tensor_mapping.py 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv
  27. ),
  28. # Token type embeddings
  29. MODEL_TENSOR.TOKEN_TYPES: (
  30. "embeddings.token_type_embeddings", # bert nomic-bert
  31. ),
  32. # Normalization of token embeddings
  33. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  34. "word_embeddings_layernorm", # bloom
  35. "embeddings.LayerNorm", # bert
  36. "emb_ln", # nomic-bert
  37. "transformer.norm", # openelm
  38. "rwkv.blocks.0.pre_ln", # rwkv
  39. "backbone.norm", # wavtokenizer
  40. ),
  41. # Position embeddings
  42. MODEL_TENSOR.POS_EMBD: (
  43. "transformer.wpe", # gpt2
  44. "embeddings.position_embeddings", # bert
  45. "wpe", # gpt2
  46. ),
  47. # Output
  48. MODEL_TENSOR.OUTPUT: (
  49. "embed_out", # gptneox
  50. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
  51. "output", # llama-pth bloom internlm2
  52. "word_embeddings_for_head", # persimmon
  53. "lm_head.linear", # phi2
  54. "output_layer", # chatglm
  55. "head", # rwkv
  56. "head.out", # wavtokenizer
  57. ),
  58. # Output norm
  59. MODEL_TENSOR.OUTPUT_NORM: (
  60. "gpt_neox.final_layer_norm", # gptneox
  61. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  62. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
  63. "norm", # llama-pth
  64. "transformer.norm_f", # mpt dbrx
  65. "ln_f", # refact bloom qwen gpt2
  66. "language_model.encoder.final_layernorm", # persimmon
  67. "model.final_layernorm", # persimmon
  68. "lm_head.ln", # phi2
  69. "model.norm_f", # mamba-qbert
  70. "backbone.norm_f", # mamba
  71. "transformer.rms_norm", # Grok
  72. "encoder.final_layernorm", # chatglm
  73. "transformer.norm", # openelm
  74. "model.norm", # nemotron
  75. "rwkv.ln_out", # rwkv
  76. "backbone.final_layer_norm", # wavtokenizer
  77. ),
  78. # Rope frequencies
  79. MODEL_TENSOR.ROPE_FREQS: (
  80. "rope.freqs", # llama-pth
  81. "rotary_pos_emb.inv_freq", # chatglm
  82. ),
  83. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  84. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  85. MODEL_TENSOR.CONV1D: (
  86. "backbone.embed", # roberta
  87. ),
  88. }
  89. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  90. # Attention norm
  91. MODEL_TENSOR.ATTN_NORM: (
  92. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  93. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  94. "transformer.blocks.{bid}.norm_1", # mpt
  95. "transformer.h.{bid}.input_layernorm", # falcon7b
  96. "h.{bid}.input_layernorm", # bloom
  97. "transformer.h.{bid}.ln_mlp", # falcon40b
  98. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe
  99. "layers.{bid}.attention_norm", # llama-pth
  100. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  101. "model.layers.{bid}.ln1", # yi
  102. "h.{bid}.ln_1", # gpt2
  103. "transformer.h.{bid}.ln", # phi2
  104. "model.layers.layers.{bid}.norm", # plamo
  105. "model.layers.{bid}.attention_norm", # internlm2
  106. "model.layers.{bid}.norm", # mamba-qbert
  107. "backbone.layers.{bid}.norm", # mamba
  108. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  109. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  110. "encoder.layers.{bid}.input_layernorm", # chatglm
  111. "transformer.layers.{bid}.attn_norm", # openelm
  112. "rwkv.blocks.{bid}.ln1", # rwkv
  113. ),
  114. # Attention norm 2
  115. MODEL_TENSOR.ATTN_NORM_2: (
  116. "transformer.h.{bid}.ln_attn", # falcon40b
  117. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  118. "rwkv.blocks.{bid}.ln2", # rwkv
  119. ),
  120. # Attention query-key-value
  121. MODEL_TENSOR.ATTN_QKV: (
  122. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  123. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  124. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  125. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  126. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  127. "h.{bid}.self_attention.query_key_value", # bloom
  128. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  129. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  130. "h.{bid}.attn.c_attn", # gpt2
  131. "transformer.h.{bid}.mixer.Wqkv", # phi2
  132. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  133. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  134. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  135. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  136. ),
  137. # Attention query
  138. MODEL_TENSOR.ATTN_Q: (
  139. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  140. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  141. "layers.{bid}.attention.wq", # llama-pth
  142. "encoder.layer.{bid}.attention.self.query", # bert
  143. "transformer.h.{bid}.attn.q_proj", # gpt-j
  144. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  145. "model.layers.{bid}.attention.wq", # internlm2
  146. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  147. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  148. ),
  149. # Attention key
  150. MODEL_TENSOR.ATTN_K: (
  151. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  152. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  153. "layers.{bid}.attention.wk", # llama-pth
  154. "encoder.layer.{bid}.attention.self.key", # bert
  155. "transformer.h.{bid}.attn.k_proj", # gpt-j
  156. "transformer.h.{bid}.attn.k", # refact
  157. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  158. "model.layers.{bid}.attention.wk", # internlm2
  159. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  160. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  161. ),
  162. # Attention value
  163. MODEL_TENSOR.ATTN_V: (
  164. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  165. "layers.{bid}.attention.wv", # llama-pth
  166. "encoder.layer.{bid}.attention.self.value", # bert
  167. "transformer.h.{bid}.attn.v_proj", # gpt-j
  168. "transformer.h.{bid}.attn.v", # refact
  169. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  170. "model.layers.{bid}.attention.wv", # internlm2
  171. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  172. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  173. ),
  174. # Attention output
  175. MODEL_TENSOR.ATTN_OUT: (
  176. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  177. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  178. "transformer.blocks.{bid}.attn.out_proj", # mpt
  179. "transformer.h.{bid}.self_attention.dense", # falcon
  180. "h.{bid}.self_attention.dense", # bloom
  181. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  182. "model.layers.{bid}.self_attn.linear_attn", # deci
  183. "layers.{bid}.attention.wo", # llama-pth
  184. "encoder.layer.{bid}.attention.output.dense", # bert
  185. "transformer.h.{bid}.attn.out_proj", # gpt-j
  186. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  187. "model.layers.{bid}.self_attn.dense", # persimmon
  188. "h.{bid}.attn.c_proj", # gpt2
  189. "transformer.h.{bid}.mixer.out_proj", # phi2
  190. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  191. "model.layers.{bid}.attention.wo", # internlm2
  192. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  193. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  194. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  195. "encoder.layers.{bid}.self_attention.dense", # chatglm
  196. "transformer.layers.{bid}.attn.out_proj", # openelm
  197. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  198. ),
  199. # Attention output norm
  200. MODEL_TENSOR.ATTN_OUT_NORM: (
  201. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  202. "encoder.layers.{bid}.norm1", # nomic-bert
  203. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  204. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  205. ),
  206. MODEL_TENSOR.ATTN_POST_NORM: (
  207. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2
  208. ),
  209. # Rotary embeddings
  210. MODEL_TENSOR.ATTN_ROT_EMBD: (
  211. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  212. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  213. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  214. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  215. ),
  216. # Feed-forward norm
  217. MODEL_TENSOR.FFN_NORM: (
  218. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  219. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  220. "h.{bid}.post_attention_layernorm", # bloom
  221. "transformer.blocks.{bid}.norm_2", # mpt
  222. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  223. "layers.{bid}.ffn_norm", # llama-pth
  224. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  225. "model.layers.{bid}.ln2", # yi
  226. "h.{bid}.ln_2", # gpt2
  227. "model.layers.{bid}.ffn_norm", # internlm2
  228. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  229. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  230. "transformer.layers.{bid}.ffn_norm", # openelm
  231. ),
  232. # Post feed-forward norm
  233. MODEL_TENSOR.FFN_PRE_NORM: (
  234. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  235. ),
  236. # Post feed-forward norm
  237. MODEL_TENSOR.FFN_POST_NORM: (
  238. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  239. ),
  240. MODEL_TENSOR.FFN_GATE_INP: (
  241. "layers.{bid}.feed_forward.gate", # mixtral
  242. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  243. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  244. "transformer.decoder_layer.{bid}.router", # Grok
  245. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  246. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  247. ),
  248. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  249. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  250. ),
  251. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  252. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3
  253. ),
  254. # Feed-forward up
  255. MODEL_TENSOR.FFN_UP: (
  256. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  257. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  258. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  259. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  260. "h.{bid}.mlp.dense_h_to_4h", # bloom
  261. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  262. "layers.{bid}.feed_forward.w3", # llama-pth
  263. "encoder.layer.{bid}.intermediate.dense", # bert
  264. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  265. "transformer.h.{bid}.mlp.linear_3", # refact
  266. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  267. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  268. "transformer.h.{bid}.mlp.w1", # qwen
  269. "h.{bid}.mlp.c_fc", # gpt2
  270. "transformer.h.{bid}.mlp.fc1", # phi2
  271. "model.layers.{bid}.mlp.fc1", # phi2
  272. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  273. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  274. "model.layers.{bid}.feed_forward.w3", # internlm2
  275. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  276. "model.layers.{bid}.mlp.c_fc", # starcoder2
  277. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  278. "model.layers.{bid}.residual_mlp.w3", # arctic
  279. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  280. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  281. ),
  282. MODEL_TENSOR.FFN_UP_EXP: (
  283. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  284. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  285. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  286. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  287. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  288. ),
  289. MODEL_TENSOR.FFN_UP_SHEXP: (
  290. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  291. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  292. ),
  293. # AWQ-activation gate
  294. MODEL_TENSOR.FFN_ACT: (
  295. "transformer.blocks.{bid}.ffn.act", # mpt
  296. ),
  297. # Feed-forward gate
  298. MODEL_TENSOR.FFN_GATE: (
  299. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  300. "layers.{bid}.feed_forward.w1", # llama-pth
  301. "transformer.h.{bid}.mlp.w2", # qwen
  302. "transformer.h.{bid}.mlp.c_fc2", # jais
  303. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  304. "model.layers.{bid}.feed_forward.w1", # internlm2
  305. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  306. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  307. "transformer.h.{bid}.mlp.linear_1", # refact
  308. "model.layers.{bid}.residual_mlp.w1", # arctic
  309. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  310. ),
  311. MODEL_TENSOR.FFN_GATE_EXP: (
  312. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  313. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  314. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  315. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  316. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  317. ),
  318. MODEL_TENSOR.FFN_GATE_SHEXP: (
  319. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  320. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  321. ),
  322. # Feed-forward down
  323. MODEL_TENSOR.FFN_DOWN: (
  324. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  325. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  326. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  327. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  328. "h.{bid}.mlp.dense_4h_to_h", # bloom
  329. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  330. "layers.{bid}.feed_forward.w2", # llama-pth
  331. "encoder.layer.{bid}.output.dense", # bert
  332. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  333. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  334. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  335. "h.{bid}.mlp.c_proj", # gpt2
  336. "transformer.h.{bid}.mlp.fc2", # phi2
  337. "model.layers.{bid}.mlp.fc2", # phi2
  338. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  339. "model.layers.{bid}.feed_forward.w2", # internlm2
  340. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  341. "model.layers.{bid}.mlp.c_proj", # starcoder2
  342. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  343. "transformer.layers.{bid}.ffn.proj_2", # openelm
  344. "model.layers.{bid}.residual_mlp.w2", # arctic
  345. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  346. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  347. "model.layers.h.{bid}.mlp.c_proj", # exaone
  348. ),
  349. MODEL_TENSOR.FFN_DOWN_EXP: (
  350. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  351. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  352. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  353. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  354. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  355. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  356. ),
  357. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  358. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  359. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  360. ),
  361. MODEL_TENSOR.ATTN_Q_NORM: (
  362. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  363. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  364. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  365. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  366. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  367. "transformer.layers.{bid}.attn.q_norm", # openelm
  368. ),
  369. MODEL_TENSOR.ATTN_K_NORM: (
  370. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  371. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  372. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  373. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  374. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  375. "transformer.layers.{bid}.attn.k_norm", # openelm
  376. ),
  377. MODEL_TENSOR.ROPE_FREQS: (
  378. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  379. ),
  380. MODEL_TENSOR.LAYER_OUT_NORM: (
  381. "encoder.layer.{bid}.output.LayerNorm", # bert
  382. "encoder.layers.{bid}.norm2", # nomic-bert
  383. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  384. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  385. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  386. ),
  387. MODEL_TENSOR.SSM_IN: (
  388. "model.layers.{bid}.in_proj",
  389. "backbone.layers.{bid}.mixer.in_proj",
  390. ),
  391. MODEL_TENSOR.SSM_CONV1D: (
  392. "model.layers.{bid}.conv1d",
  393. "backbone.layers.{bid}.mixer.conv1d",
  394. ),
  395. MODEL_TENSOR.SSM_X: (
  396. "model.layers.{bid}.x_proj",
  397. "backbone.layers.{bid}.mixer.x_proj",
  398. ),
  399. MODEL_TENSOR.SSM_DT: (
  400. "model.layers.{bid}.dt_proj",
  401. "backbone.layers.{bid}.mixer.dt_proj",
  402. ),
  403. MODEL_TENSOR.SSM_A: (
  404. "model.layers.{bid}.A_log",
  405. "backbone.layers.{bid}.mixer.A_log",
  406. ),
  407. MODEL_TENSOR.SSM_D: (
  408. "model.layers.{bid}.D",
  409. "backbone.layers.{bid}.mixer.D",
  410. ),
  411. MODEL_TENSOR.SSM_OUT: (
  412. "model.layers.{bid}.out_proj",
  413. "backbone.layers.{bid}.mixer.out_proj",
  414. ),
  415. MODEL_TENSOR.TIME_MIX_W1: (
  416. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6
  417. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  418. ),
  419. MODEL_TENSOR.TIME_MIX_W2: (
  420. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6
  421. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  422. ),
  423. MODEL_TENSOR.TIME_MIX_LERP_X: (
  424. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6
  425. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  426. ),
  427. MODEL_TENSOR.TIME_MIX_LERP_K: (
  428. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6
  429. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  430. ),
  431. MODEL_TENSOR.TIME_MIX_LERP_V: (
  432. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6
  433. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  434. ),
  435. MODEL_TENSOR.TIME_MIX_LERP_R: (
  436. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6
  437. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  438. ),
  439. MODEL_TENSOR.TIME_MIX_LERP_G: (
  440. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6
  441. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  442. ),
  443. MODEL_TENSOR.TIME_MIX_LERP_W: (
  444. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6
  445. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  446. ),
  447. MODEL_TENSOR.TIME_MIX_FIRST: (
  448. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6
  449. ),
  450. MODEL_TENSOR.TIME_MIX_DECAY: (
  451. "rwkv.blocks.{bid}.attention.time_decay", # rwkv v6
  452. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  453. ),
  454. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  455. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6
  456. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  457. ),
  458. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  459. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6
  460. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  461. ),
  462. MODEL_TENSOR.TIME_MIX_KEY: (
  463. "rwkv.blocks.{bid}.attention.key", # rwkv
  464. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  465. ),
  466. MODEL_TENSOR.TIME_MIX_VALUE: (
  467. "rwkv.blocks.{bid}.attention.value", # rwkv
  468. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  469. ),
  470. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  471. "rwkv.blocks.{bid}.attention.receptance", # rwkv
  472. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  473. ),
  474. MODEL_TENSOR.TIME_MIX_GATE: (
  475. "rwkv.blocks.{bid}.attention.gate", # rwkv
  476. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  477. ),
  478. MODEL_TENSOR.TIME_MIX_LN: (
  479. "rwkv.blocks.{bid}.attention.ln_x", # rwkv
  480. ),
  481. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  482. "rwkv.blocks.{bid}.attention.output", # rwkv
  483. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  484. ),
  485. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  486. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6
  487. ),
  488. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  489. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6
  490. ),
  491. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  492. "rwkv.blocks.{bid}.feed_forward.key", # rwkv
  493. ),
  494. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  495. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv
  496. ),
  497. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  498. "rwkv.blocks.{bid}.feed_forward.value", # rwkv
  499. ),
  500. MODEL_TENSOR.ATTN_Q_A: (
  501. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  502. ),
  503. MODEL_TENSOR.ATTN_Q_B: (
  504. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  505. ),
  506. MODEL_TENSOR.ATTN_KV_A_MQA: (
  507. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  508. ),
  509. MODEL_TENSOR.ATTN_KV_B: (
  510. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  511. ),
  512. MODEL_TENSOR.ATTN_Q_A_NORM: (
  513. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  514. ),
  515. MODEL_TENSOR.ATTN_KV_A_NORM: (
  516. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  517. ),
  518. MODEL_TENSOR.ATTN_SUB_NORM: (
  519. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  520. ),
  521. MODEL_TENSOR.FFN_SUB_NORM: (
  522. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  523. ),
  524. MODEL_TENSOR.DEC_ATTN_NORM: (
  525. "decoder.block.{bid}.layer.0.layer_norm", # t5
  526. ),
  527. MODEL_TENSOR.DEC_ATTN_Q: (
  528. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  529. ),
  530. MODEL_TENSOR.DEC_ATTN_K: (
  531. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  532. ),
  533. MODEL_TENSOR.DEC_ATTN_V: (
  534. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  535. ),
  536. MODEL_TENSOR.DEC_ATTN_OUT: (
  537. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  538. ),
  539. MODEL_TENSOR.DEC_ATTN_REL_B: (
  540. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  541. ),
  542. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  543. "decoder.block.{bid}.layer.1.layer_norm", # t5
  544. ),
  545. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  546. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  547. ),
  548. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  549. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  550. ),
  551. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  552. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  553. ),
  554. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  555. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  556. ),
  557. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  558. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  559. ),
  560. MODEL_TENSOR.DEC_FFN_NORM: (
  561. "decoder.block.{bid}.layer.2.layer_norm", # t5
  562. ),
  563. MODEL_TENSOR.DEC_FFN_GATE: (
  564. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  565. ),
  566. MODEL_TENSOR.DEC_FFN_UP: (
  567. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  568. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  569. ),
  570. MODEL_TENSOR.DEC_FFN_DOWN: (
  571. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  572. ),
  573. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  574. "decoder.final_layer_norm", # t5
  575. ),
  576. MODEL_TENSOR.ENC_ATTN_NORM: (
  577. "encoder.block.{bid}.layer.0.layer_norm", # t5
  578. ),
  579. MODEL_TENSOR.ENC_ATTN_Q: (
  580. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  581. ),
  582. MODEL_TENSOR.ENC_ATTN_K: (
  583. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  584. ),
  585. MODEL_TENSOR.ENC_ATTN_V: (
  586. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  587. ),
  588. MODEL_TENSOR.ENC_ATTN_OUT: (
  589. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  590. ),
  591. MODEL_TENSOR.ENC_ATTN_REL_B: (
  592. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  593. ),
  594. MODEL_TENSOR.ENC_FFN_NORM: (
  595. "encoder.block.{bid}.layer.1.layer_norm", # t5
  596. ),
  597. MODEL_TENSOR.ENC_FFN_GATE: (
  598. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  599. ),
  600. MODEL_TENSOR.ENC_FFN_UP: (
  601. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  602. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  603. ),
  604. MODEL_TENSOR.ENC_FFN_DOWN: (
  605. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  606. ),
  607. ############################################################################
  608. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  609. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  610. "encoder.final_layer_norm", # t5
  611. ),
  612. MODEL_TENSOR.CLS: (
  613. "classifier", # jina
  614. "classifier.dense", # roberta
  615. ),
  616. MODEL_TENSOR.CLS_OUT: (
  617. "classifier.out_proj", # roberta
  618. ),
  619. #############################################################################
  620. MODEL_TENSOR.CONVNEXT_DW: (
  621. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  622. ),
  623. MODEL_TENSOR.CONVNEXT_NORM: (
  624. "backbone.convnext.{bid}.norm", # wavtokenizer
  625. ),
  626. MODEL_TENSOR.CONVNEXT_PW1: (
  627. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  628. ),
  629. MODEL_TENSOR.CONVNEXT_PW2: (
  630. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  631. ),
  632. MODEL_TENSOR.CONVNEXT_GAMMA: (
  633. "backbone.convnext.{bid}.gamma", # wavtokenizer
  634. ),
  635. MODEL_TENSOR.POSNET_CONV1: (
  636. "backbone.posnet.{bid}.conv1", # wavtokenizer
  637. ),
  638. MODEL_TENSOR.POSNET_CONV2: (
  639. "backbone.posnet.{bid}.conv2", # wavtokenizer
  640. ),
  641. MODEL_TENSOR.POSNET_NORM: (
  642. "backbone.posnet.{bid}.norm", # wavtokenizer
  643. ),
  644. MODEL_TENSOR.POSNET_NORM1: (
  645. "backbone.posnet.{bid}.norm1", # wavtokenizer
  646. ),
  647. MODEL_TENSOR.POSNET_NORM2: (
  648. "backbone.posnet.{bid}.norm2", # wavtokenizer
  649. ),
  650. MODEL_TENSOR.POSNET_ATTN_NORM: (
  651. "backbone.posnet.{bid}.norm", # wavtokenizer
  652. ),
  653. MODEL_TENSOR.POSNET_ATTN_Q: (
  654. "backbone.posnet.{bid}.q", # wavtokenizer
  655. ),
  656. MODEL_TENSOR.POSNET_ATTN_K: (
  657. "backbone.posnet.{bid}.k", # wavtokenizer
  658. ),
  659. MODEL_TENSOR.POSNET_ATTN_V: (
  660. "backbone.posnet.{bid}.v", # wavtokenizer
  661. ),
  662. MODEL_TENSOR.POSNET_ATTN_OUT: (
  663. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  664. ),
  665. }
  666. # architecture-specific block mappings
  667. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  668. MODEL_ARCH.ARCTIC: {
  669. MODEL_TENSOR.FFN_NORM: (
  670. "model.layers.{bid}.residual_layernorm",
  671. ),
  672. MODEL_TENSOR.FFN_NORM_EXP: (
  673. "model.layers.{bid}.post_attention_layernorm",
  674. ),
  675. },
  676. }
  677. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  678. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  679. self.mapping = {}
  680. for tensor, keys in self.mappings_cfg.items():
  681. if tensor not in MODEL_TENSORS[arch]:
  682. continue
  683. tensor_name = TENSOR_NAMES[tensor]
  684. self.mapping[tensor_name] = (tensor, tensor_name)
  685. for key in keys:
  686. self.mapping[key] = (tensor, tensor_name)
  687. if arch in self.arch_block_mappings_cfg:
  688. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  689. for bid in range(n_blocks):
  690. for tensor, keys in self.block_mappings_cfg.items():
  691. if tensor not in MODEL_TENSORS[arch]:
  692. continue
  693. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  694. self.mapping[tensor_name] = (tensor, tensor_name)
  695. for key in keys:
  696. key = key.format(bid = bid)
  697. self.mapping[key] = (tensor, tensor_name)
  698. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  699. result = self.mapping.get(key)
  700. if result is not None:
  701. return result
  702. for suffix in try_suffixes:
  703. if key.endswith(suffix):
  704. result = self.mapping.get(key[:-len(suffix)])
  705. if result is not None:
  706. return result[0], result[1] + suffix
  707. return None
  708. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  709. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  710. if result is None:
  711. return None
  712. return result[1]
  713. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  714. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  715. if result is None:
  716. return None
  717. return result[0]
  718. def __getitem__(self, key: str) -> str:
  719. try:
  720. return self.mapping[key][1]
  721. except KeyError:
  722. raise KeyError(key)
  723. def __contains__(self, key: str) -> bool:
  724. return key in self.mapping
  725. def __repr__(self) -> str:
  726. return repr(self.mapping)
  727. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  728. return TensorNameMap(arch, n_blocks)