| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086 |
- // This file defines tests for various GGML ops and backends.
- // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
- // For the backward pass it asserts that the gradients from backpropagation are consistent
- // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
- // It is also possible to check the performance ("perf" mode).
- //
- // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
- // and section 3 defines which tests to run.
- // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
- // then go to section 3 and add an instantiation of your struct.
- // ##############################
- // ## Section 1: General Setup ##
- // ##############################
- #include <ggml.h>
- #include <ggml-alloc.h>
- #include <ggml-backend.h>
- #include <ggml-cpp.h>
- #include <algorithm>
- #include <array>
- #include <cfloat>
- #include <cinttypes>
- #include <cstdarg>
- #include <cstdint>
- #include <cstdio>
- #include <cstdlib>
- #include <cstring>
- #include <ctime>
- #include <future>
- #include <memory>
- #include <random>
- #include <regex>
- #include <string>
- #include <thread>
- #include <vector>
- static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
- size_t nels = ggml_nelements(tensor);
- std::vector<float> data(nels);
- {
- // parallel initialization
- static const size_t n_threads = std::thread::hardware_concurrency();
- // static RNG initialization (revisit if n_threads stops being constant)
- static std::vector<std::default_random_engine> generators = []() {
- std::random_device rd;
- std::vector<std::default_random_engine> vec;
- vec.reserve(n_threads);
- //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
- for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
- return vec;
- }();
- auto init_thread = [&](size_t ith, size_t start, size_t end) {
- std::uniform_real_distribution<float> distribution(min, max);
- auto & gen = generators[ith];
- for (size_t i = start; i < end; i++) {
- data[i] = distribution(gen);
- }
- };
- std::vector<std::future<void>> tasks;
- tasks.reserve(n_threads);
- for (size_t i = 0; i < n_threads; i++) {
- size_t start = i*nels/n_threads;
- size_t end = (i+1)*nels/n_threads;
- tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
- }
- for (auto & t : tasks) {
- t.get();
- }
- }
- if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
- ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
- } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
- GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
- // dummy importance matrix
- std::vector<float> imatrix(tensor->ne[0], 1.0f);
- const float * im = imatrix.data();
- if (!ggml_quantize_requires_imatrix(tensor->type)) {
- // when the imatrix is optional, we want to test both quantization with and without imatrix
- // use one of the random numbers to decide
- if (data[0] > 0.5f*(min + max)) {
- im = nullptr;
- }
- }
- std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
- {
- // parallel quantization by block
- size_t blck_size = ggml_blck_size(tensor->type);
- size_t n_blocks = nels / blck_size;
- auto quantize_thread = [&](size_t start, size_t end) {
- ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
- start * blck_size, end - start, blck_size, im);
- };
- const size_t min_blocks_per_thread = 1;
- const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
- std::max<size_t>(1, n_blocks / min_blocks_per_thread));
- std::vector<std::future<void>> tasks;
- tasks.reserve(n_threads);
- for (size_t i = 0; i < n_threads; i++) {
- size_t start = i*n_blocks/n_threads;
- size_t end = (i+1)*n_blocks/n_threads;
- tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
- }
- for (auto & t : tasks) {
- t.get();
- }
- }
- ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
- } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
- // This is going to create some weird integers though.
- ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
- } else if (tensor->type == GGML_TYPE_I64) {
- // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
- const size_t nbytes_half = ggml_nbytes(tensor)/2;
- ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
- ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
- } else {
- GGML_ABORT("fatal error");
- }
- }
- static std::vector<float> tensor_to_float(const ggml_tensor * t) {
- std::vector<float> tv;
- tv.reserve(ggml_nelements(t));
- std::vector<uint8_t> buf(ggml_nbytes(t));
- ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
- const auto * tt = ggml_get_type_traits(t->type);
- size_t bs = ggml_blck_size(t->type);
- std::vector<float> vq(ggml_blck_size(t->type));
- bool quantized = ggml_is_quantized(t->type);
- // access elements by index to avoid gaps in views
- for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
- for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
- for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
- for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
- size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
- if (t->type == GGML_TYPE_F16) {
- tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
- } else if (t->type == GGML_TYPE_BF16) {
- tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
- } else if (t->type == GGML_TYPE_F32) {
- tv.push_back(*(float *) &buf[i]);
- } else if (t->type == GGML_TYPE_I64) {
- tv.push_back((float)*(int64_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I32) {
- tv.push_back((float)*(int32_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I16) {
- tv.push_back((float)*(int16_t *) &buf[i]);
- } else if (t->type == GGML_TYPE_I8) {
- tv.push_back((float)*(int8_t *) &buf[i]);
- } else if (quantized) {
- tt->to_float(&buf[i], vq.data(), bs);
- tv.insert(tv.end(), vq.begin(), vq.end());
- } else {
- GGML_ABORT("fatal error");
- }
- }
- }
- }
- }
- return tv;
- }
- // normalized mean squared error = mse(a, b) / mse(a, 0)
- static double nmse(const float * a, const float * b, size_t n) {
- double mse_a_b = 0.0;
- double mse_a_0 = 0.0;
- for (size_t i = 0; i < n; i++) {
- float a_i = a[i];
- float b_i = b[i];
- mse_a_b += (a_i - b_i) * (a_i - b_i);
- mse_a_0 += a_i * a_i;
- }
- return mse_a_b / mse_a_0;
- }
- // maximum absolute asymmetry between a and b
- // asymmetry: (a - b) / (a + b)
- // This is more stable than relative error if one of the values fluctuates towards zero.
- // n: number of values to compare.
- // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
- // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
- static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
- double sum = 0.0f;
- size_t nvalid = 0;
- for (size_t i = 0; i < n; i++) {
- if (!expected_vals.empty()) {
- bool matches_any = false;
- for (const float & ev : expected_vals) {
- if (fabsf(a[i] - ev) < 1e-3f) {
- matches_any = true;
- break;
- }
- }
- if (!matches_any) {
- continue;
- }
- }
- const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
- sum += fabsf(asymm);
- nvalid++;
- }
- return sum/nvalid;
- }
- // utils for printing the variables of the test cases
- template<typename T>
- static std::string var_to_str(const T & x) {
- return std::to_string(x);
- }
- template<typename T, size_t N>
- static std::string var_to_str(const T (&x)[N]) {
- std::string s = "[";
- for (size_t i = 0; i < N; i++) {
- if (i > 0) {
- s += ",";
- }
- s += var_to_str(x[i]);
- }
- s += "]";
- return s;
- }
- template<typename T, size_t N>
- static std::string var_to_str(const std::array<T, N> & x) {
- std::string s = "[";
- for (size_t i = 0; i < N; i++) {
- if (i > 0) {
- s += ",";
- }
- s += var_to_str(x[i]);
- }
- s += "]";
- return s;
- }
- static std::string var_to_str(ggml_type type) {
- return ggml_type_name(type);
- }
- static std::string var_to_str(ggml_prec prec) {
- return prec == GGML_PREC_F32 ? "f32" : "def";
- }
- static std::string var_to_str(ggml_op_pool pool) {
- switch (pool) {
- case GGML_OP_POOL_AVG: return "avg";
- case GGML_OP_POOL_MAX: return "max";
- default: return std::to_string(pool);
- }
- }
- static std::string var_to_str(ggml_scale_mode mode) {
- switch (mode) {
- case GGML_SCALE_MODE_NEAREST: return "nearest";
- case GGML_SCALE_MODE_BILINEAR: return "bilinear";
- default: return std::to_string(mode);
- }
- }
- #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
- #define VARS_TO_STR1(a) VAR_TO_STR(a)
- #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
- #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
- #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
- #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
- #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
- #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
- #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
- #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
- #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
- #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
- #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
- #ifdef GGML_USE_SYCL
- static bool inline _isinf(float f) {
- return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
- }
- #else
- static bool inline _isinf(float f) { return std::isinf(f); }
- #endif
- // accept FLT_MAX as infinity
- static bool isinf_or_max(float f) {
- return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
- }
- static bool ggml_is_view_op(enum ggml_op op) {
- return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
- }
- enum test_mode {
- MODE_TEST,
- MODE_PERF,
- MODE_GRAD,
- MODE_SUPPORT,
- };
- // Output format support similar to llama-bench
- enum output_formats { CONSOLE, SQL, CSV };
- static const char * output_format_str(output_formats format) {
- switch (format) {
- case CONSOLE:
- return "console";
- case SQL:
- return "sql";
- case CSV:
- return "csv";
- default:
- GGML_ABORT("invalid output format");
- }
- }
- static bool output_format_from_str(const std::string & s, output_formats & format) {
- if (s == "console") {
- format = CONSOLE;
- } else if (s == "sql") {
- format = SQL;
- } else if (s == "csv") {
- format = CSV;
- } else {
- return false;
- }
- return true;
- }
- // Test result structure for SQL output
- struct test_result {
- std::string test_time;
- std::string build_commit;
- std::string backend_name;
- std::string op_name;
- std::string op_params;
- std::string test_mode;
- bool supported;
- bool passed;
- std::string error_message;
- double time_us;
- double flops;
- double bandwidth_gb_s;
- size_t memory_kb;
- int n_runs;
- std::string device_description;
- std::string backend_reg_name;
- test_result() {
- // Initialize with default values
- time_us = 0.0;
- flops = 0.0;
- bandwidth_gb_s = 0.0;
- memory_kb = 0;
- n_runs = 0;
- supported = false;
- passed = false;
- // Set test time
- time_t t = time(NULL);
- char buf[32];
- std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
- test_time = buf;
- // Set build info
- build_commit = ggml_commit();
- }
- test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params,
- const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "",
- double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0,
- int n_runs = 0, const std::string & device_description = "", const std::string & backend_reg_name = "") :
- backend_name(backend_name),
- op_name(op_name),
- op_params(op_params),
- test_mode(test_mode),
- supported(supported),
- passed(passed),
- error_message(error_message),
- time_us(time_us),
- flops(flops),
- bandwidth_gb_s(bandwidth_gb_s),
- memory_kb(memory_kb),
- n_runs(n_runs),
- device_description(device_description),
- backend_reg_name(backend_reg_name) {
- // Set test time
- time_t t = time(NULL);
- char buf[32];
- std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
- test_time = buf;
- // Set build info
- build_commit = ggml_commit();
- }
- static const std::vector<std::string> & get_fields() {
- static const std::vector<std::string> fields = {
- "test_time", "build_commit", "backend_name", "op_name", "op_params", "test_mode", "supported",
- "passed", "error_message", "time_us", "flops", "bandwidth_gb_s", "memory_kb", "n_runs",
- "device_description", "backend_reg_name"
- };
- return fields;
- }
- enum field_type { STRING, BOOL, INT, FLOAT };
- static field_type get_field_type(const std::string & field) {
- if (field == "supported" || field == "passed") {
- return BOOL;
- }
- if (field == "memory_kb" || field == "n_runs") {
- return INT;
- }
- if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s") {
- return FLOAT;
- }
- return STRING;
- }
- std::vector<std::string> get_values() const {
- return { test_time,
- build_commit,
- backend_name,
- op_name,
- op_params,
- test_mode,
- std::to_string(supported),
- std::to_string(passed),
- error_message,
- std::to_string(time_us),
- std::to_string(flops),
- std::to_string(bandwidth_gb_s),
- std::to_string(memory_kb),
- std::to_string(n_runs),
- device_description,
- backend_reg_name };
- }
- };
- // Printer classes for different output formats
- enum class test_status_t { NOT_SUPPORTED, OK, FAIL };
- struct test_operation_info {
- std::string op_name;
- std::string op_params;
- std::string backend_name;
- test_status_t status = test_status_t::OK;
- std::string failure_reason;
- // Additional information fields that were previously in separate structs
- std::string error_component;
- std::string error_details;
- // Gradient info
- int64_t gradient_index = -1;
- std::string gradient_param_name;
- float gradient_value = 0.0f;
- // MAA error info
- double maa_error = 0.0;
- double maa_threshold = 0.0;
- // Flags for different types of information
- bool has_error = false;
- bool has_gradient_info = false;
- bool has_maa_error = false;
- bool is_compare_failure = false;
- bool is_large_tensor_skip = false;
- test_operation_info() = default;
- test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name,
- test_status_t status = test_status_t::OK, const std::string & failure_reason = "") :
- op_name(op_name),
- op_params(op_params),
- backend_name(backend_name),
- status(status),
- failure_reason(failure_reason) {}
- // Set error information
- void set_error(const std::string & component, const std::string & details) {
- has_error = true;
- error_component = component;
- error_details = details;
- if (status == test_status_t::OK) {
- status = test_status_t::FAIL;
- }
- }
- // Set gradient information
- void set_gradient_info(int64_t index, const std::string & param_name, float value) {
- has_gradient_info = true;
- gradient_index = index;
- gradient_param_name = param_name;
- gradient_value = value;
- if (status == test_status_t::OK) {
- status = test_status_t::FAIL;
- }
- }
- // Set MAA error information
- void set_maa_error(double error, double threshold) {
- has_maa_error = true;
- maa_error = error;
- maa_threshold = threshold;
- if (status == test_status_t::OK) {
- status = test_status_t::FAIL;
- }
- }
- // Set compare failure
- void set_compare_failure() {
- is_compare_failure = true;
- if (status == test_status_t::OK) {
- status = test_status_t::FAIL;
- }
- }
- // Set large tensor skip
- void set_large_tensor_skip() { is_large_tensor_skip = true; }
- };
- struct test_summary_info {
- size_t tests_passed;
- size_t tests_total;
- bool is_backend_summary = false; // true for backend summary, false for test summary
- test_summary_info() = default;
- test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) :
- tests_passed(tests_passed),
- tests_total(tests_total),
- is_backend_summary(is_backend_summary) {}
- };
- struct testing_start_info {
- size_t device_count;
- testing_start_info() = default;
- testing_start_info(size_t device_count) : device_count(device_count) {}
- };
- struct backend_init_info {
- size_t device_index;
- size_t total_devices;
- std::string device_name;
- bool skipped = false;
- std::string skip_reason;
- std::string description;
- size_t memory_total_mb = 0;
- size_t memory_free_mb = 0;
- bool has_memory_info = false;
- backend_init_info() = default;
- backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false,
- const std::string & skip_reason = "", const std::string & description = "",
- size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) :
- device_index(device_index),
- total_devices(total_devices),
- device_name(device_name),
- skipped(skipped),
- skip_reason(skip_reason),
- description(description),
- memory_total_mb(memory_total_mb),
- memory_free_mb(memory_free_mb),
- has_memory_info(has_memory_info) {}
- };
- struct backend_status_info {
- std::string backend_name;
- test_status_t status;
- backend_status_info() = default;
- backend_status_info(const std::string & backend_name, test_status_t status) :
- backend_name(backend_name),
- status(status) {}
- };
- struct overall_summary_info {
- size_t backends_passed;
- size_t backends_total;
- bool all_passed;
- overall_summary_info() = default;
- overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) :
- backends_passed(backends_passed),
- backends_total(backends_total),
- all_passed(all_passed) {}
- };
- struct printer {
- virtual ~printer() {}
- FILE * fout = stdout;
- virtual void print_header() {}
- virtual void print_test_result(const test_result & result) = 0;
- virtual void print_footer() {}
- virtual void print_operation(const test_operation_info & info) { (void) info; }
- virtual void print_summary(const test_summary_info & info) { (void) info; }
- virtual void print_testing_start(const testing_start_info & info) { (void) info; }
- virtual void print_backend_init(const backend_init_info & info) { (void) info; }
- virtual void print_backend_status(const backend_status_info & info) { (void) info; }
- virtual void print_overall_summary(const overall_summary_info & info) { (void) info; }
- };
- struct console_printer : public printer {
- void print_test_result(const test_result & result) override {
- if (result.test_mode == "test") {
- print_test_console(result);
- } else if (result.test_mode == "perf") {
- print_perf_console(result);
- } else if (result.test_mode == "support") {
- print_support_console(result);
- }
- }
- void print_operation(const test_operation_info & info) override {
- printf(" %s(%s): ", info.op_name.c_str(), info.op_params.c_str());
- fflush(stdout);
- // Handle large tensor skip first
- if (info.is_large_tensor_skip) {
- printf("skipping large tensors for speed \n");
- return;
- }
- // Handle not supported status
- if (info.status == test_status_t::NOT_SUPPORTED) {
- if (!info.failure_reason.empty()) {
- printf("not supported [%s]\n", info.failure_reason.c_str());
- } else {
- printf("not supported [%s]\n", info.backend_name.c_str());
- }
- return;
- }
- // Handle errors and additional information
- if (info.has_error) {
- if (info.error_component == "allocation") {
- fprintf(stderr, "failed to allocate tensors [%s] ", info.backend_name.c_str());
- } else if (info.error_component == "backend") {
- fprintf(stderr, " Failed to initialize %s backend\n", info.backend_name.c_str());
- } else {
- fprintf(stderr, "Error in %s: %s\n", info.error_component.c_str(), info.error_details.c_str());
- }
- }
- // Handle gradient info
- if (info.has_gradient_info) {
- printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", info.op_name.c_str(), info.gradient_index,
- info.gradient_param_name.c_str(), info.gradient_value);
- }
- // Handle MAA error
- if (info.has_maa_error) {
- printf("[%s] MAA = %.9f > %.9f ", info.op_name.c_str(), info.maa_error, info.maa_threshold);
- }
- // Handle compare failure
- if (info.is_compare_failure) {
- printf("compare failed ");
- }
- // Print final status
- if (info.status == test_status_t::OK) {
- printf("\033[1;32mOK\033[0m\n");
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- }
- void print_summary(const test_summary_info & info) override {
- if (info.is_backend_summary) {
- printf("%zu/%zu backends passed\n", info.tests_passed, info.tests_total);
- } else {
- printf(" %zu/%zu tests passed\n", info.tests_passed, info.tests_total);
- }
- }
- void print_backend_status(const backend_status_info & info) override {
- printf(" Backend %s: ", info.backend_name.c_str());
- if (info.status == test_status_t::OK) {
- printf("\033[1;32mOK\033[0m\n");
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- }
- void print_testing_start(const testing_start_info & info) override {
- printf("Testing %zu devices\n\n", info.device_count);
- }
- void print_backend_init(const backend_init_info & info) override {
- printf("Backend %zu/%zu: %s\n", info.device_index + 1, info.total_devices, info.device_name.c_str());
- if (info.skipped) {
- printf(" %s\n", info.skip_reason.c_str());
- return;
- }
- if (!info.description.empty()) {
- printf(" Device description: %s\n", info.description.c_str());
- }
- if (info.has_memory_info) {
- printf(" Device memory: %zu MB (%zu MB free)\n", info.memory_total_mb, info.memory_free_mb);
- }
- printf("\n");
- }
- void print_overall_summary(const overall_summary_info & info) override {
- printf("%zu/%zu backends passed\n", info.backends_passed, info.backends_total);
- if (info.all_passed) {
- printf("\033[1;32mOK\033[0m\n");
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- }
- private:
- void print_test_console(const test_result & result) {
- printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
- fflush(stdout);
- if (!result.supported) {
- printf("not supported [%s] ", result.backend_name.c_str());
- printf("\n");
- return;
- }
- if (result.passed) {
- printf("\033[1;32mOK\033[0m\n");
- } else {
- printf("\033[1;31mFAIL\033[0m\n");
- }
- }
- void print_perf_console(const test_result & result) {
- int len = printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
- fflush(stdout);
- if (!result.supported) {
- printf("not supported\n");
- return;
- }
- // align while also leaving some margin for variations in parameters
- int align = 8;
- int last = (len + align - 1) / align * align;
- if (last - len < 5) {
- last += align;
- }
- printf("%*s", last - len, "");
- printf(" %8d runs - %8.2f us/run - ", result.n_runs, result.time_us);
- if (result.flops > 0) {
- auto format_flops = [](double flops) -> std::string {
- char buf[256];
- if (flops >= 1e12) {
- snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
- } else if (flops >= 1e9) {
- snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
- } else if (flops >= 1e6) {
- snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
- } else {
- snprintf(buf, sizeof(buf), "%6.2f kFLOP", flops / 1e3);
- }
- return buf;
- };
- uint64_t op_flops_per_run = result.flops * result.time_us / 1e6;
- printf("%s/run - \033[1;34m%sS\033[0m", format_flops(op_flops_per_run).c_str(),
- format_flops(result.flops).c_str());
- } else {
- printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", result.memory_kb, result.bandwidth_gb_s);
- }
- printf("\n");
- }
- void print_support_console(const test_result & result) {
- printf(" %s(%s): ", result.op_name.c_str(), result.op_params.c_str());
- fflush(stdout);
- if (result.supported) {
- printf("\033[1;32mSUPPORTED\033[0m\n");
- } else {
- printf("\033[1;31mNOT SUPPORTED\033[0m\n");
- }
- }
- };
- struct sql_printer : public printer {
- static std::string get_sql_field_type(const std::string & field) {
- switch (test_result::get_field_type(field)) {
- case test_result::STRING:
- return "TEXT";
- case test_result::BOOL:
- case test_result::INT:
- return "INTEGER";
- case test_result::FLOAT:
- return "REAL";
- default:
- GGML_ABORT("invalid field type");
- }
- }
- void print_header() override {
- std::vector<std::string> fields = test_result::get_fields();
- fprintf(fout, "CREATE TABLE IF NOT EXISTS test_backend_ops (\n");
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, " %s %s%s\n", fields[i].c_str(), get_sql_field_type(fields[i]).c_str(),
- i < fields.size() - 1 ? "," : "");
- }
- fprintf(fout, ");\n\n");
- }
- void print_test_result(const test_result & result) override {
- fprintf(fout, "INSERT INTO test_backend_ops (");
- std::vector<std::string> fields = test_result::get_fields();
- for (size_t i = 0; i < fields.size(); i++) {
- fprintf(fout, "%s%s", fields[i].c_str(), i < fields.size() - 1 ? ", " : "");
- }
- fprintf(fout, ") VALUES (");
- std::vector<std::string> values = result.get_values();
- for (size_t i = 0; i < values.size(); i++) {
- fprintf(fout, "'%s'%s", values[i].c_str(), i < values.size() - 1 ? ", " : "");
- }
- fprintf(fout, ");\n");
- }
- };
- struct csv_printer : public printer {
- void print_header() override {
- std::vector<std::string> fields = test_result::get_fields();
- for (size_t i = 0; i < fields.size(); i++) {
- printf("\"%s\"%s", fields[i].c_str(), i < fields.size() - 1 ? "," : "");
- }
- printf("\n");
- }
- void print_test_result(const test_result & result) override {
- std::vector<std::string> values = result.get_values();
- for (size_t i = 0; i < values.size(); i++) {
- // Escape quotes and wrap in quotes for CSV
- std::string escaped_value = values[i];
- size_t pos = 0;
- while ((pos = escaped_value.find("\"", pos)) != std::string::npos) {
- escaped_value.replace(pos, 1, "\"\"");
- pos += 2;
- }
- printf("\"%s\"%s", escaped_value.c_str(), i < values.size() - 1 ? "," : "");
- }
- printf("\n");
- }
- };
- static std::unique_ptr<printer> create_printer(output_formats format) {
- switch (format) {
- case CONSOLE:
- return std::make_unique<console_printer>();
- case SQL:
- return std::make_unique<sql_printer>();
- case CSV:
- return std::make_unique<csv_printer>();
- }
- GGML_ABORT("invalid output format");
- }
- struct test_case {
- virtual ~test_case() {}
- virtual std::string op_desc(ggml_tensor * t) {
- return ggml_op_desc(t);
- }
- virtual std::string vars() {
- return "";
- }
- virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
- virtual double max_nmse_err() {
- return 1e-7;
- }
- virtual double max_maa_err() {
- return 1e-4;
- }
- virtual float grad_eps() {
- return 1e-1f;
- }
- // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
- // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
- virtual bool grad_precise() {
- return false;
- }
- // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
- virtual int64_t grad_nmax() {
- return 10000;
- }
- // No effect if empty.
- // If not empty, skip all gradient checks where the numerical result does not match any of the values.
- // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
- virtual std::vector<float> grad_expect() {
- return {};
- }
- virtual void initialize_tensors(ggml_context * ctx) {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t);
- }
- }
- virtual size_t op_size(ggml_tensor * t) {
- size_t size = ggml_nbytes(t);
- // add source tensors
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (t->src[i] != NULL) {
- size += ggml_nbytes(t->src[i]);
- }
- }
- return size;
- }
- virtual uint64_t op_flops(ggml_tensor * t) {
- GGML_UNUSED(t);
- return 0;
- }
- virtual bool run_whole_graph() { return false; }
- ggml_cgraph * gf = nullptr;
- ggml_cgraph * gb = nullptr;
- static const int sentinel_size = 1024;
- test_mode mode;
- std::vector<ggml_tensor *> sentinels;
- void add_sentinel(ggml_context * ctx) {
- if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) {
- return;
- }
- ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
- ggml_format_name(sentinel, "sent_%zu", sentinels.size());
- sentinels.push_back(sentinel);
- }
- // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
- ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
- ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
- ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
- ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
- ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
- add_sentinel(ctx);
- return t;
- }
- ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
- ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
- add_sentinel(ctx);
- return t;
- }
- bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name, printer * output_printer) {
- mode = MODE_TEST;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context * ctx = ggml_init(params);
- GGML_ASSERT(ctx);
- gf = ggml_new_graph(ctx);
- // pre-graph sentinel
- add_sentinel(ctx);
- ggml_tensor * out = build_graph(ctx);
- std::string current_op_name = op_desc(out);
- if (op_name != nullptr && current_op_name != op_name) {
- //printf(" %s: skipping\n", op_desc(out).c_str());
- ggml_free(ctx);
- return true;
- }
- // check if the backends support the ops
- bool supported = true;
- for (ggml_backend_t backend : {backend1, backend2}) {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (!ggml_backend_supports_op(backend, t)) {
- supported = false;
- break;
- }
- }
- }
- if (!supported) {
- // Create test result for unsupported operation
- test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test",
- false, false, "not supported");
- if (output_printer) {
- output_printer->print_test_result(result);
- }
- ggml_free(ctx);
- return true;
- }
- // post-graph sentinel
- add_sentinel(ctx);
- // allocate
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
- if (buf == NULL) {
- printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
- ggml_free(ctx);
- return false;
- }
- // build graph
- ggml_build_forward_expand(gf, out);
- // add sentinels as graph nodes so that they are checked in the callback
- for (ggml_tensor * sentinel : sentinels) {
- ggml_graph_add_node(gf, sentinel);
- }
- // randomize tensors
- initialize_tensors(ctx);
- // compare
- struct callback_userdata {
- bool ok;
- double max_err;
- ggml_backend_t backend1;
- ggml_backend_t backend2;
- };
- callback_userdata ud {
- true,
- max_nmse_err(),
- backend1,
- backend2
- };
- auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
- callback_userdata * ud = (callback_userdata *) user_data;
- const char * bn1 = ggml_backend_name(ud->backend1);
- const char * bn2 = ggml_backend_name(ud->backend2);
- if (t1->op == GGML_OP_NONE) {
- // sentinels must be unchanged
- std::vector<uint8_t> t1_data(ggml_nbytes(t1));
- std::vector<uint8_t> t2_data(ggml_nbytes(t2));
- ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
- ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
- if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
- printf("sentinel mismatch: %s ", t1->name);
- ud->ok = false;
- return true;
- }
- }
- std::vector<float> f1 = tensor_to_float(t1);
- std::vector<float> f2 = tensor_to_float(t2);
- for (size_t i = 0; i < f1.size(); i++) {
- // check for nans
- if (std::isnan(f1[i]) || std::isnan(f2[i])) {
- printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- // check for infs: both must be inf of the same sign, or both must be finite
- if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
- if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
- if (std::signbit(f1[i]) != std::signbit(f2[i])) {
- printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- } else {
- printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
- ud->ok = false;
- return true;
- }
- }
- }
- double err = nmse(f1.data(), f2.data(), f1.size());
- if (err > ud->max_err) {
- printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
- //for (int i = 0; i < (int) f1.size(); i++) {
- // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
- //}
- //printf("\n");
- //exit(1);
- ud->ok = false;
- }
- return true;
- GGML_UNUSED(index);
- };
- const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
- ggml_backend_buffer_free(buf);
- ggml_free(ctx);
- // Create test result
- bool test_passed = ud.ok && cmp_ok;
- std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed");
- test_result result(ggml_backend_name(backend1), current_op_name, vars(), "test", supported, test_passed,
- error_msg);
- if (output_printer) {
- output_printer->print_test_result(result);
- }
- return test_passed;
- }
- bool eval_perf(ggml_backend_t backend, const char * op_name, printer * output_printer) {
- mode = MODE_PERF;
- static const size_t graph_nodes = 8192;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context_ptr ctx(ggml_init(params)); // smart ptr
- GGML_ASSERT(ctx);
- ggml_tensor * out = build_graph(ctx.get());
- std::string current_op_name = op_desc(out);
- if (op_name != nullptr && current_op_name != op_name) {
- //printf(" %s: skipping\n", op_desc(out).c_str());
- return true;
- }
- if (!ggml_backend_supports_op(backend, out)) {
- // Create test result for unsupported performance test
- test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", false, false,
- "not supported");
- output_printer->print_test_result(result);
- return true;
- }
- // allocate
- ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
- if (buf == NULL) {
- printf("failed to allocate tensors\n");
- return false;
- }
- // randomize tensors
- initialize_tensors(ctx.get());
- // build graph
- ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
- ggml_build_forward_expand(gf, out);
- // warmup run
- ggml_status status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- // determine number of runs
- int n_runs;
- bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
- if (op_flops(out) > 0) {
- // based on flops
- const uint64_t GFLOP = 1000 * 1000 * 1000;
- const uint64_t target_flops_cpu = 8ULL * GFLOP;
- const uint64_t target_flops_gpu = 100ULL * GFLOP;
- uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
- n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
- } else {
- // based on memory size
- const size_t GB = 1ULL << 30;
- const size_t target_size_cpu = 8 * GB;
- const size_t target_size_gpu = 32 * GB;
- size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
- n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
- }
- // duplicate the op
- for (int i = 1; i < n_runs; i++) {
- ggml_graph_add_node(gf, out);
- }
- // calculate memory
- size_t mem = n_runs * op_size(out);
- auto tensor_op_size = [](ggml_tensor * t) {
- size_t size = ggml_nbytes(t);
- // add source tensors
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (t->src[i] != NULL) {
- size += ggml_nbytes(t->src[i]);
- }
- }
- return size;
- };
- for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
- if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
- continue;
- }
- mem += tensor_op_size(ggml_graph_node(gf, i));
- }
- // run
- int64_t total_time_us = 0;
- int64_t total_mem = 0;
- int total_runs = 0;
- do {
- int64_t start_time = ggml_time_us();
- ggml_status status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- int64_t end_time = ggml_time_us();
- total_time_us += end_time - start_time;
- total_mem += mem;
- total_runs += n_runs;
- } while (total_time_us < 1000*1000); // run for at least 1 second
- // Create test result
- double avg_time_us = (double) total_time_us / total_runs;
- double calculated_flops = (op_flops(out) > 0) ? (op_flops(out) * total_runs) / (total_time_us / 1e6) : 0.0;
- double calculated_bandwidth =
- (op_flops(out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0;
- size_t calculated_memory_kb = op_size(out) / 1024;
- test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf", true, true, "", avg_time_us,
- calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs);
- if (output_printer) {
- output_printer->print_test_result(result);
- }
- return true;
- }
- bool eval_support(ggml_backend_t backend, const char * op_name, printer * output_printer) {
- mode = MODE_SUPPORT;
- static const size_t graph_nodes = 8192;
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context_ptr ctx(ggml_init(params)); // smart ptr
- GGML_ASSERT(ctx);
- ggml_tensor * out = build_graph(ctx.get());
- std::string current_op_name = op_desc(out);
- if (op_name != nullptr && current_op_name != op_name) {
- return true;
- }
- bool supported = ggml_backend_supports_op(backend, out);
- std::string device_desc = ggml_backend_dev_description(ggml_backend_get_device(backend));
- std::string backend_reg_name = ggml_backend_reg_name(ggml_backend_dev_backend_reg(ggml_backend_get_device(backend)));
- test_result result(ggml_backend_name(backend), current_op_name, vars(), "support", supported, supported,
- supported ? "yes" : "no", 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name);
- output_printer->print_test_result(result);
- return true;
- }
- bool eval_grad(ggml_backend_t backend, const char * op_name, printer * output_printer) {
- mode = MODE_GRAD;
- const std::vector<float> expect = grad_expect();
- ggml_init_params params = {
- /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
- /* .mem_base = */ NULL,
- /* .no_alloc = */ true,
- };
- ggml_context_ptr ctx(ggml_init(params)); // smart ptr
- GGML_ASSERT(ctx);
- gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
- gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
- ggml_tensor * out = build_graph(ctx.get());
- if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
- return true;
- }
- if (out->type != GGML_TYPE_F32) {
- output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
- test_status_t::NOT_SUPPORTED,
- out->name + std::string("->type != FP32")));
- return true;
- }
- // Print operation info first
- output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend)));
- // check if the backend supports the ops
- bool supported = true;
- bool any_params = false;
- std::string failure_reason;
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (!ggml_backend_supports_op(backend, t)) {
- supported = false;
- failure_reason = ggml_backend_name(backend);
- break;
- }
- if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
- any_params = true;
- if (t->type != GGML_TYPE_F32) {
- supported = false;
- failure_reason = std::string(t->name) + "->type != FP32";
- break;
- }
- }
- }
- if (!any_params) {
- supported = false;
- failure_reason = op_desc(out);
- }
- if (!supported) {
- output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
- test_status_t::NOT_SUPPORTED, failure_reason));
- return true;
- }
- int64_t ngrads = 0;
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (t->flags & GGML_TENSOR_FLAG_PARAM) {
- ngrads += ggml_nelements(t);
- }
- }
- if (ngrads > grad_nmax()) {
- test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
- info.set_large_tensor_skip();
- output_printer->print_operation(info);
- return true;
- }
- if (!ggml_is_scalar(out)) {
- out = ggml_sum(ctx.get(), out);
- ggml_set_name(out, "sum_of_out");
- }
- ggml_set_loss(out);
- ggml_build_forward_expand(gf, out);
- ggml_graph_cpy(gf, gb);
- ggml_build_backward_expand(ctx.get(), gb, nullptr);
- if (expect.size() != 1 || expect[0] != 0.0f) {
- GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
- }
- }
- for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (!ggml_backend_supports_op(backend, t)) {
- output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
- test_status_t::NOT_SUPPORTED,
- ggml_backend_name(backend)));
- supported = false;
- break;
- }
- if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
- output_printer->print_operation(test_operation_info(op_desc(out), vars(), ggml_backend_name(backend),
- test_status_t::NOT_SUPPORTED,
- std::string(t->name) + "->type != FP32"));
- supported = false;
- break;
- }
- }
- if (!supported) {
- return true;
- }
- // allocate
- ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
- if (buf == NULL) {
- test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
- info.set_error("allocation", "");
- output_printer->print_operation(info);
- return false;
- }
- initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
- ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
- ggml_status status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- status = ggml_backend_graph_compute(backend, gb);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- bool ok = true;
- for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
- if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
- continue;
- }
- const char * bn = ggml_backend_name(backend);
- const int64_t ne = ggml_nelements(t);
- std::vector<float> ga;
- struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
- if (grad) {
- ga = tensor_to_float(grad);
- } else {
- ga.resize(ne); // default value is 0.0f
- }
- for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
- // check for nans
- if (!std::isfinite(ga[i])) {
- test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
- info.set_gradient_info(i, bn, ga[i]);
- output_printer->print_operation(info);
- ok = false;
- break;
- }
- }
- if (!ok) {
- break;
- }
- std::vector<float> gn(ne); // gradient numeric
- GGML_ASSERT(ga.size() == gn.size());
- std::vector<float> x0 = tensor_to_float(t); // original t data
- GGML_ASSERT(ggml_is_scalar(out));
- GGML_ASSERT(out->type == GGML_TYPE_F32);
- const float eps = grad_eps();
- for (int64_t i = 0; i < ne; ++i) {
- const float xiu = x0[i] + 1.0f*eps; // x, index i, up
- const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
- const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
- const float xid = x0[i] - 1.0f*eps; // x, index i, down
- float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
- ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
- ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
- if (grad_precise()) {
- ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
- ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
- status = ggml_backend_graph_compute(backend, gf);
- if (status != GGML_STATUS_SUCCESS) {
- fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
- return false;
- }
- ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
- gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
- } else {
- gn[i] = (fu - fd) / (2.0f*eps);
- }
- ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
- }
- const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
- if (err > max_maa_err()) {
- test_operation_info info(op_desc(out), vars(), ggml_backend_name(backend));
- info.set_maa_error(err, max_maa_err());
- output_printer->print_operation(info);
- ok = false;
- break;
- }
- if (!ok) {
- break;
- }
- }
- // Create final test result
- test_operation_info final_info(op_desc(out), vars(), ggml_backend_name(backend));
- if (!ok) {
- final_info.set_compare_failure();
- }
- final_info.status = ok ? test_status_t::OK : test_status_t::FAIL;
- output_printer->print_operation(final_info);
- if (ok) {
- return true;
- }
- return false;
- }
- };
- // ###################################
- // ## Section 2: GGML Op Defintions ##
- // ###################################
- // The following is an example showing the bare minimum for creating a test for a GGML op.
- // GGML_OP_EXAMPLE
- struct test_example : public test_case {
- // Always define these 2 or variants thereof:
- const ggml_type type; // The type of the input tensors.
- const std::array<int64_t, 4> ne; // The shape of the input tensors.
- // For some ops it's necessary to define multiple types or shapes for the inputs.
- // Or they may need additional parameters.
- // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
- // In most cases these are just the properties of the struct that you defined above.
- // This is needed for info prints.
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- // Define a constructor for the struct.
- // In most cases it will be sufficient to have the same arguments as the struct has properties
- // and just use initializer lists.
- test_example(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- // Define how a simple GGML compute graph can be constructed for the new GGML op.
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // Step 1: create input tensors that don't depend on any other tensors:
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- // Step 2: use the op that you want to test in the GGML compute graph.
- ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
- ggml_set_name(out, "out");
- // Step 3: return the output tensor.
- return out;
- }
- // In order to also check the gradients for your op, add calls like ggml_set_param(a)
- // immediately after you create the tensors.
- // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
- };
- // GGML_OP_UNARY
- struct test_unary : public test_case {
- const ggml_unary_op op;
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int v; // view (1 : non-contiguous a)
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, v);
- }
- test_unary(ggml_unary_op op,
- ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
- int v = 0)
- : op(op), type(type), ne_a(ne_a), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
- op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- if (grad_supported) {
- ggml_set_param(a);
- }
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- if (grad_supported) {
- ggml_set_param(a);
- }
- ggml_set_name(a, "a");
- }
- ggml_tensor * out = ggml_unary(ctx, a, op);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // test extended range of values to check for NaNs in GELU
- init_tensor_uniform(t, -150.f, 150.f);
- }
- }
- float grad_eps() override {
- return 15.0f;
- }
- std::vector<float> grad_expect() override {
- if (op == GGML_UNARY_OP_ABS) {
- return {-1.0f, 1.0f};
- }
- if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
- return {0.0f};
- }
- if (op == GGML_UNARY_OP_RELU) {
- return {0.0f, 1.0f};
- }
- return {};
- }
- };
- // GGML_OP_GLU
- struct test_glu : public test_case {
- const ggml_glu_op op;
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int v; // view (1 : non-contiguous a)
- bool swapped;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, v, swapped);
- }
- test_glu(ggml_glu_op op,
- ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
- int v = 0,
- bool swapped = false)
- : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- }
- ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // test extended range of values to check for NaNs in GELU
- init_tensor_uniform(t, -150.f, 150.f);
- }
- }
- };
- struct test_glu_split : public test_case {
- const ggml_glu_op op;
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int v; // view (1 : non-contiguous a)
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, v) + ",split";
- }
- test_glu_split(ggml_glu_op op,
- ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
- int v = 0)
- : op(op), type(type), ne_a(ne_a), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a;
- ggml_tensor * b;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(b);
- ggml_set_name(b, "b");
- b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
- ggml_set_name(a, "view_of_b");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- b = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_param(b);
- ggml_set_name(b, "b");
- }
- ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // test extended range of values to check for NaNs in GELU
- init_tensor_uniform(t, -150.f, 150.f);
- }
- }
- };
- // GGML_OP_GET_ROWS
- struct test_get_rows : public test_case {
- const ggml_type type;
- const int n; // cols
- const int m; // rows
- const int r; // rows to get
- const int b; // batch size
- const bool v; // view (non-contiguous src1)
- std::string vars() override {
- return VARS_TO_STR6(type, n, m, r, b, v);
- }
- test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
- : type(type), n(n), m(m), r(r), b(b), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
- ggml_set_name(in, "in");
- ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
- ggml_set_name(rows, "rows");
- if (v) {
- rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
- ggml_set_name(rows, "view_of_rows");
- }
- const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
- if (grad_supported) {
- ggml_set_param(in);
- // rows is a constant input -> no gradients
- }
- ggml_tensor * out = ggml_get_rows(ctx, in, rows);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // rows
- std::vector<int> data(r*b);
- for (int i = 0; i < r*b; i++) {
- data[i] = rand() % m;
- }
- ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_GET_ROWS_BACK
- struct test_get_rows_back : public test_case {
- const ggml_type type;
- const int n; // cols
- const int m; // rows
- const int r; // rows to get
- const int b; // batch size
- const bool v; // view (non-contiguous src1)
- std::string vars() override {
- return VARS_TO_STR6(type, n, m, r, b, v);
- }
- test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
- : type(type), n(n), m(m), r(r), b(b), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
- ggml_set_name(in_forward, "in_forward");
- ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
- ggml_set_name(rows, "rows");
- if (v) {
- rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
- ggml_set_name(rows, "view_of_rows");
- }
- ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
- ggml_set_name(grad, "grad");
- ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // rows
- std::vector<int> data(r*b);
- for (int i = 0; i < r*b; i++) {
- data[i] = rand() % m;
- }
- ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_SET_ROWS
- struct test_set_rows : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 2> nr23; // broadcast only dims 2 and 3
- const int r; // rows to set
- const bool v; // view (non-contiguous src1)
- std::string vars() override {
- return VARS_TO_STR5(type, ne, nr23, r, v);
- }
- test_set_rows(ggml_type type,
- std::array<int64_t, 4> ne,
- std::array<int, 2> nr23,
- int r, bool v = false)
- : type(type), ne(ne), nr23(nr23), r(r), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
- ggml_set_name(dst, "dst");
- ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
- ggml_set_name(src, "src");
- ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, r, ne[2], ne[3]);
- ggml_set_name(row_idxs, "row_idxs");
- if (v) {
- src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
- row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
- ggml_set_name(row_idxs, "view_of_rows");
- }
- ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I64) {
- if (ggml_is_view_op(t->op)) {
- continue;
- }
- for (int i2 = 0; i2 < t->ne[2]; i2++) {
- for (int i1 = 0; i1 < t->ne[1]; i1++) {
- // generate a shuffled subset of row indices
- std::vector<int64_t> data(ne[1]);
- for (int i = 0; i < ne[1]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- data.resize(t->ne[0]);
- const size_t offs = i1*t->nb[1] + i2*t->nb[2];
- ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
- }
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_ARGMAX
- struct test_argmax : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_argmax(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 100, 1, 1})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_argmax(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_F32) {
- // initialize with unique values to avoid ties
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<float> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- double max_nmse_err() override {
- return 0.0;
- }
- };
- // GGML_OP_COUNT_EQUAL
- struct test_count_equal : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_count_equal(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {4, 500, 1, 1})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * a_argmax = ggml_argmax(ctx, a);
- ggml_set_name(a_argmax, "a_argmax");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- ggml_tensor * b_argmax = ggml_argmax(ctx, b);
- ggml_set_name(b_argmax, "b_argmax");
- ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
- ggml_set_name(out, "out");
- return out;
- }
- double max_nmse_err() override {
- return 0.0;
- }
- };
- // GGML_OP_REPEAT
- struct test_repeat : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, nr);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 2;
- }
- test_repeat(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- std::array<int, 4> nr = {2, 2, 2, 2})
- : type(type), ne(ne), nr(nr) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_set_name(target, "target");
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(src);
- ggml_set_name(src, "src");
- ggml_tensor * out = ggml_repeat(ctx, src, target);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_REPEAT_BACK
- struct test_repeat_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- const bool v; // whether src is a noncontiguous view
- std::string vars() override {
- return VARS_TO_STR4(type, ne, nr, v);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 2;
- }
- test_repeat_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {8, 6, 4, 2},
- std::array<int, 4> nr = {2, 2, 2, 2},
- bool v = false)
- : type(type), ne(ne), nr(nr), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_set_name(src, "src");
- if (v) {
- GGML_ASSERT(ne[0] % 2 == 0);
- GGML_ASSERT(ne[1] % 2 == 0);
- GGML_ASSERT(ne[2] % 2 == 0);
- GGML_ASSERT(ne[3] % 2 == 0);
- GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
- GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
- GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
- GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
- const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
- const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
- const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
- const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
- src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
- }
- ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(target, "target");
- ggml_tensor * out = ggml_repeat_back(ctx, src, target);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_DUP
- struct test_dup : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> permute;
- bool _use_permute;
- std::string vars() override {
- std::string v = VARS_TO_STR2(type, ne);
- if (_use_permute) v += "," + VAR_TO_STR(permute);
- return v;
- }
- test_dup(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 20, 1},
- std::array<int64_t, 4> permute = {0, 0, 0, 0})
- : type(type), ne(ne), permute(permute),
- _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(src);
- ggml_set_name(src, "src");
- if (_use_permute) {
- src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
- ggml_set_name(src, "src_permuted");
- }
- ggml_tensor * out = ggml_dup(ctx, src);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SET
- struct test_set : public test_case {
- const ggml_type type_src;
- const ggml_type type_dst;
- const std::array<int64_t, 4> ne;
- const int dim;
- std::string vars() override {
- return VARS_TO_STR4(type_src, type_dst, ne, dim);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
- }
- test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
- : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
- ggml_set_param(src);
- ggml_set_name(src, "src");
- auto ne_dst = ne;
- for (int i = 0; i < dim; ++i) {
- ne_dst[i] *= 2;
- }
- ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
- ggml_set_param(dst);
- ggml_set_name(dst, "dst");
- size_t offset = 0;
- for (int i = 0; i < dim; ++i) {
- offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
- }
- ggml_tensor * out = ggml_set(ctx, dst, src,
- // The backward pass requires setting a contiguous region:
- src->nb[1], src->nb[2], src->nb[3], offset);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CPY
- struct test_cpy : public test_case {
- const ggml_type type_src;
- const ggml_type type_dst;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> permute_src;
- const std::array<int64_t, 4> permute_dst;
- bool _src_use_permute;
- bool _dst_use_permute;
- std::string vars() override {
- return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
- }
- double max_nmse_err() override {
- return 1e-6;
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
- }
- test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 1},
- std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
- std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
- : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
- _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
- _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
- ggml_set_param(src);
- ggml_set_name(src, "src");
- if (_src_use_permute) {
- src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
- ggml_set_name(src, "src_permuted");
- }
- ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
- ggml_set_name(dst, "dst");
- if (_dst_use_permute) {
- dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
- ggml_set_name(dst, "dst_permuted");
- }
- ggml_tensor * out = ggml_cpy(ctx, src, dst);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONT
- struct test_cont : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cont(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 1})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(src);
- ggml_set_name(src, "src");
- src = ggml_transpose(ctx, src);
- ggml_set_name(src, "src_transposed");
- ggml_tensor * out = ggml_cont(ctx, src);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ADD
- // GGML_OP_SUB
- // GGML_OP_MUL
- // GGML_OP_DIV
- struct test_bin_bcast : public test_case {
- using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
- op_t op;
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int, 4> nr;
- int nf; // number of fused ops, nf == 1 -> single op (no fusion)
- bool run_whole_graph() override { return true; }
- std::string vars() override {
- return VARS_TO_STR4(type, ne, nr, nf);
- }
- size_t op_size(ggml_tensor * t) override {
- return ggml_nbytes(t) * 3;
- }
- test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 1, 1},
- std::array<int, 4> nr = {1, 2, 1, 1},
- int nf = 1)
- : op(op), type(type), ne(ne), nr(nr), nf(nf) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- GGML_ASSERT(nf <= 8);
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
- ggml_set_name(a, "a");
- ggml_tensor * b[8];
- for (int i = 0; i < nf; ++i) {
- b[i] = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b[i], (std::string("b") + std::to_string(i)).c_str());
- }
- // The backward pass supports broadcasting only for GGML_ADD:
- const bool grad_supported = op == ggml_add && ggml_are_same_shape(a, b[0]) && nf == 1;
- if (grad_supported) {
- ggml_set_param(a);
- ggml_set_param(b[0]);
- }
- ggml_tensor * out = a;
- for (int i = 0; i < nf; ++i) {
- out = op(ctx, out, b[i]);
- }
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (op == ggml_mul || op == ggml_div) {
- // MUL and DIV have numerical issues around zero:
- init_tensor_uniform(t, 0.9f, 1.1f);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- float grad_eps() override {
- return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
- }
- bool grad_precise() override {
- return op == ggml_div;
- }
- double max_maa_err() override {
- return op == ggml_add ? 1e-4 : 1e-3;
- }
- };
- // GGML_OP_ADD1
- struct test_add1 : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_add1(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
- // ggml_set_param(b); // TODO: implement
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_add1(ctx, a, b);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
- }
- };
- // GGML_OP_SCALE
- struct test_scale : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float scale;
- float bias;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, scale, bias);
- }
- test_scale(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 10, 10},
- float scale = 2.0f,
- float bias = 0.0f)
- : type(type), ne(ne), scale(scale), bias(bias) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_scale_bias(ctx, a, scale, bias);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SILU_BACK
- struct test_silu_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float eps;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, eps);
- }
- test_silu_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- float eps = 1e-6f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(grad, "grad");
- ggml_tensor * out = ggml_silu_back(ctx, a, grad);
- ggml_set_name(out, "out");
- return out;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_NORM
- struct test_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const bool v; // whether a is a non-contiguous view
- const float eps;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, v, eps);
- }
- test_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- bool v = false,
- float eps = 1e-6f)
- : type(type), ne(ne), v(v), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- if (v) {
- a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view of a");
- }
- ggml_tensor * out = ggml_norm(ctx, a, eps);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_RMS_NORM
- struct test_rms_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const bool v; // whether a is a non-contiguous view
- const float eps;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, v, eps);
- }
- test_rms_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- bool v = false,
- float eps = 1e-6f)
- : type(type), ne(ne), v(v), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- if (v) {
- a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view of a");
- }
- ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.f, 10.f);
- }
- }
- float grad_eps() override {
- return 1.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_RMS_NORM_BACK
- struct test_rms_norm_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const float eps;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, eps);
- }
- test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- float eps = 1e-6f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.f, 10.f);
- }
- }
- };
- // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD
- struct test_rms_norm_mul_add : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const float eps;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "RMS_NORM_MUL_ADD";
- }
- bool run_whole_graph() override { return true; }
- std::string vars() override {
- return VARS_TO_STR3(type, ne, eps);
- }
- test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 5, 4, 3},
- float eps = 1e-6f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_tensor * c = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_set_param(b);
- ggml_set_name(b, "b");
- ggml_set_param(c);
- ggml_set_name(c, "c");
- // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul
- a = ggml_add(ctx, ggml_add(ctx, a, b), c);
- ggml_tensor * out = ggml_add(ctx, ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b), c);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -10.f, 10.f);
- }
- }
- float grad_eps() override {
- return 1.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_SSM_CONV
- struct test_ssm_conv : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const std::array<int64_t, 4> ne_b;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, ne_b);
- }
- test_ssm_conv(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
- std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
- : type(type), ne_a(ne_a), ne_b(ne_b) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
- ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
- return out;
- }
- };
- // GGML_OP_SSM_SCAN
- struct test_ssm_scan : public test_case {
- const ggml_type type;
- const int64_t d_state;
- const int64_t head_dim;
- const int64_t n_head;
- const int64_t n_group;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
- }
- test_ssm_scan(ggml_type type = GGML_TYPE_F32,
- int64_t d_state = 32,
- int64_t head_dim = 1, // non-zero for Mamba-2
- int64_t n_head = 32,
- int64_t n_group = 1,
- int64_t n_seq_tokens = 32,
- int64_t n_seqs = 32)
- : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
- ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
- ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
- ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
- ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
- ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
- ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
- ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
- return out;
- }
- // similar to test_mul_mat_id
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // ids
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<int32_t> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_RWKV_WKV6
- struct test_rwkv_wkv6 : public test_case {
- const ggml_type type;
- const int64_t head_count;
- const int64_t head_size;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
- }
- test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t n_tokens = n_seq_tokens * n_seqs;
- ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
- ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
- ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
- return out;
- }
- };
- // GGML_OP_GATED_LINEAR_ATTN
- struct test_gla : public test_case {
- const ggml_type type;
- const int64_t head_count;
- const int64_t head_size;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
- }
- test_gla(ggml_type type = GGML_TYPE_F32,
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t n_tokens = n_seq_tokens * n_seqs;
- ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
- ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
- return out;
- }
- };
- // GGML_OP_RWKV_WKV7
- struct test_rwkv_wkv7 : public test_case {
- const ggml_type type;
- const int64_t head_count;
- const int64_t head_size;
- const int64_t n_seq_tokens;
- const int64_t n_seqs;
- std::string vars() override {
- return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
- }
- test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
- int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
- : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t n_tokens = n_seq_tokens * n_seqs;
- ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
- // Outputs may become NaN with long seqlen without these normalization
- a = ggml_l2_norm(ctx, a, 1e-7F);
- b = ggml_l2_norm(ctx, b, 1e-7F);
- ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
- ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
- return out;
- }
- };
- // GGML_OP_MUL_MAT
- struct test_mul_mat : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int64_t m;
- const int64_t n;
- const int64_t k;
- const std::array<int64_t, 2> bs; // dims 3 and 4
- const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
- const std::array<int64_t, 4> per; // permutation of dimensions
- const bool v; // whether a and b are non-contiguous views
- std::string vars() override {
- return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- int64_t grad_nmax() override {
- return 20000;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
- }
- test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int64_t m = 32, int64_t n = 32, int64_t k = 32,
- std::array<int64_t, 2> bs = {10, 10},
- std::array<int64_t, 2> nr = {2, 2},
- std::array<int64_t, 4> per = {0, 1, 2, 3},
- bool v = false)
- : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // C^T = A * B^T: (k, m) * (k, n) => (m, n)
- ggml_tensor * a;
- ggml_tensor * b;
- const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
- if (npermuted > 0) {
- GGML_ASSERT(npermuted == 2);
- GGML_ASSERT(!v); // not handled
- GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
- GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
- // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
- const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
- const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
- a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
- b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
- if (!ggml_is_quantized(type_a)) {
- if (bs[1] == 1 && nr[1] == 1) {
- ggml_set_param(a);
- }
- ggml_set_param(b);
- }
- ggml_set_name(a, "a");
- ggml_set_name(b, "b");
- a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
- b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
- ggml_set_name(a, "a_permuted");
- ggml_set_name(b, "b_permuted");
- } else {
- if (v) {
- a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
- b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
- if (!ggml_is_quantized(type_a)) {
- if (bs[1] == 1 && nr[1] == 1) {
- ggml_set_param(a);
- }
- ggml_set_param(b);
- }
- a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
- b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
- } else {
- a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
- b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
- if (!ggml_is_quantized(type_a)) {
- if (bs[1] == 1 && nr[1] == 1) {
- ggml_set_param(a);
- }
- ggml_set_param(b);
- }
- }
- ggml_set_name(a, "a");
- ggml_set_name(b, "b");
- }
- ggml_tensor * out = ggml_mul_mat(ctx, a, b);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_MUL_MAT_ID
- struct test_mul_mat_id : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int n_mats;
- const int n_used;
- const bool b; // broadcast b matrix
- const int64_t m;
- const int64_t n;
- const int64_t k;
- std::string vars() override {
- return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return 2 * m * k * n * n_used;
- }
- test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int n_mats = 8, int n_used = 2, bool b = false,
- int64_t m = 32, int64_t n = 32, int64_t k = 32)
- : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
- m(m), n(n), k(k) {
- GGML_ASSERT(n_used <= n_mats);
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- // C^T = A * B^T: (k, m) * (k, n) => (m, n)
- ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
- ggml_set_name(as, "as");
- ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
- ggml_set_name(ids, "ids");
- if (n_used != n_mats) {
- ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
- ggml_set_name(ids, "view_of_ids");
- }
- ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- if (ggml_is_view_op(t->op)) { continue; }
- // ids
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<int32_t> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i % n_mats;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
- }
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // GGML_OP_OUT_PROD
- struct test_out_prod : public test_case {
- const ggml_type type_a;
- const ggml_type type_b;
- const int64_t m;
- const int64_t n;
- const int64_t k;
- const std::array<int64_t, 2> bs; // dims 3 and 4
- const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
- const bool trans_b;
- std::string vars() override {
- return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
- int64_t m = 32, int64_t n = 32, int64_t k = 32,
- std::array<int64_t, 2> bs = {10, 10},
- std::array<int64_t, 2> nr = {2, 2},
- bool trans_b = false)
- : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
- ggml_set_name(a, "a");
- ggml_tensor * b;
- if (trans_b) {
- b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
- b = ggml_transpose(ctx, b);
- } else {
- b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
- }
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_out_prod(ctx, a, b);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SQR
- struct test_sqr : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sqr(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sqr(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
- }
- };
- // GGML_OP_SQRT
- struct test_sqrt : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sqrt(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 3, 3, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sqrt(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- // fill with positive values
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, 50.0f, 100.0f);
- }
- }
- float grad_eps() override {
- return 20.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_LOG
- struct test_log : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_log(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_log(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
- init_tensor_uniform(t, 0.9f, 1.1f);
- }
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_SIN
- struct test_sin : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sin(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sin(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
- }
- }
- double max_maa_err() override {
- return 1e-3;
- }
- float grad_eps() override {
- return 0.2f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_COS
- struct test_cos : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cos(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 2, 2, 2})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_cos(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
- }
- }
- double max_maa_err() override {
- return 1e-3;
- }
- float grad_eps() override {
- return 0.2f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_CLAMP
- struct test_clamp : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- float min;
- float max;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, min, max);
- }
- test_clamp(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- float min = -0.5f, float max = 0.5f)
- : type(type), ne(ne), min(min), max(max) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_clamp(ctx, a, min, max);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 1e-2f;
- }
- std::vector<float> grad_expect() override {
- return {0.0f, 1.0f};
- }
- };
- // GGML_OP_DIAG_MASK_INF
- struct test_diag_mask_inf : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int n_past;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, n_past);
- }
- test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 10, 3, 2},
- int n_past = 5)
- : type(type), ne(ne), n_past(n_past) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_SOFT_MAX
- struct test_soft_max : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const bool mask;
- const ggml_type m_prec;
- const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
- const float scale;
- const float max_bias;
- std::string vars() override {
- return VARS_TO_STR7(type, ne, mask, m_prec, nr23, scale, max_bias);
- }
- // the 1024 test with bias occasionally fails:
- // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
- virtual double max_nmse_err() override {
- return 1e-6;
- }
- test_soft_max(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- bool mask = false,
- ggml_type m_prec = GGML_TYPE_F32,
- std::array<int64_t, 2> nr23 = {1, 1},
- float scale = 1.0f,
- float max_bias = 0.0f)
- : type(type), ne(ne), mask(mask), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * mask = nullptr;
- if (this->mask) {
- mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(mask, "mask");
- }
- ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
- ggml_set_name(out, "out");
- return out;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_SOFT_MAX_BACK
- struct test_soft_max_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const float scale;
- const float max_bias;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, scale, max_bias);
- }
- test_soft_max_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3},
- float scale = 1.0f,
- float max_bias = 0.0f)
- : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ROPE + GGML_OP_ROPE_BACK
- struct test_rope : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- int n_dims;
- int mode;
- int n_ctx; // used to generate positions
- float fs; // freq_scale
- float ef; // ext_factor
- float af; // attn_factor
- bool ff;
- int v; // view (1 : non-contiguous a)
- bool forward;
- std::string vars() override {
- // forward can be inferred from the op, does not need to be printed
- return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
- }
- test_rope(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
- int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
- float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
- : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- if (forward) {
- ggml_set_param(a);
- }
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- if (forward) {
- ggml_set_param(a);
- }
- ggml_set_name(a, "a");
- }
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- ggml_tensor * pos;
- if (is_mrope || is_vision) {
- pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
- } else {
- pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
- }
- ggml_set_name(pos, "pos");
- ggml_tensor * freq = nullptr;
- if (ff) {
- freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
- ggml_set_name(freq, "freq");
- }
- ggml_tensor * out;
- if (is_mrope) {
- if (is_vision) {
- GGML_ASSERT(n_dims/4 > 0);
- int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
- if (forward) {
- out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- } else {
- out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- } else {
- GGML_ASSERT(n_dims/3 > 0);
- int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
- if (forward) {
- out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- } else {
- out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- }
- } else {
- if (forward) {
- out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- } else {
- out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
- }
- // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
- }
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // pos
- const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
- std::vector<int> data(num_pos_ids);
- for (int i = 0; i < num_pos_ids; i++) {
- data[i] = rand() % n_ctx;
- }
- ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
- } else {
- if (t->ne[0] == n_dims/2) {
- // frequency factors in the range [0.9f, 1.1f]
- init_tensor_uniform(t, 0.9f, 1.1f);
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- }
- double max_maa_err() override {
- return 1e-3;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_POOL2D
- struct test_pool2d : public test_case {
- enum ggml_op_pool pool_type;
- const ggml_type type_input;
- const std::array<int64_t, 4> ne_input;
- // kernel size
- const int k0;
- const int k1;
- // stride
- const int s0;
- const int s1;
- // padding
- const int p0;
- const int p1;
- std::string vars() override {
- return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
- }
- test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
- ggml_type type_input = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
- int k0 = 3, int k1 = 3,
- int s0 = 1, int s1 = 1,
- int p0 = 1, int p1 = 1)
- : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
- ggml_set_param(input);
- ggml_set_name(input, "input");
- ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONV_TRANSPOSE_1D
- struct test_conv_transpose_1d : public test_case {
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- const int s0; // stride
- const int p0; // padding
- const int d0; // dilation
- std::string vars() override {
- return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
- }
- test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
- std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
- int s0 = 1, int p0 = 0, int d0 = 1)
- : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONV_TRANSPOSE_2D
- struct test_conv_transpose_2d : public test_case {
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- const int stride;
- std::string vars() override {
- return VARS_TO_STR3(ne_input, ne_kernel, stride);
- }
- test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
- std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
- int stride = 1)
- : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_IM2COL
- struct test_im2col : public test_case {
- const ggml_type type_input;
- const ggml_type type_kernel;
- const ggml_type dst_type;
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- // stride
- const int s0;
- const int s1;
- // padding
- const int p0;
- const int p1;
- // dilation
- const int d0;
- const int d1;
- // mode
- const bool is_2D;
- std::string vars() override {
- return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
- }
- test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
- std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
- int s0 = 1, int s1 = 1,
- int p0 = 1, int p1 = 1,
- int d0 = 1, int d1 = 1,
- bool is_2D = true)
- : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
- ggml_set_param(input);
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // CONV_2D
- struct test_conv_2d : public test_case {
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- const int stride0;
- const int stride1;
- const int padding0;
- const int padding1;
- const int dilation0;
- const int dilation1;
- // Whether the inputs are contiguous in the channel dim or the width dim
- const bool cwhn;
- // If true, the direct CONV_2D will be used in the graph, otherwise it
- // uses ggml_conv_2d:
- // * if the program is called with -o CONV_2D_DIRECT_IMPL, the
- // CONV_2D graph will be built, while
- // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the
- // IM2COL -> MUL_MM graph will be built.
- std::string vars() override {
- return VARS_TO_STR9(ne_input, ne_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn);
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- // Just counting matmul costs:
- // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops
- // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d)
- auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
- };
- int64_t W = ne_input[0];
- int64_t H = ne_input[1];
- int64_t KW = ne_kernel[0];
- int64_t KH = ne_kernel[1];
- int64_t Cin = ne_kernel[2];
- int64_t Cout = ne_kernel[3];
- int64_t N = ne_input[3];
- int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0);
- int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0);
- int64_t K = Cout;
- int64_t CRS = Cin * KH * KW;
- int64_t NPQ = N * OH * OW;
- return K * NPQ * (2 * CRS - 1);
- }
- test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 },
- std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, int stride0 = 1, int stride1 = 1, int padding0 = 0,
- int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) :
- ne_input(ne_input),
- ne_kernel(ne_kernel),
- stride0(stride0),
- stride1(stride1),
- padding0(padding0),
- padding1(padding1),
- dilation0(dilation0),
- dilation1(dilation1),
- cwhn(cwhn) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- if (cwhn) {
- // change memory layout to channel-most-contiguous (CWHN),
- // then permute it back so NE matches the original input
- input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
- input = ggml_permute(ctx, input, 2, 0, 1, 3);
- kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
- kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
- }
- ggml_tensor * out =
- ggml_conv_2d_direct(ctx, kernel, input, stride0, stride1, padding0, padding1, dilation0, dilation1);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONV_2D_DW
- struct test_conv_2d_dw : public test_case {
- const std::array<int64_t, 4> ne_input;
- const std::array<int64_t, 4> ne_kernel;
- const int stride;
- const int padding;
- const int dilation;
- const bool cwhn;
- std::string vars() override {
- return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
- }
- test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
- std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
- int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
- : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
- ggml_set_name(input, "input");
- ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
- ggml_set_name(kernel, "kernel");
- if (cwhn) {
- // change memory layout to channel-most-contiguous (CWHN),
- // then permute it back so NE matches the original input
- input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
- input = ggml_permute(ctx, input, 2, 0, 1, 3);
- kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
- kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
- }
- ggml_tensor * out = ggml_conv_2d_dw_direct(
- ctx, kernel, input,
- stride, stride, padding, padding, dilation, dilation);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_CONCAT
- struct test_concat : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int64_t ne_b_d;
- const int dim;
- const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
- std::string vars() override {
- return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
- }
- test_concat(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
- int64_t ne_b_d = 5,
- int dim = 2, int v = 0)
- : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- auto ne_b = ne_a;
- ne_b[dim] = ne_b_d;
- ggml_tensor * a;
- if (v & 1) {
- auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
- a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
- ggml_set_name(a, "view_of_a");
- } else {
- a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- }
- ggml_tensor * b;
- if (v & 2) {
- auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
- b = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(b, "b");
- b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
- ggml_set_name(b, "view_of_b");
- } else {
- b = ggml_new_tensor(ctx, type, 4, ne_b.data());
- ggml_set_name(b, "b");
- }
- ggml_tensor * out = ggml_concat(ctx, a, b, dim);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ARGSORT
- struct test_argsort : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- ggml_sort_order order;
- std::string vars() override {
- return VARS_TO_STR3(type, ne, order);
- }
- test_argsort(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {16, 10, 10, 10},
- ggml_sort_order order = GGML_SORT_ORDER_ASC)
- : type(type), ne(ne), order(order) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_argsort(ctx, a, order);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- std::random_device rd;
- std::default_random_engine rng(rd());
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // indices
- std::vector<int> data(ggml_nelements(t));
- for (int i = 0; i < ggml_nelements(t); i++) {
- data[i] = rand();
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
- } else if (t->type == GGML_TYPE_F32) {
- // initialize with unique values to avoid ties
- for (int64_t r = 0; r < ggml_nrows(t); r++) {
- std::vector<float> data(t->ne[0]);
- for (int i = 0; i < t->ne[0]; i++) {
- data[i] = i;
- }
- std::shuffle(data.begin(), data.end(), rng);
- ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
- }
- } else {
- GGML_ABORT("fatal error");
- }
- }
- }
- };
- // GGML_OP_SUM
- struct test_sum : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sum(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sum(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
- }
- };
- // GGML_OP_SUM_ROWS
- struct test_sum_rows : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_sum_rows(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_sum_rows(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_MEAN
- struct test_mean : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_mean(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_mean(ctx, a);
- ggml_set_name(out, "out");
- return out;
- }
- float grad_eps() override {
- return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
- }
- };
- // GGML_OP_UPSCALE
- struct test_upscale : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int32_t scale_factor;
- const bool transpose;
- const ggml_scale_mode mode;
- std::string vars() override {
- return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
- }
- test_upscale(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {512, 512, 3, 1},
- int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
- : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- if (transpose) {
- a = ggml_transpose(ctx, a);
- ggml_set_name(a, "a_transposed");
- }
- ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_UPSCALE (via ggml_interpolate)
- struct test_interpolate : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const std::array<int64_t, 4> ne_tgt;
- const uint32_t mode = GGML_SCALE_MODE_NEAREST;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, ne_tgt, mode);
- }
- test_interpolate(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {2, 5, 7, 11},
- std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
- uint32_t mode = GGML_SCALE_MODE_NEAREST)
- : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_GROUP_NORM
- struct test_group_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const int32_t num_groups;
- const float eps;
- std::string vars() override {
- return VARS_TO_STR4(type, ne, num_groups, eps);
- }
- test_group_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 64, 320, 1},
- int32_t num_groups = 32,
- float eps = 1e-6f)
- : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_L2_NORM
- struct test_l2_norm : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- const float eps;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_l2_norm(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {64, 64, 320, 1},
- float eps = 1e-12f)
- : type(type), ne(ne), eps(eps) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ACC
- struct test_acc : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const std::array<int64_t, 4> ne_b;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, ne_b);
- }
- test_acc(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
- std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
- : type(type), ne_a(ne_a), ne_b(ne_b) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_param(a);
- ggml_set_name(a, "a");
- ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
- ggml_set_param(b);
- ggml_set_name(b, "b");
- ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_PAD
- struct test_pad : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int pad_0;
- const int pad_1;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
- }
- test_pad(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
- int pad_0 = 1, int pad_1 = 1)
- : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_PAD_REFLECT_1D
- struct test_pad_reflect_1d : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int pad_0;
- const int pad_1;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
- }
- test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
- int pad_0 = 10, int pad_1 = 9)
- : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ROLL
- struct test_roll : public test_case {
- const int shift0;
- const int shift1;
- const int shift3;
- const int shift4;
- std::string vars() override {
- return VARS_TO_STR4(shift0, shift1, shift3, shift4);
- }
- test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1)
- : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- int64_t ne[4] = {10, 5, 4, 3};
- ggml_tensor * a = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift3, shift4);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_ARANGE
- struct test_arange : public test_case {
- const ggml_type type;
- const float start;
- const float stop;
- const float step;
- std::string vars() override {
- return VARS_TO_STR4(type, start, stop, step);
- }
- test_arange(ggml_type type = GGML_TYPE_F32,
- float start = 0.f, float stop = 10.f, float step = 1.f)
- : type(type), start(start), stop(stop), step(step) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * out = ggml_arange(ctx, start, stop, step);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_TIMESTEP_EMBEDDING
- struct test_timestep_embedding : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const int dim;
- const int max_period;
- std::string vars() override {
- return VARS_TO_STR4(type, ne_a, dim, max_period);
- }
- test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
- int dim = 320, int max_period=10000)
- : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_LEAKY_RELU
- struct test_leaky_relu : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne_a;
- const float negative_slope;
- std::string vars() override {
- return VARS_TO_STR3(type, ne_a, negative_slope);
- }
- test_leaky_relu(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
- float negative_slope = 0.1f)
- : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
- ggml_set_name(a, "a");
- ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_FLASH_ATTN_EXT
- struct test_flash_attn_ext : public test_case {
- const int64_t hsk; // K head size
- const int64_t hsv; // V head size
- const int64_t nh; // num heads
- const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
- const int64_t kv; // kv size
- const int64_t nb; // batch size
- const bool mask; // use mask
- const float max_bias; // ALiBi
- const float logit_softcap; // Gemma 2
- const ggml_prec prec;
- const ggml_type type_KV;
- std::array<int32_t, 4> permute;
- std::string vars() override {
- return VARS_TO_STR12(hsk, hsv, nh, nr23, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
- }
- double max_nmse_err() override {
- return 5e-4;
- }
- uint64_t op_flops(ggml_tensor * t) override {
- GGML_UNUSED(t);
- // Just counting matmul costs:
- // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
- return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
- }
- test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
- bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
- ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
- : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
- const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
- auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
- int64_t ne[4] = {ne0, ne1, ne2, ne3};
- int64_t ne_perm[4];
- for (int i = 0; i < 4; ++i) {
- ne_perm[permute[i]] = ne[i];
- }
- ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
- if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
- t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
- }
- return t;
- };
- ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1]);
- ggml_set_name(q, "q");
- ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1]);
- ggml_set_name(k, "k");
- ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1]);
- ggml_set_name(v, "v");
- ggml_tensor * m = nullptr;
- if (mask) {
- m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, nr23[1]);
- ggml_set_name(m, "m");
- }
- ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
- ggml_flash_attn_ext_set_prec(out, prec);
- ggml_set_name(out, "out");
- return out;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_CROSS_ENTROPY_LOSS
- struct test_cross_entropy_loss : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_param(logits);
- ggml_set_name(logits, "logits");
- ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
- // The labels are assumed to be constant -> no gradients.
- ggml_set_name(labels, "labels");
- // Ensure labels add up to 1:
- labels = ggml_soft_max(ctx, labels);
- ggml_set_name(labels, "labels_normalized");
- ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, -100.0f, 100.0f);
- }
- }
- float grad_eps() override {
- return 1.0f;
- }
- bool grad_precise() override {
- return true;
- }
- };
- // GGML_OP_CROSS_ENTROPY_LOSS_BACK
- struct test_cross_entropy_loss_back : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_set_name(grad, "grad");
- ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(logits, "logits");
- ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
- ggml_set_name(labels, "labels");
- // Ensure labels add up to 1:
- labels = ggml_soft_max(ctx, labels);
- ggml_set_name(labels, "labels_normalized");
- ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
- ggml_set_name(out, "out");
- return out;
- }
- };
- // GGML_OP_OPT_STEP_ADAMW
- struct test_opt_step_adamw : public test_case {
- const ggml_type type;
- const std::array<int64_t, 4> ne;
- std::string vars() override {
- return VARS_TO_STR2(type, ne);
- }
- test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
- std::array<int64_t, 4> ne = {10, 5, 4, 3})
- : type(type), ne(ne) {}
- ggml_tensor * build_graph(ggml_context * ctx) override {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
- ggml_set_name(a, "a");
- ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(grad, "grad");
- ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(grad_m, "grad_m");
- ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
- ggml_set_name(grad_v, "grad_v");
- ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
- ggml_set_name(adamw_params, "adamw_params");
- ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
- ggml_set_name(out, "out");
- return out;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
- }
- }
- bool grad_precise() override {
- return true;
- }
- };
- enum llm_norm_type {
- LLM_NORM,
- LLM_NORM_RMS,
- };
- struct llama_hparams {
- uint32_t n_vocab;
- uint32_t n_embd;
- uint32_t n_head;
- uint32_t n_head_kv;
- static constexpr uint32_t n_layer = 1;
- uint32_t n_rot;
- uint32_t n_embd_head; // dimension of values (d_v)
- uint32_t n_ff;
- float f_norm_eps;
- float f_norm_rms_eps;
- // cparams
- static constexpr uint32_t n_ctx = 512; // user-specified context size
- static constexpr uint32_t n_ctx_orig = n_ctx;
- // batch
- int32_t n_tokens;
- // llm_build_context
- static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
- static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
- uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
- return n_embd_head * n_head_kv;
- }
- };
- // LLM base class
- struct test_llm : public test_case {
- llama_hparams hp;
- protected:
- test_llm(llama_hparams hp)
- : hp(std::move(hp)) {
- }
- public:
- struct ggml_tensor * llm_build_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * cur,
- struct ggml_tensor * mw,
- struct ggml_tensor * mb,
- llm_norm_type type) {
- switch (type) {
- case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
- case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
- }
- cur = ggml_mul(ctx, cur, mw);
- if (mb) {
- cur = ggml_add(ctx, cur, mb);
- }
- return cur;
- }
- void llm_build_kv_store(
- struct ggml_context * ctx,
- struct ggml_tensor * k_l,
- struct ggml_tensor * v_l,
- struct ggml_tensor * k_cur,
- struct ggml_tensor * v_cur) {
- // compute the transposed [n_tokens, n_embd] V matrix
- struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
- struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
- (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
- struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
- ( hp.n_ctx)*ggml_element_size(v_l),
- (hp.kv_head)*ggml_element_size(v_l));
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_cpy(ctx, k_cur, k_cache_view);
- ggml_cpy(ctx, v_cur_t, v_cache_view);
- }
- struct ggml_tensor * llm_build_kqv(
- struct ggml_context * ctx,
- struct ggml_tensor * k_l,
- struct ggml_tensor * v_l,
- struct ggml_tensor * q_cur,
- struct ggml_tensor * kq_mask,
- float kq_scale) {
- struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
- struct ggml_tensor * k =
- ggml_view_3d(ctx, k_l,
- hp.n_embd_head, hp.n_kv, hp.n_head_kv,
- ggml_row_size(k_l->type, hp.n_embd_gqa()),
- ggml_row_size(k_l->type, hp.n_embd_head),
- 0);
- struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
- kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
- // split cached v into n_head heads
- struct ggml_tensor * v =
- ggml_view_3d(ctx, v_l,
- hp.n_kv, hp.n_embd_head, hp.n_head_kv,
- ggml_element_size(v_l)*hp.n_ctx,
- ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
- 0);
- struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
- struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
- struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
- struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
- cur = ggml_mul_mat(ctx, wo, cur);
- return cur;
- }
- void initialize_tensors(ggml_context * ctx) override {
- for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
- if (t->type == GGML_TYPE_I32) {
- // pos
- std::vector<int> data(hp.n_tokens);
- for (int i = 0; i < hp.n_tokens; i++) {
- data[i] = rand() % hp.n_ctx;
- }
- ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
- } else {
- init_tensor_uniform(t);
- }
- }
- }
- };
- // Llama
- struct test_llama : public test_llm {
- static constexpr float freq_base = 10000.0f;
- static constexpr float freq_scale = 1.0f;
- static constexpr float ext_factor = 0.0f;
- static constexpr float attn_factor = 1.0f;
- static constexpr float beta_fast = 32.0f;
- static constexpr float beta_slow = 1.0f;
- bool fused;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "LLAMA";
- }
- std::string vars() override {
- auto n_tokens = hp.n_tokens;
- return VARS_TO_STR1(n_tokens);
- }
- double max_nmse_err() override {
- return 2e-3;
- }
- bool run_whole_graph() override { return fused; }
- test_llama(int n_tokens = 1, bool fused = false)
- : test_llm({
- /*n_vocab =*/ 32000,
- /*n_embd =*/ 3200,
- /*n_head =*/ 32,
- /*n_head_kv =*/ 32,
- /*n_rot =*/ 100,
- /*n_embd_head =*/ 100,
- /*n_ff =*/ 8640,
- /*f_norm_eps =*/ 0.f,
- /*f_norm_rms_eps =*/ 1e-5f,
- /*n_tokens =*/ n_tokens,
- })
- , fused(fused)
- {
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
- ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- for (uint32_t il = 0; il < hp.n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- // norm
- ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
- // self-attention
- {
- ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
- ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
- ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
- Qcur = ggml_rope_ext(
- ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
- hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
- hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow
- );
- llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
- cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
- }
- struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
- // feed-forward network
- ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
- ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
- ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
- ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
- struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
- cur = ggml_mul_mat(ctx, ffn_gate, cur);
- cur = ggml_silu(ctx, cur);
- cur = ggml_mul(ctx, cur, tmp);
- cur = ggml_mul_mat(ctx, ffn_down, cur);
- cur = ggml_add(ctx, cur, ffn_inp);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
- // lm_head
- ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
- cur = ggml_mul_mat(ctx, output, cur);
- return cur;
- }
- };
- // Falcon
- struct test_falcon : public test_llm {
- static constexpr float freq_base = 10000.0f;
- static constexpr float freq_scale = 1.0f;
- static constexpr float ext_factor = 0.0f;
- static constexpr float attn_factor = 1.0f;
- static constexpr float beta_fast = 32.0f;
- static constexpr float beta_slow = 1.0f;
- std::string op_desc(ggml_tensor * t) override {
- GGML_UNUSED(t);
- return "FALCON";
- }
- std::string vars() override {
- auto n_tokens = hp.n_tokens;
- return VARS_TO_STR1(n_tokens);
- }
- double max_nmse_err() override {
- return 2e-3;
- }
- test_falcon(int n_tokens = 1)
- : test_llm({
- /*n_vocab =*/ 32000,
- /*n_embd =*/ 3200,
- /*n_head =*/ 50,
- /*n_head_kv =*/ 1,
- /*n_rot =*/ 64,
- /*n_embd_head =*/ 64,
- /*n_ff =*/ 8640,
- /*f_norm_eps =*/ 1e-5f,
- /*f_norm_rms_eps =*/ 0.f,
- /*n_tokens =*/ n_tokens,
- }) {
- }
- ggml_tensor * build_graph(ggml_context * ctx) override {
- struct ggml_tensor * cur;
- struct ggml_tensor * inpL;
- inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
- // inp_pos - contains the positions
- struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
- // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
- struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
- ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
- for (uint32_t il = 0; il < hp.n_layer; ++il) {
- // norm
- ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
- // self-attention
- {
- cur = attn_norm;
- ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
- cur = ggml_mul_mat(ctx, wqkv, cur);
- struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
- struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
- struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
- Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
- Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
- // using mode = 2 for neox mode
- Qcur = ggml_rope_ext(
- ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- Kcur = ggml_rope_ext(
- ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
- );
- llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
- cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
- }
- struct ggml_tensor * ffn_inp = cur;
- // feed forward
- {
- ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
- ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
- cur = attn_norm;
- cur = ggml_mul_mat(ctx, ffn_up, cur);
- cur = ggml_gelu(ctx, cur);
- cur = ggml_mul_mat(ctx, ffn_down, cur);
- }
- cur = ggml_add(ctx, cur, ffn_inp);
- cur = ggml_add(ctx, cur, inpL);
- // input for next layer
- inpL = cur;
- }
- cur = inpL;
- ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
- cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
- // lm_head
- ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
- cur = ggml_mul_mat(ctx, output, cur);
- return cur;
- }
- };
- // ###########################################
- // ## Section 3: GGML Op Test Instantiation ##
- // ###########################################
- static const ggml_type all_types[] = {
- GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
- GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
- GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
- GGML_TYPE_Q8_0,
- GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
- GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
- GGML_TYPE_Q6_K,
- // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
- GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
- GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
- GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
- };
- static const ggml_type base_types[] = {
- GGML_TYPE_F32, GGML_TYPE_F16,
- GGML_TYPE_Q8_0, // for I8MM tests
- GGML_TYPE_Q4_0,
- GGML_TYPE_Q4_1, // for I8MM tests
- GGML_TYPE_Q4_K,
- GGML_TYPE_IQ2_XXS
- };
- static const ggml_type other_types[] = {
- GGML_TYPE_Q4_1,
- GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
- GGML_TYPE_Q8_0,
- GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
- GGML_TYPE_Q5_K,
- GGML_TYPE_Q6_K,
- // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
- GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
- GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
- GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
- GGML_TYPE_BF16,
- };
- // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
- static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
- std::vector<std::unique_ptr<test_case>> test_cases;
- std::default_random_engine rng(0);
- // unary ops
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- for (int v : {0, 1}) {
- for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
- test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
- test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
- }
- }
- }
- // glu ops
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- for (int v : {0, 1}) {
- for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
- for (bool swapped : {false, true}) {
- test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
- test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
- }
- test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
- test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
- }
- }
- }
- test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
- for (ggml_type type : all_types) {
- for (int b : {1, 7}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
- }
- }
- }
- for (int b : {1, 7}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
- }
- }
- test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
- for (ggml_type type : all_types) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
- }
- }
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
- }
- test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
- for (ggml_type type : all_types) {
- for (int b : {1, 7}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_set_rows(type, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
- test_cases.emplace_back(new test_set_rows(type, { 256, 11, 1, b }, { 2, 3, }, 7, v));
- test_cases.emplace_back(new test_set_rows(type, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
- if (ggml_blck_size(type) == 1) {
- test_cases.emplace_back(new test_set_rows(type, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
- test_cases.emplace_back(new test_set_rows(type, { 33, 5, 1, b }, { 2, 3, }, 1, v));
- }
- }
- }
- }
- for (ggml_type type_input : {GGML_TYPE_F32}) {
- for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
- for (int k0 : {1, 3}) {
- for (int k1 : {1, 3}) {
- for (int s0 : {1, 2}) {
- for (int s1 : {1, 2}) {
- for (int p0 : {0, 1}) {
- for (int p1 : {0, 1}) {
- test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
- }
- }
- }
- }
- }
- }
- }
- }
- // im2col 1D
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
- for (int s0 : {1, 3}) {
- for (int p0 : {0, 3}) {
- for (int d0 : {1, 3}) {
- test_cases.emplace_back(new test_im2col(
- GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
- s0, 0, p0, 0, d0, 0, false));
- }
- }
- }
- // im2col 2D
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
- for (int s0 : {1, 3}) {
- for (int s1 : {1, 3}) {
- for (int p0 : {0, 3}) {
- for (int p1 : {0, 3}) {
- for (int d0 : {1, 3}) {
- for (int d1 : {1, 3}) {
- test_cases.emplace_back(new test_im2col(
- GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
- s0, s1, p0, p1, d0, d1, true));
- }
- }
- }
- }
- }
- }
- // extra tests for im2col 2D
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true));
- // Conv_2D test cases
- #ifdef DETAILED_TESTS
- // Probably we do not have enough time to execute these in the pipeline.
- uint32_t iwh_idx = 0;
- uint32_t kwh_idx = 1;
- uint32_t Cout_idx = 2;
- uint32_t Cin_idx = 3;
- uint32_t B_idx = 4;
- std::vector<std::array<int, 5>> cases = {
- //{IWH, KWH, Cout, Cin, B}
- // K=CRS=NPQ=4096 conv_2d matmul performance
- {19, 4, 4096, 256, 16},
- // K=128, CRS=128, NPQ=4096
- { 19, 4, 128, 8, 16},
- // K=130, CRS=128, NPQ=4096
- { 19, 4, 130, 8, 16},
- // Edge case: K x CRS is small
- { 19, 2, 4, 4, 16},
- // A ConvNet's first layer
- { 224, 3, 8, 3, 1 },
- // A ConvNet's first layer with 2x2 convolution, and 1 channel
- { 224, 2, 8, 1, 1 },
- // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
- { 224, 2, 8, 1, 8 },
- // A middle layer of a ConvNet
- { 58, 3, 64, 32, 1 },
- // A middle layer of a ConvNet, several images in the batch
- { 58, 3, 64, 32, 8 },
- // A deep layer of a ConvNet, several images in the batch
- { 16, 3, 256, 128, 8 }
- };
- for (auto act_case : cases) {
- test_cases.emplace_back(new test_conv_2d(
- { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
- { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] }, 1, 1, 0, 0, 1, 1, false));
- }
- #endif
- // CONV_2D:
- auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
- };
- //uint32_t s0 = 3;
- uint32_t s1 = 5;
- uint32_t p0 = 5;
- //uint32_t p1 = 2;
- uint32_t d0 = 2;
- uint32_t d1 = 4;
- for (uint32_t s0 : { 1, 3 }) {
- for (uint32_t p1 : { 2, 5 }) {
- for (uint32_t Cin : { 1, 25 }) {
- for (uint32_t Cout : { 1, 12 }) {
- for (uint32_t KH : { 1, 2, 3, 11 }) {
- for (uint32_t KW : { 1, 2, 3, 11 }) {
- for (uint32_t H : { 1, 133 }) {
- for (uint32_t W : { 1, 141 }) {
- if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 &&
- calc_conv_output_size(H, KH, s1, p1, d1) > 0) {
- test_cases.emplace_back(new test_conv_2d(
- { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, s0, s1, p0, p1, d0, d1, false));
- }
- }
- }
- }
- }
- }
- }
- }
- }
- // sycl backend will limit task global_range < MAX_INT
- // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
- // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
- // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
- // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
- // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
- test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
- test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
- test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
- test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
- for(uint32_t Cout : {1, 9}){
- for(uint32_t Cin : {1, 7}){
- for(uint32_t K : {1, 3, 1337}){
- for(uint32_t L : {1, 2, 13}){
- for(uint32_t s0: {1, 2, 3}){
- test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
- }
- }
- }
- }
- }
- test_cases.emplace_back(new test_conv_transpose_1d());
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
- test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
- test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
- test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
- test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
- for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
- test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
- }
- for (bool view : {false, true}) {
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
- test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
- }
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
- test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
- for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
- test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
- }
- for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
- test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
- }
- // same-type copy
- for (ggml_type type : all_types) {
- const auto nk = ggml_blck_size(type);
- for (int k = 1; k < 4; ++k) {
- test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
- test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
- }
- }
- for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
- for (ggml_type type_dst : all_types) {
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
- }
- }
- for (ggml_type type_src : all_types) {
- for (ggml_type type_dst : {GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
- }
- }
- for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
- }
- }
- test_cases.emplace_back(new test_cont());
- test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
- test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
- auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
- for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
- test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
- }
- };
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
- add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
- add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
- // stable diffusion
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
- add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
- add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
- add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
- //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
- //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
- }
- // fusion
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8));
- test_cases.emplace_back(new test_add1());
- test_cases.emplace_back(new test_scale());
- test_cases.emplace_back(new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f));
- test_cases.emplace_back(new test_silu_back());
- for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
- for (bool v : {false, true}) {
- test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
- test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
- }
- test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
- test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
- }
- for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) {
- test_cases.emplace_back(new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
- }
- test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
- for (int64_t d_conv : {3, 4}) {
- for (int64_t d_inner: {1024, 1536, 2048}) {
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1}));
- test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1}));
- }
- }
- test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
- test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
- test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
- test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
- test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
- test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
- test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
- test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
- test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
- for (ggml_type type_a : all_types) {
- for (int i = 1; i < 10; ++i) {
- test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
- }
- }
- #if 1
- for (ggml_type type_a : base_types) {
- for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- std::vector<int> ks = { 256 };
- if (ggml_blck_size(type_a) == 1) {
- ks.push_back(4);
- }
- for (auto k : ks) {
- // test cases without permutation
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
- // test cases with permutation
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
- }
- // test cases with large ne00/ne10 to cover stream-k fixup
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
- }
- }
- for (ggml_type type_a : other_types) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- if (ggml_blck_size(type_a) != 256) {
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
- }
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
- }
- }
- #else
- // m = a rows
- // n = b rows
- // k = cols
- std::uniform_int_distribution<> dist_m(1, 128);
- std::uniform_int_distribution<> dist_n(16, 128);
- std::uniform_int_distribution<> dist_k(1, 16);
- for (int i = 0; i < 1000; i++) {
- for (ggml_type type_a : all_types) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- int m = dist_m(rng);
- int n = dist_n(rng);
- int k = dist_k(rng) * ggml_blck_size(type_a);
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
- }
- }
- }
- #endif
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
- for (auto bs : {1,2,4,8}) {
- for (auto nr : {1,4}) {
- for (uint32_t m = 0; m < 2; ++m) {
- for (uint32_t k = 0; k < 2; ++k) {
- for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true));
- }
- }
- }
- }
- }
- // sycl backend will limit task global_range < MAX_INT
- // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
- // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
- // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
- // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
- // test large experts*tokens
- for (bool b : {false, true}) {
- test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
- }
- for (ggml_type type_a : base_types) {
- for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
- for (int n_mats : {4, 8}) {
- for (int n_used : {1, 2, 4}) {
- for (bool b : {false, true}) {
- for (int n : {1, 32, 129}) {
- int m = 512;
- int k = 256;
- test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
- }
- }
- }
- }
- }
- }
- for (ggml_type type_a : other_types) {
- for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
- for (int n_mats : {4}) {
- for (int n_used : {2}) {
- for (bool b : {false}) {
- for (int n : {1, 32}) {
- int m = 512;
- int k = 256;
- test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
- }
- }
- }
- }
- }
- }
- for (ggml_type type_a : base_types) {
- for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (int n : {1, 16}) {
- for (int k : {1, 16}) {
- for (int bs2 : {1, 3}) {
- for (int bs3 : {1, 3}) {
- for (int nr2 : {1, 2}) {
- for (int nr3 : {1, 2}) {
- test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
- }
- }
- }
- }
- }
- }
- }
- }
- for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_sqr(type));
- test_cases.emplace_back(new test_sqrt(type));
- test_cases.emplace_back(new test_log(type));
- test_cases.emplace_back(new test_sin(type));
- test_cases.emplace_back(new test_cos(type));
- test_cases.emplace_back(new test_clamp(type));
- }
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
- test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
- #if 0
- std::uniform_int_distribution<> dist_ne1(1, 50);
- int exponent = 1;
- while (exponent < (1 << 17)) {
- std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
- for (int n = 0; n < 10; ++n) {
- int64_t ne0 = dist_ne0(rng);
- int64_t ne1 = dist_ne1(rng);
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
- }
- exponent <<= 1;
- }
- #endif
- for (bool mask : {false, true}) {
- for (float max_bias : {0.0f, 8.0f}) {
- if (!mask && max_bias > 0.0f) continue;
- for (float scale : {1.0f, 0.1f}) {
- for (int64_t ne0 : {16, 1024}) {
- for (int64_t ne1 : {16, 1024}) {
- if (mask) {
- for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
- if (ne0 <= 32 && ne1 <= 32) {
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, m_prec, {3, 1}, scale, max_bias));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {2, 3}, scale, max_bias));
- }
- }
- } else {
- /* The precision of mask here doesn't matter as boolean mask is false */
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
- }
- }
- }
- }
- }
- }
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
- for (float max_bias : {0.0f, 8.0f}) {
- for (float scale : {1.0f, 0.1f}) {
- for (int64_t ne0 : {16, 1024}) {
- for (int64_t ne1 : {16, 1024}) {
- test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
- test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
- }
- }
- }
- }
- for (bool fw : {true, false}) { // fw == forward
- bool all = true;
- for (float fs : { 1.0f, 1.4245f }) {
- for (float ef : { 0.0f, 0.7465f }) {
- for (float af : { 1.0f, 1.4245f }) {
- for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
- for (bool ff : {false, true}) { // freq_factors
- for (float v : { 0, 1 }) {
- test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
- if (all) {
- test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
- test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
- test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
- }
- if (all) {
- test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
- test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
- test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 0, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 0, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
- test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
- test_cases.emplace_back(new test_rope(type, { 80, 32, 4, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
- }
- if (all) {
- test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
- test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
- test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw));
- test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
- }
- test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
- }
- }
- all = false;
- }
- }
- }
- }
- }
- for (int v : { 0, 1, 2, 3 }) {
- for (int dim : { 0, 1, 2, 3, }) {
- test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
- test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
- }
- }
- for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
- test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
- }
- for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
- test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
- test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
- test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
- test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
- }
- test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
- test_cases.emplace_back(new test_sum());
- test_cases.emplace_back(new test_sum_rows());
- test_cases.emplace_back(new test_mean());
- test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
- test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
- test_cases.emplace_back(new test_acc());
- test_cases.emplace_back(new test_pad());
- test_cases.emplace_back(new test_pad_reflect_1d());
- test_cases.emplace_back(new test_roll());
- test_cases.emplace_back(new test_arange());
- test_cases.emplace_back(new test_timestep_embedding());
- test_cases.emplace_back(new test_leaky_relu());
- for (int hsk : { 64, 80, 128, 192, 256, 576 }) {
- for (int hsv : { 64, 80, 128, 192, 256, 512 }) {
- if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
- if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
- if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
- for (bool mask : { true, false } ) {
- for (float max_bias : { 0.0f, 8.0f }) {
- if (!mask && max_bias > 0.0f) continue;
- for (float logit_softcap : {0.0f, 10.0f}) {
- if (hsk != 128 && logit_softcap != 0.0f) continue;
- for (int nh : { 4, }) {
- for (int nr3 : { 1, 3, }) {
- if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
- for (int nr2 : { 1, 4, 16 }) {
- if (nr2 == 16 && hsk != 128) continue;
- for (int kv : { 512, 1024, }) {
- if (nr2 != 1 && kv != 512) continue;
- for (int nb : { 1, 3, 32, 35, }) {
- for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
- if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
- for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
- test_cases.emplace_back(new test_flash_attn_ext(
- hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
- // run fewer test cases permuted
- if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
- test_cases.emplace_back(new test_flash_attn_ext(
- hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- }
- test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
- test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
- test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
- test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
- test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
- #if 0
- // these tests are disabled to save execution time, sbut they can be handy for debugging
- test_cases.emplace_back(new test_llama(2, true));
- test_cases.emplace_back(new test_llama(1));
- test_cases.emplace_back(new test_llama(2));
- test_cases.emplace_back(new test_falcon(1));
- test_cases.emplace_back(new test_falcon(2));
- #endif
- return test_cases;
- }
- // Test cases for performance evaluation: should be representative of real-world use cases
- static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
- std::vector<std::unique_ptr<test_case>> test_cases;
- // Conv2d: K=CRS=NPQ=4096 matmul performance
- uint32_t iwh_idx = 0;
- uint32_t kwh_idx = 1;
- uint32_t Cout_idx = 2;
- uint32_t Cin_idx = 3;
- uint32_t B_idx = 4;
- std::vector<std::array<int, 5>> cases = {
- //{IWH, KWH, Cout, Cin, B}
- // K=CRS=NPQ=4096 conv2d matmul performance
- {19, 4, 4096, 256, 16},
- // K=128, CRS=128, NPQ=4096
- { 19, 4, 128, 8, 16},
- // K=130, CRS=128, NPQ=4096
- { 19, 4, 130, 8, 16},
- // Edge case: K x CRS is small
- { 19, 2, 4, 4, 16},
- // A ConvNet's first layer
- { 224, 3, 8, 3, 1 },
- // A ConvNet's first layer with 2x2 convolution, and 1 channel
- { 224, 2, 8, 1, 1 },
- // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch
- { 224, 2, 8, 1, 8 },
- // A middle layer of a ConvNet
- { 58, 3, 64, 32, 1 },
- // A middle layer of a ConvNet, several images in the batch
- { 58, 3, 64, 32, 8 },
- // A deep layer of a ConvNet, several images in the batch
- { 16, 3, 512, 128, 8 },
- };
- for (auto act_case : cases) {
- // Direct CONV_2D
- test_cases.emplace_back(new test_conv_2d(
- { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] },
- { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] }, 1, 1, 0, 0, 1, 1, false));
- }
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
- test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
- test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
- test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
- for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
- for (ggml_type type_a : all_types) {
- for (ggml_type type_b : {GGML_TYPE_F32}) {
- test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
- }
- }
- }
- for (int K : {3, 5}) {
- for (int IC : {256, 2560}) {
- for (int IW_IH : {32, 64, 256}) {
- if (IC == 2560 && IW_IH == 256) {
- // too big
- continue;
- }
- test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
- }
- }
- }
- for (int kv : { 4096, 8192, 16384, }) {
- for (int hs : { 64, 128, }) {
- for (int nr : { 1, 4, }) {
- test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
- }
- }
- }
- test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
- test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
- test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
- test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
- return test_cases;
- }
- static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter,
- printer * output_printer) {
- auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
- if (params_filter == nullptr) {
- return;
- }
- std::regex params_filter_regex(params_filter);
- for (auto it = test_cases.begin(); it != test_cases.end();) {
- if (!std::regex_search((*it)->vars(), params_filter_regex)) {
- it = test_cases.erase(it);
- continue;
- }
- it++;
- }
- };
- if (mode == MODE_TEST) {
- auto test_cases = make_test_cases_eval();
- filter_test_cases(test_cases, params_filter);
- ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
- if (backend_cpu == NULL) {
- test_operation_info info("", "", "CPU");
- info.set_error("backend", "Failed to initialize CPU backend");
- output_printer->print_operation(info);
- return false;
- }
- size_t n_ok = 0;
- for (auto & test : test_cases) {
- if (test->eval(backend, backend_cpu, op_name, output_printer)) {
- n_ok++;
- }
- }
- output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
- ggml_backend_free(backend_cpu);
- return n_ok == test_cases.size();
- }
- if (mode == MODE_GRAD) {
- auto test_cases = make_test_cases_eval();
- filter_test_cases(test_cases, params_filter);
- size_t n_ok = 0;
- for (auto & test : test_cases) {
- if (test->eval_grad(backend, op_name, output_printer)) {
- n_ok++;
- }
- }
- output_printer->print_summary(test_summary_info(n_ok, test_cases.size(), false));
- return n_ok == test_cases.size();
- }
- if (mode == MODE_PERF) {
- auto test_cases = make_test_cases_perf();
- filter_test_cases(test_cases, params_filter);
- for (auto & test : test_cases) {
- test->eval_perf(backend, op_name, output_printer);
- }
- return true;
- }
- if (mode == MODE_SUPPORT) {
- auto test_cases = make_test_cases_eval();
- filter_test_cases(test_cases, params_filter);
- for (auto & test : test_cases) {
- test->eval_support(backend, op_name, output_printer);
- }
- return true;
- }
- GGML_ABORT("fatal error");
- }
- static void usage(char ** argv) {
- printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>]\n", argv[0]);
- printf(" valid modes:\n");
- printf(" - test (default, compare with CPU backend for correctness)\n");
- printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
- printf(" - perf (performance evaluation)\n");
- printf(" - support (probe backend operation support)\n");
- printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
- printf(" --output specifies output format (default: console, options: console, sql, csv)\n");
- }
- int main(int argc, char ** argv) {
- test_mode mode = MODE_TEST;
- output_formats output_format = CONSOLE;
- const char * op_name_filter = nullptr;
- const char * backend_filter = nullptr;
- const char * params_filter = nullptr;
- for (int i = 1; i < argc; i++) {
- if (strcmp(argv[i], "test") == 0) {
- mode = MODE_TEST;
- } else if (strcmp(argv[i], "perf") == 0) {
- mode = MODE_PERF;
- } else if (strcmp(argv[i], "grad") == 0) {
- mode = MODE_GRAD;
- } else if (strcmp(argv[i], "support") == 0) {
- mode = MODE_SUPPORT;
- } else if (strcmp(argv[i], "-o") == 0) {
- if (i + 1 < argc) {
- op_name_filter = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-b") == 0) {
- if (i + 1 < argc) {
- backend_filter = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else if (strcmp(argv[i], "-p") == 0) {
- if (i + 1 < argc) {
- params_filter = argv[++i];
- } else {
- usage(argv);
- return 1;
- }
- } else if (strcmp(argv[i], "--output") == 0) {
- if (i + 1 < argc) {
- if (!output_format_from_str(argv[++i], output_format)) {
- usage(argv);
- return 1;
- }
- } else {
- usage(argv);
- return 1;
- }
- } else {
- usage(argv);
- return 1;
- }
- }
- // load and enumerate backends
- ggml_backend_load_all();
- // Create printer for output format
- std::unique_ptr<printer> output_printer = create_printer(output_format);
- if (output_printer) {
- output_printer->print_header();
- }
- output_printer->print_testing_start(testing_start_info(ggml_backend_dev_count()));
- size_t n_ok = 0;
- for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
- ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
- output_printer->print_backend_init(
- backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping"));
- n_ok++;
- continue;
- }
- if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
- output_printer->print_backend_init(backend_init_info(
- i, ggml_backend_dev_count(), ggml_backend_dev_name(dev), true, "Skipping CPU backend"));
- n_ok++;
- continue;
- }
- ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
- GGML_ASSERT(backend != NULL);
- ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
- auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
- if (ggml_backend_set_n_threads_fn) {
- // TODO: better value for n_threads
- ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
- }
- size_t free, total; // NOLINT
- ggml_backend_dev_memory(dev, &free, &total);
- output_printer->print_backend_init(backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(dev),
- false, "", ggml_backend_dev_description(dev),
- total / 1024 / 1024, free / 1024 / 1024, true));
- bool ok = test_backend(backend, mode, op_name_filter, params_filter, output_printer.get());
- if (ok) {
- n_ok++;
- }
- output_printer->print_backend_status(
- backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL));
- ggml_backend_free(backend);
- }
- ggml_quantize_free();
- if (output_printer) {
- output_printer->print_footer();
- }
- output_printer->print_overall_summary(
- overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count()));
- if (n_ok != ggml_backend_dev_count()) {
- return 1;
- }
- return 0;
- }
|