| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- #include "debug.h"
- #include "log.h"
- #include <cmath>
- #include <string>
- static std::string common_ggml_ne_string(const ggml_tensor * t) {
- std::string str;
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- str += std::to_string(t->ne[i]);
- if (i + 1 < GGML_MAX_DIMS) {
- str += ", ";
- }
- }
- return str;
- }
- static float common_ggml_get_float_value(const uint8_t * data,
- ggml_type type,
- const size_t * nb,
- size_t i0,
- size_t i1,
- size_t i2,
- size_t i3) {
- size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
- float v;
- if (type == GGML_TYPE_F16) {
- v = ggml_fp16_to_fp32(*(const ggml_fp16_t *) &data[i]);
- } else if (type == GGML_TYPE_F32) {
- v = *(const float *) &data[i];
- } else if (type == GGML_TYPE_I64) {
- v = (float) *(const int64_t *) &data[i];
- } else if (type == GGML_TYPE_I32) {
- v = (float) *(const int32_t *) &data[i];
- } else if (type == GGML_TYPE_I16) {
- v = (float) *(const int16_t *) &data[i];
- } else if (type == GGML_TYPE_I8) {
- v = (float) *(const int8_t *) &data[i];
- } else if (type == GGML_TYPE_BF16) {
- v = ggml_bf16_to_fp32(*(const ggml_bf16_t *) &data[i]);
- } else {
- GGML_ABORT("fatal error");
- }
- return v;
- }
- template <bool abort>
- void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
- GGML_ASSERT(n > 0);
- float sum = 0;
- for (int64_t i3 = 0; i3 < ne[3]; i3++) {
- for (int64_t i2 = 0; i2 < ne[2]; i2++) {
- for (int64_t i1 = 0; i1 < ne[1]; i1++) {
- for (int64_t i0 = 0; i0 < ne[0]; i0++) {
- const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
- sum += v;
- }
- }
- }
- }
- for (int64_t i3 = 0; i3 < ne[3]; i3++) {
- LOG_ERR(" [\n");
- for (int64_t i2 = 0; i2 < ne[2]; i2++) {
- if (i2 == n && ne[2] > 2 * n) {
- LOG_ERR(" ..., \n");
- i2 = ne[2] - n;
- }
- LOG_ERR(" [\n");
- for (int64_t i1 = 0; i1 < ne[1]; i1++) {
- if (i1 == n && ne[1] > 2 * n) {
- LOG_ERR(" ..., \n");
- i1 = ne[1] - n;
- }
- LOG_ERR(" [");
- for (int64_t i0 = 0; i0 < ne[0]; i0++) {
- if (i0 == n && ne[0] > 2 * n) {
- LOG_ERR("..., ");
- i0 = ne[0] - n;
- }
- const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
- LOG_ERR("%12.4f", v);
- if (i0 < ne[0] - 1) {
- LOG_ERR(", ");
- }
- }
- LOG_ERR("],\n");
- }
- LOG_ERR(" ],\n");
- }
- LOG_ERR(" ]\n");
- LOG_ERR(" sum = %f\n", sum);
- }
- if constexpr (abort) {
- if (std::isnan(sum)) {
- LOG_ERR("encountered NaN - aborting\n");
- exit(0);
- }
- }
- }
- /**
- * GGML operations callback during the graph execution.
- *
- * @param t current tensor
- * @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
- * if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
- * see ggml_backend_sched_eval_callback
- * @param user_data user data to pass at each call back
- * @return true to receive data or continue the graph, false otherwise
- */
- template <bool abort_on_nan> bool common_debug_cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
- auto * cb_data = (base_callback_data *) user_data;
- const struct ggml_tensor * src0 = t->src[0];
- const struct ggml_tensor * src1 = t->src[1];
- if (ask) {
- return true; // Always retrieve data
- }
- bool matches_filter = cb_data->tensor_filters.empty();
- if (!matches_filter) {
- for (const auto & filter : cb_data->tensor_filters) {
- if (std::regex_search(t->name, filter)) {
- matches_filter = true;
- break;
- }
- }
- }
- char src1_str[128] = { 0 };
- if (src1) {
- snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, common_ggml_ne_string(src1).c_str());
- }
- if (matches_filter) {
- LOG_ERR("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
- ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
- common_ggml_ne_string(t).c_str());
- }
- const bool is_host = ggml_backend_buffer_is_host(t->buffer);
- if (!is_host) {
- auto n_bytes = ggml_nbytes(t);
- cb_data->data.resize(n_bytes);
- ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
- }
- if (!ggml_is_quantized(t->type) && matches_filter) {
- uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
- common_debug_print_tensor<abort_on_nan>(data, t->type, t->ne, t->nb, 3);
- }
- return true;
- }
- // Explicit template instantiations
- template bool common_debug_cb_eval<false>(ggml_tensor *, bool, void *);
- template bool common_debug_cb_eval<true>(ggml_tensor *, bool, void *);
- template void common_debug_print_tensor<false>(uint8_t *, ggml_type, const int64_t *, const size_t *, int64_t);
- template void common_debug_print_tensor<true>(uint8_t *, ggml_type, const int64_t *, const size_t *, int64_t);
|