utility.py 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869
  1. from __future__ import annotations
  2. from typing import Literal
  3. def fill_templated_filename(filename: str, output_type: str | None) -> str:
  4. # Given a file name fill in any type templates e.g. 'some-model-name.{ftype}.gguf'
  5. ftype_lowercase: str = output_type.lower() if output_type is not None else ""
  6. ftype_uppercase: str = output_type.upper() if output_type is not None else ""
  7. return filename.format(ftype_lowercase,
  8. outtype=ftype_lowercase, ftype=ftype_lowercase,
  9. OUTTYPE=ftype_uppercase, FTYPE=ftype_uppercase)
  10. def model_weight_count_rounded_notation(model_params_count: int, min_digits: int = 2) -> str:
  11. if model_params_count > 1e12 :
  12. # Trillions Of Parameters
  13. scaled_model_params = model_params_count * 1e-12
  14. scale_suffix = "T"
  15. elif model_params_count > 1e9 :
  16. # Billions Of Parameters
  17. scaled_model_params = model_params_count * 1e-9
  18. scale_suffix = "B"
  19. elif model_params_count > 1e6 :
  20. # Millions Of Parameters
  21. scaled_model_params = model_params_count * 1e-6
  22. scale_suffix = "M"
  23. else:
  24. # Thousands Of Parameters
  25. scaled_model_params = model_params_count * 1e-3
  26. scale_suffix = "K"
  27. fix = max(min_digits - len(str(round(scaled_model_params)).lstrip('0')), 0)
  28. return f"{scaled_model_params:.{fix}f}{scale_suffix}"
  29. def size_label(total_params: int, shared_params: int, expert_params: int, expert_count: int) -> str:
  30. if expert_count > 0:
  31. pretty_size = model_weight_count_rounded_notation(abs(shared_params) + abs(expert_params), min_digits=2)
  32. size_class = f"{expert_count}x{pretty_size}"
  33. else:
  34. size_class = model_weight_count_rounded_notation(abs(total_params), min_digits=2)
  35. return size_class
  36. def naming_convention(model_name: str | None, base_name: str | None, finetune_string: str | None, version_string: str | None, size_label: str | None, output_type: str | None, model_type: Literal['vocab', 'LoRA'] | None = None) -> str:
  37. # Reference: https://github.com/ggml-org/ggml/blob/master/docs/gguf.md#gguf-naming-convention
  38. if base_name is not None:
  39. name = base_name.strip().replace(' ', '-').replace('/', '-')
  40. elif model_name is not None:
  41. name = model_name.strip().replace(' ', '-').replace('/', '-')
  42. else:
  43. name = "ggml-model"
  44. parameters = f"-{size_label}" if size_label is not None else ""
  45. finetune = f"-{finetune_string.strip().replace(' ', '-')}" if finetune_string is not None else ""
  46. version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else ""
  47. encoding = f"-{output_type.strip().replace(' ', '-').upper()}" if output_type is not None else ""
  48. kind = f"-{model_type.strip().replace(' ', '-')}" if model_type is not None else ""
  49. return f"{name}{parameters}{finetune}{version}{encoding}{kind}"