGML_FP32_TO_FP16(x) (x)
  154. #else
  155. #ifdef __wasm_simd128__
  156. #include <wasm_simd128.h>
  157. #else
  158. #ifdef __POWER9_VECTOR__
  159. #include <altivec.h>
  160. #undef bool
  161. #define bool _Bool
  162. #else
  163. #if defined(_MSC_VER) || defined(__MINGW32__)
  164. #include <intrin.h>
  165. #else
  166. #if !defined(__riscv)
  167. #include <immintrin.h>
  168. #endif
  169. #endif
  170. #endif
  171. #endif
  172. #ifdef __F16C__
  173. #ifdef _MSC_VER
  174. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  175. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  176. #else
  177. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  178. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  179. #endif
  180. #elif defined(__POWER9_VECTOR__)
  181. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  182. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  183. /* the inline asm below is about 12% faster than the lookup method */
  184. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  185. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  186. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  187. register float f;
  188. register double d;
  189. __asm__(
  190. "mtfprd %0,%2\n"
  191. "xscvhpdp %0,%0\n"
  192. "frsp %1,%0\n" :
  193. /* temp */ "=d"(d),
  194. /* out */ "=f"(f):
  195. /* in */ "r"(h));
  196. return f;
  197. }
  198. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  199. register double d;
  200. register ggml_fp16_t r;
  201. __asm__( /* xscvdphp can work on double or single precision */
  202. "xscvdphp %0,%2\n"
  203. "mffprd %1,%0\n" :
  204. /* temp */ "=d"(d),
  205. /* out */ "=r"(r):
  206. /* in */ "f"(f));
  207. return r;
  208. }
  209. #else
  210. // FP16 <-> FP32
  211. // ref: https://github.com/Maratyszcza/FP16
  212. static inline float fp32_from_bits(uint32_t w) {
  213. union {
  214. uint32_t as_bits;
  215. float as_value;
  216. } fp32;
  217. fp32.as_bits = w;
  218. return fp32.as_value;
  219. }
  220. static inline uint32_t fp32_to_bits(float f) {
  221. union {
  222. float as_value;
  223. uint32_t as_bits;
  224. } fp32;
  225. fp32.as_value = f;
  226. return fp32.as_bits;
  227. }
  228. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  229. const uint32_t w = (uint32_t) h << 16;
  230. const uint32_t sign = w & UINT32_C(0x80000000);
  231. const uint32_t two_w = w + w;
  232. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  233. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  234. const float exp_scale = 0x1.0p-112f;
  235. #else
  236. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  237. #endif
  238. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  239. const uint32_t magic_mask = UINT32_C(126) << 23;
  240. const float magic_bias = 0.5f;
  241. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  242. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  243. const uint32_t result = sign |
  244. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  245. return fp32_from_bits(result);
  246. }
  247. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  248. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  249. const float scale_to_inf = 0x1.0p+112f;
  250. const float scale_to_zero = 0x1.0p-110f;
  251. #else
  252. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  253. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  254. #endif
  255. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  256. const uint32_t w = fp32_to_bits(f);
  257. const uint32_t shl1_w = w + w;
  258. const uint32_t sign = w & UINT32_C(0x80000000);
  259. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  260. if (bias < UINT32_C(0x71000000)) {
  261. bias = UINT32_C(0x71000000);
  262. }
  263. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  264. const uint32_t bits = fp32_to_bits(base);
  265. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  266. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  267. const uint32_t nonsign = exp_bits + mantissa_bits;
  268. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  269. }
  270. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  271. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  272. #endif // __F16C__
  273. #endif // __ARM_NEON
  274. //
  275. // global data
  276. //
  277. // precomputed gelu table for f16 (128 KB)
  278. static ggml_fp16_t table_gelu_f16[1 << 16];
  279. // precomputed silu table for f16 (128 KB)
  280. static ggml_fp16_t table_silu_f16[1 << 16];
  281. // precomputed exp table for f16 (128 KB)
  282. static ggml_fp16_t table_exp_f16[1 << 16];
  283. // precomputed f32 table for f16 (256 KB)
  284. static float table_f32_f16[1 << 16];
  285. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  286. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  287. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  288. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  289. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  290. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  291. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  292. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  293. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  294. // precomputed tables for expanding 8bits to 8 bytes:
  295. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  296. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  297. #endif
  298. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  299. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  300. // This is also true for POWER9.
  301. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  302. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  303. uint16_t s;
  304. memcpy(&s, &f, sizeof(uint16_t));
  305. return table_f32_f16[s];
  306. }
  307. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  308. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  309. #endif
  310. // note: do not use these inside ggml.c
  311. // these are meant to be used via the ggml.h API
  312. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  313. return (float) GGML_FP16_TO_FP32(x);
  314. }
  315. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  316. return GGML_FP32_TO_FP16(x);
  317. }
  318. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  319. for (size_t i = 0; i < n; i++) {
  320. y[i] = GGML_FP16_TO_FP32(x[i]);
  321. }
  322. }
  323. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  324. size_t i = 0;
  325. #if defined(__F16C__)
  326. for (; i + 7 < n; i += 8) {
  327. __m256 x_vec = _mm256_loadu_ps(x + i);
  328. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  329. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  330. }
  331. for(; i + 3 < n; i += 4) {
  332. __m128 x_vec = _mm_loadu_ps(x + i);
  333. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  334. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  335. }
  336. #endif
  337. for (; i < n; i++) {
  338. y[i] = GGML_FP32_TO_FP16(x[i]);
  339. }
  340. }
  341. //
  342. // timing
  343. //
  344. #if defined(_MSC_VER) || defined(__MINGW32__)
  345. static int64_t timer_freq, timer_start;
  346. void ggml_time_init(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceFrequency(&t);
  349. timer_freq = t.QuadPart;
  350. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  351. // and the uptime is high enough.
  352. // We subtract the program start time to reduce the likelihood of that happening.
  353. QueryPerformanceCounter(&t);
  354. timer_start = t.QuadPart;
  355. }
  356. int64_t ggml_time_ms(void) {
  357. LARGE_INTEGER t;
  358. QueryPerformanceCounter(&t);
  359. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  360. }
  361. int64_t ggml_time_us(void) {
  362. LARGE_INTEGER t;
  363. QueryPerformanceCounter(&t);
  364. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  365. }
  366. #else
  367. void ggml_time_init(void) {}
  368. int64_t ggml_time_ms(void) {
  369. struct timespec ts;
  370. clock_gettime(CLOCK_MONOTONIC, &ts);
  371. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  372. }
  373. int64_t ggml_time_us(void) {
  374. struct timespec ts;
  375. clock_gettime(CLOCK_MONOTONIC, &ts);
  376. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  377. }
  378. #endif
  379. int64_t ggml_cycles(void) {
  380. return clock();
  381. }
  382. int64_t ggml_cycles_per_ms(void) {
  383. return CLOCKS_PER_SEC/1000;
  384. }
  385. #ifdef GGML_PERF
  386. #define ggml_perf_time_ms() ggml_time_ms()
  387. #define ggml_perf_time_us() ggml_time_us()
  388. #define ggml_perf_cycles() ggml_cycles()
  389. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  390. #else
  391. #define ggml_perf_time_ms() 0
  392. #define ggml_perf_time_us() 0
  393. #define ggml_perf_cycles() 0
  394. #define ggml_perf_cycles_per_ms() 0
  395. #endif
  396. //
  397. // cache line
  398. //
  399. #if defined(__cpp_lib_hardware_interference_size)
  400. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  401. #else
  402. #if defined(__POWER9_VECTOR__)
  403. #define CACHE_LINE_SIZE 128
  404. #else
  405. #define CACHE_LINE_SIZE 64
  406. #endif
  407. #endif
  408. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  409. //
  410. // quantization
  411. //
  412. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  413. // multiply int8_t, add results pairwise twice
  414. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  415. // Get absolute values of x vectors
  416. const __m128i ax = _mm_sign_epi8(x, x);
  417. // Sign the values of the y vectors
  418. const __m128i sy = _mm_sign_epi8(y, x);
  419. // Perform multiplication and create 16-bit values
  420. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  421. const __m128i ones = _mm_set1_epi16(1);
  422. return _mm_madd_epi16(ones, dot);
  423. }
  424. #if __AVX__ || __AVX2__ || __AVX512F__
  425. // horizontally add 8 floats
  426. static inline float hsum_float_8(const __m256 x) {
  427. __m128 res = _mm256_extractf128_ps(x, 1);
  428. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  429. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  430. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  431. return _mm_cvtss_f32(res);
  432. }
  433. // horizontally add 8 int32_t
  434. static inline int hsum_i32_8(const __m256i a) {
  435. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  436. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  437. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  438. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  439. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  440. }
  441. // horizontally add 4 int32_t
  442. static inline int hsum_i32_4(const __m128i a) {
  443. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  444. const __m128i sum64 = _mm_add_epi32(hi64, a);
  445. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  446. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  447. }
  448. #if defined(__AVX2__) || defined(__AVX512F__)
  449. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  450. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  451. uint32_t x32;
  452. memcpy(&x32, x, sizeof(uint32_t));
  453. const __m256i shuf_mask = _mm256_set_epi64x(
  454. 0x0303030303030303, 0x0202020202020202,
  455. 0x0101010101010101, 0x0000000000000000);
  456. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  457. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  458. bytes = _mm256_or_si256(bytes, bit_mask);
  459. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  460. }
  461. // Unpack 32 4-bit fields into 32 bytes
  462. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  463. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  464. {
  465. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  466. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  467. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  468. return _mm256_and_si256(lowMask, bytes);
  469. }
  470. // add int16_t pairwise and return as float vector
  471. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  472. const __m256i ones = _mm256_set1_epi16(1);
  473. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  474. return _mm256_cvtepi32_ps(summed_pairs);
  475. }
  476. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  477. #if __AVXVNNI__
  478. const __m256i zero = _mm256_setzero_si256();
  479. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  480. return _mm256_cvtepi32_ps(summed_pairs);
  481. #else
  482. // Perform multiplication and create 16-bit values
  483. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  484. return sum_i16_pairs_float(dot);
  485. #endif
  486. }
  487. // multiply int8_t, add results pairwise twice and return as float vector
  488. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  489. #if __AVXVNNIINT8__
  490. const __m256i zero = _mm256_setzero_si256();
  491. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  492. return _mm256_cvtepi32_ps(summed_pairs);
  493. #else
  494. // Get absolute values of x vectors
  495. const __m256i ax = _mm256_sign_epi8(x, x);
  496. // Sign the values of the y vectors
  497. const __m256i sy = _mm256_sign_epi8(y, x);
  498. return mul_sum_us8_pairs_float(ax, sy);
  499. #endif
  500. }
  501. static inline __m128i packNibbles( __m256i bytes )
  502. {
  503. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  504. #if __AVX512F__
  505. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  506. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  507. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  508. #else
  509. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  510. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  511. __m256i low = _mm256_and_si256( lowByte, bytes );
  512. high = _mm256_srli_epi16( high, 4 );
  513. bytes = _mm256_or_si256( low, high );
  514. // Compress uint16_t lanes into bytes
  515. __m128i r0 = _mm256_castsi256_si128( bytes );
  516. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  517. return _mm_packus_epi16( r0, r1 );
  518. #endif
  519. }
  520. #elif defined(__AVX__)
  521. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  522. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  523. uint32_t x32;
  524. memcpy(&x32, x, sizeof(uint32_t));
  525. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  526. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  527. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  528. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  529. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  530. bytesl = _mm_or_si128(bytesl, bit_mask);
  531. bytesh = _mm_or_si128(bytesh, bit_mask);
  532. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  533. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  534. return _mm256_set_m128i(bytesh, bytesl);
  535. }
  536. // Unpack 32 4-bit fields into 32 bytes
  537. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  538. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  539. {
  540. // Load 16 bytes from memory
  541. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  542. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  543. const __m128i lowMask = _mm_set1_epi8(0xF);
  544. tmpl = _mm_and_si128(lowMask, tmpl);
  545. tmph = _mm_and_si128(lowMask, tmph);
  546. return _mm256_set_m128i(tmph, tmpl);
  547. }
  548. // add int16_t pairwise and return as float vector
  549. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  550. const __m128i ones = _mm_set1_epi16(1);
  551. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  552. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  553. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  554. return _mm256_cvtepi32_ps(summed_pairs);
  555. }
  556. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  557. const __m128i axl = _mm256_castsi256_si128(ax);
  558. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  559. const __m128i syl = _mm256_castsi256_si128(sy);
  560. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  561. // Perform multiplication and create 16-bit values
  562. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  563. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  564. return sum_i16_pairs_float(doth, dotl);
  565. }
  566. // multiply int8_t, add results pairwise twice and return as float vector
  567. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  568. const __m128i xl = _mm256_castsi256_si128(x);
  569. const __m128i xh = _mm256_extractf128_si256(x, 1);
  570. const __m128i yl = _mm256_castsi256_si128(y);
  571. const __m128i yh = _mm256_extractf128_si256(y, 1);
  572. // Get absolute values of x vectors
  573. const __m128i axl = _mm_sign_epi8(xl, xl);
  574. const __m128i axh = _mm_sign_epi8(xh, xh);
  575. // Sign the values of the y vectors
  576. const __m128i syl = _mm_sign_epi8(yl, xl);
  577. const __m128i syh = _mm_sign_epi8(yh, xh);
  578. // Perform multiplication and create 16-bit values
  579. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  580. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  581. return sum_i16_pairs_float(doth, dotl);
  582. }
  583. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  584. {
  585. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  586. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  587. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  588. __m128i low = _mm_and_si128( lowByte, bytes1 );
  589. high = _mm_srli_epi16( high, 4 );
  590. bytes1 = _mm_or_si128( low, high );
  591. high = _mm_andnot_si128( lowByte, bytes2 );
  592. low = _mm_and_si128( lowByte, bytes2 );
  593. high = _mm_srli_epi16( high, 4 );
  594. bytes2 = _mm_or_si128( low, high );
  595. return _mm_packus_epi16( bytes1, bytes2);
  596. }
  597. #endif
  598. #elif defined(__SSSE3__)
  599. // horizontally add 4x4 floats
  600. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  601. __m128 res_0 =_mm_hadd_ps(a, b);
  602. __m128 res_1 =_mm_hadd_ps(c, d);
  603. __m128 res =_mm_hadd_ps(res_0, res_1);
  604. res =_mm_hadd_ps(res, res);
  605. res =_mm_hadd_ps(res, res);
  606. return _mm_cvtss_f32(res);
  607. }
  608. #endif // __AVX__ || __AVX2__ || __AVX512F__
  609. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  610. #if defined(__ARM_NEON)
  611. #if !defined(__aarch64__)
  612. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  613. return
  614. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  615. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  616. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  617. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  618. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  619. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  620. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  621. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  622. }
  623. inline static int16_t vaddvq_s8(int8x16_t v) {
  624. return
  625. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  626. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  627. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  628. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  629. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  630. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  631. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  632. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  633. }
  634. inline static int32_t vaddvq_s16(int16x8_t v) {
  635. return
  636. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  637. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  638. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  639. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  640. }
  641. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  642. return
  643. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  644. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  645. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  646. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  647. }
  648. inline static int32_t vaddvq_s32(int32x4_t v) {
  649. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  650. }
  651. inline static float vaddvq_f32(float32x4_t v) {
  652. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  653. }
  654. inline static float vminvq_f32(float32x4_t v) {
  655. return
  656. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  657. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  658. }
  659. inline static float vmaxvq_f32(float32x4_t v) {
  660. return
  661. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  662. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  663. }
  664. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  665. int32x4_t res;
  666. res[0] = roundf(vgetq_lane_f32(v, 0));
  667. res[1] = roundf(vgetq_lane_f32(v, 1));
  668. res[2] = roundf(vgetq_lane_f32(v, 2));
  669. res[3] = roundf(vgetq_lane_f32(v, 3));
  670. return res;
  671. }
  672. #endif
  673. #endif
  674. #define QK4_0 32
  675. typedef struct {
  676. ggml_fp16_t d; // delta
  677. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  678. } block_q4_0;
  679. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  680. #define QK4_1 32
  681. typedef struct {
  682. ggml_fp16_t d; // delta
  683. ggml_fp16_t m; // min
  684. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  685. } block_q4_1;
  686. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  687. #define QK5_0 32
  688. typedef struct {
  689. ggml_fp16_t d; // delta
  690. uint8_t qh[4]; // 5-th bit of quants
  691. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  692. } block_q5_0;
  693. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  694. #define QK5_1 32
  695. typedef struct {
  696. ggml_fp16_t d; // delta
  697. ggml_fp16_t m; // min
  698. uint8_t qh[4]; // 5-th bit of quants
  699. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  700. } block_q5_1;
  701. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  702. #define QK8_0 32
  703. typedef struct {
  704. ggml_fp16_t d; // delta
  705. int8_t qs[QK8_0]; // quants
  706. } block_q8_0;
  707. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  708. #define QK8_1 32
  709. typedef struct {
  710. float d; // delta
  711. float s; // d * sum(qs[i])
  712. int8_t qs[QK8_1]; // quants
  713. } block_q8_1;
  714. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  715. // reference implementation for deterministic creation of model files
  716. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  717. static const int qk = QK4_0;
  718. assert(k % qk == 0);
  719. const int nb = k / qk;
  720. for (int i = 0; i < nb; i++) {
  721. float amax = 0.0f; // absolute max
  722. float max = 0.0f;
  723. for (int j = 0; j < qk; j++) {
  724. const float v = x[i*qk + j];
  725. if (amax < fabsf(v)) {
  726. amax = fabsf(v);
  727. max = v;
  728. }
  729. }
  730. const float d = max / -8;
  731. const float id = d ? 1.0f/d : 0.0f;
  732. y[i].d = GGML_FP32_TO_FP16(d);
  733. for (int j = 0; j < qk/2; ++j) {
  734. const float x0 = x[i*qk + 0 + j]*id;
  735. const float x1 = x[i*qk + qk/2 + j]*id;
  736. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  737. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  738. y[i].qs[j] = xi0;
  739. y[i].qs[j] |= xi1 << 4;
  740. }
  741. }
  742. }
  743. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  744. quantize_row_q4_0_reference(x, y, k);
  745. }
  746. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  747. const int qk = QK4_1;
  748. assert(k % qk == 0);
  749. const int nb = k / qk;
  750. for (int i = 0; i < nb; i++) {
  751. float min = FLT_MAX;
  752. float max = -FLT_MAX;
  753. for (int j = 0; j < qk; j++) {
  754. const float v = x[i*qk + j];
  755. if (v < min) min = v;
  756. if (v > max) max = v;
  757. }
  758. const float d = (max - min) / ((1 << 4) - 1);
  759. const float id = d ? 1.0f/d : 0.0f;
  760. y[i].d = GGML_FP32_TO_FP16(d);
  761. y[i].m = GGML_FP32_TO_FP16(min);
  762. for (int j = 0; j < qk/2; ++j) {
  763. const float x0 = (x[i*qk + 0 + j] - min)*id;
  764. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  765. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  766. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  767. y[i].qs[j] = xi0;
  768. y[i].qs[j] |= xi1 << 4;
  769. }
  770. }
  771. }
  772. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  773. quantize_row_q4_1_reference(x, y, k);
  774. }
  775. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  776. static const int qk = QK5_0;
  777. assert(k % qk == 0);
  778. const int nb = k / qk;
  779. for (int i = 0; i < nb; i++) {
  780. float amax = 0.0f; // absolute max
  781. float max = 0.0f;
  782. for (int j = 0; j < qk; j++) {
  783. const float v = x[i*qk + j];
  784. if (amax < fabsf(v)) {
  785. amax = fabsf(v);
  786. max = v;
  787. }
  788. }
  789. const float d = max / -16;
  790. const float id = d ? 1.0f/d : 0.0f;
  791. y[i].d = GGML_FP32_TO_FP16(d);
  792. uint32_t qh = 0;
  793. for (int j = 0; j < qk/2; ++j) {
  794. const float x0 = x[i*qk + 0 + j]*id;
  795. const float x1 = x[i*qk + qk/2 + j]*id;
  796. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  797. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  798. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  799. // get the 5-th bit and store it in qh at the right position
  800. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  801. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  802. }
  803. memcpy(&y[i].qh, &qh, sizeof(qh));
  804. }
  805. }
  806. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  807. quantize_row_q5_0_reference(x, y, k);
  808. }
  809. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  810. const int qk = QK5_1;
  811. assert(k % qk == 0);
  812. const int nb = k / qk;
  813. for (int i = 0; i < nb; i++) {
  814. float min = FLT_MAX;
  815. float max = -FLT_MAX;
  816. for (int j = 0; j < qk; j++) {
  817. const float v = x[i*qk + j];
  818. if (v < min) min = v;
  819. if (v > max) max = v;
  820. }
  821. const float d = (max - min) / ((1 << 5) - 1);
  822. const float id = d ? 1.0f/d : 0.0f;
  823. y[i].d = GGML_FP32_TO_FP16(d);
  824. y[i].m = GGML_FP32_TO_FP16(min);
  825. uint32_t qh = 0;
  826. for (int j = 0; j < qk/2; ++j) {
  827. const float x0 = (x[i*qk + 0 + j] - min)*id;
  828. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  829. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  830. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  831. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  832. // get the 5-th bit and store it in qh at the right position
  833. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  834. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  835. }
  836. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  837. }
  838. }
  839. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  840. quantize_row_q5_1_reference(x, y, k);
  841. }
  842. // reference implementation for deterministic creation of model files
  843. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  844. assert(k % QK8_0 == 0);
  845. const int nb = k / QK8_0;
  846. for (int i = 0; i < nb; i++) {
  847. float amax = 0.0f; // absolute max
  848. for (int j = 0; j < QK8_0; j++) {
  849. const float v = x[i*QK8_0 + j];
  850. amax = MAX(amax, fabsf(v));
  851. }
  852. const float d = amax / ((1 << 7) - 1);
  853. const float id = d ? 1.0f/d : 0.0f;
  854. y[i].d = GGML_FP32_TO_FP16(d);
  855. for (int j = 0; j < QK8_0; ++j) {
  856. const float x0 = x[i*QK8_0 + j]*id;
  857. y[i].qs[j] = roundf(x0);
  858. }
  859. }
  860. }
  861. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  862. assert(QK8_0 == 32);
  863. assert(k % QK8_0 == 0);
  864. const int nb = k / QK8_0;
  865. block_q8_0 * restrict y = vy;
  866. #if defined(__ARM_NEON)
  867. for (int i = 0; i < nb; i++) {
  868. float32x4_t srcv [8];
  869. float32x4_t asrcv[8];
  870. float32x4_t amaxv[8];
  871. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  872. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  873. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  874. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  875. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  876. const float amax = vmaxvq_f32(amaxv[0]);
  877. const float d = amax / ((1 << 7) - 1);
  878. const float id = d ? 1.0f/d : 0.0f;
  879. y[i].d = GGML_FP32_TO_FP16(d);
  880. for (int j = 0; j < 8; j++) {
  881. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  882. const int32x4_t vi = vcvtnq_s32_f32(v);
  883. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  884. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  885. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  886. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  887. }
  888. }
  889. #elif defined(__wasm_simd128__)
  890. for (int i = 0; i < nb; i++) {
  891. v128_t srcv [8];
  892. v128_t asrcv[8];
  893. v128_t amaxv[8];
  894. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  895. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  896. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  897. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  898. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  899. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  900. wasm_f32x4_extract_lane(amaxv[0], 1)),
  901. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  902. wasm_f32x4_extract_lane(amaxv[0], 3)));
  903. const float d = amax / ((1 << 7) - 1);
  904. const float id = d ? 1.0f/d : 0.0f;
  905. y[i].d = GGML_FP32_TO_FP16(d);
  906. for (int j = 0; j < 8; j++) {
  907. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  908. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  909. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  910. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  911. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  912. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  913. }
  914. }
  915. #elif defined(__AVX2__) || defined(__AVX__)
  916. for (int i = 0; i < nb; i++) {
  917. // Load elements into 4 AVX vectors
  918. __m256 v0 = _mm256_loadu_ps( x );
  919. __m256 v1 = _mm256_loadu_ps( x + 8 );
  920. __m256 v2 = _mm256_loadu_ps( x + 16 );
  921. __m256 v3 = _mm256_loadu_ps( x + 24 );
  922. x += 32;
  923. // Compute max(abs(e)) for the block
  924. const __m256 signBit = _mm256_set1_ps( -0.0f );
  925. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  926. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  927. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  928. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  929. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  930. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  931. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  932. const float maxScalar = _mm_cvtss_f32( max4 );
  933. // Quantize these floats
  934. const float d = maxScalar / 127.f;
  935. y[i].d = GGML_FP32_TO_FP16(d);
  936. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  937. const __m256 mul = _mm256_set1_ps( id );
  938. // Apply the multiplier
  939. v0 = _mm256_mul_ps( v0, mul );
  940. v1 = _mm256_mul_ps( v1, mul );
  941. v2 = _mm256_mul_ps( v2, mul );
  942. v3 = _mm256_mul_ps( v3, mul );
  943. // Round to nearest integer
  944. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  945. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  946. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  947. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  948. // Convert floats to integers
  949. __m256i i0 = _mm256_cvtps_epi32( v0 );
  950. __m256i i1 = _mm256_cvtps_epi32( v1 );
  951. __m256i i2 = _mm256_cvtps_epi32( v2 );
  952. __m256i i3 = _mm256_cvtps_epi32( v3 );
  953. #if defined(__AVX2__)
  954. // Convert int32 to int16
  955. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  956. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  957. // Convert int16 to int8
  958. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  959. // We got our precious signed bytes, but the order is now wrong
  960. // These AVX2 pack instructions process 16-byte pieces independently
  961. // The following instruction is fixing the order
  962. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  963. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  964. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  965. #else
  966. // Since we don't have in AVX some necessary functions,
  967. // we split the registers in half and call AVX2 analogs from SSE
  968. __m128i ni0 = _mm256_castsi256_si128( i0 );
  969. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  970. __m128i ni2 = _mm256_castsi256_si128( i1 );
  971. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  972. __m128i ni4 = _mm256_castsi256_si128( i2 );
  973. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  974. __m128i ni6 = _mm256_castsi256_si128( i3 );
  975. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  976. // Convert int32 to int16
  977. ni0 = _mm_packs_epi32( ni0, ni1 );
  978. ni2 = _mm_packs_epi32( ni2, ni3 );
  979. ni4 = _mm_packs_epi32( ni4, ni5 );
  980. ni6 = _mm_packs_epi32( ni6, ni7 );
  981. // Convert int16 to int8
  982. ni0 = _mm_packs_epi16( ni0, ni2 );
  983. ni4 = _mm_packs_epi16( ni4, ni6 );
  984. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  985. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  986. #endif
  987. }
  988. #else
  989. // scalar
  990. quantize_row_q8_0_reference(x, y, k);
  991. #endif
  992. }
  993. // reference implementation for deterministic creation of model files
  994. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  995. assert(QK8_1 == 32);
  996. assert(k % QK8_1 == 0);
  997. const int nb = k / QK8_1;
  998. for (int i = 0; i < nb; i++) {
  999. float amax = 0.0f; // absolute max
  1000. for (int j = 0; j < QK8_1; j++) {
  1001. const float v = x[i*QK8_1 + j];
  1002. amax = MAX(amax, fabsf(v));
  1003. }
  1004. const float d = amax / ((1 << 7) - 1);
  1005. const float id = d ? 1.0f/d : 0.0f;
  1006. y[i].d = d;
  1007. int sum = 0;
  1008. for (int j = 0; j < QK8_1/2; ++j) {
  1009. const float v0 = x[i*QK8_1 + j]*id;
  1010. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1011. y[i].qs[ j] = roundf(v0);
  1012. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1013. sum += y[i].qs[ j];
  1014. sum += y[i].qs[QK8_1/2 + j];
  1015. }
  1016. y[i].s = sum*d;
  1017. }
  1018. }
  1019. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1020. assert(k % QK8_1 == 0);
  1021. const int nb = k / QK8_1;
  1022. block_q8_1 * restrict y = vy;
  1023. #if defined(__ARM_NEON)
  1024. for (int i = 0; i < nb; i++) {
  1025. float32x4_t srcv [8];
  1026. float32x4_t asrcv[8];
  1027. float32x4_t amaxv[8];
  1028. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1029. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1030. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1031. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1032. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1033. const float amax = vmaxvq_f32(amaxv[0]);
  1034. const float d = amax / ((1 << 7) - 1);
  1035. const float id = d ? 1.0f/d : 0.0f;
  1036. y[i].d = d;
  1037. int32x4_t accv = vdupq_n_s32(0);
  1038. for (int j = 0; j < 8; j++) {
  1039. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1040. const int32x4_t vi = vcvtnq_s32_f32(v);
  1041. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1042. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1043. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1044. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1045. accv = vaddq_s32(accv, vi);
  1046. }
  1047. y[i].s = d * vaddvq_s32(accv);
  1048. }
  1049. #elif defined(__wasm_simd128__)
  1050. for (int i = 0; i < nb; i++) {
  1051. v128_t srcv [8];
  1052. v128_t asrcv[8];
  1053. v128_t amaxv[8];
  1054. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1055. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1056. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1057. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1058. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1059. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1060. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1061. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1062. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1063. const float d = amax / ((1 << 7) - 1);
  1064. const float id = d ? 1.0f/d : 0.0f;
  1065. y[i].d = d;
  1066. v128_t accv = wasm_i32x4_splat(0);
  1067. for (int j = 0; j < 8; j++) {
  1068. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1069. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1070. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1071. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1072. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1073. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1074. accv = wasm_i32x4_add(accv, vi);
  1075. }
  1076. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1077. wasm_i32x4_extract_lane(accv, 1) +
  1078. wasm_i32x4_extract_lane(accv, 2) +
  1079. wasm_i32x4_extract_lane(accv, 3));
  1080. }
  1081. #elif defined(__AVX2__) || defined(__AVX__)
  1082. for (int i = 0; i < nb; i++) {
  1083. // Load elements into 4 AVX vectors
  1084. __m256 v0 = _mm256_loadu_ps( x );
  1085. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1086. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1087. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1088. x += 32;
  1089. // Compute max(abs(e)) for the block
  1090. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1091. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1092. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1093. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1094. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1095. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1096. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1097. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1098. const float maxScalar = _mm_cvtss_f32( max4 );
  1099. // Quantize these floats
  1100. const float d = maxScalar / 127.f;
  1101. y[i].d = d;
  1102. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1103. const __m256 mul = _mm256_set1_ps( id );
  1104. // Apply the multiplier
  1105. v0 = _mm256_mul_ps( v0, mul );
  1106. v1 = _mm256_mul_ps( v1, mul );
  1107. v2 = _mm256_mul_ps( v2, mul );
  1108. v3 = _mm256_mul_ps( v3, mul );
  1109. // Round to nearest integer
  1110. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1111. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1112. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1113. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1114. // Convert floats to integers
  1115. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1116. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1117. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1118. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1119. #if defined(__AVX2__)
  1120. // Compute the sum of the quants and set y[i].s
  1121. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1122. // Convert int32 to int16
  1123. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1124. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1125. // Convert int16 to int8
  1126. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1127. // We got our precious signed bytes, but the order is now wrong
  1128. // These AVX2 pack instructions process 16-byte pieces independently
  1129. // The following instruction is fixing the order
  1130. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1131. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1132. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1133. #else
  1134. // Since we don't have in AVX some necessary functions,
  1135. // we split the registers in half and call AVX2 analogs from SSE
  1136. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1137. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1138. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1139. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1140. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1141. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1142. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1143. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1144. // Compute the sum of the quants and set y[i].s
  1145. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1146. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1147. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1148. // Convert int32 to int16
  1149. ni0 = _mm_packs_epi32( ni0, ni1 );
  1150. ni2 = _mm_packs_epi32( ni2, ni3 );
  1151. ni4 = _mm_packs_epi32( ni4, ni5 );
  1152. ni6 = _mm_packs_epi32( ni6, ni7 );
  1153. // Convert int16 to int8
  1154. ni0 = _mm_packs_epi16( ni0, ni2 );
  1155. ni4 = _mm_packs_epi16( ni4, ni6 );
  1156. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1157. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1158. #endif
  1159. }
  1160. #else
  1161. // scalar
  1162. quantize_row_q8_1_reference(x, y, k);
  1163. #endif
  1164. }
  1165. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1166. static const int qk = QK4_0;
  1167. assert(k % qk == 0);
  1168. const int nb = k / qk;
  1169. for (int i = 0; i < nb; i++) {
  1170. const float d = GGML_FP16_TO_FP32(x[i].d);
  1171. for (int j = 0; j < qk/2; ++j) {
  1172. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1173. const int x1 = (x[i].qs[j] >> 4) - 8;
  1174. y[i*qk + j + 0 ] = x0*d;
  1175. y[i*qk + j + qk/2] = x1*d;
  1176. }
  1177. }
  1178. }
  1179. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1180. static const int qk = QK4_1;
  1181. assert(k % qk == 0);
  1182. const int nb = k / qk;
  1183. for (int i = 0; i < nb; i++) {
  1184. const float d = GGML_FP16_TO_FP32(x[i].d);
  1185. const float m = GGML_FP16_TO_FP32(x[i].m);
  1186. for (int j = 0; j < qk/2; ++j) {
  1187. const int x0 = (x[i].qs[j] & 0x0F);
  1188. const int x1 = (x[i].qs[j] >> 4);
  1189. y[i*qk + j + 0 ] = x0*d + m;
  1190. y[i*qk + j + qk/2] = x1*d + m;
  1191. }
  1192. }
  1193. }
  1194. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1195. static const int qk = QK5_0;
  1196. assert(k % qk == 0);
  1197. const int nb = k / qk;
  1198. for (int i = 0; i < nb; i++) {
  1199. const float d = GGML_FP16_TO_FP32(x[i].d);
  1200. uint32_t qh;
  1201. memcpy(&qh, x[i].qh, sizeof(qh));
  1202. for (int j = 0; j < qk/2; ++j) {
  1203. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1204. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1205. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1206. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1207. y[i*qk + j + 0 ] = x0*d;
  1208. y[i*qk + j + qk/2] = x1*d;
  1209. }
  1210. }
  1211. }
  1212. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1213. static const int qk = QK5_1;
  1214. assert(k % qk == 0);
  1215. const int nb = k / qk;
  1216. for (int i = 0; i < nb; i++) {
  1217. const float d = GGML_FP16_TO_FP32(x[i].d);
  1218. const float m = GGML_FP16_TO_FP32(x[i].m);
  1219. uint32_t qh;
  1220. memcpy(&qh, x[i].qh, sizeof(qh));
  1221. for (int j = 0; j < qk/2; ++j) {
  1222. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1223. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1224. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1225. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1226. y[i*qk + j + 0 ] = x0*d + m;
  1227. y[i*qk + j + qk/2] = x1*d + m;
  1228. }
  1229. }
  1230. }
  1231. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1232. static const int qk = QK8_0;
  1233. assert(k % qk == 0);
  1234. const int nb = k / qk;
  1235. const block_q8_0 * restrict x = vx;
  1236. for (int i = 0; i < nb; i++) {
  1237. const float d = GGML_FP16_TO_FP32(x[i].d);
  1238. for (int j = 0; j < qk; ++j) {
  1239. y[i*qk + j] = x[i].qs[j]*d;
  1240. }
  1241. }
  1242. }
  1243. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1244. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1245. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1246. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1247. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1248. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1249. [GGML_TYPE_Q4_0] = {
  1250. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1251. .quantize_row_q = quantize_row_q4_0,
  1252. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1253. .quantize_row_q_dot = quantize_row_q8_0,
  1254. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1255. .vec_dot_type = GGML_TYPE_Q8_0,
  1256. },
  1257. [GGML_TYPE_Q4_1] = {
  1258. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1259. .quantize_row_q = quantize_row_q4_1,
  1260. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1261. .quantize_row_q_dot = quantize_row_q8_1,
  1262. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1263. .vec_dot_type = GGML_TYPE_Q8_1,
  1264. },
  1265. [GGML_TYPE_Q5_0] = {
  1266. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1267. .quantize_row_q = quantize_row_q5_0,
  1268. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1269. .quantize_row_q_dot = quantize_row_q8_0,
  1270. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1271. .vec_dot_type = GGML_TYPE_Q8_0,
  1272. },
  1273. [GGML_TYPE_Q5_1] = {
  1274. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1275. .quantize_row_q = quantize_row_q5_1,
  1276. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1277. .quantize_row_q_dot = quantize_row_q8_1,
  1278. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1279. .vec_dot_type = GGML_TYPE_Q8_1,
  1280. },
  1281. [GGML_TYPE_Q8_0] = {
  1282. .dequantize_row_q = dequantize_row_q8_0,
  1283. .quantize_row_q = quantize_row_q8_0,
  1284. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1285. .quantize_row_q_dot = quantize_row_q8_0,
  1286. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1287. .vec_dot_type = GGML_TYPE_Q8_0,
  1288. },
  1289. [GGML_TYPE_Q8_1] = {
  1290. .dequantize_row_q = NULL, // TODO
  1291. .quantize_row_q = quantize_row_q8_1,
  1292. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1293. .quantize_row_q_dot = quantize_row_q8_1,
  1294. .vec_dot_q = NULL, // TODO
  1295. .vec_dot_type = GGML_TYPE_Q8_1,
  1296. },
  1297. [GGML_TYPE_Q2_K] = {
  1298. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_k,
  1299. .quantize_row_q = quantize_row_q2_k,
  1300. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_k_reference,
  1301. .quantize_row_q_dot = quantize_row_q8_k,
  1302. .vec_dot_q = ggml_vec_dot_q2_k_q8_k,
  1303. .vec_dot_type = GGML_TYPE_Q8_K,
  1304. },
  1305. [GGML_TYPE_Q3_K] = {
  1306. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_k,
  1307. .quantize_row_q = quantize_row_q3_k,
  1308. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_k_reference,
  1309. .quantize_row_q_dot = quantize_row_q8_k,
  1310. .vec_dot_q = ggml_vec_dot_q3_k_q8_k,
  1311. .vec_dot_type = GGML_TYPE_Q8_K,
  1312. },
  1313. [GGML_TYPE_Q4_K] = {
  1314. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_k,
  1315. .quantize_row_q = quantize_row_q4_k,
  1316. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_k_reference,
  1317. .quantize_row_q_dot = quantize_row_q8_k,
  1318. .vec_dot_q = ggml_vec_dot_q4_k_q8_k,
  1319. .vec_dot_type = GGML_TYPE_Q8_K,
  1320. },
  1321. [GGML_TYPE_Q5_K] = {
  1322. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_k,
  1323. .quantize_row_q = quantize_row_q5_k,
  1324. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_k_reference,
  1325. .quantize_row_q_dot = quantize_row_q8_k,
  1326. .vec_dot_q = ggml_vec_dot_q5_k_q8_k,
  1327. .vec_dot_type = GGML_TYPE_Q8_K,
  1328. },
  1329. [GGML_TYPE_Q6_K] = {
  1330. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_k,
  1331. .quantize_row_q = quantize_row_q6_k,
  1332. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_k_reference,
  1333. .quantize_row_q_dot = quantize_row_q8_k,
  1334. .vec_dot_q = ggml_vec_dot_q6_k_q8_k,
  1335. .vec_dot_type = GGML_TYPE_Q8_K,
  1336. },
  1337. };
  1338. // For internal test use
  1339. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1340. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1341. return quantize_fns[i];
  1342. }
  1343. //
  1344. // simd mappings
  1345. //
  1346. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1347. // we then implement the fundamental computation operations below using only these macros
  1348. // adding support for new architectures requires to define the corresponding SIMD macros
  1349. //
  1350. // GGML_F32_STEP / GGML_F16_STEP
  1351. // number of elements to process in a single step
  1352. //
  1353. // GGML_F32_EPR / GGML_F16_EPR
  1354. // number of elements to fit in a single register
  1355. //
  1356. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1357. #define GGML_SIMD
  1358. // F32 NEON
  1359. #define GGML_F32_STEP 16
  1360. #define GGML_F32_EPR 4
  1361. #define GGML_F32x4 float32x4_t
  1362. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1363. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1364. #define GGML_F32x4_LOAD vld1q_f32
  1365. #define GGML_F32x4_STORE vst1q_f32
  1366. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1367. #define GGML_F32x4_ADD vaddq_f32
  1368. #define GGML_F32x4_MUL vmulq_f32
  1369. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1370. #define GGML_F32x4_REDUCE(res, x) \
  1371. { \
  1372. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1373. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1374. } \
  1375. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1376. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1377. } \
  1378. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1379. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1380. } \
  1381. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1382. }
  1383. #define GGML_F32_VEC GGML_F32x4
  1384. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1385. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1386. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1387. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1388. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1389. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1390. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1391. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1392. // F16 NEON
  1393. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1394. #define GGML_F16_STEP 32
  1395. #define GGML_F16_EPR 8
  1396. #define GGML_F16x8 float16x8_t
  1397. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1398. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1399. #define GGML_F16x8_LOAD vld1q_f16
  1400. #define GGML_F16x8_STORE vst1q_f16
  1401. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1402. #define GGML_F16x8_ADD vaddq_f16
  1403. #define GGML_F16x8_MUL vmulq_f16
  1404. #define GGML_F16x8_REDUCE(res, x) \
  1405. { \
  1406. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1407. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1408. } \
  1409. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1410. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1411. } \
  1412. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1413. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1414. } \
  1415. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1416. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1417. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1418. }
  1419. #define GGML_F16_VEC GGML_F16x8
  1420. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1421. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1422. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1423. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1424. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1425. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1426. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1427. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1428. #else
  1429. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1430. // and take advantage of the vcvt_ functions to convert to/from FP16
  1431. #define GGML_F16_STEP 16
  1432. #define GGML_F16_EPR 4
  1433. #define GGML_F32Cx4 float32x4_t
  1434. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1435. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1436. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1437. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1438. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1439. #define GGML_F32Cx4_ADD vaddq_f32
  1440. #define GGML_F32Cx4_MUL vmulq_f32
  1441. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1442. #define GGML_F16_VEC GGML_F32Cx4
  1443. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1444. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1445. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1446. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1447. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1448. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1449. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1450. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1451. #endif
  1452. #elif defined(__AVX__)
  1453. #define GGML_SIMD
  1454. // F32 AVX
  1455. #define GGML_F32_STEP 32
  1456. #define GGML_F32_EPR 8
  1457. #define GGML_F32x8 __m256
  1458. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1459. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1460. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1461. #define GGML_F32x8_STORE _mm256_storeu_ps
  1462. #if defined(__FMA__)
  1463. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1464. #else
  1465. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1466. #endif
  1467. #define GGML_F32x8_ADD _mm256_add_ps
  1468. #define GGML_F32x8_MUL _mm256_mul_ps
  1469. #define GGML_F32x8_REDUCE(res, x) \
  1470. { \
  1471. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1472. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1473. } \
  1474. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1475. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1476. } \
  1477. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1478. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1479. } \
  1480. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1481. _mm256_extractf128_ps(x[0], 1)); \
  1482. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1483. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1484. }
  1485. // TODO: is this optimal ?
  1486. #define GGML_F32_VEC GGML_F32x8
  1487. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1488. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1489. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1490. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1491. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1492. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1493. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1494. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1495. // F16 AVX
  1496. #define GGML_F16_STEP 32
  1497. #define GGML_F16_EPR 8
  1498. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1499. #define GGML_F32Cx8 __m256
  1500. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1501. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1502. #if defined(__F16C__)
  1503. // the _mm256_cvt intrinsics require F16C
  1504. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1505. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1506. #else
  1507. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1508. float tmp[8];
  1509. for (int i = 0; i < 8; i++) {
  1510. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1511. }
  1512. return _mm256_loadu_ps(tmp);
  1513. }
  1514. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1515. float arr[8];
  1516. _mm256_storeu_ps(arr, y);
  1517. for (int i = 0; i < 8; i++)
  1518. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1519. }
  1520. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1521. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1522. #endif
  1523. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1524. #define GGML_F32Cx8_ADD _mm256_add_ps
  1525. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1526. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1527. #define GGML_F16_VEC GGML_F32Cx8
  1528. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1529. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1530. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1531. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1532. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1533. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1534. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1535. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1536. #elif defined(__POWER9_VECTOR__)
  1537. #define GGML_SIMD
  1538. // F32 POWER9
  1539. #define GGML_F32_STEP 32
  1540. #define GGML_F32_EPR 4
  1541. #define GGML_F32x4 vector float
  1542. #define GGML_F32x4_ZERO 0.0f
  1543. #define GGML_F32x4_SET1 vec_splats
  1544. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1545. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1546. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1547. #define GGML_F32x4_ADD vec_add
  1548. #define GGML_F32x4_MUL vec_mul
  1549. #define GGML_F32x4_REDUCE(res, x) \
  1550. { \
  1551. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1552. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1553. } \
  1554. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1555. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1556. } \
  1557. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1558. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1559. } \
  1560. res = vec_extract(x[0], 0) + \
  1561. vec_extract(x[0], 1) + \
  1562. vec_extract(x[0], 2) + \
  1563. vec_extract(x[0], 3); \
  1564. }
  1565. #define GGML_F32_VEC GGML_F32x4
  1566. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1567. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1568. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1569. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1570. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1571. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1572. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1573. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1574. // F16 POWER9
  1575. #define GGML_F16_STEP GGML_F32_STEP
  1576. #define GGML_F16_EPR GGML_F32_EPR
  1577. #define GGML_F16_VEC GGML_F32x4
  1578. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1579. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1580. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1581. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1582. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1583. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1584. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1585. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1586. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1587. #define GGML_F16_VEC_STORE(p, r, i) \
  1588. if (i & 0x1) \
  1589. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1590. r[i - GGML_ENDIAN_BYTE(0)]), \
  1591. 0, p - GGML_F16_EPR)
  1592. #elif defined(__wasm_simd128__)
  1593. #define GGML_SIMD
  1594. // F32 WASM
  1595. #define GGML_F32_STEP 16
  1596. #define GGML_F32_EPR 4
  1597. #define GGML_F32x4 v128_t
  1598. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1599. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1600. #define GGML_F32x4_LOAD wasm_v128_load
  1601. #define GGML_F32x4_STORE wasm_v128_store
  1602. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1603. #define GGML_F32x4_ADD wasm_f32x4_add
  1604. #define GGML_F32x4_MUL wasm_f32x4_mul
  1605. #define GGML_F32x4_REDUCE(res, x) \
  1606. { \
  1607. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1608. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1609. } \
  1610. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1611. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1612. } \
  1613. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1614. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1615. } \
  1616. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1617. wasm_f32x4_extract_lane(x[0], 1) + \
  1618. wasm_f32x4_extract_lane(x[0], 2) + \
  1619. wasm_f32x4_extract_lane(x[0], 3); \
  1620. }
  1621. #define GGML_F32_VEC GGML_F32x4
  1622. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1623. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1624. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1625. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1626. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1627. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1628. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1629. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1630. // F16 WASM
  1631. #define GGML_F16_STEP 16
  1632. #define GGML_F16_EPR 4
  1633. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1634. float tmp[4];
  1635. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1636. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1637. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1638. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1639. return wasm_v128_load(tmp);
  1640. }
  1641. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1642. float tmp[4];
  1643. wasm_v128_store(tmp, x);
  1644. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1645. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1646. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1647. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1648. }
  1649. #define GGML_F16x4 v128_t
  1650. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1651. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1652. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1653. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1654. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1655. #define GGML_F16x4_ADD wasm_f32x4_add
  1656. #define GGML_F16x4_MUL wasm_f32x4_mul
  1657. #define GGML_F16x4_REDUCE(res, x) \
  1658. { \
  1659. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1660. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1661. } \
  1662. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1663. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1664. } \
  1665. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1666. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1667. } \
  1668. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1669. wasm_f32x4_extract_lane(x[0], 1) + \
  1670. wasm_f32x4_extract_lane(x[0], 2) + \
  1671. wasm_f32x4_extract_lane(x[0], 3); \
  1672. }
  1673. #define GGML_F16_VEC GGML_F16x4
  1674. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1675. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1676. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1677. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1678. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1679. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1680. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1681. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1682. #elif defined(__SSE3__)
  1683. #define GGML_SIMD
  1684. // F32 SSE
  1685. #define GGML_F32_STEP 32
  1686. #define GGML_F32_EPR 4
  1687. #define GGML_F32x4 __m128
  1688. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1689. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1690. #define GGML_F32x4_LOAD _mm_loadu_ps
  1691. #define GGML_F32x4_STORE _mm_storeu_ps
  1692. #if defined(__FMA__)
  1693. // TODO: Does this work?
  1694. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1695. #else
  1696. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1697. #endif
  1698. #define GGML_F32x4_ADD _mm_add_ps
  1699. #define GGML_F32x4_MUL _mm_mul_ps
  1700. #define GGML_F32x4_REDUCE(res, x) \
  1701. { \
  1702. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1703. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1704. } \
  1705. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1706. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1707. } \
  1708. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1709. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1710. } \
  1711. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1712. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1713. }
  1714. // TODO: is this optimal ?
  1715. #define GGML_F32_VEC GGML_F32x4
  1716. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1717. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1718. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1719. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1720. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1721. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1722. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1723. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1724. // F16 SSE
  1725. #define GGML_F16_STEP 32
  1726. #define GGML_F16_EPR 4
  1727. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1728. float tmp[4];
  1729. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1730. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1731. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1732. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1733. return _mm_loadu_ps(tmp);
  1734. }
  1735. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1736. float arr[4];
  1737. _mm_storeu_ps(arr, y);
  1738. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1739. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1740. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1741. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1742. }
  1743. #define GGML_F32Cx4 __m128
  1744. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1745. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1746. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1747. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1748. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1749. #define GGML_F32Cx4_ADD _mm_add_ps
  1750. #define GGML_F32Cx4_MUL _mm_mul_ps
  1751. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1752. #define GGML_F16_VEC GGML_F32Cx4
  1753. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1754. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1755. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1756. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1757. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1758. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1759. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1760. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1761. #endif
  1762. // GGML_F32_ARR / GGML_F16_ARR
  1763. // number of registers to use per step
  1764. #ifdef GGML_SIMD
  1765. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1766. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1767. #endif
  1768. //
  1769. // fundamental operations
  1770. //
  1771. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1772. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1773. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1774. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1775. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1776. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1777. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1778. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1779. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1780. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1781. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1782. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1783. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1784. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1785. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1786. #ifdef GGML_SIMD
  1787. float sumf = 0.0f;
  1788. const int np = (n & ~(GGML_F32_STEP - 1));
  1789. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1790. GGML_F32_VEC ax[GGML_F32_ARR];
  1791. GGML_F32_VEC ay[GGML_F32_ARR];
  1792. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1793. for (int j = 0; j < GGML_F32_ARR; j++) {
  1794. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1795. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1796. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1797. }
  1798. }
  1799. // reduce sum0..sum3 to sum0
  1800. GGML_F32_VEC_REDUCE(sumf, sum);
  1801. // leftovers
  1802. for (int i = np; i < n; ++i) {
  1803. sumf += x[i]*y[i];
  1804. }
  1805. #else
  1806. // scalar
  1807. ggml_float sumf = 0.0;
  1808. for (int i = 0; i < n; ++i) {
  1809. sumf += (ggml_float)(x[i]*y[i]);
  1810. }
  1811. #endif
  1812. *s = sumf;
  1813. }
  1814. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1815. ggml_float sumf = 0.0;
  1816. #if defined(GGML_SIMD)
  1817. const int np = (n & ~(GGML_F16_STEP - 1));
  1818. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1819. GGML_F16_VEC ax[GGML_F16_ARR];
  1820. GGML_F16_VEC ay[GGML_F16_ARR];
  1821. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1822. for (int j = 0; j < GGML_F16_ARR; j++) {
  1823. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1824. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1825. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1826. }
  1827. }
  1828. // reduce sum0..sum3 to sum0
  1829. GGML_F16_VEC_REDUCE(sumf, sum);
  1830. // leftovers
  1831. for (int i = np; i < n; ++i) {
  1832. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1833. }
  1834. #else
  1835. for (int i = 0; i < n; ++i) {
  1836. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1837. }
  1838. #endif
  1839. *s = sumf;
  1840. }
  1841. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1842. const int qk = QK8_0;
  1843. const int nb = n / qk;
  1844. assert(n % qk == 0);
  1845. assert(nb % 2 == 0);
  1846. const block_q4_0 * restrict x = vx;
  1847. const block_q8_0 * restrict y = vy;
  1848. #if defined(__ARM_NEON)
  1849. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1850. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1851. for (int i = 0; i < nb; i += 2) {
  1852. const block_q4_0 * restrict x0 = &x[i + 0];
  1853. const block_q4_0 * restrict x1 = &x[i + 1];
  1854. const block_q8_0 * restrict y0 = &y[i + 0];
  1855. const block_q8_0 * restrict y1 = &y[i + 1];
  1856. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1857. const int8x16_t s8b = vdupq_n_s8(0x8);
  1858. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1859. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1860. // 4-bit -> 8-bit
  1861. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1862. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1863. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1864. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1865. // sub 8
  1866. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1867. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1868. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1869. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1870. // load y
  1871. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1872. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1873. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1874. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1875. #if defined(__ARM_FEATURE_DOTPROD)
  1876. // dot product into int32x4_t
  1877. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1878. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1879. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1880. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1881. #else
  1882. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1883. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1884. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1885. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1886. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1887. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1888. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1889. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1890. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1891. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1892. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1893. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1894. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1895. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1896. #endif
  1897. }
  1898. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1899. #elif defined(__AVX2__)
  1900. // Initialize accumulator with zeros
  1901. __m256 acc = _mm256_setzero_ps();
  1902. // Main loop
  1903. for (int i = 0; i < nb; ++i) {
  1904. /* Compute combined scale for the block */
  1905. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1906. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1907. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1908. const __m256i off = _mm256_set1_epi8( 8 );
  1909. bx = _mm256_sub_epi8( bx, off );
  1910. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1911. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1912. /* Multiply q with scale and accumulate */
  1913. acc = _mm256_fmadd_ps( d, q, acc );
  1914. }
  1915. *s = hsum_float_8(acc);
  1916. #elif defined(__AVX__)
  1917. // Initialize accumulator with zeros
  1918. __m256 acc = _mm256_setzero_ps();
  1919. // Main loop
  1920. for (int i = 0; i < nb; ++i) {
  1921. // Compute combined scale for the block
  1922. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1923. const __m128i lowMask = _mm_set1_epi8(0xF);
  1924. const __m128i off = _mm_set1_epi8(8);
  1925. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1926. __m128i bx = _mm_and_si128(lowMask, tmp);
  1927. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1928. bx = _mm_sub_epi8(bx, off);
  1929. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1930. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1931. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1932. bx = _mm_sub_epi8(bx, off);
  1933. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1934. // Convert int32_t to float
  1935. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1936. // Apply the scale, and accumulate
  1937. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1938. }
  1939. *s = hsum_float_8(acc);
  1940. #elif defined(__SSSE3__)
  1941. // set constants
  1942. const __m128i lowMask = _mm_set1_epi8(0xF);
  1943. const __m128i off = _mm_set1_epi8(8);
  1944. // Initialize accumulator with zeros
  1945. __m128 acc_0 = _mm_setzero_ps();
  1946. __m128 acc_1 = _mm_setzero_ps();
  1947. __m128 acc_2 = _mm_setzero_ps();
  1948. __m128 acc_3 = _mm_setzero_ps();
  1949. // First round without accumulation
  1950. {
  1951. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1952. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1953. // Compute combined scale for the block 0 and 1
  1954. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1955. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1956. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1957. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1958. bx_0 = _mm_sub_epi8(bx_0, off);
  1959. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1960. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1961. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1962. bx_1 = _mm_sub_epi8(bx_1, off);
  1963. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1964. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1965. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1966. // Compute combined scale for the block 2 and 3
  1967. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1968. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1969. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1970. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1971. bx_2 = _mm_sub_epi8(bx_2, off);
  1972. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1973. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1974. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1975. bx_3 = _mm_sub_epi8(bx_3, off);
  1976. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1977. // Convert int32_t to float
  1978. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1979. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1980. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1981. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1982. // Apply the scale
  1983. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1984. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1985. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1986. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1987. }
  1988. // Main loop
  1989. for (int i = 2; i < nb; i+=2) {
  1990. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1991. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1992. // Compute combined scale for the block 0 and 1
  1993. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1994. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1995. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1996. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1997. bx_0 = _mm_sub_epi8(bx_0, off);
  1998. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1999. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2000. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2001. bx_1 = _mm_sub_epi8(bx_1, off);
  2002. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2003. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2004. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2005. // Compute combined scale for the block 2 and 3
  2006. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2007. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2008. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2009. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2010. bx_2 = _mm_sub_epi8(bx_2, off);
  2011. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2012. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2013. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2014. bx_3 = _mm_sub_epi8(bx_3, off);
  2015. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2016. // Convert int32_t to float
  2017. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2018. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2019. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2020. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2021. // Apply the scale
  2022. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2023. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2024. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2025. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2026. // Acummulate
  2027. acc_0 = _mm_add_ps(p0_d, acc_0);
  2028. acc_1 = _mm_add_ps(p1_d, acc_1);
  2029. acc_2 = _mm_add_ps(p2_d, acc_2);
  2030. acc_3 = _mm_add_ps(p3_d, acc_3);
  2031. }
  2032. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2033. #else
  2034. // scalar
  2035. float sumf = 0.0;
  2036. for (int i = 0; i < nb; i++) {
  2037. int sumi = 0;
  2038. for (int j = 0; j < qk/2; ++j) {
  2039. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2040. const int v1 = (x[i].qs[j] >> 4) - 8;
  2041. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2042. }
  2043. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2044. }
  2045. *s = sumf;
  2046. #endif
  2047. }
  2048. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2049. const int qk = QK8_1;
  2050. const int nb = n / qk;
  2051. assert(n % qk == 0);
  2052. assert(nb % 2 == 0);
  2053. const block_q4_1 * restrict x = vx;
  2054. const block_q8_1 * restrict y = vy;
  2055. // TODO: add WASM SIMD
  2056. #if defined(__ARM_NEON)
  2057. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2058. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2059. float summs = 0;
  2060. for (int i = 0; i < nb; i += 2) {
  2061. const block_q4_1 * restrict x0 = &x[i + 0];
  2062. const block_q4_1 * restrict x1 = &x[i + 1];
  2063. const block_q8_1 * restrict y0 = &y[i + 0];
  2064. const block_q8_1 * restrict y1 = &y[i + 1];
  2065. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2066. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2067. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2068. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2069. // 4-bit -> 8-bit
  2070. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2071. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2072. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2073. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2074. // load y
  2075. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2076. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2077. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2078. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2079. #if defined(__ARM_FEATURE_DOTPROD)
  2080. // dot product into int32x4_t
  2081. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2082. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2083. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2084. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2085. #else
  2086. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2087. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2088. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2089. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2090. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2091. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2092. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2093. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2094. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2095. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2096. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2097. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2098. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2099. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2100. #endif
  2101. }
  2102. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2103. #elif defined(__AVX2__) || defined(__AVX__)
  2104. // Initialize accumulator with zeros
  2105. __m256 acc = _mm256_setzero_ps();
  2106. float summs = 0;
  2107. // Main loop
  2108. for (int i = 0; i < nb; ++i) {
  2109. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2110. const float d1 = y[i].d;
  2111. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2112. const __m256 d0v = _mm256_set1_ps( d0 );
  2113. const __m256 d1v = _mm256_set1_ps( d1 );
  2114. // Compute combined scales
  2115. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2116. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2117. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2118. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2119. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2120. // Accumulate d0*d1*x*y
  2121. #if defined(__AVX2__)
  2122. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2123. #else
  2124. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2125. #endif
  2126. }
  2127. *s = hsum_float_8(acc) + summs;
  2128. #else
  2129. // scalar
  2130. float sumf = 0.0;
  2131. for (int i = 0; i < nb; i++) {
  2132. int sumi = 0;
  2133. for (int j = 0; j < qk/2; ++j) {
  2134. const int v0 = (x[i].qs[j] & 0x0F);
  2135. const int v1 = (x[i].qs[j] >> 4);
  2136. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2137. }
  2138. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2139. }
  2140. *s = sumf;
  2141. #endif
  2142. }
  2143. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2144. const int qk = QK8_0;
  2145. const int nb = n / qk;
  2146. assert(n % qk == 0);
  2147. assert(nb % 2 == 0);
  2148. assert(qk == QK5_0);
  2149. const block_q5_0 * restrict x = vx;
  2150. const block_q8_0 * restrict y = vy;
  2151. #if defined(__ARM_NEON)
  2152. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2153. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2154. uint32_t qh0;
  2155. uint32_t qh1;
  2156. uint64_t tmp0[4];
  2157. uint64_t tmp1[4];
  2158. for (int i = 0; i < nb; i += 2) {
  2159. const block_q5_0 * restrict x0 = &x[i];
  2160. const block_q5_0 * restrict x1 = &x[i + 1];
  2161. const block_q8_0 * restrict y0 = &y[i];
  2162. const block_q8_0 * restrict y1 = &y[i + 1];
  2163. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2164. // extract the 5th bit via lookup table ((!b) << 4)
  2165. memcpy(&qh0, x0->qh, sizeof(qh0));
  2166. memcpy(&qh1, x1->qh, sizeof(qh1));
  2167. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2168. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2169. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2170. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2171. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2172. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2173. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2174. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2175. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2176. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2177. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2178. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2179. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2180. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2181. // 4-bit -> 8-bit
  2182. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2183. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2184. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2185. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2186. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2187. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2188. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2189. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2190. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2191. // load y
  2192. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2193. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2194. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2195. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2196. #if defined(__ARM_FEATURE_DOTPROD)
  2197. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2198. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2199. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2200. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2201. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2202. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2203. #else
  2204. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2205. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2206. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2207. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2208. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2209. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2210. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2211. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2212. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2213. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2214. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2215. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2216. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2217. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2218. #endif
  2219. }
  2220. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2221. #elif defined(__wasm_simd128__)
  2222. v128_t sumv = wasm_f32x4_splat(0.0f);
  2223. uint32_t qh;
  2224. uint64_t tmp[4];
  2225. // TODO: check if unrolling this is better
  2226. for (int i = 0; i < nb; ++i) {
  2227. const block_q5_0 * restrict x0 = &x[i];
  2228. const block_q8_0 * restrict y0 = &y[i];
  2229. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2230. // extract the 5th bit
  2231. memcpy(&qh, x0->qh, sizeof(qh));
  2232. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2233. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2234. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2235. tmp[3] = table_b2b_1[(qh >> 24) ];
  2236. const v128_t qhl = wasm_v128_load(tmp + 0);
  2237. const v128_t qhh = wasm_v128_load(tmp + 2);
  2238. const v128_t v0 = wasm_v128_load(x0->qs);
  2239. // 4-bit -> 8-bit
  2240. const v128_t v0l = wasm_v128_and (v0, m4b);
  2241. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2242. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2243. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2244. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2245. // load y
  2246. const v128_t v1l = wasm_v128_load(y0->qs);
  2247. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2248. // int8x16 -> int16x8
  2249. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2250. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2251. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2252. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2253. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2254. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2255. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2256. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2257. // dot product
  2258. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2259. wasm_i32x4_add(
  2260. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2261. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2262. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2263. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2264. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2265. }
  2266. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2267. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2268. #elif defined(__AVX2__)
  2269. // Initialize accumulator with zeros
  2270. __m256 acc = _mm256_setzero_ps();
  2271. // Main loop
  2272. for (int i = 0; i < nb; i++) {
  2273. /* Compute combined scale for the block */
  2274. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2275. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2276. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2277. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2278. bx = _mm256_or_si256(bx, bxhi);
  2279. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2280. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2281. /* Multiply q with scale and accumulate */
  2282. acc = _mm256_fmadd_ps(d, q, acc);
  2283. }
  2284. *s = hsum_float_8(acc);
  2285. #elif defined(__AVX__)
  2286. // Initialize accumulator with zeros
  2287. __m256 acc = _mm256_setzero_ps();
  2288. __m128i mask = _mm_set1_epi8((char)0xF0);
  2289. // Main loop
  2290. for (int i = 0; i < nb; i++) {
  2291. /* Compute combined scale for the block */
  2292. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2293. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2294. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2295. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2296. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2297. bxhil = _mm_andnot_si128(bxhil, mask);
  2298. bxhih = _mm_andnot_si128(bxhih, mask);
  2299. __m128i bxl = _mm256_castsi256_si128(bx);
  2300. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2301. bxl = _mm_or_si128(bxl, bxhil);
  2302. bxh = _mm_or_si128(bxh, bxhih);
  2303. bx = _mm256_set_m128i(bxh, bxl);
  2304. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2305. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2306. /* Multiply q with scale and accumulate */
  2307. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2308. }
  2309. *s = hsum_float_8(acc);
  2310. #else
  2311. // scalar
  2312. float sumf = 0.0;
  2313. for (int i = 0; i < nb; i++) {
  2314. uint32_t qh;
  2315. memcpy(&qh, x[i].qh, sizeof(qh));
  2316. int sumi = 0;
  2317. for (int j = 0; j < qk/2; ++j) {
  2318. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2319. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2320. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2321. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2322. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2323. }
  2324. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2325. }
  2326. *s = sumf;
  2327. #endif
  2328. }
  2329. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2330. const int qk = QK8_1;
  2331. const int nb = n / qk;
  2332. assert(n % qk == 0);
  2333. assert(nb % 2 == 0);
  2334. assert(qk == QK5_1);
  2335. const block_q5_1 * restrict x = vx;
  2336. const block_q8_1 * restrict y = vy;
  2337. #if defined(__ARM_NEON)
  2338. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2339. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2340. float summs0 = 0.0f;
  2341. float summs1 = 0.0f;
  2342. uint32_t qh0;
  2343. uint32_t qh1;
  2344. uint64_t tmp0[4];
  2345. uint64_t tmp1[4];
  2346. for (int i = 0; i < nb; i += 2) {
  2347. const block_q5_1 * restrict x0 = &x[i];
  2348. const block_q5_1 * restrict x1 = &x[i + 1];
  2349. const block_q8_1 * restrict y0 = &y[i];
  2350. const block_q8_1 * restrict y1 = &y[i + 1];
  2351. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2352. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2353. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2354. // extract the 5th bit via lookup table ((b) << 4)
  2355. memcpy(&qh0, x0->qh, sizeof(qh0));
  2356. memcpy(&qh1, x1->qh, sizeof(qh1));
  2357. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2358. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2359. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2360. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2361. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2362. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2363. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2364. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2365. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2366. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2367. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2368. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2369. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2370. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2371. // 4-bit -> 8-bit
  2372. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2373. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2374. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2375. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2376. // add high bit
  2377. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2378. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2379. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2380. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2381. // load y
  2382. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2383. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2384. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2385. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2386. #if defined(__ARM_FEATURE_DOTPROD)
  2387. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2388. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2389. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2390. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2391. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2392. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2393. #else
  2394. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2395. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2396. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2397. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2398. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2399. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2400. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2401. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2402. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2403. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2404. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2405. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2406. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2407. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2408. #endif
  2409. }
  2410. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2411. #elif defined(__wasm_simd128__)
  2412. v128_t sumv = wasm_f32x4_splat(0.0f);
  2413. float summs = 0.0f;
  2414. uint32_t qh;
  2415. uint64_t tmp[4];
  2416. // TODO: check if unrolling this is better
  2417. for (int i = 0; i < nb; ++i) {
  2418. const block_q5_1 * restrict x0 = &x[i];
  2419. const block_q8_1 * restrict y0 = &y[i];
  2420. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2421. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2422. // extract the 5th bit
  2423. memcpy(&qh, x0->qh, sizeof(qh));
  2424. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2425. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2426. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2427. tmp[3] = table_b2b_0[(qh >> 24) ];
  2428. const v128_t qhl = wasm_v128_load(tmp + 0);
  2429. const v128_t qhh = wasm_v128_load(tmp + 2);
  2430. const v128_t v0 = wasm_v128_load(x0->qs);
  2431. // 4-bit -> 8-bit
  2432. const v128_t v0l = wasm_v128_and (v0, m4b);
  2433. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2434. // add high bit
  2435. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2436. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2437. // load y
  2438. const v128_t v1l = wasm_v128_load(y0->qs);
  2439. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2440. // int8x16 -> int16x8
  2441. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2442. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2443. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2444. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2445. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2446. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2447. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2448. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2449. // dot product
  2450. sumv = wasm_f32x4_add(sumv,
  2451. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2452. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2453. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2454. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2455. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2456. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2457. }
  2458. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2459. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2460. #elif defined(__AVX2__)
  2461. // Initialize accumulator with zeros
  2462. __m256 acc = _mm256_setzero_ps();
  2463. float summs = 0.0f;
  2464. // Main loop
  2465. for (int i = 0; i < nb; i++) {
  2466. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2467. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2468. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2469. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2470. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2471. bx = _mm256_or_si256(bx, bxhi);
  2472. const __m256 dy = _mm256_set1_ps(y[i].d);
  2473. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2474. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2475. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2476. }
  2477. *s = hsum_float_8(acc) + summs;
  2478. #elif defined(__AVX__)
  2479. // Initialize accumulator with zeros
  2480. __m256 acc = _mm256_setzero_ps();
  2481. __m128i mask = _mm_set1_epi8(0x10);
  2482. float summs = 0.0f;
  2483. // Main loop
  2484. for (int i = 0; i < nb; i++) {
  2485. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2486. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2487. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2488. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2489. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2490. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2491. bxhil = _mm_and_si128(bxhil, mask);
  2492. bxhih = _mm_and_si128(bxhih, mask);
  2493. __m128i bxl = _mm256_castsi256_si128(bx);
  2494. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2495. bxl = _mm_or_si128(bxl, bxhil);
  2496. bxh = _mm_or_si128(bxh, bxhih);
  2497. bx = _mm256_set_m128i(bxh, bxl);
  2498. const __m256 dy = _mm256_set1_ps(y[i].d);
  2499. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2500. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2501. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2502. }
  2503. *s = hsum_float_8(acc) + summs;
  2504. #else
  2505. // scalar
  2506. float sumf = 0.0;
  2507. for (int i = 0; i < nb; i++) {
  2508. uint32_t qh;
  2509. memcpy(&qh, x[i].qh, sizeof(qh));
  2510. int sumi = 0;
  2511. for (int j = 0; j < qk/2; ++j) {
  2512. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2513. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2514. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2515. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2516. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2517. }
  2518. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2519. }
  2520. *s = sumf;
  2521. #endif
  2522. }
  2523. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2524. const int qk = QK8_0;
  2525. const int nb = n / qk;
  2526. assert(n % qk == 0);
  2527. assert(nb % 2 == 0);
  2528. const block_q8_0 * restrict x = vx;
  2529. const block_q8_0 * restrict y = vy;
  2530. #if defined(__ARM_NEON)
  2531. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2532. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2533. for (int i = 0; i < nb; i += 2) {
  2534. const block_q8_0 * restrict x0 = &x[i + 0];
  2535. const block_q8_0 * restrict x1 = &x[i + 1];
  2536. const block_q8_0 * restrict y0 = &y[i + 0];
  2537. const block_q8_0 * restrict y1 = &y[i + 1];
  2538. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2539. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2540. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2541. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2542. // load y
  2543. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2544. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2545. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2546. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2547. #if defined(__ARM_FEATURE_DOTPROD)
  2548. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2549. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2550. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2551. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2552. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2553. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2554. #else
  2555. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2556. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2557. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2558. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2559. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2560. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2561. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2562. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2563. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2564. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2565. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2566. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2567. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2568. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2569. #endif
  2570. }
  2571. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2572. #elif defined(__AVX2__) || defined(__AVX__)
  2573. // Initialize accumulator with zeros
  2574. __m256 acc = _mm256_setzero_ps();
  2575. // Main loop
  2576. for (int i = 0; i < nb; ++i) {
  2577. // Compute combined scale for the block
  2578. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2579. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2580. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2581. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2582. // Multiply q with scale and accumulate
  2583. #if defined(__AVX2__)
  2584. acc = _mm256_fmadd_ps( d, q, acc );
  2585. #else
  2586. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2587. #endif
  2588. }
  2589. *s = hsum_float_8(acc);
  2590. #else
  2591. // scalar
  2592. float sumf = 0.0;
  2593. for (int i = 0; i < nb; i++) {
  2594. int sumi = 0;
  2595. for (int j = 0; j < qk; j++) {
  2596. sumi += x[i].qs[j]*y[i].qs[j];
  2597. }
  2598. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2599. }
  2600. *s = sumf;
  2601. #endif
  2602. }
  2603. // compute GGML_VEC_DOT_UNROLL dot products at once
  2604. // xs - x row stride in bytes
  2605. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2606. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2607. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2608. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2609. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2610. }
  2611. #if defined(GGML_SIMD)
  2612. const int np = (n & ~(GGML_F16_STEP - 1));
  2613. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2614. GGML_F16_VEC ax[GGML_F16_ARR];
  2615. GGML_F16_VEC ay[GGML_F16_ARR];
  2616. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2617. for (int j = 0; j < GGML_F16_ARR; j++) {
  2618. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2619. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2620. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2621. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2622. }
  2623. }
  2624. }
  2625. // reduce sum0..sum3 to sum0
  2626. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2627. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2628. }
  2629. // leftovers
  2630. for (int i = np; i < n; ++i) {
  2631. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2632. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2633. }
  2634. }
  2635. #else
  2636. for (int i = 0; i < n; ++i) {
  2637. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2638. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2639. }
  2640. }
  2641. #endif
  2642. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2643. s[i] = sumf[i];
  2644. }
  2645. }
  2646. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2647. #if defined(GGML_SIMD)
  2648. const int np = (n & ~(GGML_F32_STEP - 1));
  2649. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2650. GGML_F32_VEC ax[GGML_F32_ARR];
  2651. GGML_F32_VEC ay[GGML_F32_ARR];
  2652. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2653. for (int j = 0; j < GGML_F32_ARR; j++) {
  2654. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2655. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2656. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2657. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2658. }
  2659. }
  2660. // leftovers
  2661. for (int i = np; i < n; ++i) {
  2662. y[i] += x[i]*v;
  2663. }
  2664. #else
  2665. // scalar
  2666. for (int i = 0; i < n; ++i) {
  2667. y[i] += x[i]*v;
  2668. }
  2669. #endif
  2670. }
  2671. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2672. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2673. #if defined(GGML_SIMD)
  2674. const int np = (n & ~(GGML_F32_STEP - 1));
  2675. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2676. GGML_F32_VEC ay[GGML_F32_ARR];
  2677. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2678. for (int j = 0; j < GGML_F32_ARR; j++) {
  2679. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2680. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2681. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2682. }
  2683. }
  2684. // leftovers
  2685. for (int i = np; i < n; ++i) {
  2686. y[i] *= v;
  2687. }
  2688. #else
  2689. // scalar
  2690. for (int i = 0; i < n; ++i) {
  2691. y[i] *= v;
  2692. }
  2693. #endif
  2694. }
  2695. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2696. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2697. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2698. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2699. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2700. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2701. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2702. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2703. static const float GELU_COEF_A = 0.044715f;
  2704. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2705. inline static float ggml_gelu_f32(float x) {
  2706. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2707. }
  2708. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2709. const uint16_t * i16 = (const uint16_t *) x;
  2710. for (int i = 0; i < n; ++i) {
  2711. y[i] = table_gelu_f16[i16[i]];
  2712. }
  2713. }
  2714. #ifdef GGML_GELU_FP16
  2715. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2716. uint16_t t;
  2717. for (int i = 0; i < n; ++i) {
  2718. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2719. memcpy(&t, &fp16, sizeof(uint16_t));
  2720. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2721. }
  2722. }
  2723. #else
  2724. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2725. for (int i = 0; i < n; ++i) {
  2726. y[i] = ggml_gelu_f32(x[i]);
  2727. }
  2728. }
  2729. #endif
  2730. // Sigmoid Linear Unit (SiLU) function
  2731. inline static float ggml_silu_f32(float x) {
  2732. return x/(1.0f + expf(-x));
  2733. }
  2734. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2735. // const uint16_t * i16 = (const uint16_t *) x;
  2736. // for (int i = 0; i < n; ++i) {
  2737. // y[i] = table_silu_f16[i16[i]];
  2738. // }
  2739. //}
  2740. #ifdef GGML_SILU_FP16
  2741. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2742. uint16_t t;
  2743. for (int i = 0; i < n; ++i) {
  2744. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2745. memcpy(&t, &fp16, sizeof(uint16_t));
  2746. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2747. }
  2748. }
  2749. #else
  2750. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2751. for (int i = 0; i < n; ++i) {
  2752. y[i] = ggml_silu_f32(x[i]);
  2753. }
  2754. }
  2755. #endif
  2756. inline static float ggml_silu_backward_f32(float x, float dy) {
  2757. const float s = 1.0f/(1.0f + expf(-x));
  2758. return dy*s*(1.0f + x*(1.0f - s));
  2759. }
  2760. #ifdef GGML_SILU_FP16
  2761. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2762. for (int i = 0; i < n; ++i) {
  2763. // we did not use x[i] to compute forward silu but its f16 equivalent
  2764. // take derivative at f16 of x[i]:
  2765. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2766. float usedx = GGML_FP16_TO_FP32(fp16);
  2767. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2768. }
  2769. }
  2770. #else
  2771. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2772. for (int i = 0; i < n; ++i) {
  2773. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2774. }
  2775. }
  2776. #endif
  2777. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2778. #ifndef GGML_USE_ACCELERATE
  2779. ggml_float sum = 0.0;
  2780. for (int i = 0; i < n; ++i) {
  2781. sum += (ggml_float)x[i];
  2782. }
  2783. *s = sum;
  2784. #else
  2785. vDSP_sve(x, 1, s, n);
  2786. #endif
  2787. }
  2788. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2789. ggml_float sum = 0.0;
  2790. for (int i = 0; i < n; ++i) {
  2791. sum += (ggml_float)x[i];
  2792. }
  2793. *s = sum;
  2794. }
  2795. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2796. #ifndef GGML_USE_ACCELERATE
  2797. float max = -INFINITY;
  2798. for (int i = 0; i < n; ++i) {
  2799. max = MAX(max, x[i]);
  2800. }
  2801. *s = max;
  2802. #else
  2803. vDSP_maxv(x, 1, s, n);
  2804. #endif
  2805. }
  2806. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2807. ggml_vec_norm_f32(n, s, x);
  2808. *s = 1.f/(*s);
  2809. }
  2810. //
  2811. // logging
  2812. //
  2813. #if (GGML_DEBUG >= 1)
  2814. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2815. #else
  2816. #define GGML_PRINT_DEBUG(...)
  2817. #endif
  2818. #if (GGML_DEBUG >= 5)
  2819. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2820. #else
  2821. #define GGML_PRINT_DEBUG_5(...)
  2822. #endif
  2823. #if (GGML_DEBUG >= 10)
  2824. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2825. #else
  2826. #define GGML_PRINT_DEBUG_10(...)
  2827. #endif
  2828. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2829. //
  2830. // data types
  2831. //
  2832. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2833. [GGML_TYPE_F32] = 1,
  2834. [GGML_TYPE_F16] = 1,
  2835. [GGML_TYPE_Q4_0] = QK4_0,
  2836. [GGML_TYPE_Q4_1] = QK4_1,
  2837. [GGML_TYPE_Q5_0] = QK5_0,
  2838. [GGML_TYPE_Q5_1] = QK5_1,
  2839. [GGML_TYPE_Q8_0] = QK8_0,
  2840. [GGML_TYPE_Q8_1] = QK8_1,
  2841. [GGML_TYPE_Q2_K] = QK_K,
  2842. [GGML_TYPE_Q3_K] = QK_K,
  2843. [GGML_TYPE_Q4_K] = QK_K,
  2844. [GGML_TYPE_Q5_K] = QK_K,
  2845. [GGML_TYPE_Q6_K] = QK_K,
  2846. [GGML_TYPE_Q8_K] = QK_K,
  2847. [GGML_TYPE_I8] = 1,
  2848. [GGML_TYPE_I16] = 1,
  2849. [GGML_TYPE_I32] = 1,
  2850. };
  2851. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2852. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2853. [GGML_TYPE_F32] = sizeof(float),
  2854. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2855. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2856. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2857. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2858. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2859. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2860. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2861. [GGML_TYPE_Q2_K] = sizeof(block_q2_k),
  2862. [GGML_TYPE_Q3_K] = sizeof(block_q3_k),
  2863. [GGML_TYPE_Q4_K] = sizeof(block_q4_k),
  2864. [GGML_TYPE_Q5_K] = sizeof(block_q5_k),
  2865. [GGML_TYPE_Q6_K] = sizeof(block_q6_k),
  2866. [GGML_TYPE_Q8_K] = sizeof(block_q8_k),
  2867. [GGML_TYPE_I8] = sizeof(int8_t),
  2868. [GGML_TYPE_I16] = sizeof(int16_t),
  2869. [GGML_TYPE_I32] = sizeof(int32_t),
  2870. };
  2871. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2872. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2873. [GGML_TYPE_F32] = "f32",
  2874. [GGML_TYPE_F16] = "f16",
  2875. [GGML_TYPE_Q4_0] = "q4_0",
  2876. [GGML_TYPE_Q4_1] = "q4_1",
  2877. [GGML_TYPE_Q5_0] = "q5_0",
  2878. [GGML_TYPE_Q5_1] = "q5_1",
  2879. [GGML_TYPE_Q8_0] = "q8_0",
  2880. [GGML_TYPE_Q8_1] = "q8_1",
  2881. [GGML_TYPE_Q2_K] = "q2_k",
  2882. [GGML_TYPE_Q3_K] = "q3_k",
  2883. [GGML_TYPE_Q4_K] = "q4_k",
  2884. [GGML_TYPE_Q5_K] = "q5_k",
  2885. [GGML_TYPE_Q6_K] = "q6_k",
  2886. [GGML_TYPE_Q8_K] = "q8_k",
  2887. [GGML_TYPE_I8] = "i8",
  2888. [GGML_TYPE_I16] = "i16",
  2889. [GGML_TYPE_I32] = "i32",
  2890. };
  2891. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2892. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2893. [GGML_TYPE_F32] = false,
  2894. [GGML_TYPE_F16] = false,
  2895. [GGML_TYPE_Q4_0] = true,
  2896. [GGML_TYPE_Q4_1] = true,
  2897. [GGML_TYPE_Q5_0] = true,
  2898. [GGML_TYPE_Q5_1] = true,
  2899. [GGML_TYPE_Q8_0] = true,
  2900. [GGML_TYPE_Q8_1] = true,
  2901. [GGML_TYPE_Q2_K] = true,
  2902. [GGML_TYPE_Q3_K] = true,
  2903. [GGML_TYPE_Q4_K] = true,
  2904. [GGML_TYPE_Q5_K] = true,
  2905. [GGML_TYPE_Q6_K] = true,
  2906. [GGML_TYPE_Q8_K] = true,
  2907. [GGML_TYPE_I8] = false,
  2908. [GGML_TYPE_I16] = false,
  2909. [GGML_TYPE_I32] = false,
  2910. };
  2911. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2912. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2913. "NONE",
  2914. "DUP",
  2915. "ADD",
  2916. "ADD1",
  2917. "ACC",
  2918. "SUB",
  2919. "MUL",
  2920. "DIV",
  2921. "SQR",
  2922. "SQRT",
  2923. "LOG",
  2924. "SUM",
  2925. "SUM_ROWS",
  2926. "MEAN",
  2927. "REPEAT",
  2928. "ABS",
  2929. "SGN",
  2930. "NEG",
  2931. "STEP",
  2932. "RELU",
  2933. "GELU",
  2934. "SILU",
  2935. "SILU_BACK",
  2936. "NORM",
  2937. "RMS_NORM",
  2938. "RMS_NORM_BACK",
  2939. "MUL_MAT",
  2940. "SCALE",
  2941. "SET",
  2942. "CPY",
  2943. "CONT",
  2944. "RESHAPE",
  2945. "VIEW",
  2946. "PERMUTE",
  2947. "TRANSPOSE",
  2948. "GET_ROWS",
  2949. "GET_ROWS_BACK",
  2950. "DIAG",
  2951. "DIAG_MASK_INF",
  2952. "DIAG_MASK_ZERO",
  2953. "SOFT_MAX",
  2954. "ROPE",
  2955. "ROPE_BACK",
  2956. "ALIBI",
  2957. "CLAMP",
  2958. "CONV_1D_1S",
  2959. "CONV_1D_2S",
  2960. "FLASH_ATTN",
  2961. "FLASH_FF",
  2962. "MAP_UNARY",
  2963. "MAP_BINARY",
  2964. };
  2965. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2966. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2967. "none",
  2968. "x",
  2969. "x+y",
  2970. "x+y",
  2971. "view(x,nb,offset)+=y->x",
  2972. "x-y",
  2973. "x*y",
  2974. "x/y",
  2975. "x^2",
  2976. "√x",
  2977. "log(x)",
  2978. "Σx",
  2979. "Σx_k",
  2980. "Σx/n",
  2981. "repeat(x)",
  2982. "abs(x)",
  2983. "sgn(x)",
  2984. "-x",
  2985. "step(x)",
  2986. "relu(x)",
  2987. "gelu(x)",
  2988. "silu(x)",
  2989. "silu_back(x)",
  2990. "norm(x)",
  2991. "rms_norm(x)",
  2992. "rms_norm_back(x)",
  2993. "X*Y",
  2994. "x*v",
  2995. "y-\\>view(x)",
  2996. "x-\\>y",
  2997. "cont(x)",
  2998. "reshape(x)",
  2999. "view(x)",
  3000. "permute(x)",
  3001. "transpose(x)",
  3002. "get_rows(x)",
  3003. "get_rows_back(x)",
  3004. "diag(x)",
  3005. "diag_mask_inf(x)",
  3006. "diag_mask_zero(x)",
  3007. "soft_max(x)",
  3008. "rope(x)",
  3009. "rope_back(x)",
  3010. "alibi(x)",
  3011. "clamp(x)",
  3012. "conv_1d_1s(x)",
  3013. "conv_1d_2s(x)",
  3014. "flash_attn(x)",
  3015. "flash_ff(x)",
  3016. "f(x)",
  3017. "f(x,y)",
  3018. };
  3019. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  3020. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3021. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3022. //
  3023. // ggml context
  3024. //
  3025. struct ggml_context {
  3026. size_t mem_size;
  3027. void * mem_buffer;
  3028. bool mem_buffer_owned;
  3029. bool no_alloc;
  3030. int n_objects;
  3031. struct ggml_object * objects_begin;
  3032. struct ggml_object * objects_end;
  3033. struct ggml_scratch scratch;
  3034. struct ggml_scratch scratch_save;
  3035. };
  3036. struct ggml_context_container {
  3037. bool used;
  3038. struct ggml_context context;
  3039. };
  3040. //
  3041. // compute types
  3042. //
  3043. enum ggml_task_type {
  3044. GGML_TASK_INIT = 0,
  3045. GGML_TASK_COMPUTE,
  3046. GGML_TASK_FINALIZE,
  3047. };
  3048. struct ggml_compute_params {
  3049. enum ggml_task_type type;
  3050. int ith, nth;
  3051. // work buffer for all threads
  3052. size_t wsize;
  3053. void * wdata;
  3054. };
  3055. //
  3056. // ggml state
  3057. //
  3058. struct ggml_state {
  3059. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3060. };
  3061. // global state
  3062. static struct ggml_state g_state;
  3063. static atomic_int g_state_barrier = 0;
  3064. // barrier via spin lock
  3065. inline static void ggml_critical_section_start(void) {
  3066. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3067. while (processing > 0) {
  3068. // wait for other threads to finish
  3069. atomic_fetch_sub(&g_state_barrier, 1);
  3070. sched_yield(); // TODO: reconsider this
  3071. processing = atomic_fetch_add(&g_state_barrier, 1);
  3072. }
  3073. }
  3074. // TODO: make this somehow automatically executed
  3075. // some sort of "sentry" mechanism
  3076. inline static void ggml_critical_section_end(void) {
  3077. atomic_fetch_sub(&g_state_barrier, 1);
  3078. }
  3079. ////////////////////////////////////////////////////////////////////////////////
  3080. void ggml_print_object(const struct ggml_object * obj) {
  3081. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3082. obj->offs, obj->size, (const void *) obj->next);
  3083. }
  3084. void ggml_print_objects(const struct ggml_context * ctx) {
  3085. struct ggml_object * obj = ctx->objects_begin;
  3086. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3087. while (obj != NULL) {
  3088. ggml_print_object(obj);
  3089. obj = obj->next;
  3090. }
  3091. GGML_PRINT("%s: --- end ---\n", __func__);
  3092. }
  3093. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3094. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3095. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3096. }
  3097. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3098. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3099. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3100. }
  3101. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3102. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3103. // this should handle cases where the tensor is not contiguous in memory
  3104. // probaby just:
  3105. //
  3106. // return tensor->ne[3]*tensor->nb[3]
  3107. //
  3108. // is enough, but just in case, adding the second part
  3109. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3110. }
  3111. int ggml_blck_size(enum ggml_type type) {
  3112. return GGML_BLCK_SIZE[type];
  3113. }
  3114. size_t ggml_type_size(enum ggml_type type) {
  3115. return GGML_TYPE_SIZE[type];
  3116. }
  3117. float ggml_type_sizef(enum ggml_type type) {
  3118. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3119. }
  3120. const char * ggml_type_name(enum ggml_type type) {
  3121. return GGML_TYPE_NAME[type];
  3122. }
  3123. const char * ggml_op_name(enum ggml_op op) {
  3124. return GGML_OP_NAME[op];
  3125. }
  3126. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3127. return GGML_TYPE_SIZE[tensor->type];
  3128. }
  3129. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3130. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3131. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3132. }
  3133. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3134. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3135. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3136. }
  3137. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3138. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3139. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3140. }
  3141. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3142. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3143. return
  3144. (t0->ne[0] == t1->ne[0]) &&
  3145. (t0->ne[2] == t1->ne[2]) &&
  3146. (t0->ne[3] == t1->ne[3]);
  3147. }
  3148. bool ggml_is_quantized(enum ggml_type type) {
  3149. return GGML_IS_QUANTIZED[type];
  3150. }
  3151. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3152. enum ggml_type wtype = GGML_TYPE_COUNT;
  3153. switch (ftype) {
  3154. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3155. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3156. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3157. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3158. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3159. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3160. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3161. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3162. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3163. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3164. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3165. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3166. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3167. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3168. }
  3169. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3170. return wtype;
  3171. }
  3172. size_t ggml_tensor_overhead(void) {
  3173. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3174. }
  3175. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3176. return tensor->nb[0] > tensor->nb[1];
  3177. }
  3178. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3179. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3180. return
  3181. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3182. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3183. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3184. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3185. }
  3186. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3187. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3188. return
  3189. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3190. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3191. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3192. }
  3193. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3194. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3195. return
  3196. (t0->ne[0] == t1->ne[0] ) &&
  3197. (t0->ne[1] == t1->ne[1] ) &&
  3198. (t0->ne[2] == t1->ne[2] ) &&
  3199. (t0->ne[3] == t1->ne[3] );
  3200. }
  3201. // check if t1 can be represented as a repeatition of t0
  3202. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3203. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3204. return
  3205. (t1->ne[0]%t0->ne[0] == 0) &&
  3206. (t1->ne[1]%t0->ne[1] == 0) &&
  3207. (t1->ne[2]%t0->ne[2] == 0) &&
  3208. (t1->ne[3]%t0->ne[3] == 0);
  3209. }
  3210. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3211. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3212. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3213. }
  3214. static inline int ggml_up32(int n) {
  3215. return (n + 31) & ~31;
  3216. }
  3217. //static inline int ggml_up64(int n) {
  3218. // return (n + 63) & ~63;
  3219. //}
  3220. static inline int ggml_up(int n, int m) {
  3221. // assert m is a power of 2
  3222. GGML_ASSERT((m & (m - 1)) == 0);
  3223. return (n + m - 1) & ~(m - 1);
  3224. }
  3225. // assert that pointer is aligned to GGML_MEM_ALIGN
  3226. #define ggml_assert_aligned(ptr) \
  3227. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3228. ////////////////////////////////////////////////////////////////////////////////
  3229. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3230. // make this function thread safe
  3231. ggml_critical_section_start();
  3232. static bool is_first_call = true;
  3233. if (is_first_call) {
  3234. // initialize time system (required on Windows)
  3235. ggml_time_init();
  3236. // initialize GELU, SILU and EXP F32 tables
  3237. {
  3238. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3239. ggml_fp16_t ii;
  3240. for (int i = 0; i < (1 << 16); ++i) {
  3241. uint16_t ui = i;
  3242. memcpy(&ii, &ui, sizeof(ii));
  3243. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3244. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3245. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3246. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3247. }
  3248. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3249. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3250. }
  3251. // initialize g_state
  3252. {
  3253. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3254. g_state = (struct ggml_state) {
  3255. /*.contexts =*/ { { 0 } },
  3256. };
  3257. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3258. g_state.contexts[i].used = false;
  3259. }
  3260. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3261. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3262. }
  3263. #if defined(GGML_USE_CUBLAS)
  3264. ggml_init_cublas();
  3265. #elif defined(GGML_USE_CLBLAST)
  3266. ggml_cl_init();
  3267. #endif
  3268. is_first_call = false;
  3269. }
  3270. // find non-used context in g_state
  3271. struct ggml_context * ctx = NULL;
  3272. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3273. if (!g_state.contexts[i].used) {
  3274. g_state.contexts[i].used = true;
  3275. ctx = &g_state.contexts[i].context;
  3276. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3277. break;
  3278. }
  3279. }
  3280. if (ctx == NULL) {
  3281. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3282. ggml_critical_section_end();
  3283. return NULL;
  3284. }
  3285. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3286. *ctx = (struct ggml_context) {
  3287. /*.mem_size =*/ mem_size,
  3288. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3289. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3290. /*.no_alloc =*/ params.no_alloc,
  3291. /*.n_objects =*/ 0,
  3292. /*.objects_begin =*/ NULL,
  3293. /*.objects_end =*/ NULL,
  3294. /*.scratch =*/ { 0, 0, NULL, },
  3295. /*.scratch_save =*/ { 0, 0, NULL, },
  3296. };
  3297. GGML_ASSERT(ctx->mem_buffer != NULL);
  3298. ggml_assert_aligned(ctx->mem_buffer);
  3299. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3300. ggml_critical_section_end();
  3301. return ctx;
  3302. }
  3303. void ggml_free(struct ggml_context * ctx) {
  3304. // make this function thread safe
  3305. ggml_critical_section_start();
  3306. bool found = false;
  3307. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3308. if (&g_state.contexts[i].context == ctx) {
  3309. g_state.contexts[i].used = false;
  3310. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3311. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3312. if (ctx->mem_buffer_owned) {
  3313. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3314. }
  3315. found = true;
  3316. break;
  3317. }
  3318. }
  3319. if (!found) {
  3320. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3321. }
  3322. ggml_critical_section_end();
  3323. }
  3324. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3325. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3326. }
  3327. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3328. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3329. ctx->scratch = scratch;
  3330. return result;
  3331. }
  3332. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3333. ctx->no_alloc = no_alloc;
  3334. }
  3335. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3336. return ctx->mem_buffer;
  3337. }
  3338. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3339. return ctx->mem_size;
  3340. }
  3341. // IMPORTANT:
  3342. // when creating "opt" tensors, always save and load the scratch buffer
  3343. // this is an error prone process, but it is necessary to support inplace
  3344. // operators when using scratch buffers
  3345. // TODO: implement a better way
  3346. void ggml_scratch_save(struct ggml_context * ctx) {
  3347. ctx->scratch_save = ctx->scratch;
  3348. ctx->scratch.data = NULL;
  3349. }
  3350. void ggml_scratch_load(struct ggml_context * ctx) {
  3351. ctx->scratch = ctx->scratch_save;
  3352. }
  3353. ////////////////////////////////////////////////////////////////////////////////
  3354. struct ggml_tensor * ggml_new_tensor_impl(
  3355. struct ggml_context * ctx,
  3356. enum ggml_type type,
  3357. int n_dims,
  3358. const int64_t* ne,
  3359. void* data) {
  3360. // always insert objects at the end of the context's memory pool
  3361. struct ggml_object * obj_cur = ctx->objects_end;
  3362. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3363. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3364. const size_t cur_end = cur_offs + cur_size;
  3365. size_t size_needed = 0;
  3366. if (data == NULL && !ctx->no_alloc) {
  3367. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3368. for (int i = 1; i < n_dims; i++) {
  3369. size_needed *= ne[i];
  3370. }
  3371. // align to GGML_MEM_ALIGN
  3372. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3373. }
  3374. char * const mem_buffer = ctx->mem_buffer;
  3375. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3376. if (ctx->scratch.data == NULL || data != NULL) {
  3377. size_needed += GGML_TENSOR_SIZE;
  3378. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3379. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3380. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3381. assert(false);
  3382. return NULL;
  3383. }
  3384. *obj_new = (struct ggml_object) {
  3385. .offs = cur_end + GGML_OBJECT_SIZE,
  3386. .size = size_needed,
  3387. .next = NULL,
  3388. };
  3389. } else {
  3390. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3391. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3392. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3393. assert(false);
  3394. return NULL;
  3395. }
  3396. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3397. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3398. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3399. assert(false);
  3400. return NULL;
  3401. }
  3402. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3403. *obj_new = (struct ggml_object) {
  3404. .offs = cur_end + GGML_OBJECT_SIZE,
  3405. .size = GGML_TENSOR_SIZE,
  3406. .next = NULL,
  3407. };
  3408. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3409. ctx->scratch.offs += size_needed;
  3410. }
  3411. if (obj_cur != NULL) {
  3412. obj_cur->next = obj_new;
  3413. } else {
  3414. // this is the first object in this context
  3415. ctx->objects_begin = obj_new;
  3416. }
  3417. ctx->objects_end = obj_new;
  3418. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3419. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3420. ggml_assert_aligned(result);
  3421. *result = (struct ggml_tensor) {
  3422. /*.type =*/ type,
  3423. /*.backend =*/ GGML_BACKEND_CPU,
  3424. /*.n_dims =*/ n_dims,
  3425. /*.ne =*/ { 1, 1, 1, 1 },
  3426. /*.nb =*/ { 0, 0, 0, 0 },
  3427. /*.op =*/ GGML_OP_NONE,
  3428. /*.is_param =*/ false,
  3429. /*.grad =*/ NULL,
  3430. /*.src0 =*/ NULL,
  3431. /*.src1 =*/ NULL,
  3432. /*.opt =*/ { NULL },
  3433. /*.n_tasks =*/ 0,
  3434. /*.perf_runs =*/ 0,
  3435. /*.perf_cycles =*/ 0,
  3436. /*.perf_time_us =*/ 0,
  3437. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3438. /*.name =*/ { 0 },
  3439. /*.pad =*/ { 0 },
  3440. };
  3441. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3442. //ggml_assert_aligned(result->data);
  3443. for (int i = 0; i < n_dims; i++) {
  3444. result->ne[i] = ne[i];
  3445. }
  3446. result->nb[0] = GGML_TYPE_SIZE[type];
  3447. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3448. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3449. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3450. }
  3451. ctx->n_objects++;
  3452. return result;
  3453. }
  3454. struct ggml_tensor * ggml_new_tensor(
  3455. struct ggml_context * ctx,
  3456. enum ggml_type type,
  3457. int n_dims,
  3458. const int64_t * ne) {
  3459. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3460. }
  3461. struct ggml_tensor * ggml_new_tensor_1d(
  3462. struct ggml_context * ctx,
  3463. enum ggml_type type,
  3464. int64_t ne0) {
  3465. return ggml_new_tensor(ctx, type, 1, &ne0);
  3466. }
  3467. struct ggml_tensor * ggml_new_tensor_2d(
  3468. struct ggml_context * ctx,
  3469. enum ggml_type type,
  3470. int64_t ne0,
  3471. int64_t ne1) {
  3472. const int64_t ne[2] = { ne0, ne1 };
  3473. return ggml_new_tensor(ctx, type, 2, ne);
  3474. }
  3475. struct ggml_tensor * ggml_new_tensor_3d(
  3476. struct ggml_context * ctx,
  3477. enum ggml_type type,
  3478. int64_t ne0,
  3479. int64_t ne1,
  3480. int64_t ne2) {
  3481. const int64_t ne[3] = { ne0, ne1, ne2 };
  3482. return ggml_new_tensor(ctx, type, 3, ne);
  3483. }
  3484. struct ggml_tensor * ggml_new_tensor_4d(
  3485. struct ggml_context * ctx,
  3486. enum ggml_type type,
  3487. int64_t ne0,
  3488. int64_t ne1,
  3489. int64_t ne2,
  3490. int64_t ne3) {
  3491. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3492. return ggml_new_tensor(ctx, type, 4, ne);
  3493. }
  3494. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3495. ggml_scratch_save(ctx);
  3496. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3497. ggml_scratch_load(ctx);
  3498. ggml_set_i32(result, value);
  3499. return result;
  3500. }
  3501. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3502. ggml_scratch_save(ctx);
  3503. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3504. ggml_scratch_load(ctx);
  3505. ggml_set_f32(result, value);
  3506. return result;
  3507. }
  3508. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3509. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3510. }
  3511. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3512. memset(tensor->data, 0, ggml_nbytes(tensor));
  3513. return tensor;
  3514. }
  3515. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3516. const int n = ggml_nrows(tensor);
  3517. const int nc = tensor->ne[0];
  3518. const size_t n1 = tensor->nb[1];
  3519. char * const data = tensor->data;
  3520. switch (tensor->type) {
  3521. case GGML_TYPE_I8:
  3522. {
  3523. assert(tensor->nb[0] == sizeof(int8_t));
  3524. for (int i = 0; i < n; i++) {
  3525. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3526. }
  3527. } break;
  3528. case GGML_TYPE_I16:
  3529. {
  3530. assert(tensor->nb[0] == sizeof(int16_t));
  3531. for (int i = 0; i < n; i++) {
  3532. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3533. }
  3534. } break;
  3535. case GGML_TYPE_I32:
  3536. {
  3537. assert(tensor->nb[0] == sizeof(int32_t));
  3538. for (int i = 0; i < n; i++) {
  3539. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3540. }
  3541. } break;
  3542. case GGML_TYPE_F16:
  3543. {
  3544. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3545. for (int i = 0; i < n; i++) {
  3546. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3547. }
  3548. } break;
  3549. case GGML_TYPE_F32:
  3550. {
  3551. assert(tensor->nb[0] == sizeof(float));
  3552. for (int i = 0; i < n; i++) {
  3553. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3554. }
  3555. } break;
  3556. default:
  3557. {
  3558. GGML_ASSERT(false);
  3559. } break;
  3560. }
  3561. return tensor;
  3562. }
  3563. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3564. const int n = ggml_nrows(tensor);
  3565. const int nc = tensor->ne[0];
  3566. const size_t n1 = tensor->nb[1];
  3567. char * const data = tensor->data;
  3568. switch (tensor->type) {
  3569. case GGML_TYPE_I8:
  3570. {
  3571. assert(tensor->nb[0] == sizeof(int8_t));
  3572. for (int i = 0; i < n; i++) {
  3573. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3574. }
  3575. } break;
  3576. case GGML_TYPE_I16:
  3577. {
  3578. assert(tensor->nb[0] == sizeof(int16_t));
  3579. for (int i = 0; i < n; i++) {
  3580. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3581. }
  3582. } break;
  3583. case GGML_TYPE_I32:
  3584. {
  3585. assert(tensor->nb[0] == sizeof(int32_t));
  3586. for (int i = 0; i < n; i++) {
  3587. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3588. }
  3589. } break;
  3590. case GGML_TYPE_F16:
  3591. {
  3592. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3593. for (int i = 0; i < n; i++) {
  3594. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3595. }
  3596. } break;
  3597. case GGML_TYPE_F32:
  3598. {
  3599. assert(tensor->nb[0] == sizeof(float));
  3600. for (int i = 0; i < n; i++) {
  3601. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3602. }
  3603. } break;
  3604. default:
  3605. {
  3606. GGML_ASSERT(false);
  3607. } break;
  3608. }
  3609. return tensor;
  3610. }
  3611. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3612. switch (tensor->type) {
  3613. case GGML_TYPE_I8:
  3614. {
  3615. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3616. return ((int8_t *)(tensor->data))[i];
  3617. } break;
  3618. case GGML_TYPE_I16:
  3619. {
  3620. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3621. return ((int16_t *)(tensor->data))[i];
  3622. } break;
  3623. case GGML_TYPE_I32:
  3624. {
  3625. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3626. return ((int32_t *)(tensor->data))[i];
  3627. } break;
  3628. case GGML_TYPE_F16:
  3629. {
  3630. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3631. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3632. } break;
  3633. case GGML_TYPE_F32:
  3634. {
  3635. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3636. return ((float *)(tensor->data))[i];
  3637. } break;
  3638. default:
  3639. {
  3640. GGML_ASSERT(false);
  3641. } break;
  3642. }
  3643. return 0.0f;
  3644. }
  3645. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3646. switch (tensor->type) {
  3647. case GGML_TYPE_I8:
  3648. {
  3649. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3650. ((int8_t *)(tensor->data))[i] = value;
  3651. } break;
  3652. case GGML_TYPE_I16:
  3653. {
  3654. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3655. ((int16_t *)(tensor->data))[i] = value;
  3656. } break;
  3657. case GGML_TYPE_I32:
  3658. {
  3659. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3660. ((int32_t *)(tensor->data))[i] = value;
  3661. } break;
  3662. case GGML_TYPE_F16:
  3663. {
  3664. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3665. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3666. } break;
  3667. case GGML_TYPE_F32:
  3668. {
  3669. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3670. ((float *)(tensor->data))[i] = value;
  3671. } break;
  3672. default:
  3673. {
  3674. GGML_ASSERT(false);
  3675. } break;
  3676. }
  3677. }
  3678. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3679. switch (tensor->type) {
  3680. case GGML_TYPE_I8:
  3681. {
  3682. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3683. return ((int8_t *)(tensor->data))[i];
  3684. } break;
  3685. case GGML_TYPE_I16:
  3686. {
  3687. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3688. return ((int16_t *)(tensor->data))[i];
  3689. } break;
  3690. case GGML_TYPE_I32:
  3691. {
  3692. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3693. return ((int32_t *)(tensor->data))[i];
  3694. } break;
  3695. case GGML_TYPE_F16:
  3696. {
  3697. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3698. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3699. } break;
  3700. case GGML_TYPE_F32:
  3701. {
  3702. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3703. return ((float *)(tensor->data))[i];
  3704. } break;
  3705. default:
  3706. {
  3707. GGML_ASSERT(false);
  3708. } break;
  3709. }
  3710. return 0.0f;
  3711. }
  3712. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3713. switch (tensor->type) {
  3714. case GGML_TYPE_I8:
  3715. {
  3716. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3717. ((int8_t *)(tensor->data))[i] = value;
  3718. } break;
  3719. case GGML_TYPE_I16:
  3720. {
  3721. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3722. ((int16_t *)(tensor->data))[i] = value;
  3723. } break;
  3724. case GGML_TYPE_I32:
  3725. {
  3726. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3727. ((int32_t *)(tensor->data))[i] = value;
  3728. } break;
  3729. case GGML_TYPE_F16:
  3730. {
  3731. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3732. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3733. } break;
  3734. case GGML_TYPE_F32:
  3735. {
  3736. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3737. ((float *)(tensor->data))[i] = value;
  3738. } break;
  3739. default:
  3740. {
  3741. GGML_ASSERT(false);
  3742. } break;
  3743. }
  3744. }
  3745. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3746. return tensor->data;
  3747. }
  3748. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3749. assert(tensor->type == GGML_TYPE_F32);
  3750. return (float *)(tensor->data);
  3751. }
  3752. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3753. return tensor->name;
  3754. }
  3755. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3756. strncpy(tensor->name, name, sizeof(tensor->name));
  3757. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3758. }
  3759. struct ggml_tensor * ggml_view_tensor(
  3760. struct ggml_context * ctx,
  3761. const struct ggml_tensor * src) {
  3762. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3763. result->nb[0] = src->nb[0];
  3764. result->nb[1] = src->nb[1];
  3765. result->nb[2] = src->nb[2];
  3766. result->nb[3] = src->nb[3];
  3767. return result;
  3768. }
  3769. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3770. struct ggml_object * obj = ctx->objects_begin;
  3771. char * const mem_buffer = ctx->mem_buffer;
  3772. while (obj != NULL) {
  3773. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3774. if (strcmp(cur->name, name) == 0) {
  3775. return cur;
  3776. }
  3777. obj = obj->next;
  3778. }
  3779. return NULL;
  3780. }
  3781. ////////////////////////////////////////////////////////////////////////////////
  3782. // ggml_dup
  3783. struct ggml_tensor * ggml_dup_impl(
  3784. struct ggml_context * ctx,
  3785. struct ggml_tensor * a,
  3786. bool inplace) {
  3787. bool is_node = false;
  3788. if (!inplace && (a->grad)) {
  3789. is_node = true;
  3790. }
  3791. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3792. result->op = GGML_OP_DUP;
  3793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3794. result->src0 = a;
  3795. result->src1 = NULL;
  3796. return result;
  3797. }
  3798. struct ggml_tensor * ggml_dup(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a) {
  3801. return ggml_dup_impl(ctx, a, false);
  3802. }
  3803. struct ggml_tensor * ggml_dup_inplace(
  3804. struct ggml_context * ctx,
  3805. struct ggml_tensor * a) {
  3806. return ggml_dup_impl(ctx, a, true);
  3807. }
  3808. // ggml_add
  3809. struct ggml_tensor * ggml_add_impl(
  3810. struct ggml_context * ctx,
  3811. struct ggml_tensor * a,
  3812. struct ggml_tensor * b,
  3813. bool inplace) {
  3814. GGML_ASSERT(ggml_are_same_shape(a, b));
  3815. bool is_node = false;
  3816. if (!inplace && (a->grad || b->grad)) {
  3817. is_node = true;
  3818. }
  3819. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3820. result->op = GGML_OP_ADD;
  3821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3822. result->src0 = a;
  3823. result->src1 = b;
  3824. return result;
  3825. }
  3826. struct ggml_tensor * ggml_add(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a,
  3829. struct ggml_tensor * b) {
  3830. return ggml_add_impl(ctx, a, b, false);
  3831. }
  3832. struct ggml_tensor * ggml_add_inplace(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a,
  3835. struct ggml_tensor * b) {
  3836. return ggml_add_impl(ctx, a, b, true);
  3837. }
  3838. // ggml_add1
  3839. struct ggml_tensor * ggml_add1_impl(
  3840. struct ggml_context * ctx,
  3841. struct ggml_tensor * a,
  3842. struct ggml_tensor * b,
  3843. bool inplace) {
  3844. GGML_ASSERT(ggml_is_scalar(b));
  3845. GGML_ASSERT(ggml_is_padded_1d(a));
  3846. bool is_node = false;
  3847. if (!inplace && (a->grad || b->grad)) {
  3848. is_node = true;
  3849. }
  3850. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3851. result->op = GGML_OP_ADD1;
  3852. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3853. result->src0 = a;
  3854. result->src1 = b;
  3855. return result;
  3856. }
  3857. struct ggml_tensor * ggml_add1(
  3858. struct ggml_context * ctx,
  3859. struct ggml_tensor * a,
  3860. struct ggml_tensor * b) {
  3861. return ggml_add1_impl(ctx, a, b, false);
  3862. }
  3863. struct ggml_tensor * ggml_add1_inplace(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a,
  3866. struct ggml_tensor * b) {
  3867. return ggml_add1_impl(ctx, a, b, true);
  3868. }
  3869. // ggml_acc
  3870. struct ggml_tensor * ggml_acc_impl(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a,
  3873. struct ggml_tensor * b,
  3874. size_t nb1,
  3875. size_t nb2,
  3876. size_t nb3,
  3877. size_t offset,
  3878. bool inplace) {
  3879. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3880. GGML_ASSERT(ggml_is_contiguous(a));
  3881. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3882. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3883. bool is_node = false;
  3884. if (!inplace && (a->grad || b->grad)) {
  3885. is_node = true;
  3886. }
  3887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3888. ggml_scratch_save(ctx);
  3889. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3890. ((int32_t *) c->data)[0] = nb1;
  3891. ((int32_t *) c->data)[1] = nb2;
  3892. ((int32_t *) c->data)[2] = nb3;
  3893. ((int32_t *) c->data)[3] = offset;
  3894. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3895. ggml_scratch_load(ctx);
  3896. result->op = GGML_OP_ACC;
  3897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3898. result->src0 = a;
  3899. result->src1 = b;
  3900. result->opt[0] = c;
  3901. return result;
  3902. }
  3903. struct ggml_tensor * ggml_acc(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. struct ggml_tensor * b,
  3907. size_t nb1,
  3908. size_t nb2,
  3909. size_t nb3,
  3910. size_t offset) {
  3911. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3912. }
  3913. struct ggml_tensor * ggml_acc_inplace(
  3914. struct ggml_context * ctx,
  3915. struct ggml_tensor * a,
  3916. struct ggml_tensor * b,
  3917. size_t nb1,
  3918. size_t nb2,
  3919. size_t nb3,
  3920. size_t offset) {
  3921. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3922. }
  3923. // ggml_sub
  3924. struct ggml_tensor * ggml_sub_impl(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a,
  3927. struct ggml_tensor * b,
  3928. bool inplace) {
  3929. GGML_ASSERT(ggml_are_same_shape(a, b));
  3930. bool is_node = false;
  3931. if (!inplace && (a->grad || b->grad)) {
  3932. is_node = true;
  3933. }
  3934. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3935. result->op = GGML_OP_SUB;
  3936. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3937. result->src0 = a;
  3938. result->src1 = b;
  3939. return result;
  3940. }
  3941. struct ggml_tensor * ggml_sub(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. struct ggml_tensor * b) {
  3945. return ggml_sub_impl(ctx, a, b, false);
  3946. }
  3947. struct ggml_tensor * ggml_sub_inplace(
  3948. struct ggml_context * ctx,
  3949. struct ggml_tensor * a,
  3950. struct ggml_tensor * b) {
  3951. return ggml_sub_impl(ctx, a, b, true);
  3952. }
  3953. // ggml_mul
  3954. struct ggml_tensor * ggml_mul_impl(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a,
  3957. struct ggml_tensor * b,
  3958. bool inplace) {
  3959. // TODO: support less-strict constraint
  3960. // GGML_ASSERT(ggml_can_repeat(b, a));
  3961. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3962. bool is_node = false;
  3963. if (!inplace && (a->grad || b->grad)) {
  3964. // TODO: support backward pass for broadcasting
  3965. GGML_ASSERT(ggml_are_same_shape(a, b));
  3966. is_node = true;
  3967. }
  3968. if (inplace) {
  3969. GGML_ASSERT(is_node == false);
  3970. }
  3971. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3972. result->op = GGML_OP_MUL;
  3973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3974. result->src0 = a;
  3975. result->src1 = b;
  3976. return result;
  3977. }
  3978. struct ggml_tensor * ggml_mul(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. struct ggml_tensor * b) {
  3982. return ggml_mul_impl(ctx, a, b, false);
  3983. }
  3984. struct ggml_tensor * ggml_mul_inplace(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a,
  3987. struct ggml_tensor * b) {
  3988. return ggml_mul_impl(ctx, a, b, true);
  3989. }
  3990. // ggml_div
  3991. struct ggml_tensor * ggml_div_impl(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. struct ggml_tensor * b,
  3995. bool inplace) {
  3996. GGML_ASSERT(ggml_are_same_shape(a, b));
  3997. bool is_node = false;
  3998. if (!inplace && (a->grad || b->grad)) {
  3999. is_node = true;
  4000. }
  4001. if (inplace) {
  4002. GGML_ASSERT(is_node == false);
  4003. }
  4004. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4005. result->op = GGML_OP_DIV;
  4006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4007. result->src0 = a;
  4008. result->src1 = b;
  4009. return result;
  4010. }
  4011. struct ggml_tensor * ggml_div(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a,
  4014. struct ggml_tensor * b) {
  4015. return ggml_div_impl(ctx, a, b, false);
  4016. }
  4017. struct ggml_tensor * ggml_div_inplace(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a,
  4020. struct ggml_tensor * b) {
  4021. return ggml_div_impl(ctx, a, b, true);
  4022. }
  4023. // ggml_sqr
  4024. struct ggml_tensor * ggml_sqr_impl(
  4025. struct ggml_context * ctx,
  4026. struct ggml_tensor * a,
  4027. bool inplace) {
  4028. bool is_node = false;
  4029. if (!inplace && (a->grad)) {
  4030. is_node = true;
  4031. }
  4032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4033. result->op = GGML_OP_SQR;
  4034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4035. result->src0 = a;
  4036. result->src1 = NULL;
  4037. return result;
  4038. }
  4039. struct ggml_tensor * ggml_sqr(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a) {
  4042. return ggml_sqr_impl(ctx, a, false);
  4043. }
  4044. struct ggml_tensor * ggml_sqr_inplace(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a) {
  4047. return ggml_sqr_impl(ctx, a, true);
  4048. }
  4049. // ggml_sqrt
  4050. struct ggml_tensor * ggml_sqrt_impl(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a,
  4053. bool inplace) {
  4054. bool is_node = false;
  4055. if (!inplace && (a->grad)) {
  4056. is_node = true;
  4057. }
  4058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4059. result->op = GGML_OP_SQRT;
  4060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4061. result->src0 = a;
  4062. result->src1 = NULL;
  4063. return result;
  4064. }
  4065. struct ggml_tensor * ggml_sqrt(
  4066. struct ggml_context * ctx,
  4067. struct ggml_tensor * a) {
  4068. return ggml_sqrt_impl(ctx, a, false);
  4069. }
  4070. struct ggml_tensor * ggml_sqrt_inplace(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a) {
  4073. return ggml_sqrt_impl(ctx, a, true);
  4074. }
  4075. // ggml_log
  4076. struct ggml_tensor * ggml_log_impl(
  4077. struct ggml_context * ctx,
  4078. struct ggml_tensor * a,
  4079. bool inplace) {
  4080. bool is_node = false;
  4081. if (!inplace && (a->grad)) {
  4082. is_node = true;
  4083. }
  4084. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4085. result->op = GGML_OP_LOG;
  4086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4087. result->src0 = a;
  4088. result->src1 = NULL;
  4089. return result;
  4090. }
  4091. struct ggml_tensor * ggml_log(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a) {
  4094. return ggml_log_impl(ctx, a, false);
  4095. }
  4096. struct ggml_tensor * ggml_log_inplace(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a) {
  4099. return ggml_log_impl(ctx, a, true);
  4100. }
  4101. // ggml_sum
  4102. struct ggml_tensor * ggml_sum(
  4103. struct ggml_context * ctx,
  4104. struct ggml_tensor * a) {
  4105. bool is_node = false;
  4106. if (a->grad) {
  4107. is_node = true;
  4108. }
  4109. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4110. result->op = GGML_OP_SUM;
  4111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4112. result->src0 = a;
  4113. result->src1 = NULL;
  4114. return result;
  4115. }
  4116. // ggml_sum_rows
  4117. struct ggml_tensor * ggml_sum_rows(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a) {
  4120. bool is_node = false;
  4121. if (a->grad) {
  4122. is_node = true;
  4123. }
  4124. int64_t ne[4] = {1,1,1,1};
  4125. for (int i=1; i<a->n_dims; ++i) {
  4126. ne[i] = a->ne[i];
  4127. }
  4128. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4129. result->op = GGML_OP_SUM_ROWS;
  4130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4131. result->src0 = a;
  4132. result->src1 = NULL;
  4133. return result;
  4134. }
  4135. // ggml_mean
  4136. struct ggml_tensor * ggml_mean(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a) {
  4139. bool is_node = false;
  4140. if (a->grad) {
  4141. GGML_ASSERT(false); // TODO: implement
  4142. is_node = true;
  4143. }
  4144. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4145. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4146. result->op = GGML_OP_MEAN;
  4147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4148. result->src0 = a;
  4149. result->src1 = NULL;
  4150. return result;
  4151. }
  4152. // ggml_repeat
  4153. struct ggml_tensor * ggml_repeat(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a,
  4156. struct ggml_tensor * b) {
  4157. GGML_ASSERT(ggml_can_repeat(a, b));
  4158. bool is_node = false;
  4159. if (a->grad) {
  4160. is_node = true;
  4161. }
  4162. if (ggml_are_same_shape(a, b) && !is_node) {
  4163. return a;
  4164. }
  4165. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4166. result->op = GGML_OP_REPEAT;
  4167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4168. result->src0 = a;
  4169. result->src1 = b;
  4170. return result;
  4171. }
  4172. // ggml_abs
  4173. struct ggml_tensor * ggml_abs_impl(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a,
  4176. bool inplace) {
  4177. bool is_node = false;
  4178. if (!inplace && (a->grad)) {
  4179. is_node = true;
  4180. }
  4181. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4182. result->op = GGML_OP_ABS;
  4183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4184. result->src0 = a;
  4185. result->src1 = NULL;
  4186. return result;
  4187. }
  4188. struct ggml_tensor * ggml_abs(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a) {
  4191. return ggml_abs_impl(ctx, a, false);
  4192. }
  4193. struct ggml_tensor * ggml_abs_inplace(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a) {
  4196. return ggml_abs_impl(ctx, a, true);
  4197. }
  4198. // ggml_sgn
  4199. struct ggml_tensor * ggml_sgn_impl(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a,
  4202. bool inplace) {
  4203. bool is_node = false;
  4204. if (!inplace && (a->grad)) {
  4205. is_node = true;
  4206. }
  4207. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4208. result->op = GGML_OP_SGN;
  4209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4210. result->src0 = a;
  4211. result->src1 = NULL;
  4212. return result;
  4213. }
  4214. struct ggml_tensor * ggml_sgn(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a) {
  4217. return ggml_sgn_impl(ctx, a, false);
  4218. }
  4219. struct ggml_tensor * ggml_sgn_inplace(
  4220. struct ggml_context * ctx,
  4221. struct ggml_tensor * a) {
  4222. return ggml_sgn_impl(ctx, a, true);
  4223. }
  4224. // ggml_neg
  4225. struct ggml_tensor * ggml_neg_impl(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a,
  4228. bool inplace) {
  4229. bool is_node = false;
  4230. if (!inplace && (a->grad)) {
  4231. is_node = true;
  4232. }
  4233. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4234. result->op = GGML_OP_NEG;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src0 = a;
  4237. result->src1 = NULL;
  4238. return result;
  4239. }
  4240. struct ggml_tensor * ggml_neg(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a) {
  4243. return ggml_neg_impl(ctx, a, false);
  4244. }
  4245. struct ggml_tensor * ggml_neg_inplace(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a) {
  4248. return ggml_neg_impl(ctx, a, true);
  4249. }
  4250. // ggml_step
  4251. struct ggml_tensor * ggml_step_impl(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. bool inplace) {
  4255. bool is_node = false;
  4256. if (!inplace && (a->grad)) {
  4257. is_node = true;
  4258. }
  4259. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4260. result->op = GGML_OP_STEP;
  4261. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4262. result->src0 = a;
  4263. result->src1 = NULL;
  4264. return result;
  4265. }
  4266. struct ggml_tensor * ggml_step(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a) {
  4269. return ggml_step_impl(ctx, a, false);
  4270. }
  4271. struct ggml_tensor * ggml_step_inplace(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a) {
  4274. return ggml_step_impl(ctx, a, true);
  4275. }
  4276. // ggml_relu
  4277. struct ggml_tensor * ggml_relu_impl(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. bool inplace) {
  4281. bool is_node = false;
  4282. if (!inplace && (a->grad)) {
  4283. is_node = true;
  4284. }
  4285. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4286. result->op = GGML_OP_RELU;
  4287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4288. result->src0 = a;
  4289. result->src1 = NULL;
  4290. return result;
  4291. }
  4292. struct ggml_tensor * ggml_relu(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a) {
  4295. return ggml_relu_impl(ctx, a, false);
  4296. }
  4297. struct ggml_tensor * ggml_relu_inplace(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a) {
  4300. return ggml_relu_impl(ctx, a, true);
  4301. }
  4302. // ggml_gelu
  4303. struct ggml_tensor * ggml_gelu_impl(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. bool inplace) {
  4307. bool is_node = false;
  4308. if (!inplace && (a->grad)) {
  4309. is_node = true;
  4310. }
  4311. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4312. result->op = GGML_OP_GELU;
  4313. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4314. result->src0 = a;
  4315. result->src1 = NULL;
  4316. return result;
  4317. }
  4318. struct ggml_tensor * ggml_gelu(
  4319. struct ggml_context * ctx,
  4320. struct ggml_tensor * a) {
  4321. return ggml_gelu_impl(ctx, a, false);
  4322. }
  4323. struct ggml_tensor * ggml_gelu_inplace(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a) {
  4326. return ggml_gelu_impl(ctx, a, true);
  4327. }
  4328. // ggml_silu
  4329. struct ggml_tensor * ggml_silu_impl(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. bool inplace) {
  4333. bool is_node = false;
  4334. if (!inplace && (a->grad)) {
  4335. is_node = true;
  4336. }
  4337. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4338. result->op = GGML_OP_SILU;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src0 = a;
  4341. result->src1 = NULL;
  4342. return result;
  4343. }
  4344. struct ggml_tensor * ggml_silu(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a) {
  4347. return ggml_silu_impl(ctx, a, false);
  4348. }
  4349. struct ggml_tensor * ggml_silu_inplace(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a) {
  4352. return ggml_silu_impl(ctx, a, true);
  4353. }
  4354. // ggml_silu_back
  4355. struct ggml_tensor * ggml_silu_back(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. struct ggml_tensor * b) {
  4359. bool is_node = false;
  4360. if (a->grad || b->grad) {
  4361. // TODO: implement backward
  4362. is_node = true;
  4363. }
  4364. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4365. result->op = GGML_OP_SILU_BACK;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src0 = a;
  4368. result->src1 = b;
  4369. return result;
  4370. }
  4371. // ggml_norm
  4372. struct ggml_tensor * ggml_norm_impl(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a,
  4375. bool inplace) {
  4376. bool is_node = false;
  4377. if (!inplace && (a->grad)) {
  4378. GGML_ASSERT(false); // TODO: implement backward
  4379. is_node = true;
  4380. }
  4381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4382. result->op = GGML_OP_NORM;
  4383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4384. result->src0 = a;
  4385. result->src1 = NULL; // TODO: maybe store epsilon here?
  4386. return result;
  4387. }
  4388. struct ggml_tensor * ggml_norm(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a) {
  4391. return ggml_norm_impl(ctx, a, false);
  4392. }
  4393. struct ggml_tensor * ggml_norm_inplace(
  4394. struct ggml_context * ctx,
  4395. struct ggml_tensor * a) {
  4396. return ggml_norm_impl(ctx, a, true);
  4397. }
  4398. struct ggml_tensor * ggml_rms_norm_impl(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. bool inplace) {
  4402. bool is_node = false;
  4403. if (!inplace && (a->grad)) {
  4404. is_node = true;
  4405. }
  4406. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4407. result->op = GGML_OP_RMS_NORM;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src0 = a;
  4410. result->src1 = NULL; // TODO: maybe store epsilon here?
  4411. return result;
  4412. }
  4413. struct ggml_tensor * ggml_rms_norm(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a) {
  4416. return ggml_rms_norm_impl(ctx, a, false);
  4417. }
  4418. struct ggml_tensor * ggml_rms_norm_inplace(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a) {
  4421. return ggml_rms_norm_impl(ctx, a, true);
  4422. }
  4423. struct ggml_tensor * ggml_rms_norm_back(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a,
  4426. struct ggml_tensor * b) {
  4427. bool is_node = false;
  4428. if (a->grad) {
  4429. // TODO: implement backward
  4430. is_node = true;
  4431. }
  4432. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4433. result->op = GGML_OP_RMS_NORM_BACK;
  4434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4435. result->src0 = a;
  4436. result->src1 = b;
  4437. return result;
  4438. }
  4439. // ggml_mul_mat
  4440. struct ggml_tensor * ggml_mul_mat(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a,
  4443. struct ggml_tensor * b) {
  4444. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4445. GGML_ASSERT(!ggml_is_transposed(a));
  4446. bool is_node = false;
  4447. if (a->grad || b->grad) {
  4448. is_node = true;
  4449. }
  4450. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4451. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4452. result->op = GGML_OP_MUL_MAT;
  4453. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4454. result->src0 = a;
  4455. result->src1 = b;
  4456. return result;
  4457. }
  4458. // ggml_scale
  4459. struct ggml_tensor * ggml_scale_impl(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a,
  4462. struct ggml_tensor * b,
  4463. bool inplace) {
  4464. GGML_ASSERT(ggml_is_scalar(b));
  4465. GGML_ASSERT(ggml_is_padded_1d(a));
  4466. bool is_node = false;
  4467. if (!inplace && (a->grad || b->grad)) {
  4468. is_node = true;
  4469. }
  4470. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4471. result->op = GGML_OP_SCALE;
  4472. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4473. result->src0 = a;
  4474. result->src1 = b;
  4475. return result;
  4476. }
  4477. struct ggml_tensor * ggml_scale(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a,
  4480. struct ggml_tensor * b) {
  4481. return ggml_scale_impl(ctx, a, b, false);
  4482. }
  4483. struct ggml_tensor * ggml_scale_inplace(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a,
  4486. struct ggml_tensor * b) {
  4487. return ggml_scale_impl(ctx, a, b, true);
  4488. }
  4489. // ggml_set
  4490. struct ggml_tensor * ggml_set_impl(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. struct ggml_tensor * b,
  4494. size_t nb1,
  4495. size_t nb2,
  4496. size_t nb3,
  4497. size_t offset,
  4498. bool inplace) {
  4499. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4500. bool is_node = false;
  4501. if (!inplace && (a->grad || b->grad)) {
  4502. is_node = true;
  4503. }
  4504. // make a view of the destination
  4505. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4506. ggml_scratch_save(ctx);
  4507. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4508. (( int32_t * ) c->data)[0] = nb1;
  4509. (( int32_t * ) c->data)[1] = nb2;
  4510. (( int32_t * ) c->data)[2] = nb3;
  4511. (( int32_t * ) c->data)[3] = offset;
  4512. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4513. ggml_scratch_load(ctx);
  4514. result->op = GGML_OP_SET;
  4515. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4516. result->src0 = a;
  4517. result->src1 = b;
  4518. result->opt[0] = c;
  4519. return result;
  4520. }
  4521. struct ggml_tensor * ggml_set(
  4522. struct ggml_context * ctx,
  4523. struct ggml_tensor * a,
  4524. struct ggml_tensor * b,
  4525. size_t nb1,
  4526. size_t nb2,
  4527. size_t nb3,
  4528. size_t offset) {
  4529. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4530. }
  4531. struct ggml_tensor * ggml_set_inplace(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a,
  4534. struct ggml_tensor * b,
  4535. size_t nb1,
  4536. size_t nb2,
  4537. size_t nb3,
  4538. size_t offset) {
  4539. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4540. }
  4541. struct ggml_tensor * ggml_set_1d(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * a,
  4544. struct ggml_tensor * b,
  4545. size_t offset) {
  4546. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4547. }
  4548. struct ggml_tensor * ggml_set_1d_inplace(
  4549. struct ggml_context * ctx,
  4550. struct ggml_tensor * a,
  4551. struct ggml_tensor * b,
  4552. size_t offset) {
  4553. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4554. }
  4555. struct ggml_tensor * ggml_set_2d(
  4556. struct ggml_context * ctx,
  4557. struct ggml_tensor * a,
  4558. struct ggml_tensor * b,
  4559. size_t nb1,
  4560. size_t offset) {
  4561. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4562. }
  4563. struct ggml_tensor * ggml_set_2d_inplace(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. struct ggml_tensor * b,
  4567. size_t nb1,
  4568. size_t offset) {
  4569. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4570. }
  4571. // ggml_cpy
  4572. struct ggml_tensor * ggml_cpy_impl(
  4573. struct ggml_context * ctx,
  4574. struct ggml_tensor * a,
  4575. struct ggml_tensor * b,
  4576. bool inplace) {
  4577. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4578. bool is_node = false;
  4579. if (!inplace && (a->grad || b->grad)) {
  4580. is_node = true;
  4581. }
  4582. // make a view of the destination
  4583. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4584. result->op = GGML_OP_CPY;
  4585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4586. result->src0 = a;
  4587. result->src1 = b;
  4588. return result;
  4589. }
  4590. struct ggml_tensor * ggml_cpy(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. struct ggml_tensor * b) {
  4594. return ggml_cpy_impl(ctx, a, b, false);
  4595. }
  4596. struct ggml_tensor * ggml_cpy_inplace(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * a,
  4599. struct ggml_tensor * b) {
  4600. return ggml_cpy_impl(ctx, a, b, true);
  4601. }
  4602. // ggml_cont
  4603. struct ggml_tensor * ggml_cont_impl(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a,
  4606. bool inplace) {
  4607. bool is_node = false;
  4608. if (!inplace && a->grad) {
  4609. is_node = true;
  4610. }
  4611. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4612. result->op = GGML_OP_CONT;
  4613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4614. result->src0 = a;
  4615. result->src1 = NULL;
  4616. return result;
  4617. }
  4618. struct ggml_tensor * ggml_cont(
  4619. struct ggml_context * ctx,
  4620. struct ggml_tensor * a) {
  4621. return ggml_cont_impl(ctx, a, false);
  4622. }
  4623. struct ggml_tensor * ggml_cont_inplace(
  4624. struct ggml_context * ctx,
  4625. struct ggml_tensor * a) {
  4626. return ggml_cont_impl(ctx, a, true);
  4627. }
  4628. // ggml_reshape
  4629. struct ggml_tensor * ggml_reshape(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a,
  4632. struct ggml_tensor * b) {
  4633. GGML_ASSERT(ggml_is_contiguous(a));
  4634. GGML_ASSERT(ggml_is_contiguous(b));
  4635. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4636. bool is_node = false;
  4637. if (a->grad) {
  4638. is_node = true;
  4639. }
  4640. if (b->grad) {
  4641. // gradient propagation is not supported
  4642. //GGML_ASSERT(false);
  4643. }
  4644. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4645. result->op = GGML_OP_RESHAPE;
  4646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4647. result->src0 = a;
  4648. result->src1 = NULL;
  4649. return result;
  4650. }
  4651. struct ggml_tensor * ggml_reshape_1d(
  4652. struct ggml_context * ctx,
  4653. struct ggml_tensor * a,
  4654. int64_t ne0) {
  4655. GGML_ASSERT(ggml_is_contiguous(a));
  4656. GGML_ASSERT(ggml_nelements(a) == ne0);
  4657. bool is_node = false;
  4658. if (a->grad) {
  4659. is_node = true;
  4660. }
  4661. const int64_t ne[1] = { ne0 };
  4662. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4663. result->op = GGML_OP_RESHAPE;
  4664. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4665. result->src0 = a;
  4666. result->src1 = NULL;
  4667. return result;
  4668. }
  4669. struct ggml_tensor * ggml_reshape_2d(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. int64_t ne0,
  4673. int64_t ne1) {
  4674. GGML_ASSERT(ggml_is_contiguous(a));
  4675. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4676. bool is_node = false;
  4677. if (a->grad) {
  4678. is_node = true;
  4679. }
  4680. const int64_t ne[2] = { ne0, ne1 };
  4681. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4682. result->op = GGML_OP_RESHAPE;
  4683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4684. result->src0 = a;
  4685. result->src1 = NULL;
  4686. return result;
  4687. }
  4688. struct ggml_tensor * ggml_reshape_3d(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. int64_t ne0,
  4692. int64_t ne1,
  4693. int64_t ne2) {
  4694. GGML_ASSERT(ggml_is_contiguous(a));
  4695. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4696. bool is_node = false;
  4697. if (a->grad) {
  4698. is_node = true;
  4699. }
  4700. const int64_t ne[3] = { ne0, ne1, ne2 };
  4701. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4702. result->op = GGML_OP_RESHAPE;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src0 = a;
  4705. result->src1 = NULL;
  4706. return result;
  4707. }
  4708. struct ggml_tensor * ggml_reshape_4d(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. int64_t ne0,
  4712. int64_t ne1,
  4713. int64_t ne2,
  4714. int64_t ne3) {
  4715. GGML_ASSERT(ggml_is_contiguous(a));
  4716. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4717. bool is_node = false;
  4718. if (a->grad) {
  4719. is_node = true;
  4720. }
  4721. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4722. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4723. result->op = GGML_OP_RESHAPE;
  4724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4725. result->src0 = a;
  4726. result->src1 = NULL;
  4727. return result;
  4728. }
  4729. // ggml_view_1d
  4730. struct ggml_tensor * ggml_view_1d(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a,
  4733. int64_t ne0,
  4734. size_t offset) {
  4735. bool is_node = false;
  4736. if (a->grad) {
  4737. is_node = true;
  4738. }
  4739. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4740. ggml_scratch_save(ctx);
  4741. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4742. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4743. ggml_scratch_load(ctx);
  4744. result->op = GGML_OP_VIEW;
  4745. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4746. result->src0 = a;
  4747. result->src1 = NULL;
  4748. result->opt[0] = offs;
  4749. if (is_node) {
  4750. memcpy(result->padding, &offset, sizeof(offset));
  4751. }
  4752. return result;
  4753. }
  4754. // ggml_view_2d
  4755. struct ggml_tensor * ggml_view_2d(
  4756. struct ggml_context * ctx,
  4757. struct ggml_tensor * a,
  4758. int64_t ne0,
  4759. int64_t ne1,
  4760. size_t nb1,
  4761. size_t offset) {
  4762. bool is_node = false;
  4763. if (a->grad) {
  4764. is_node = true;
  4765. }
  4766. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4767. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4768. ggml_scratch_save(ctx);
  4769. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4770. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4771. ggml_scratch_load(ctx);
  4772. result->nb[1] = nb1;
  4773. result->nb[2] = result->nb[1]*ne1;
  4774. result->nb[3] = result->nb[2];
  4775. result->op = GGML_OP_VIEW;
  4776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4777. result->src0 = a;
  4778. result->src1 = NULL;
  4779. result->opt[0] = offs;
  4780. if (is_node) {
  4781. memcpy(result->padding, &offset, sizeof(offset));
  4782. }
  4783. return result;
  4784. }
  4785. // ggml_view_3d
  4786. struct ggml_tensor * ggml_view_3d(
  4787. struct ggml_context * ctx,
  4788. struct ggml_tensor * a,
  4789. int64_t ne0,
  4790. int64_t ne1,
  4791. int64_t ne2,
  4792. size_t nb1,
  4793. size_t nb2,
  4794. size_t offset) {
  4795. bool is_node = false;
  4796. if (a->grad) {
  4797. is_node = true;
  4798. }
  4799. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4800. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4801. ggml_scratch_save(ctx);
  4802. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4803. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4804. ggml_scratch_load(ctx);
  4805. result->nb[1] = nb1;
  4806. result->nb[2] = nb2;
  4807. result->nb[3] = result->nb[2]*ne2;
  4808. result->op = GGML_OP_VIEW;
  4809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4810. result->src0 = a;
  4811. result->src1 = NULL;
  4812. result->opt[0] = offs;
  4813. if (is_node) {
  4814. memcpy(result->padding, &offset, sizeof(offset));
  4815. }
  4816. return result;
  4817. }
  4818. // ggml_view_4d
  4819. struct ggml_tensor * ggml_view_4d(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. int64_t ne0,
  4823. int64_t ne1,
  4824. int64_t ne2,
  4825. int64_t ne3,
  4826. size_t nb1,
  4827. size_t nb2,
  4828. size_t nb3,
  4829. size_t offset) {
  4830. bool is_node = false;
  4831. if (a->grad) {
  4832. is_node = true;
  4833. }
  4834. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4835. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4836. ggml_scratch_save(ctx);
  4837. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4838. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4839. ggml_scratch_load(ctx);
  4840. result->nb[1] = nb1;
  4841. result->nb[2] = nb2;
  4842. result->nb[3] = nb3;
  4843. result->op = GGML_OP_VIEW;
  4844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4845. result->src0 = a;
  4846. result->src1 = NULL;
  4847. result->opt[0] = offs;
  4848. if (is_node) {
  4849. memcpy(result->padding, &offset, sizeof(offset));
  4850. }
  4851. return result;
  4852. }
  4853. // ggml_permute
  4854. struct ggml_tensor * ggml_permute(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a,
  4857. int axis0,
  4858. int axis1,
  4859. int axis2,
  4860. int axis3) {
  4861. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4862. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4863. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4864. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4865. GGML_ASSERT(axis0 != axis1);
  4866. GGML_ASSERT(axis0 != axis2);
  4867. GGML_ASSERT(axis0 != axis3);
  4868. GGML_ASSERT(axis1 != axis2);
  4869. GGML_ASSERT(axis1 != axis3);
  4870. GGML_ASSERT(axis2 != axis3);
  4871. bool is_node = false;
  4872. if (a->grad) {
  4873. is_node = true;
  4874. }
  4875. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4876. int ne[GGML_MAX_DIMS];
  4877. int nb[GGML_MAX_DIMS];
  4878. ne[axis0] = a->ne[0];
  4879. ne[axis1] = a->ne[1];
  4880. ne[axis2] = a->ne[2];
  4881. ne[axis3] = a->ne[3];
  4882. nb[axis0] = a->nb[0];
  4883. nb[axis1] = a->nb[1];
  4884. nb[axis2] = a->nb[2];
  4885. nb[axis3] = a->nb[3];
  4886. result->ne[0] = ne[0];
  4887. result->ne[1] = ne[1];
  4888. result->ne[2] = ne[2];
  4889. result->ne[3] = ne[3];
  4890. result->nb[0] = nb[0];
  4891. result->nb[1] = nb[1];
  4892. result->nb[2] = nb[2];
  4893. result->nb[3] = nb[3];
  4894. result->op = GGML_OP_PERMUTE;
  4895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4896. result->src0 = a;
  4897. result->src1 = NULL;
  4898. if (is_node) {
  4899. result->padding[0] = axis0;
  4900. result->padding[1] = axis1;
  4901. result->padding[2] = axis2;
  4902. result->padding[3] = axis3;
  4903. }
  4904. return result;
  4905. }
  4906. // ggml_transpose
  4907. struct ggml_tensor * ggml_transpose(
  4908. struct ggml_context * ctx,
  4909. struct ggml_tensor * a) {
  4910. bool is_node = false;
  4911. if (a->grad) {
  4912. is_node = true;
  4913. }
  4914. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4915. result->ne[0] = a->ne[1];
  4916. result->ne[1] = a->ne[0];
  4917. result->nb[0] = a->nb[1];
  4918. result->nb[1] = a->nb[0];
  4919. result->op = GGML_OP_TRANSPOSE;
  4920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4921. result->src0 = a;
  4922. result->src1 = NULL;
  4923. return result;
  4924. }
  4925. // ggml_get_rows
  4926. struct ggml_tensor * ggml_get_rows(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a,
  4929. struct ggml_tensor * b) {
  4930. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4931. bool is_node = false;
  4932. if (a->grad || b->grad) {
  4933. is_node = true;
  4934. }
  4935. // TODO: implement non F32 return
  4936. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4937. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4938. result->op = GGML_OP_GET_ROWS;
  4939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4940. result->src0 = a;
  4941. result->src1 = b;
  4942. return result;
  4943. }
  4944. // ggml_get_rows_back
  4945. struct ggml_tensor * ggml_get_rows_back(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. struct ggml_tensor * b,
  4949. struct ggml_tensor * c) {
  4950. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4951. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4952. bool is_node = false;
  4953. if (a->grad || b->grad) {
  4954. is_node = true;
  4955. }
  4956. // TODO: implement non F32 return
  4957. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4958. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4959. result->op = GGML_OP_GET_ROWS_BACK;
  4960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4961. result->src0 = a;
  4962. result->src1 = b;
  4963. result->opt[0] = c;
  4964. return result;
  4965. }
  4966. // ggml_diag
  4967. struct ggml_tensor * ggml_diag(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a) {
  4970. GGML_ASSERT(a->ne[1] == 1);
  4971. bool is_node = false;
  4972. if (a->grad) {
  4973. is_node = true;
  4974. }
  4975. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4976. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4977. result->op = GGML_OP_DIAG;
  4978. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4979. result->src0 = a;
  4980. result->src1 = NULL;
  4981. return result;
  4982. }
  4983. // ggml_diag_mask_inf
  4984. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a,
  4987. int n_past,
  4988. bool inplace) {
  4989. bool is_node = false;
  4990. if (a->grad) {
  4991. is_node = true;
  4992. }
  4993. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4994. ggml_scratch_save(ctx);
  4995. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4996. ((int32_t *) b->data)[0] = n_past;
  4997. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4998. ggml_scratch_load(ctx);
  4999. result->op = GGML_OP_DIAG_MASK_INF;
  5000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5001. result->src0 = a;
  5002. result->src1 = b;
  5003. return result;
  5004. }
  5005. struct ggml_tensor * ggml_diag_mask_inf(
  5006. struct ggml_context * ctx,
  5007. struct ggml_tensor * a,
  5008. int n_past) {
  5009. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5010. }
  5011. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. int n_past) {
  5015. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5016. }
  5017. // ggml_diag_mask_zero
  5018. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5019. struct ggml_context * ctx,
  5020. struct ggml_tensor * a,
  5021. int n_past,
  5022. bool inplace) {
  5023. bool is_node = false;
  5024. if (a->grad) {
  5025. is_node = true;
  5026. }
  5027. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5028. ggml_scratch_save(ctx);
  5029. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5030. ggml_set_name(b, "n_past, inplace");
  5031. ((int32_t *) b->data)[0] = n_past;
  5032. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5033. ggml_scratch_load(ctx);
  5034. result->op = GGML_OP_DIAG_MASK_ZERO;
  5035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5036. result->src0 = a;
  5037. result->src1 = b;
  5038. return result;
  5039. }
  5040. struct ggml_tensor * ggml_diag_mask_zero(
  5041. struct ggml_context * ctx,
  5042. struct ggml_tensor * a,
  5043. int n_past) {
  5044. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5045. }
  5046. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5047. struct ggml_context * ctx,
  5048. struct ggml_tensor * a,
  5049. int n_past) {
  5050. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5051. }
  5052. // ggml_soft_max
  5053. struct ggml_tensor * ggml_soft_max_impl(
  5054. struct ggml_context * ctx,
  5055. struct ggml_tensor * a,
  5056. bool inplace) {
  5057. bool is_node = false;
  5058. if (a->grad) {
  5059. is_node = true;
  5060. }
  5061. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5062. result->op = GGML_OP_SOFT_MAX;
  5063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5064. result->src0 = a;
  5065. result->src1 = NULL;
  5066. return result;
  5067. }
  5068. struct ggml_tensor * ggml_soft_max(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a) {
  5071. return ggml_soft_max_impl(ctx, a, false);
  5072. }
  5073. struct ggml_tensor * ggml_soft_max_inplace(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a) {
  5076. return ggml_soft_max_impl(ctx, a, true);
  5077. }
  5078. // ggml_rope
  5079. struct ggml_tensor * ggml_rope_impl(
  5080. struct ggml_context * ctx,
  5081. struct ggml_tensor * a,
  5082. int n_past,
  5083. int n_dims,
  5084. int mode,
  5085. bool inplace) {
  5086. GGML_ASSERT(n_past >= 0);
  5087. bool is_node = false;
  5088. if (!inplace && a->grad) {
  5089. is_node = true;
  5090. }
  5091. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5092. ggml_scratch_save(ctx);
  5093. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5094. ((int32_t *) b->data)[0] = n_past;
  5095. ((int32_t *) b->data)[1] = n_dims;
  5096. ((int32_t *) b->data)[2] = mode;
  5097. ggml_scratch_load(ctx);
  5098. result->op = GGML_OP_ROPE;
  5099. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5100. result->src0 = a;
  5101. result->src1 = b;
  5102. return result;
  5103. }
  5104. struct ggml_tensor * ggml_rope(
  5105. struct ggml_context * ctx,
  5106. struct ggml_tensor * a,
  5107. int n_past,
  5108. int n_dims,
  5109. int mode) {
  5110. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5111. }
  5112. struct ggml_tensor * ggml_rope_inplace(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a,
  5115. int n_past,
  5116. int n_dims,
  5117. int mode) {
  5118. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5119. }
  5120. // ggml_rope_back
  5121. struct ggml_tensor * ggml_rope_back(
  5122. struct ggml_context * ctx,
  5123. struct ggml_tensor * a,
  5124. int n_past,
  5125. int n_dims,
  5126. int mode) {
  5127. GGML_ASSERT(n_past >= 0);
  5128. bool is_node = false;
  5129. if (a->grad) {
  5130. GGML_ASSERT(false); // TODO: implement backward
  5131. is_node = true;
  5132. }
  5133. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5134. ggml_scratch_save(ctx);
  5135. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5136. ggml_set_name(b, "n_past, n_dims, mode");
  5137. ((int32_t *) b->data)[0] = n_past;
  5138. ((int32_t *) b->data)[1] = n_dims;
  5139. ((int32_t *) b->data)[2] = mode;
  5140. ggml_scratch_load(ctx);
  5141. result->op = GGML_OP_ROPE_BACK;
  5142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5143. result->src0 = a;
  5144. result->src1 = b;
  5145. return result;
  5146. }
  5147. // ggml_alibi
  5148. struct ggml_tensor * ggml_alibi(
  5149. struct ggml_context * ctx,
  5150. struct ggml_tensor * a,
  5151. int n_past,
  5152. int n_head,
  5153. float bias_max) {
  5154. GGML_ASSERT(n_past >= 0);
  5155. bool is_node = false;
  5156. if (a->grad) {
  5157. GGML_ASSERT(false); // TODO: implement backward
  5158. is_node = true;
  5159. }
  5160. // TODO: when implement backward, fix this:
  5161. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5162. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5163. ggml_scratch_save(ctx);
  5164. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5165. ((int32_t *) b->data)[0] = n_past;
  5166. ((int32_t *) b->data)[1] = n_head;
  5167. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5168. (((float *) b->data)[2]) = bias_max;
  5169. ggml_scratch_load(ctx);
  5170. result->op = GGML_OP_ALIBI;
  5171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5172. result->src0 = a;
  5173. result->src1 = b;
  5174. return result;
  5175. }
  5176. // ggml_clamp
  5177. struct ggml_tensor * ggml_clamp(
  5178. struct ggml_context * ctx,
  5179. struct ggml_tensor * a,
  5180. float min,
  5181. float max) {
  5182. bool is_node = false;
  5183. if (a->grad) {
  5184. GGML_ASSERT(false); // TODO: implement backward
  5185. is_node = true;
  5186. }
  5187. // TODO: when implement backward, fix this:
  5188. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5189. ggml_scratch_save(ctx);
  5190. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5191. ((float *) b->data)[0] = min;
  5192. ((float *) b->data)[1] = max;
  5193. ggml_scratch_load(ctx);
  5194. result->op = GGML_OP_CLAMP;
  5195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5196. result->src0 = a;
  5197. result->src1 = b;
  5198. return result;
  5199. }
  5200. // ggml_conv_1d_1s
  5201. struct ggml_tensor * ggml_conv_1d_1s(
  5202. struct ggml_context * ctx,
  5203. struct ggml_tensor * a,
  5204. struct ggml_tensor * b) {
  5205. GGML_ASSERT(ggml_is_matrix(b));
  5206. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5207. GGML_ASSERT(a->ne[3] == 1);
  5208. bool is_node = false;
  5209. if (a->grad || b->grad) {
  5210. GGML_ASSERT(false); // TODO: implement backward
  5211. is_node = true;
  5212. }
  5213. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5214. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5215. result->op = GGML_OP_CONV_1D_1S;
  5216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5217. result->src0 = a;
  5218. result->src1 = b;
  5219. return result;
  5220. }
  5221. // ggml_conv_1d_2s
  5222. struct ggml_tensor * ggml_conv_1d_2s(
  5223. struct ggml_context * ctx,
  5224. struct ggml_tensor * a,
  5225. struct ggml_tensor * b) {
  5226. GGML_ASSERT(ggml_is_matrix(b));
  5227. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5228. GGML_ASSERT(a->ne[3] == 1);
  5229. bool is_node = false;
  5230. if (a->grad || b->grad) {
  5231. GGML_ASSERT(false); // TODO: implement backward
  5232. is_node = true;
  5233. }
  5234. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5235. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5236. result->op = GGML_OP_CONV_1D_2S;
  5237. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5238. result->src0 = a;
  5239. result->src1 = b;
  5240. return result;
  5241. }
  5242. // ggml_flash_attn
  5243. struct ggml_tensor * ggml_flash_attn(
  5244. struct ggml_context * ctx,
  5245. struct ggml_tensor * q,
  5246. struct ggml_tensor * k,
  5247. struct ggml_tensor * v,
  5248. bool masked) {
  5249. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5250. // TODO: check if vT can be multiplied by (k*qT)
  5251. bool is_node = false;
  5252. if (q->grad || k->grad || v->grad) {
  5253. GGML_ASSERT(false); // TODO: implement backward
  5254. is_node = true;
  5255. }
  5256. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5257. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5258. result->op = GGML_OP_FLASH_ATTN;
  5259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5260. result->src0 = q;
  5261. result->src1 = k;
  5262. result->opt[0] = v;
  5263. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5264. return result;
  5265. }
  5266. // ggml_flash_ff
  5267. struct ggml_tensor * ggml_flash_ff(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. struct ggml_tensor * b0,
  5271. struct ggml_tensor * b1,
  5272. struct ggml_tensor * c0,
  5273. struct ggml_tensor * c1) {
  5274. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5275. // TODO: more checks
  5276. bool is_node = false;
  5277. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5278. GGML_ASSERT(false); // TODO: implement backward
  5279. is_node = true;
  5280. }
  5281. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5282. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5283. result->op = GGML_OP_FLASH_FF;
  5284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5285. result->src0 = a;
  5286. result->src1 = b0;
  5287. result->opt[0] = b1;
  5288. result->opt[1] = c0;
  5289. result->opt[2] = c1;
  5290. return result;
  5291. }
  5292. // ggml_map_unary
  5293. struct ggml_tensor * ggml_map_unary_impl_f32(
  5294. struct ggml_context * ctx,
  5295. struct ggml_tensor * a,
  5296. const ggml_unary_op_f32_t fun,
  5297. bool inplace) {
  5298. bool is_node = false;
  5299. if (!inplace && a->grad) {
  5300. is_node = true;
  5301. }
  5302. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5303. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5304. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5305. result->op = GGML_OP_MAP_UNARY;
  5306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5307. result->src0 = a;
  5308. result->opt[0] = addr_tensor;
  5309. return result;
  5310. }
  5311. struct ggml_tensor * ggml_map_unary_f32(
  5312. struct ggml_context * ctx,
  5313. struct ggml_tensor * a,
  5314. const ggml_unary_op_f32_t fun) {
  5315. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5316. }
  5317. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5318. struct ggml_context * ctx,
  5319. struct ggml_tensor * a,
  5320. const ggml_unary_op_f32_t fun) {
  5321. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5322. }
  5323. // ggml_map_binary
  5324. struct ggml_tensor * ggml_map_binary_impl_f32(
  5325. struct ggml_context * ctx,
  5326. struct ggml_tensor * a,
  5327. struct ggml_tensor * b,
  5328. const ggml_binary_op_f32_t fun,
  5329. bool inplace) {
  5330. GGML_ASSERT(ggml_are_same_shape(a, b));
  5331. bool is_node = false;
  5332. if (!inplace && (a->grad || b->grad)) {
  5333. is_node = true;
  5334. }
  5335. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5336. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5337. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5338. result->op = GGML_OP_MAP_BINARY;
  5339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5340. result->src0 = a;
  5341. result->src1 = b;
  5342. result->opt[0] = addr_tensor;
  5343. return result;
  5344. }
  5345. struct ggml_tensor * ggml_map_binary_f32(
  5346. struct ggml_context * ctx,
  5347. struct ggml_tensor * a,
  5348. struct ggml_tensor * b,
  5349. const ggml_binary_op_f32_t fun) {
  5350. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5351. }
  5352. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5353. struct ggml_context * ctx,
  5354. struct ggml_tensor * a,
  5355. struct ggml_tensor * b,
  5356. const ggml_binary_op_f32_t fun) {
  5357. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5358. }
  5359. ////////////////////////////////////////////////////////////////////////////////
  5360. void ggml_set_param(
  5361. struct ggml_context * ctx,
  5362. struct ggml_tensor * tensor) {
  5363. tensor->is_param = true;
  5364. GGML_ASSERT(tensor->grad == NULL);
  5365. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5366. }
  5367. // ggml_compute_forward_dup
  5368. static void ggml_compute_forward_dup_same_cont(
  5369. const struct ggml_compute_params * params,
  5370. const struct ggml_tensor * src0,
  5371. struct ggml_tensor * dst) {
  5372. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5373. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5374. GGML_ASSERT(src0->type == dst->type);
  5375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5376. return;
  5377. }
  5378. const size_t nb00 = src0->nb[0];
  5379. const size_t nb0 = dst->nb[0];
  5380. const int ith = params->ith; // thread index
  5381. const int nth = params->nth; // number of threads
  5382. // parallelize by elements
  5383. const int ne = ggml_nelements(dst);
  5384. const int dr = (ne + nth - 1) / nth;
  5385. const int ie0 = dr * ith;
  5386. const int ie1 = MIN(ie0 + dr, ne);
  5387. if (ie0 < ie1) {
  5388. memcpy(
  5389. ((char *) dst->data + ie0*nb0),
  5390. ((char *) src0->data + ie0*nb00),
  5391. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5392. }
  5393. }
  5394. static void ggml_compute_forward_dup_f16(
  5395. const struct ggml_compute_params * params,
  5396. const struct ggml_tensor * src0,
  5397. struct ggml_tensor * dst) {
  5398. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5400. return;
  5401. }
  5402. const int64_t ne00 = src0->ne[0];
  5403. const int64_t ne01 = src0->ne[1];
  5404. const int64_t ne02 = src0->ne[2];
  5405. const int64_t ne03 = src0->ne[3];
  5406. const int64_t ne0 = dst->ne[0];
  5407. const int64_t ne1 = dst->ne[1];
  5408. const int64_t ne2 = dst->ne[2];
  5409. const int64_t ne3 = dst->ne[3];
  5410. const size_t nb00 = src0->nb[0];
  5411. const size_t nb01 = src0->nb[1];
  5412. const size_t nb02 = src0->nb[2];
  5413. const size_t nb03 = src0->nb[3];
  5414. const size_t nb0 = dst->nb[0];
  5415. const size_t nb1 = dst->nb[1];
  5416. const size_t nb2 = dst->nb[2];
  5417. const size_t nb3 = dst->nb[3];
  5418. const int ith = params->ith; // thread index
  5419. const int nth = params->nth; // number of threads
  5420. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5421. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5422. return;
  5423. }
  5424. // parallelize by rows
  5425. const int nr = ne01;
  5426. // number of rows per thread
  5427. const int dr = (nr + nth - 1) / nth;
  5428. // row range for this thread
  5429. const int ir0 = dr * ith;
  5430. const int ir1 = MIN(ir0 + dr, nr);
  5431. if (src0->type == dst->type &&
  5432. ne00 == ne0 &&
  5433. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5434. // copy by rows
  5435. const size_t rs = ne00*nb00;
  5436. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5437. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5438. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5439. memcpy(
  5440. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5441. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5442. rs);
  5443. }
  5444. }
  5445. }
  5446. return;
  5447. }
  5448. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5449. if (ggml_is_contiguous(dst)) {
  5450. if (nb00 == sizeof(ggml_fp16_t)) {
  5451. if (dst->type == GGML_TYPE_F16) {
  5452. size_t id = 0;
  5453. const size_t rs = ne00 * nb00;
  5454. char * dst_ptr = (char *) dst->data;
  5455. for (int i03 = 0; i03 < ne03; i03++) {
  5456. for (int i02 = 0; i02 < ne02; i02++) {
  5457. id += rs * ir0;
  5458. for (int i01 = ir0; i01 < ir1; i01++) {
  5459. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5460. memcpy(dst_ptr + id, src0_ptr, rs);
  5461. id += rs;
  5462. }
  5463. id += rs * (ne01 - ir1);
  5464. }
  5465. }
  5466. } else if (dst->type == GGML_TYPE_F32) {
  5467. size_t id = 0;
  5468. float * dst_ptr = (float *) dst->data;
  5469. for (int i03 = 0; i03 < ne03; i03++) {
  5470. for (int i02 = 0; i02 < ne02; i02++) {
  5471. id += ne00 * ir0;
  5472. for (int i01 = ir0; i01 < ir1; i01++) {
  5473. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5474. for (int i00 = 0; i00 < ne00; i00++) {
  5475. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5476. id++;
  5477. }
  5478. }
  5479. id += ne00 * (ne01 - ir1);
  5480. }
  5481. }
  5482. } else if (ggml_is_quantized(dst->type)) {
  5483. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5484. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5485. size_t id = 0;
  5486. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5487. char * dst_ptr = (char *) dst->data;
  5488. for (int i03 = 0; i03 < ne03; i03++) {
  5489. for (int i02 = 0; i02 < ne02; i02++) {
  5490. id += rs * ir0;
  5491. for (int i01 = ir0; i01 < ir1; i01++) {
  5492. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5493. for (int i00 = 0; i00 < ne00; i00++) {
  5494. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5495. }
  5496. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5497. id += rs;
  5498. }
  5499. id += rs * (ne01 - ir1);
  5500. }
  5501. }
  5502. } else {
  5503. GGML_ASSERT(false); // TODO: implement
  5504. }
  5505. } else {
  5506. //printf("%s: this is not optimal - fix me\n", __func__);
  5507. if (dst->type == GGML_TYPE_F32) {
  5508. size_t id = 0;
  5509. float * dst_ptr = (float *) dst->data;
  5510. for (int i03 = 0; i03 < ne03; i03++) {
  5511. for (int i02 = 0; i02 < ne02; i02++) {
  5512. id += ne00 * ir0;
  5513. for (int i01 = ir0; i01 < ir1; i01++) {
  5514. for (int i00 = 0; i00 < ne00; i00++) {
  5515. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5516. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5517. id++;
  5518. }
  5519. }
  5520. id += ne00 * (ne01 - ir1);
  5521. }
  5522. }
  5523. } else if (dst->type == GGML_TYPE_F16) {
  5524. size_t id = 0;
  5525. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5526. for (int i03 = 0; i03 < ne03; i03++) {
  5527. for (int i02 = 0; i02 < ne02; i02++) {
  5528. id += ne00 * ir0;
  5529. for (int i01 = ir0; i01 < ir1; i01++) {
  5530. for (int i00 = 0; i00 < ne00; i00++) {
  5531. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5532. dst_ptr[id] = *src0_ptr;
  5533. id++;
  5534. }
  5535. }
  5536. id += ne00 * (ne01 - ir1);
  5537. }
  5538. }
  5539. } else {
  5540. GGML_ASSERT(false); // TODO: implement
  5541. }
  5542. }
  5543. return;
  5544. }
  5545. // dst counters
  5546. int64_t i10 = 0;
  5547. int64_t i11 = 0;
  5548. int64_t i12 = 0;
  5549. int64_t i13 = 0;
  5550. if (dst->type == GGML_TYPE_F16) {
  5551. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5552. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5553. i10 += ne00 * ir0;
  5554. while (i10 >= ne0) {
  5555. i10 -= ne0;
  5556. if (++i11 == ne1) {
  5557. i11 = 0;
  5558. if (++i12 == ne2) {
  5559. i12 = 0;
  5560. if (++i13 == ne3) {
  5561. i13 = 0;
  5562. }
  5563. }
  5564. }
  5565. }
  5566. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5567. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5568. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5569. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5570. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5571. if (++i10 == ne00) {
  5572. i10 = 0;
  5573. if (++i11 == ne01) {
  5574. i11 = 0;
  5575. if (++i12 == ne02) {
  5576. i12 = 0;
  5577. if (++i13 == ne03) {
  5578. i13 = 0;
  5579. }
  5580. }
  5581. }
  5582. }
  5583. }
  5584. }
  5585. i10 += ne00 * (ne01 - ir1);
  5586. while (i10 >= ne0) {
  5587. i10 -= ne0;
  5588. if (++i11 == ne1) {
  5589. i11 = 0;
  5590. if (++i12 == ne2) {
  5591. i12 = 0;
  5592. if (++i13 == ne3) {
  5593. i13 = 0;
  5594. }
  5595. }
  5596. }
  5597. }
  5598. }
  5599. }
  5600. } else if (dst->type == GGML_TYPE_F32) {
  5601. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5602. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5603. i10 += ne00 * ir0;
  5604. while (i10 >= ne0) {
  5605. i10 -= ne0;
  5606. if (++i11 == ne1) {
  5607. i11 = 0;
  5608. if (++i12 == ne2) {
  5609. i12 = 0;
  5610. if (++i13 == ne3) {
  5611. i13 = 0;
  5612. }
  5613. }
  5614. }
  5615. }
  5616. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5617. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5618. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5619. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5620. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5621. if (++i10 == ne0) {
  5622. i10 = 0;
  5623. if (++i11 == ne1) {
  5624. i11 = 0;
  5625. if (++i12 == ne2) {
  5626. i12 = 0;
  5627. if (++i13 == ne3) {
  5628. i13 = 0;
  5629. }
  5630. }
  5631. }
  5632. }
  5633. }
  5634. }
  5635. i10 += ne00 * (ne01 - ir1);
  5636. while (i10 >= ne0) {
  5637. i10 -= ne0;
  5638. if (++i11 == ne1) {
  5639. i11 = 0;
  5640. if (++i12 == ne2) {
  5641. i12 = 0;
  5642. if (++i13 == ne3) {
  5643. i13 = 0;
  5644. }
  5645. }
  5646. }
  5647. }
  5648. }
  5649. }
  5650. } else {
  5651. GGML_ASSERT(false); // TODO: implement
  5652. }
  5653. }
  5654. static void ggml_compute_forward_dup_f32(
  5655. const struct ggml_compute_params * params,
  5656. const struct ggml_tensor * src0,
  5657. struct ggml_tensor * dst) {
  5658. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5659. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5660. return;
  5661. }
  5662. const int64_t ne00 = src0->ne[0];
  5663. const int64_t ne01 = src0->ne[1];
  5664. const int64_t ne02 = src0->ne[2];
  5665. const int64_t ne03 = src0->ne[3];
  5666. const int64_t ne0 = dst->ne[0];
  5667. const int64_t ne1 = dst->ne[1];
  5668. const int64_t ne2 = dst->ne[2];
  5669. const int64_t ne3 = dst->ne[3];
  5670. const size_t nb00 = src0->nb[0];
  5671. const size_t nb01 = src0->nb[1];
  5672. const size_t nb02 = src0->nb[2];
  5673. const size_t nb03 = src0->nb[3];
  5674. const size_t nb0 = dst->nb[0];
  5675. const size_t nb1 = dst->nb[1];
  5676. const size_t nb2 = dst->nb[2];
  5677. const size_t nb3 = dst->nb[3];
  5678. const int ith = params->ith; // thread index
  5679. const int nth = params->nth; // number of threads
  5680. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5681. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5682. return;
  5683. }
  5684. // parallelize by rows
  5685. const int nr = ne01;
  5686. // number of rows per thread
  5687. const int dr = (nr + nth - 1) / nth;
  5688. // row range for this thread
  5689. const int ir0 = dr * ith;
  5690. const int ir1 = MIN(ir0 + dr, nr);
  5691. if (src0->type == dst->type &&
  5692. ne00 == ne0 &&
  5693. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5694. // copy by rows
  5695. const size_t rs = ne00*nb00;
  5696. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5697. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5698. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5699. memcpy(
  5700. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5701. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5702. rs);
  5703. }
  5704. }
  5705. }
  5706. return;
  5707. }
  5708. if (ggml_is_contiguous(dst)) {
  5709. // TODO: simplify
  5710. if (nb00 == sizeof(float)) {
  5711. if (dst->type == GGML_TYPE_F32) {
  5712. size_t id = 0;
  5713. const size_t rs = ne00 * nb00;
  5714. char * dst_ptr = (char *) dst->data;
  5715. for (int i03 = 0; i03 < ne03; i03++) {
  5716. for (int i02 = 0; i02 < ne02; i02++) {
  5717. id += rs * ir0;
  5718. for (int i01 = ir0; i01 < ir1; i01++) {
  5719. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5720. memcpy(dst_ptr + id, src0_ptr, rs);
  5721. id += rs;
  5722. }
  5723. id += rs * (ne01 - ir1);
  5724. }
  5725. }
  5726. } else if (dst->type == GGML_TYPE_F16) {
  5727. size_t id = 0;
  5728. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5729. for (int i03 = 0; i03 < ne03; i03++) {
  5730. for (int i02 = 0; i02 < ne02; i02++) {
  5731. id += ne00 * ir0;
  5732. for (int i01 = ir0; i01 < ir1; i01++) {
  5733. for (int i00 = 0; i00 < ne00; i00++) {
  5734. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5735. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5736. id++;
  5737. }
  5738. }
  5739. id += ne00 * (ne01 - ir1);
  5740. }
  5741. }
  5742. } else if (ggml_is_quantized(dst->type)) {
  5743. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5744. size_t id = 0;
  5745. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5746. char * dst_ptr = (char *) dst->data;
  5747. for (int i03 = 0; i03 < ne03; i03++) {
  5748. for (int i02 = 0; i02 < ne02; i02++) {
  5749. id += rs * ir0;
  5750. for (int i01 = ir0; i01 < ir1; i01++) {
  5751. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5752. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5753. id += rs;
  5754. }
  5755. id += rs * (ne01 - ir1);
  5756. }
  5757. }
  5758. } else {
  5759. GGML_ASSERT(false); // TODO: implement
  5760. }
  5761. } else {
  5762. //printf("%s: this is not optimal - fix me\n", __func__);
  5763. if (dst->type == GGML_TYPE_F32) {
  5764. size_t id = 0;
  5765. float * dst_ptr = (float *) dst->data;
  5766. for (int i03 = 0; i03 < ne03; i03++) {
  5767. for (int i02 = 0; i02 < ne02; i02++) {
  5768. id += ne00 * ir0;
  5769. for (int i01 = ir0; i01 < ir1; i01++) {
  5770. for (int i00 = 0; i00 < ne00; i00++) {
  5771. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5772. dst_ptr[id] = *src0_ptr;
  5773. id++;
  5774. }
  5775. }
  5776. id += ne00 * (ne01 - ir1);
  5777. }
  5778. }
  5779. } else if (dst->type == GGML_TYPE_F16) {
  5780. size_t id = 0;
  5781. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5782. for (int i03 = 0; i03 < ne03; i03++) {
  5783. for (int i02 = 0; i02 < ne02; i02++) {
  5784. id += ne00 * ir0;
  5785. for (int i01 = ir0; i01 < ir1; i01++) {
  5786. for (int i00 = 0; i00 < ne00; i00++) {
  5787. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5788. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5789. id++;
  5790. }
  5791. }
  5792. id += ne00 * (ne01 - ir1);
  5793. }
  5794. }
  5795. } else {
  5796. GGML_ASSERT(false); // TODO: implement
  5797. }
  5798. }
  5799. return;
  5800. }
  5801. // dst counters
  5802. int64_t i10 = 0;
  5803. int64_t i11 = 0;
  5804. int64_t i12 = 0;
  5805. int64_t i13 = 0;
  5806. if (dst->type == GGML_TYPE_F32) {
  5807. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5808. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5809. i10 += ne00 * ir0;
  5810. while (i10 >= ne0) {
  5811. i10 -= ne0;
  5812. if (++i11 == ne1) {
  5813. i11 = 0;
  5814. if (++i12 == ne2) {
  5815. i12 = 0;
  5816. if (++i13 == ne3) {
  5817. i13 = 0;
  5818. }
  5819. }
  5820. }
  5821. }
  5822. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5823. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5824. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5825. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5826. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5827. if (++i10 == ne0) {
  5828. i10 = 0;
  5829. if (++i11 == ne1) {
  5830. i11 = 0;
  5831. if (++i12 == ne2) {
  5832. i12 = 0;
  5833. if (++i13 == ne3) {
  5834. i13 = 0;
  5835. }
  5836. }
  5837. }
  5838. }
  5839. }
  5840. }
  5841. i10 += ne00 * (ne01 - ir1);
  5842. while (i10 >= ne0) {
  5843. i10 -= ne0;
  5844. if (++i11 == ne1) {
  5845. i11 = 0;
  5846. if (++i12 == ne2) {
  5847. i12 = 0;
  5848. if (++i13 == ne3) {
  5849. i13 = 0;
  5850. }
  5851. }
  5852. }
  5853. }
  5854. }
  5855. }
  5856. } else if (dst->type == GGML_TYPE_F16) {
  5857. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5858. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5859. i10 += ne00 * ir0;
  5860. while (i10 >= ne0) {
  5861. i10 -= ne0;
  5862. if (++i11 == ne1) {
  5863. i11 = 0;
  5864. if (++i12 == ne2) {
  5865. i12 = 0;
  5866. if (++i13 == ne3) {
  5867. i13 = 0;
  5868. }
  5869. }
  5870. }
  5871. }
  5872. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5873. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5874. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5875. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5876. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5877. if (++i10 == ne0) {
  5878. i10 = 0;
  5879. if (++i11 == ne1) {
  5880. i11 = 0;
  5881. if (++i12 == ne2) {
  5882. i12 = 0;
  5883. if (++i13 == ne3) {
  5884. i13 = 0;
  5885. }
  5886. }
  5887. }
  5888. }
  5889. }
  5890. }
  5891. i10 += ne00 * (ne01 - ir1);
  5892. while (i10 >= ne0) {
  5893. i10 -= ne0;
  5894. if (++i11 == ne1) {
  5895. i11 = 0;
  5896. if (++i12 == ne2) {
  5897. i12 = 0;
  5898. if (++i13 == ne3) {
  5899. i13 = 0;
  5900. }
  5901. }
  5902. }
  5903. }
  5904. }
  5905. }
  5906. } else {
  5907. GGML_ASSERT(false); // TODO: implement
  5908. }
  5909. }
  5910. static void ggml_compute_forward_dup(
  5911. const struct ggml_compute_params * params,
  5912. const struct ggml_tensor * src0,
  5913. struct ggml_tensor * dst) {
  5914. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5915. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5916. return;
  5917. }
  5918. switch (src0->type) {
  5919. case GGML_TYPE_F16:
  5920. {
  5921. ggml_compute_forward_dup_f16(params, src0, dst);
  5922. } break;
  5923. case GGML_TYPE_F32:
  5924. {
  5925. ggml_compute_forward_dup_f32(params, src0, dst);
  5926. } break;
  5927. default:
  5928. {
  5929. GGML_ASSERT(false);
  5930. } break;
  5931. }
  5932. }
  5933. // ggml_compute_forward_add
  5934. static void ggml_compute_forward_add_f32(
  5935. const struct ggml_compute_params * params,
  5936. const struct ggml_tensor * src0,
  5937. const struct ggml_tensor * src1,
  5938. struct ggml_tensor * dst) {
  5939. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5940. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5941. return;
  5942. }
  5943. const int ith = params->ith;
  5944. const int nth = params->nth;
  5945. const int nr = ggml_nrows(src0);
  5946. const int64_t ne0 = src0->ne[0];
  5947. const int64_t ne1 = src0->ne[1];
  5948. const int64_t ne2 = src0->ne[2];
  5949. const size_t nb00 = src0->nb[0];
  5950. const size_t nb01 = src0->nb[1];
  5951. const size_t nb02 = src0->nb[2];
  5952. const size_t nb03 = src0->nb[3];
  5953. const size_t nb10 = src1->nb[0];
  5954. const size_t nb11 = src1->nb[1];
  5955. const size_t nb12 = src1->nb[2];
  5956. const size_t nb13 = src1->nb[3];
  5957. const size_t nb0 = dst->nb[0];
  5958. const size_t nb1 = dst->nb[1];
  5959. const size_t nb2 = dst->nb[2];
  5960. const size_t nb3 = dst->nb[3];
  5961. GGML_ASSERT( nb0 == sizeof(float));
  5962. GGML_ASSERT(nb00 == sizeof(float));
  5963. // rows per thread
  5964. const int dr = (nr + nth - 1)/nth;
  5965. // row range for this thread
  5966. const int ir0 = dr*ith;
  5967. const int ir1 = MIN(ir0 + dr, nr);
  5968. if (nb10 == sizeof(float)) {
  5969. for (int ir = ir0; ir < ir1; ++ir) {
  5970. // src0, src1 and dst are same shape => same indices
  5971. const int i3 = ir/(ne2*ne1);
  5972. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5973. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5974. #ifdef GGML_USE_ACCELERATE
  5975. vDSP_vadd(
  5976. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5977. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5978. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5979. ne0);
  5980. #else
  5981. ggml_vec_add_f32(ne0,
  5982. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5983. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5984. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5985. #endif
  5986. // }
  5987. // }
  5988. }
  5989. } else {
  5990. // src1 is not contiguous
  5991. for (int ir = ir0; ir < ir1; ++ir) {
  5992. // src0, src1 and dst are same shape => same indices
  5993. const int i3 = ir/(ne2*ne1);
  5994. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5995. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5996. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5997. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5998. for (int i0 = 0; i0 < ne0; i0++) {
  5999. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6000. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6001. }
  6002. }
  6003. }
  6004. }
  6005. static void ggml_compute_forward_add_f16_f32(
  6006. const struct ggml_compute_params * params,
  6007. const struct ggml_tensor * src0,
  6008. const struct ggml_tensor * src1,
  6009. struct ggml_tensor * dst) {
  6010. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6012. return;
  6013. }
  6014. const int ith = params->ith;
  6015. const int nth = params->nth;
  6016. const int nr = ggml_nrows(src0);
  6017. const int64_t ne0 = src0->ne[0];
  6018. const int64_t ne1 = src0->ne[1];
  6019. const int64_t ne2 = src0->ne[2];
  6020. const size_t nb00 = src0->nb[0];
  6021. const size_t nb01 = src0->nb[1];
  6022. const size_t nb02 = src0->nb[2];
  6023. const size_t nb03 = src0->nb[3];
  6024. const size_t nb10 = src1->nb[0];
  6025. const size_t nb11 = src1->nb[1];
  6026. const size_t nb12 = src1->nb[2];
  6027. const size_t nb13 = src1->nb[3];
  6028. const size_t nb0 = dst->nb[0];
  6029. const size_t nb1 = dst->nb[1];
  6030. const size_t nb2 = dst->nb[2];
  6031. const size_t nb3 = dst->nb[3];
  6032. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6033. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6034. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6035. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6036. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6037. // rows per thread
  6038. const int dr = (nr + nth - 1)/nth;
  6039. // row range for this thread
  6040. const int ir0 = dr*ith;
  6041. const int ir1 = MIN(ir0 + dr, nr);
  6042. if (nb10 == sizeof(float)) {
  6043. for (int ir = ir0; ir < ir1; ++ir) {
  6044. // src0, src1 and dst are same shape => same indices
  6045. const int i3 = ir/(ne2*ne1);
  6046. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6047. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6048. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6049. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6050. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6051. for (int i = 0; i < ne0; i++) {
  6052. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6053. }
  6054. }
  6055. }
  6056. else {
  6057. // src1 is not contiguous
  6058. GGML_ASSERT(false);
  6059. }
  6060. }
  6061. static void ggml_compute_forward_add_f16_f16(
  6062. const struct ggml_compute_params * params,
  6063. const struct ggml_tensor * src0,
  6064. const struct ggml_tensor * src1,
  6065. struct ggml_tensor * dst) {
  6066. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6067. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6068. return;
  6069. }
  6070. const int ith = params->ith;
  6071. const int nth = params->nth;
  6072. const int nr = ggml_nrows(src0);
  6073. const int64_t ne0 = src0->ne[0];
  6074. const int64_t ne1 = src0->ne[1];
  6075. const int64_t ne2 = src0->ne[2];
  6076. const size_t nb00 = src0->nb[0];
  6077. const size_t nb01 = src0->nb[1];
  6078. const size_t nb02 = src0->nb[2];
  6079. const size_t nb03 = src0->nb[3];
  6080. const size_t nb10 = src1->nb[0];
  6081. const size_t nb11 = src1->nb[1];
  6082. const size_t nb12 = src1->nb[2];
  6083. const size_t nb13 = src1->nb[3];
  6084. const size_t nb0 = dst->nb[0];
  6085. const size_t nb1 = dst->nb[1];
  6086. const size_t nb2 = dst->nb[2];
  6087. const size_t nb3 = dst->nb[3];
  6088. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6089. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6090. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6091. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6092. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6093. // rows per thread
  6094. const int dr = (nr + nth - 1)/nth;
  6095. // row range for this thread
  6096. const int ir0 = dr*ith;
  6097. const int ir1 = MIN(ir0 + dr, nr);
  6098. if (nb10 == sizeof(ggml_fp16_t)) {
  6099. for (int ir = ir0; ir < ir1; ++ir) {
  6100. // src0, src1 and dst are same shape => same indices
  6101. const int i3 = ir/(ne2*ne1);
  6102. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6103. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6104. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6105. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6106. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6107. for (int i = 0; i < ne0; i++) {
  6108. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6109. }
  6110. }
  6111. }
  6112. else {
  6113. // src1 is not contiguous
  6114. GGML_ASSERT(false);
  6115. }
  6116. }
  6117. static void ggml_compute_forward_add_q_f32(
  6118. const struct ggml_compute_params * params,
  6119. const struct ggml_tensor * src0,
  6120. const struct ggml_tensor * src1,
  6121. struct ggml_tensor * dst) {
  6122. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6123. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6124. return;
  6125. }
  6126. const int nr = ggml_nrows(src0);
  6127. const int64_t ne00 = src0->ne[0];
  6128. const int64_t ne01 = src0->ne[1];
  6129. const int64_t ne02 = src0->ne[2];
  6130. //const int64_t ne03 = src0->ne[3];
  6131. const size_t nb00 = src0->nb[0];
  6132. const size_t nb01 = src0->nb[1];
  6133. const size_t nb02 = src0->nb[2];
  6134. const size_t nb03 = src0->nb[3];
  6135. const size_t nb10 = src1->nb[0];
  6136. const size_t nb11 = src1->nb[1];
  6137. const size_t nb12 = src1->nb[2];
  6138. const size_t nb13 = src1->nb[3];
  6139. const size_t nb0 = dst->nb[0];
  6140. const size_t nb1 = dst->nb[1];
  6141. const size_t nb2 = dst->nb[2];
  6142. const size_t nb3 = dst->nb[3];
  6143. const int ith = params->ith;
  6144. const int nth = params->nth;
  6145. const enum ggml_type type = src0->type;
  6146. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6147. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6148. // we don't support permuted src0 or src1
  6149. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6150. GGML_ASSERT(nb10 == sizeof(float));
  6151. // dst cannot be transposed or permuted
  6152. GGML_ASSERT(nb0 <= nb1);
  6153. GGML_ASSERT(nb1 <= nb2);
  6154. GGML_ASSERT(nb2 <= nb3);
  6155. GGML_ASSERT(ggml_is_quantized(src0->type));
  6156. GGML_ASSERT(dst->type == src0->type);
  6157. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6158. // rows per thread
  6159. const int dr = (nr + nth - 1)/nth;
  6160. // row range for this thread
  6161. const int ir0 = dr*ith;
  6162. const int ir1 = MIN(ir0 + dr, nr);
  6163. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6164. for (int ir = ir0; ir < ir1; ++ir) {
  6165. // src0 indices
  6166. const int i03 = ir/(ne02*ne01);
  6167. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6168. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6169. // src1 and dst are same shape as src0 => same indices
  6170. const int i13 = i03;
  6171. const int i12 = i02;
  6172. const int i11 = i01;
  6173. const int i3 = i03;
  6174. const int i2 = i02;
  6175. const int i1 = i01;
  6176. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6177. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6178. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6179. assert(ne00 % 32 == 0);
  6180. // unquantize row from src0 to temp buffer
  6181. dequantize_row_q(src0_row, wdata, ne00);
  6182. // add src1
  6183. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6184. // quantize row to dst
  6185. quantize_row_q(wdata, dst_row, ne00);
  6186. }
  6187. }
  6188. static void ggml_compute_forward_add(
  6189. const struct ggml_compute_params * params,
  6190. const struct ggml_tensor * src0,
  6191. const struct ggml_tensor * src1,
  6192. struct ggml_tensor * dst) {
  6193. switch (src0->type) {
  6194. case GGML_TYPE_F32:
  6195. {
  6196. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6197. } break;
  6198. case GGML_TYPE_F16:
  6199. {
  6200. if (src1->type == GGML_TYPE_F16) {
  6201. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6202. }
  6203. else if (src1->type == GGML_TYPE_F32) {
  6204. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6205. }
  6206. else {
  6207. GGML_ASSERT(false);
  6208. }
  6209. } break;
  6210. case GGML_TYPE_Q4_0:
  6211. case GGML_TYPE_Q4_1:
  6212. case GGML_TYPE_Q5_0:
  6213. case GGML_TYPE_Q5_1:
  6214. case GGML_TYPE_Q8_0:
  6215. case GGML_TYPE_Q2_K:
  6216. case GGML_TYPE_Q3_K:
  6217. case GGML_TYPE_Q4_K:
  6218. case GGML_TYPE_Q5_K:
  6219. case GGML_TYPE_Q6_K:
  6220. {
  6221. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6222. } break;
  6223. default:
  6224. {
  6225. GGML_ASSERT(false);
  6226. } break;
  6227. }
  6228. }
  6229. // ggml_compute_forward_add1
  6230. static void ggml_compute_forward_add1_f32(
  6231. const struct ggml_compute_params * params,
  6232. const struct ggml_tensor * src0,
  6233. const struct ggml_tensor * src1,
  6234. struct ggml_tensor * dst) {
  6235. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6236. GGML_ASSERT(ggml_is_scalar(src1));
  6237. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6238. return;
  6239. }
  6240. const int ith = params->ith;
  6241. const int nth = params->nth;
  6242. const int nr = ggml_nrows(src0);
  6243. const int64_t ne0 = src0->ne[0];
  6244. const int64_t ne1 = src0->ne[1];
  6245. const int64_t ne2 = src0->ne[2];
  6246. const size_t nb00 = src0->nb[0];
  6247. const size_t nb01 = src0->nb[1];
  6248. const size_t nb02 = src0->nb[2];
  6249. const size_t nb03 = src0->nb[3];
  6250. const size_t nb0 = dst->nb[0];
  6251. const size_t nb1 = dst->nb[1];
  6252. const size_t nb2 = dst->nb[2];
  6253. const size_t nb3 = dst->nb[3];
  6254. GGML_ASSERT( nb0 == sizeof(float));
  6255. GGML_ASSERT(nb00 == sizeof(float));
  6256. // rows per thread
  6257. const int dr = (nr + nth - 1)/nth;
  6258. // row range for this thread
  6259. const int ir0 = dr*ith;
  6260. const int ir1 = MIN(ir0 + dr, nr);
  6261. for (int ir = ir0; ir < ir1; ++ir) {
  6262. // src0 and dst are same shape => same indices
  6263. const int i3 = ir/(ne2*ne1);
  6264. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6265. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6266. #ifdef GGML_USE_ACCELERATE
  6267. UNUSED(ggml_vec_add1_f32);
  6268. vDSP_vadd(
  6269. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6270. (float *) ((char *) src1->data), 0,
  6271. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6272. ne0);
  6273. #else
  6274. ggml_vec_add1_f32(ne0,
  6275. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6276. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6277. *(float *) src1->data);
  6278. #endif
  6279. }
  6280. }
  6281. static void ggml_compute_forward_add1_f16_f32(
  6282. const struct ggml_compute_params * params,
  6283. const struct ggml_tensor * src0,
  6284. const struct ggml_tensor * src1,
  6285. struct ggml_tensor * dst) {
  6286. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6287. GGML_ASSERT(ggml_is_scalar(src1));
  6288. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6289. return;
  6290. }
  6291. // scalar to add
  6292. const float v = *(float *) src1->data;
  6293. const int ith = params->ith;
  6294. const int nth = params->nth;
  6295. const int nr = ggml_nrows(src0);
  6296. const int64_t ne0 = src0->ne[0];
  6297. const int64_t ne1 = src0->ne[1];
  6298. const int64_t ne2 = src0->ne[2];
  6299. const size_t nb00 = src0->nb[0];
  6300. const size_t nb01 = src0->nb[1];
  6301. const size_t nb02 = src0->nb[2];
  6302. const size_t nb03 = src0->nb[3];
  6303. const size_t nb0 = dst->nb[0];
  6304. const size_t nb1 = dst->nb[1];
  6305. const size_t nb2 = dst->nb[2];
  6306. const size_t nb3 = dst->nb[3];
  6307. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6308. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6309. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6310. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6311. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6312. // rows per thread
  6313. const int dr = (nr + nth - 1)/nth;
  6314. // row range for this thread
  6315. const int ir0 = dr*ith;
  6316. const int ir1 = MIN(ir0 + dr, nr);
  6317. for (int ir = ir0; ir < ir1; ++ir) {
  6318. // src0 and dst are same shape => same indices
  6319. const int i3 = ir/(ne2*ne1);
  6320. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6321. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6322. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6323. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6324. for (int i = 0; i < ne0; i++) {
  6325. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6326. }
  6327. }
  6328. }
  6329. static void ggml_compute_forward_add1_f16_f16(
  6330. const struct ggml_compute_params * params,
  6331. const struct ggml_tensor * src0,
  6332. const struct ggml_tensor * src1,
  6333. struct ggml_tensor * dst) {
  6334. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6335. GGML_ASSERT(ggml_is_scalar(src1));
  6336. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6337. return;
  6338. }
  6339. // scalar to add
  6340. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6341. const int ith = params->ith;
  6342. const int nth = params->nth;
  6343. const int nr = ggml_nrows(src0);
  6344. const int64_t ne0 = src0->ne[0];
  6345. const int64_t ne1 = src0->ne[1];
  6346. const int64_t ne2 = src0->ne[2];
  6347. const size_t nb00 = src0->nb[0];
  6348. const size_t nb01 = src0->nb[1];
  6349. const size_t nb02 = src0->nb[2];
  6350. const size_t nb03 = src0->nb[3];
  6351. const size_t nb0 = dst->nb[0];
  6352. const size_t nb1 = dst->nb[1];
  6353. const size_t nb2 = dst->nb[2];
  6354. const size_t nb3 = dst->nb[3];
  6355. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6356. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6357. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6358. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6359. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6360. // rows per thread
  6361. const int dr = (nr + nth - 1)/nth;
  6362. // row range for this thread
  6363. const int ir0 = dr*ith;
  6364. const int ir1 = MIN(ir0 + dr, nr);
  6365. for (int ir = ir0; ir < ir1; ++ir) {
  6366. // src0 and dst are same shape => same indices
  6367. const int i3 = ir/(ne2*ne1);
  6368. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6369. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6370. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6371. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6372. for (int i = 0; i < ne0; i++) {
  6373. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6374. }
  6375. }
  6376. }
  6377. static void ggml_compute_forward_add1_q_f32(
  6378. const struct ggml_compute_params * params,
  6379. const struct ggml_tensor * src0,
  6380. const struct ggml_tensor * src1,
  6381. struct ggml_tensor * dst) {
  6382. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6383. GGML_ASSERT(ggml_is_scalar(src1));
  6384. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6385. return;
  6386. }
  6387. // scalar to add
  6388. const float v = *(float *) src1->data;
  6389. const int ith = params->ith;
  6390. const int nth = params->nth;
  6391. const int nr = ggml_nrows(src0);
  6392. const int64_t ne0 = src0->ne[0];
  6393. const int64_t ne1 = src0->ne[1];
  6394. const int64_t ne2 = src0->ne[2];
  6395. const size_t nb00 = src0->nb[0];
  6396. const size_t nb01 = src0->nb[1];
  6397. const size_t nb02 = src0->nb[2];
  6398. const size_t nb03 = src0->nb[3];
  6399. const size_t nb0 = dst->nb[0];
  6400. const size_t nb1 = dst->nb[1];
  6401. const size_t nb2 = dst->nb[2];
  6402. const size_t nb3 = dst->nb[3];
  6403. const enum ggml_type type = src0->type;
  6404. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6405. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6406. // we don't support permuted src0
  6407. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6408. // dst cannot be transposed or permuted
  6409. GGML_ASSERT(nb0 <= nb1);
  6410. GGML_ASSERT(nb1 <= nb2);
  6411. GGML_ASSERT(nb2 <= nb3);
  6412. GGML_ASSERT(ggml_is_quantized(src0->type));
  6413. GGML_ASSERT(dst->type == src0->type);
  6414. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6415. // rows per thread
  6416. const int dr = (nr + nth - 1)/nth;
  6417. // row range for this thread
  6418. const int ir0 = dr*ith;
  6419. const int ir1 = MIN(ir0 + dr, nr);
  6420. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6421. for (int ir = ir0; ir < ir1; ++ir) {
  6422. // src0 and dst are same shape => same indices
  6423. const int i3 = ir/(ne2*ne1);
  6424. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6425. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6426. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6427. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6428. assert(ne0 % 32 == 0);
  6429. // unquantize row from src0 to temp buffer
  6430. dequantize_row_q(src0_row, wdata, ne0);
  6431. // add src1
  6432. ggml_vec_acc1_f32(ne0, wdata, v);
  6433. // quantize row to dst
  6434. quantize_row_q(wdata, dst_row, ne0);
  6435. }
  6436. }
  6437. static void ggml_compute_forward_add1(
  6438. const struct ggml_compute_params * params,
  6439. const struct ggml_tensor * src0,
  6440. const struct ggml_tensor * src1,
  6441. struct ggml_tensor * dst) {
  6442. switch (src0->type) {
  6443. case GGML_TYPE_F32:
  6444. {
  6445. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6446. } break;
  6447. case GGML_TYPE_F16:
  6448. {
  6449. if (src1->type == GGML_TYPE_F16) {
  6450. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6451. }
  6452. else if (src1->type == GGML_TYPE_F32) {
  6453. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6454. }
  6455. else {
  6456. GGML_ASSERT(false);
  6457. }
  6458. } break;
  6459. case GGML_TYPE_Q4_0:
  6460. case GGML_TYPE_Q4_1:
  6461. case GGML_TYPE_Q5_0:
  6462. case GGML_TYPE_Q5_1:
  6463. case GGML_TYPE_Q8_0:
  6464. case GGML_TYPE_Q8_1:
  6465. case GGML_TYPE_Q2_K:
  6466. case GGML_TYPE_Q3_K:
  6467. case GGML_TYPE_Q4_K:
  6468. case GGML_TYPE_Q5_K:
  6469. case GGML_TYPE_Q6_K:
  6470. {
  6471. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6472. } break;
  6473. default:
  6474. {
  6475. GGML_ASSERT(false);
  6476. } break;
  6477. }
  6478. }
  6479. // ggml_compute_forward_acc
  6480. static void ggml_compute_forward_acc_f32(
  6481. const struct ggml_compute_params * params,
  6482. const struct ggml_tensor * src0,
  6483. const struct ggml_tensor * src1,
  6484. const struct ggml_tensor * opt0,
  6485. struct ggml_tensor * dst) {
  6486. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6487. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6488. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6489. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6490. // view src0 and dst with these strides and data offset inbytes during acc
  6491. // nb0 is implicitely element_size because src0 and dst are contiguous
  6492. size_t nb1 = ((int32_t *) opt0->data)[0];
  6493. size_t nb2 = ((int32_t *) opt0->data)[1];
  6494. size_t nb3 = ((int32_t *) opt0->data)[2];
  6495. size_t offset = ((int32_t *) opt0->data)[3];
  6496. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6497. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6498. // memcpy needs to be synchronized across threads to avoid race conditions.
  6499. // => do it in INIT phase
  6500. memcpy(
  6501. ((char *) dst->data),
  6502. ((char *) src0->data),
  6503. ggml_nbytes(dst));
  6504. }
  6505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6506. return;
  6507. }
  6508. const int ith = params->ith;
  6509. const int nth = params->nth;
  6510. const int nr = ggml_nrows(src1);
  6511. const int nc = src1->ne[0];
  6512. const int64_t ne10 = src1->ne[0];
  6513. const int64_t ne11 = src1->ne[1];
  6514. const int64_t ne12 = src1->ne[2];
  6515. const int64_t ne13 = src1->ne[3];
  6516. const size_t nb10 = src1->nb[0];
  6517. const size_t nb11 = src1->nb[1];
  6518. const size_t nb12 = src1->nb[2];
  6519. const size_t nb13 = src1->nb[3];
  6520. // src0 and dst as viewed during acc
  6521. const size_t nb0 = ggml_element_size(src0);
  6522. const size_t nb00 = nb0;
  6523. const size_t nb01 = nb1;
  6524. const size_t nb02 = nb2;
  6525. const size_t nb03 = nb3;
  6526. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6527. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6528. GGML_ASSERT(nb10 == sizeof(float));
  6529. // rows per thread
  6530. const int dr = (nr + nth - 1)/nth;
  6531. // row range for this thread
  6532. const int ir0 = dr*ith;
  6533. const int ir1 = MIN(ir0 + dr, nr);
  6534. for (int ir = ir0; ir < ir1; ++ir) {
  6535. // src0 and dst are viewed with shape of src1 and offset
  6536. // => same indices
  6537. const int i3 = ir/(ne12*ne11);
  6538. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6539. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6540. #ifdef GGML_USE_ACCELERATE
  6541. vDSP_vadd(
  6542. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6543. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6544. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6545. #else
  6546. ggml_vec_add_f32(nc,
  6547. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6548. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6549. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6550. #endif
  6551. }
  6552. }
  6553. static void ggml_compute_forward_acc(
  6554. const struct ggml_compute_params * params,
  6555. const struct ggml_tensor * src0,
  6556. const struct ggml_tensor * src1,
  6557. const struct ggml_tensor * opt0,
  6558. struct ggml_tensor * dst) {
  6559. switch (src0->type) {
  6560. case GGML_TYPE_F32:
  6561. {
  6562. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6563. } break;
  6564. case GGML_TYPE_F16:
  6565. case GGML_TYPE_Q4_0:
  6566. case GGML_TYPE_Q4_1:
  6567. case GGML_TYPE_Q5_0:
  6568. case GGML_TYPE_Q5_1:
  6569. case GGML_TYPE_Q8_0:
  6570. case GGML_TYPE_Q8_1:
  6571. case GGML_TYPE_Q2_K:
  6572. case GGML_TYPE_Q3_K:
  6573. case GGML_TYPE_Q4_K:
  6574. case GGML_TYPE_Q5_K:
  6575. case GGML_TYPE_Q6_K:
  6576. default:
  6577. {
  6578. GGML_ASSERT(false);
  6579. } break;
  6580. }
  6581. }
  6582. // ggml_compute_forward_sub
  6583. static void ggml_compute_forward_sub_f32(
  6584. const struct ggml_compute_params * params,
  6585. const struct ggml_tensor * src0,
  6586. const struct ggml_tensor * src1,
  6587. struct ggml_tensor * dst) {
  6588. assert(params->ith == 0);
  6589. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6591. return;
  6592. }
  6593. const int nr = ggml_nrows(src0);
  6594. const int64_t ne0 = src0->ne[0];
  6595. const int64_t ne1 = src0->ne[1];
  6596. const int64_t ne2 = src0->ne[2];
  6597. const size_t nb00 = src0->nb[0];
  6598. const size_t nb01 = src0->nb[1];
  6599. const size_t nb02 = src0->nb[2];
  6600. const size_t nb03 = src0->nb[3];
  6601. const size_t nb10 = src1->nb[0];
  6602. const size_t nb11 = src1->nb[1];
  6603. const size_t nb12 = src1->nb[2];
  6604. const size_t nb13 = src1->nb[3];
  6605. const size_t nb0 = dst->nb[0];
  6606. const size_t nb1 = dst->nb[1];
  6607. const size_t nb2 = dst->nb[2];
  6608. const size_t nb3 = dst->nb[3];
  6609. GGML_ASSERT( nb0 == sizeof(float));
  6610. GGML_ASSERT(nb00 == sizeof(float));
  6611. if (nb10 == sizeof(float)) {
  6612. for (int ir = 0; ir < nr; ++ir) {
  6613. // src0, src1 and dst are same shape => same indices
  6614. const int i3 = ir/(ne2*ne1);
  6615. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6616. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6617. #ifdef GGML_USE_ACCELERATE
  6618. vDSP_vsub(
  6619. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6620. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6621. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6622. ne0);
  6623. #else
  6624. ggml_vec_sub_f32(ne0,
  6625. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6626. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6627. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6628. #endif
  6629. // }
  6630. // }
  6631. }
  6632. } else {
  6633. // src1 is not contiguous
  6634. for (int ir = 0; ir < nr; ++ir) {
  6635. // src0, src1 and dst are same shape => same indices
  6636. const int i3 = ir/(ne2*ne1);
  6637. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6638. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6639. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6640. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6641. for (int i0 = 0; i0 < ne0; i0++) {
  6642. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6643. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6644. }
  6645. }
  6646. }
  6647. }
  6648. static void ggml_compute_forward_sub(
  6649. const struct ggml_compute_params * params,
  6650. const struct ggml_tensor * src0,
  6651. const struct ggml_tensor * src1,
  6652. struct ggml_tensor * dst) {
  6653. switch (src0->type) {
  6654. case GGML_TYPE_F32:
  6655. {
  6656. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6657. } break;
  6658. default:
  6659. {
  6660. GGML_ASSERT(false);
  6661. } break;
  6662. }
  6663. }
  6664. // ggml_compute_forward_mul
  6665. static void ggml_compute_forward_mul_f32(
  6666. const struct ggml_compute_params * params,
  6667. const struct ggml_tensor * src0,
  6668. const struct ggml_tensor * src1,
  6669. struct ggml_tensor * dst) {
  6670. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6671. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6672. return;
  6673. }
  6674. const int ith = params->ith;
  6675. const int nth = params->nth;
  6676. #ifdef GGML_USE_CUBLAS
  6677. if (src1->backend == GGML_BACKEND_CUDA) {
  6678. if (ith == 0) {
  6679. ggml_cuda_mul(src0, src1, dst);
  6680. }
  6681. return;
  6682. }
  6683. #elif defined(GGML_USE_CLBLAST)
  6684. if (src1->backend == GGML_BACKEND_CL) {
  6685. if (ith == 0) {
  6686. ggml_cl_mul(src0, src1, dst);
  6687. }
  6688. return;
  6689. }
  6690. #endif
  6691. const int64_t nr = ggml_nrows(src0);
  6692. const int64_t ne00 = src0->ne[0];
  6693. const int64_t ne01 = src0->ne[1];
  6694. const int64_t ne02 = src0->ne[2];
  6695. const int64_t ne10 = src1->ne[0];
  6696. const int64_t ne11 = src1->ne[1];
  6697. const int64_t ne12 = src1->ne[2];
  6698. const int64_t ne13 = src1->ne[3];
  6699. const size_t nb00 = src0->nb[0];
  6700. const size_t nb01 = src0->nb[1];
  6701. const size_t nb02 = src0->nb[2];
  6702. const size_t nb03 = src0->nb[3];
  6703. const size_t nb10 = src1->nb[0];
  6704. const size_t nb11 = src1->nb[1];
  6705. const size_t nb12 = src1->nb[2];
  6706. const size_t nb13 = src1->nb[3];
  6707. const size_t nb0 = dst->nb[0];
  6708. const size_t nb1 = dst->nb[1];
  6709. const size_t nb2 = dst->nb[2];
  6710. const size_t nb3 = dst->nb[3];
  6711. GGML_ASSERT( nb0 == sizeof(float));
  6712. GGML_ASSERT(nb00 == sizeof(float));
  6713. GGML_ASSERT(ne00 == ne10);
  6714. if (nb10 == sizeof(float)) {
  6715. for (int64_t ir = ith; ir < nr; ir += nth) {
  6716. // src0 and dst are same shape => same indices
  6717. const int64_t i03 = ir/(ne02*ne01);
  6718. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6719. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6720. const int64_t i13 = i03 % ne13;
  6721. const int64_t i12 = i02 % ne12;
  6722. const int64_t i11 = i01 % ne11;
  6723. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6724. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6725. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6726. #ifdef GGML_USE_ACCELERATE
  6727. UNUSED(ggml_vec_mul_f32);
  6728. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6729. #else
  6730. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6731. #endif
  6732. // }
  6733. // }
  6734. }
  6735. } else {
  6736. // src1 is not contiguous
  6737. for (int64_t ir = ith; ir < nr; ir += nth) {
  6738. // src0 and dst are same shape => same indices
  6739. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6740. const int64_t i03 = ir/(ne02*ne01);
  6741. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6742. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6743. const int64_t i13 = i03 % ne13;
  6744. const int64_t i12 = i02 % ne12;
  6745. const int64_t i11 = i01 % ne11;
  6746. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6747. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6748. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6749. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6750. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6751. }
  6752. }
  6753. }
  6754. }
  6755. static void ggml_compute_forward_mul(
  6756. const struct ggml_compute_params * params,
  6757. const struct ggml_tensor * src0,
  6758. const struct ggml_tensor * src1,
  6759. struct ggml_tensor * dst) {
  6760. switch (src0->type) {
  6761. case GGML_TYPE_F32:
  6762. {
  6763. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6764. } break;
  6765. default:
  6766. {
  6767. GGML_ASSERT(false);
  6768. } break;
  6769. }
  6770. }
  6771. // ggml_compute_forward_div
  6772. static void ggml_compute_forward_div_f32(
  6773. const struct ggml_compute_params * params,
  6774. const struct ggml_tensor * src0,
  6775. const struct ggml_tensor * src1,
  6776. struct ggml_tensor * dst) {
  6777. assert(params->ith == 0);
  6778. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6779. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6780. return;
  6781. }
  6782. const int nr = ggml_nrows(src0);
  6783. const int64_t ne0 = src0->ne[0];
  6784. const int64_t ne1 = src0->ne[1];
  6785. const int64_t ne2 = src0->ne[2];
  6786. const size_t nb00 = src0->nb[0];
  6787. const size_t nb01 = src0->nb[1];
  6788. const size_t nb02 = src0->nb[2];
  6789. const size_t nb03 = src0->nb[3];
  6790. const size_t nb10 = src1->nb[0];
  6791. const size_t nb11 = src1->nb[1];
  6792. const size_t nb12 = src1->nb[2];
  6793. const size_t nb13 = src1->nb[3];
  6794. const size_t nb0 = dst->nb[0];
  6795. const size_t nb1 = dst->nb[1];
  6796. const size_t nb2 = dst->nb[2];
  6797. const size_t nb3 = dst->nb[3];
  6798. GGML_ASSERT( nb0 == sizeof(float));
  6799. GGML_ASSERT(nb00 == sizeof(float));
  6800. if (nb10 == sizeof(float)) {
  6801. for (int ir = 0; ir < nr; ++ir) {
  6802. // src0, src1 and dst are same shape => same indices
  6803. const int i3 = ir/(ne2*ne1);
  6804. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6805. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6806. #ifdef GGML_USE_ACCELERATE
  6807. vDSP_vdiv(
  6808. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6809. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6810. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6811. ne0);
  6812. #else
  6813. ggml_vec_div_f32(ne0,
  6814. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6815. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6816. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6817. #endif
  6818. // }
  6819. // }
  6820. }
  6821. } else {
  6822. // src1 is not contiguous
  6823. for (int ir = 0; ir < nr; ++ir) {
  6824. // src0, src1 and dst are same shape => same indices
  6825. const int i3 = ir/(ne2*ne1);
  6826. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6827. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6828. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6829. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6830. for (int i0 = 0; i0 < ne0; i0++) {
  6831. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6832. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6833. }
  6834. }
  6835. }
  6836. }
  6837. static void ggml_compute_forward_div(
  6838. const struct ggml_compute_params * params,
  6839. const struct ggml_tensor * src0,
  6840. const struct ggml_tensor * src1,
  6841. struct ggml_tensor * dst) {
  6842. switch (src0->type) {
  6843. case GGML_TYPE_F32:
  6844. {
  6845. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6846. } break;
  6847. default:
  6848. {
  6849. GGML_ASSERT(false);
  6850. } break;
  6851. }
  6852. }
  6853. // ggml_compute_forward_sqr
  6854. static void ggml_compute_forward_sqr_f32(
  6855. const struct ggml_compute_params * params,
  6856. const struct ggml_tensor * src0,
  6857. struct ggml_tensor * dst) {
  6858. assert(params->ith == 0);
  6859. assert(ggml_are_same_shape(src0, dst));
  6860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6861. return;
  6862. }
  6863. const int n = ggml_nrows(src0);
  6864. const int nc = src0->ne[0];
  6865. assert( dst->nb[0] == sizeof(float));
  6866. assert(src0->nb[0] == sizeof(float));
  6867. for (int i = 0; i < n; i++) {
  6868. ggml_vec_sqr_f32(nc,
  6869. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6870. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6871. }
  6872. }
  6873. static void ggml_compute_forward_sqr(
  6874. const struct ggml_compute_params * params,
  6875. const struct ggml_tensor * src0,
  6876. struct ggml_tensor * dst) {
  6877. switch (src0->type) {
  6878. case GGML_TYPE_F32:
  6879. {
  6880. ggml_compute_forward_sqr_f32(params, src0, dst);
  6881. } break;
  6882. default:
  6883. {
  6884. GGML_ASSERT(false);
  6885. } break;
  6886. }
  6887. }
  6888. // ggml_compute_forward_sqrt
  6889. static void ggml_compute_forward_sqrt_f32(
  6890. const struct ggml_compute_params * params,
  6891. const struct ggml_tensor * src0,
  6892. struct ggml_tensor * dst) {
  6893. assert(params->ith == 0);
  6894. assert(ggml_are_same_shape(src0, dst));
  6895. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6896. return;
  6897. }
  6898. const int n = ggml_nrows(src0);
  6899. const int nc = src0->ne[0];
  6900. assert( dst->nb[0] == sizeof(float));
  6901. assert(src0->nb[0] == sizeof(float));
  6902. for (int i = 0; i < n; i++) {
  6903. ggml_vec_sqrt_f32(nc,
  6904. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6905. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6906. }
  6907. }
  6908. static void ggml_compute_forward_sqrt(
  6909. const struct ggml_compute_params * params,
  6910. const struct ggml_tensor * src0,
  6911. struct ggml_tensor * dst) {
  6912. switch (src0->type) {
  6913. case GGML_TYPE_F32:
  6914. {
  6915. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6916. } break;
  6917. default:
  6918. {
  6919. GGML_ASSERT(false);
  6920. } break;
  6921. }
  6922. }
  6923. // ggml_compute_forward_log
  6924. static void ggml_compute_forward_log_f32(
  6925. const struct ggml_compute_params * params,
  6926. const struct ggml_tensor * src0,
  6927. struct ggml_tensor * dst) {
  6928. GGML_ASSERT(params->ith == 0);
  6929. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6931. return;
  6932. }
  6933. const int n = ggml_nrows(src0);
  6934. const int nc = src0->ne[0];
  6935. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6936. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6937. for (int i = 0; i < n; i++) {
  6938. ggml_vec_log_f32(nc,
  6939. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6940. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6941. }
  6942. }
  6943. static void ggml_compute_forward_log(
  6944. const struct ggml_compute_params * params,
  6945. const struct ggml_tensor * src0,
  6946. struct ggml_tensor * dst) {
  6947. switch (src0->type) {
  6948. case GGML_TYPE_F32:
  6949. {
  6950. ggml_compute_forward_log_f32(params, src0, dst);
  6951. } break;
  6952. default:
  6953. {
  6954. GGML_ASSERT(false);
  6955. } break;
  6956. }
  6957. }
  6958. // ggml_compute_forward_sum
  6959. static void ggml_compute_forward_sum_f32(
  6960. const struct ggml_compute_params * params,
  6961. const struct ggml_tensor * src0,
  6962. struct ggml_tensor * dst) {
  6963. assert(params->ith == 0);
  6964. assert(ggml_is_scalar(dst));
  6965. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6966. return;
  6967. }
  6968. assert(ggml_is_scalar(dst));
  6969. assert(src0->nb[0] == sizeof(float));
  6970. const int64_t ne00 = src0->ne[0];
  6971. const int64_t ne01 = src0->ne[1];
  6972. const int64_t ne02 = src0->ne[2];
  6973. const int64_t ne03 = src0->ne[3];
  6974. const size_t nb01 = src0->nb[1];
  6975. const size_t nb02 = src0->nb[2];
  6976. const size_t nb03 = src0->nb[3];
  6977. ggml_float sum = 0;
  6978. ggml_float row_sum = 0;
  6979. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6980. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6981. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6982. ggml_vec_sum_ggf(ne00,
  6983. &row_sum,
  6984. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6985. sum += row_sum;
  6986. }
  6987. }
  6988. }
  6989. ((float *) dst->data)[0] = sum;
  6990. }
  6991. static void ggml_compute_forward_sum(
  6992. const struct ggml_compute_params * params,
  6993. const struct ggml_tensor * src0,
  6994. struct ggml_tensor * dst) {
  6995. switch (src0->type) {
  6996. case GGML_TYPE_F32:
  6997. {
  6998. ggml_compute_forward_sum_f32(params, src0, dst);
  6999. } break;
  7000. default:
  7001. {
  7002. GGML_ASSERT(false);
  7003. } break;
  7004. }
  7005. }
  7006. // ggml_compute_forward_sum_rows
  7007. static void ggml_compute_forward_sum_rows_f32(
  7008. const struct ggml_compute_params * params,
  7009. const struct ggml_tensor * src0,
  7010. struct ggml_tensor * dst) {
  7011. GGML_ASSERT(params->ith == 0);
  7012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7013. return;
  7014. }
  7015. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7016. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7017. const int64_t ne00 = src0->ne[0];
  7018. const int64_t ne01 = src0->ne[1];
  7019. const int64_t ne02 = src0->ne[2];
  7020. const int64_t ne03 = src0->ne[3];
  7021. const int64_t ne0 = dst->ne[0];
  7022. const int64_t ne1 = dst->ne[1];
  7023. const int64_t ne2 = dst->ne[2];
  7024. const int64_t ne3 = dst->ne[3];
  7025. GGML_ASSERT(ne0 == 1);
  7026. GGML_ASSERT(ne1 == ne01);
  7027. GGML_ASSERT(ne2 == ne02);
  7028. GGML_ASSERT(ne3 == ne03);
  7029. const size_t nb01 = src0->nb[1];
  7030. const size_t nb02 = src0->nb[2];
  7031. const size_t nb03 = src0->nb[3];
  7032. const size_t nb1 = dst->nb[1];
  7033. const size_t nb2 = dst->nb[2];
  7034. const size_t nb3 = dst->nb[3];
  7035. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7036. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7037. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7038. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7039. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7040. float row_sum = 0;
  7041. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7042. dst_row[0] = row_sum;
  7043. }
  7044. }
  7045. }
  7046. }
  7047. static void ggml_compute_forward_sum_rows(
  7048. const struct ggml_compute_params * params,
  7049. const struct ggml_tensor * src0,
  7050. struct ggml_tensor * dst) {
  7051. switch (src0->type) {
  7052. case GGML_TYPE_F32:
  7053. {
  7054. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7055. } break;
  7056. default:
  7057. {
  7058. GGML_ASSERT(false);
  7059. } break;
  7060. }
  7061. }
  7062. // ggml_compute_forward_mean
  7063. static void ggml_compute_forward_mean_f32(
  7064. const struct ggml_compute_params * params,
  7065. const struct ggml_tensor * src0,
  7066. struct ggml_tensor * dst) {
  7067. assert(params->ith == 0);
  7068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7069. return;
  7070. }
  7071. assert(src0->nb[0] == sizeof(float));
  7072. const int64_t ne00 = src0->ne[0];
  7073. const int64_t ne01 = src0->ne[1];
  7074. const int64_t ne02 = src0->ne[2];
  7075. const int64_t ne03 = src0->ne[3];
  7076. const size_t nb01 = src0->nb[1];
  7077. const size_t nb02 = src0->nb[2];
  7078. const size_t nb03 = src0->nb[3];
  7079. const int64_t ne0 = dst->ne[0];
  7080. const int64_t ne1 = dst->ne[1];
  7081. const int64_t ne2 = dst->ne[2];
  7082. const int64_t ne3 = dst->ne[3];
  7083. assert(ne0 == 1);
  7084. assert(ne1 == ne01);
  7085. assert(ne2 == ne02);
  7086. assert(ne3 == ne03);
  7087. UNUSED(ne0);
  7088. UNUSED(ne1);
  7089. UNUSED(ne2);
  7090. UNUSED(ne3);
  7091. const size_t nb1 = dst->nb[1];
  7092. const size_t nb2 = dst->nb[2];
  7093. const size_t nb3 = dst->nb[3];
  7094. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7095. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7096. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7097. ggml_vec_sum_f32(ne00,
  7098. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7099. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7100. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7101. }
  7102. }
  7103. }
  7104. }
  7105. static void ggml_compute_forward_mean(
  7106. const struct ggml_compute_params * params,
  7107. const struct ggml_tensor * src0,
  7108. struct ggml_tensor * dst) {
  7109. switch (src0->type) {
  7110. case GGML_TYPE_F32:
  7111. {
  7112. ggml_compute_forward_mean_f32(params, src0, dst);
  7113. } break;
  7114. default:
  7115. {
  7116. GGML_ASSERT(false);
  7117. } break;
  7118. }
  7119. }
  7120. // ggml_compute_forward_repeat
  7121. static void ggml_compute_forward_repeat_f32(
  7122. const struct ggml_compute_params * params,
  7123. const struct ggml_tensor * src0,
  7124. struct ggml_tensor * dst) {
  7125. GGML_ASSERT(params->ith == 0);
  7126. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7128. return;
  7129. }
  7130. const int64_t ne0 = dst->ne[0];
  7131. const int64_t ne1 = dst->ne[1];
  7132. const int64_t ne2 = dst->ne[2];
  7133. const int64_t ne3 = dst->ne[3];
  7134. const int64_t ne00 = src0->ne[0];
  7135. const int64_t ne01 = src0->ne[1];
  7136. const int64_t ne02 = src0->ne[2];
  7137. const int64_t ne03 = src0->ne[3];
  7138. const size_t nb0 = dst->nb[0];
  7139. const size_t nb1 = dst->nb[1];
  7140. const size_t nb2 = dst->nb[2];
  7141. const size_t nb3 = dst->nb[3];
  7142. const size_t nb00 = src0->nb[0];
  7143. const size_t nb01 = src0->nb[1];
  7144. const size_t nb02 = src0->nb[2];
  7145. const size_t nb03 = src0->nb[3];
  7146. // guaranteed to be an integer due to the check in ggml_can_repeat
  7147. const int nr0 = (int)(ne0/ne00);
  7148. const int nr1 = (int)(ne1/ne01);
  7149. const int nr2 = (int)(ne2/ne02);
  7150. const int nr3 = (int)(ne3/ne03);
  7151. // TODO: support for transposed / permuted tensors
  7152. GGML_ASSERT(nb0 == sizeof(float));
  7153. GGML_ASSERT(nb00 == sizeof(float));
  7154. // TODO: maybe this is not optimal?
  7155. for (int i3 = 0; i3 < nr3; i3++) {
  7156. for (int k3 = 0; k3 < ne03; k3++) {
  7157. for (int i2 = 0; i2 < nr2; i2++) {
  7158. for (int k2 = 0; k2 < ne02; k2++) {
  7159. for (int i1 = 0; i1 < nr1; i1++) {
  7160. for (int k1 = 0; k1 < ne01; k1++) {
  7161. for (int i0 = 0; i0 < nr0; i0++) {
  7162. ggml_vec_cpy_f32(ne00,
  7163. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7164. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7165. }
  7166. }
  7167. }
  7168. }
  7169. }
  7170. }
  7171. }
  7172. }
  7173. static void ggml_compute_forward_repeat(
  7174. const struct ggml_compute_params * params,
  7175. const struct ggml_tensor * src0,
  7176. struct ggml_tensor * dst) {
  7177. switch (src0->type) {
  7178. case GGML_TYPE_F32:
  7179. {
  7180. ggml_compute_forward_repeat_f32(params, src0, dst);
  7181. } break;
  7182. default:
  7183. {
  7184. GGML_ASSERT(false);
  7185. } break;
  7186. }
  7187. }
  7188. // ggml_compute_forward_abs
  7189. static void ggml_compute_forward_abs_f32(
  7190. const struct ggml_compute_params * params,
  7191. const struct ggml_tensor * src0,
  7192. struct ggml_tensor * dst) {
  7193. assert(params->ith == 0);
  7194. assert(ggml_are_same_shape(src0, dst));
  7195. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7196. return;
  7197. }
  7198. const int n = ggml_nrows(src0);
  7199. const int nc = src0->ne[0];
  7200. assert(dst->nb[0] == sizeof(float));
  7201. assert(src0->nb[0] == sizeof(float));
  7202. for (int i = 0; i < n; i++) {
  7203. ggml_vec_abs_f32(nc,
  7204. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7205. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7206. }
  7207. }
  7208. static void ggml_compute_forward_abs(
  7209. const struct ggml_compute_params * params,
  7210. const struct ggml_tensor * src0,
  7211. struct ggml_tensor * dst) {
  7212. switch (src0->type) {
  7213. case GGML_TYPE_F32:
  7214. {
  7215. ggml_compute_forward_abs_f32(params, src0, dst);
  7216. } break;
  7217. default:
  7218. {
  7219. GGML_ASSERT(false);
  7220. } break;
  7221. }
  7222. }
  7223. // ggml_compute_forward_sgn
  7224. static void ggml_compute_forward_sgn_f32(
  7225. const struct ggml_compute_params * params,
  7226. const struct ggml_tensor * src0,
  7227. struct ggml_tensor * dst) {
  7228. assert(params->ith == 0);
  7229. assert(ggml_are_same_shape(src0, dst));
  7230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7231. return;
  7232. }
  7233. const int n = ggml_nrows(src0);
  7234. const int nc = src0->ne[0];
  7235. assert(dst->nb[0] == sizeof(float));
  7236. assert(src0->nb[0] == sizeof(float));
  7237. for (int i = 0; i < n; i++) {
  7238. ggml_vec_sgn_f32(nc,
  7239. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7240. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7241. }
  7242. }
  7243. static void ggml_compute_forward_sgn(
  7244. const struct ggml_compute_params * params,
  7245. const struct ggml_tensor * src0,
  7246. struct ggml_tensor * dst) {
  7247. switch (src0->type) {
  7248. case GGML_TYPE_F32:
  7249. {
  7250. ggml_compute_forward_sgn_f32(params, src0, dst);
  7251. } break;
  7252. default:
  7253. {
  7254. GGML_ASSERT(false);
  7255. } break;
  7256. }
  7257. }
  7258. // ggml_compute_forward_neg
  7259. static void ggml_compute_forward_neg_f32(
  7260. const struct ggml_compute_params * params,
  7261. const struct ggml_tensor * src0,
  7262. struct ggml_tensor * dst) {
  7263. assert(params->ith == 0);
  7264. assert(ggml_are_same_shape(src0, dst));
  7265. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7266. return;
  7267. }
  7268. const int n = ggml_nrows(src0);
  7269. const int nc = src0->ne[0];
  7270. assert(dst->nb[0] == sizeof(float));
  7271. assert(src0->nb[0] == sizeof(float));
  7272. for (int i = 0; i < n; i++) {
  7273. ggml_vec_neg_f32(nc,
  7274. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7275. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7276. }
  7277. }
  7278. static void ggml_compute_forward_neg(
  7279. const struct ggml_compute_params * params,
  7280. const struct ggml_tensor * src0,
  7281. struct ggml_tensor * dst) {
  7282. switch (src0->type) {
  7283. case GGML_TYPE_F32:
  7284. {
  7285. ggml_compute_forward_neg_f32(params, src0, dst);
  7286. } break;
  7287. default:
  7288. {
  7289. GGML_ASSERT(false);
  7290. } break;
  7291. }
  7292. }
  7293. // ggml_compute_forward_step
  7294. static void ggml_compute_forward_step_f32(
  7295. const struct ggml_compute_params * params,
  7296. const struct ggml_tensor * src0,
  7297. struct ggml_tensor * dst) {
  7298. assert(params->ith == 0);
  7299. assert(ggml_are_same_shape(src0, dst));
  7300. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7301. return;
  7302. }
  7303. const int n = ggml_nrows(src0);
  7304. const int nc = src0->ne[0];
  7305. assert(dst->nb[0] == sizeof(float));
  7306. assert(src0->nb[0] == sizeof(float));
  7307. for (int i = 0; i < n; i++) {
  7308. ggml_vec_step_f32(nc,
  7309. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7310. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7311. }
  7312. }
  7313. static void ggml_compute_forward_step(
  7314. const struct ggml_compute_params * params,
  7315. const struct ggml_tensor * src0,
  7316. struct ggml_tensor * dst) {
  7317. switch (src0->type) {
  7318. case GGML_TYPE_F32:
  7319. {
  7320. ggml_compute_forward_step_f32(params, src0, dst);
  7321. } break;
  7322. default:
  7323. {
  7324. GGML_ASSERT(false);
  7325. } break;
  7326. }
  7327. }
  7328. // ggml_compute_forward_relu
  7329. static void ggml_compute_forward_relu_f32(
  7330. const struct ggml_compute_params * params,
  7331. const struct ggml_tensor * src0,
  7332. struct ggml_tensor * dst) {
  7333. assert(params->ith == 0);
  7334. assert(ggml_are_same_shape(src0, dst));
  7335. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7336. return;
  7337. }
  7338. const int n = ggml_nrows(src0);
  7339. const int nc = src0->ne[0];
  7340. assert(dst->nb[0] == sizeof(float));
  7341. assert(src0->nb[0] == sizeof(float));
  7342. for (int i = 0; i < n; i++) {
  7343. ggml_vec_relu_f32(nc,
  7344. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7345. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7346. }
  7347. }
  7348. static void ggml_compute_forward_relu(
  7349. const struct ggml_compute_params * params,
  7350. const struct ggml_tensor * src0,
  7351. struct ggml_tensor * dst) {
  7352. switch (src0->type) {
  7353. case GGML_TYPE_F32:
  7354. {
  7355. ggml_compute_forward_relu_f32(params, src0, dst);
  7356. } break;
  7357. default:
  7358. {
  7359. GGML_ASSERT(false);
  7360. } break;
  7361. }
  7362. }
  7363. // ggml_compute_forward_gelu
  7364. static void ggml_compute_forward_gelu_f32(
  7365. const struct ggml_compute_params * params,
  7366. const struct ggml_tensor * src0,
  7367. struct ggml_tensor * dst) {
  7368. GGML_ASSERT(ggml_is_contiguous(src0));
  7369. GGML_ASSERT(ggml_is_contiguous(dst));
  7370. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7371. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7372. return;
  7373. }
  7374. const int ith = params->ith;
  7375. const int nth = params->nth;
  7376. const int nc = src0->ne[0];
  7377. const int nr = ggml_nrows(src0);
  7378. // rows per thread
  7379. const int dr = (nr + nth - 1)/nth;
  7380. // row range for this thread
  7381. const int ir0 = dr*ith;
  7382. const int ir1 = MIN(ir0 + dr, nr);
  7383. for (int i1 = ir0; i1 < ir1; i1++) {
  7384. ggml_vec_gelu_f32(nc,
  7385. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7386. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7387. #ifndef NDEBUG
  7388. for (int k = 0; k < nc; k++) {
  7389. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7390. UNUSED(x);
  7391. assert(!isnan(x));
  7392. assert(!isinf(x));
  7393. }
  7394. #endif
  7395. }
  7396. }
  7397. static void ggml_compute_forward_gelu(
  7398. const struct ggml_compute_params * params,
  7399. const struct ggml_tensor * src0,
  7400. struct ggml_tensor * dst) {
  7401. switch (src0->type) {
  7402. case GGML_TYPE_F32:
  7403. {
  7404. ggml_compute_forward_gelu_f32(params, src0, dst);
  7405. } break;
  7406. default:
  7407. {
  7408. GGML_ASSERT(false);
  7409. } break;
  7410. }
  7411. //printf("XXXXXXXX gelu\n");
  7412. }
  7413. // ggml_compute_forward_silu
  7414. static void ggml_compute_forward_silu_f32(
  7415. const struct ggml_compute_params * params,
  7416. const struct ggml_tensor * src0,
  7417. struct ggml_tensor * dst) {
  7418. GGML_ASSERT(ggml_is_contiguous(src0));
  7419. GGML_ASSERT(ggml_is_contiguous(dst));
  7420. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7421. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7422. return;
  7423. }
  7424. const int ith = params->ith;
  7425. const int nth = params->nth;
  7426. const int nc = src0->ne[0];
  7427. const int nr = ggml_nrows(src0);
  7428. // rows per thread
  7429. const int dr = (nr + nth - 1)/nth;
  7430. // row range for this thread
  7431. const int ir0 = dr*ith;
  7432. const int ir1 = MIN(ir0 + dr, nr);
  7433. for (int i1 = ir0; i1 < ir1; i1++) {
  7434. ggml_vec_silu_f32(nc,
  7435. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7436. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7437. #ifndef NDEBUG
  7438. for (int k = 0; k < nc; k++) {
  7439. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7440. UNUSED(x);
  7441. assert(!isnan(x));
  7442. assert(!isinf(x));
  7443. }
  7444. #endif
  7445. }
  7446. }
  7447. static void ggml_compute_forward_silu(
  7448. const struct ggml_compute_params * params,
  7449. const struct ggml_tensor * src0,
  7450. struct ggml_tensor * dst) {
  7451. switch (src0->type) {
  7452. case GGML_TYPE_F32:
  7453. {
  7454. ggml_compute_forward_silu_f32(params, src0, dst);
  7455. } break;
  7456. default:
  7457. {
  7458. GGML_ASSERT(false);
  7459. } break;
  7460. }
  7461. }
  7462. // ggml_compute_forward_silu_back
  7463. static void ggml_compute_forward_silu_back_f32(
  7464. const struct ggml_compute_params * params,
  7465. const struct ggml_tensor * src0,
  7466. const struct ggml_tensor * grad,
  7467. struct ggml_tensor * dst) {
  7468. GGML_ASSERT(ggml_is_contiguous(grad));
  7469. GGML_ASSERT(ggml_is_contiguous(src0));
  7470. GGML_ASSERT(ggml_is_contiguous(dst));
  7471. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7472. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7473. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7474. return;
  7475. }
  7476. const int ith = params->ith;
  7477. const int nth = params->nth;
  7478. const int nc = src0->ne[0];
  7479. const int nr = ggml_nrows(src0);
  7480. // rows per thread
  7481. const int dr = (nr + nth - 1)/nth;
  7482. // row range for this thread
  7483. const int ir0 = dr*ith;
  7484. const int ir1 = MIN(ir0 + dr, nr);
  7485. for (int i1 = ir0; i1 < ir1; i1++) {
  7486. ggml_vec_silu_backward_f32(nc,
  7487. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7488. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7489. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7490. #ifndef NDEBUG
  7491. for (int k = 0; k < nc; k++) {
  7492. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7493. UNUSED(x);
  7494. assert(!isnan(x));
  7495. assert(!isinf(x));
  7496. }
  7497. #endif
  7498. }
  7499. }
  7500. static void ggml_compute_forward_silu_back(
  7501. const struct ggml_compute_params * params,
  7502. const struct ggml_tensor * src0,
  7503. const struct ggml_tensor * grad,
  7504. struct ggml_tensor * dst) {
  7505. switch (src0->type) {
  7506. case GGML_TYPE_F32:
  7507. {
  7508. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7509. } break;
  7510. default:
  7511. {
  7512. GGML_ASSERT(false);
  7513. } break;
  7514. }
  7515. }
  7516. // ggml_compute_forward_norm
  7517. static void ggml_compute_forward_norm_f32(
  7518. const struct ggml_compute_params * params,
  7519. const struct ggml_tensor * src0,
  7520. struct ggml_tensor * dst) {
  7521. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7522. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7523. return;
  7524. }
  7525. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7526. const int ith = params->ith;
  7527. const int nth = params->nth;
  7528. const int64_t ne00 = src0->ne[0];
  7529. const int64_t ne01 = src0->ne[1];
  7530. const int64_t ne02 = src0->ne[2];
  7531. const int64_t ne03 = src0->ne[3];
  7532. const size_t nb01 = src0->nb[1];
  7533. const size_t nb02 = src0->nb[2];
  7534. const size_t nb03 = src0->nb[3];
  7535. const size_t nb1 = dst->nb[1];
  7536. const size_t nb2 = dst->nb[2];
  7537. const size_t nb3 = dst->nb[3];
  7538. const float eps = 1e-5f; // TODO: make this a parameter
  7539. // TODO: optimize
  7540. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7541. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7542. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7543. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7544. ggml_float sum = 0.0;
  7545. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7546. sum += (ggml_float)x[i00];
  7547. }
  7548. float mean = sum/ne00;
  7549. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7550. ggml_float sum2 = 0.0;
  7551. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7552. float v = x[i00] - mean;
  7553. y[i00] = v;
  7554. sum2 += (ggml_float)(v*v);
  7555. }
  7556. float variance = sum2/ne00;
  7557. const float scale = 1.0f/sqrtf(variance + eps);
  7558. ggml_vec_scale_f32(ne00, y, scale);
  7559. }
  7560. }
  7561. }
  7562. }
  7563. static void ggml_compute_forward_norm(
  7564. const struct ggml_compute_params * params,
  7565. const struct ggml_tensor * src0,
  7566. struct ggml_tensor * dst) {
  7567. switch (src0->type) {
  7568. case GGML_TYPE_F32:
  7569. {
  7570. ggml_compute_forward_norm_f32(params, src0, dst);
  7571. } break;
  7572. default:
  7573. {
  7574. GGML_ASSERT(false);
  7575. } break;
  7576. }
  7577. }
  7578. static void ggml_compute_forward_rms_norm_f32(
  7579. const struct ggml_compute_params * params,
  7580. const struct ggml_tensor * src0,
  7581. struct ggml_tensor * dst) {
  7582. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7583. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7584. return;
  7585. }
  7586. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7587. const int ith = params->ith;
  7588. const int nth = params->nth;
  7589. const int64_t ne00 = src0->ne[0];
  7590. const int64_t ne01 = src0->ne[1];
  7591. const int64_t ne02 = src0->ne[2];
  7592. const int64_t ne03 = src0->ne[3];
  7593. const size_t nb01 = src0->nb[1];
  7594. const size_t nb02 = src0->nb[2];
  7595. const size_t nb03 = src0->nb[3];
  7596. const size_t nb1 = dst->nb[1];
  7597. const size_t nb2 = dst->nb[2];
  7598. const size_t nb3 = dst->nb[3];
  7599. const float eps = 1e-6f; // TODO: make this a parameter
  7600. // TODO: optimize
  7601. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7602. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7603. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7604. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7605. ggml_float sum = 0.0;
  7606. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7607. sum += (ggml_float)(x[i00] * x[i00]);
  7608. }
  7609. const float mean = sum/ne00;
  7610. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7611. memcpy(y, x, ne00 * sizeof(float));
  7612. // for (int i00 = 0; i00 < ne00; i00++) {
  7613. // y[i00] = x[i00];
  7614. // }
  7615. const float scale = 1.0f/sqrtf(mean + eps);
  7616. ggml_vec_scale_f32(ne00, y, scale);
  7617. }
  7618. }
  7619. }
  7620. }
  7621. static void ggml_compute_forward_rms_norm(
  7622. const struct ggml_compute_params * params,
  7623. const struct ggml_tensor * src0,
  7624. struct ggml_tensor * dst) {
  7625. switch (src0->type) {
  7626. case GGML_TYPE_F32:
  7627. {
  7628. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7629. } break;
  7630. default:
  7631. {
  7632. GGML_ASSERT(false);
  7633. } break;
  7634. }
  7635. }
  7636. static void ggml_compute_forward_rms_norm_back_f32(
  7637. const struct ggml_compute_params * params,
  7638. const struct ggml_tensor * src0,
  7639. const struct ggml_tensor * src1,
  7640. struct ggml_tensor * dst) {
  7641. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7643. return;
  7644. }
  7645. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7646. const int ith = params->ith;
  7647. const int nth = params->nth;
  7648. const int64_t ne00 = src0->ne[0];
  7649. const int64_t ne01 = src0->ne[1];
  7650. const int64_t ne02 = src0->ne[2];
  7651. const int64_t ne03 = src0->ne[3];
  7652. const size_t nb01 = src0->nb[1];
  7653. const size_t nb02 = src0->nb[2];
  7654. const size_t nb03 = src0->nb[3];
  7655. const size_t nb11 = src1->nb[1];
  7656. const size_t nb12 = src1->nb[2];
  7657. const size_t nb13 = src1->nb[3];
  7658. const size_t nb1 = dst->nb[1];
  7659. const size_t nb2 = dst->nb[2];
  7660. const size_t nb3 = dst->nb[3];
  7661. const float eps = 1e-6f; // TODO: make this a parameter
  7662. // TODO: optimize
  7663. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7664. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7665. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7666. // src1 is same shape as src0 => same indices
  7667. const int64_t i11 = i01;
  7668. const int64_t i12 = i02;
  7669. const int64_t i13 = i03;
  7670. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7671. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7672. ggml_float sum_xx = 0.0;
  7673. ggml_float sum_xdz = 0.0;
  7674. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7675. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7676. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7677. }
  7678. //const float mean = (float)(sum_xx)/ne00;
  7679. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7680. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7681. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7682. // we could cache rms from forward pass to improve performance.
  7683. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7684. //const float rms = sqrtf(mean_eps);
  7685. const float rrms = 1.0f / sqrtf(mean_eps);
  7686. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7687. {
  7688. // z = rms_norm(x)
  7689. //
  7690. // rms_norm(src0) =
  7691. // scale(
  7692. // src0,
  7693. // div(
  7694. // 1,
  7695. // sqrt(
  7696. // add(
  7697. // scale(
  7698. // sum(
  7699. // sqr(
  7700. // src0)),
  7701. // (1.0/N)),
  7702. // eps))));
  7703. // postorder:
  7704. // ## op args grad
  7705. // 00 param src0 grad[#00]
  7706. // 01 const 1
  7707. // 02 sqr (#00) grad[#02]
  7708. // 03 sum (#02) grad[#03]
  7709. // 04 const 1/N
  7710. // 05 scale (#03, #04) grad[#05]
  7711. // 06 const eps
  7712. // 07 add (#05, #06) grad[#07]
  7713. // 08 sqrt (#07) grad[#08]
  7714. // 09 div (#01,#08) grad[#09]
  7715. // 10 scale (#00,#09) grad[#10]
  7716. //
  7717. // backward pass, given grad[#10]
  7718. // #10: scale
  7719. // grad[#00] += scale(grad[#10],#09)
  7720. // grad[#09] += sum(mul(grad[#10],#00))
  7721. // #09: div
  7722. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7723. // #08: sqrt
  7724. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7725. // #07: add
  7726. // grad[#05] += grad[#07]
  7727. // #05: scale
  7728. // grad[#03] += scale(grad[#05],#04)
  7729. // #03: sum
  7730. // grad[#02] += repeat(grad[#03], #02)
  7731. // #02:
  7732. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7733. //
  7734. // substitute and simplify:
  7735. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7736. // grad[#02] = repeat(grad[#03], #02)
  7737. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7738. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7739. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7740. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7741. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7742. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7743. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7744. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7745. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7746. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7747. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7748. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7749. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7750. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7751. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7752. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7753. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7754. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7755. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7756. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7757. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7758. // a = b*c + d*e
  7759. // a = b*c*f/f + d*e*f/f
  7760. // a = (b*c*f + d*e*f)*(1/f)
  7761. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7762. // a = (b + d*e/c)*c
  7763. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7764. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7765. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7766. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7767. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7768. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7769. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7770. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7771. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7772. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7773. }
  7774. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7775. // post-order:
  7776. // dx := x
  7777. // dx := scale(dx,-mean_xdz/mean_eps)
  7778. // dx := add(dx, dz)
  7779. // dx := scale(dx, rrms)
  7780. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7781. ggml_vec_cpy_f32 (ne00, dx, x);
  7782. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7783. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7784. ggml_vec_acc_f32 (ne00, dx, dz);
  7785. ggml_vec_scale_f32(ne00, dx, rrms);
  7786. }
  7787. }
  7788. }
  7789. }
  7790. static void ggml_compute_forward_rms_norm_back(
  7791. const struct ggml_compute_params * params,
  7792. const struct ggml_tensor * src0,
  7793. const struct ggml_tensor * src1,
  7794. struct ggml_tensor * dst) {
  7795. switch (src0->type) {
  7796. case GGML_TYPE_F32:
  7797. {
  7798. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7799. } break;
  7800. default:
  7801. {
  7802. GGML_ASSERT(false);
  7803. } break;
  7804. }
  7805. }
  7806. // ggml_compute_forward_mul_mat
  7807. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7808. // helper function to determine if it is better to use BLAS or not
  7809. // for large matrices, BLAS is faster
  7810. static bool ggml_compute_forward_mul_mat_use_blas(
  7811. const struct ggml_tensor * src0,
  7812. const struct ggml_tensor * src1,
  7813. struct ggml_tensor * dst) {
  7814. //const int64_t ne00 = src0->ne[0];
  7815. //const int64_t ne01 = src0->ne[1];
  7816. const int64_t ne10 = src1->ne[0];
  7817. const int64_t ne0 = dst->ne[0];
  7818. const int64_t ne1 = dst->ne[1];
  7819. // TODO: find the optimal values for these
  7820. if (ggml_is_contiguous(src0) &&
  7821. ggml_is_contiguous(src1) &&
  7822. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7823. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7824. return true;
  7825. }
  7826. return false;
  7827. }
  7828. #endif
  7829. static void ggml_compute_forward_mul_mat_f32(
  7830. const struct ggml_compute_params * params,
  7831. const struct ggml_tensor * src0,
  7832. const struct ggml_tensor * src1,
  7833. struct ggml_tensor * dst) {
  7834. int64_t t0 = ggml_perf_time_us();
  7835. UNUSED(t0);
  7836. const int64_t ne00 = src0->ne[0];
  7837. const int64_t ne01 = src0->ne[1];
  7838. const int64_t ne02 = src0->ne[2];
  7839. const int64_t ne03 = src0->ne[3];
  7840. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7841. const int64_t ne10 = src1->ne[0];
  7842. #endif
  7843. const int64_t ne11 = src1->ne[1];
  7844. #ifndef NDEBUG
  7845. const int64_t ne12 = src1->ne[2];
  7846. const int64_t ne13 = src1->ne[3];
  7847. const int64_t ne0 = dst->ne[0];
  7848. const int64_t ne1 = dst->ne[1];
  7849. const int64_t ne2 = dst->ne[2];
  7850. const int64_t ne3 = dst->ne[3];
  7851. const int nb00 = src0->nb[0];
  7852. #endif
  7853. const int nb01 = src0->nb[1];
  7854. const int nb02 = src0->nb[2];
  7855. const int nb03 = src0->nb[3];
  7856. #ifndef NDEBUG
  7857. const int nb10 = src1->nb[0];
  7858. #endif
  7859. const int nb11 = src1->nb[1];
  7860. const int nb12 = src1->nb[2];
  7861. const int nb13 = src1->nb[3];
  7862. const int nb0 = dst->nb[0];
  7863. const int nb1 = dst->nb[1];
  7864. const int nb2 = dst->nb[2];
  7865. const int nb3 = dst->nb[3];
  7866. const int ith = params->ith;
  7867. const int nth = params->nth;
  7868. assert(ne02 == ne12);
  7869. assert(ne03 == ne13);
  7870. assert(ne2 == ne12);
  7871. assert(ne3 == ne13);
  7872. // we don't support permuted src0 or src1
  7873. assert(nb00 == sizeof(float));
  7874. assert(nb10 == sizeof(float));
  7875. // dst cannot be transposed or permuted
  7876. assert(nb0 == sizeof(float));
  7877. assert(nb0 <= nb1);
  7878. assert(nb1 <= nb2);
  7879. assert(nb2 <= nb3);
  7880. assert(ne0 == ne01);
  7881. assert(ne1 == ne11);
  7882. assert(ne2 == ne02);
  7883. assert(ne3 == ne03);
  7884. // nb01 >= nb00 - src0 is not transposed
  7885. // compute by src0 rows
  7886. #if defined(GGML_USE_CUBLAS)
  7887. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7888. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7889. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7890. }
  7891. return;
  7892. }
  7893. #elif defined(GGML_USE_CLBLAST)
  7894. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7895. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7896. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7897. }
  7898. return;
  7899. }
  7900. #endif
  7901. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7902. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7903. if (params->ith != 0) {
  7904. return;
  7905. }
  7906. if (params->type == GGML_TASK_INIT) {
  7907. return;
  7908. }
  7909. if (params->type == GGML_TASK_FINALIZE) {
  7910. return;
  7911. }
  7912. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7913. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7914. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7915. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7916. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7917. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7918. ne11, ne01, ne10,
  7919. 1.0f, y, ne10,
  7920. x, ne00,
  7921. 0.0f, d, ne01);
  7922. }
  7923. }
  7924. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7925. return;
  7926. }
  7927. #endif
  7928. if (params->type == GGML_TASK_INIT) {
  7929. return;
  7930. }
  7931. if (params->type == GGML_TASK_FINALIZE) {
  7932. return;
  7933. }
  7934. // parallelize by src0 rows using ggml_vec_dot_f32
  7935. // total rows in src0
  7936. const int nr = ne01*ne02*ne03;
  7937. // rows per thread
  7938. const int dr = (nr + nth - 1)/nth;
  7939. // row range for this thread
  7940. const int ir0 = dr*ith;
  7941. const int ir1 = MIN(ir0 + dr, nr);
  7942. for (int ir = ir0; ir < ir1; ++ir) {
  7943. // src0 indices
  7944. const int i03 = ir/(ne02*ne01);
  7945. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7946. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7947. for (int64_t ic = 0; ic < ne11; ++ic) {
  7948. // src1 indices
  7949. const int i13 = i03;
  7950. const int i12 = i02;
  7951. const int i11 = ic;
  7952. // dst indices
  7953. const int i0 = i01;
  7954. const int i1 = i11;
  7955. const int i2 = i02;
  7956. const int i3 = i03;
  7957. ggml_vec_dot_f32(ne00,
  7958. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7959. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7960. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7961. }
  7962. }
  7963. //int64_t t1 = ggml_perf_time_us();
  7964. //static int64_t acc = 0;
  7965. //acc += t1 - t0;
  7966. //if (t1 - t0 > 10) {
  7967. // printf("\n");
  7968. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7969. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7970. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7971. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7972. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7973. //}
  7974. }
  7975. static void ggml_compute_forward_mul_mat_f16_f32(
  7976. const struct ggml_compute_params * params,
  7977. const struct ggml_tensor * src0,
  7978. const struct ggml_tensor * src1,
  7979. struct ggml_tensor * dst) {
  7980. int64_t t0 = ggml_perf_time_us();
  7981. UNUSED(t0);
  7982. const int64_t ne00 = src0->ne[0];
  7983. const int64_t ne01 = src0->ne[1];
  7984. const int64_t ne02 = src0->ne[2];
  7985. const int64_t ne03 = src0->ne[3];
  7986. const int64_t ne10 = src1->ne[0];
  7987. const int64_t ne11 = src1->ne[1];
  7988. const int64_t ne12 = src1->ne[2];
  7989. const int64_t ne13 = src1->ne[3];
  7990. const int64_t ne0 = dst->ne[0];
  7991. const int64_t ne1 = dst->ne[1];
  7992. const int64_t ne2 = dst->ne[2];
  7993. const int64_t ne3 = dst->ne[3];
  7994. //const int64_t ne = ne0*ne1*ne2*ne3;
  7995. const int nb00 = src0->nb[0];
  7996. const int nb01 = src0->nb[1];
  7997. const int nb02 = src0->nb[2];
  7998. const int nb03 = src0->nb[3];
  7999. const int nb10 = src1->nb[0];
  8000. const int nb11 = src1->nb[1];
  8001. const int nb12 = src1->nb[2];
  8002. const int nb13 = src1->nb[3];
  8003. const int nb0 = dst->nb[0];
  8004. const int nb1 = dst->nb[1];
  8005. const int nb2 = dst->nb[2];
  8006. const int nb3 = dst->nb[3];
  8007. const int ith = params->ith;
  8008. const int nth = params->nth;
  8009. GGML_ASSERT(ne02 == ne12);
  8010. GGML_ASSERT(ne03 == ne13);
  8011. GGML_ASSERT(ne2 == ne12);
  8012. GGML_ASSERT(ne3 == ne13);
  8013. // TODO: we don't support permuted src0
  8014. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8015. // dst cannot be transposed or permuted
  8016. GGML_ASSERT(nb0 == sizeof(float));
  8017. GGML_ASSERT(nb0 <= nb1);
  8018. GGML_ASSERT(nb1 <= nb2);
  8019. GGML_ASSERT(nb2 <= nb3);
  8020. GGML_ASSERT(ne0 == ne01);
  8021. GGML_ASSERT(ne1 == ne11);
  8022. GGML_ASSERT(ne2 == ne02);
  8023. GGML_ASSERT(ne3 == ne03);
  8024. // nb01 >= nb00 - src0 is not transposed
  8025. // compute by src0 rows
  8026. #if defined(GGML_USE_CUBLAS)
  8027. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8028. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8029. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8030. }
  8031. return;
  8032. }
  8033. #elif defined(GGML_USE_CLBLAST)
  8034. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8035. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8036. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8037. }
  8038. return;
  8039. }
  8040. #endif
  8041. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8042. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8043. GGML_ASSERT(nb10 == sizeof(float));
  8044. if (params->ith != 0) {
  8045. return;
  8046. }
  8047. if (params->type == GGML_TASK_INIT) {
  8048. return;
  8049. }
  8050. if (params->type == GGML_TASK_FINALIZE) {
  8051. return;
  8052. }
  8053. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8054. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8055. float * const wdata = params->wdata;
  8056. {
  8057. size_t id = 0;
  8058. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8059. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8060. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8061. }
  8062. }
  8063. assert(id*sizeof(float) <= params->wsize);
  8064. }
  8065. const float * x = wdata;
  8066. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8067. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8068. // zT = y * xT
  8069. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8070. ne11, ne01, ne10,
  8071. 1.0f, y, ne10,
  8072. x, ne00,
  8073. 0.0f, d, ne01);
  8074. }
  8075. }
  8076. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8077. return;
  8078. }
  8079. #endif
  8080. if (params->type == GGML_TASK_INIT) {
  8081. ggml_fp16_t * const wdata = params->wdata;
  8082. size_t id = 0;
  8083. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8084. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8085. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8086. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8087. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8088. }
  8089. }
  8090. }
  8091. }
  8092. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8093. return;
  8094. }
  8095. if (params->type == GGML_TASK_FINALIZE) {
  8096. return;
  8097. }
  8098. // fp16 -> half the size, so divide by 2
  8099. // TODO: do not support transposed src1
  8100. assert(nb10/2 == sizeof(ggml_fp16_t));
  8101. // parallelize by src0 rows using ggml_vec_dot_f16
  8102. // total rows in src0
  8103. const int nr = ne01*ne02*ne03;
  8104. // rows per thread
  8105. const int dr = (nr + nth - 1)/nth;
  8106. // row range for this thread
  8107. const int ir0 = dr*ith;
  8108. const int ir1 = MIN(ir0 + dr, nr);
  8109. ggml_fp16_t * wdata = params->wdata;
  8110. for (int ir = ir0; ir < ir1; ++ir) {
  8111. // src0 indices
  8112. const int i03 = ir/(ne02*ne01);
  8113. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8114. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8115. const int i13 = i03;
  8116. const int i12 = i02;
  8117. const int i0 = i01;
  8118. const int i2 = i02;
  8119. const int i3 = i03;
  8120. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8121. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8122. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8123. for (int64_t ic = 0; ic < ne11; ++ic) {
  8124. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8125. }
  8126. }
  8127. //int64_t t1 = ggml_time_us();
  8128. //static int64_t acc = 0;
  8129. //acc += t1 - t0;
  8130. //if (t1 - t0 > 10) {
  8131. // printf("\n");
  8132. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8133. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8134. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8135. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8136. //}
  8137. }
  8138. static void ggml_compute_forward_mul_mat_q_f32(
  8139. const struct ggml_compute_params * params,
  8140. const struct ggml_tensor * src0,
  8141. const struct ggml_tensor * src1,
  8142. struct ggml_tensor * dst) {
  8143. int64_t t0 = ggml_perf_time_us();
  8144. UNUSED(t0);
  8145. const int64_t ne00 = src0->ne[0];
  8146. const int64_t ne01 = src0->ne[1];
  8147. const int64_t ne02 = src0->ne[2];
  8148. const int64_t ne03 = src0->ne[3];
  8149. const int64_t ne10 = src1->ne[0];
  8150. const int64_t ne11 = src1->ne[1];
  8151. const int64_t ne12 = src1->ne[2];
  8152. const int64_t ne13 = src1->ne[3];
  8153. const int64_t ne0 = dst->ne[0];
  8154. const int64_t ne1 = dst->ne[1];
  8155. const int64_t ne2 = dst->ne[2];
  8156. const int64_t ne3 = dst->ne[3];
  8157. const int nb00 = src0->nb[0];
  8158. const int nb01 = src0->nb[1];
  8159. const int nb02 = src0->nb[2];
  8160. const int nb03 = src0->nb[3];
  8161. const int nb10 = src1->nb[0];
  8162. const int nb11 = src1->nb[1];
  8163. const int nb12 = src1->nb[2];
  8164. const int nb13 = src1->nb[3];
  8165. const int nb0 = dst->nb[0];
  8166. const int nb1 = dst->nb[1];
  8167. const int nb2 = dst->nb[2];
  8168. const int nb3 = dst->nb[3];
  8169. const int ith = params->ith;
  8170. const int nth = params->nth;
  8171. GGML_ASSERT(ne02 == ne12);
  8172. GGML_ASSERT(ne03 == ne13);
  8173. GGML_ASSERT(ne2 == ne12);
  8174. GGML_ASSERT(ne3 == ne13);
  8175. const enum ggml_type type = src0->type;
  8176. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8177. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8178. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8179. // we don't support permuted src0 or src1
  8180. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8181. GGML_ASSERT(nb10 == sizeof(float));
  8182. // dst cannot be transposed or permuted
  8183. GGML_ASSERT(nb0 == sizeof(float));
  8184. GGML_ASSERT(nb0 <= nb1);
  8185. GGML_ASSERT(nb1 <= nb2);
  8186. GGML_ASSERT(nb2 <= nb3);
  8187. GGML_ASSERT(ne0 == ne01);
  8188. GGML_ASSERT(ne1 == ne11);
  8189. GGML_ASSERT(ne2 == ne02);
  8190. GGML_ASSERT(ne3 == ne03);
  8191. // nb01 >= nb00 - src0 is not transposed
  8192. // compute by src0 rows
  8193. #if defined(GGML_USE_CUBLAS)
  8194. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8195. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8196. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8197. }
  8198. return;
  8199. }
  8200. #elif defined(GGML_USE_CLBLAST)
  8201. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8202. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8203. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8204. }
  8205. return;
  8206. }
  8207. #endif
  8208. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8209. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8210. if (params->ith != 0) {
  8211. return;
  8212. }
  8213. if (params->type == GGML_TASK_INIT) {
  8214. return;
  8215. }
  8216. if (params->type == GGML_TASK_FINALIZE) {
  8217. return;
  8218. }
  8219. float * const wdata = params->wdata;
  8220. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8221. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8222. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8223. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8224. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8225. {
  8226. size_t id = 0;
  8227. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8228. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8229. id += ne00;
  8230. }
  8231. assert(id*sizeof(float) <= params->wsize);
  8232. }
  8233. const float * x = wdata;
  8234. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8235. ne11, ne01, ne10,
  8236. 1.0f, y, ne10,
  8237. x, ne00,
  8238. 0.0f, d, ne01);
  8239. }
  8240. }
  8241. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8242. return;
  8243. }
  8244. #endif
  8245. if (params->type == GGML_TASK_INIT) {
  8246. char * wdata = params->wdata;
  8247. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8248. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8249. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8250. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8251. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8252. wdata += row_size;
  8253. }
  8254. }
  8255. }
  8256. return;
  8257. }
  8258. if (params->type == GGML_TASK_FINALIZE) {
  8259. return;
  8260. }
  8261. // parallelize by src0 rows using ggml_vec_dot_q
  8262. // total rows in src0
  8263. const int nr = ne01*ne02*ne03;
  8264. // rows per thread
  8265. const int dr = (nr + nth - 1)/nth;
  8266. // row range for this thread
  8267. const int ir0 = dr*ith;
  8268. const int ir1 = MIN(ir0 + dr, nr);
  8269. void * wdata = params->wdata;
  8270. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8271. for (int ir = ir0; ir < ir1; ++ir) {
  8272. // src0 indices
  8273. const int i03 = ir/(ne02*ne01);
  8274. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8275. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8276. const int i13 = i03;
  8277. const int i12 = i02;
  8278. const int i0 = i01;
  8279. const int i2 = i02;
  8280. const int i3 = i03;
  8281. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8282. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8283. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8284. assert(ne00 % 32 == 0);
  8285. for (int64_t ic = 0; ic < ne11; ++ic) {
  8286. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8287. }
  8288. }
  8289. //int64_t t1 = ggml_time_us();
  8290. //static int64_t acc = 0;
  8291. //acc += t1 - t0;
  8292. //if (t1 - t0 > 10) {
  8293. // printf("\n");
  8294. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8295. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8296. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8297. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8298. //}
  8299. }
  8300. static void ggml_compute_forward_mul_mat(
  8301. const struct ggml_compute_params * params,
  8302. const struct ggml_tensor * src0,
  8303. const struct ggml_tensor * src1,
  8304. struct ggml_tensor * dst) {
  8305. switch (src0->type) {
  8306. case GGML_TYPE_Q4_0:
  8307. case GGML_TYPE_Q4_1:
  8308. case GGML_TYPE_Q5_0:
  8309. case GGML_TYPE_Q5_1:
  8310. case GGML_TYPE_Q8_0:
  8311. case GGML_TYPE_Q8_1:
  8312. case GGML_TYPE_Q2_K:
  8313. case GGML_TYPE_Q3_K:
  8314. case GGML_TYPE_Q4_K:
  8315. case GGML_TYPE_Q5_K:
  8316. case GGML_TYPE_Q6_K:
  8317. {
  8318. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8319. } break;
  8320. case GGML_TYPE_F16:
  8321. {
  8322. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8323. } break;
  8324. case GGML_TYPE_F32:
  8325. {
  8326. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8327. } break;
  8328. default:
  8329. {
  8330. GGML_ASSERT(false);
  8331. } break;
  8332. }
  8333. }
  8334. // ggml_compute_forward_scale
  8335. static void ggml_compute_forward_scale_f32(
  8336. const struct ggml_compute_params * params,
  8337. const struct ggml_tensor * src0,
  8338. const struct ggml_tensor * src1,
  8339. struct ggml_tensor * dst) {
  8340. GGML_ASSERT(ggml_is_contiguous(src0));
  8341. GGML_ASSERT(ggml_is_contiguous(dst));
  8342. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8343. GGML_ASSERT(ggml_is_scalar(src1));
  8344. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8345. return;
  8346. }
  8347. // scale factor
  8348. const float v = *(float *) src1->data;
  8349. const int ith = params->ith;
  8350. const int nth = params->nth;
  8351. const int nc = src0->ne[0];
  8352. const int nr = ggml_nrows(src0);
  8353. // rows per thread
  8354. const int dr = (nr + nth - 1)/nth;
  8355. // row range for this thread
  8356. const int ir0 = dr*ith;
  8357. const int ir1 = MIN(ir0 + dr, nr);
  8358. const size_t nb01 = src0->nb[1];
  8359. const size_t nb1 = dst->nb[1];
  8360. for (int i1 = ir0; i1 < ir1; i1++) {
  8361. if (dst->data != src0->data) {
  8362. // src0 is same shape as dst => same indices
  8363. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8364. }
  8365. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8366. }
  8367. }
  8368. static void ggml_compute_forward_scale(
  8369. const struct ggml_compute_params * params,
  8370. const struct ggml_tensor * src0,
  8371. const struct ggml_tensor * src1,
  8372. struct ggml_tensor * dst) {
  8373. switch (src0->type) {
  8374. case GGML_TYPE_F32:
  8375. {
  8376. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8377. } break;
  8378. default:
  8379. {
  8380. GGML_ASSERT(false);
  8381. } break;
  8382. }
  8383. }
  8384. // ggml_compute_forward_set
  8385. static void ggml_compute_forward_set_f32(
  8386. const struct ggml_compute_params * params,
  8387. const struct ggml_tensor * src0,
  8388. const struct ggml_tensor * src1,
  8389. const struct ggml_tensor * opt0,
  8390. struct ggml_tensor * dst) {
  8391. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8392. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8393. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8394. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8395. // view src0 and dst with these strides and data offset inbytes during set
  8396. // nb0 is implicitely element_size because src0 and dst are contiguous
  8397. size_t nb1 = ((int32_t *) opt0->data)[0];
  8398. size_t nb2 = ((int32_t *) opt0->data)[1];
  8399. size_t nb3 = ((int32_t *) opt0->data)[2];
  8400. size_t offset = ((int32_t *) opt0->data)[3];
  8401. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8402. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8403. // memcpy needs to be synchronized across threads to avoid race conditions.
  8404. // => do it in INIT phase
  8405. memcpy(
  8406. ((char *) dst->data),
  8407. ((char *) src0->data),
  8408. ggml_nbytes(dst));
  8409. }
  8410. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8411. return;
  8412. }
  8413. const int ith = params->ith;
  8414. const int nth = params->nth;
  8415. const int nr = ggml_nrows(src1);
  8416. const int nc = src1->ne[0];
  8417. const int64_t ne10 = src1->ne[0];
  8418. const int64_t ne11 = src1->ne[1];
  8419. const int64_t ne12 = src1->ne[2];
  8420. const int64_t ne13 = src1->ne[3];
  8421. const size_t nb10 = src1->nb[0];
  8422. const size_t nb11 = src1->nb[1];
  8423. const size_t nb12 = src1->nb[2];
  8424. const size_t nb13 = src1->nb[3];
  8425. // src0 and dst as viewed during set
  8426. const size_t nb0 = ggml_element_size(src0);
  8427. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8428. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8429. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8430. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8431. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8432. GGML_ASSERT(nb10 == sizeof(float));
  8433. // rows per thread
  8434. const int dr = (nr + nth - 1)/nth;
  8435. // row range for this thread
  8436. const int ir0 = dr*ith;
  8437. const int ir1 = MIN(ir0 + dr, nr);
  8438. for (int ir = ir0; ir < ir1; ++ir) {
  8439. // src0 and dst are viewed with shape of src1 and offset
  8440. // => same indices
  8441. const int i3 = ir/(ne12*ne11);
  8442. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8443. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8444. ggml_vec_cpy_f32(nc,
  8445. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8446. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8447. }
  8448. }
  8449. static void ggml_compute_forward_set(
  8450. const struct ggml_compute_params * params,
  8451. const struct ggml_tensor * src0,
  8452. const struct ggml_tensor * src1,
  8453. const struct ggml_tensor * opt0,
  8454. struct ggml_tensor * dst) {
  8455. switch (src0->type) {
  8456. case GGML_TYPE_F32:
  8457. {
  8458. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8459. } break;
  8460. case GGML_TYPE_F16:
  8461. case GGML_TYPE_Q4_0:
  8462. case GGML_TYPE_Q4_1:
  8463. case GGML_TYPE_Q5_0:
  8464. case GGML_TYPE_Q5_1:
  8465. case GGML_TYPE_Q8_0:
  8466. case GGML_TYPE_Q8_1:
  8467. case GGML_TYPE_Q2_K:
  8468. case GGML_TYPE_Q3_K:
  8469. case GGML_TYPE_Q4_K:
  8470. case GGML_TYPE_Q5_K:
  8471. case GGML_TYPE_Q6_K:
  8472. default:
  8473. {
  8474. GGML_ASSERT(false);
  8475. } break;
  8476. }
  8477. }
  8478. // ggml_compute_forward_cpy
  8479. static void ggml_compute_forward_cpy(
  8480. const struct ggml_compute_params * params,
  8481. const struct ggml_tensor * src0,
  8482. struct ggml_tensor * dst) {
  8483. ggml_compute_forward_dup(params, src0, dst);
  8484. }
  8485. // ggml_compute_forward_cont
  8486. static void ggml_compute_forward_cont(
  8487. const struct ggml_compute_params * params,
  8488. const struct ggml_tensor * src0,
  8489. struct ggml_tensor * dst) {
  8490. ggml_compute_forward_dup(params, src0, dst);
  8491. }
  8492. // ggml_compute_forward_reshape
  8493. static void ggml_compute_forward_reshape(
  8494. const struct ggml_compute_params * params,
  8495. const struct ggml_tensor * src0,
  8496. struct ggml_tensor * dst) {
  8497. // NOP
  8498. UNUSED(params);
  8499. UNUSED(src0);
  8500. UNUSED(dst);
  8501. }
  8502. // ggml_compute_forward_view
  8503. static void ggml_compute_forward_view(
  8504. const struct ggml_compute_params * params,
  8505. const struct ggml_tensor * src0) {
  8506. // NOP
  8507. UNUSED(params);
  8508. UNUSED(src0);
  8509. }
  8510. // ggml_compute_forward_permute
  8511. static void ggml_compute_forward_permute(
  8512. const struct ggml_compute_params * params,
  8513. const struct ggml_tensor * src0) {
  8514. // NOP
  8515. UNUSED(params);
  8516. UNUSED(src0);
  8517. }
  8518. // ggml_compute_forward_transpose
  8519. static void ggml_compute_forward_transpose(
  8520. const struct ggml_compute_params * params,
  8521. const struct ggml_tensor * src0) {
  8522. // NOP
  8523. UNUSED(params);
  8524. UNUSED(src0);
  8525. }
  8526. // ggml_compute_forward_get_rows
  8527. static void ggml_compute_forward_get_rows_q(
  8528. const struct ggml_compute_params * params,
  8529. const struct ggml_tensor * src0,
  8530. const struct ggml_tensor * src1,
  8531. struct ggml_tensor * dst) {
  8532. assert(params->ith == 0);
  8533. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8534. return;
  8535. }
  8536. const int nc = src0->ne[0];
  8537. const int nr = ggml_nelements(src1);
  8538. const enum ggml_type type = src0->type;
  8539. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8540. assert( dst->ne[0] == nc);
  8541. assert( dst->ne[1] == nr);
  8542. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8543. for (int i = 0; i < nr; ++i) {
  8544. const int r = ((int32_t *) src1->data)[i];
  8545. dequantize_row_q(
  8546. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8547. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8548. }
  8549. }
  8550. static void ggml_compute_forward_get_rows_f16(
  8551. const struct ggml_compute_params * params,
  8552. const struct ggml_tensor * src0,
  8553. const struct ggml_tensor * src1,
  8554. struct ggml_tensor * dst) {
  8555. assert(params->ith == 0);
  8556. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8557. return;
  8558. }
  8559. const int nc = src0->ne[0];
  8560. const int nr = ggml_nelements(src1);
  8561. assert( dst->ne[0] == nc);
  8562. assert( dst->ne[1] == nr);
  8563. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8564. for (int i = 0; i < nr; ++i) {
  8565. const int r = ((int32_t *) src1->data)[i];
  8566. for (int j = 0; j < nc; ++j) {
  8567. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8568. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8569. }
  8570. }
  8571. }
  8572. static void ggml_compute_forward_get_rows_f32(
  8573. const struct ggml_compute_params * params,
  8574. const struct ggml_tensor * src0,
  8575. const struct ggml_tensor * src1,
  8576. struct ggml_tensor * dst) {
  8577. assert(params->ith == 0);
  8578. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8579. return;
  8580. }
  8581. const int nc = src0->ne[0];
  8582. const int nr = ggml_nelements(src1);
  8583. assert( dst->ne[0] == nc);
  8584. assert( dst->ne[1] == nr);
  8585. assert(src0->nb[0] == sizeof(float));
  8586. for (int i = 0; i < nr; ++i) {
  8587. const int r = ((int32_t *) src1->data)[i];
  8588. ggml_vec_cpy_f32(nc,
  8589. (float *) ((char *) dst->data + i*dst->nb[1]),
  8590. (float *) ((char *) src0->data + r*src0->nb[1]));
  8591. }
  8592. }
  8593. static void ggml_compute_forward_get_rows(
  8594. const struct ggml_compute_params * params,
  8595. const struct ggml_tensor * src0,
  8596. const struct ggml_tensor * src1,
  8597. struct ggml_tensor * dst) {
  8598. switch (src0->type) {
  8599. case GGML_TYPE_Q4_0:
  8600. case GGML_TYPE_Q4_1:
  8601. case GGML_TYPE_Q5_0:
  8602. case GGML_TYPE_Q5_1:
  8603. case GGML_TYPE_Q8_0:
  8604. case GGML_TYPE_Q8_1:
  8605. case GGML_TYPE_Q2_K:
  8606. case GGML_TYPE_Q3_K:
  8607. case GGML_TYPE_Q4_K:
  8608. case GGML_TYPE_Q5_K:
  8609. case GGML_TYPE_Q6_K:
  8610. {
  8611. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8612. } break;
  8613. case GGML_TYPE_F16:
  8614. {
  8615. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8616. } break;
  8617. case GGML_TYPE_F32:
  8618. {
  8619. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8620. } break;
  8621. default:
  8622. {
  8623. GGML_ASSERT(false);
  8624. } break;
  8625. }
  8626. //static bool first = true;
  8627. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8628. //if (first) {
  8629. // first = false;
  8630. //} else {
  8631. // for (int k = 0; k < dst->ne[1]; ++k) {
  8632. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8633. // for (int i = 0; i < 16; ++i) {
  8634. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8635. // }
  8636. // printf("\n");
  8637. // }
  8638. // printf("\n");
  8639. // }
  8640. // printf("\n");
  8641. // exit(0);
  8642. //}
  8643. }
  8644. // ggml_compute_forward_get_rows_back
  8645. static void ggml_compute_forward_get_rows_back_f32_f16(
  8646. const struct ggml_compute_params * params,
  8647. const struct ggml_tensor * src0,
  8648. const struct ggml_tensor * src1,
  8649. const struct ggml_tensor * opt0,
  8650. struct ggml_tensor * dst) {
  8651. GGML_ASSERT(params->ith == 0);
  8652. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8653. GGML_ASSERT(ggml_is_contiguous(opt0));
  8654. GGML_ASSERT(ggml_is_contiguous(dst));
  8655. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8656. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8657. return;
  8658. }
  8659. const int nc = src0->ne[0];
  8660. const int nr = ggml_nelements(src1);
  8661. GGML_ASSERT( dst->ne[0] == nc);
  8662. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8663. for (int i = 0; i < nr; ++i) {
  8664. const int r = ((int32_t *) src1->data)[i];
  8665. for (int j = 0; j < nc; ++j) {
  8666. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8667. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8668. }
  8669. }
  8670. }
  8671. static void ggml_compute_forward_get_rows_back_f32(
  8672. const struct ggml_compute_params * params,
  8673. const struct ggml_tensor * src0,
  8674. const struct ggml_tensor * src1,
  8675. const struct ggml_tensor * opt0,
  8676. struct ggml_tensor * dst) {
  8677. GGML_ASSERT(params->ith == 0);
  8678. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8679. GGML_ASSERT(ggml_is_contiguous(opt0));
  8680. GGML_ASSERT(ggml_is_contiguous(dst));
  8681. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8683. return;
  8684. }
  8685. const int nc = src0->ne[0];
  8686. const int nr = ggml_nelements(src1);
  8687. GGML_ASSERT( dst->ne[0] == nc);
  8688. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8689. for (int i = 0; i < nr; ++i) {
  8690. const int r = ((int32_t *) src1->data)[i];
  8691. ggml_vec_add_f32(nc,
  8692. (float *) ((char *) dst->data + r*dst->nb[1]),
  8693. (float *) ((char *) dst->data + r*dst->nb[1]),
  8694. (float *) ((char *) src0->data + i*src0->nb[1]));
  8695. }
  8696. }
  8697. static void ggml_compute_forward_get_rows_back(
  8698. const struct ggml_compute_params * params,
  8699. const struct ggml_tensor * src0,
  8700. const struct ggml_tensor * src1,
  8701. const struct ggml_tensor * opt0,
  8702. struct ggml_tensor * dst) {
  8703. switch (src0->type) {
  8704. case GGML_TYPE_F16:
  8705. {
  8706. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8707. } break;
  8708. case GGML_TYPE_F32:
  8709. {
  8710. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8711. } break;
  8712. default:
  8713. {
  8714. GGML_ASSERT(false);
  8715. } break;
  8716. }
  8717. //static bool first = true;
  8718. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8719. //if (first) {
  8720. // first = false;
  8721. //} else {
  8722. // for (int k = 0; k < dst->ne[1]; ++k) {
  8723. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8724. // for (int i = 0; i < 16; ++i) {
  8725. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8726. // }
  8727. // printf("\n");
  8728. // }
  8729. // printf("\n");
  8730. // }
  8731. // printf("\n");
  8732. // exit(0);
  8733. //}
  8734. }
  8735. // ggml_compute_forward_diag
  8736. static void ggml_compute_forward_diag_f32(
  8737. const struct ggml_compute_params * params,
  8738. const struct ggml_tensor * src0,
  8739. struct ggml_tensor * dst) {
  8740. GGML_ASSERT(params->ith == 0);
  8741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8742. return;
  8743. }
  8744. // TODO: handle transposed/permuted matrices
  8745. const int ne00 = src0->ne[0];
  8746. const int ne01 = src0->ne[1];
  8747. const int ne02 = src0->ne[2];
  8748. const int ne03 = src0->ne[3];
  8749. const int ne0 = dst->ne[0];
  8750. const int ne1 = dst->ne[1];
  8751. const int ne2 = dst->ne[2];
  8752. const int ne3 = dst->ne[3];
  8753. GGML_ASSERT(ne00 == ne0);
  8754. GGML_ASSERT(ne00 == ne1);
  8755. GGML_ASSERT(ne01 == 1);
  8756. GGML_ASSERT(ne02 == ne2);
  8757. GGML_ASSERT(ne03 == ne3);
  8758. const int nb00 = src0->nb[0];
  8759. //const int nb01 = src0->nb[1];
  8760. const int nb02 = src0->nb[2];
  8761. const int nb03 = src0->nb[3];
  8762. const int nb0 = dst->nb[0];
  8763. const int nb1 = dst->nb[1];
  8764. const int nb2 = dst->nb[2];
  8765. const int nb3 = dst->nb[3];
  8766. GGML_ASSERT(nb00 == sizeof(float));
  8767. GGML_ASSERT(nb0 == sizeof(float));
  8768. for (int i3 = 0; i3 < ne3; i3++) {
  8769. for (int i2 = 0; i2 < ne2; i2++) {
  8770. for (int i1 = 0; i1 < ne1; i1++) {
  8771. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8772. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8773. for (int i0 = 0; i0 < i1; i0++) {
  8774. d[i0] = 0;
  8775. }
  8776. d[i1] = s[i1];
  8777. for (int i0 = i1+1; i0 < ne0; i0++) {
  8778. d[i0] = 0;
  8779. }
  8780. }
  8781. }
  8782. }
  8783. }
  8784. static void ggml_compute_forward_diag(
  8785. const struct ggml_compute_params * params,
  8786. const struct ggml_tensor * src0,
  8787. struct ggml_tensor * dst) {
  8788. switch (src0->type) {
  8789. case GGML_TYPE_F32:
  8790. {
  8791. ggml_compute_forward_diag_f32(params, src0, dst);
  8792. } break;
  8793. default:
  8794. {
  8795. GGML_ASSERT(false);
  8796. } break;
  8797. }
  8798. }
  8799. // ggml_compute_forward_diag_mask_inf
  8800. static void ggml_compute_forward_diag_mask_f32(
  8801. const struct ggml_compute_params * params,
  8802. const struct ggml_tensor * src0,
  8803. const struct ggml_tensor * src1,
  8804. struct ggml_tensor * dst,
  8805. const float value) {
  8806. assert(src1->type == GGML_TYPE_I32);
  8807. assert(ggml_nelements(src1) == 2);
  8808. const int ith = params->ith;
  8809. const int nth = params->nth;
  8810. const int n_past = ((int32_t *) src1->data)[0];
  8811. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8812. assert(n_past >= 0);
  8813. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8814. // memcpy needs to be synchronized across threads to avoid race conditions.
  8815. // => do it in INIT phase
  8816. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8817. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8818. memcpy(
  8819. ((char *) dst->data),
  8820. ((char *) src0->data),
  8821. ggml_nbytes(dst));
  8822. }
  8823. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8824. return;
  8825. }
  8826. // TODO: handle transposed/permuted matrices
  8827. const int n = ggml_nrows(src0);
  8828. const int nc = src0->ne[0];
  8829. const int nr = src0->ne[1];
  8830. const int nz = n/nr;
  8831. assert( dst->nb[0] == sizeof(float));
  8832. assert(src0->nb[0] == sizeof(float));
  8833. for (int k = 0; k < nz; k++) {
  8834. for (int j = ith; j < nr; j += nth) {
  8835. for (int i = n_past; i < nc; i++) {
  8836. if (i > n_past + j) {
  8837. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8838. }
  8839. }
  8840. }
  8841. }
  8842. }
  8843. static void ggml_compute_forward_diag_mask_inf(
  8844. const struct ggml_compute_params * params,
  8845. const struct ggml_tensor * src0,
  8846. const struct ggml_tensor * src1,
  8847. struct ggml_tensor * dst) {
  8848. switch (src0->type) {
  8849. case GGML_TYPE_F32:
  8850. {
  8851. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8852. } break;
  8853. default:
  8854. {
  8855. GGML_ASSERT(false);
  8856. } break;
  8857. }
  8858. }
  8859. static void ggml_compute_forward_diag_mask_zero(
  8860. const struct ggml_compute_params * params,
  8861. const struct ggml_tensor * src0,
  8862. const struct ggml_tensor * src1,
  8863. struct ggml_tensor * dst) {
  8864. switch (src0->type) {
  8865. case GGML_TYPE_F32:
  8866. {
  8867. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8868. } break;
  8869. default:
  8870. {
  8871. GGML_ASSERT(false);
  8872. } break;
  8873. }
  8874. }
  8875. // ggml_compute_forward_soft_max
  8876. static void ggml_compute_forward_soft_max_f32(
  8877. const struct ggml_compute_params * params,
  8878. const struct ggml_tensor * src0,
  8879. struct ggml_tensor * dst) {
  8880. GGML_ASSERT(ggml_is_contiguous(src0));
  8881. GGML_ASSERT(ggml_is_contiguous(dst));
  8882. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8884. return;
  8885. }
  8886. // TODO: handle transposed/permuted matrices
  8887. const int ith = params->ith;
  8888. const int nth = params->nth;
  8889. const int nc = src0->ne[0];
  8890. const int nr = ggml_nrows(src0);
  8891. // rows per thread
  8892. const int dr = (nr + nth - 1)/nth;
  8893. // row range for this thread
  8894. const int ir0 = dr*ith;
  8895. const int ir1 = MIN(ir0 + dr, nr);
  8896. for (int i1 = ir0; i1 < ir1; i1++) {
  8897. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8898. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8899. #ifndef NDEBUG
  8900. for (int i = 0; i < nc; ++i) {
  8901. //printf("p[%d] = %f\n", i, p[i]);
  8902. assert(!isnan(sp[i]));
  8903. }
  8904. #endif
  8905. float max = -INFINITY;
  8906. ggml_vec_max_f32(nc, &max, sp);
  8907. ggml_float sum = 0.0;
  8908. uint16_t scvt;
  8909. for (int i = 0; i < nc; i++) {
  8910. if (sp[i] == -INFINITY) {
  8911. dp[i] = 0.0f;
  8912. } else {
  8913. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8914. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8915. memcpy(&scvt, &s, sizeof(scvt));
  8916. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8917. sum += (ggml_float)val;
  8918. dp[i] = val;
  8919. }
  8920. }
  8921. assert(sum > 0.0);
  8922. sum = 1.0/sum;
  8923. ggml_vec_scale_f32(nc, dp, sum);
  8924. #ifndef NDEBUG
  8925. for (int i = 0; i < nc; ++i) {
  8926. assert(!isnan(dp[i]));
  8927. assert(!isinf(dp[i]));
  8928. }
  8929. #endif
  8930. }
  8931. }
  8932. static void ggml_compute_forward_soft_max(
  8933. const struct ggml_compute_params * params,
  8934. const struct ggml_tensor * src0,
  8935. struct ggml_tensor * dst) {
  8936. switch (src0->type) {
  8937. case GGML_TYPE_F32:
  8938. {
  8939. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8940. } break;
  8941. default:
  8942. {
  8943. GGML_ASSERT(false);
  8944. } break;
  8945. }
  8946. }
  8947. // ggml_compute_forward_alibi
  8948. static void ggml_compute_forward_alibi_f32(
  8949. const struct ggml_compute_params * params,
  8950. const struct ggml_tensor * src0,
  8951. const struct ggml_tensor * src1,
  8952. struct ggml_tensor * dst) {
  8953. assert(params->ith == 0);
  8954. assert(src1->type == GGML_TYPE_I32);
  8955. assert(ggml_nelements(src1) == 3);
  8956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8957. return;
  8958. }
  8959. const int n_past = ((int32_t *) src1->data)[0];
  8960. const int n_head = ((int32_t *) src1->data)[1];
  8961. const float max_bias = ((float *) src1->data)[2];
  8962. assert(n_past >= 0);
  8963. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8964. const int ne1 = src0->ne[1]; // seq_len_without_past
  8965. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8966. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8967. const int n = ggml_nrows(src0);
  8968. const int ne2_ne3 = n/ne1; // ne2*ne3
  8969. const int nb0 = src0->nb[0];
  8970. const int nb1 = src0->nb[1];
  8971. const int nb2 = src0->nb[2];
  8972. //const int nb3 = src0->nb[3];
  8973. assert(nb0 == sizeof(float));
  8974. assert(ne1 + n_past == ne0); (void) n_past;
  8975. // add alibi to src0 (KQ_scaled)
  8976. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8977. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8978. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8979. for (int i = 0; i < ne0; i++) {
  8980. for (int j = 0; j < ne1; j++) {
  8981. for (int k = 0; k < ne2_ne3; k++) {
  8982. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8983. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8984. // TODO: k*nb2 or k*nb3
  8985. float m_k;
  8986. if (k < n_heads_log2_floor) {
  8987. m_k = powf(m0, k + 1);
  8988. } else {
  8989. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8990. }
  8991. pdst[0] = (i-ne0+1) * m_k + src[0];
  8992. }
  8993. }
  8994. }
  8995. }
  8996. static void ggml_compute_forward_alibi_f16(
  8997. const struct ggml_compute_params * params,
  8998. const struct ggml_tensor * src0,
  8999. const struct ggml_tensor * src1,
  9000. struct ggml_tensor * dst) {
  9001. assert(params->ith == 0);
  9002. assert(src1->type == GGML_TYPE_I32);
  9003. assert(ggml_nelements(src1) == 3);
  9004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9005. return;
  9006. }
  9007. const int n_past = ((int32_t *) src1->data)[0];
  9008. const int n_head = ((int32_t *) src1->data)[1];
  9009. const float max_bias = ((float *) src1->data)[2];
  9010. assert(n_past >= 0);
  9011. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9012. const int ne1 = src0->ne[1]; // seq_len_without_past
  9013. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9014. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9015. const int n = ggml_nrows(src0);
  9016. const int ne2_ne3 = n/ne1; // ne2*ne3
  9017. const int nb0 = src0->nb[0];
  9018. const int nb1 = src0->nb[1];
  9019. const int nb2 = src0->nb[2];
  9020. //const int nb3 = src0->nb[3];
  9021. assert(nb0 == sizeof(ggml_fp16_t));
  9022. assert(ne1 + n_past == ne0); (void) n_past;
  9023. // add alibi to src0 (KQ_scaled)
  9024. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9025. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9026. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9027. for (int i = 0; i < ne0; i++) {
  9028. for (int j = 0; j < ne1; j++) {
  9029. for (int k = 0; k < ne2_ne3; k++) {
  9030. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9031. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9032. // TODO: k*nb2 or k*nb3
  9033. float m_k;
  9034. if (k < n_heads_log2_floor) {
  9035. m_k = powf(m0, k + 1);
  9036. } else {
  9037. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9038. }
  9039. // we return F32
  9040. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9041. }
  9042. }
  9043. }
  9044. }
  9045. static void ggml_compute_forward_alibi(
  9046. const struct ggml_compute_params * params,
  9047. const struct ggml_tensor * src0,
  9048. const struct ggml_tensor * src1,
  9049. struct ggml_tensor * dst) {
  9050. switch (src0->type) {
  9051. case GGML_TYPE_F16:
  9052. {
  9053. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9054. } break;
  9055. case GGML_TYPE_F32:
  9056. {
  9057. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9058. } break;
  9059. case GGML_TYPE_Q4_0:
  9060. case GGML_TYPE_Q4_1:
  9061. case GGML_TYPE_Q5_0:
  9062. case GGML_TYPE_Q5_1:
  9063. case GGML_TYPE_Q8_0:
  9064. case GGML_TYPE_Q8_1:
  9065. case GGML_TYPE_Q2_K:
  9066. case GGML_TYPE_Q3_K:
  9067. case GGML_TYPE_Q4_K:
  9068. case GGML_TYPE_Q5_K:
  9069. case GGML_TYPE_Q6_K:
  9070. case GGML_TYPE_Q8_K:
  9071. case GGML_TYPE_I8:
  9072. case GGML_TYPE_I16:
  9073. case GGML_TYPE_I32:
  9074. case GGML_TYPE_COUNT:
  9075. {
  9076. GGML_ASSERT(false);
  9077. } break;
  9078. }
  9079. }
  9080. // ggml_compute_forward_clamp
  9081. static void ggml_compute_forward_clamp_f32(
  9082. const struct ggml_compute_params * params,
  9083. const struct ggml_tensor * src0,
  9084. const struct ggml_tensor * src1,
  9085. struct ggml_tensor * dst) {
  9086. assert(params->ith == 0);
  9087. assert(src1->type == GGML_TYPE_I32);
  9088. assert(ggml_nelements(src1) == 2);
  9089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9090. return;
  9091. }
  9092. const int min = ((float *) src1->data)[0];
  9093. const int max = ((float *) src1->data)[1];
  9094. const int ith = params->ith;
  9095. const int nth = params->nth;
  9096. const int n = ggml_nrows(src0);
  9097. const int nc = src0->ne[0];
  9098. const size_t nb00 = src0->nb[0];
  9099. const size_t nb01 = src0->nb[1];
  9100. const size_t nb0 = dst->nb[0];
  9101. const size_t nb1 = dst->nb[1];
  9102. GGML_ASSERT( nb0 == sizeof(float));
  9103. GGML_ASSERT(nb00 == sizeof(float));
  9104. for (int j = ith; j < n; j += nth) {
  9105. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9106. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9107. for (int i = 0; i < nc; i++) {
  9108. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9109. }
  9110. }
  9111. }
  9112. static void ggml_compute_forward_clamp(
  9113. const struct ggml_compute_params * params,
  9114. const struct ggml_tensor * src0,
  9115. const struct ggml_tensor * src1,
  9116. struct ggml_tensor * dst) {
  9117. switch (src0->type) {
  9118. case GGML_TYPE_F32:
  9119. {
  9120. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9121. } break;
  9122. case GGML_TYPE_F16:
  9123. case GGML_TYPE_Q4_0:
  9124. case GGML_TYPE_Q4_1:
  9125. case GGML_TYPE_Q5_0:
  9126. case GGML_TYPE_Q5_1:
  9127. case GGML_TYPE_Q8_0:
  9128. case GGML_TYPE_Q8_1:
  9129. case GGML_TYPE_Q2_K:
  9130. case GGML_TYPE_Q3_K:
  9131. case GGML_TYPE_Q4_K:
  9132. case GGML_TYPE_Q5_K:
  9133. case GGML_TYPE_Q6_K:
  9134. case GGML_TYPE_Q8_K:
  9135. case GGML_TYPE_I8:
  9136. case GGML_TYPE_I16:
  9137. case GGML_TYPE_I32:
  9138. case GGML_TYPE_COUNT:
  9139. {
  9140. GGML_ASSERT(false);
  9141. } break;
  9142. }
  9143. }
  9144. // ggml_compute_forward_rope
  9145. static void ggml_compute_forward_rope_f32(
  9146. const struct ggml_compute_params * params,
  9147. const struct ggml_tensor * src0,
  9148. const struct ggml_tensor * src1,
  9149. struct ggml_tensor * dst) {
  9150. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9151. GGML_ASSERT(ggml_nelements(src1) == 3);
  9152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9153. return;
  9154. }
  9155. const int n_past = ((int32_t *) src1->data)[0];
  9156. const int n_dims = ((int32_t *) src1->data)[1];
  9157. const int mode = ((int32_t *) src1->data)[2];
  9158. assert(n_past >= 0);
  9159. const size_t nb00 = src0->nb[0];
  9160. const size_t nb01 = src0->nb[1];
  9161. const size_t nb02 = src0->nb[2];
  9162. const size_t nb03 = src0->nb[3];
  9163. const int64_t ne0 = dst->ne[0];
  9164. const int64_t ne1 = dst->ne[1];
  9165. const int64_t ne2 = dst->ne[2];
  9166. const int64_t ne3 = dst->ne[3];
  9167. const size_t nb0 = dst->nb[0];
  9168. const size_t nb1 = dst->nb[1];
  9169. const size_t nb2 = dst->nb[2];
  9170. const size_t nb3 = dst->nb[3];
  9171. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9172. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9173. GGML_ASSERT(nb00 == sizeof(float));
  9174. const int ith = params->ith;
  9175. const int nth = params->nth;
  9176. const int nr = ggml_nrows(dst);
  9177. GGML_ASSERT(n_dims <= ne0);
  9178. GGML_ASSERT(n_dims % 2 == 0);
  9179. // rows per thread
  9180. const int dr = (nr + nth - 1)/nth;
  9181. // row range for this thread
  9182. const int ir0 = dr*ith;
  9183. const int ir1 = MIN(ir0 + dr, nr);
  9184. // row index used to determine which thread to use
  9185. int ir = 0;
  9186. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9187. const bool is_neox = mode & 2;
  9188. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9189. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9190. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9191. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9192. if (ir++ < ir0) continue;
  9193. if (ir > ir1) break;
  9194. float theta = (float)p;
  9195. if (!is_neox) {
  9196. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9197. const float cos_theta = cosf(theta);
  9198. const float sin_theta = sinf(theta);
  9199. theta *= theta_scale;
  9200. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9201. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9202. const float x0 = src[0];
  9203. const float x1 = src[1];
  9204. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9205. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9206. }
  9207. } else {
  9208. // TODO: this is probably wrong, but I can't figure it out ..
  9209. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9210. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9211. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9212. const float cos_theta = cosf(theta);
  9213. const float sin_theta = sinf(theta);
  9214. theta *= theta_scale;
  9215. const int64_t i0 = ib*n_dims + ic/2;
  9216. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9217. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9218. const float x0 = src[0];
  9219. const float x1 = src[n_dims/2];
  9220. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9221. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9222. }
  9223. }
  9224. }
  9225. }
  9226. }
  9227. }
  9228. }
  9229. static void ggml_compute_forward_rope_f16(
  9230. const struct ggml_compute_params * params,
  9231. const struct ggml_tensor * src0,
  9232. const struct ggml_tensor * src1,
  9233. struct ggml_tensor * dst) {
  9234. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9235. GGML_ASSERT(ggml_nelements(src1) == 3);
  9236. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9237. return;
  9238. }
  9239. const int n_past = ((int32_t *) src1->data)[0];
  9240. const int n_dims = ((int32_t *) src1->data)[1];
  9241. const int mode = ((int32_t *) src1->data)[2];
  9242. assert(n_past >= 0);
  9243. const size_t nb00 = src0->nb[0];
  9244. const size_t nb01 = src0->nb[1];
  9245. const size_t nb02 = src0->nb[2];
  9246. const size_t nb03 = src0->nb[3];
  9247. const int64_t ne0 = dst->ne[0];
  9248. const int64_t ne1 = dst->ne[1];
  9249. const int64_t ne2 = dst->ne[2];
  9250. const int64_t ne3 = dst->ne[3];
  9251. const size_t nb0 = dst->nb[0];
  9252. const size_t nb1 = dst->nb[1];
  9253. const size_t nb2 = dst->nb[2];
  9254. const size_t nb3 = dst->nb[3];
  9255. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9256. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9257. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9258. const int ith = params->ith;
  9259. const int nth = params->nth;
  9260. const int nr = ggml_nrows(dst);
  9261. GGML_ASSERT(n_dims <= ne0);
  9262. GGML_ASSERT(n_dims % 2 == 0);
  9263. // rows per thread
  9264. const int dr = (nr + nth - 1)/nth;
  9265. // row range for this thread
  9266. const int ir0 = dr*ith;
  9267. const int ir1 = MIN(ir0 + dr, nr);
  9268. // row index used to determine which thread to use
  9269. int ir = 0;
  9270. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9271. const bool is_neox = mode & 2;
  9272. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9273. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9274. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9275. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9276. if (ir++ < ir0) continue;
  9277. if (ir > ir1) break;
  9278. float theta = (float)p;
  9279. if (!is_neox) {
  9280. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9281. const float cos_theta = cosf(theta);
  9282. const float sin_theta = sinf(theta);
  9283. theta *= theta_scale;
  9284. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9285. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9286. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9287. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9288. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9289. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9290. }
  9291. } else {
  9292. // TODO: this is probably wrong, but I can't figure it out ..
  9293. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9294. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9295. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9296. const float cos_theta = cosf(theta);
  9297. const float sin_theta = sinf(theta);
  9298. theta *= theta_scale;
  9299. const int64_t i0 = ib*n_dims + ic/2;
  9300. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9301. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9302. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9303. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9304. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9305. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9306. }
  9307. }
  9308. }
  9309. }
  9310. }
  9311. }
  9312. }
  9313. static void ggml_compute_forward_rope(
  9314. const struct ggml_compute_params * params,
  9315. const struct ggml_tensor * src0,
  9316. const struct ggml_tensor * src1,
  9317. struct ggml_tensor * dst) {
  9318. switch (src0->type) {
  9319. case GGML_TYPE_F16:
  9320. {
  9321. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9322. } break;
  9323. case GGML_TYPE_F32:
  9324. {
  9325. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9326. } break;
  9327. default:
  9328. {
  9329. GGML_ASSERT(false);
  9330. } break;
  9331. }
  9332. }
  9333. // ggml_compute_forward_rope_back
  9334. static void ggml_compute_forward_rope_back_f32(
  9335. const struct ggml_compute_params * params,
  9336. const struct ggml_tensor * src0,
  9337. const struct ggml_tensor * src1,
  9338. struct ggml_tensor * dst) {
  9339. assert(src1->type == GGML_TYPE_I32);
  9340. assert(ggml_nelements(src1) == 3);
  9341. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9342. return;
  9343. }
  9344. // y = rope(x, src1)
  9345. // dx = rope_back(dy, src1)
  9346. // src0 is dy, src1 contains options
  9347. const int n_past = ((int32_t *) src1->data)[0];
  9348. const int n_dims = ((int32_t *) src1->data)[1];
  9349. const int mode = ((int32_t *) src1->data)[2];
  9350. assert(n_past >= 0);
  9351. const size_t nb00 = src0->nb[0];
  9352. const size_t nb01 = src0->nb[1];
  9353. const size_t nb02 = src0->nb[2];
  9354. const size_t nb03 = src0->nb[3];
  9355. const int64_t ne0 = dst->ne[0];
  9356. const int64_t ne1 = dst->ne[1];
  9357. const int64_t ne2 = dst->ne[2];
  9358. const int64_t ne3 = dst->ne[3];
  9359. const size_t nb0 = dst->nb[0];
  9360. const size_t nb1 = dst->nb[1];
  9361. const size_t nb2 = dst->nb[2];
  9362. const size_t nb3 = dst->nb[3];
  9363. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9364. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9365. assert(nb0 == sizeof(float));
  9366. const int ith = params->ith;
  9367. const int nth = params->nth;
  9368. const int nr = ggml_nrows(dst);
  9369. // rows per thread
  9370. const int dr = (nr + nth - 1)/nth;
  9371. // row range for this thread
  9372. const int ir0 = dr*ith;
  9373. const int ir1 = MIN(ir0 + dr, nr);
  9374. // row index used to determine which thread to use
  9375. int ir = 0;
  9376. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9377. const bool is_neox = mode & 2;
  9378. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9379. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9380. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9381. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9382. if (ir++ < ir0) continue;
  9383. if (ir > ir1) break;
  9384. float theta = (float)p;
  9385. if (!is_neox) {
  9386. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9387. const float cos_theta = cosf(theta);
  9388. const float sin_theta = sinf(theta);
  9389. theta *= theta_scale;
  9390. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9391. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9392. const float dy0 = dy[0];
  9393. const float dy1 = dy[1];
  9394. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9395. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9396. }
  9397. } else {
  9398. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9399. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9400. const float cos_theta = cosf(theta);
  9401. const float sin_theta = sinf(theta);
  9402. theta *= theta_scale;
  9403. const int64_t i0 = ib*n_dims + ic/2;
  9404. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9405. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9406. const float dy0 = dy[0];
  9407. const float dy1 = dy[n_dims/2];
  9408. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9409. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9410. }
  9411. }
  9412. }
  9413. }
  9414. }
  9415. }
  9416. }
  9417. static void ggml_compute_forward_rope_back_f16(
  9418. const struct ggml_compute_params * params,
  9419. const struct ggml_tensor * src0,
  9420. const struct ggml_tensor * src1,
  9421. struct ggml_tensor * dst) {
  9422. assert(src1->type == GGML_TYPE_I32);
  9423. assert(ggml_nelements(src1) == 3);
  9424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9425. return;
  9426. }
  9427. // y = rope(x, src1)
  9428. // dx = rope_back(dy, src1)
  9429. // src0 is dy, src1 contains options
  9430. const int n_past = ((int32_t *) src1->data)[0];
  9431. const int n_dims = ((int32_t *) src1->data)[1];
  9432. const int mode = ((int32_t *) src1->data)[2];
  9433. assert(n_past >= 0);
  9434. const size_t nb00 = src0->nb[0];
  9435. const size_t nb01 = src0->nb[1];
  9436. const size_t nb02 = src0->nb[2];
  9437. const size_t nb03 = src0->nb[3];
  9438. const int64_t ne0 = dst->ne[0];
  9439. const int64_t ne1 = dst->ne[1];
  9440. const int64_t ne2 = dst->ne[2];
  9441. const int64_t ne3 = dst->ne[3];
  9442. const size_t nb0 = dst->nb[0];
  9443. const size_t nb1 = dst->nb[1];
  9444. const size_t nb2 = dst->nb[2];
  9445. const size_t nb3 = dst->nb[3];
  9446. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9447. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9448. assert(nb0 == sizeof(ggml_fp16_t));
  9449. const int ith = params->ith;
  9450. const int nth = params->nth;
  9451. const int nr = ggml_nrows(dst);
  9452. // rows per thread
  9453. const int dr = (nr + nth - 1)/nth;
  9454. // row range for this thread
  9455. const int ir0 = dr*ith;
  9456. const int ir1 = MIN(ir0 + dr, nr);
  9457. // row index used to determine which thread to use
  9458. int ir = 0;
  9459. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9460. const bool is_neox = mode & 2;
  9461. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9462. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9463. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9464. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9465. if (ir++ < ir0) continue;
  9466. if (ir > ir1) break;
  9467. float theta = (float)p;
  9468. if (!is_neox) {
  9469. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9470. const float cos_theta = cosf(theta);
  9471. const float sin_theta = sinf(theta);
  9472. theta *= theta_scale;
  9473. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9474. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9475. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9476. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9477. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9478. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9479. }
  9480. } else {
  9481. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9482. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9483. const float cos_theta = cosf(theta);
  9484. const float sin_theta = sinf(theta);
  9485. theta *= theta_scale;
  9486. const int64_t i0 = ib*n_dims + ic/2;
  9487. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9488. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9489. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9490. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9491. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9492. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9493. }
  9494. }
  9495. }
  9496. }
  9497. }
  9498. }
  9499. }
  9500. static void ggml_compute_forward_rope_back(
  9501. const struct ggml_compute_params * params,
  9502. const struct ggml_tensor * src0,
  9503. const struct ggml_tensor * src1,
  9504. struct ggml_tensor * dst) {
  9505. switch (src0->type) {
  9506. case GGML_TYPE_F16:
  9507. {
  9508. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9509. } break;
  9510. case GGML_TYPE_F32:
  9511. {
  9512. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9513. } break;
  9514. default:
  9515. {
  9516. GGML_ASSERT(false);
  9517. } break;
  9518. }
  9519. }
  9520. // ggml_compute_forward_conv_1d_1s
  9521. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9522. const struct ggml_compute_params * params,
  9523. const struct ggml_tensor * src0,
  9524. const struct ggml_tensor * src1,
  9525. struct ggml_tensor * dst) {
  9526. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9527. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9528. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9529. int64_t t0 = ggml_perf_time_us();
  9530. UNUSED(t0);
  9531. const int64_t ne00 = src0->ne[0];
  9532. const int64_t ne01 = src0->ne[1];
  9533. const int64_t ne02 = src0->ne[2];
  9534. //const int64_t ne03 = src0->ne[3];
  9535. const int64_t ne10 = src1->ne[0];
  9536. const int64_t ne11 = src1->ne[1];
  9537. //const int64_t ne12 = src1->ne[2];
  9538. //const int64_t ne13 = src1->ne[3];
  9539. //const int64_t ne0 = dst->ne[0];
  9540. //const int64_t ne1 = dst->ne[1];
  9541. //const int64_t ne2 = dst->ne[2];
  9542. //const int64_t ne3 = dst->ne[3];
  9543. //const int64_t ne = ne0*ne1*ne2*ne3;
  9544. const int nb00 = src0->nb[0];
  9545. const int nb01 = src0->nb[1];
  9546. const int nb02 = src0->nb[2];
  9547. //const int nb03 = src0->nb[3];
  9548. const int nb10 = src1->nb[0];
  9549. const int nb11 = src1->nb[1];
  9550. //const int nb12 = src1->nb[2];
  9551. //const int nb13 = src1->nb[3];
  9552. //const int nb0 = dst->nb[0];
  9553. const int nb1 = dst->nb[1];
  9554. //const int nb2 = dst->nb[2];
  9555. //const int nb3 = dst->nb[3];
  9556. const int ith = params->ith;
  9557. const int nth = params->nth;
  9558. const int nk = ne00;
  9559. const int nh = nk/2;
  9560. const int ew0 = ggml_up32(ne01);
  9561. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9562. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9563. GGML_ASSERT(nb10 == sizeof(float));
  9564. if (params->type == GGML_TASK_INIT) {
  9565. // TODO: fix this memset (wsize is overestimated)
  9566. memset(params->wdata, 0, params->wsize);
  9567. // prepare kernel data (src0)
  9568. {
  9569. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9570. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9571. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9572. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9573. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9574. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9575. dst_data[i00*ew0 + i01] = src[i00];
  9576. }
  9577. }
  9578. }
  9579. }
  9580. // prepare source data (src1)
  9581. {
  9582. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9583. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9584. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9585. ggml_fp16_t * dst_data = wdata;
  9586. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9587. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9588. }
  9589. }
  9590. }
  9591. return;
  9592. }
  9593. if (params->type == GGML_TASK_FINALIZE) {
  9594. return;
  9595. }
  9596. // total rows in dst
  9597. const int nr = ne02;
  9598. // rows per thread
  9599. const int dr = (nr + nth - 1)/nth;
  9600. // row range for this thread
  9601. const int ir0 = dr*ith;
  9602. const int ir1 = MIN(ir0 + dr, nr);
  9603. for (int i1 = ir0; i1 < ir1; i1++) {
  9604. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9605. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9606. dst_data[i0] = 0;
  9607. for (int k = -nh; k <= nh; k++) {
  9608. float v = 0.0f;
  9609. ggml_vec_dot_f16(ew0, &v,
  9610. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9611. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9612. dst_data[i0] += v;
  9613. }
  9614. }
  9615. }
  9616. }
  9617. static void ggml_compute_forward_conv_1d_1s_f32(
  9618. const struct ggml_compute_params * params,
  9619. const struct ggml_tensor * src0,
  9620. const struct ggml_tensor * src1,
  9621. struct ggml_tensor * dst) {
  9622. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9623. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9624. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9625. int64_t t0 = ggml_perf_time_us();
  9626. UNUSED(t0);
  9627. const int64_t ne00 = src0->ne[0];
  9628. const int64_t ne01 = src0->ne[1];
  9629. const int64_t ne02 = src0->ne[2];
  9630. //const int64_t ne03 = src0->ne[3];
  9631. const int64_t ne10 = src1->ne[0];
  9632. const int64_t ne11 = src1->ne[1];
  9633. //const int64_t ne12 = src1->ne[2];
  9634. //const int64_t ne13 = src1->ne[3];
  9635. //const int64_t ne0 = dst->ne[0];
  9636. //const int64_t ne1 = dst->ne[1];
  9637. //const int64_t ne2 = dst->ne[2];
  9638. //const int64_t ne3 = dst->ne[3];
  9639. //const int64_t ne = ne0*ne1*ne2*ne3;
  9640. const int nb00 = src0->nb[0];
  9641. const int nb01 = src0->nb[1];
  9642. const int nb02 = src0->nb[2];
  9643. //const int nb03 = src0->nb[3];
  9644. const int nb10 = src1->nb[0];
  9645. const int nb11 = src1->nb[1];
  9646. //const int nb12 = src1->nb[2];
  9647. //const int nb13 = src1->nb[3];
  9648. //const int nb0 = dst->nb[0];
  9649. const int nb1 = dst->nb[1];
  9650. //const int nb2 = dst->nb[2];
  9651. //const int nb3 = dst->nb[3];
  9652. const int ith = params->ith;
  9653. const int nth = params->nth;
  9654. const int nk = ne00;
  9655. const int nh = nk/2;
  9656. const int ew0 = ggml_up32(ne01);
  9657. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9658. GGML_ASSERT(nb00 == sizeof(float));
  9659. GGML_ASSERT(nb10 == sizeof(float));
  9660. if (params->type == GGML_TASK_INIT) {
  9661. // TODO: fix this memset (wsize is overestimated)
  9662. memset(params->wdata, 0, params->wsize);
  9663. // prepare kernel data (src0)
  9664. {
  9665. float * const wdata = (float *) params->wdata + 0;
  9666. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9667. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9668. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9669. float * dst_data = wdata + i02*ew0*ne00;
  9670. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9671. dst_data[i00*ew0 + i01] = src[i00];
  9672. }
  9673. }
  9674. }
  9675. }
  9676. // prepare source data (src1)
  9677. {
  9678. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9679. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9680. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9681. float * dst_data = wdata;
  9682. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9683. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9684. }
  9685. }
  9686. }
  9687. return;
  9688. }
  9689. if (params->type == GGML_TASK_FINALIZE) {
  9690. return;
  9691. }
  9692. // total rows in dst
  9693. const int nr = ne02;
  9694. // rows per thread
  9695. const int dr = (nr + nth - 1)/nth;
  9696. // row range for this thread
  9697. const int ir0 = dr*ith;
  9698. const int ir1 = MIN(ir0 + dr, nr);
  9699. for (int i1 = ir0; i1 < ir1; i1++) {
  9700. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9701. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9702. dst_data[i0] = 0;
  9703. for (int k = -nh; k <= nh; k++) {
  9704. float v = 0.0f;
  9705. ggml_vec_dot_f32(ew0, &v,
  9706. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9707. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9708. dst_data[i0] += v;
  9709. }
  9710. }
  9711. }
  9712. }
  9713. static void ggml_compute_forward_conv_1d_1s(
  9714. const struct ggml_compute_params * params,
  9715. const struct ggml_tensor * src0,
  9716. const struct ggml_tensor * src1,
  9717. struct ggml_tensor * dst) {
  9718. switch (src0->type) {
  9719. case GGML_TYPE_F16:
  9720. {
  9721. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9722. } break;
  9723. case GGML_TYPE_F32:
  9724. {
  9725. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9726. } break;
  9727. default:
  9728. {
  9729. GGML_ASSERT(false);
  9730. } break;
  9731. }
  9732. }
  9733. // ggml_compute_forward_conv_1d_2s
  9734. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9735. const struct ggml_compute_params * params,
  9736. const struct ggml_tensor * src0,
  9737. const struct ggml_tensor * src1,
  9738. struct ggml_tensor * dst) {
  9739. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9740. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9741. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9742. int64_t t0 = ggml_perf_time_us();
  9743. UNUSED(t0);
  9744. const int64_t ne00 = src0->ne[0];
  9745. const int64_t ne01 = src0->ne[1];
  9746. const int64_t ne02 = src0->ne[2];
  9747. //const int64_t ne03 = src0->ne[3];
  9748. const int64_t ne10 = src1->ne[0];
  9749. const int64_t ne11 = src1->ne[1];
  9750. //const int64_t ne12 = src1->ne[2];
  9751. //const int64_t ne13 = src1->ne[3];
  9752. //const int64_t ne0 = dst->ne[0];
  9753. //const int64_t ne1 = dst->ne[1];
  9754. //const int64_t ne2 = dst->ne[2];
  9755. //const int64_t ne3 = dst->ne[3];
  9756. //const int64_t ne = ne0*ne1*ne2*ne3;
  9757. const int nb00 = src0->nb[0];
  9758. const int nb01 = src0->nb[1];
  9759. const int nb02 = src0->nb[2];
  9760. //const int nb03 = src0->nb[3];
  9761. const int nb10 = src1->nb[0];
  9762. const int nb11 = src1->nb[1];
  9763. //const int nb12 = src1->nb[2];
  9764. //const int nb13 = src1->nb[3];
  9765. //const int nb0 = dst->nb[0];
  9766. const int nb1 = dst->nb[1];
  9767. //const int nb2 = dst->nb[2];
  9768. //const int nb3 = dst->nb[3];
  9769. const int ith = params->ith;
  9770. const int nth = params->nth;
  9771. const int nk = ne00;
  9772. const int nh = nk/2;
  9773. const int ew0 = ggml_up32(ne01);
  9774. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9775. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9776. GGML_ASSERT(nb10 == sizeof(float));
  9777. if (params->type == GGML_TASK_INIT) {
  9778. // TODO: fix this memset (wsize is overestimated)
  9779. memset(params->wdata, 0, params->wsize);
  9780. // prepare kernel data (src0)
  9781. {
  9782. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9783. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9784. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9785. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9786. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9787. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9788. dst_data[i00*ew0 + i01] = src[i00];
  9789. }
  9790. }
  9791. }
  9792. }
  9793. // prepare source data (src1)
  9794. {
  9795. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9796. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9797. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9798. ggml_fp16_t * dst_data = wdata;
  9799. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9800. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9801. }
  9802. }
  9803. }
  9804. return;
  9805. }
  9806. if (params->type == GGML_TASK_FINALIZE) {
  9807. return;
  9808. }
  9809. // total rows in dst
  9810. const int nr = ne02;
  9811. // rows per thread
  9812. const int dr = (nr + nth - 1)/nth;
  9813. // row range for this thread
  9814. const int ir0 = dr*ith;
  9815. const int ir1 = MIN(ir0 + dr, nr);
  9816. for (int i1 = ir0; i1 < ir1; i1++) {
  9817. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9818. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9819. dst_data[i0/2] = 0;
  9820. for (int k = -nh; k <= nh; k++) {
  9821. float v = 0.0f;
  9822. ggml_vec_dot_f16(ew0, &v,
  9823. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9824. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9825. dst_data[i0/2] += v;
  9826. }
  9827. }
  9828. }
  9829. }
  9830. static void ggml_compute_forward_conv_1d_2s_f32(
  9831. const struct ggml_compute_params * params,
  9832. const struct ggml_tensor * src0,
  9833. const struct ggml_tensor * src1,
  9834. struct ggml_tensor * dst) {
  9835. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9836. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9837. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9838. int64_t t0 = ggml_perf_time_us();
  9839. UNUSED(t0);
  9840. const int64_t ne00 = src0->ne[0];
  9841. const int64_t ne01 = src0->ne[1];
  9842. const int64_t ne02 = src0->ne[2];
  9843. //const int64_t ne03 = src0->ne[3];
  9844. const int64_t ne10 = src1->ne[0];
  9845. const int64_t ne11 = src1->ne[1];
  9846. //const int64_t ne12 = src1->ne[2];
  9847. //const int64_t ne13 = src1->ne[3];
  9848. //const int64_t ne0 = dst->ne[0];
  9849. //const int64_t ne1 = dst->ne[1];
  9850. //const int64_t ne2 = dst->ne[2];
  9851. //const int64_t ne3 = dst->ne[3];
  9852. //const int64_t ne = ne0*ne1*ne2*ne3;
  9853. const int nb00 = src0->nb[0];
  9854. const int nb01 = src0->nb[1];
  9855. const int nb02 = src0->nb[2];
  9856. //const int nb03 = src0->nb[3];
  9857. const int nb10 = src1->nb[0];
  9858. const int nb11 = src1->nb[1];
  9859. //const int nb12 = src1->nb[2];
  9860. //const int nb13 = src1->nb[3];
  9861. //const int nb0 = dst->nb[0];
  9862. const int nb1 = dst->nb[1];
  9863. //const int nb2 = dst->nb[2];
  9864. //const int nb3 = dst->nb[3];
  9865. const int ith = params->ith;
  9866. const int nth = params->nth;
  9867. const int nk = ne00;
  9868. const int nh = nk/2;
  9869. const int ew0 = ggml_up32(ne01);
  9870. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9871. GGML_ASSERT(nb00 == sizeof(float));
  9872. GGML_ASSERT(nb10 == sizeof(float));
  9873. if (params->type == GGML_TASK_INIT) {
  9874. // TODO: fix this memset (wsize is overestimated)
  9875. memset(params->wdata, 0, params->wsize);
  9876. // prepare kernel data (src0)
  9877. {
  9878. float * const wdata = (float *) params->wdata + 0;
  9879. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9880. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9881. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9882. float * dst_data = wdata + i02*ew0*ne00;
  9883. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9884. dst_data[i00*ew0 + i01] = src[i00];
  9885. }
  9886. }
  9887. }
  9888. }
  9889. // prepare source data (src1)
  9890. {
  9891. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9892. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9893. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9894. float * dst_data = wdata;
  9895. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9896. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9897. }
  9898. }
  9899. }
  9900. return;
  9901. }
  9902. if (params->type == GGML_TASK_FINALIZE) {
  9903. return;
  9904. }
  9905. // total rows in dst
  9906. const int nr = ne02;
  9907. // rows per thread
  9908. const int dr = (nr + nth - 1)/nth;
  9909. // row range for this thread
  9910. const int ir0 = dr*ith;
  9911. const int ir1 = MIN(ir0 + dr, nr);
  9912. for (int i1 = ir0; i1 < ir1; i1++) {
  9913. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9914. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9915. dst_data[i0/2] = 0;
  9916. for (int k = -nh; k <= nh; k++) {
  9917. float v = 0.0f;
  9918. ggml_vec_dot_f32(ew0, &v,
  9919. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9920. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9921. dst_data[i0/2] += v;
  9922. }
  9923. }
  9924. }
  9925. }
  9926. static void ggml_compute_forward_conv_1d_2s(
  9927. const struct ggml_compute_params * params,
  9928. const struct ggml_tensor * src0,
  9929. const struct ggml_tensor * src1,
  9930. struct ggml_tensor * dst) {
  9931. switch (src0->type) {
  9932. case GGML_TYPE_F16:
  9933. {
  9934. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9935. } break;
  9936. case GGML_TYPE_F32:
  9937. {
  9938. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9939. } break;
  9940. default:
  9941. {
  9942. GGML_ASSERT(false);
  9943. } break;
  9944. }
  9945. }
  9946. // ggml_compute_forward_flash_attn
  9947. static void ggml_compute_forward_flash_attn_f32(
  9948. const struct ggml_compute_params * params,
  9949. const struct ggml_tensor * q,
  9950. const struct ggml_tensor * k,
  9951. const struct ggml_tensor * v,
  9952. const bool masked,
  9953. struct ggml_tensor * dst) {
  9954. int64_t t0 = ggml_perf_time_us();
  9955. UNUSED(t0);
  9956. const int64_t neq0 = q->ne[0];
  9957. const int64_t neq1 = q->ne[1];
  9958. const int64_t neq2 = q->ne[2];
  9959. const int64_t neq3 = q->ne[3];
  9960. const int64_t nek0 = k->ne[0];
  9961. const int64_t nek1 = k->ne[1];
  9962. //const int64_t nek2 = k->ne[2];
  9963. //const int64_t nek3 = k->ne[3];
  9964. //const int64_t nev0 = v->ne[0];
  9965. const int64_t nev1 = v->ne[1];
  9966. //const int64_t nev2 = v->ne[2];
  9967. //const int64_t nev3 = v->ne[3];
  9968. const int64_t ne0 = dst->ne[0];
  9969. const int64_t ne1 = dst->ne[1];
  9970. //const int64_t ne2 = dst->ne[2];
  9971. //const int64_t ne3 = dst->ne[3];
  9972. const int nbk0 = k->nb[0];
  9973. const int nbk1 = k->nb[1];
  9974. const int nbk2 = k->nb[2];
  9975. const int nbk3 = k->nb[3];
  9976. const int nbq0 = q->nb[0];
  9977. const int nbq1 = q->nb[1];
  9978. const int nbq2 = q->nb[2];
  9979. const int nbq3 = q->nb[3];
  9980. const int nbv0 = v->nb[0];
  9981. const int nbv1 = v->nb[1];
  9982. const int nbv2 = v->nb[2];
  9983. const int nbv3 = v->nb[3];
  9984. const int nb0 = dst->nb[0];
  9985. const int nb1 = dst->nb[1];
  9986. const int nb2 = dst->nb[2];
  9987. const int nb3 = dst->nb[3];
  9988. const int ith = params->ith;
  9989. const int nth = params->nth;
  9990. const int64_t D = neq0;
  9991. const int64_t N = neq1;
  9992. const int64_t P = nek1 - N;
  9993. const int64_t M = P + N;
  9994. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9995. GGML_ASSERT(ne0 == D);
  9996. GGML_ASSERT(ne1 == N);
  9997. GGML_ASSERT(P >= 0);
  9998. GGML_ASSERT(nbq0 == sizeof(float));
  9999. GGML_ASSERT(nbk0 == sizeof(float));
  10000. GGML_ASSERT(nbv0 == sizeof(float));
  10001. GGML_ASSERT(neq0 == D);
  10002. GGML_ASSERT(nek0 == D);
  10003. GGML_ASSERT(nev1 == D);
  10004. GGML_ASSERT(neq1 == N);
  10005. GGML_ASSERT(nek1 == N + P);
  10006. GGML_ASSERT(nev1 == D);
  10007. // dst cannot be transposed or permuted
  10008. GGML_ASSERT(nb0 == sizeof(float));
  10009. GGML_ASSERT(nb0 <= nb1);
  10010. GGML_ASSERT(nb1 <= nb2);
  10011. GGML_ASSERT(nb2 <= nb3);
  10012. if (params->type == GGML_TASK_INIT) {
  10013. return;
  10014. }
  10015. if (params->type == GGML_TASK_FINALIZE) {
  10016. return;
  10017. }
  10018. // parallelize by q rows using ggml_vec_dot_f32
  10019. // total rows in q
  10020. const int nr = neq1*neq2*neq3;
  10021. // rows per thread
  10022. const int dr = (nr + nth - 1)/nth;
  10023. // row range for this thread
  10024. const int ir0 = dr*ith;
  10025. const int ir1 = MIN(ir0 + dr, nr);
  10026. const float scale = 1.0f/sqrtf(D);
  10027. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10028. for (int ir = ir0; ir < ir1; ++ir) {
  10029. // q indices
  10030. const int iq3 = ir/(neq2*neq1);
  10031. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10032. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10033. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10034. for (int i = M; i < Mup; ++i) {
  10035. S[i] = -INFINITY;
  10036. }
  10037. for (int64_t ic = 0; ic < nek1; ++ic) {
  10038. // k indices
  10039. const int ik3 = iq3;
  10040. const int ik2 = iq2;
  10041. const int ik1 = ic;
  10042. // S indices
  10043. const int i1 = ik1;
  10044. ggml_vec_dot_f32(neq0,
  10045. S + i1,
  10046. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10047. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10048. }
  10049. // scale
  10050. ggml_vec_scale_f32(nek1, S, scale);
  10051. if (masked) {
  10052. for (int64_t i = P; i < M; i++) {
  10053. if (i > P + iq1) {
  10054. S[i] = -INFINITY;
  10055. }
  10056. }
  10057. }
  10058. // softmax
  10059. {
  10060. float max = -INFINITY;
  10061. ggml_vec_max_f32(M, &max, S);
  10062. ggml_float sum = 0.0;
  10063. {
  10064. #ifdef GGML_SOFT_MAX_ACCELERATE
  10065. max = -max;
  10066. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10067. vvexpf(S, S, &Mup);
  10068. ggml_vec_sum_f32(Mup, &sum, S);
  10069. #else
  10070. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10071. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10072. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10073. float * SS = S + i;
  10074. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10075. if (SS[j] == -INFINITY) {
  10076. SS[j] = 0.0f;
  10077. } else {
  10078. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10079. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10080. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10081. sump[j] += (ggml_float)val;
  10082. SS[j] = val;
  10083. }
  10084. }
  10085. }
  10086. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10087. sum += sump[i];
  10088. }
  10089. #endif
  10090. }
  10091. assert(sum > 0.0);
  10092. sum = 1.0/sum;
  10093. ggml_vec_scale_f32(M, S, sum);
  10094. #ifndef NDEBUG
  10095. for (int i = 0; i < M; ++i) {
  10096. assert(!isnan(S[i]));
  10097. assert(!isinf(S[i]));
  10098. }
  10099. #endif
  10100. }
  10101. for (int64_t ic = 0; ic < nev1; ++ic) {
  10102. // dst indices
  10103. const int i1 = iq1;
  10104. const int i2 = iq2;
  10105. const int i3 = iq3;
  10106. ggml_vec_dot_f32(nek1,
  10107. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10108. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10109. S);
  10110. }
  10111. }
  10112. }
  10113. static void ggml_compute_forward_flash_attn_f16(
  10114. const struct ggml_compute_params * params,
  10115. const struct ggml_tensor * q,
  10116. const struct ggml_tensor * k,
  10117. const struct ggml_tensor * v,
  10118. const bool masked,
  10119. struct ggml_tensor * dst) {
  10120. int64_t t0 = ggml_perf_time_us();
  10121. UNUSED(t0);
  10122. const int64_t neq0 = q->ne[0];
  10123. const int64_t neq1 = q->ne[1];
  10124. const int64_t neq2 = q->ne[2];
  10125. const int64_t neq3 = q->ne[3];
  10126. const int64_t nek0 = k->ne[0];
  10127. const int64_t nek1 = k->ne[1];
  10128. //const int64_t nek2 = k->ne[2];
  10129. //const int64_t nek3 = k->ne[3];
  10130. //const int64_t nev0 = v->ne[0];
  10131. const int64_t nev1 = v->ne[1];
  10132. //const int64_t nev2 = v->ne[2];
  10133. //const int64_t nev3 = v->ne[3];
  10134. const int64_t ne0 = dst->ne[0];
  10135. const int64_t ne1 = dst->ne[1];
  10136. //const int64_t ne2 = dst->ne[2];
  10137. //const int64_t ne3 = dst->ne[3];
  10138. const int nbk0 = k->nb[0];
  10139. const int nbk1 = k->nb[1];
  10140. const int nbk2 = k->nb[2];
  10141. const int nbk3 = k->nb[3];
  10142. const int nbq0 = q->nb[0];
  10143. const int nbq1 = q->nb[1];
  10144. const int nbq2 = q->nb[2];
  10145. const int nbq3 = q->nb[3];
  10146. const int nbv0 = v->nb[0];
  10147. const int nbv1 = v->nb[1];
  10148. const int nbv2 = v->nb[2];
  10149. const int nbv3 = v->nb[3];
  10150. const int nb0 = dst->nb[0];
  10151. const int nb1 = dst->nb[1];
  10152. const int nb2 = dst->nb[2];
  10153. const int nb3 = dst->nb[3];
  10154. const int ith = params->ith;
  10155. const int nth = params->nth;
  10156. const int64_t D = neq0;
  10157. const int64_t N = neq1;
  10158. const int64_t P = nek1 - N;
  10159. const int64_t M = P + N;
  10160. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10161. GGML_ASSERT(ne0 == D);
  10162. GGML_ASSERT(ne1 == N);
  10163. GGML_ASSERT(P >= 0);
  10164. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10165. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10166. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10167. GGML_ASSERT(neq0 == D);
  10168. GGML_ASSERT(nek0 == D);
  10169. GGML_ASSERT(nev1 == D);
  10170. GGML_ASSERT(neq1 == N);
  10171. GGML_ASSERT(nek1 == N + P);
  10172. GGML_ASSERT(nev1 == D);
  10173. // dst cannot be transposed or permuted
  10174. GGML_ASSERT(nb0 == sizeof(float));
  10175. GGML_ASSERT(nb0 <= nb1);
  10176. GGML_ASSERT(nb1 <= nb2);
  10177. GGML_ASSERT(nb2 <= nb3);
  10178. if (params->type == GGML_TASK_INIT) {
  10179. return;
  10180. }
  10181. if (params->type == GGML_TASK_FINALIZE) {
  10182. return;
  10183. }
  10184. // parallelize by q rows using ggml_vec_dot_f32
  10185. // total rows in q
  10186. const int nr = neq1*neq2*neq3;
  10187. // rows per thread
  10188. const int dr = (nr + nth - 1)/nth;
  10189. // row range for this thread
  10190. const int ir0 = dr*ith;
  10191. const int ir1 = MIN(ir0 + dr, nr);
  10192. const float scale = 1.0f/sqrtf(D);
  10193. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10194. for (int ir = ir0; ir < ir1; ++ir) {
  10195. // q indices
  10196. const int iq3 = ir/(neq2*neq1);
  10197. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10198. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10199. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10200. for (int i = M; i < Mup; ++i) {
  10201. S[i] = -INFINITY;
  10202. }
  10203. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10204. for (int64_t ic = 0; ic < nek1; ++ic) {
  10205. // k indices
  10206. const int ik3 = iq3;
  10207. const int ik2 = iq2;
  10208. const int ik1 = ic;
  10209. // S indices
  10210. const int i1 = ik1;
  10211. ggml_vec_dot_f16(neq0,
  10212. S + i1,
  10213. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10214. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10215. }
  10216. } else {
  10217. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10218. // k indices
  10219. const int ik3 = iq3;
  10220. const int ik2 = iq2;
  10221. const int ik1 = ic;
  10222. // S indices
  10223. const int i1 = ik1;
  10224. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10225. S + i1,
  10226. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10227. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10228. }
  10229. }
  10230. // scale
  10231. ggml_vec_scale_f32(nek1, S, scale);
  10232. if (masked) {
  10233. for (int64_t i = P; i < M; i++) {
  10234. if (i > P + iq1) {
  10235. S[i] = -INFINITY;
  10236. }
  10237. }
  10238. }
  10239. // softmax
  10240. {
  10241. float max = -INFINITY;
  10242. ggml_vec_max_f32(M, &max, S);
  10243. ggml_float sum = 0.0;
  10244. {
  10245. #ifdef GGML_SOFT_MAX_ACCELERATE
  10246. max = -max;
  10247. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10248. vvexpf(S, S, &Mup);
  10249. ggml_vec_sum_f32(Mup, &sum, S);
  10250. #else
  10251. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10252. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10253. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10254. float * SS = S + i;
  10255. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10256. if (SS[j] == -INFINITY) {
  10257. SS[j] = 0.0f;
  10258. } else {
  10259. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10260. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10261. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10262. sump[j] += (ggml_float)val;
  10263. SS[j] = val;
  10264. }
  10265. }
  10266. }
  10267. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10268. sum += sump[i];
  10269. }
  10270. #endif
  10271. }
  10272. assert(sum > 0.0);
  10273. sum = 1.0/sum;
  10274. ggml_vec_scale_f32(M, S, sum);
  10275. #ifndef NDEBUG
  10276. for (int i = 0; i < M; ++i) {
  10277. assert(!isnan(S[i]));
  10278. assert(!isinf(S[i]));
  10279. }
  10280. #endif
  10281. }
  10282. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10283. for (int64_t i = 0; i < M; i++) {
  10284. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10285. }
  10286. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10287. for (int64_t ic = 0; ic < nev1; ++ic) {
  10288. // dst indices
  10289. const int i1 = iq1;
  10290. const int i2 = iq2;
  10291. const int i3 = iq3;
  10292. ggml_vec_dot_f16(nek1,
  10293. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10294. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10295. S16);
  10296. }
  10297. } else {
  10298. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10299. // dst indices
  10300. const int i1 = iq1;
  10301. const int i2 = iq2;
  10302. const int i3 = iq3;
  10303. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10304. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10305. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10306. S16);
  10307. }
  10308. }
  10309. }
  10310. }
  10311. static void ggml_compute_forward_flash_attn(
  10312. const struct ggml_compute_params * params,
  10313. const struct ggml_tensor * q,
  10314. const struct ggml_tensor * k,
  10315. const struct ggml_tensor * v,
  10316. const bool masked,
  10317. struct ggml_tensor * dst) {
  10318. switch (q->type) {
  10319. case GGML_TYPE_F16:
  10320. {
  10321. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10322. } break;
  10323. case GGML_TYPE_F32:
  10324. {
  10325. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10326. } break;
  10327. default:
  10328. {
  10329. GGML_ASSERT(false);
  10330. } break;
  10331. }
  10332. }
  10333. // ggml_compute_forward_flash_ff
  10334. static void ggml_compute_forward_flash_ff_f16(
  10335. const struct ggml_compute_params * params,
  10336. const struct ggml_tensor * a, // F16
  10337. const struct ggml_tensor * b0, // F16 fc_w
  10338. const struct ggml_tensor * b1, // F32 fc_b
  10339. const struct ggml_tensor * c0, // F16 proj_w
  10340. const struct ggml_tensor * c1, // F32 proj_b
  10341. struct ggml_tensor * dst) {
  10342. int64_t t0 = ggml_perf_time_us();
  10343. UNUSED(t0);
  10344. const int64_t nea0 = a->ne[0];
  10345. const int64_t nea1 = a->ne[1];
  10346. const int64_t nea2 = a->ne[2];
  10347. const int64_t nea3 = a->ne[3];
  10348. const int64_t neb00 = b0->ne[0];
  10349. const int64_t neb01 = b0->ne[1];
  10350. //const int64_t neb02 = b0->ne[2];
  10351. //const int64_t neb03 = b0->ne[3];
  10352. const int64_t neb10 = b1->ne[0];
  10353. const int64_t neb11 = b1->ne[1];
  10354. //const int64_t neb12 = b1->ne[2];
  10355. //const int64_t neb13 = b1->ne[3];
  10356. const int64_t nec00 = c0->ne[0];
  10357. const int64_t nec01 = c0->ne[1];
  10358. //const int64_t nec02 = c0->ne[2];
  10359. //const int64_t nec03 = c0->ne[3];
  10360. const int64_t nec10 = c1->ne[0];
  10361. const int64_t nec11 = c1->ne[1];
  10362. //const int64_t nec12 = c1->ne[2];
  10363. //const int64_t nec13 = c1->ne[3];
  10364. const int64_t ne0 = dst->ne[0];
  10365. const int64_t ne1 = dst->ne[1];
  10366. const int64_t ne2 = dst->ne[2];
  10367. //const int64_t ne3 = dst->ne[3];
  10368. const int nba0 = a->nb[0];
  10369. const int nba1 = a->nb[1];
  10370. const int nba2 = a->nb[2];
  10371. const int nba3 = a->nb[3];
  10372. const int nbb00 = b0->nb[0];
  10373. const int nbb01 = b0->nb[1];
  10374. const int nbb02 = b0->nb[2];
  10375. const int nbb03 = b0->nb[3];
  10376. const int nbb10 = b1->nb[0];
  10377. //const int nbb11 = b1->nb[1];
  10378. //const int nbb12 = b1->nb[2];
  10379. //const int nbb13 = b1->nb[3];
  10380. const int nbc00 = c0->nb[0];
  10381. const int nbc01 = c0->nb[1];
  10382. const int nbc02 = c0->nb[2];
  10383. const int nbc03 = c0->nb[3];
  10384. const int nbc10 = c1->nb[0];
  10385. //const int nbc11 = c1->nb[1];
  10386. //const int nbc12 = c1->nb[2];
  10387. //const int nbc13 = c1->nb[3];
  10388. const int nb0 = dst->nb[0];
  10389. const int nb1 = dst->nb[1];
  10390. const int nb2 = dst->nb[2];
  10391. const int nb3 = dst->nb[3];
  10392. const int ith = params->ith;
  10393. const int nth = params->nth;
  10394. const int64_t D = nea0;
  10395. //const int64_t N = nea1;
  10396. const int64_t M = neb01;
  10397. GGML_ASSERT(ne0 == nea0);
  10398. GGML_ASSERT(ne1 == nea1);
  10399. GGML_ASSERT(ne2 == nea2);
  10400. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10401. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10402. GGML_ASSERT(nbb10 == sizeof(float));
  10403. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10404. GGML_ASSERT(nbc10 == sizeof(float));
  10405. GGML_ASSERT(neb00 == D);
  10406. GGML_ASSERT(neb01 == M);
  10407. GGML_ASSERT(neb10 == M);
  10408. GGML_ASSERT(neb11 == 1);
  10409. GGML_ASSERT(nec00 == M);
  10410. GGML_ASSERT(nec01 == D);
  10411. GGML_ASSERT(nec10 == D);
  10412. GGML_ASSERT(nec11 == 1);
  10413. // dst cannot be transposed or permuted
  10414. GGML_ASSERT(nb0 == sizeof(float));
  10415. GGML_ASSERT(nb0 <= nb1);
  10416. GGML_ASSERT(nb1 <= nb2);
  10417. GGML_ASSERT(nb2 <= nb3);
  10418. if (params->type == GGML_TASK_INIT) {
  10419. return;
  10420. }
  10421. if (params->type == GGML_TASK_FINALIZE) {
  10422. return;
  10423. }
  10424. // parallelize by a rows using ggml_vec_dot_f32
  10425. // total rows in a
  10426. const int nr = nea1*nea2*nea3;
  10427. // rows per thread
  10428. const int dr = (nr + nth - 1)/nth;
  10429. // row range for this thread
  10430. const int ir0 = dr*ith;
  10431. const int ir1 = MIN(ir0 + dr, nr);
  10432. for (int ir = ir0; ir < ir1; ++ir) {
  10433. // a indices
  10434. const int ia3 = ir/(nea2*nea1);
  10435. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10436. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10437. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10438. for (int64_t ic = 0; ic < neb01; ++ic) {
  10439. // b0 indices
  10440. const int ib03 = ia3;
  10441. const int ib02 = ia2;
  10442. const int ib01 = ic;
  10443. // S indices
  10444. const int i1 = ib01;
  10445. ggml_vec_dot_f16(nea0,
  10446. S + i1,
  10447. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10448. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10449. }
  10450. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10451. //ggml_vec_gelu_f32(neb01, S, S);
  10452. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10453. for (int64_t i = 0; i < M; i++) {
  10454. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10455. }
  10456. ggml_vec_gelu_f16(neb01, S16, S16);
  10457. {
  10458. // dst indices
  10459. const int i1 = ia1;
  10460. const int i2 = ia2;
  10461. const int i3 = ia3;
  10462. for (int64_t ic = 0; ic < nec01; ++ic) {
  10463. ggml_vec_dot_f16(neb01,
  10464. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10465. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10466. S16);
  10467. }
  10468. ggml_vec_add_f32(nec01,
  10469. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10470. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10471. (float *) c1->data);
  10472. }
  10473. }
  10474. }
  10475. static void ggml_compute_forward_flash_ff(
  10476. const struct ggml_compute_params * params,
  10477. const struct ggml_tensor * a,
  10478. const struct ggml_tensor * b0,
  10479. const struct ggml_tensor * b1,
  10480. const struct ggml_tensor * c0,
  10481. const struct ggml_tensor * c1,
  10482. struct ggml_tensor * dst) {
  10483. switch (b0->type) {
  10484. case GGML_TYPE_F16:
  10485. {
  10486. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10487. } break;
  10488. case GGML_TYPE_F32:
  10489. {
  10490. GGML_ASSERT(false); // TODO
  10491. } break;
  10492. default:
  10493. {
  10494. GGML_ASSERT(false);
  10495. } break;
  10496. }
  10497. }
  10498. // ggml_compute_forward_map_unary
  10499. static void ggml_compute_forward_map_unary_f32(
  10500. const struct ggml_compute_params * params,
  10501. const struct ggml_tensor * src0,
  10502. struct ggml_tensor * dst,
  10503. const ggml_unary_op_f32_t fun) {
  10504. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10506. return;
  10507. }
  10508. const int n = ggml_nrows(src0);
  10509. const int nc = src0->ne[0];
  10510. assert( dst->nb[0] == sizeof(float));
  10511. assert(src0->nb[0] == sizeof(float));
  10512. for (int i = 0; i < n; i++) {
  10513. fun(nc,
  10514. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10515. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10516. }
  10517. }
  10518. static void ggml_compute_forward_map_unary(
  10519. const struct ggml_compute_params * params,
  10520. const struct ggml_tensor * src0,
  10521. struct ggml_tensor * dst,
  10522. const ggml_unary_op_f32_t fun) {
  10523. switch (src0->type) {
  10524. case GGML_TYPE_F32:
  10525. {
  10526. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10527. } break;
  10528. default:
  10529. {
  10530. GGML_ASSERT(false);
  10531. } break;
  10532. }
  10533. }
  10534. // ggml_compute_forward_map_binary
  10535. static void ggml_compute_forward_map_binary_f32(
  10536. const struct ggml_compute_params * params,
  10537. const struct ggml_tensor * src0,
  10538. const struct ggml_tensor * src1,
  10539. struct ggml_tensor * dst,
  10540. const ggml_binary_op_f32_t fun) {
  10541. assert(params->ith == 0);
  10542. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10544. return;
  10545. }
  10546. const int n = ggml_nrows(src0);
  10547. const int nc = src0->ne[0];
  10548. assert( dst->nb[0] == sizeof(float));
  10549. assert(src0->nb[0] == sizeof(float));
  10550. assert(src1->nb[0] == sizeof(float));
  10551. for (int i = 0; i < n; i++) {
  10552. fun(nc,
  10553. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10554. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10555. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10556. }
  10557. }
  10558. static void ggml_compute_forward_map_binary(
  10559. const struct ggml_compute_params * params,
  10560. const struct ggml_tensor * src0,
  10561. const struct ggml_tensor * src1,
  10562. struct ggml_tensor * dst,
  10563. const ggml_binary_op_f32_t fun) {
  10564. switch (src0->type) {
  10565. case GGML_TYPE_F32:
  10566. {
  10567. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10568. } break;
  10569. default:
  10570. {
  10571. GGML_ASSERT(false);
  10572. } break;
  10573. }
  10574. }
  10575. /////////////////////////////////
  10576. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10577. GGML_ASSERT(params);
  10578. switch (tensor->op) {
  10579. case GGML_OP_DUP:
  10580. {
  10581. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10582. } break;
  10583. case GGML_OP_ADD:
  10584. {
  10585. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10586. } break;
  10587. case GGML_OP_ADD1:
  10588. {
  10589. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10590. } break;
  10591. case GGML_OP_ACC:
  10592. {
  10593. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10594. } break;
  10595. case GGML_OP_SUB:
  10596. {
  10597. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10598. } break;
  10599. case GGML_OP_MUL:
  10600. {
  10601. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10602. } break;
  10603. case GGML_OP_DIV:
  10604. {
  10605. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10606. } break;
  10607. case GGML_OP_SQR:
  10608. {
  10609. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10610. } break;
  10611. case GGML_OP_SQRT:
  10612. {
  10613. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10614. } break;
  10615. case GGML_OP_LOG:
  10616. {
  10617. ggml_compute_forward_log(params, tensor->src0, tensor);
  10618. } break;
  10619. case GGML_OP_SUM:
  10620. {
  10621. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10622. } break;
  10623. case GGML_OP_SUM_ROWS:
  10624. {
  10625. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10626. } break;
  10627. case GGML_OP_MEAN:
  10628. {
  10629. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10630. } break;
  10631. case GGML_OP_REPEAT:
  10632. {
  10633. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10634. } break;
  10635. case GGML_OP_ABS:
  10636. {
  10637. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10638. } break;
  10639. case GGML_OP_SGN:
  10640. {
  10641. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10642. } break;
  10643. case GGML_OP_NEG:
  10644. {
  10645. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10646. } break;
  10647. case GGML_OP_STEP:
  10648. {
  10649. ggml_compute_forward_step(params, tensor->src0, tensor);
  10650. } break;
  10651. case GGML_OP_RELU:
  10652. {
  10653. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10654. } break;
  10655. case GGML_OP_GELU:
  10656. {
  10657. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10658. } break;
  10659. case GGML_OP_SILU:
  10660. {
  10661. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10662. } break;
  10663. case GGML_OP_SILU_BACK:
  10664. {
  10665. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10666. } break;
  10667. case GGML_OP_NORM:
  10668. {
  10669. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10670. } break;
  10671. case GGML_OP_RMS_NORM:
  10672. {
  10673. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10674. } break;
  10675. case GGML_OP_RMS_NORM_BACK:
  10676. {
  10677. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10678. } break;
  10679. case GGML_OP_MUL_MAT:
  10680. {
  10681. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10682. } break;
  10683. case GGML_OP_SCALE:
  10684. {
  10685. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10686. } break;
  10687. case GGML_OP_SET:
  10688. {
  10689. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10690. } break;
  10691. case GGML_OP_CPY:
  10692. {
  10693. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10694. } break;
  10695. case GGML_OP_CONT:
  10696. {
  10697. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10698. } break;
  10699. case GGML_OP_RESHAPE:
  10700. {
  10701. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10702. } break;
  10703. case GGML_OP_VIEW:
  10704. {
  10705. ggml_compute_forward_view(params, tensor->src0);
  10706. } break;
  10707. case GGML_OP_PERMUTE:
  10708. {
  10709. ggml_compute_forward_permute(params, tensor->src0);
  10710. } break;
  10711. case GGML_OP_TRANSPOSE:
  10712. {
  10713. ggml_compute_forward_transpose(params, tensor->src0);
  10714. } break;
  10715. case GGML_OP_GET_ROWS:
  10716. {
  10717. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10718. } break;
  10719. case GGML_OP_GET_ROWS_BACK:
  10720. {
  10721. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10722. } break;
  10723. case GGML_OP_DIAG:
  10724. {
  10725. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10726. } break;
  10727. case GGML_OP_DIAG_MASK_INF:
  10728. {
  10729. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10730. } break;
  10731. case GGML_OP_DIAG_MASK_ZERO:
  10732. {
  10733. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10734. } break;
  10735. case GGML_OP_SOFT_MAX:
  10736. {
  10737. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10738. } break;
  10739. case GGML_OP_ROPE:
  10740. {
  10741. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10742. } break;
  10743. case GGML_OP_ROPE_BACK:
  10744. {
  10745. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10746. } break;
  10747. case GGML_OP_ALIBI:
  10748. {
  10749. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10750. } break;
  10751. case GGML_OP_CLAMP:
  10752. {
  10753. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10754. } break;
  10755. case GGML_OP_CONV_1D_1S:
  10756. {
  10757. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10758. } break;
  10759. case GGML_OP_CONV_1D_2S:
  10760. {
  10761. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10762. } break;
  10763. case GGML_OP_FLASH_ATTN:
  10764. {
  10765. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10766. GGML_ASSERT(t == 0 || t == 1);
  10767. bool masked = t != 0;
  10768. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10769. } break;
  10770. case GGML_OP_FLASH_FF:
  10771. {
  10772. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10773. } break;
  10774. case GGML_OP_MAP_UNARY:
  10775. {
  10776. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10777. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10778. }
  10779. break;
  10780. case GGML_OP_MAP_BINARY:
  10781. {
  10782. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10783. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10784. }
  10785. break;
  10786. case GGML_OP_NONE:
  10787. {
  10788. // nop
  10789. } break;
  10790. case GGML_OP_COUNT:
  10791. {
  10792. GGML_ASSERT(false);
  10793. } break;
  10794. }
  10795. }
  10796. ////////////////////////////////////////////////////////////////////////////////
  10797. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10798. struct ggml_tensor * src0 = tensor->src0;
  10799. struct ggml_tensor * src1 = tensor->src1;
  10800. switch (tensor->op) {
  10801. case GGML_OP_DUP:
  10802. {
  10803. if (src0->grad) {
  10804. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10805. }
  10806. } break;
  10807. case GGML_OP_ADD:
  10808. {
  10809. if (src0->grad) {
  10810. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10811. }
  10812. if (src1->grad) {
  10813. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10814. }
  10815. } break;
  10816. case GGML_OP_ADD1:
  10817. {
  10818. if (src0->grad) {
  10819. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10820. }
  10821. if (src1->grad) {
  10822. src1->grad = ggml_add_impl(ctx,
  10823. src1->grad,
  10824. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10825. inplace);
  10826. }
  10827. } break;
  10828. case GGML_OP_ACC:
  10829. {
  10830. if (src0->grad) {
  10831. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10832. }
  10833. if (src1->grad) {
  10834. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10835. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10836. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10837. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10838. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10839. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10840. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10841. tensor->grad,
  10842. src1->grad->ne[0],
  10843. src1->grad->ne[1],
  10844. src1->grad->ne[2],
  10845. src1->grad->ne[3],
  10846. nb1, nb2, nb3, offset);
  10847. src1->grad =
  10848. ggml_add_impl(ctx,
  10849. src1->grad,
  10850. ggml_reshape(ctx,
  10851. ggml_cont(ctx, tensor_grad_view),
  10852. src1->grad),
  10853. inplace);
  10854. }
  10855. } break;
  10856. case GGML_OP_SUB:
  10857. {
  10858. if (src0->grad) {
  10859. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10860. }
  10861. if (src1->grad) {
  10862. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10863. }
  10864. } break;
  10865. case GGML_OP_MUL:
  10866. {
  10867. if (src0->grad) {
  10868. src0->grad =
  10869. ggml_add_impl(ctx,
  10870. src0->grad,
  10871. ggml_mul(ctx, src1, tensor->grad),
  10872. inplace);
  10873. }
  10874. if (src1->grad) {
  10875. src1->grad =
  10876. ggml_add_impl(ctx,
  10877. src1->grad,
  10878. ggml_mul(ctx, src0, tensor->grad),
  10879. inplace);
  10880. }
  10881. } break;
  10882. case GGML_OP_DIV:
  10883. {
  10884. if (src0->grad) {
  10885. src0->grad =
  10886. ggml_add_impl(ctx,
  10887. src0->grad,
  10888. ggml_div(ctx, tensor->grad, src1),
  10889. inplace);
  10890. }
  10891. if (src1->grad) {
  10892. src1->grad =
  10893. ggml_sub_impl(ctx,
  10894. src1->grad,
  10895. ggml_mul(ctx,
  10896. tensor->grad,
  10897. ggml_div(ctx, tensor, src1)),
  10898. inplace);
  10899. }
  10900. } break;
  10901. case GGML_OP_SQR:
  10902. {
  10903. if (src0->grad) {
  10904. src0->grad =
  10905. ggml_add_impl(ctx,
  10906. src0->grad,
  10907. ggml_scale(ctx,
  10908. ggml_mul(ctx, src0, tensor->grad),
  10909. ggml_new_f32(ctx, 2.0f)),
  10910. inplace);
  10911. }
  10912. } break;
  10913. case GGML_OP_SQRT:
  10914. {
  10915. if (src0->grad) {
  10916. src0->grad =
  10917. ggml_add_impl(ctx,
  10918. src0->grad,
  10919. ggml_mul(ctx,
  10920. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10921. ggml_div(ctx,
  10922. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10923. tensor)),
  10924. inplace);
  10925. }
  10926. } break;
  10927. case GGML_OP_LOG:
  10928. {
  10929. if (src0->grad) {
  10930. src0->grad =
  10931. ggml_add_impl(ctx,
  10932. src0->grad,
  10933. ggml_div(ctx,
  10934. tensor->grad,
  10935. src0),
  10936. inplace);
  10937. }
  10938. } break;
  10939. case GGML_OP_SUM:
  10940. {
  10941. if (src0->grad) {
  10942. src0->grad =
  10943. ggml_add1_impl(ctx,
  10944. src0->grad,
  10945. tensor->grad,
  10946. inplace);
  10947. }
  10948. } break;
  10949. case GGML_OP_SUM_ROWS:
  10950. {
  10951. if (src0->grad) {
  10952. src0->grad =
  10953. ggml_add_impl(ctx,
  10954. src0->grad,
  10955. ggml_repeat(ctx,
  10956. tensor->grad,
  10957. src0->grad),
  10958. inplace);
  10959. }
  10960. } break;
  10961. case GGML_OP_MEAN:
  10962. {
  10963. GGML_ASSERT(false); // TODO: implement
  10964. } break;
  10965. case GGML_OP_REPEAT:
  10966. {
  10967. // necessary for llama
  10968. if (src0->grad) {
  10969. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10970. const int nc = tensor->ne[0];
  10971. const int nr = tensor->ne[1];
  10972. const int nc0 = src0->ne[0];
  10973. const int nr0 = src0->ne[1];
  10974. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10975. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10976. // tensor->grad [nc,nr,1,1]
  10977. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10978. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10979. // substitute [nc0,nr0,ncr,nrr]
  10980. // reshape [nc0*nr0,ncr*nrr,1,1]
  10981. // transpose [ncr*nrr,nc0*nr0,1,1]
  10982. // sum rows [1,nc0*nr0,1,1]
  10983. // transpose [nc0*nr0,1,1]
  10984. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10985. // add to src0->grad
  10986. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10987. struct ggml_tensor* F00 = tensor->grad;
  10988. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10989. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10990. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10991. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10992. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10993. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10994. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10995. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10996. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10997. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10998. src0->grad =
  10999. ggml_add_impl(ctx,
  11000. src0->grad,
  11001. F10,
  11002. inplace);
  11003. }
  11004. } break;
  11005. case GGML_OP_ABS:
  11006. {
  11007. if (src0->grad) {
  11008. src0->grad =
  11009. ggml_add_impl(ctx,
  11010. src0->grad,
  11011. ggml_mul(ctx,
  11012. ggml_sgn(ctx, src0),
  11013. tensor->grad),
  11014. inplace);
  11015. }
  11016. } break;
  11017. case GGML_OP_SGN:
  11018. {
  11019. if (src0->grad) {
  11020. // noop
  11021. }
  11022. } break;
  11023. case GGML_OP_NEG:
  11024. {
  11025. if (src0->grad) {
  11026. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  11027. }
  11028. } break;
  11029. case GGML_OP_STEP:
  11030. {
  11031. if (src0->grad) {
  11032. // noop
  11033. }
  11034. } break;
  11035. case GGML_OP_RELU:
  11036. {
  11037. if (src0->grad) {
  11038. src0->grad = ggml_sub_impl(ctx,
  11039. src0->grad,
  11040. ggml_mul(ctx,
  11041. ggml_step(ctx, src0),
  11042. tensor->grad),
  11043. inplace);
  11044. }
  11045. } break;
  11046. case GGML_OP_GELU:
  11047. {
  11048. GGML_ASSERT(false); // TODO: not implemented
  11049. } break;
  11050. case GGML_OP_ALIBI:
  11051. {
  11052. GGML_ASSERT(false); // TODO: not implemented
  11053. } break;
  11054. case GGML_OP_CLAMP:
  11055. {
  11056. GGML_ASSERT(false); // TODO: not implemented
  11057. } break;
  11058. case GGML_OP_SILU:
  11059. {
  11060. // necessary for llama
  11061. if (src0->grad) {
  11062. src0->grad = ggml_add_impl(ctx,
  11063. src0->grad,
  11064. ggml_silu_back(ctx, src0, tensor->grad),
  11065. inplace);
  11066. }
  11067. } break;
  11068. case GGML_OP_SILU_BACK:
  11069. {
  11070. GGML_ASSERT(false); // TODO: not implemented
  11071. } break;
  11072. case GGML_OP_NORM:
  11073. {
  11074. GGML_ASSERT(false); // TODO: not implemented
  11075. } break;
  11076. case GGML_OP_RMS_NORM:
  11077. {
  11078. // necessary for llama
  11079. if (src0->grad) {
  11080. src0->grad = ggml_add_impl(ctx,
  11081. src0->grad,
  11082. ggml_rms_norm_back(ctx, src0, tensor->grad),
  11083. inplace);
  11084. }
  11085. } break;
  11086. case GGML_OP_RMS_NORM_BACK:
  11087. {
  11088. GGML_ASSERT(false); // TODO: not implemented
  11089. } break;
  11090. case GGML_OP_MUL_MAT:
  11091. {
  11092. // https://cs231n.github.io/optimization-2/#staged
  11093. // # forward pass
  11094. // s0 = np.random.randn(5, 10)
  11095. // s1 = np.random.randn(10, 3)
  11096. // t = s0.dot(s1)
  11097. // # now suppose we had the gradient on t from above in the circuit
  11098. // dt = np.random.randn(*t.shape) # same shape as t
  11099. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  11100. // ds1 = t.T.dot(dt)
  11101. // tensor.shape [m,p]
  11102. // src0.shape [n,m]
  11103. // src1.shape [n,p]
  11104. // necessary for llama
  11105. if (src0->grad) {
  11106. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  11107. src0->grad =
  11108. ggml_add_impl(ctx,
  11109. src0->grad,
  11110. // ds0 = dt.dot(s1.T)
  11111. // ggml_out_prod(ctx, // [n,m]
  11112. // src1, // [n,p]
  11113. // tensor->grad), // [m,p]
  11114. // for now just using A*B==(B.T*A.T).T
  11115. ggml_cont(ctx, // [n,m]
  11116. ggml_transpose(ctx, // [n,m]
  11117. ggml_mul_mat(ctx, // [m,n]
  11118. ggml_cont(ctx, // [p,m]
  11119. ggml_transpose(ctx, // [p,m]
  11120. tensor->grad)), // [m,p]
  11121. ggml_cont(ctx, // [p,n]
  11122. ggml_transpose(ctx, // [p,n]
  11123. src1))))), // [n,p]
  11124. inplace);
  11125. }
  11126. if (src1->grad) {
  11127. src1->grad =
  11128. ggml_add_impl(ctx,
  11129. src1->grad,
  11130. // ds1 = s0.T.dot(dt):
  11131. ggml_mul_mat(ctx, // [n,p]
  11132. ggml_cont(ctx, // [m,n]
  11133. ggml_transpose(ctx, src0)), // [m,n]
  11134. tensor->grad), // [m,p]
  11135. inplace);
  11136. }
  11137. } break;
  11138. case GGML_OP_SCALE:
  11139. {
  11140. // necessary for llama
  11141. if (src0->grad) {
  11142. src0->grad =
  11143. ggml_add_impl(ctx,
  11144. src0->grad,
  11145. ggml_scale_impl(ctx, tensor->grad, src1, false),
  11146. inplace);
  11147. }
  11148. if (src1->grad) {
  11149. src1->grad =
  11150. ggml_add_impl(ctx,
  11151. src1->grad,
  11152. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  11153. inplace);
  11154. }
  11155. } break;
  11156. case GGML_OP_SET:
  11157. {
  11158. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11159. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11160. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11161. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11162. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11163. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11164. struct ggml_tensor * tensor_grad_view = NULL;
  11165. if (src0->grad || src1->grad) {
  11166. GGML_ASSERT(src0->type == tensor->type);
  11167. GGML_ASSERT(tensor->grad->type == tensor->type);
  11168. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  11169. tensor_grad_view = ggml_view_4d(ctx,
  11170. tensor->grad,
  11171. src1->grad->ne[0],
  11172. src1->grad->ne[1],
  11173. src1->grad->ne[2],
  11174. src1->grad->ne[3],
  11175. nb1, nb2, nb3, offset);
  11176. }
  11177. if (src0->grad) {
  11178. src0->grad = ggml_add_impl(ctx,
  11179. src0->grad,
  11180. ggml_acc_impl(ctx,
  11181. tensor->grad,
  11182. ggml_neg(ctx, tensor_grad_view),
  11183. nb1, nb2, nb3, offset, false),
  11184. inplace);
  11185. }
  11186. if (src1->grad) {
  11187. src1->grad =
  11188. ggml_add_impl(ctx,
  11189. src1->grad,
  11190. ggml_reshape(ctx,
  11191. ggml_cont(ctx, tensor_grad_view),
  11192. src1->grad),
  11193. inplace);
  11194. }
  11195. } break;
  11196. case GGML_OP_CPY:
  11197. {
  11198. // necessary for llama
  11199. // cpy overwrites value of src1 by src0 and returns view(src1)
  11200. // the overwriting is mathematically equivalent to:
  11201. // tensor = src0 * 1 + src1 * 0
  11202. if (src0->grad) {
  11203. // dsrc0 = dtensor * 1
  11204. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11205. }
  11206. if (src1->grad) {
  11207. // dsrc1 = dtensor * 0 -> noop
  11208. }
  11209. } break;
  11210. case GGML_OP_CONT:
  11211. {
  11212. // same as cpy
  11213. if (src0->grad) {
  11214. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11215. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11216. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11217. }
  11218. } break;
  11219. case GGML_OP_RESHAPE:
  11220. {
  11221. // necessary for llama
  11222. if (src0->grad) {
  11223. src0->grad =
  11224. ggml_add_impl(ctx, src0->grad,
  11225. ggml_reshape(ctx, tensor->grad, src0->grad),
  11226. inplace);
  11227. }
  11228. } break;
  11229. case GGML_OP_VIEW:
  11230. {
  11231. // necessary for llama
  11232. if (src0->grad) {
  11233. size_t offset;
  11234. memcpy(&offset, tensor->padding, sizeof(offset));
  11235. size_t nb1 = tensor->nb[1];
  11236. size_t nb2 = tensor->nb[2];
  11237. size_t nb3 = tensor->nb[3];
  11238. if (src0->type != src0->grad->type) {
  11239. // gradient is typically F32, but src0 could be other type
  11240. size_t ng = ggml_element_size(src0->grad);
  11241. size_t n0 = ggml_element_size(src0);
  11242. GGML_ASSERT(offset % n0 == 0);
  11243. GGML_ASSERT(nb1 % n0 == 0);
  11244. GGML_ASSERT(nb2 % n0 == 0);
  11245. GGML_ASSERT(nb3 % n0 == 0);
  11246. offset = (offset / n0) * ng;
  11247. nb1 = (nb1 / n0) * ng;
  11248. nb2 = (nb2 / n0) * ng;
  11249. nb3 = (nb3 / n0) * ng;
  11250. }
  11251. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11252. }
  11253. } break;
  11254. case GGML_OP_PERMUTE:
  11255. {
  11256. // necessary for llama
  11257. if (src0->grad) {
  11258. int axis0 = tensor->padding[0] & 0x3;
  11259. int axis1 = tensor->padding[1] & 0x3;
  11260. int axis2 = tensor->padding[2] & 0x3;
  11261. int axis3 = tensor->padding[3] & 0x3;
  11262. int axes_backward[4] = {0,0,0,0};
  11263. axes_backward[axis0] = 0;
  11264. axes_backward[axis1] = 1;
  11265. axes_backward[axis2] = 2;
  11266. axes_backward[axis3] = 3;
  11267. src0->grad =
  11268. ggml_add_impl(ctx, src0->grad,
  11269. ggml_permute(ctx,
  11270. tensor->grad,
  11271. axes_backward[0],
  11272. axes_backward[1],
  11273. axes_backward[2],
  11274. axes_backward[3]),
  11275. inplace);
  11276. }
  11277. } break;
  11278. case GGML_OP_TRANSPOSE:
  11279. {
  11280. // necessary for llama
  11281. if (src0->grad) {
  11282. src0->grad =
  11283. ggml_add_impl(ctx, src0->grad,
  11284. ggml_transpose(ctx, tensor->grad),
  11285. inplace);
  11286. }
  11287. } break;
  11288. case GGML_OP_GET_ROWS:
  11289. {
  11290. // necessary for llama (only for tokenizer)
  11291. if (src0->grad) {
  11292. src0->grad =
  11293. ggml_add_impl(ctx, src0->grad,
  11294. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11295. inplace);
  11296. }
  11297. if (src1->grad) {
  11298. // noop
  11299. }
  11300. } break;
  11301. case GGML_OP_GET_ROWS_BACK:
  11302. {
  11303. GGML_ASSERT(false); // TODO: not implemented
  11304. } break;
  11305. case GGML_OP_DIAG:
  11306. {
  11307. GGML_ASSERT(false); // TODO: not implemented
  11308. } break;
  11309. case GGML_OP_DIAG_MASK_INF:
  11310. {
  11311. // necessary for llama
  11312. if (src0->grad) {
  11313. assert(src1->type == GGML_TYPE_I32);
  11314. assert(ggml_nelements(src1) == 2);
  11315. const int n_past = ((int32_t *) src1->data)[0];
  11316. src0->grad =
  11317. ggml_add_impl(ctx, src0->grad,
  11318. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11319. inplace);
  11320. }
  11321. if (src1->grad) {
  11322. // noop
  11323. }
  11324. } break;
  11325. case GGML_OP_DIAG_MASK_ZERO:
  11326. {
  11327. // necessary for llama
  11328. if (src0->grad) {
  11329. assert(src1->type == GGML_TYPE_I32);
  11330. assert(ggml_nelements(src1) == 2);
  11331. const int n_past = ((int32_t *) src1->data)[0];
  11332. src0->grad =
  11333. ggml_add_impl(ctx, src0->grad,
  11334. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11335. inplace);
  11336. }
  11337. if (src1->grad) {
  11338. // noop
  11339. }
  11340. } break;
  11341. case GGML_OP_SOFT_MAX:
  11342. {
  11343. // necessary for llama
  11344. if (src0->grad) {
  11345. // y = softmax(x)
  11346. //
  11347. // Jii = yi - yi*yi
  11348. // Jij = -yi*yj
  11349. // J = diag(y)-y.*y
  11350. // dx = J * dy
  11351. // dxk = sum(Jkj * dyk)
  11352. int64_t ne2[4] = {
  11353. tensor->ne[0],
  11354. 1,
  11355. tensor->ne[1]*tensor->ne[2],
  11356. tensor->ne[3]
  11357. };
  11358. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11359. ggml_reshape_4d(ctx,
  11360. ggml_cont(ctx, tensor),
  11361. ne2[0], ne2[1], ne2[2], ne2[3]));
  11362. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11363. ggml_reshape_4d(ctx,
  11364. ggml_cont(ctx, tensor->grad),
  11365. ne2[0], ne2[1], ne2[2], ne2[3]));
  11366. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11367. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11368. tensor2, // [ne0,1,ne1*ne2,ne3]
  11369. 1, 0, 2, 3));
  11370. src0->grad =
  11371. ggml_add_impl(ctx,
  11372. src0->grad, // [ne0,ne1,ne2,ne3]
  11373. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11374. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11375. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11376. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11377. tensor2), // [ne0,1,ne1*ne2,ne3]
  11378. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11379. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11380. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11381. grad2), // [ne0,1,ne1*ne2,ne3]
  11382. src0->grad),
  11383. inplace);
  11384. }
  11385. } break;
  11386. case GGML_OP_ROPE:
  11387. {
  11388. // necessary for llama
  11389. if (src0->grad) {
  11390. assert(src1->type == GGML_TYPE_I32);
  11391. assert(ggml_nelements(src1) == 3);
  11392. const int n_past = ((int32_t *) src1->data)[0];
  11393. const int n_dims = ((int32_t *) src1->data)[1];
  11394. const int mode = ((int32_t *) src1->data)[2];
  11395. src0->grad = ggml_add_impl(ctx,
  11396. src0->grad,
  11397. ggml_rope_back(ctx,
  11398. tensor->grad,
  11399. n_past,
  11400. n_dims,
  11401. mode),
  11402. inplace);
  11403. }
  11404. if (src1->grad) {
  11405. // noop
  11406. }
  11407. } break;
  11408. case GGML_OP_ROPE_BACK:
  11409. {
  11410. if (src0->grad) {
  11411. assert(src1->type == GGML_TYPE_I32);
  11412. assert(ggml_nelements(src1) == 3);
  11413. const int n_past = ((int32_t *) src1->data)[0];
  11414. const int n_dims = ((int32_t *) src1->data)[1];
  11415. const int mode = ((int32_t *) src1->data)[2];
  11416. src0->grad = ggml_add_impl(ctx,
  11417. src0->grad,
  11418. ggml_rope(ctx,
  11419. tensor->grad,
  11420. n_past,
  11421. n_dims,
  11422. mode),
  11423. inplace);
  11424. }
  11425. if (src1->grad) {
  11426. // noop
  11427. }
  11428. } break;
  11429. case GGML_OP_CONV_1D_1S:
  11430. {
  11431. GGML_ASSERT(false); // TODO: not implemented
  11432. } break;
  11433. case GGML_OP_CONV_1D_2S:
  11434. {
  11435. GGML_ASSERT(false); // TODO: not implemented
  11436. } break;
  11437. case GGML_OP_FLASH_ATTN:
  11438. {
  11439. GGML_ASSERT(false); // not supported
  11440. } break;
  11441. case GGML_OP_FLASH_FF:
  11442. {
  11443. GGML_ASSERT(false); // not supported
  11444. } break;
  11445. case GGML_OP_MAP_UNARY:
  11446. case GGML_OP_MAP_BINARY:
  11447. {
  11448. GGML_ASSERT(false); // not supported
  11449. } break;
  11450. case GGML_OP_NONE:
  11451. {
  11452. // nop
  11453. } break;
  11454. case GGML_OP_COUNT:
  11455. {
  11456. GGML_ASSERT(false);
  11457. } break;
  11458. }
  11459. }
  11460. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11461. if (node->grad == NULL) {
  11462. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11463. // it can also happen during forward pass, if the user performs computations with constants
  11464. if (node->op != GGML_OP_NONE) {
  11465. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11466. }
  11467. }
  11468. // check if already visited
  11469. for (int i = 0; i < cgraph->n_nodes; i++) {
  11470. if (cgraph->nodes[i] == node) {
  11471. return;
  11472. }
  11473. }
  11474. for (int i = 0; i < cgraph->n_leafs; i++) {
  11475. if (cgraph->leafs[i] == node) {
  11476. return;
  11477. }
  11478. }
  11479. if (node->src0) {
  11480. ggml_visit_parents(cgraph, node->src0);
  11481. }
  11482. if (node->src1) {
  11483. ggml_visit_parents(cgraph, node->src1);
  11484. }
  11485. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11486. if (node->opt[i]) {
  11487. ggml_visit_parents(cgraph, node->opt[i]);
  11488. }
  11489. }
  11490. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11491. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11492. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11493. if (strlen(node->name) == 0) {
  11494. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11495. }
  11496. cgraph->leafs[cgraph->n_leafs] = node;
  11497. cgraph->n_leafs++;
  11498. } else {
  11499. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11500. if (strlen(node->name) == 0) {
  11501. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11502. }
  11503. cgraph->nodes[cgraph->n_nodes] = node;
  11504. cgraph->grads[cgraph->n_nodes] = node->grad;
  11505. cgraph->n_nodes++;
  11506. }
  11507. }
  11508. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11509. if (!expand) {
  11510. cgraph->n_nodes = 0;
  11511. cgraph->n_leafs = 0;
  11512. }
  11513. const int n0 = cgraph->n_nodes;
  11514. UNUSED(n0);
  11515. ggml_visit_parents(cgraph, tensor);
  11516. const int n_new = cgraph->n_nodes - n0;
  11517. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11518. if (n_new > 0) {
  11519. // the last added node should always be starting point
  11520. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11521. }
  11522. }
  11523. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11524. ggml_build_forward_impl(cgraph, tensor, true);
  11525. }
  11526. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11527. struct ggml_cgraph result = {
  11528. /*.n_nodes =*/ 0,
  11529. /*.n_leafs =*/ 0,
  11530. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11531. /*.work_size =*/ 0,
  11532. /*.work =*/ NULL,
  11533. /*.nodes =*/ { NULL },
  11534. /*.grads =*/ { NULL },
  11535. /*.leafs =*/ { NULL },
  11536. /*.perf_runs =*/ 0,
  11537. /*.perf_cycles =*/ 0,
  11538. /*.perf_time_us =*/ 0,
  11539. };
  11540. ggml_build_forward_impl(&result, tensor, false);
  11541. return result;
  11542. }
  11543. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11544. struct ggml_cgraph result = *gf;
  11545. GGML_ASSERT(gf->n_nodes > 0);
  11546. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11547. if (keep) {
  11548. for (int i = 0; i < gf->n_nodes; i++) {
  11549. struct ggml_tensor * node = gf->nodes[i];
  11550. if (node->grad) {
  11551. node->grad = ggml_dup_tensor(ctx, node);
  11552. gf->grads[i] = node->grad;
  11553. }
  11554. }
  11555. }
  11556. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11557. struct ggml_tensor * node = gf->nodes[i];
  11558. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11559. if (node->grad) {
  11560. ggml_compute_backward(ctx, node, keep);
  11561. }
  11562. }
  11563. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11564. struct ggml_tensor * node = gf->nodes[i];
  11565. if (node->is_param) {
  11566. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11567. ggml_build_forward_impl(&result, node->grad, true);
  11568. }
  11569. }
  11570. return result;
  11571. }
  11572. //
  11573. // thread data
  11574. //
  11575. // synchronization is done via busy loops
  11576. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11577. //
  11578. #ifdef __APPLE__
  11579. //#include <os/lock.h>
  11580. //
  11581. //typedef os_unfair_lock ggml_lock_t;
  11582. //
  11583. //#define ggml_lock_init(x) UNUSED(x)
  11584. //#define ggml_lock_destroy(x) UNUSED(x)
  11585. //#define ggml_lock_lock os_unfair_lock_lock
  11586. //#define ggml_lock_unlock os_unfair_lock_unlock
  11587. //
  11588. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11589. typedef int ggml_lock_t;
  11590. #define ggml_lock_init(x) UNUSED(x)
  11591. #define ggml_lock_destroy(x) UNUSED(x)
  11592. #define ggml_lock_lock(x) UNUSED(x)
  11593. #define ggml_lock_unlock(x) UNUSED(x)
  11594. #define GGML_LOCK_INITIALIZER 0
  11595. typedef pthread_t ggml_thread_t;
  11596. #define ggml_thread_create pthread_create
  11597. #define ggml_thread_join pthread_join
  11598. #else
  11599. //typedef pthread_spinlock_t ggml_lock_t;
  11600. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11601. //#define ggml_lock_destroy pthread_spin_destroy
  11602. //#define ggml_lock_lock pthread_spin_lock
  11603. //#define ggml_lock_unlock pthread_spin_unlock
  11604. typedef int ggml_lock_t;
  11605. #define ggml_lock_init(x) UNUSED(x)
  11606. #define ggml_lock_destroy(x) UNUSED(x)
  11607. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11608. #define ggml_lock_lock(x) _mm_pause()
  11609. #else
  11610. #define ggml_lock_lock(x) UNUSED(x)
  11611. #endif
  11612. #define ggml_lock_unlock(x) UNUSED(x)
  11613. #define GGML_LOCK_INITIALIZER 0
  11614. typedef pthread_t ggml_thread_t;
  11615. #define ggml_thread_create pthread_create
  11616. #define ggml_thread_join pthread_join
  11617. #endif
  11618. struct ggml_compute_state_shared {
  11619. ggml_lock_t spin;
  11620. int n_threads;
  11621. // synchronization primitives
  11622. atomic_int n_ready;
  11623. atomic_bool has_work;
  11624. atomic_bool stop; // stop all threads
  11625. };
  11626. struct ggml_compute_state {
  11627. ggml_thread_t thrd;
  11628. struct ggml_compute_params params;
  11629. struct ggml_tensor * node;
  11630. struct ggml_compute_state_shared * shared;
  11631. };
  11632. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11633. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11634. const int n_threads = state->shared->n_threads;
  11635. while (true) {
  11636. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11637. atomic_store(&state->shared->has_work, false);
  11638. } else {
  11639. while (atomic_load(&state->shared->has_work)) {
  11640. if (atomic_load(&state->shared->stop)) {
  11641. return 0;
  11642. }
  11643. ggml_lock_lock (&state->shared->spin);
  11644. ggml_lock_unlock(&state->shared->spin);
  11645. }
  11646. }
  11647. atomic_fetch_sub(&state->shared->n_ready, 1);
  11648. // wait for work
  11649. while (!atomic_load(&state->shared->has_work)) {
  11650. if (atomic_load(&state->shared->stop)) {
  11651. return 0;
  11652. }
  11653. ggml_lock_lock (&state->shared->spin);
  11654. ggml_lock_unlock(&state->shared->spin);
  11655. }
  11656. // check if we should stop
  11657. if (atomic_load(&state->shared->stop)) {
  11658. break;
  11659. }
  11660. if (state->node) {
  11661. if (state->params.ith < state->params.nth) {
  11662. ggml_compute_forward(&state->params, state->node);
  11663. }
  11664. state->node = NULL;
  11665. } else {
  11666. break;
  11667. }
  11668. }
  11669. return 0;
  11670. }
  11671. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11672. const int n_threads = cgraph->n_threads;
  11673. struct ggml_compute_state_shared state_shared = {
  11674. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11675. /*.n_threads =*/ n_threads,
  11676. /*.n_ready =*/ 0,
  11677. /*.has_work =*/ false,
  11678. /*.stop =*/ false,
  11679. };
  11680. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11681. // create thread pool
  11682. if (n_threads > 1) {
  11683. ggml_lock_init(&state_shared.spin);
  11684. atomic_store(&state_shared.has_work, true);
  11685. for (int j = 0; j < n_threads - 1; j++) {
  11686. workers[j] = (struct ggml_compute_state) {
  11687. .thrd = 0,
  11688. .params = {
  11689. .type = GGML_TASK_COMPUTE,
  11690. .ith = j + 1,
  11691. .nth = n_threads,
  11692. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11693. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11694. },
  11695. .node = NULL,
  11696. .shared = &state_shared,
  11697. };
  11698. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11699. GGML_ASSERT(rc == 0);
  11700. UNUSED(rc);
  11701. }
  11702. }
  11703. // initialize tasks + work buffer
  11704. {
  11705. size_t work_size = 0;
  11706. // thread scheduling for the different operations
  11707. for (int i = 0; i < cgraph->n_nodes; i++) {
  11708. struct ggml_tensor * node = cgraph->nodes[i];
  11709. switch (node->op) {
  11710. case GGML_OP_CPY:
  11711. case GGML_OP_DUP:
  11712. {
  11713. node->n_tasks = n_threads;
  11714. size_t cur = 0;
  11715. if (ggml_is_quantized(node->type)) {
  11716. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11717. }
  11718. work_size = MAX(work_size, cur);
  11719. } break;
  11720. case GGML_OP_ADD:
  11721. case GGML_OP_ADD1:
  11722. {
  11723. node->n_tasks = n_threads;
  11724. size_t cur = 0;
  11725. if (ggml_is_quantized(node->src0->type)) {
  11726. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11727. }
  11728. work_size = MAX(work_size, cur);
  11729. } break;
  11730. case GGML_OP_ACC:
  11731. {
  11732. node->n_tasks = n_threads;
  11733. size_t cur = 0;
  11734. if (ggml_is_quantized(node->src0->type)) {
  11735. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11736. }
  11737. work_size = MAX(work_size, cur);
  11738. } break;
  11739. case GGML_OP_SUB:
  11740. case GGML_OP_DIV:
  11741. case GGML_OP_SQR:
  11742. case GGML_OP_SQRT:
  11743. case GGML_OP_LOG:
  11744. case GGML_OP_SUM:
  11745. case GGML_OP_SUM_ROWS:
  11746. case GGML_OP_MEAN:
  11747. case GGML_OP_REPEAT:
  11748. case GGML_OP_ABS:
  11749. case GGML_OP_SGN:
  11750. case GGML_OP_NEG:
  11751. case GGML_OP_STEP:
  11752. case GGML_OP_RELU:
  11753. {
  11754. node->n_tasks = 1;
  11755. } break;
  11756. case GGML_OP_MUL:
  11757. case GGML_OP_GELU:
  11758. case GGML_OP_SILU:
  11759. case GGML_OP_SILU_BACK:
  11760. case GGML_OP_NORM:
  11761. case GGML_OP_RMS_NORM:
  11762. case GGML_OP_RMS_NORM_BACK:
  11763. {
  11764. node->n_tasks = n_threads;
  11765. } break;
  11766. case GGML_OP_MUL_MAT:
  11767. {
  11768. node->n_tasks = n_threads;
  11769. // TODO: use different scheduling for different matrix sizes
  11770. //const int nr0 = ggml_nrows(node->src0);
  11771. //const int nr1 = ggml_nrows(node->src1);
  11772. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11773. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11774. size_t cur = 0;
  11775. #if defined(GGML_USE_CUBLAS)
  11776. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11777. node->n_tasks = 1; // TODO: this actually is doing nothing
  11778. // the threads are still spinning
  11779. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11780. }
  11781. else
  11782. #elif defined(GGML_USE_CLBLAST)
  11783. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11784. node->n_tasks = 1; // TODO: this actually is doing nothing
  11785. // the threads are still spinning
  11786. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11787. }
  11788. else
  11789. #endif
  11790. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11791. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11792. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11793. node->n_tasks = 1; // TODO: this actually is doing nothing
  11794. // the threads are still spinning
  11795. // here we need memory just for single 2D matrix from src0
  11796. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11797. } else {
  11798. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11799. }
  11800. #else
  11801. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11802. #endif
  11803. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11804. cur = 0;
  11805. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11806. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11807. node->n_tasks = 1;
  11808. }
  11809. #endif
  11810. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11811. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11812. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11813. node->n_tasks = 1;
  11814. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11815. } else
  11816. #endif
  11817. {
  11818. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11819. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11820. }
  11821. } else {
  11822. GGML_ASSERT(false);
  11823. }
  11824. work_size = MAX(work_size, cur);
  11825. } break;
  11826. case GGML_OP_SCALE:
  11827. {
  11828. node->n_tasks = n_threads;
  11829. } break;
  11830. case GGML_OP_SET:
  11831. case GGML_OP_CONT:
  11832. case GGML_OP_RESHAPE:
  11833. case GGML_OP_VIEW:
  11834. case GGML_OP_PERMUTE:
  11835. case GGML_OP_TRANSPOSE:
  11836. case GGML_OP_GET_ROWS:
  11837. case GGML_OP_GET_ROWS_BACK:
  11838. case GGML_OP_DIAG:
  11839. case GGML_OP_DIAG_MASK_ZERO:
  11840. {
  11841. node->n_tasks = 1;
  11842. } break;
  11843. case GGML_OP_DIAG_MASK_INF:
  11844. case GGML_OP_SOFT_MAX:
  11845. case GGML_OP_ROPE:
  11846. case GGML_OP_ROPE_BACK:
  11847. {
  11848. node->n_tasks = n_threads;
  11849. } break;
  11850. case GGML_OP_ALIBI:
  11851. {
  11852. node->n_tasks = 1; //TODO
  11853. } break;
  11854. case GGML_OP_CLAMP:
  11855. {
  11856. node->n_tasks = 1; //TODO
  11857. } break;
  11858. case GGML_OP_CONV_1D_1S:
  11859. case GGML_OP_CONV_1D_2S:
  11860. {
  11861. node->n_tasks = n_threads;
  11862. GGML_ASSERT(node->src0->ne[3] == 1);
  11863. GGML_ASSERT(node->src1->ne[2] == 1);
  11864. GGML_ASSERT(node->src1->ne[3] == 1);
  11865. size_t cur = 0;
  11866. const int nk = node->src0->ne[0];
  11867. if (node->src0->type == GGML_TYPE_F16 &&
  11868. node->src1->type == GGML_TYPE_F32) {
  11869. cur = sizeof(ggml_fp16_t)*(
  11870. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11871. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11872. );
  11873. } else if (node->src0->type == GGML_TYPE_F32 &&
  11874. node->src1->type == GGML_TYPE_F32) {
  11875. cur = sizeof(float)*(
  11876. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11877. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11878. );
  11879. } else {
  11880. GGML_ASSERT(false);
  11881. }
  11882. work_size = MAX(work_size, cur);
  11883. } break;
  11884. case GGML_OP_FLASH_ATTN:
  11885. {
  11886. node->n_tasks = n_threads;
  11887. size_t cur = 0;
  11888. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11889. if (node->src1->type == GGML_TYPE_F32) {
  11890. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11891. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11892. }
  11893. if (node->src1->type == GGML_TYPE_F16) {
  11894. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11895. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11896. }
  11897. work_size = MAX(work_size, cur);
  11898. } break;
  11899. case GGML_OP_FLASH_FF:
  11900. {
  11901. node->n_tasks = n_threads;
  11902. size_t cur = 0;
  11903. if (node->src1->type == GGML_TYPE_F32) {
  11904. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11905. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11906. }
  11907. if (node->src1->type == GGML_TYPE_F16) {
  11908. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11909. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11910. }
  11911. work_size = MAX(work_size, cur);
  11912. } break;
  11913. case GGML_OP_MAP_UNARY:
  11914. case GGML_OP_MAP_BINARY:
  11915. {
  11916. node->n_tasks = 1;
  11917. } break;
  11918. case GGML_OP_NONE:
  11919. {
  11920. node->n_tasks = 1;
  11921. } break;
  11922. case GGML_OP_COUNT:
  11923. {
  11924. GGML_ASSERT(false);
  11925. } break;
  11926. }
  11927. }
  11928. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11929. GGML_ASSERT(false); // TODO: better handling
  11930. }
  11931. if (work_size > 0 && cgraph->work == NULL) {
  11932. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11933. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11934. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11935. }
  11936. }
  11937. const int64_t perf_start_cycles = ggml_perf_cycles();
  11938. const int64_t perf_start_time_us = ggml_perf_time_us();
  11939. for (int i = 0; i < cgraph->n_nodes; i++) {
  11940. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11941. struct ggml_tensor * node = cgraph->nodes[i];
  11942. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11943. //if (node->grad == NULL && node->perf_runs > 0) {
  11944. // continue;
  11945. //}
  11946. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11947. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11948. // INIT
  11949. struct ggml_compute_params params = {
  11950. /*.type =*/ GGML_TASK_INIT,
  11951. /*.ith =*/ 0,
  11952. /*.nth =*/ node->n_tasks,
  11953. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11954. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11955. };
  11956. ggml_compute_forward(&params, node);
  11957. // COMPUTE
  11958. if (node->n_tasks > 1) {
  11959. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11960. atomic_store(&state_shared.has_work, false);
  11961. }
  11962. while (atomic_load(&state_shared.has_work)) {
  11963. ggml_lock_lock (&state_shared.spin);
  11964. ggml_lock_unlock(&state_shared.spin);
  11965. }
  11966. // launch thread pool
  11967. for (int j = 0; j < n_threads - 1; j++) {
  11968. workers[j].params = (struct ggml_compute_params) {
  11969. .type = GGML_TASK_COMPUTE,
  11970. .ith = j + 1,
  11971. .nth = node->n_tasks,
  11972. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11973. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11974. };
  11975. workers[j].node = node;
  11976. }
  11977. atomic_fetch_sub(&state_shared.n_ready, 1);
  11978. while (atomic_load(&state_shared.n_ready) > 0) {
  11979. ggml_lock_lock (&state_shared.spin);
  11980. ggml_lock_unlock(&state_shared.spin);
  11981. }
  11982. atomic_store(&state_shared.has_work, true);
  11983. }
  11984. params.type = GGML_TASK_COMPUTE;
  11985. ggml_compute_forward(&params, node);
  11986. // wait for thread pool
  11987. if (node->n_tasks > 1) {
  11988. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11989. atomic_store(&state_shared.has_work, false);
  11990. }
  11991. while (atomic_load(&state_shared.has_work)) {
  11992. ggml_lock_lock (&state_shared.spin);
  11993. ggml_lock_unlock(&state_shared.spin);
  11994. }
  11995. atomic_fetch_sub(&state_shared.n_ready, 1);
  11996. while (atomic_load(&state_shared.n_ready) != 0) {
  11997. ggml_lock_lock (&state_shared.spin);
  11998. ggml_lock_unlock(&state_shared.spin);
  11999. }
  12000. }
  12001. // FINALIZE
  12002. if (node->n_tasks > 1) {
  12003. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  12004. atomic_store(&state_shared.has_work, false);
  12005. }
  12006. while (atomic_load(&state_shared.has_work)) {
  12007. ggml_lock_lock (&state_shared.spin);
  12008. ggml_lock_unlock(&state_shared.spin);
  12009. }
  12010. // launch thread pool
  12011. for (int j = 0; j < n_threads - 1; j++) {
  12012. workers[j].params = (struct ggml_compute_params) {
  12013. .type = GGML_TASK_FINALIZE,
  12014. .ith = j + 1,
  12015. .nth = node->n_tasks,
  12016. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  12017. .wdata = cgraph->work ? cgraph->work->data : NULL,
  12018. };
  12019. workers[j].node = node;
  12020. }
  12021. atomic_fetch_sub(&state_shared.n_ready, 1);
  12022. while (atomic_load(&state_shared.n_ready) > 0) {
  12023. ggml_lock_lock (&state_shared.spin);
  12024. ggml_lock_unlock(&state_shared.spin);
  12025. }
  12026. atomic_store(&state_shared.has_work, true);
  12027. }
  12028. params.type = GGML_TASK_FINALIZE;
  12029. ggml_compute_forward(&params, node);
  12030. // wait for thread pool
  12031. if (node->n_tasks > 1) {
  12032. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  12033. atomic_store(&state_shared.has_work, false);
  12034. }
  12035. while (atomic_load(&state_shared.has_work)) {
  12036. ggml_lock_lock (&state_shared.spin);
  12037. ggml_lock_unlock(&state_shared.spin);
  12038. }
  12039. atomic_fetch_sub(&state_shared.n_ready, 1);
  12040. while (atomic_load(&state_shared.n_ready) != 0) {
  12041. ggml_lock_lock (&state_shared.spin);
  12042. ggml_lock_unlock(&state_shared.spin);
  12043. }
  12044. }
  12045. // performance stats (node)
  12046. {
  12047. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  12048. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  12049. node->perf_runs++;
  12050. node->perf_cycles += perf_cycles_cur;
  12051. node->perf_time_us += perf_time_us_cur;
  12052. }
  12053. }
  12054. // join thread pool
  12055. if (n_threads > 1) {
  12056. atomic_store(&state_shared.stop, true);
  12057. atomic_store(&state_shared.has_work, true);
  12058. for (int j = 0; j < n_threads - 1; j++) {
  12059. int rc = ggml_thread_join(workers[j].thrd, NULL);
  12060. GGML_ASSERT(rc == 0);
  12061. UNUSED(rc);
  12062. }
  12063. ggml_lock_destroy(&state_shared.spin);
  12064. }
  12065. // performance stats (graph)
  12066. {
  12067. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  12068. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  12069. cgraph->perf_runs++;
  12070. cgraph->perf_cycles += perf_cycles_cur;
  12071. cgraph->perf_time_us += perf_time_us_cur;
  12072. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  12073. __func__, cgraph->perf_runs,
  12074. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  12075. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  12076. (double) perf_time_us_cur / 1000.0,
  12077. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  12078. }
  12079. }
  12080. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12081. for (int i = 0; i < cgraph->n_nodes; i++) {
  12082. struct ggml_tensor * grad = cgraph->grads[i];
  12083. if (grad) {
  12084. ggml_set_zero(grad);
  12085. }
  12086. }
  12087. }
  12088. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  12089. for (int i = 0; i < cgraph->n_leafs; i++) {
  12090. struct ggml_tensor * leaf = cgraph->leafs[i];
  12091. if (strcmp(leaf->name, name) == 0) {
  12092. return leaf;
  12093. }
  12094. }
  12095. for (int i = 0; i < cgraph->n_nodes; i++) {
  12096. struct ggml_tensor * node = cgraph->nodes[i];
  12097. if (strcmp(node->name, name) == 0) {
  12098. return node;
  12099. }
  12100. }
  12101. return NULL;
  12102. }
  12103. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  12104. const int64_t * ne = tensor->ne;
  12105. const size_t * nb = tensor->nb;
  12106. fprintf(fout, "%-6s %-12s %8d %8lld %8lld %8lld %8lld %16zu %16zu %16zu %16zu %16p %32s\n",
  12107. ggml_type_name(tensor->type),
  12108. ggml_op_name (tensor->op),
  12109. tensor->n_dims,
  12110. ne[0], ne[1], ne[2], ne[3],
  12111. nb[0], nb[1], nb[2], nb[3],
  12112. tensor->data,
  12113. tensor->name);
  12114. }
  12115. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  12116. const int64_t * ne = tensor->ne;
  12117. const size_t * nb = tensor->nb;
  12118. fprintf(fout, "%-6s %-6s %-12s %8d %8lld %8lld %8lld %8lld %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  12119. arg,
  12120. ggml_type_name(tensor->type),
  12121. ggml_op_name (tensor->op),
  12122. tensor->n_dims,
  12123. ne[0], ne[1], ne[2], ne[3],
  12124. nb[0], nb[1], nb[2], nb[3],
  12125. tensor->n_tasks,
  12126. tensor->data,
  12127. tensor->name);
  12128. }
  12129. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  12130. //assert(cgraph->work == NULL);
  12131. //assert(cgraph->work_size == 0);
  12132. uint64_t size_eval = 0;
  12133. // compute size of intermediate results
  12134. // TODO: does not take into account scratch buffers !!!!
  12135. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12136. size_eval += ggml_nbytes(cgraph->nodes[i]);
  12137. }
  12138. // print
  12139. {
  12140. FILE * fout = stdout;
  12141. fprintf(fout, "\n");
  12142. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  12143. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  12144. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  12145. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  12146. fprintf(fout, "%-16s %8llu\n", "eval", size_eval);
  12147. // header
  12148. fprintf(fout, "\n");
  12149. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  12150. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  12151. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12152. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  12153. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  12154. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  12155. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  12156. }
  12157. // header
  12158. fprintf(fout, "\n");
  12159. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  12160. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  12161. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12162. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  12163. if (cgraph->nodes[i]->src0) {
  12164. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  12165. }
  12166. if (cgraph->nodes[i]->src1) {
  12167. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  12168. }
  12169. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12170. if (cgraph->nodes[i]->opt[j]) {
  12171. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  12172. }
  12173. }
  12174. fprintf(fout, "\n");
  12175. }
  12176. fprintf(fout, "\n");
  12177. }
  12178. // write binary data
  12179. {
  12180. FILE * fout = fopen(fname, "wb");
  12181. if (!fout) {
  12182. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12183. return;
  12184. }
  12185. // header
  12186. {
  12187. const uint32_t magic = GGML_FILE_MAGIC;
  12188. const uint32_t version = GGML_FILE_VERSION;
  12189. const uint32_t n_leafs = cgraph->n_leafs;
  12190. const uint32_t nodes = cgraph->n_nodes;
  12191. fwrite(&magic, sizeof(uint32_t), 1, fout);
  12192. fwrite(&version, sizeof(uint32_t), 1, fout);
  12193. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  12194. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  12195. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  12196. }
  12197. // leafs
  12198. {
  12199. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12200. const struct ggml_tensor * tensor = cgraph->leafs[i];
  12201. const uint32_t type = tensor->type;
  12202. const uint32_t op = tensor->op;
  12203. const uint32_t n_dims = tensor->n_dims;
  12204. fwrite(&type, sizeof(uint32_t), 1, fout);
  12205. fwrite(&op, sizeof(uint32_t), 1, fout);
  12206. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12207. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12208. const uint64_t ne = tensor->ne[j];
  12209. const uint64_t nb = tensor->nb[j];
  12210. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12211. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12212. }
  12213. // store the pointer address
  12214. {
  12215. const uint64_t ptr = (uint64_t) tensor->data;
  12216. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12217. }
  12218. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12219. // dump the data
  12220. // TODO: pad this to 32 byte boundary
  12221. {
  12222. const size_t size = ggml_nbytes(tensor);
  12223. fwrite(tensor->data, sizeof(char), size, fout);
  12224. }
  12225. }
  12226. }
  12227. // nodes
  12228. {
  12229. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12230. const struct ggml_tensor * tensor = cgraph->nodes[i];
  12231. const uint32_t type = tensor->type;
  12232. const uint32_t op = tensor->op;
  12233. const uint32_t n_dims = tensor->n_dims;
  12234. fwrite(&type, sizeof(uint32_t), 1, fout);
  12235. fwrite(&op, sizeof(uint32_t), 1, fout);
  12236. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12237. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12238. const uint64_t ne = tensor->ne[j];
  12239. const uint64_t nb = tensor->nb[j];
  12240. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12241. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12242. }
  12243. // store the pointer address
  12244. {
  12245. const uint64_t ptr = (uint64_t) tensor->data;
  12246. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12247. }
  12248. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12249. // output the op arguments
  12250. {
  12251. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12252. args[0] = tensor->src0;
  12253. args[1] = tensor->src1;
  12254. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12255. args[2 + j] = tensor->opt[j];
  12256. }
  12257. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12258. if (args[j]) {
  12259. int32_t idx = -1;
  12260. // check if leaf
  12261. {
  12262. for (int k = 0; k < cgraph->n_leafs; ++k) {
  12263. if (args[j] == cgraph->leafs[k]) {
  12264. idx = k;
  12265. break;
  12266. }
  12267. }
  12268. }
  12269. // check if node
  12270. if (idx == -1) {
  12271. for (int k = 0; k < cgraph->n_nodes; ++k) {
  12272. if (args[j] == cgraph->nodes[k]) {
  12273. idx = GGML_MAX_NODES + k;
  12274. break;
  12275. }
  12276. }
  12277. }
  12278. if (idx == -1) {
  12279. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  12280. return;
  12281. }
  12282. fwrite(&idx, sizeof(int32_t), 1, fout);
  12283. } else {
  12284. const int32_t nul = -1;
  12285. fwrite(&nul, sizeof(int32_t), 1, fout);
  12286. }
  12287. }
  12288. }
  12289. }
  12290. }
  12291. fclose(fout);
  12292. }
  12293. }
  12294. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  12295. assert(*ctx_data == NULL);
  12296. assert(*ctx_eval == NULL);
  12297. struct ggml_cgraph result = { 0 };
  12298. struct ggml_tensor * data = NULL;
  12299. // read file into data
  12300. {
  12301. FILE * fin = fopen(fname, "rb");
  12302. if (!fin) {
  12303. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12304. return result;
  12305. }
  12306. size_t fsize = 0;
  12307. fseek(fin, 0, SEEK_END);
  12308. fsize = ftell(fin);
  12309. fseek(fin, 0, SEEK_SET);
  12310. // create the data context
  12311. {
  12312. const size_t overhead = 1*ggml_tensor_overhead();
  12313. struct ggml_init_params params = {
  12314. .mem_size = fsize + overhead,
  12315. .mem_buffer = NULL,
  12316. .no_alloc = false,
  12317. };
  12318. *ctx_data = ggml_init(params);
  12319. if (!*ctx_data) {
  12320. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12321. return result;
  12322. }
  12323. }
  12324. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  12325. fread(data->data, sizeof(char), fsize, fin);
  12326. fclose(fin);
  12327. }
  12328. // populate result
  12329. {
  12330. char * ptr = (char *) data->data;
  12331. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  12332. if (magic != GGML_FILE_MAGIC) {
  12333. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  12334. return result;
  12335. }
  12336. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  12337. if (version != GGML_FILE_VERSION) {
  12338. fprintf(stderr, "%s: invalid version number\n", __func__);
  12339. return result;
  12340. }
  12341. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  12342. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  12343. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  12344. result.n_leafs = n_leafs;
  12345. result.n_nodes = n_nodes;
  12346. // create the data context
  12347. {
  12348. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  12349. struct ggml_init_params params = {
  12350. .mem_size = size_eval + overhead,
  12351. .mem_buffer = NULL,
  12352. .no_alloc = true,
  12353. };
  12354. *ctx_eval = ggml_init(params);
  12355. if (!*ctx_eval) {
  12356. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12357. return result;
  12358. }
  12359. }
  12360. // leafs
  12361. {
  12362. uint32_t type;
  12363. uint32_t op;
  12364. uint32_t n_dims;
  12365. for (uint32_t i = 0; i < n_leafs; ++i) {
  12366. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12367. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12368. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12369. int64_t ne[GGML_MAX_DIMS];
  12370. size_t nb[GGML_MAX_DIMS];
  12371. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12372. uint64_t ne_cur;
  12373. uint64_t nb_cur;
  12374. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12375. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12376. ne[j] = ne_cur;
  12377. nb[j] = nb_cur;
  12378. }
  12379. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12380. tensor->op = (enum ggml_op) op;
  12381. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  12382. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  12383. tensor->data = (void *) ptr;
  12384. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12385. tensor->nb[j] = nb[j];
  12386. }
  12387. result.leafs[i] = tensor;
  12388. ptr += ggml_nbytes(tensor);
  12389. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12390. }
  12391. }
  12392. ggml_set_no_alloc(*ctx_eval, false);
  12393. // nodes
  12394. {
  12395. uint32_t type;
  12396. uint32_t op;
  12397. uint32_t n_dims;
  12398. for (uint32_t i = 0; i < n_nodes; ++i) {
  12399. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12400. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12401. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12402. enum ggml_op eop = (enum ggml_op) op;
  12403. int64_t ne[GGML_MAX_DIMS];
  12404. size_t nb[GGML_MAX_DIMS];
  12405. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12406. uint64_t ne_cur;
  12407. uint64_t nb_cur;
  12408. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12409. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12410. ne[j] = ne_cur;
  12411. nb[j] = nb_cur;
  12412. }
  12413. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  12414. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  12415. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  12416. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12417. // parse args
  12418. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12419. const int32_t arg_idx = ptr_arg_idx[j];
  12420. if (arg_idx == -1) {
  12421. continue;
  12422. }
  12423. if (arg_idx < GGML_MAX_NODES) {
  12424. args[j] = result.leafs[arg_idx];
  12425. } else {
  12426. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  12427. }
  12428. }
  12429. // create the tensor
  12430. // "view" operations are handled differently
  12431. // TODO: handle inplace ops - currently a copy is always made
  12432. struct ggml_tensor * tensor = NULL;
  12433. switch (eop) {
  12434. // TODO: implement other view ops
  12435. case GGML_OP_RESHAPE:
  12436. {
  12437. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  12438. } break;
  12439. case GGML_OP_VIEW:
  12440. {
  12441. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12442. uint64_t offs;
  12443. memcpy(&offs, args[2]->data, sizeof(offs));
  12444. tensor->data = ((char *) tensor->data) + offs;
  12445. } break;
  12446. case GGML_OP_TRANSPOSE:
  12447. {
  12448. tensor = ggml_transpose(*ctx_eval, args[0]);
  12449. } break;
  12450. case GGML_OP_PERMUTE:
  12451. {
  12452. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12453. } break;
  12454. default:
  12455. {
  12456. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12457. tensor->op = eop;
  12458. } break;
  12459. }
  12460. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  12461. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12462. tensor->nb[j] = nb[j];
  12463. }
  12464. tensor->src0 = args[0];
  12465. tensor->src1 = args[1];
  12466. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12467. tensor->opt[j] = args[2 + j];
  12468. }
  12469. result.nodes[i] = tensor;
  12470. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12471. }
  12472. }
  12473. }
  12474. return result;
  12475. }
  12476. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  12477. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  12478. GGML_PRINT("=== GRAPH ===\n");
  12479. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  12480. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  12481. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  12482. for (int i = 0; i < cgraph->n_nodes; i++) {
  12483. struct ggml_tensor * node = cgraph->nodes[i];
  12484. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  12485. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  12486. i,
  12487. node->ne[0], node->ne[1], node->ne[2],
  12488. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  12489. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  12490. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  12491. (double) node->perf_time_us / 1000.0,
  12492. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  12493. }
  12494. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  12495. for (int i = 0; i < cgraph->n_leafs; i++) {
  12496. struct ggml_tensor * node = cgraph->leafs[i];
  12497. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  12498. i,
  12499. node->ne[0], node->ne[1],
  12500. GGML_OP_NAME[node->op]);
  12501. }
  12502. for (int i = 0; i < GGML_OP_COUNT; i++) {
  12503. if (perf_total_per_op_us[i] == 0) {
  12504. continue;
  12505. }
  12506. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  12507. }
  12508. GGML_PRINT("========================================\n");
  12509. }
  12510. // check if node is part of the graph
  12511. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12512. if (cgraph == NULL) {
  12513. return true;
  12514. }
  12515. for (int i = 0; i < cgraph->n_nodes; i++) {
  12516. if (cgraph->nodes[i] == node) {
  12517. return true;
  12518. }
  12519. }
  12520. return false;
  12521. }
  12522. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12523. for (int i = 0; i < cgraph->n_nodes; i++) {
  12524. struct ggml_tensor * parent = cgraph->nodes[i];
  12525. if (parent->grad == node) {
  12526. return parent;
  12527. }
  12528. }
  12529. return NULL;
  12530. }
  12531. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  12532. char color[16];
  12533. FILE * fp = fopen(filename, "w");
  12534. GGML_ASSERT(fp);
  12535. fprintf(fp, "digraph G {\n");
  12536. fprintf(fp, " newrank = true;\n");
  12537. fprintf(fp, " rankdir = LR;\n");
  12538. for (int i = 0; i < gb->n_nodes; i++) {
  12539. struct ggml_tensor * node = gb->nodes[i];
  12540. if (ggml_graph_get_parent(gb, node) != NULL) {
  12541. continue;
  12542. }
  12543. if (node->is_param) {
  12544. snprintf(color, sizeof(color), "yellow");
  12545. } else if (node->grad) {
  12546. if (ggml_graph_find(gf, node)) {
  12547. snprintf(color, sizeof(color), "green");
  12548. } else {
  12549. snprintf(color, sizeof(color), "lightblue");
  12550. }
  12551. } else {
  12552. snprintf(color, sizeof(color), "white");
  12553. }
  12554. fprintf(fp, " \"%p\" [ "
  12555. "style = filled; fillcolor = %s; shape = record; "
  12556. "label=\"",
  12557. (void *) node, color);
  12558. if (strlen(node->name) > 0) {
  12559. fprintf(fp, "%s |", node->name);
  12560. }
  12561. if (node->n_dims == 2) {
  12562. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12563. } else {
  12564. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12565. }
  12566. if (node->grad) {
  12567. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12568. } else {
  12569. fprintf(fp, "\"; ]\n");
  12570. }
  12571. }
  12572. for (int i = 0; i < gb->n_leafs; i++) {
  12573. struct ggml_tensor * node = gb->leafs[i];
  12574. snprintf(color, sizeof(color), "pink");
  12575. fprintf(fp, " \"%p\" [ "
  12576. "style = filled; fillcolor = %s; shape = record; "
  12577. "label=\"<x>",
  12578. (void *) node, color);
  12579. if (strlen(node->name) > 0) {
  12580. fprintf(fp, "%s | ", node->name);
  12581. }
  12582. if (ggml_nelements(node) == 1) {
  12583. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12584. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12585. }
  12586. else {
  12587. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12588. }
  12589. }
  12590. else {
  12591. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12592. }
  12593. fprintf(fp, "\"; ]\n");
  12594. }
  12595. for (int i = 0; i < gb->n_nodes; i++) {
  12596. struct ggml_tensor * node = gb->nodes[i];
  12597. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12598. if (node->src0) {
  12599. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12600. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12601. parent0 ? (void *) parent0 : (void *) node->src0,
  12602. parent0 ? "g" : "x",
  12603. parent ? (void *) parent : (void *) node,
  12604. parent ? "g" : "x",
  12605. parent ? "empty" : "vee",
  12606. parent ? "dashed" : "solid");
  12607. }
  12608. if (node->src1) {
  12609. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12610. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12611. parent1 ? (void *) parent1 : (void *) node->src1,
  12612. parent1 ? "g" : "x",
  12613. parent ? (void *) parent : (void *) node,
  12614. parent ? "g" : "x",
  12615. parent ? "empty" : "vee",
  12616. parent ? "dashed" : "solid");
  12617. }
  12618. }
  12619. for (int i = 0; i < gb->n_leafs; i++) {
  12620. struct ggml_tensor * node = gb->leafs[i];
  12621. if (node->src0) {
  12622. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12623. (void *) node->src0, "x",
  12624. (void *) node, "x");
  12625. }
  12626. if (node->src1) {
  12627. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12628. (void *) node->src1, "x",
  12629. (void *) node, "x");
  12630. }
  12631. }
  12632. fprintf(fp, "}\n");
  12633. fclose(fp);
  12634. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12635. }
  12636. ////////////////////////////////////////////////////////////////////////////////
  12637. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12638. int i = 0;
  12639. for (int p = 0; p < np; ++p) {
  12640. const int64_t ne = ggml_nelements(ps[p]) ;
  12641. // TODO: add function to set tensor from array
  12642. for (int64_t j = 0; j < ne; ++j) {
  12643. ggml_set_f32_1d(ps[p], j, x[i++]);
  12644. }
  12645. }
  12646. }
  12647. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12648. int i = 0;
  12649. for (int p = 0; p < np; ++p) {
  12650. const int64_t ne = ggml_nelements(ps[p]) ;
  12651. // TODO: add function to get all elements at once
  12652. for (int64_t j = 0; j < ne; ++j) {
  12653. x[i++] = ggml_get_f32_1d(ps[p], j);
  12654. }
  12655. }
  12656. }
  12657. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12658. int i = 0;
  12659. for (int p = 0; p < np; ++p) {
  12660. const int64_t ne = ggml_nelements(ps[p]) ;
  12661. // TODO: add function to get all elements at once
  12662. for (int64_t j = 0; j < ne; ++j) {
  12663. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12664. }
  12665. }
  12666. }
  12667. //
  12668. // ADAM
  12669. //
  12670. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12671. //
  12672. static enum ggml_opt_result ggml_opt_adam(
  12673. struct ggml_context * ctx,
  12674. struct ggml_opt_params params,
  12675. struct ggml_tensor * f,
  12676. struct ggml_cgraph * gf,
  12677. struct ggml_cgraph * gb) {
  12678. GGML_ASSERT(ggml_is_scalar(f));
  12679. gf->n_threads = params.n_threads;
  12680. gb->n_threads = params.n_threads;
  12681. // these will store the parameters we want to optimize
  12682. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12683. int np = 0;
  12684. int nx = 0;
  12685. for (int i = 0; i < gf->n_nodes; ++i) {
  12686. if (gf->nodes[i]->is_param) {
  12687. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12688. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12689. ps[np++] = gf->nodes[i];
  12690. nx += ggml_nelements(gf->nodes[i]);
  12691. }
  12692. }
  12693. // constants
  12694. const float alpha = params.adam.alpha;
  12695. const float beta1 = params.adam.beta1;
  12696. const float beta2 = params.adam.beta2;
  12697. const float eps = params.adam.eps;
  12698. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12699. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12700. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12701. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12702. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12703. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12704. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12705. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12706. // initialize
  12707. ggml_vec_set_f32(nx, m, 0.0f);
  12708. ggml_vec_set_f32(nx, v, 0.0f);
  12709. // update view
  12710. ggml_opt_get_params(np, ps, x);
  12711. // compute the function value
  12712. ggml_graph_reset (gf);
  12713. ggml_set_f32 (f->grad, 1.0f);
  12714. ggml_graph_compute(ctx, gb);
  12715. float fx_prev = ggml_get_f32_1d(f, 0);
  12716. if (pf) {
  12717. pf[0] = fx_prev;
  12718. }
  12719. int n_no_improvement = 0;
  12720. float fx_best = fx_prev;
  12721. // run the optimizer
  12722. for (int t = 0; t < params.adam.n_iter; ++t) {
  12723. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12724. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12725. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12726. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12727. for (int i = 0; i < np; ++i) {
  12728. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12729. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12730. }
  12731. const int64_t t_start_wall = ggml_time_us();
  12732. const int64_t t_start_cpu = ggml_cycles();
  12733. UNUSED(t_start_wall);
  12734. UNUSED(t_start_cpu);
  12735. {
  12736. // update the gradient
  12737. ggml_opt_get_grad(np, ps, g1);
  12738. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12739. ggml_vec_scale_f32(nx, m, beta1);
  12740. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12741. // g2 = g1^2
  12742. ggml_vec_sqr_f32 (nx, g2, g1);
  12743. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12744. ggml_vec_scale_f32(nx, v, beta2);
  12745. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12746. // m^hat = m_t / (1 - beta1^t)
  12747. // v^hat = v_t / (1 - beta2^t)
  12748. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12749. ggml_vec_cpy_f32 (nx, mh, m);
  12750. ggml_vec_cpy_f32 (nx, vh, v);
  12751. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12752. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12753. ggml_vec_sqrt_f32 (nx, vh, vh);
  12754. ggml_vec_acc1_f32 (nx, vh, eps);
  12755. ggml_vec_div_f32 (nx, mh, mh, vh);
  12756. ggml_vec_sub_f32 (nx, x, x, mh);
  12757. // update the parameters
  12758. ggml_opt_set_params(np, ps, x);
  12759. }
  12760. ggml_graph_reset (gf);
  12761. ggml_set_f32 (f->grad, 1.0f);
  12762. ggml_graph_compute(ctx, gb);
  12763. const float fx = ggml_get_f32_1d(f, 0);
  12764. // check convergence
  12765. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12766. GGML_PRINT_DEBUG("converged\n");
  12767. return GGML_OPT_OK;
  12768. }
  12769. // delta-based convergence test
  12770. if (pf != NULL) {
  12771. // need at least params.past iterations to start checking for convergence
  12772. if (params.past <= t) {
  12773. const float rate = (pf[t%params.past] - fx)/fx;
  12774. if (fabsf(rate) < params.delta) {
  12775. return GGML_OPT_OK;
  12776. }
  12777. }
  12778. pf[t%params.past] = fx;
  12779. }
  12780. // check for improvement
  12781. if (params.max_no_improvement > 0) {
  12782. if (fx_best > fx) {
  12783. fx_best = fx;
  12784. n_no_improvement = 0;
  12785. } else {
  12786. ++n_no_improvement;
  12787. if (n_no_improvement >= params.max_no_improvement) {
  12788. return GGML_OPT_OK;
  12789. }
  12790. }
  12791. }
  12792. fx_prev = fx;
  12793. {
  12794. const int64_t t_end_cpu = ggml_cycles();
  12795. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12796. UNUSED(t_end_cpu);
  12797. const int64_t t_end_wall = ggml_time_us();
  12798. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12799. UNUSED(t_end_wall);
  12800. }
  12801. }
  12802. return GGML_OPT_DID_NOT_CONVERGE;
  12803. }
  12804. //
  12805. // L-BFGS
  12806. //
  12807. // the L-BFGS implementation below is based on the following implementation:
  12808. //
  12809. // https://github.com/chokkan/liblbfgs
  12810. //
  12811. struct ggml_lbfgs_iteration_data {
  12812. float alpha;
  12813. float ys;
  12814. float * s;
  12815. float * y;
  12816. };
  12817. static enum ggml_opt_result linesearch_backtracking(
  12818. struct ggml_context * ctx,
  12819. const struct ggml_opt_params * params,
  12820. int nx,
  12821. float * x,
  12822. float * fx,
  12823. float * g,
  12824. float * d,
  12825. float * step,
  12826. const float * xp,
  12827. struct ggml_tensor * f,
  12828. struct ggml_cgraph * gf,
  12829. struct ggml_cgraph * gb,
  12830. const int np,
  12831. struct ggml_tensor * ps[]) {
  12832. int count = 0;
  12833. float width = 0.0f;
  12834. float dg = 0.0f;
  12835. float finit = 0.0f;
  12836. float dginit = 0.0f;
  12837. float dgtest = 0.0f;
  12838. const float dec = 0.5f;
  12839. const float inc = 2.1f;
  12840. if (*step <= 0.f) {
  12841. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12842. }
  12843. // compute the initial gradient in the search direction
  12844. ggml_vec_dot_f32(nx, &dginit, g, d);
  12845. // make sure that d points to a descent direction
  12846. if (0 < dginit) {
  12847. return GGML_LINESEARCH_FAIL;
  12848. }
  12849. // initialize local variables
  12850. finit = *fx;
  12851. dgtest = params->lbfgs.ftol*dginit;
  12852. while (true) {
  12853. ggml_vec_cpy_f32(nx, x, xp);
  12854. ggml_vec_mad_f32(nx, x, d, *step);
  12855. // evaluate the function and gradient values
  12856. {
  12857. ggml_opt_set_params(np, ps, x);
  12858. ggml_graph_reset (gf);
  12859. ggml_set_f32 (f->grad, 1.0f);
  12860. ggml_graph_compute(ctx, gb);
  12861. ggml_opt_get_grad(np, ps, g);
  12862. *fx = ggml_get_f32_1d(f, 0);
  12863. }
  12864. ++count;
  12865. if (*fx > finit + (*step)*dgtest) {
  12866. width = dec;
  12867. } else {
  12868. // Armijo condition is satisfied
  12869. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12870. return count;
  12871. }
  12872. ggml_vec_dot_f32(nx, &dg, g, d);
  12873. // check the Wolfe condition
  12874. if (dg < params->lbfgs.wolfe * dginit) {
  12875. width = inc;
  12876. } else {
  12877. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12878. // regular Wolfe conditions
  12879. return count;
  12880. }
  12881. if(dg > -params->lbfgs.wolfe*dginit) {
  12882. width = dec;
  12883. } else {
  12884. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12885. return count;
  12886. }
  12887. return count;
  12888. }
  12889. }
  12890. if (*step < params->lbfgs.min_step) {
  12891. return GGML_LINESEARCH_MINIMUM_STEP;
  12892. }
  12893. if (*step > params->lbfgs.max_step) {
  12894. return GGML_LINESEARCH_MAXIMUM_STEP;
  12895. }
  12896. if (params->lbfgs.max_linesearch <= count) {
  12897. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12898. }
  12899. (*step) *= width;
  12900. }
  12901. return GGML_LINESEARCH_FAIL;
  12902. }
  12903. static enum ggml_opt_result ggml_opt_lbfgs(
  12904. struct ggml_context * ctx,
  12905. struct ggml_opt_params params,
  12906. struct ggml_tensor * f,
  12907. struct ggml_cgraph * gf,
  12908. struct ggml_cgraph * gb) {
  12909. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12910. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12911. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12912. return GGML_OPT_INVALID_WOLFE;
  12913. }
  12914. }
  12915. gf->n_threads = params.n_threads;
  12916. gb->n_threads = params.n_threads;
  12917. const int m = params.lbfgs.m;
  12918. // these will store the parameters we want to optimize
  12919. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12920. int np = 0;
  12921. int nx = 0;
  12922. for (int i = 0; i < gf->n_nodes; ++i) {
  12923. if (gf->nodes[i]->is_param) {
  12924. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12925. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12926. ps[np++] = gf->nodes[i];
  12927. nx += ggml_nelements(gf->nodes[i]);
  12928. }
  12929. }
  12930. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12931. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12932. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12933. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12934. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12935. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12936. float fx = 0.0f; // cost function value
  12937. float xnorm = 0.0f; // ||x||
  12938. float gnorm = 0.0f; // ||g||
  12939. float step = 0.0f;
  12940. // initialize x from the graph nodes
  12941. ggml_opt_get_params(np, ps, x);
  12942. // the L-BFGS memory
  12943. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12944. for (int i = 0; i < m; ++i) {
  12945. lm[i].alpha = 0.0f;
  12946. lm[i].ys = 0.0f;
  12947. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12948. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12949. }
  12950. // evaluate the function value and its gradient
  12951. {
  12952. ggml_opt_set_params(np, ps, x);
  12953. ggml_graph_reset (gf);
  12954. ggml_set_f32 (f->grad, 1.0f);
  12955. ggml_graph_compute(ctx, gb);
  12956. ggml_opt_get_grad(np, ps, g);
  12957. fx = ggml_get_f32_1d(f, 0);
  12958. }
  12959. if (pf) {
  12960. pf[0] = fx;
  12961. }
  12962. float fx_best = fx;
  12963. // search direction = -gradient
  12964. ggml_vec_neg_f32(nx, d, g);
  12965. // ||x||, ||g||
  12966. ggml_vec_norm_f32(nx, &xnorm, x);
  12967. ggml_vec_norm_f32(nx, &gnorm, g);
  12968. if (xnorm < 1.0f) {
  12969. xnorm = 1.0f;
  12970. }
  12971. // already optimized
  12972. if (gnorm/xnorm <= params.lbfgs.eps) {
  12973. return GGML_OPT_OK;
  12974. }
  12975. // initial step
  12976. ggml_vec_norm_inv_f32(nx, &step, d);
  12977. int j = 0;
  12978. int k = 1;
  12979. int ls = 0;
  12980. int end = 0;
  12981. int bound = 0;
  12982. int n_no_improvement = 0;
  12983. float ys = 0.0f;
  12984. float yy = 0.0f;
  12985. float beta = 0.0f;
  12986. while (true) {
  12987. // store the current position and gradient vectors
  12988. ggml_vec_cpy_f32(nx, xp, x);
  12989. ggml_vec_cpy_f32(nx, gp, g);
  12990. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12991. if (ls < 0) {
  12992. // linesearch failed - go back to the previous point and return
  12993. ggml_vec_cpy_f32(nx, x, xp);
  12994. ggml_vec_cpy_f32(nx, g, gp);
  12995. return ls;
  12996. }
  12997. ggml_vec_norm_f32(nx, &xnorm, x);
  12998. ggml_vec_norm_f32(nx, &gnorm, g);
  12999. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  13000. if (xnorm < 1.0f) {
  13001. xnorm = 1.0f;
  13002. }
  13003. if (gnorm/xnorm <= params.lbfgs.eps) {
  13004. // converged
  13005. return GGML_OPT_OK;
  13006. }
  13007. // delta-based convergence test
  13008. if (pf != NULL) {
  13009. // need at least params.past iterations to start checking for convergence
  13010. if (params.past <= k) {
  13011. const float rate = (pf[k%params.past] - fx)/fx;
  13012. if (fabsf(rate) < params.delta) {
  13013. return GGML_OPT_OK;
  13014. }
  13015. }
  13016. pf[k%params.past] = fx;
  13017. }
  13018. // check for improvement
  13019. if (params.max_no_improvement > 0) {
  13020. if (fx < fx_best) {
  13021. fx_best = fx;
  13022. n_no_improvement = 0;
  13023. } else {
  13024. n_no_improvement++;
  13025. if (n_no_improvement >= params.max_no_improvement) {
  13026. return GGML_OPT_OK;
  13027. }
  13028. }
  13029. }
  13030. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  13031. // reached the maximum number of iterations
  13032. return GGML_OPT_DID_NOT_CONVERGE;
  13033. }
  13034. // update vectors s and y:
  13035. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  13036. // y_{k+1} = g_{k+1} - g_{k}.
  13037. //
  13038. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  13039. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  13040. // compute scalars ys and yy:
  13041. // ys = y^t \cdot s -> 1 / \rho.
  13042. // yy = y^t \cdot y.
  13043. //
  13044. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  13045. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  13046. lm[end].ys = ys;
  13047. // find new search direction
  13048. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  13049. bound = (m <= k) ? m : k;
  13050. k++;
  13051. end = (end + 1)%m;
  13052. // initialize search direction with -g
  13053. ggml_vec_neg_f32(nx, d, g);
  13054. j = end;
  13055. for (int i = 0; i < bound; ++i) {
  13056. j = (j + m - 1) % m;
  13057. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  13058. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  13059. lm[j].alpha /= lm[j].ys;
  13060. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  13061. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  13062. }
  13063. ggml_vec_scale_f32(nx, d, ys/yy);
  13064. for (int i = 0; i < bound; ++i) {
  13065. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  13066. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  13067. beta /= lm[j].ys;
  13068. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  13069. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  13070. j = (j + 1)%m;
  13071. }
  13072. step = 1.0;
  13073. }
  13074. return GGML_OPT_DID_NOT_CONVERGE;
  13075. }
  13076. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  13077. struct ggml_opt_params result;
  13078. switch (type) {
  13079. case GGML_OPT_ADAM:
  13080. {
  13081. result = (struct ggml_opt_params) {
  13082. .type = GGML_OPT_ADAM,
  13083. .n_threads = 1,
  13084. .past = 0,
  13085. .delta = 1e-5f,
  13086. .max_no_improvement = 100,
  13087. .print_forward_graph = true,
  13088. .print_backward_graph = true,
  13089. .adam = {
  13090. .n_iter = 10000,
  13091. .alpha = 0.001f,
  13092. .beta1 = 0.9f,
  13093. .beta2 = 0.999f,
  13094. .eps = 1e-8f,
  13095. .eps_f = 1e-5f,
  13096. .eps_g = 1e-3f,
  13097. },
  13098. };
  13099. } break;
  13100. case GGML_OPT_LBFGS:
  13101. {
  13102. result = (struct ggml_opt_params) {
  13103. .type = GGML_OPT_LBFGS,
  13104. .n_threads = 1,
  13105. .past = 0,
  13106. .delta = 1e-5f,
  13107. .max_no_improvement = 0,
  13108. .print_forward_graph = true,
  13109. .print_backward_graph = true,
  13110. .lbfgs = {
  13111. .m = 6,
  13112. .n_iter = 100,
  13113. .max_linesearch = 20,
  13114. .eps = 1e-5f,
  13115. .ftol = 1e-4f,
  13116. .wolfe = 0.9f,
  13117. .min_step = 1e-20f,
  13118. .max_step = 1e+20f,
  13119. .linesearch = GGML_LINESEARCH_DEFAULT,
  13120. },
  13121. };
  13122. } break;
  13123. }
  13124. return result;
  13125. }
  13126. enum ggml_opt_result ggml_opt(
  13127. struct ggml_context * ctx,
  13128. struct ggml_opt_params params,
  13129. struct ggml_tensor * f) {
  13130. bool free_ctx = false;
  13131. if (ctx == NULL) {
  13132. struct ggml_init_params params_ctx = {
  13133. .mem_size = 16*1024*1024,
  13134. .mem_buffer = NULL,
  13135. .no_alloc = false,
  13136. };
  13137. ctx = ggml_init(params_ctx);
  13138. if (ctx == NULL) {
  13139. return GGML_OPT_NO_CONTEXT;
  13140. }
  13141. free_ctx = true;
  13142. }
  13143. enum ggml_opt_result result = GGML_OPT_OK;
  13144. // build forward + backward compute graphs
  13145. struct ggml_cgraph gf = ggml_build_forward (f);
  13146. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  13147. switch (params.type) {
  13148. case GGML_OPT_ADAM:
  13149. {
  13150. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  13151. } break;
  13152. case GGML_OPT_LBFGS:
  13153. {
  13154. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  13155. } break;
  13156. }
  13157. if (params.print_forward_graph) {
  13158. ggml_graph_print (&gf);
  13159. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  13160. }
  13161. if (params.print_backward_graph) {
  13162. ggml_graph_print (&gb);
  13163. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  13164. }
  13165. if (free_ctx) {
  13166. ggml_free(ctx);
  13167. }
  13168. return result;
  13169. }
  13170. ////////////////////////////////////////////////////////////////////////////////
  13171. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13172. assert(k % QK4_0 == 0);
  13173. const int nb = k / QK4_0;
  13174. for (int b = 0; b < n; b += k) {
  13175. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  13176. quantize_row_q4_0_reference(src + b, y, k);
  13177. for (int i = 0; i < nb; i++) {
  13178. for (int j = 0; j < QK4_0; j += 2) {
  13179. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13180. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13181. hist[vi0]++;
  13182. hist[vi1]++;
  13183. }
  13184. }
  13185. }
  13186. return (n/QK4_0*sizeof(block_q4_0));
  13187. }
  13188. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13189. assert(k % QK4_1 == 0);
  13190. const int nb = k / QK4_1;
  13191. for (int b = 0; b < n; b += k) {
  13192. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  13193. quantize_row_q4_1_reference(src + b, y, k);
  13194. for (int i = 0; i < nb; i++) {
  13195. for (int j = 0; j < QK4_1; j += 2) {
  13196. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13197. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13198. hist[vi0]++;
  13199. hist[vi1]++;
  13200. }
  13201. }
  13202. }
  13203. return (n/QK4_1*sizeof(block_q4_1));
  13204. }
  13205. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13206. assert(k % QK5_0 == 0);
  13207. const int nb = k / QK5_0;
  13208. for (int b = 0; b < n; b += k) {
  13209. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  13210. quantize_row_q5_0_reference(src + b, y, k);
  13211. for (int i = 0; i < nb; i++) {
  13212. uint32_t qh;
  13213. memcpy(&qh, &y[i].qh, sizeof(qh));
  13214. for (int j = 0; j < QK5_0; j += 2) {
  13215. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13216. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13217. // cast to 16 bins
  13218. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13219. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13220. hist[vi0]++;
  13221. hist[vi1]++;
  13222. }
  13223. }
  13224. }
  13225. return (n/QK5_0*sizeof(block_q5_0));
  13226. }
  13227. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13228. assert(k % QK5_1 == 0);
  13229. const int nb = k / QK5_1;
  13230. for (int b = 0; b < n; b += k) {
  13231. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  13232. quantize_row_q5_1_reference(src + b, y, k);
  13233. for (int i = 0; i < nb; i++) {
  13234. uint32_t qh;
  13235. memcpy(&qh, &y[i].qh, sizeof(qh));
  13236. for (int j = 0; j < QK5_1; j += 2) {
  13237. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13238. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13239. // cast to 16 bins
  13240. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13241. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13242. hist[vi0]++;
  13243. hist[vi1]++;
  13244. }
  13245. }
  13246. }
  13247. return (n/QK5_1*sizeof(block_q5_1));
  13248. }
  13249. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13250. assert(k % QK8_0 == 0);
  13251. const int nb = k / QK8_0;
  13252. for (int b = 0; b < n; b += k) {
  13253. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  13254. quantize_row_q8_0_reference(src + b, y, k);
  13255. for (int i = 0; i < nb; i++) {
  13256. for (int j = 0; j < QK8_0; ++j) {
  13257. const int8_t vi = y[i].qs[j];
  13258. hist[vi/16 + 8]++;
  13259. }
  13260. }
  13261. }
  13262. return (n/QK8_0*sizeof(block_q8_0));
  13263. }
  13264. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  13265. size_t result = 0;
  13266. switch (type) {
  13267. case GGML_TYPE_Q4_0:
  13268. {
  13269. GGML_ASSERT(start % QK4_0 == 0);
  13270. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  13271. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  13272. } break;
  13273. case GGML_TYPE_Q4_1:
  13274. {
  13275. GGML_ASSERT(start % QK4_1 == 0);
  13276. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  13277. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  13278. } break;
  13279. case GGML_TYPE_Q5_0:
  13280. {
  13281. GGML_ASSERT(start % QK5_0 == 0);
  13282. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  13283. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  13284. } break;
  13285. case GGML_TYPE_Q5_1:
  13286. {
  13287. GGML_ASSERT(start % QK5_1 == 0);
  13288. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  13289. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  13290. } break;
  13291. case GGML_TYPE_Q8_0:
  13292. {
  13293. GGML_ASSERT(start % QK8_0 == 0);
  13294. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  13295. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  13296. } break;
  13297. case GGML_TYPE_Q2_K:
  13298. {
  13299. GGML_ASSERT(start % QK_K == 0);
  13300. block_q2_k * block = (block_q2_k*)dst + start / QK_K;
  13301. result = ggml_quantize_q2_k(src + start, block, n, n, hist);
  13302. } break;
  13303. case GGML_TYPE_Q3_K:
  13304. {
  13305. GGML_ASSERT(start % QK_K == 0);
  13306. block_q3_k * block = (block_q3_k*)dst + start / QK_K;
  13307. result = ggml_quantize_q3_k(src + start, block, n, n, hist);
  13308. } break;
  13309. case GGML_TYPE_Q4_K:
  13310. {
  13311. GGML_ASSERT(start % QK_K == 0);
  13312. block_q4_k * block = (block_q4_k*)dst + start / QK_K;
  13313. result = ggml_quantize_q4_k(src + start, block, n, n, hist);
  13314. } break;
  13315. case GGML_TYPE_Q5_K:
  13316. {
  13317. GGML_ASSERT(start % QK_K == 0);
  13318. block_q5_k * block = (block_q5_k*)dst + start / QK_K;
  13319. result = ggml_quantize_q5_k(src + start, block, n, n, hist);
  13320. } break;
  13321. case GGML_TYPE_Q6_K:
  13322. {
  13323. GGML_ASSERT(start % QK_K == 0);
  13324. block_q6_k * block = (block_q6_k*)dst + start / QK_K;
  13325. result = ggml_quantize_q6_k(src + start, block, n, n, hist);
  13326. } break;
  13327. default:
  13328. assert(false);
  13329. }
  13330. return result;
  13331. }
  13332. ////////////////////////////////////////////////////////////////////////////////
  13333. int ggml_cpu_has_avx(void) {
  13334. #if defined(__AVX__)
  13335. return 1;
  13336. #else
  13337. return 0;
  13338. #endif
  13339. }
  13340. int ggml_cpu_has_avx2(void) {
  13341. #if defined(__AVX2__)
  13342. return 1;
  13343. #else
  13344. return 0;
  13345. #endif
  13346. }
  13347. int ggml_cpu_has_avx512(void) {
  13348. #if defined(__AVX512F__)
  13349. return 1;
  13350. #else
  13351. return 0;
  13352. #endif
  13353. }
  13354. int ggml_cpu_has_avx512_vbmi(void) {
  13355. #if defined(__AVX512VBMI__)
  13356. return 1;
  13357. #else
  13358. return 0;
  13359. #endif
  13360. }
  13361. int ggml_cpu_has_avx512_vnni(void) {
  13362. #if defined(__AVX512VNNI__)
  13363. return 1;
  13364. #else
  13365. return 0;
  13366. #endif
  13367. }
  13368. int ggml_cpu_has_fma(void) {
  13369. #if defined(__FMA__)
  13370. return 1;
  13371. #else
  13372. return 0;
  13373. #endif
  13374. }
  13375. int ggml_cpu_has_neon(void) {
  13376. #if defined(__ARM_NEON)
  13377. return 1;
  13378. #else
  13379. return 0;
  13380. #endif
  13381. }
  13382. int ggml_cpu_has_arm_fma(void) {
  13383. #if defined(__ARM_FEATURE_FMA)
  13384. return 1;
  13385. #else
  13386. return 0;
  13387. #endif
  13388. }
  13389. int ggml_cpu_has_f16c(void) {
  13390. #if defined(__F16C__)
  13391. return 1;
  13392. #else
  13393. return 0;
  13394. #endif
  13395. }
  13396. int ggml_cpu_has_fp16_va(void) {
  13397. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  13398. return 1;
  13399. #else
  13400. return 0;
  13401. #endif
  13402. }
  13403. int ggml_cpu_has_wasm_simd(void) {
  13404. #if defined(__wasm_simd128__)
  13405. return 1;
  13406. #else
  13407. return 0;
  13408. #endif
  13409. }
  13410. int ggml_cpu_has_blas(void) {
  13411. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  13412. return 1;
  13413. #else
  13414. return 0;
  13415. #endif
  13416. }
  13417. int ggml_cpu_has_cublas(void) {
  13418. #if defined(GGML_USE_CUBLAS)
  13419. return 1;
  13420. #else
  13421. return 0;
  13422. #endif
  13423. }
  13424. int ggml_cpu_has_clblast(void) {
  13425. #if defined(GGML_USE_CLBLAST)
  13426. return 1;
  13427. #else
  13428. return 0;
  13429. #endif
  13430. }
  13431. int ggml_cpu_has_gpublas(void) {
  13432. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  13433. }
  13434. int ggml_cpu_has_sse3(void) {
  13435. #if defined(__SSE3__)
  13436. return 1;
  13437. #else
  13438. return 0;
  13439. #endif
  13440. }
  13441. int ggml_cpu_has_vsx(void) {
  13442. #if defined(__POWER9_VECTOR__)
  13443. return 1;
  13444. #else
  13445. return 0;
  13446. #endif
  13447. }
  13448. ////////////////////////////////////////////////////////////////////////////////