ggml.c 333 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  44. if (handle == NULL)
  45. {
  46. return EAGAIN;
  47. }
  48. *out = handle;
  49. return 0;
  50. }
  51. static int pthread_join(pthread_t thread, void* unused) {
  52. return (int) WaitForSingleObject(thread, INFINITE);
  53. }
  54. static int sched_yield (void) {
  55. Sleep (0);
  56. return 0;
  57. }
  58. #else
  59. #include <pthread.h>
  60. #include <stdatomic.h>
  61. typedef void* thread_ret_t;
  62. #endif
  63. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  64. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  65. #ifndef __FMA__
  66. #define __FMA__
  67. #endif
  68. #ifndef __F16C__
  69. #define __F16C__
  70. #endif
  71. #ifndef __SSE3__
  72. #define __SSE3__
  73. #endif
  74. #endif
  75. #ifdef __HAIKU__
  76. #define static_assert(cond, msg) _Static_assert(cond, msg)
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) ((float) (x))
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #ifdef _MSC_VER
  141. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  142. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  143. #else
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  146. #endif
  147. #elif defined(__POWER9_VECTOR__)
  148. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  149. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  150. /* the inline asm below is about 12% faster than the lookup method */
  151. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  152. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  153. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  154. register float f;
  155. register double d;
  156. __asm__(
  157. "mtfprd %0,%2\n"
  158. "xscvhpdp %0,%0\n"
  159. "frsp %1,%0\n" :
  160. /* temp */ "=d"(d),
  161. /* out */ "=f"(f):
  162. /* in */ "r"(h));
  163. return f;
  164. }
  165. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  166. register double d;
  167. register ggml_fp16_t r;
  168. __asm__( /* xscvdphp can work on double or single precision */
  169. "xscvdphp %0,%2\n"
  170. "mffprd %1,%0\n" :
  171. /* temp */ "=d"(d),
  172. /* out */ "=r"(r):
  173. /* in */ "f"(f));
  174. return r;
  175. }
  176. #else
  177. // FP16 <-> FP32
  178. // ref: https://github.com/Maratyszcza/FP16
  179. static inline float fp32_from_bits(uint32_t w) {
  180. union {
  181. uint32_t as_bits;
  182. float as_value;
  183. } fp32;
  184. fp32.as_bits = w;
  185. return fp32.as_value;
  186. }
  187. static inline uint32_t fp32_to_bits(float f) {
  188. union {
  189. float as_value;
  190. uint32_t as_bits;
  191. } fp32;
  192. fp32.as_value = f;
  193. return fp32.as_bits;
  194. }
  195. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  196. const uint32_t w = (uint32_t) h << 16;
  197. const uint32_t sign = w & UINT32_C(0x80000000);
  198. const uint32_t two_w = w + w;
  199. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  200. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  201. const float exp_scale = 0x1.0p-112f;
  202. #else
  203. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  204. #endif
  205. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  206. const uint32_t magic_mask = UINT32_C(126) << 23;
  207. const float magic_bias = 0.5f;
  208. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  209. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  210. const uint32_t result = sign |
  211. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  212. return fp32_from_bits(result);
  213. }
  214. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  215. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  216. const float scale_to_inf = 0x1.0p+112f;
  217. const float scale_to_zero = 0x1.0p-110f;
  218. #else
  219. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  220. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  221. #endif
  222. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  223. const uint32_t w = fp32_to_bits(f);
  224. const uint32_t shl1_w = w + w;
  225. const uint32_t sign = w & UINT32_C(0x80000000);
  226. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  227. if (bias < UINT32_C(0x71000000)) {
  228. bias = UINT32_C(0x71000000);
  229. }
  230. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  231. const uint32_t bits = fp32_to_bits(base);
  232. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  233. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  234. const uint32_t nonsign = exp_bits + mantissa_bits;
  235. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  236. }
  237. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  238. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  239. #endif // __F16C__
  240. #endif // __ARM_NEON
  241. //
  242. // global data
  243. //
  244. // precomputed gelu table for f16 (128 KB)
  245. static ggml_fp16_t table_gelu_f16[1 << 16];
  246. // precomputed silu table for f16 (128 KB)
  247. static ggml_fp16_t table_silu_f16[1 << 16];
  248. // precomputed exp table for f16 (128 KB)
  249. static ggml_fp16_t table_exp_f16[1 << 16];
  250. // precomputed f32 table for f16 (256 KB)
  251. static float table_f32_f16[1 << 16];
  252. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  253. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  254. // This is also true for POWER9.
  255. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  256. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  257. uint16_t s;
  258. memcpy(&s, &f, sizeof(uint16_t));
  259. return table_f32_f16[s];
  260. }
  261. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  262. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  263. #endif
  264. // note: do not use these inside ggml.c
  265. // these are meant to be used via the ggml.h API
  266. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  267. return (float) GGML_FP16_TO_FP32(x);
  268. }
  269. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  270. return GGML_FP32_TO_FP16(x);
  271. }
  272. //
  273. // timing
  274. //
  275. #if defined(_MSC_VER) || defined(__MINGW32__)
  276. static int64_t timer_freq;
  277. void ggml_time_init(void) {
  278. LARGE_INTEGER frequency;
  279. QueryPerformanceFrequency(&frequency);
  280. timer_freq = frequency.QuadPart;
  281. }
  282. int64_t ggml_time_ms(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000) / timer_freq;
  286. }
  287. int64_t ggml_time_us(void) {
  288. LARGE_INTEGER t;
  289. QueryPerformanceCounter(&t);
  290. return (t.QuadPart * 1000000) / timer_freq;
  291. }
  292. #else
  293. void ggml_time_init(void) {}
  294. int64_t ggml_time_ms(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  298. }
  299. int64_t ggml_time_us(void) {
  300. struct timespec ts;
  301. clock_gettime(CLOCK_MONOTONIC, &ts);
  302. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  303. }
  304. #endif
  305. int64_t ggml_cycles(void) {
  306. return clock();
  307. }
  308. int64_t ggml_cycles_per_ms(void) {
  309. return CLOCKS_PER_SEC/1000;
  310. }
  311. #ifdef GGML_PERF
  312. #define ggml_perf_time_ms() ggml_time_ms()
  313. #define ggml_perf_time_us() ggml_time_us()
  314. #define ggml_perf_cycles() ggml_cycles()
  315. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  316. #else
  317. #define ggml_perf_time_ms() 0
  318. #define ggml_perf_time_us() 0
  319. #define ggml_perf_cycles() 0
  320. #define ggml_perf_cycles_per_ms() 0
  321. #endif
  322. //
  323. // cache line
  324. //
  325. #if defined(__cpp_lib_hardware_interference_size)
  326. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  327. #else
  328. #if defined(__POWER9_VECTOR__)
  329. #define CACHE_LINE_SIZE 128
  330. #else
  331. #define CACHE_LINE_SIZE 64
  332. #endif
  333. #endif
  334. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  335. //
  336. // quantization
  337. //
  338. #define QK 32
  339. // AVX routines provided by GH user Const-me
  340. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  341. #if __AVX2__ || __AVX512F__
  342. // Unpack 32 4-bit fields into 32 bytes
  343. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  344. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  345. {
  346. // Load 16 bytes from memory
  347. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  348. // Expand bytes into uint16_t values
  349. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  350. // Unpack values into individual bytes
  351. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  352. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  353. __m256i low = _mm256_and_si256( lowMask, bytes );
  354. high = _mm256_slli_epi16( high, 4 );
  355. bytes = _mm256_or_si256( low, high );
  356. return bytes;
  357. }
  358. static inline __m128i packNibbles( __m256i bytes )
  359. {
  360. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  361. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  362. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  363. __m256i low = _mm256_and_si256( lowByte, bytes );
  364. high = _mm256_srli_epi16( high, 4 );
  365. bytes = _mm256_or_si256( low, high );
  366. // Compress uint16_t lanes into bytes
  367. __m128i r0 = _mm256_castsi256_si128( bytes );
  368. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  369. return _mm_packus_epi16( r0, r1 );
  370. }
  371. #elif __AVX__
  372. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  373. {
  374. // Load 8 bytes from memory
  375. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  376. // Expand bytes into uint16_t values
  377. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  378. // Unpack values into individual bytes
  379. const __m128i lowMask = _mm_set1_epi8( 0xF );
  380. __m128i high = _mm_andnot_si128( lowMask, bytes );
  381. __m128i low = _mm_and_si128( lowMask, bytes );
  382. high = _mm_slli_epi16( high, 4 );
  383. bytes = _mm_or_si128( low, high );
  384. return bytes;
  385. }
  386. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  387. {
  388. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  389. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  390. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  391. __m128i low = _mm_and_si128( lowByte, bytes1 );
  392. high = _mm_srli_epi16( high, 4 );
  393. bytes1 = _mm_or_si128( low, high );
  394. high = _mm_andnot_si128( lowByte, bytes2 );
  395. low = _mm_and_si128( lowByte, bytes2 );
  396. high = _mm_srli_epi16( high, 4 );
  397. bytes2 = _mm_or_si128( low, high );
  398. return _mm_packus_epi16( bytes1, bytes2);
  399. }
  400. #endif
  401. // method 5
  402. // blocks of QK elements
  403. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  404. typedef struct {
  405. float d; // delta
  406. uint8_t qs[QK / 2]; // nibbles / quants
  407. } block_q4_0;
  408. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  409. // method 4
  410. // blocks of QK elements
  411. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  412. typedef struct {
  413. float d;
  414. float m;
  415. uint8_t qs[QK / 2]; // nibbles / quants
  416. } block_q4_1;
  417. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  418. // reference implementation for deterministic creation of model files
  419. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  420. assert(k % QK == 0);
  421. const int nb = k / QK;
  422. uint8_t pp[QK/2];
  423. for (int i = 0; i < nb; i++) {
  424. float amax = 0.0f; // absolute max
  425. for (int l = 0; l < QK; l++) {
  426. const float v = x[i*QK + l];
  427. amax = MAX(amax, fabsf(v));
  428. }
  429. const float d = amax / ((1 << 3) - 1);
  430. const float id = d ? 1.0f/d : 0.0f;
  431. y[i].d = d;
  432. for (int l = 0; l < QK; l += 2) {
  433. const float v0 = x[i*QK + l + 0]*id;
  434. const float v1 = x[i*QK + l + 1]*id;
  435. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  436. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  437. assert(vi0 < 16);
  438. assert(vi1 < 16);
  439. pp[l/2] = vi0 | (vi1 << 4);
  440. }
  441. memcpy(y[i].qs, pp, sizeof(pp));
  442. }
  443. }
  444. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  445. assert(k % QK == 0);
  446. const int nb = k / QK;
  447. block_q4_0 * restrict y = vy;
  448. #if defined(__POWER9_VECTOR__)
  449. const vector float v85 = vec_splats(8.5f);
  450. for (int i = 0; i < nb; i++) {
  451. float amax = 0.0f; // absolute max
  452. vector float srcv [8];
  453. vector float asrcv[8];
  454. vector float amaxv[8];
  455. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  456. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  457. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  458. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  459. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  460. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  461. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  462. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  463. amax = MAX(
  464. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  465. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  466. const float d = amax / ((1 << 3) - 1);
  467. const float id = d ? 1.0/d : 0.0;
  468. y[i].d = d;
  469. const vector float vid = vec_splats(id);
  470. uint8_t * restrict pb = y[i].qs;
  471. for (int l = 0; l < 8; l++) {
  472. const vector float vf = vec_madd(srcv[l], vid, v85);
  473. const vector signed int vi = vec_signed(vf);
  474. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  475. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  476. }
  477. }
  478. #elif __ARM_NEON
  479. for (int i = 0; i < nb; i++) {
  480. float32x4_t srcv [8];
  481. float32x4_t asrcv[8];
  482. float32x4_t amaxv[8];
  483. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  484. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  485. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  486. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  487. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  488. const float amax = vmaxvq_f32(amaxv[0]);
  489. const float d = amax / ((1 << 3) - 1);
  490. const float id = d ? 1.0f/d : 0.0f;
  491. y[i].d = d;
  492. for (int l = 0; l < 8; l++) {
  493. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  494. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  495. const int32x4_t vi = vcvtq_s32_f32(vf);
  496. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  497. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  498. }
  499. }
  500. #elif defined(__AVX2__)
  501. for (int i = 0; i < nb; i++) {
  502. // Load elements into 4 AVX vectors
  503. __m256 v0 = _mm256_loadu_ps( x );
  504. __m256 v1 = _mm256_loadu_ps( x + 8 );
  505. __m256 v2 = _mm256_loadu_ps( x + 16 );
  506. __m256 v3 = _mm256_loadu_ps( x + 24 );
  507. x += 32;
  508. // Compute max(abs(e)) for the block
  509. const __m256 signBit = _mm256_set1_ps( -0.0f );
  510. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  511. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  512. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  513. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  514. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  515. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  516. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  517. const float maxScalar = _mm_cvtss_f32( max4 );
  518. // Quantize these floats
  519. const float d = maxScalar / 7.0f;
  520. y[i].d = d;
  521. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  522. const __m256 mul = _mm256_set1_ps( id );
  523. // Apply the multiplier
  524. v0 = _mm256_mul_ps( v0, mul );
  525. v1 = _mm256_mul_ps( v1, mul );
  526. v2 = _mm256_mul_ps( v2, mul );
  527. v3 = _mm256_mul_ps( v3, mul );
  528. // Round to nearest integer
  529. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  530. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  531. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  532. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  533. // Convert floats to integers
  534. __m256i i0 = _mm256_cvtps_epi32( v0 );
  535. __m256i i1 = _mm256_cvtps_epi32( v1 );
  536. __m256i i2 = _mm256_cvtps_epi32( v2 );
  537. __m256i i3 = _mm256_cvtps_epi32( v3 );
  538. // Convert int32 to int16
  539. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  540. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  541. // Convert int16 to int8
  542. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  543. // We got our precious signed bytes, but the order is now wrong
  544. // These AVX2 pack instructions process 16-byte pieces independently
  545. // The following instruction is fixing the order
  546. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  547. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  548. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  549. const __m256i off = _mm256_set1_epi8( 8 );
  550. i0 = _mm256_add_epi8( i0, off );
  551. // Compress the vector into 4 bit/value, and store
  552. __m128i res = packNibbles( i0 );
  553. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  554. }
  555. #elif defined(__AVX__)
  556. for (int i = 0; i < nb; i++) {
  557. // Load elements into 4 AVX vectors
  558. __m256 v0 = _mm256_loadu_ps( x );
  559. __m256 v1 = _mm256_loadu_ps( x + 8 );
  560. __m256 v2 = _mm256_loadu_ps( x + 16 );
  561. __m256 v3 = _mm256_loadu_ps( x + 24 );
  562. x += 32;
  563. // Compute max(abs(e)) for the block
  564. const __m256 signBit = _mm256_set1_ps( -0.0f );
  565. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  566. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  567. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  568. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  569. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  570. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  571. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  572. const float maxScalar = _mm_cvtss_f32( max4 );
  573. // Quantize these floats
  574. const float d = maxScalar / 7.0f;
  575. y[i].d = d;
  576. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  577. const __m256 mul = _mm256_set1_ps( id );
  578. // Apply the multiplier
  579. v0 = _mm256_mul_ps( v0, mul );
  580. v1 = _mm256_mul_ps( v1, mul );
  581. v2 = _mm256_mul_ps( v2, mul );
  582. v3 = _mm256_mul_ps( v3, mul );
  583. // Round to nearest integer
  584. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  585. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  586. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  587. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  588. // Convert floats to integers
  589. __m256i i0 = _mm256_cvtps_epi32( v0 );
  590. __m256i i1 = _mm256_cvtps_epi32( v1 );
  591. __m256i i2 = _mm256_cvtps_epi32( v2 );
  592. __m256i i3 = _mm256_cvtps_epi32( v3 );
  593. // Since we don't have in AVX some necessary functions,
  594. // we split the registers in half and call AVX2 analogs from SSE
  595. __m128i ni0 = _mm256_castsi256_si128( i0 );
  596. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  597. __m128i ni2 = _mm256_castsi256_si128( i1 );
  598. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  599. __m128i ni4 = _mm256_castsi256_si128( i2 );
  600. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  601. __m128i ni6 = _mm256_castsi256_si128( i3 );
  602. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  603. // Convert int32 to int16
  604. ni0 = _mm_packs_epi32( ni0, ni1 );
  605. ni2 = _mm_packs_epi32( ni2, ni3 );
  606. ni4 = _mm_packs_epi32( ni4, ni5 );
  607. ni6 = _mm_packs_epi32( ni6, ni7 );
  608. // Convert int16 to int8
  609. ni0 = _mm_packs_epi16( ni0, ni2 );
  610. ni4 = _mm_packs_epi16( ni4, ni6 );
  611. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  612. const __m128i off = _mm_set1_epi8( 8);
  613. ni0 = _mm_add_epi8( ni0, off );
  614. ni4 = _mm_add_epi8( ni4, off );
  615. // Compress the vector into 4 bit/value, and store
  616. __m128i res = packNibbles( ni0, ni4 );
  617. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  618. }
  619. #elif defined(__wasm_simd128__)
  620. for (int i = 0; i < nb; i++) {
  621. float amax = 0.0f; // absolute max
  622. v128_t srcv [8];
  623. v128_t asrcv[8];
  624. v128_t amaxv[8];
  625. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  626. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  627. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  628. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  629. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  630. amax = MAX(
  631. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  632. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  633. const float d = amax / ((1 << 3) - 1);
  634. const float id = d ? 1.0/d : 0.0;
  635. y[i].d = d;
  636. for (int l = 0; l < 8; l++) {
  637. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  638. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  639. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  640. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  641. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  642. }
  643. }
  644. #else
  645. // scalar
  646. quantize_row_q4_0_reference(x, y, k);
  647. #endif
  648. }
  649. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  650. assert(k % QK == 0);
  651. const int nb = k / QK;
  652. block_q4_1 * restrict y = vy;
  653. uint8_t pp[QK/2];
  654. for (int i = 0; i < nb; i++) {
  655. float min = FLT_MAX;
  656. float max = -FLT_MAX;
  657. for (int l = 0; l < QK; l++) {
  658. const float v = x[i*QK + l];
  659. if (v < min) min = v;
  660. if (v > max) max = v;
  661. }
  662. const float d = (max - min) / ((1 << 4) - 1);
  663. const float id = d ? 1.0f/d : 0.0f;
  664. y[i].d = d;
  665. y[i].m = min;
  666. for (int l = 0; l < QK; l += 2) {
  667. const float v0 = (x[i*QK + l + 0] - min)*id;
  668. const float v1 = (x[i*QK + l + 1] - min)*id;
  669. const uint8_t vi0 = roundf(v0);
  670. const uint8_t vi1 = roundf(v1);
  671. assert(vi0 < 16);
  672. assert(vi1 < 16);
  673. pp[l/2] = vi0 | (vi1 << 4);
  674. }
  675. memcpy(y[i].qs, pp, sizeof(pp));
  676. }
  677. }
  678. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  679. assert(k % QK == 0);
  680. const int nb = k / QK;
  681. block_q4_1 * restrict y = vy;
  682. #if defined(__AVX2__)
  683. for (int i = 0; i < nb; i++) {
  684. // Load elements into 4 AVX vectors
  685. __m256 v0 = _mm256_loadu_ps( x );
  686. __m256 v1 = _mm256_loadu_ps( x + 8 );
  687. __m256 v2 = _mm256_loadu_ps( x + 16 );
  688. __m256 v3 = _mm256_loadu_ps( x + 24 );
  689. x += 32;
  690. // Compute max for the block
  691. __m256 vmax;
  692. vmax = _mm256_max_ps( v0, v1 );
  693. vmax = _mm256_max_ps( vmax, v2 );
  694. vmax = _mm256_max_ps( vmax, v3 );
  695. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  696. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  697. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  698. const float maxScalar = _mm_cvtss_f32( max4 );
  699. // Compute min for the block
  700. __m256 vmin;
  701. vmin = _mm256_min_ps( v0, v1 );
  702. vmin = _mm256_min_ps( vmin, v2 );
  703. vmin = _mm256_min_ps( vmin, v3 );
  704. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  705. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  706. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  707. const float minScalar = _mm_cvtss_f32( min4 );
  708. // Quantize these floats
  709. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  710. const float id = d ? 1.0f/d : 0.0f;
  711. y[i].m = minScalar;
  712. y[i].d = d;
  713. // x = (x-min)*id
  714. const __m256 mul = _mm256_set1_ps( id );
  715. const __m256 off = _mm256_set1_ps( minScalar );
  716. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  717. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  718. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  719. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  720. // Round to nearest integer
  721. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  722. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  723. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  724. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  725. // Convert floats to integers
  726. __m256i i0 = _mm256_cvtps_epi32( v0 );
  727. __m256i i1 = _mm256_cvtps_epi32( v1 );
  728. __m256i i2 = _mm256_cvtps_epi32( v2 );
  729. __m256i i3 = _mm256_cvtps_epi32( v3 );
  730. // Convert int32 to int16
  731. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  732. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  733. // Convert int16 to int8
  734. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  735. // We got our precious signed bytes, but the order is now wrong
  736. // These AVX2 pack instructions process 16-byte pieces independently
  737. // The following instruction is fixing the order
  738. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  739. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  740. // Compress the vector into 4 bit/value, and store
  741. __m128i res = packNibbles( i0 );
  742. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  743. }
  744. #elif __ARM_NEON
  745. for (int i = 0; i < nb; i++) {
  746. float32x4_t srcv[8];
  747. float32x4_t minv[8];
  748. float32x4_t maxv[8];
  749. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
  750. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  751. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  752. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  753. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  754. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  755. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  756. const float min = vminvq_f32(minv[0]);
  757. const float max = vmaxvq_f32(maxv[0]);
  758. const float d = (max - min) / ((1 << 4) - 1);
  759. const float id = d ? 1.0f/d : 0.0f;
  760. y[i].d = d;
  761. y[i].m = min;
  762. const float32x4_t minv0 = vdupq_n_f32(min);
  763. for (int l = 0; l < 8; l++) {
  764. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  765. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  766. const int32x4_t vi = vcvtq_s32_f32(vf);
  767. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  768. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  769. }
  770. }
  771. #else
  772. // scalar
  773. quantize_row_q4_1_reference(x, vy, k);
  774. #endif
  775. }
  776. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  777. assert(k % QK == 0);
  778. const int nb = k / QK;
  779. const block_q4_0 * restrict x = vx;
  780. #if defined(__AVX2__)
  781. for (int i = 0; i < nb; i++) {
  782. // scale factor
  783. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  784. const uint8_t * restrict pp = x[i].qs;
  785. for (int l = 0; l < QK; l += 32) {
  786. // Load 32x4-bit integers into 32x8-bit integers
  787. __m256i vx8 = bytesFromNibbles(pp+l/2);
  788. // Subtract 8 from the integers
  789. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  790. // Convert to 16-bit int
  791. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  792. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  793. // Convert to 32-bit int -> float 32
  794. const __m256 vf[4] = {
  795. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  796. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  797. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  798. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  799. };
  800. // Scale and store
  801. for (int j = 0; j < 4; j++) {
  802. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  803. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  804. }
  805. }
  806. }
  807. #elif defined(__ARM_NEON)
  808. for (int i = 0; i < nb; i++) {
  809. const float32x4_t vd = vdupq_n_f32(x[i].d);
  810. const uint8_t * restrict pp = x[i].qs;
  811. for (int l = 0; l < QK; l += 16) {
  812. // Load 16x4-bit integers into 8x8-bit integers
  813. const uint8x8_t v8 = vld1_u8(pp + l/2);
  814. // Expand 4-bit qs to 8-bit bytes
  815. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  816. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  817. // Convert to signed 8-bit integers
  818. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  819. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  820. // Subtract 8 from each byte
  821. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  822. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  823. // Interleave and combine
  824. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  825. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  826. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  827. // convert to 2x int16x8_t
  828. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  829. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  830. // convert to 4x float32x4_t
  831. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  832. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  833. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  834. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  835. // Multiply by d
  836. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  837. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  838. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  839. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  840. // Store
  841. vst1q_f32(y + i*QK + l + 0, r0);
  842. vst1q_f32(y + i*QK + l + 4, r1);
  843. vst1q_f32(y + i*QK + l + 8, r2);
  844. vst1q_f32(y + i*QK + l + 12, r3);
  845. }
  846. }
  847. #else
  848. // scalar
  849. for (int i = 0; i < nb; i++) {
  850. const float d = x[i].d;
  851. const uint8_t * restrict pp = x[i].qs;
  852. for (int l = 0; l < QK; l += 2) {
  853. const uint8_t vi = pp[l/2];
  854. const int8_t vi0 = vi & 0xf;
  855. const int8_t vi1 = vi >> 4;
  856. const float v0 = (vi0 - 8)*d;
  857. const float v1 = (vi1 - 8)*d;
  858. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  859. y[i*QK + l + 0] = v0;
  860. y[i*QK + l + 1] = v1;
  861. assert(!isnan(y[i*QK + l + 0]));
  862. assert(!isnan(y[i*QK + l + 1]));
  863. }
  864. }
  865. #endif
  866. }
  867. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  868. assert(k % QK == 0);
  869. const int nb = k / QK;
  870. const block_q4_1 * restrict x = vx;
  871. #if defined(__AVX2__)
  872. for (int i = 0; i < nb; i++) {
  873. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  874. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  875. const uint8_t * restrict pp = x[i].qs;
  876. for (int l = 0; l < QK; l += 32) {
  877. // Load 32x4-bit integers into 32x8-bit integers
  878. __m256i vx8 = bytesFromNibbles(pp+l/2);
  879. // Convert to 16-bit int
  880. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  881. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  882. // Convert to 32-bit int -> float 32
  883. const __m256 vf[4] = {
  884. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  885. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  886. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  887. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  888. };
  889. // Scale, add m and store
  890. for (int j = 0; j < 4; j++) {
  891. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  892. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  893. }
  894. }
  895. }
  896. #elif defined(__ARM_NEON)
  897. for (int i = 0; i < nb; i++) {
  898. const float32x4_t vd = vdupq_n_f32(x[i].d);
  899. const float32x4_t vm = vdupq_n_f32(x[i].m);
  900. const uint8_t * restrict pp = x[i].qs;
  901. for (int l = 0; l < QK; l += 16) {
  902. // Load 16x4-bit integers into 8x8-bit integers
  903. const uint8x8_t v8 = vld1_u8(pp + l/2);
  904. // Expand 4-bit qs to 8-bit bytes
  905. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  906. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  907. // Interleave and combine
  908. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  909. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  910. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  911. // convert to 2x uint16x8_t
  912. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  913. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  914. // convert to 4x float32x4_t
  915. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  916. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  917. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  918. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  919. // multiply by d and add m
  920. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  921. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  922. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  923. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  924. // Store
  925. vst1q_f32(y + i*QK + l + 0, r0);
  926. vst1q_f32(y + i*QK + l + 4, r1);
  927. vst1q_f32(y + i*QK + l + 8, r2);
  928. vst1q_f32(y + i*QK + l + 12, r3);
  929. }
  930. }
  931. #else
  932. for (int i = 0; i < nb; i++) {
  933. const float d = x[i].d;
  934. const float m = x[i].m;
  935. const uint8_t * restrict pp = x[i].qs;
  936. for (int l = 0; l < QK; l += 2) {
  937. const uint8_t vi = pp[l/2];
  938. const int8_t vi0 = vi & 0xf;
  939. const int8_t vi1 = vi >> 4;
  940. const float v0 = vi0*d + m;
  941. const float v1 = vi1*d + m;
  942. y[i*QK + l + 0] = v0;
  943. y[i*QK + l + 1] = v1;
  944. assert(!isnan(y[i*QK + l + 0]));
  945. assert(!isnan(y[i*QK + l + 1]));
  946. }
  947. }
  948. #endif
  949. }
  950. //
  951. // simd mappings
  952. //
  953. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  954. // we then implement the fundamental computation operations below using only these macros
  955. // adding support for new architectures requires to define the corresponding SIMD macros
  956. //
  957. // GGML_F32_STEP / GGML_F16_STEP
  958. // number of elements to process in a single step
  959. //
  960. // GGML_F32_EPR / GGML_F16_EPR
  961. // number of elements to fit in a single register
  962. //
  963. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  964. #define GGML_SIMD
  965. // F32 NEON
  966. #define GGML_F32_STEP 16
  967. #define GGML_F32_EPR 4
  968. #define GGML_F32x4 float32x4_t
  969. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  970. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  971. #define GGML_F32x4_LOAD vld1q_f32
  972. #define GGML_F32x4_STORE vst1q_f32
  973. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  974. #define GGML_F32x4_ADD vaddq_f32
  975. #define GGML_F32x4_MUL vmulq_f32
  976. #if defined(__ARM_FEATURE_QRDMX)
  977. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  978. #else
  979. #define GGML_F32x4_REDUCE_ONE(x) \
  980. (vgetq_lane_f32(x, 0) + \
  981. vgetq_lane_f32(x, 1) + \
  982. vgetq_lane_f32(x, 2) + \
  983. vgetq_lane_f32(x, 3))
  984. #endif
  985. #define GGML_F32x4_REDUCE(res, x) \
  986. { \
  987. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  988. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  989. } \
  990. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  991. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  992. } \
  993. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  994. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  995. } \
  996. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  997. }
  998. #define GGML_F32_VEC GGML_F32x4
  999. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1000. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1001. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1002. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1003. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1004. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1005. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1006. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1007. // F16 NEON
  1008. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1009. #define GGML_F16_STEP 32
  1010. #define GGML_F16_EPR 8
  1011. #define GGML_F16x8 float16x8_t
  1012. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1013. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1014. #define GGML_F16x8_LOAD vld1q_f16
  1015. #define GGML_F16x8_STORE vst1q_f16
  1016. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1017. #define GGML_F16x8_ADD vaddq_f16
  1018. #define GGML_F16x8_MUL vmulq_f16
  1019. #define GGML_F16x8_REDUCE(res, x) \
  1020. { \
  1021. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1022. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1023. } \
  1024. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1025. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1026. } \
  1027. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1028. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1029. } \
  1030. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1031. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1032. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1033. }
  1034. #define GGML_F16_VEC GGML_F16x8
  1035. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1036. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1037. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1038. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1039. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1040. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1041. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1042. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1043. #else
  1044. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1045. // and take advantage of the vcvt_ functions to convert to/from FP16
  1046. #define GGML_F16_STEP 16
  1047. #define GGML_F16_EPR 4
  1048. #define GGML_F32Cx4 float32x4_t
  1049. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1050. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1051. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1052. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1053. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1054. #define GGML_F32Cx4_ADD vaddq_f32
  1055. #define GGML_F32Cx4_MUL vmulq_f32
  1056. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1057. #define GGML_F16_VEC GGML_F32Cx4
  1058. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1059. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1060. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1061. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1062. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1063. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1064. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1065. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1066. #endif
  1067. #elif defined(__AVX__)
  1068. #define GGML_SIMD
  1069. // F32 AVX
  1070. #define GGML_F32_STEP 32
  1071. #define GGML_F32_EPR 8
  1072. #define GGML_F32x8 __m256
  1073. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1074. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1075. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1076. #define GGML_F32x8_STORE _mm256_storeu_ps
  1077. #if defined(__FMA__)
  1078. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1079. #else
  1080. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1081. #endif
  1082. #define GGML_F32x8_ADD _mm256_add_ps
  1083. #define GGML_F32x8_MUL _mm256_mul_ps
  1084. #define GGML_F32x8_REDUCE(res, x) \
  1085. { \
  1086. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1087. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1088. } \
  1089. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1090. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1091. } \
  1092. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1093. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1094. } \
  1095. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1096. _mm256_extractf128_ps(x[0], 1)); \
  1097. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1098. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1099. }
  1100. // TODO: is this optimal ?
  1101. #define GGML_F32_VEC GGML_F32x8
  1102. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1103. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1104. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1105. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1106. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1107. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1108. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1109. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1110. // F16 AVX
  1111. #define GGML_F16_STEP 32
  1112. #define GGML_F16_EPR 8
  1113. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1114. #define GGML_F32Cx8 __m256
  1115. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1116. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1117. #if defined(__F16C__)
  1118. // the _mm256_cvt intrinsics require F16C
  1119. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1120. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1121. #else
  1122. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1123. float tmp[8];
  1124. for (int i = 0; i < 8; i++)
  1125. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1126. return _mm256_loadu_ps(tmp);
  1127. }
  1128. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1129. float arr[8];
  1130. _mm256_storeu_ps(arr, y);
  1131. for (int i = 0; i < 8; i++)
  1132. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1133. }
  1134. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1135. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1136. #endif
  1137. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1138. #define GGML_F32Cx8_ADD _mm256_add_ps
  1139. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1140. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1141. #define GGML_F16_VEC GGML_F32Cx8
  1142. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1143. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1144. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1145. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1146. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1147. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1148. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1149. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1150. #elif defined(__POWER9_VECTOR__)
  1151. #define GGML_SIMD
  1152. // F32 POWER9
  1153. #define GGML_F32_STEP 32
  1154. #define GGML_F32_EPR 4
  1155. #define GGML_F32x4 vector float
  1156. #define GGML_F32x4_ZERO 0.0f
  1157. #define GGML_F32x4_SET1 vec_splats
  1158. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1159. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1160. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1161. #define GGML_F32x4_ADD vec_add
  1162. #define GGML_F32x4_MUL vec_mul
  1163. #define GGML_F32x4_REDUCE(res, x) \
  1164. { \
  1165. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1166. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1167. } \
  1168. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1169. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1170. } \
  1171. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1172. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1173. } \
  1174. res = vec_extract(x[0], 0) + \
  1175. vec_extract(x[0], 1) + \
  1176. vec_extract(x[0], 2) + \
  1177. vec_extract(x[0], 3); \
  1178. }
  1179. #define GGML_F32_VEC GGML_F32x4
  1180. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1181. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1182. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1183. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1184. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1185. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1186. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1187. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1188. // F16 POWER9
  1189. #define GGML_F16_STEP GGML_F32_STEP
  1190. #define GGML_F16_EPR GGML_F32_EPR
  1191. #define GGML_F16_VEC GGML_F32x4
  1192. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1193. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1194. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1195. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1196. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1197. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1198. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1199. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1200. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1201. #define GGML_F16_VEC_STORE(p, r, i) \
  1202. if (i & 0x1) \
  1203. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1204. r[i - GGML_ENDIAN_BYTE(0)]), \
  1205. 0, p - GGML_F16_EPR)
  1206. #elif defined(__wasm_simd128__)
  1207. #define GGML_SIMD
  1208. // F32 WASM
  1209. #define GGML_F32_STEP 16
  1210. #define GGML_F32_EPR 4
  1211. #define GGML_F32x4 v128_t
  1212. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1213. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1214. #define GGML_F32x4_LOAD wasm_v128_load
  1215. #define GGML_F32x4_STORE wasm_v128_store
  1216. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1217. #define GGML_F32x4_ADD wasm_f32x4_add
  1218. #define GGML_F32x4_MUL wasm_f32x4_mul
  1219. #define GGML_F32x4_REDUCE(res, x) \
  1220. { \
  1221. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1222. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1223. } \
  1224. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1225. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1226. } \
  1227. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1228. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1229. } \
  1230. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1231. wasm_f32x4_extract_lane(x[0], 1) + \
  1232. wasm_f32x4_extract_lane(x[0], 2) + \
  1233. wasm_f32x4_extract_lane(x[0], 3); \
  1234. }
  1235. #define GGML_F32_VEC GGML_F32x4
  1236. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1237. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1238. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1239. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1240. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1241. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1242. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1243. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1244. // F16 WASM
  1245. #define GGML_F16_STEP 16
  1246. #define GGML_F16_EPR 4
  1247. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1248. float tmp[4];
  1249. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1250. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1251. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1252. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1253. return wasm_v128_load(tmp);
  1254. }
  1255. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1256. float tmp[4];
  1257. wasm_v128_store(tmp, x);
  1258. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1259. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1260. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1261. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1262. }
  1263. #define GGML_F16x4 v128_t
  1264. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1265. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1266. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1267. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1268. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1269. #define GGML_F16x4_ADD wasm_f32x4_add
  1270. #define GGML_F16x4_MUL wasm_f32x4_mul
  1271. #define GGML_F16x4_REDUCE(res, x) \
  1272. { \
  1273. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1274. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1275. } \
  1276. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1277. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1278. } \
  1279. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1280. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1281. } \
  1282. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1283. wasm_f32x4_extract_lane(x[0], 1) + \
  1284. wasm_f32x4_extract_lane(x[0], 2) + \
  1285. wasm_f32x4_extract_lane(x[0], 3); \
  1286. }
  1287. #define GGML_F16_VEC GGML_F16x4
  1288. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1289. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1290. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1291. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1292. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1293. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1294. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1295. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1296. #elif defined(__SSE3__)
  1297. #define GGML_SIMD
  1298. // F32 SSE
  1299. #define GGML_F32_STEP 32
  1300. #define GGML_F32_EPR 4
  1301. #define GGML_F32x4 __m128
  1302. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1303. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1304. #define GGML_F32x4_LOAD _mm_loadu_ps
  1305. #define GGML_F32x4_STORE _mm_storeu_ps
  1306. #if defined(__FMA__)
  1307. // TODO: Does this work?
  1308. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1309. #else
  1310. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1311. #endif
  1312. #define GGML_F32x4_ADD _mm_add_ps
  1313. #define GGML_F32x4_MUL _mm_mul_ps
  1314. #define GGML_F32x4_REDUCE(res, x) \
  1315. { \
  1316. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1317. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1318. } \
  1319. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1320. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1321. } \
  1322. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1323. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1324. } \
  1325. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1326. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1327. }
  1328. // TODO: is this optimal ?
  1329. #define GGML_F32_VEC GGML_F32x4
  1330. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1331. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1332. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1333. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1334. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1335. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1336. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1337. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1338. // F16 SSE
  1339. #define GGML_F16_STEP 32
  1340. #define GGML_F16_EPR 4
  1341. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1342. float tmp[4];
  1343. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1344. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1345. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1346. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1347. return _mm_loadu_ps(tmp);
  1348. }
  1349. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1350. float arr[4];
  1351. _mm_storeu_ps(arr, y);
  1352. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1353. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1354. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1355. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1356. }
  1357. #define GGML_F32Cx4 __m128
  1358. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1359. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1360. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1361. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1362. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1363. #define GGML_F32Cx4_ADD _mm_add_ps
  1364. #define GGML_F32Cx4_MUL _mm_mul_ps
  1365. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1366. #define GGML_F16_VEC GGML_F32Cx4
  1367. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1368. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1369. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1370. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1371. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1372. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1373. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1374. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1375. #endif
  1376. // GGML_F32_ARR / GGML_F16_ARR
  1377. // number of registers to use per step
  1378. #ifdef GGML_SIMD
  1379. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1380. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1381. #endif
  1382. //
  1383. // fundamental operations
  1384. //
  1385. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1386. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1387. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1388. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1389. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1390. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1391. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1392. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1393. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1394. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1395. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1396. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1397. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1398. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1399. #ifdef GGML_SIMD
  1400. float sumf = 0.0f;
  1401. const int np = (n & ~(GGML_F32_STEP - 1));
  1402. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1403. GGML_F32_VEC ax[GGML_F32_ARR];
  1404. GGML_F32_VEC ay[GGML_F32_ARR];
  1405. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1406. for (int j = 0; j < GGML_F32_ARR; j++) {
  1407. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1408. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1409. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1410. }
  1411. }
  1412. // reduce sum0..sum3 to sum0
  1413. GGML_F32_VEC_REDUCE(sumf, sum);
  1414. // leftovers
  1415. for (int i = np; i < n; ++i) {
  1416. sumf += x[i]*y[i];
  1417. }
  1418. #else
  1419. // scalar
  1420. ggml_float sumf = 0.0;
  1421. for (int i = 0; i < n; ++i) {
  1422. sumf += (ggml_float)(x[i]*y[i]);
  1423. }
  1424. #endif
  1425. *s = sumf;
  1426. }
  1427. #if __AVX512F__ && QK == 32
  1428. static inline __m512 dot_q4_0_oneblock_avx512(
  1429. __m512 acc,
  1430. const block_q4_0 * restrict x,
  1431. const block_q4_0 * restrict y,
  1432. int i
  1433. ) {
  1434. // Compute combined scale for the block
  1435. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1436. __m256i bx = bytesFromNibbles( x[i].qs );
  1437. __m256i by = bytesFromNibbles( y[i].qs );
  1438. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1439. const __m256i off = _mm256_set1_epi8( 8 );
  1440. bx = _mm256_sub_epi8( bx, off );
  1441. by = _mm256_sub_epi8( by, off );
  1442. // Sign-extend 16 signed bytes into int16_t
  1443. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1444. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1445. // Compute products of int16_t integers, add pairwise
  1446. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1447. // Convert int32_t to float
  1448. __m512 p = _mm512_cvtepi32_ps( i64 );
  1449. // Apply the scale, and accumulate
  1450. return _mm512_fmadd_ps( d, p, acc );
  1451. }
  1452. #endif
  1453. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1454. ggml_float sumf = 0.0;
  1455. #if defined(GGML_SIMD)
  1456. const int np = (n & ~(GGML_F16_STEP - 1));
  1457. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1458. GGML_F16_VEC ax[GGML_F16_ARR];
  1459. GGML_F16_VEC ay[GGML_F16_ARR];
  1460. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1461. for (int j = 0; j < GGML_F16_ARR; j++) {
  1462. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1463. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1464. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1465. }
  1466. }
  1467. // reduce sum0..sum3 to sum0
  1468. GGML_F16_VEC_REDUCE(sumf, sum);
  1469. // leftovers
  1470. for (int i = np; i < n; ++i) {
  1471. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1472. }
  1473. #else
  1474. for (int i = 0; i < n; ++i) {
  1475. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1476. }
  1477. #endif
  1478. *s = sumf;
  1479. }
  1480. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1481. const int nb = n / QK;
  1482. assert(n % QK == 0);
  1483. assert(nb % 2 == 0);
  1484. const block_q4_0 * restrict x = vx;
  1485. const block_q4_0 * restrict y = vy;
  1486. float sumf = 0.0;
  1487. #if defined(__ARM_NEON)
  1488. float sum0 = 0.0f;
  1489. float sum1 = 0.0f;
  1490. for (int i = 0; i < nb; i += 2) {
  1491. const block_q4_0 * restrict x0 = &x[i + 0];
  1492. const block_q4_0 * restrict y0 = &y[i + 0];
  1493. const block_q4_0 * restrict x1 = &x[i + 1];
  1494. const block_q4_0 * restrict y1 = &y[i + 1];
  1495. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1496. const int8x16_t s8b = vdupq_n_s8(0x8);
  1497. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1498. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1499. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1500. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1501. // 4-bit -> 8-bit
  1502. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1503. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1504. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1505. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1506. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1507. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1508. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1509. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1510. // sub 8
  1511. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1512. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1513. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1514. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1515. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1516. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1517. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1518. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1519. #if defined(__ARM_FEATURE_DOTPROD)
  1520. // dot product into int16x8_t
  1521. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1522. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1523. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1524. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1525. // scalar
  1526. #if defined(__ARM_FEATURE_QRDMX)
  1527. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1528. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1529. #else
  1530. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1531. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1532. #endif
  1533. #else
  1534. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1535. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1536. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1537. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1538. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1539. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1540. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1541. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1542. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1543. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1544. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1545. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1546. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1547. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1548. // scalar
  1549. #if defined(__ARM_FEATURE_QRDMX)
  1550. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1551. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1552. #else
  1553. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1554. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1555. #endif
  1556. #endif
  1557. }
  1558. sumf = sum0 + sum1;
  1559. #elif defined(__AVX512F__)
  1560. // Initialize accumulator with zeros
  1561. __m512 acc0 = _mm512_setzero_ps();
  1562. __m512 acc1 = _mm512_setzero_ps();
  1563. const int superblock_size = 8;
  1564. const int superblock_count = nb / superblock_size;
  1565. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1566. int i = superblock_ix * superblock_size;
  1567. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1568. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1569. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1570. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1571. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1572. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1573. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1574. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1575. }
  1576. // Remainders
  1577. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1578. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1579. }
  1580. // Horizontal sum of all lanes of the accumulator
  1581. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1582. #elif defined(__AVX2__)
  1583. // Initialize accumulator with zeros
  1584. __m256 acc = _mm256_setzero_ps();
  1585. /* Prepare the constants we will need during execution */
  1586. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1587. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1588. #define UNROLL_COUNT 8
  1589. // make sure we only unroll multiples of the block count
  1590. assert(nb % UNROLL_COUNT == 0);
  1591. // Main loop
  1592. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1593. // This loop will be unrolled by the compiler
  1594. for (int u=0;u<UNROLL_COUNT;u++) {
  1595. /* Compute combined scale for the block */
  1596. const __m256 scale = _mm256_mul_ps(
  1597. _mm256_broadcast_ss( &x[i+u].d ),
  1598. _mm256_broadcast_ss( &y[i+u].d ) );
  1599. /* get input from x
  1600. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1601. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1602. /* Load 16 bytes from memory */
  1603. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1604. /* Expand bytes into uint16_t values */
  1605. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1606. /* Unpack values into individual bytes */
  1607. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1608. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1609. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1610. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1611. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1612. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1613. /* get input from y
  1614. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1615. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1616. /* Load 16 bytes from memory */
  1617. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1618. /* Expand bytes into uint16_t values */
  1619. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1620. /* Unpack values into individual bytes */
  1621. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1622. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1623. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1624. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1625. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1626. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1627. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1628. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1629. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1630. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1631. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1632. /* Convert to vectore of 8 int32_t to 8 floats */
  1633. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1634. /* Multiply q with scale and accumulate */
  1635. acc = _mm256_fmadd_ps( scale, q, acc );
  1636. }
  1637. }
  1638. // Return horizontal sum of the acc vector
  1639. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1640. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1641. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1642. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1643. sumf = _mm_cvtss_f32( res );
  1644. #elif defined(__AVX__)
  1645. // Initialize accumulator with zeros
  1646. __m256 acc = _mm256_setzero_ps();
  1647. // Main loop
  1648. for (int i = 0; i < nb; ++i) {
  1649. // Compute combined scale for the block
  1650. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1651. __m128i i32[2];
  1652. for (int j = 0; j < 2; ++j) {
  1653. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1654. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1655. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1656. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1657. const __m128i off = _mm_set1_epi8( 8 );
  1658. bx = _mm_sub_epi8( bx, off );
  1659. by = _mm_sub_epi8( by, off );
  1660. // Get absolute values of x vectors
  1661. const __m128i ax = _mm_sign_epi8(bx, bx);
  1662. // Sign the values of the y vectors
  1663. const __m128i sy = _mm_sign_epi8(by, bx);
  1664. // Perform multiplication and create 16-bit values
  1665. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1666. const __m128i ones = _mm_set1_epi16(1);
  1667. i32[j] = _mm_madd_epi16(ones, dot);
  1668. }
  1669. // Convert int32_t to float
  1670. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1671. // Apply the scale, and accumulate
  1672. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1673. }
  1674. // Return horizontal sum of the acc vector
  1675. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1676. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1677. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1678. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1679. sumf = _mm_cvtss_f32( res );
  1680. #elif defined(__wasm_simd128__)
  1681. // wasm simd
  1682. float sum0 = 0.0f;
  1683. float sum1 = 0.0f;
  1684. for (int i = 0; i < nb; i += 2) {
  1685. const block_q4_0 * restrict x0 = &px[i + 0];
  1686. const block_q4_0 * restrict y0 = &py[i + 0];
  1687. const block_q4_0 * restrict x1 = &px[i + 1];
  1688. const block_q4_0 * restrict y1 = &py[i + 1];
  1689. const v128_t m4b = wasm_u8x16_splat(0xf);
  1690. const v128_t s8b = wasm_i8x16_splat(0x8);
  1691. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1692. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1693. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1694. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1695. // 4-bit -> 8-bit
  1696. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1697. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1698. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1699. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1700. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1701. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1702. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1703. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1704. // sub 8
  1705. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1706. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1707. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1708. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1709. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1710. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1711. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1712. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1713. // dot product into int16x8_t
  1714. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1715. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1716. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1717. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1718. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1719. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1720. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1721. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1722. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1723. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1724. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1725. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1726. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1727. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1728. sum0 += x0->d * y0->d * (
  1729. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1730. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1731. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1732. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1733. sum1 += x1->d * y1->d * (
  1734. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1735. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1736. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1737. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1738. }
  1739. sumf = sum0 + sum1;
  1740. #else
  1741. // scalar
  1742. for (int i = 0; i < nb; i++) {
  1743. const float d0 = x[i].d;
  1744. const float d1 = y[i].d;
  1745. const uint8_t * restrict p0 = x[i].qs;
  1746. const uint8_t * restrict p1 = y[i].qs;
  1747. for (int j = 0; j < QK/2; j++) {
  1748. const uint8_t v0 = p0[j];
  1749. const uint8_t v1 = p1[j];
  1750. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1751. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1752. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1753. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1754. sumf += f0*f2 + f1*f3;
  1755. }
  1756. }
  1757. #endif
  1758. *s = sumf;
  1759. }
  1760. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1761. const int nb = n / QK;
  1762. const block_q4_1 * restrict x = vx;
  1763. const block_q4_1 * restrict y = vy;
  1764. float sumf = 0.0;
  1765. #if defined(__AVX2__)
  1766. // Initialize accumulator with zeros
  1767. __m256 acc = _mm256_setzero_ps();
  1768. // Accumulator for constant offsets
  1769. float acc_offset = 0.0f;
  1770. // Main loop
  1771. for (int i = 0; i < nb; ++i) {
  1772. const float * d0 = &x[i].d;
  1773. const float * d1 = &y[i].d;
  1774. const float * m0 = &x[i].m;
  1775. const float * m1 = &y[i].m;
  1776. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1777. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1778. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1779. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1780. // Compute combined scale for the block
  1781. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1782. // Compute cross scales for the block
  1783. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1784. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1785. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1786. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1787. __m256i bx = bytesFromNibbles( x[i].qs );
  1788. __m256i by = bytesFromNibbles( y[i].qs );
  1789. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1790. // Sign-extend first 16 signed bytes into int16_t
  1791. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1792. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1793. // Compute products of int16_t integers, add pairwise
  1794. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1795. // Sign-extend last 16 signed bytes into int16_t vectors
  1796. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1797. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1798. // Accumulate products of int16_t integers
  1799. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1800. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1801. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1802. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1803. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1804. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1805. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1806. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1807. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1808. // Convert int32_t to float
  1809. __m256 p = _mm256_cvtepi32_ps( i32 );
  1810. // Apply the scale, and accumulate
  1811. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1812. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1813. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1814. // acc_offset += m0*m1 (for each entry in the block)
  1815. acc_offset += (*m0)*(*m1);
  1816. }
  1817. // Return horizontal sum of the acc vector
  1818. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1819. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1820. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1821. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1822. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1823. #elif defined(__ARM_NEON)
  1824. float sum00 = 0.0f;
  1825. float sum01 = 0.0f;
  1826. float sum10 = 0.0f;
  1827. float sum11 = 0.0f;
  1828. for (int i = 0; i < nb; ++i) {
  1829. const block_q4_1 * restrict x0 = &x[i + 0];
  1830. const block_q4_1 * restrict y0 = &y[i + 0];
  1831. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1832. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1833. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1834. // and with 0xf
  1835. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1836. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1837. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1838. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1839. // dot product into uint16x8_t
  1840. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1841. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1842. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1843. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1844. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1845. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1846. sum00 += x0->m*y0->m;
  1847. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1848. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1849. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1850. }
  1851. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1852. #else
  1853. // scalar
  1854. for (int i = 0; i < nb; i++) {
  1855. const float d0 = x[i].d;
  1856. const float d1 = y[i].d;
  1857. const float m0 = x[i].m;
  1858. const float m1 = y[i].m;
  1859. const uint8_t * restrict p0 = x[i].qs;
  1860. const uint8_t * restrict p1 = y[i].qs;
  1861. for (int j = 0; j < QK/2; j++) {
  1862. const uint8_t v0 = p0[j];
  1863. const uint8_t v1 = p1[j];
  1864. const float f0 = d0*(v0 & 0xf) + m0;
  1865. const float f1 = d0*(v0 >> 4) + m0;
  1866. const float f2 = d1*(v1 & 0xf) + m1;
  1867. const float f3 = d1*(v1 >> 4) + m1;
  1868. sumf += f0*f2 + f1*f3;
  1869. }
  1870. }
  1871. #endif
  1872. *s = sumf;
  1873. }
  1874. // compute GGML_VEC_DOT_UNROLL dot products at once
  1875. // xs - x row stride in bytes
  1876. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1877. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1878. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1879. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1880. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1881. }
  1882. #if defined(GGML_SIMD)
  1883. const int np = (n & ~(GGML_F16_STEP - 1));
  1884. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1885. GGML_F16_VEC ax[GGML_F16_ARR];
  1886. GGML_F16_VEC ay[GGML_F16_ARR];
  1887. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1888. for (int j = 0; j < GGML_F16_ARR; j++) {
  1889. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1890. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1891. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1892. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1893. }
  1894. }
  1895. }
  1896. // reduce sum0..sum3 to sum0
  1897. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1898. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1899. }
  1900. // leftovers
  1901. for (int i = np; i < n; ++i) {
  1902. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1903. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1904. }
  1905. }
  1906. #else
  1907. for (int i = 0; i < n; ++i) {
  1908. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1909. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1910. }
  1911. }
  1912. #endif
  1913. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1914. s[i] = sumf[i];
  1915. }
  1916. }
  1917. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1918. #if defined(GGML_SIMD)
  1919. const int np = (n & ~(GGML_F32_STEP - 1));
  1920. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1921. GGML_F32_VEC ax[GGML_F32_ARR];
  1922. GGML_F32_VEC ay[GGML_F32_ARR];
  1923. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1924. for (int j = 0; j < GGML_F32_ARR; j++) {
  1925. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1926. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1927. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1928. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1929. }
  1930. }
  1931. // leftovers
  1932. for (int i = np; i < n; ++i) {
  1933. y[i] += x[i]*v;
  1934. }
  1935. #else
  1936. // scalar
  1937. for (int i = 0; i < n; ++i) {
  1938. y[i] += x[i]*v;
  1939. }
  1940. #endif
  1941. }
  1942. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1943. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1944. #if defined(GGML_SIMD)
  1945. const int np = (n & ~(GGML_F32_STEP - 1));
  1946. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1947. GGML_F32_VEC ay[GGML_F32_ARR];
  1948. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1949. for (int j = 0; j < GGML_F32_ARR; j++) {
  1950. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1951. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1952. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1953. }
  1954. }
  1955. // leftovers
  1956. for (int i = np; i < n; ++i) {
  1957. y[i] *= v;
  1958. }
  1959. #else
  1960. // scalar
  1961. for (int i = 0; i < n; ++i) {
  1962. y[i] *= v;
  1963. }
  1964. #endif
  1965. }
  1966. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1967. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1968. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1969. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1970. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1971. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1972. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1973. static const float GELU_COEF_A = 0.044715f;
  1974. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1975. inline static float ggml_gelu_f32(float x) {
  1976. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1977. }
  1978. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1979. const uint16_t * i16 = (const uint16_t *) x;
  1980. for (int i = 0; i < n; ++i) {
  1981. y[i] = table_gelu_f16[i16[i]];
  1982. }
  1983. }
  1984. #ifdef GGML_GELU_FP16
  1985. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1986. uint16_t t;
  1987. for (int i = 0; i < n; ++i) {
  1988. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1989. memcpy(&t, &fp16, sizeof(uint16_t));
  1990. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1991. }
  1992. }
  1993. #else
  1994. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1995. for (int i = 0; i < n; ++i) {
  1996. y[i] = ggml_gelu_f32(x[i]);
  1997. }
  1998. }
  1999. #endif
  2000. // Sigmoid Linear Unit (SiLU) function
  2001. inline static float ggml_silu_f32(float x) {
  2002. return x/(1.0f + expf(-x));
  2003. }
  2004. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2005. const uint16_t * i16 = (const uint16_t *) x;
  2006. for (int i = 0; i < n; ++i) {
  2007. y[i] = table_silu_f16[i16[i]];
  2008. }
  2009. }
  2010. #ifdef GGML_SILU_FP16
  2011. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2012. uint16_t t;
  2013. for (int i = 0; i < n; ++i) {
  2014. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2015. memcpy(&t, &fp16, sizeof(uint16_t));
  2016. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2017. }
  2018. }
  2019. #else
  2020. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2021. for (int i = 0; i < n; ++i) {
  2022. y[i] = ggml_silu_f32(x[i]);
  2023. }
  2024. }
  2025. #endif
  2026. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2027. #ifndef GGML_USE_ACCELERATE
  2028. ggml_float sum = 0.0;
  2029. for (int i = 0; i < n; ++i) {
  2030. sum += (ggml_float)x[i];
  2031. }
  2032. *s = sum;
  2033. #else
  2034. vDSP_sve(x, 1, s, n);
  2035. #endif
  2036. }
  2037. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2038. #ifndef GGML_USE_ACCELERATE
  2039. float max = -INFINITY;
  2040. for (int i = 0; i < n; ++i) {
  2041. max = MAX(max, x[i]);
  2042. }
  2043. *s = max;
  2044. #else
  2045. vDSP_maxv(x, 1, s, n);
  2046. #endif
  2047. }
  2048. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2049. ggml_vec_norm_f32(n, s, x);
  2050. *s = 1.f/(*s);
  2051. }
  2052. //
  2053. // logging
  2054. //
  2055. #if (GGML_DEBUG >= 1)
  2056. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2057. #else
  2058. #define GGML_PRINT_DEBUG(...)
  2059. #endif
  2060. #if (GGML_DEBUG >= 5)
  2061. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2062. #else
  2063. #define GGML_PRINT_DEBUG_5(...)
  2064. #endif
  2065. #if (GGML_DEBUG >= 10)
  2066. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2067. #else
  2068. #define GGML_PRINT_DEBUG_10(...)
  2069. #endif
  2070. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2071. //
  2072. // data types
  2073. //
  2074. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2075. QK,
  2076. QK,
  2077. 1,
  2078. 1,
  2079. 1,
  2080. 1,
  2081. 1,
  2082. };
  2083. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2084. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2085. sizeof(block_q4_0),
  2086. sizeof(block_q4_1),
  2087. sizeof(int8_t ),
  2088. sizeof(int16_t),
  2089. sizeof(int32_t),
  2090. sizeof(ggml_fp16_t),
  2091. sizeof(float ),
  2092. };
  2093. // don't forget to update the array above when adding new types
  2094. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2095. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2096. "NONE",
  2097. "DUP",
  2098. "ADD",
  2099. "SUB",
  2100. "MUL",
  2101. "DIV",
  2102. "SQR",
  2103. "SQRT",
  2104. "SUM",
  2105. "MEAN",
  2106. "REPEAT",
  2107. "ABS",
  2108. "SGN",
  2109. "NEG",
  2110. "STEP",
  2111. "RELU",
  2112. "GELU",
  2113. "SILU",
  2114. "NORM",
  2115. "RMS_NORM",
  2116. "MUL_MAT",
  2117. "SCALE",
  2118. "CPY",
  2119. "CONT",
  2120. "RESHAPE",
  2121. "VIEW",
  2122. "PERMUTE",
  2123. "TRANSPOSE",
  2124. "GET_ROWS",
  2125. "DIAG_MASK_INF",
  2126. "SOFT_MAX",
  2127. "ROPE",
  2128. "CONV_1D_1S",
  2129. "CONV_1D_2S",
  2130. "FLASH_ATTN",
  2131. "FLASH_FF",
  2132. };
  2133. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2134. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2135. "none",
  2136. "x",
  2137. "x+y",
  2138. "x-y",
  2139. "x*y",
  2140. "x/y",
  2141. "x^2",
  2142. "√x",
  2143. "Σx",
  2144. "Σx/n",
  2145. "repeat(x)",
  2146. "abs(x)",
  2147. "sgn(x)",
  2148. "-x",
  2149. "step(x)",
  2150. "relu(x)",
  2151. "gelu(x)",
  2152. "silu(x)",
  2153. "norm(x)",
  2154. "rms_norm(x)",
  2155. "X*Y",
  2156. "x*v",
  2157. "x-\\>y",
  2158. "cont(x)",
  2159. "reshape(x)",
  2160. "view(x)",
  2161. "permute(x)",
  2162. "transpose(x)",
  2163. "get_rows(x)",
  2164. "diag_mask_inf(x)",
  2165. "soft_max(x)",
  2166. "rope(x)",
  2167. "conv_1d_1s(x)",
  2168. "conv_1d_2s(x)",
  2169. "flash_attn(x)",
  2170. "flash_ff(x)",
  2171. };
  2172. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2173. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2174. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2175. //
  2176. // ggml context
  2177. //
  2178. struct ggml_context {
  2179. size_t mem_size;
  2180. void * mem_buffer;
  2181. bool mem_buffer_owned;
  2182. bool no_alloc;
  2183. int n_objects;
  2184. struct ggml_object * objects_begin;
  2185. struct ggml_object * objects_end;
  2186. struct ggml_scratch scratch;
  2187. struct ggml_scratch scratch_save;
  2188. };
  2189. struct ggml_context_container {
  2190. bool used;
  2191. struct ggml_context context;
  2192. };
  2193. //
  2194. // compute types
  2195. //
  2196. enum ggml_task_type {
  2197. GGML_TASK_INIT = 0,
  2198. GGML_TASK_COMPUTE,
  2199. GGML_TASK_FINALIZE,
  2200. };
  2201. struct ggml_compute_params {
  2202. enum ggml_task_type type;
  2203. int ith, nth;
  2204. // work buffer for all threads
  2205. size_t wsize;
  2206. void * wdata;
  2207. };
  2208. //
  2209. // ggml state
  2210. //
  2211. struct ggml_state {
  2212. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2213. };
  2214. // global state
  2215. static struct ggml_state g_state;
  2216. static atomic_int g_state_barrier = 0;
  2217. // barrier via spin lock
  2218. inline static void ggml_critical_section_start(void) {
  2219. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2220. while (processing > 0) {
  2221. // wait for other threads to finish
  2222. atomic_fetch_sub(&g_state_barrier, 1);
  2223. sched_yield(); // TODO: reconsider this
  2224. processing = atomic_fetch_add(&g_state_barrier, 1);
  2225. }
  2226. }
  2227. // TODO: make this somehow automatically executed
  2228. // some sort of "sentry" mechanism
  2229. inline static void ggml_critical_section_end(void) {
  2230. atomic_fetch_sub(&g_state_barrier, 1);
  2231. }
  2232. ////////////////////////////////////////////////////////////////////////////////
  2233. void ggml_print_object(const struct ggml_object * obj) {
  2234. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2235. obj->offs, obj->size, (const void *) obj->next);
  2236. }
  2237. void ggml_print_objects(const struct ggml_context * ctx) {
  2238. struct ggml_object * obj = ctx->objects_begin;
  2239. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2240. while (obj != NULL) {
  2241. ggml_print_object(obj);
  2242. obj = obj->next;
  2243. }
  2244. GGML_PRINT("%s: --- end ---\n", __func__);
  2245. }
  2246. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2247. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2248. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2249. }
  2250. int ggml_nrows(const struct ggml_tensor * tensor) {
  2251. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2252. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2253. }
  2254. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2255. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2256. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2257. }
  2258. int ggml_blck_size(enum ggml_type type) {
  2259. return GGML_BLCK_SIZE[type];
  2260. }
  2261. size_t ggml_type_size(enum ggml_type type) {
  2262. return GGML_TYPE_SIZE[type];
  2263. }
  2264. float ggml_type_sizef(enum ggml_type type) {
  2265. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2266. }
  2267. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2268. return GGML_TYPE_SIZE[tensor->type];
  2269. }
  2270. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2271. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2272. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2273. }
  2274. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2275. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2276. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2277. }
  2278. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2279. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2280. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2281. }
  2282. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2283. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2284. return
  2285. (t0->ne[0] == t1->ne[0]) &&
  2286. (t0->ne[2] == t1->ne[2]) &&
  2287. (t0->ne[3] == t1->ne[3]);
  2288. }
  2289. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2290. return tensor->nb[0] > tensor->nb[1];
  2291. }
  2292. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2293. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2294. return
  2295. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2296. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2297. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2298. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2299. }
  2300. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2301. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2302. return
  2303. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2304. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2305. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2306. }
  2307. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2308. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2309. return
  2310. (t0->ne[0] == t1->ne[0] ) &&
  2311. (t0->ne[1] == t1->ne[1] ) &&
  2312. (t0->ne[2] == t1->ne[2] ) &&
  2313. (t0->ne[3] == t1->ne[3] );
  2314. }
  2315. // check if t1 can be represented as a repeatition of t0
  2316. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2317. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2318. return
  2319. (t1->ne[0]%t0->ne[0] == 0) &&
  2320. (t1->ne[1]%t0->ne[1] == 0) &&
  2321. (t1->ne[2]%t0->ne[2] == 0) &&
  2322. (t1->ne[3]%t0->ne[3] == 0);
  2323. }
  2324. static inline int ggml_up32(int n) {
  2325. return (n + 31) & ~31;
  2326. }
  2327. static inline int ggml_up64(int n) {
  2328. return (n + 63) & ~63;
  2329. }
  2330. static inline int ggml_up(int n, int m) {
  2331. // assert m is a power of 2
  2332. GGML_ASSERT((m & (m - 1)) == 0);
  2333. return (n + m - 1) & ~(m - 1);
  2334. }
  2335. // assert that pointer is aligned to GGML_MEM_ALIGN
  2336. #define ggml_assert_aligned(ptr) \
  2337. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2338. ////////////////////////////////////////////////////////////////////////////////
  2339. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2340. // make this function thread safe
  2341. ggml_critical_section_start();
  2342. static bool is_first_call = true;
  2343. if (is_first_call) {
  2344. // initialize time system (required on Windows)
  2345. ggml_time_init();
  2346. // initialize GELU, SILU and EXP F32 tables
  2347. {
  2348. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2349. ggml_fp16_t ii;
  2350. for (int i = 0; i < (1 << 16); ++i) {
  2351. uint16_t ui = i;
  2352. memcpy(&ii, &ui, sizeof(ii));
  2353. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2354. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2355. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2356. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2357. }
  2358. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2359. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2360. }
  2361. // initialize g_state
  2362. {
  2363. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2364. g_state = (struct ggml_state) {
  2365. /*.contexts =*/ { { 0 } },
  2366. };
  2367. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2368. g_state.contexts[i].used = false;
  2369. }
  2370. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2371. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2372. }
  2373. is_first_call = false;
  2374. }
  2375. // find non-used context in g_state
  2376. struct ggml_context * ctx = NULL;
  2377. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2378. if (!g_state.contexts[i].used) {
  2379. g_state.contexts[i].used = true;
  2380. ctx = &g_state.contexts[i].context;
  2381. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2382. break;
  2383. }
  2384. }
  2385. if (ctx == NULL) {
  2386. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2387. ggml_critical_section_end();
  2388. return NULL;
  2389. }
  2390. *ctx = (struct ggml_context) {
  2391. /*.mem_size =*/ params.mem_size,
  2392. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2393. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2394. /*.no_alloc =*/ params.no_alloc,
  2395. /*.n_objects =*/ 0,
  2396. /*.objects_begin =*/ NULL,
  2397. /*.objects_end =*/ NULL,
  2398. /*.scratch =*/ { 0, 0, NULL, },
  2399. /*.scratch_save =*/ { 0, 0, NULL, },
  2400. };
  2401. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2402. ggml_assert_aligned(ctx->mem_buffer);
  2403. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2404. ggml_critical_section_end();
  2405. return ctx;
  2406. }
  2407. void ggml_free(struct ggml_context * ctx) {
  2408. // make this function thread safe
  2409. ggml_critical_section_start();
  2410. bool found = false;
  2411. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2412. if (&g_state.contexts[i].context == ctx) {
  2413. g_state.contexts[i].used = false;
  2414. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2415. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2416. if (ctx->mem_buffer_owned) {
  2417. free(ctx->mem_buffer);
  2418. }
  2419. found = true;
  2420. break;
  2421. }
  2422. }
  2423. if (!found) {
  2424. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2425. }
  2426. ggml_critical_section_end();
  2427. }
  2428. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2429. return ctx->objects_end->offs + ctx->objects_end->size;
  2430. }
  2431. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2432. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2433. ctx->scratch = scratch;
  2434. return result;
  2435. }
  2436. ////////////////////////////////////////////////////////////////////////////////
  2437. struct ggml_tensor * ggml_new_tensor_impl(
  2438. struct ggml_context * ctx,
  2439. enum ggml_type type,
  2440. int n_dims,
  2441. const int64_t* ne,
  2442. void* data) {
  2443. // always insert objects at the end of the context's memory pool
  2444. struct ggml_object * obj_cur = ctx->objects_end;
  2445. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2446. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2447. const size_t cur_end = cur_offs + cur_size;
  2448. size_t size_needed = 0;
  2449. if (data == NULL && !ctx->no_alloc) {
  2450. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2451. for (int i = 1; i < n_dims; i++) {
  2452. size_needed *= ne[i];
  2453. }
  2454. // align to GGML_MEM_ALIGN
  2455. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2456. }
  2457. char * const mem_buffer = ctx->mem_buffer;
  2458. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2459. if (ctx->scratch.data == NULL || data != NULL) {
  2460. size_needed += sizeof(struct ggml_tensor);
  2461. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2462. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2463. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2464. assert(false);
  2465. return NULL;
  2466. }
  2467. *obj_new = (struct ggml_object) {
  2468. .offs = cur_end + GGML_OBJECT_SIZE,
  2469. .size = size_needed,
  2470. .next = NULL,
  2471. };
  2472. } else {
  2473. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2474. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2475. assert(false);
  2476. return NULL;
  2477. }
  2478. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2479. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2480. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2481. assert(false);
  2482. return NULL;
  2483. }
  2484. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2485. *obj_new = (struct ggml_object) {
  2486. .offs = cur_end + GGML_OBJECT_SIZE,
  2487. .size = sizeof(struct ggml_tensor),
  2488. .next = NULL,
  2489. };
  2490. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2491. ctx->scratch.offs += size_needed;
  2492. }
  2493. if (obj_cur != NULL) {
  2494. obj_cur->next = obj_new;
  2495. } else {
  2496. // this is the first object in this context
  2497. ctx->objects_begin = obj_new;
  2498. }
  2499. ctx->objects_end = obj_new;
  2500. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2501. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2502. ggml_assert_aligned(result);
  2503. *result = (struct ggml_tensor) {
  2504. /*.type =*/ type,
  2505. /*.n_dims =*/ n_dims,
  2506. /*.ne =*/ { 1, 1, 1, 1 },
  2507. /*.nb =*/ { 0, 0, 0, 0 },
  2508. /*.op =*/ GGML_OP_NONE,
  2509. /*.is_param =*/ false,
  2510. /*.grad =*/ NULL,
  2511. /*.src0 =*/ NULL,
  2512. /*.src1 =*/ NULL,
  2513. /*.opt =*/ { NULL },
  2514. /*.n_tasks =*/ 0,
  2515. /*.perf_runs =*/ 0,
  2516. /*.perf_cycles =*/ 0,
  2517. /*.perf_time_us =*/ 0,
  2518. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2519. /*.pad =*/ { 0 },
  2520. };
  2521. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2522. //ggml_assert_aligned(result->data);
  2523. for (int i = 0; i < n_dims; i++) {
  2524. result->ne[i] = ne[i];
  2525. }
  2526. result->nb[0] = GGML_TYPE_SIZE[type];
  2527. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2528. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2529. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2530. }
  2531. ctx->n_objects++;
  2532. return result;
  2533. }
  2534. struct ggml_tensor * ggml_new_tensor(
  2535. struct ggml_context * ctx,
  2536. enum ggml_type type,
  2537. int n_dims,
  2538. const int64_t * ne) {
  2539. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2540. }
  2541. struct ggml_tensor * ggml_new_tensor_1d(
  2542. struct ggml_context * ctx,
  2543. enum ggml_type type,
  2544. int64_t ne0) {
  2545. return ggml_new_tensor(ctx, type, 1, &ne0);
  2546. }
  2547. struct ggml_tensor * ggml_new_tensor_2d(
  2548. struct ggml_context * ctx,
  2549. enum ggml_type type,
  2550. int64_t ne0,
  2551. int64_t ne1) {
  2552. const int64_t ne[2] = { ne0, ne1 };
  2553. return ggml_new_tensor(ctx, type, 2, ne);
  2554. }
  2555. struct ggml_tensor * ggml_new_tensor_3d(
  2556. struct ggml_context * ctx,
  2557. enum ggml_type type,
  2558. int64_t ne0,
  2559. int64_t ne1,
  2560. int64_t ne2) {
  2561. const int64_t ne[3] = { ne0, ne1, ne2 };
  2562. return ggml_new_tensor(ctx, type, 3, ne);
  2563. }
  2564. struct ggml_tensor * ggml_new_tensor_4d(
  2565. struct ggml_context * ctx,
  2566. enum ggml_type type,
  2567. int64_t ne0,
  2568. int64_t ne1,
  2569. int64_t ne2,
  2570. int64_t ne3) {
  2571. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2572. return ggml_new_tensor(ctx, type, 4, ne);
  2573. }
  2574. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2575. ctx->scratch_save = ctx->scratch;
  2576. ctx->scratch.data = NULL;
  2577. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2578. ctx->scratch = ctx->scratch_save;
  2579. ggml_set_i32(result, value);
  2580. return result;
  2581. }
  2582. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2583. ctx->scratch_save = ctx->scratch;
  2584. ctx->scratch.data = NULL;
  2585. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2586. ctx->scratch = ctx->scratch_save;
  2587. ggml_set_f32(result, value);
  2588. return result;
  2589. }
  2590. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2591. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2592. }
  2593. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2594. memset(tensor->data, 0, ggml_nbytes(tensor));
  2595. return tensor;
  2596. }
  2597. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2598. const int n = ggml_nrows(tensor);
  2599. const int nc = tensor->ne[0];
  2600. const size_t n1 = tensor->nb[1];
  2601. char * const data = tensor->data;
  2602. switch (tensor->type) {
  2603. case GGML_TYPE_Q4_0:
  2604. {
  2605. GGML_ASSERT(false);
  2606. } break;
  2607. case GGML_TYPE_Q4_1:
  2608. {
  2609. GGML_ASSERT(false);
  2610. } break;
  2611. case GGML_TYPE_I8:
  2612. {
  2613. assert(tensor->nb[0] == sizeof(int8_t));
  2614. for (int i = 0; i < n; i++) {
  2615. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2616. }
  2617. } break;
  2618. case GGML_TYPE_I16:
  2619. {
  2620. assert(tensor->nb[0] == sizeof(int16_t));
  2621. for (int i = 0; i < n; i++) {
  2622. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2623. }
  2624. } break;
  2625. case GGML_TYPE_I32:
  2626. {
  2627. assert(tensor->nb[0] == sizeof(int32_t));
  2628. for (int i = 0; i < n; i++) {
  2629. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2630. }
  2631. } break;
  2632. case GGML_TYPE_F16:
  2633. {
  2634. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2635. for (int i = 0; i < n; i++) {
  2636. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2637. }
  2638. } break;
  2639. case GGML_TYPE_F32:
  2640. {
  2641. assert(tensor->nb[0] == sizeof(float));
  2642. for (int i = 0; i < n; i++) {
  2643. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2644. }
  2645. } break;
  2646. case GGML_TYPE_COUNT:
  2647. {
  2648. GGML_ASSERT(false);
  2649. } break;
  2650. }
  2651. return tensor;
  2652. }
  2653. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2654. const int n = ggml_nrows(tensor);
  2655. const int nc = tensor->ne[0];
  2656. const size_t n1 = tensor->nb[1];
  2657. char * const data = tensor->data;
  2658. switch (tensor->type) {
  2659. case GGML_TYPE_Q4_0:
  2660. {
  2661. GGML_ASSERT(false);
  2662. } break;
  2663. case GGML_TYPE_Q4_1:
  2664. {
  2665. GGML_ASSERT(false);
  2666. } break;
  2667. case GGML_TYPE_I8:
  2668. {
  2669. assert(tensor->nb[0] == sizeof(int8_t));
  2670. for (int i = 0; i < n; i++) {
  2671. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2672. }
  2673. } break;
  2674. case GGML_TYPE_I16:
  2675. {
  2676. assert(tensor->nb[0] == sizeof(int16_t));
  2677. for (int i = 0; i < n; i++) {
  2678. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2679. }
  2680. } break;
  2681. case GGML_TYPE_I32:
  2682. {
  2683. assert(tensor->nb[0] == sizeof(int32_t));
  2684. for (int i = 0; i < n; i++) {
  2685. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2686. }
  2687. } break;
  2688. case GGML_TYPE_F16:
  2689. {
  2690. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2691. for (int i = 0; i < n; i++) {
  2692. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2693. }
  2694. } break;
  2695. case GGML_TYPE_F32:
  2696. {
  2697. assert(tensor->nb[0] == sizeof(float));
  2698. for (int i = 0; i < n; i++) {
  2699. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2700. }
  2701. } break;
  2702. case GGML_TYPE_COUNT:
  2703. {
  2704. GGML_ASSERT(false);
  2705. } break;
  2706. }
  2707. return tensor;
  2708. }
  2709. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2710. switch (tensor->type) {
  2711. case GGML_TYPE_Q4_0:
  2712. {
  2713. GGML_ASSERT(false);
  2714. } break;
  2715. case GGML_TYPE_Q4_1:
  2716. {
  2717. GGML_ASSERT(false);
  2718. } break;
  2719. case GGML_TYPE_I8:
  2720. {
  2721. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2722. return ((int8_t *)(tensor->data))[i];
  2723. } break;
  2724. case GGML_TYPE_I16:
  2725. {
  2726. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2727. return ((int16_t *)(tensor->data))[i];
  2728. } break;
  2729. case GGML_TYPE_I32:
  2730. {
  2731. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2732. return ((int32_t *)(tensor->data))[i];
  2733. } break;
  2734. case GGML_TYPE_F16:
  2735. {
  2736. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2737. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2738. } break;
  2739. case GGML_TYPE_F32:
  2740. {
  2741. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2742. return ((float *)(tensor->data))[i];
  2743. } break;
  2744. case GGML_TYPE_COUNT:
  2745. {
  2746. GGML_ASSERT(false);
  2747. } break;
  2748. }
  2749. return 0.0f;
  2750. }
  2751. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2752. switch (tensor->type) {
  2753. case GGML_TYPE_Q4_0:
  2754. {
  2755. GGML_ASSERT(false);
  2756. } break;
  2757. case GGML_TYPE_Q4_1:
  2758. {
  2759. GGML_ASSERT(false);
  2760. } break;
  2761. case GGML_TYPE_I8:
  2762. {
  2763. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2764. ((int8_t *)(tensor->data))[i] = value;
  2765. } break;
  2766. case GGML_TYPE_I16:
  2767. {
  2768. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2769. ((int16_t *)(tensor->data))[i] = value;
  2770. } break;
  2771. case GGML_TYPE_I32:
  2772. {
  2773. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2774. ((int32_t *)(tensor->data))[i] = value;
  2775. } break;
  2776. case GGML_TYPE_F16:
  2777. {
  2778. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2779. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2780. } break;
  2781. case GGML_TYPE_F32:
  2782. {
  2783. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2784. ((float *)(tensor->data))[i] = value;
  2785. } break;
  2786. case GGML_TYPE_COUNT:
  2787. {
  2788. GGML_ASSERT(false);
  2789. } break;
  2790. }
  2791. }
  2792. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2793. switch (tensor->type) {
  2794. case GGML_TYPE_Q4_0:
  2795. {
  2796. GGML_ASSERT(false);
  2797. } break;
  2798. case GGML_TYPE_Q4_1:
  2799. {
  2800. GGML_ASSERT(false);
  2801. } break;
  2802. case GGML_TYPE_I8:
  2803. {
  2804. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2805. return ((int8_t *)(tensor->data))[i];
  2806. } break;
  2807. case GGML_TYPE_I16:
  2808. {
  2809. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2810. return ((int16_t *)(tensor->data))[i];
  2811. } break;
  2812. case GGML_TYPE_I32:
  2813. {
  2814. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2815. return ((int32_t *)(tensor->data))[i];
  2816. } break;
  2817. case GGML_TYPE_F16:
  2818. {
  2819. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2820. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2821. } break;
  2822. case GGML_TYPE_F32:
  2823. {
  2824. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2825. return ((float *)(tensor->data))[i];
  2826. } break;
  2827. case GGML_TYPE_COUNT:
  2828. {
  2829. GGML_ASSERT(false);
  2830. } break;
  2831. }
  2832. return 0.0f;
  2833. }
  2834. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2835. switch (tensor->type) {
  2836. case GGML_TYPE_Q4_0:
  2837. {
  2838. GGML_ASSERT(false);
  2839. } break;
  2840. case GGML_TYPE_Q4_1:
  2841. {
  2842. GGML_ASSERT(false);
  2843. } break;
  2844. case GGML_TYPE_I8:
  2845. {
  2846. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2847. ((int8_t *)(tensor->data))[i] = value;
  2848. } break;
  2849. case GGML_TYPE_I16:
  2850. {
  2851. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2852. ((int16_t *)(tensor->data))[i] = value;
  2853. } break;
  2854. case GGML_TYPE_I32:
  2855. {
  2856. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2857. ((int32_t *)(tensor->data))[i] = value;
  2858. } break;
  2859. case GGML_TYPE_F16:
  2860. {
  2861. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2862. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2863. } break;
  2864. case GGML_TYPE_F32:
  2865. {
  2866. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2867. ((float *)(tensor->data))[i] = value;
  2868. } break;
  2869. case GGML_TYPE_COUNT:
  2870. {
  2871. GGML_ASSERT(false);
  2872. } break;
  2873. }
  2874. }
  2875. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2876. return tensor->data;
  2877. }
  2878. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2879. assert(tensor->type == GGML_TYPE_F32);
  2880. return (float *)(tensor->data);
  2881. }
  2882. struct ggml_tensor * ggml_view_tensor(
  2883. struct ggml_context * ctx,
  2884. const struct ggml_tensor * src) {
  2885. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2886. result->nb[0] = src->nb[0];
  2887. result->nb[1] = src->nb[1];
  2888. result->nb[2] = src->nb[2];
  2889. result->nb[3] = src->nb[3];
  2890. return result;
  2891. }
  2892. ////////////////////////////////////////////////////////////////////////////////
  2893. // ggml_dup
  2894. struct ggml_tensor * ggml_dup_impl(
  2895. struct ggml_context * ctx,
  2896. struct ggml_tensor * a,
  2897. bool inplace) {
  2898. bool is_node = false;
  2899. if (!inplace && (a->grad)) {
  2900. is_node = true;
  2901. }
  2902. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2903. result->op = GGML_OP_DUP;
  2904. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2905. result->src0 = a;
  2906. result->src1 = NULL;
  2907. return result;
  2908. }
  2909. struct ggml_tensor * ggml_dup(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a) {
  2912. return ggml_dup_impl(ctx, a, false);
  2913. }
  2914. struct ggml_tensor * ggml_dup_inplace(
  2915. struct ggml_context * ctx,
  2916. struct ggml_tensor * a) {
  2917. return ggml_dup_impl(ctx, a, true);
  2918. }
  2919. // ggml_add
  2920. struct ggml_tensor * ggml_add_impl(
  2921. struct ggml_context * ctx,
  2922. struct ggml_tensor * a,
  2923. struct ggml_tensor * b,
  2924. bool inplace) {
  2925. GGML_ASSERT(ggml_are_same_shape(a, b));
  2926. bool is_node = false;
  2927. if (!inplace && (a->grad || b->grad)) {
  2928. is_node = true;
  2929. }
  2930. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2931. result->op = GGML_OP_ADD;
  2932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2933. result->src0 = a;
  2934. result->src1 = b;
  2935. return result;
  2936. }
  2937. struct ggml_tensor * ggml_add(
  2938. struct ggml_context * ctx,
  2939. struct ggml_tensor * a,
  2940. struct ggml_tensor * b) {
  2941. return ggml_add_impl(ctx, a, b, false);
  2942. }
  2943. struct ggml_tensor * ggml_add_inplace(
  2944. struct ggml_context * ctx,
  2945. struct ggml_tensor * a,
  2946. struct ggml_tensor * b) {
  2947. return ggml_add_impl(ctx, a, b, true);
  2948. }
  2949. // ggml_sub
  2950. struct ggml_tensor * ggml_sub_impl(
  2951. struct ggml_context * ctx,
  2952. struct ggml_tensor * a,
  2953. struct ggml_tensor * b,
  2954. bool inplace) {
  2955. GGML_ASSERT(ggml_are_same_shape(a, b));
  2956. bool is_node = false;
  2957. if (!inplace && (a->grad || b->grad)) {
  2958. is_node = true;
  2959. }
  2960. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2961. result->op = GGML_OP_SUB;
  2962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2963. result->src0 = a;
  2964. result->src1 = b;
  2965. return result;
  2966. }
  2967. struct ggml_tensor * ggml_sub(
  2968. struct ggml_context * ctx,
  2969. struct ggml_tensor * a,
  2970. struct ggml_tensor * b) {
  2971. return ggml_sub_impl(ctx, a, b, false);
  2972. }
  2973. struct ggml_tensor * ggml_sub_inplace(
  2974. struct ggml_context * ctx,
  2975. struct ggml_tensor * a,
  2976. struct ggml_tensor * b) {
  2977. return ggml_sub_impl(ctx, a, b, true);
  2978. }
  2979. // ggml_mul
  2980. struct ggml_tensor * ggml_mul_impl(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a,
  2983. struct ggml_tensor * b,
  2984. bool inplace) {
  2985. GGML_ASSERT(ggml_are_same_shape(a, b));
  2986. bool is_node = false;
  2987. if (!inplace && (a->grad || b->grad)) {
  2988. is_node = true;
  2989. }
  2990. if (inplace) {
  2991. GGML_ASSERT(is_node == false);
  2992. }
  2993. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2994. result->op = GGML_OP_MUL;
  2995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2996. result->src0 = a;
  2997. result->src1 = b;
  2998. return result;
  2999. }
  3000. struct ggml_tensor * ggml_mul(
  3001. struct ggml_context * ctx,
  3002. struct ggml_tensor * a,
  3003. struct ggml_tensor * b) {
  3004. return ggml_mul_impl(ctx, a, b, false);
  3005. }
  3006. struct ggml_tensor * ggml_mul_inplace(
  3007. struct ggml_context * ctx,
  3008. struct ggml_tensor * a,
  3009. struct ggml_tensor * b) {
  3010. return ggml_mul_impl(ctx, a, b, true);
  3011. }
  3012. // ggml_div
  3013. struct ggml_tensor * ggml_div_impl(
  3014. struct ggml_context * ctx,
  3015. struct ggml_tensor * a,
  3016. struct ggml_tensor * b,
  3017. bool inplace) {
  3018. GGML_ASSERT(ggml_are_same_shape(a, b));
  3019. bool is_node = false;
  3020. if (!inplace && (a->grad || b->grad)) {
  3021. is_node = true;
  3022. }
  3023. if (inplace) {
  3024. GGML_ASSERT(is_node == false);
  3025. }
  3026. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3027. result->op = GGML_OP_DIV;
  3028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3029. result->src0 = a;
  3030. result->src1 = b;
  3031. return result;
  3032. }
  3033. struct ggml_tensor * ggml_div(
  3034. struct ggml_context * ctx,
  3035. struct ggml_tensor * a,
  3036. struct ggml_tensor * b) {
  3037. return ggml_div_impl(ctx, a, b, false);
  3038. }
  3039. struct ggml_tensor * ggml_div_inplace(
  3040. struct ggml_context * ctx,
  3041. struct ggml_tensor * a,
  3042. struct ggml_tensor * b) {
  3043. return ggml_div_impl(ctx, a, b, true);
  3044. }
  3045. // ggml_sqr
  3046. struct ggml_tensor * ggml_sqr_impl(
  3047. struct ggml_context * ctx,
  3048. struct ggml_tensor * a,
  3049. bool inplace) {
  3050. bool is_node = false;
  3051. if (!inplace && (a->grad)) {
  3052. is_node = true;
  3053. }
  3054. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3055. result->op = GGML_OP_SQR;
  3056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3057. result->src0 = a;
  3058. result->src1 = NULL;
  3059. return result;
  3060. }
  3061. struct ggml_tensor * ggml_sqr(
  3062. struct ggml_context * ctx,
  3063. struct ggml_tensor * a) {
  3064. return ggml_sqr_impl(ctx, a, false);
  3065. }
  3066. struct ggml_tensor * ggml_sqr_inplace(
  3067. struct ggml_context * ctx,
  3068. struct ggml_tensor * a) {
  3069. return ggml_sqr_impl(ctx, a, true);
  3070. }
  3071. // ggml_sqrt
  3072. struct ggml_tensor * ggml_sqrt_impl(
  3073. struct ggml_context * ctx,
  3074. struct ggml_tensor * a,
  3075. bool inplace) {
  3076. bool is_node = false;
  3077. if (!inplace && (a->grad)) {
  3078. is_node = true;
  3079. }
  3080. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3081. result->op = GGML_OP_SQRT;
  3082. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3083. result->src0 = a;
  3084. result->src1 = NULL;
  3085. return result;
  3086. }
  3087. struct ggml_tensor * ggml_sqrt(
  3088. struct ggml_context * ctx,
  3089. struct ggml_tensor * a) {
  3090. return ggml_sqrt_impl(ctx, a, false);
  3091. }
  3092. struct ggml_tensor * ggml_sqrt_inplace(
  3093. struct ggml_context * ctx,
  3094. struct ggml_tensor * a) {
  3095. return ggml_sqrt_impl(ctx, a, true);
  3096. }
  3097. // ggml_sum
  3098. struct ggml_tensor * ggml_sum(
  3099. struct ggml_context * ctx,
  3100. struct ggml_tensor * a) {
  3101. bool is_node = false;
  3102. if (a->grad) {
  3103. is_node = true;
  3104. }
  3105. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3106. result->op = GGML_OP_SUM;
  3107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3108. result->src0 = a;
  3109. result->src1 = NULL;
  3110. return result;
  3111. }
  3112. // ggml_mean
  3113. struct ggml_tensor * ggml_mean(
  3114. struct ggml_context * ctx,
  3115. struct ggml_tensor * a) {
  3116. bool is_node = false;
  3117. if (a->grad) {
  3118. GGML_ASSERT(false); // TODO: implement
  3119. is_node = true;
  3120. }
  3121. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3122. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3123. result->op = GGML_OP_MEAN;
  3124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3125. result->src0 = a;
  3126. result->src1 = NULL;
  3127. return result;
  3128. }
  3129. // ggml_repeat
  3130. struct ggml_tensor * ggml_repeat(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a,
  3133. struct ggml_tensor * b) {
  3134. GGML_ASSERT(ggml_can_repeat(a, b));
  3135. bool is_node = false;
  3136. if (a->grad) {
  3137. is_node = true;
  3138. }
  3139. if (ggml_are_same_shape(a, b) && !is_node) {
  3140. return a;
  3141. }
  3142. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3143. result->op = GGML_OP_REPEAT;
  3144. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3145. result->src0 = a;
  3146. result->src1 = b;
  3147. return result;
  3148. }
  3149. // ggml_abs
  3150. struct ggml_tensor * ggml_abs_impl(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a,
  3153. bool inplace) {
  3154. bool is_node = false;
  3155. if (!inplace && (a->grad)) {
  3156. is_node = true;
  3157. }
  3158. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3159. result->op = GGML_OP_ABS;
  3160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3161. result->src0 = a;
  3162. result->src1 = NULL;
  3163. return result;
  3164. }
  3165. struct ggml_tensor * ggml_abs(
  3166. struct ggml_context * ctx,
  3167. struct ggml_tensor * a) {
  3168. return ggml_abs_impl(ctx, a, false);
  3169. }
  3170. struct ggml_tensor * ggml_abs_inplace(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a) {
  3173. return ggml_abs_impl(ctx, a, true);
  3174. }
  3175. // ggml_sgn
  3176. struct ggml_tensor * ggml_sgn_impl(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a,
  3179. bool inplace) {
  3180. bool is_node = false;
  3181. if (!inplace && (a->grad)) {
  3182. is_node = true;
  3183. }
  3184. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3185. result->op = GGML_OP_SGN;
  3186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3187. result->src0 = a;
  3188. result->src1 = NULL;
  3189. return result;
  3190. }
  3191. struct ggml_tensor * ggml_sgn(
  3192. struct ggml_context * ctx,
  3193. struct ggml_tensor * a) {
  3194. return ggml_sgn_impl(ctx, a, false);
  3195. }
  3196. struct ggml_tensor * ggml_sgn_inplace(
  3197. struct ggml_context * ctx,
  3198. struct ggml_tensor * a) {
  3199. return ggml_sgn_impl(ctx, a, true);
  3200. }
  3201. // ggml_neg
  3202. struct ggml_tensor * ggml_neg_impl(
  3203. struct ggml_context * ctx,
  3204. struct ggml_tensor * a,
  3205. bool inplace) {
  3206. bool is_node = false;
  3207. if (!inplace && (a->grad)) {
  3208. is_node = true;
  3209. }
  3210. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3211. result->op = GGML_OP_NEG;
  3212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3213. result->src0 = a;
  3214. result->src1 = NULL;
  3215. return result;
  3216. }
  3217. struct ggml_tensor * ggml_neg(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a) {
  3220. return ggml_neg_impl(ctx, a, false);
  3221. }
  3222. struct ggml_tensor * ggml_neg_inplace(
  3223. struct ggml_context * ctx,
  3224. struct ggml_tensor * a) {
  3225. return ggml_neg_impl(ctx, a, true);
  3226. }
  3227. // ggml_step
  3228. struct ggml_tensor * ggml_step_impl(
  3229. struct ggml_context * ctx,
  3230. struct ggml_tensor * a,
  3231. bool inplace) {
  3232. bool is_node = false;
  3233. if (!inplace && (a->grad)) {
  3234. is_node = true;
  3235. }
  3236. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3237. result->op = GGML_OP_STEP;
  3238. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3239. result->src0 = a;
  3240. result->src1 = NULL;
  3241. return result;
  3242. }
  3243. struct ggml_tensor * ggml_step(
  3244. struct ggml_context * ctx,
  3245. struct ggml_tensor * a) {
  3246. return ggml_step_impl(ctx, a, false);
  3247. }
  3248. struct ggml_tensor * ggml_step_inplace(
  3249. struct ggml_context * ctx,
  3250. struct ggml_tensor * a) {
  3251. return ggml_step_impl(ctx, a, true);
  3252. }
  3253. // ggml_relu
  3254. struct ggml_tensor * ggml_relu_impl(
  3255. struct ggml_context * ctx,
  3256. struct ggml_tensor * a,
  3257. bool inplace) {
  3258. bool is_node = false;
  3259. if (!inplace && (a->grad)) {
  3260. is_node = true;
  3261. }
  3262. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3263. result->op = GGML_OP_RELU;
  3264. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3265. result->src0 = a;
  3266. result->src1 = NULL;
  3267. return result;
  3268. }
  3269. struct ggml_tensor * ggml_relu(
  3270. struct ggml_context * ctx,
  3271. struct ggml_tensor * a) {
  3272. return ggml_relu_impl(ctx, a, false);
  3273. }
  3274. struct ggml_tensor * ggml_relu_inplace(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a) {
  3277. return ggml_relu_impl(ctx, a, true);
  3278. }
  3279. // ggml_gelu
  3280. struct ggml_tensor * ggml_gelu_impl(
  3281. struct ggml_context * ctx,
  3282. struct ggml_tensor * a,
  3283. bool inplace) {
  3284. bool is_node = false;
  3285. if (!inplace && (a->grad)) {
  3286. is_node = true;
  3287. }
  3288. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3289. result->op = GGML_OP_GELU;
  3290. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3291. result->src0 = a;
  3292. result->src1 = NULL;
  3293. return result;
  3294. }
  3295. struct ggml_tensor * ggml_gelu(
  3296. struct ggml_context * ctx,
  3297. struct ggml_tensor * a) {
  3298. return ggml_gelu_impl(ctx, a, false);
  3299. }
  3300. struct ggml_tensor * ggml_gelu_inplace(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a) {
  3303. return ggml_gelu_impl(ctx, a, true);
  3304. }
  3305. // ggml_silu
  3306. struct ggml_tensor * ggml_silu_impl(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a,
  3309. bool inplace) {
  3310. bool is_node = false;
  3311. if (!inplace && (a->grad)) {
  3312. is_node = true;
  3313. }
  3314. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3315. result->op = GGML_OP_SILU;
  3316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3317. result->src0 = a;
  3318. result->src1 = NULL;
  3319. return result;
  3320. }
  3321. struct ggml_tensor * ggml_silu(
  3322. struct ggml_context * ctx,
  3323. struct ggml_tensor * a) {
  3324. return ggml_silu_impl(ctx, a, false);
  3325. }
  3326. struct ggml_tensor * ggml_silu_inplace(
  3327. struct ggml_context * ctx,
  3328. struct ggml_tensor * a) {
  3329. return ggml_silu_impl(ctx, a, true);
  3330. }
  3331. // ggml_norm
  3332. struct ggml_tensor * ggml_norm_impl(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a,
  3335. bool inplace) {
  3336. bool is_node = false;
  3337. if (!inplace && (a->grad)) {
  3338. GGML_ASSERT(false); // TODO: implement backward
  3339. is_node = true;
  3340. }
  3341. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3342. result->op = GGML_OP_NORM;
  3343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3344. result->src0 = a;
  3345. result->src1 = NULL; // TODO: maybe store epsilon here?
  3346. return result;
  3347. }
  3348. struct ggml_tensor * ggml_norm(
  3349. struct ggml_context * ctx,
  3350. struct ggml_tensor * a) {
  3351. return ggml_norm_impl(ctx, a, false);
  3352. }
  3353. struct ggml_tensor * ggml_norm_inplace(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a) {
  3356. return ggml_norm_impl(ctx, a, true);
  3357. }
  3358. struct ggml_tensor * ggml_rms_norm_impl(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a,
  3361. bool inplace) {
  3362. bool is_node = false;
  3363. if (!inplace && (a->grad)) {
  3364. GGML_ASSERT(false); // TODO: implement backward
  3365. is_node = true;
  3366. }
  3367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3368. result->op = GGML_OP_RMS_NORM;
  3369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3370. result->src0 = a;
  3371. result->src1 = NULL; // TODO: maybe store epsilon here?
  3372. return result;
  3373. }
  3374. struct ggml_tensor * ggml_rms_norm(
  3375. struct ggml_context * ctx,
  3376. struct ggml_tensor * a) {
  3377. return ggml_rms_norm_impl(ctx, a, false);
  3378. }
  3379. struct ggml_tensor * ggml_rms_norm_inplace(
  3380. struct ggml_context * ctx,
  3381. struct ggml_tensor * a) {
  3382. return ggml_rms_norm_impl(ctx, a, true);
  3383. }
  3384. // ggml_mul_mat
  3385. struct ggml_tensor * ggml_mul_mat(
  3386. struct ggml_context * ctx,
  3387. struct ggml_tensor * a,
  3388. struct ggml_tensor * b) {
  3389. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3390. GGML_ASSERT(!ggml_is_transposed(a));
  3391. bool is_node = false;
  3392. if (a->grad || b->grad) {
  3393. is_node = true;
  3394. }
  3395. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3396. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3397. result->op = GGML_OP_MUL_MAT;
  3398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3399. result->src0 = a;
  3400. result->src1 = b;
  3401. return result;
  3402. }
  3403. // ggml_scale
  3404. struct ggml_tensor * ggml_scale_impl(
  3405. struct ggml_context * ctx,
  3406. struct ggml_tensor * a,
  3407. struct ggml_tensor * b,
  3408. bool inplace) {
  3409. GGML_ASSERT(ggml_is_scalar(b));
  3410. GGML_ASSERT(ggml_is_padded_1d(a));
  3411. bool is_node = false;
  3412. if (!inplace && (a->grad || b->grad)) {
  3413. GGML_ASSERT(false); // TODO: implement backward
  3414. is_node = true;
  3415. }
  3416. // TODO: when implement backward, fix this:
  3417. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3418. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3419. result->op = GGML_OP_SCALE;
  3420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3421. result->src0 = a;
  3422. result->src1 = b;
  3423. return result;
  3424. }
  3425. struct ggml_tensor * ggml_scale(
  3426. struct ggml_context * ctx,
  3427. struct ggml_tensor * a,
  3428. struct ggml_tensor * b) {
  3429. return ggml_scale_impl(ctx, a, b, false);
  3430. }
  3431. struct ggml_tensor * ggml_scale_inplace(
  3432. struct ggml_context * ctx,
  3433. struct ggml_tensor * a,
  3434. struct ggml_tensor * b) {
  3435. return ggml_scale_impl(ctx, a, b, true);
  3436. }
  3437. // ggml_cpy
  3438. struct ggml_tensor * ggml_cpy_impl(
  3439. struct ggml_context * ctx,
  3440. struct ggml_tensor * a,
  3441. struct ggml_tensor * b,
  3442. bool inplace) {
  3443. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3444. bool is_node = false;
  3445. if (!inplace && (a->grad || b->grad)) {
  3446. GGML_ASSERT(false); // TODO: implement backward
  3447. is_node = true;
  3448. }
  3449. // make a view of the destination
  3450. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3451. result->op = GGML_OP_CPY;
  3452. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3453. result->src0 = a;
  3454. result->src1 = b;
  3455. return result;
  3456. }
  3457. struct ggml_tensor * ggml_cpy(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a,
  3460. struct ggml_tensor * b) {
  3461. return ggml_cpy_impl(ctx, a, b, false);
  3462. }
  3463. struct ggml_tensor * ggml_cpy_inplace(
  3464. struct ggml_context * ctx,
  3465. struct ggml_tensor * a,
  3466. struct ggml_tensor * b) {
  3467. return ggml_cpy_impl(ctx, a, b, true);
  3468. }
  3469. // ggml_cont
  3470. struct ggml_tensor * ggml_cont_impl(
  3471. struct ggml_context * ctx,
  3472. struct ggml_tensor * a,
  3473. bool inplace) {
  3474. bool is_node = false;
  3475. if (!inplace && a->grad) {
  3476. GGML_ASSERT(false); // TODO: implement backward
  3477. is_node = true;
  3478. }
  3479. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3480. result->op = GGML_OP_CONT;
  3481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3482. result->src0 = a;
  3483. result->src1 = NULL;
  3484. return result;
  3485. }
  3486. struct ggml_tensor * ggml_cont(
  3487. struct ggml_context * ctx,
  3488. struct ggml_tensor * a) {
  3489. return ggml_cont_impl(ctx, a, false);
  3490. }
  3491. struct ggml_tensor * ggml_cont_inplace(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a) {
  3494. return ggml_cont_impl(ctx, a, true);
  3495. }
  3496. // ggml_reshape
  3497. struct ggml_tensor * ggml_reshape(
  3498. struct ggml_context * ctx,
  3499. struct ggml_tensor * a,
  3500. struct ggml_tensor * b) {
  3501. GGML_ASSERT(ggml_is_contiguous(a));
  3502. GGML_ASSERT(ggml_is_contiguous(b));
  3503. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3504. bool is_node = false;
  3505. if (a->grad || b->grad) {
  3506. GGML_ASSERT(false); // TODO: implement backward
  3507. is_node = true;
  3508. }
  3509. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3510. result->op = GGML_OP_RESHAPE;
  3511. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3512. result->src0 = a;
  3513. result->src1 = NULL;
  3514. return result;
  3515. }
  3516. struct ggml_tensor * ggml_reshape_2d(
  3517. struct ggml_context * ctx,
  3518. struct ggml_tensor * a,
  3519. int64_t ne0,
  3520. int64_t ne1) {
  3521. GGML_ASSERT(ggml_is_contiguous(a));
  3522. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3523. bool is_node = false;
  3524. if (a->grad) {
  3525. GGML_ASSERT(false); // TODO: implement backward
  3526. is_node = true;
  3527. }
  3528. const int64_t ne[2] = { ne0, ne1 };
  3529. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3530. result->op = GGML_OP_RESHAPE;
  3531. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3532. result->src0 = a;
  3533. result->src1 = NULL;
  3534. return result;
  3535. }
  3536. struct ggml_tensor * ggml_reshape_3d(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a,
  3539. int64_t ne0,
  3540. int64_t ne1,
  3541. int64_t ne2) {
  3542. GGML_ASSERT(ggml_is_contiguous(a));
  3543. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3544. bool is_node = false;
  3545. if (a->grad) {
  3546. GGML_ASSERT(false); // TODO: implement backward
  3547. is_node = true;
  3548. }
  3549. const int64_t ne[3] = { ne0, ne1, ne2 };
  3550. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3551. result->op = GGML_OP_RESHAPE;
  3552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3553. result->src0 = a;
  3554. result->src1 = NULL;
  3555. return result;
  3556. }
  3557. // ggml_view_1d
  3558. struct ggml_tensor * ggml_view_1d(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a,
  3561. int64_t ne0,
  3562. size_t offset) {
  3563. if (a->grad) {
  3564. GGML_ASSERT(false); // gradient propagation is not supported
  3565. }
  3566. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3567. result->op = GGML_OP_VIEW;
  3568. result->grad = NULL;
  3569. result->src0 = a;
  3570. result->src1 = NULL; // TODO: maybe store the offset here?
  3571. return result;
  3572. }
  3573. // ggml_view_2d
  3574. struct ggml_tensor * ggml_view_2d(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a,
  3577. int64_t ne0,
  3578. int64_t ne1,
  3579. size_t nb1,
  3580. size_t offset) {
  3581. if (a->grad) {
  3582. GGML_ASSERT(false); // gradient propagation is not supported
  3583. }
  3584. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3585. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3586. result->nb[1] = nb1;
  3587. result->nb[2] = result->nb[1]*ne1;
  3588. result->nb[3] = result->nb[2];
  3589. result->op = GGML_OP_VIEW;
  3590. result->grad = NULL;
  3591. result->src0 = a;
  3592. result->src1 = NULL; // TODO: maybe store the offset here?
  3593. return result;
  3594. }
  3595. // ggml_view_3d
  3596. struct ggml_tensor * ggml_view_3d(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a,
  3599. int64_t ne0,
  3600. int64_t ne1,
  3601. int64_t ne2,
  3602. size_t nb1,
  3603. size_t nb2,
  3604. size_t offset) {
  3605. if (a->grad) {
  3606. GGML_ASSERT(false); // gradient propagation is not supported
  3607. }
  3608. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3609. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3610. result->nb[1] = nb1;
  3611. result->nb[2] = nb2;
  3612. result->nb[3] = result->nb[2]*ne2;
  3613. result->op = GGML_OP_VIEW;
  3614. result->grad = NULL;
  3615. result->src0 = a;
  3616. result->src1 = NULL; // TODO: maybe store the offset here?
  3617. return result;
  3618. }
  3619. // ggml_permute
  3620. struct ggml_tensor * ggml_permute(
  3621. struct ggml_context * ctx,
  3622. struct ggml_tensor * a,
  3623. int axis0,
  3624. int axis1,
  3625. int axis2,
  3626. int axis3) {
  3627. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3628. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3629. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3630. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3631. GGML_ASSERT(axis0 != axis1);
  3632. GGML_ASSERT(axis0 != axis2);
  3633. GGML_ASSERT(axis0 != axis3);
  3634. GGML_ASSERT(axis1 != axis2);
  3635. GGML_ASSERT(axis1 != axis3);
  3636. GGML_ASSERT(axis2 != axis3);
  3637. bool is_node = false;
  3638. if (a->grad) {
  3639. GGML_ASSERT(false); // TODO: implement backward
  3640. is_node = true;
  3641. }
  3642. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3643. int ne[GGML_MAX_DIMS];
  3644. int nb[GGML_MAX_DIMS];
  3645. ne[axis0] = a->ne[0];
  3646. ne[axis1] = a->ne[1];
  3647. ne[axis2] = a->ne[2];
  3648. ne[axis3] = a->ne[3];
  3649. nb[axis0] = a->nb[0];
  3650. nb[axis1] = a->nb[1];
  3651. nb[axis2] = a->nb[2];
  3652. nb[axis3] = a->nb[3];
  3653. result->ne[0] = ne[0];
  3654. result->ne[1] = ne[1];
  3655. result->ne[2] = ne[2];
  3656. result->ne[3] = ne[3];
  3657. result->nb[0] = nb[0];
  3658. result->nb[1] = nb[1];
  3659. result->nb[2] = nb[2];
  3660. result->nb[3] = nb[3];
  3661. result->op = GGML_OP_PERMUTE;
  3662. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3663. result->src0 = a;
  3664. result->src1 = NULL; // TODO: maybe store the permutation here?
  3665. return result;
  3666. }
  3667. // ggml_transpose
  3668. struct ggml_tensor * ggml_transpose(
  3669. struct ggml_context * ctx,
  3670. struct ggml_tensor * a) {
  3671. bool is_node = false;
  3672. if (a->grad) {
  3673. GGML_ASSERT(false); // TODO: implement backward
  3674. is_node = true;
  3675. }
  3676. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3677. result->ne[0] = a->ne[1];
  3678. result->ne[1] = a->ne[0];
  3679. result->nb[0] = a->nb[1];
  3680. result->nb[1] = a->nb[0];
  3681. result->op = GGML_OP_TRANSPOSE;
  3682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3683. result->src0 = a;
  3684. result->src1 = NULL;
  3685. return result;
  3686. }
  3687. // ggml_get_rows
  3688. struct ggml_tensor * ggml_get_rows(
  3689. struct ggml_context * ctx,
  3690. struct ggml_tensor * a,
  3691. struct ggml_tensor * b) {
  3692. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3693. bool is_node = false;
  3694. if (a->grad || b->grad) {
  3695. GGML_ASSERT(false); // TODO: implement backward
  3696. is_node = true;
  3697. }
  3698. // TODO: implement non F32 return
  3699. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3700. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3701. result->op = GGML_OP_GET_ROWS;
  3702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3703. result->src0 = a;
  3704. result->src1 = b;
  3705. return result;
  3706. }
  3707. // ggml_diag_mask_inf
  3708. struct ggml_tensor * ggml_diag_mask_inf(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a,
  3711. int n_past) {
  3712. bool is_node = false;
  3713. if (a->grad) {
  3714. GGML_ASSERT(false); // TODO: implement backward
  3715. is_node = true;
  3716. }
  3717. // TODO: when implement backward, fix this:
  3718. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3719. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3720. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3721. result->op = GGML_OP_DIAG_MASK_INF;
  3722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3723. result->src0 = a;
  3724. result->src1 = b;
  3725. return result;
  3726. }
  3727. // ggml_soft_max
  3728. struct ggml_tensor * ggml_soft_max(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a) {
  3731. bool is_node = false;
  3732. if (a->grad) {
  3733. GGML_ASSERT(false); // TODO: implement backward
  3734. is_node = true;
  3735. }
  3736. // TODO: when implement backward, fix this:
  3737. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3738. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3739. result->op = GGML_OP_SOFT_MAX;
  3740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3741. result->src0 = a;
  3742. result->src1 = NULL;
  3743. return result;
  3744. }
  3745. // ggml_rope
  3746. struct ggml_tensor * ggml_rope(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a,
  3749. int n_past,
  3750. int n_dims,
  3751. int mode) {
  3752. GGML_ASSERT(n_past >= 0);
  3753. bool is_node = false;
  3754. if (a->grad) {
  3755. GGML_ASSERT(false); // TODO: implement backward
  3756. is_node = true;
  3757. }
  3758. // TODO: when implement backward, fix this:
  3759. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3760. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3761. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3762. ((int32_t *) b->data)[0] = n_past;
  3763. ((int32_t *) b->data)[1] = n_dims;
  3764. ((int32_t *) b->data)[2] = mode;
  3765. result->op = GGML_OP_ROPE;
  3766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3767. result->src0 = a;
  3768. result->src1 = b;
  3769. return result;
  3770. }
  3771. // ggml_conv_1d_1s
  3772. struct ggml_tensor * ggml_conv_1d_1s(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a,
  3775. struct ggml_tensor * b) {
  3776. GGML_ASSERT(ggml_is_matrix(b));
  3777. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3778. GGML_ASSERT(a->ne[3] == 1);
  3779. bool is_node = false;
  3780. if (a->grad || b->grad) {
  3781. GGML_ASSERT(false); // TODO: implement backward
  3782. is_node = true;
  3783. }
  3784. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3785. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3786. result->op = GGML_OP_CONV_1D_1S;
  3787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3788. result->src0 = a;
  3789. result->src1 = b;
  3790. return result;
  3791. }
  3792. // ggml_conv_1d_2s
  3793. struct ggml_tensor * ggml_conv_1d_2s(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a,
  3796. struct ggml_tensor * b) {
  3797. GGML_ASSERT(ggml_is_matrix(b));
  3798. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3799. GGML_ASSERT(a->ne[3] == 1);
  3800. bool is_node = false;
  3801. if (a->grad || b->grad) {
  3802. GGML_ASSERT(false); // TODO: implement backward
  3803. is_node = true;
  3804. }
  3805. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3806. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3807. result->op = GGML_OP_CONV_1D_2S;
  3808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3809. result->src0 = a;
  3810. result->src1 = b;
  3811. return result;
  3812. }
  3813. // ggml_flash_attn
  3814. struct ggml_tensor * ggml_flash_attn(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * q,
  3817. struct ggml_tensor * k,
  3818. struct ggml_tensor * v,
  3819. bool masked) {
  3820. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3821. // TODO: check if vT can be multiplied by (k*qT)
  3822. bool is_node = false;
  3823. if (q->grad || k->grad || v->grad) {
  3824. GGML_ASSERT(false); // TODO: implement backward
  3825. is_node = true;
  3826. }
  3827. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3828. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3829. result->op = GGML_OP_FLASH_ATTN;
  3830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3831. result->src0 = q;
  3832. result->src1 = k;
  3833. result->opt[0] = v;
  3834. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3835. return result;
  3836. }
  3837. // ggml_flash_ff
  3838. struct ggml_tensor * ggml_flash_ff(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. struct ggml_tensor * b0,
  3842. struct ggml_tensor * b1,
  3843. struct ggml_tensor * c0,
  3844. struct ggml_tensor * c1) {
  3845. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3846. // TODO: more checks
  3847. bool is_node = false;
  3848. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3849. GGML_ASSERT(false); // TODO: implement backward
  3850. is_node = true;
  3851. }
  3852. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3853. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3854. result->op = GGML_OP_FLASH_FF;
  3855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3856. result->src0 = a;
  3857. result->src1 = b0;
  3858. result->opt[0] = b1;
  3859. result->opt[1] = c0;
  3860. result->opt[2] = c1;
  3861. return result;
  3862. }
  3863. ////////////////////////////////////////////////////////////////////////////////
  3864. void ggml_set_param(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * tensor) {
  3867. tensor->is_param = true;
  3868. GGML_ASSERT(tensor->grad == NULL);
  3869. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3870. }
  3871. // ggml_compute_forward_dup
  3872. static void ggml_compute_forward_dup_f16(
  3873. const struct ggml_compute_params * params,
  3874. const struct ggml_tensor * src0,
  3875. struct ggml_tensor * dst) {
  3876. GGML_ASSERT(params->ith == 0);
  3877. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3879. return;
  3880. }
  3881. const int64_t ne00 = src0->ne[0];
  3882. const int64_t ne01 = src0->ne[1];
  3883. const int64_t ne02 = src0->ne[2];
  3884. const int64_t ne03 = src0->ne[3];
  3885. const size_t nb00 = src0->nb[0];
  3886. const size_t nb01 = src0->nb[1];
  3887. const size_t nb02 = src0->nb[2];
  3888. const size_t nb03 = src0->nb[3];
  3889. const size_t nb0 = dst->nb[0];
  3890. const size_t nb1 = dst->nb[1];
  3891. const size_t nb2 = dst->nb[2];
  3892. const size_t nb3 = dst->nb[3];
  3893. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3894. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3895. return;
  3896. }
  3897. if (src0->type == dst->type &&
  3898. src0->ne[0] == dst->ne[0] &&
  3899. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  3900. // copy by rows
  3901. const size_t rs = ne00*nb00;
  3902. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3903. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3904. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3905. memcpy(
  3906. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3907. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3908. rs);
  3909. }
  3910. }
  3911. }
  3912. return;
  3913. }
  3914. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  3915. if (ggml_is_contiguous(dst)) {
  3916. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3917. if (dst->type == GGML_TYPE_F16) {
  3918. size_t id = 0;
  3919. const size_t rs = ne00*nb00;
  3920. for (int i03 = 0; i03 < ne03; i03++) {
  3921. for (int i02 = 0; i02 < ne02; i02++) {
  3922. for (int i01 = 0; i01 < ne01; i01++) {
  3923. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3924. char * dst_ptr = (char *) dst->data + id*rs;
  3925. memcpy(dst_ptr, src0_ptr, rs);
  3926. id++;
  3927. }
  3928. }
  3929. }
  3930. } else if (dst->type == GGML_TYPE_F32) {
  3931. size_t id = 0;
  3932. float * dst_ptr = (float *) dst->data;
  3933. for (int i03 = 0; i03 < ne03; i03++) {
  3934. for (int i02 = 0; i02 < ne02; i02++) {
  3935. for (int i01 = 0; i01 < ne01; i01++) {
  3936. for (int i00 = 0; i00 < ne00; i00++) {
  3937. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3938. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3939. id++;
  3940. }
  3941. }
  3942. }
  3943. }
  3944. } else {
  3945. GGML_ASSERT(false); // TODO: implement
  3946. }
  3947. } else {
  3948. //printf("%s: this is not optimal - fix me\n", __func__);
  3949. if (dst->type == GGML_TYPE_F32) {
  3950. size_t id = 0;
  3951. float * dst_ptr = (float *) dst->data;
  3952. for (int i03 = 0; i03 < ne03; i03++) {
  3953. for (int i02 = 0; i02 < ne02; i02++) {
  3954. for (int i01 = 0; i01 < ne01; i01++) {
  3955. for (int i00 = 0; i00 < ne00; i00++) {
  3956. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3957. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3958. id++;
  3959. }
  3960. }
  3961. }
  3962. }
  3963. } else if (dst->type == GGML_TYPE_F16) {
  3964. size_t id = 0;
  3965. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3966. for (int i03 = 0; i03 < ne03; i03++) {
  3967. for (int i02 = 0; i02 < ne02; i02++) {
  3968. for (int i01 = 0; i01 < ne01; i01++) {
  3969. for (int i00 = 0; i00 < ne00; i00++) {
  3970. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3971. dst_ptr[id] = *src0_ptr;
  3972. id++;
  3973. }
  3974. }
  3975. }
  3976. }
  3977. } else {
  3978. GGML_ASSERT(false); // TODO: implement
  3979. }
  3980. }
  3981. return;
  3982. }
  3983. // dst counters
  3984. int64_t i10 = 0;
  3985. int64_t i11 = 0;
  3986. int64_t i12 = 0;
  3987. int64_t i13 = 0;
  3988. if (dst->type == GGML_TYPE_F16) {
  3989. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3990. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3991. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3992. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3993. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3994. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3995. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  3996. if (++i10 == ne00) {
  3997. i10 = 0;
  3998. if (++i11 == ne01) {
  3999. i11 = 0;
  4000. if (++i12 == ne02) {
  4001. i12 = 0;
  4002. if (++i13 == ne03) {
  4003. i13 = 0;
  4004. }
  4005. }
  4006. }
  4007. }
  4008. }
  4009. }
  4010. }
  4011. }
  4012. } else if (dst->type == GGML_TYPE_F32) {
  4013. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4014. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4015. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4016. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4017. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4018. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4019. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4020. if (++i10 == ne00) {
  4021. i10 = 0;
  4022. if (++i11 == ne01) {
  4023. i11 = 0;
  4024. if (++i12 == ne02) {
  4025. i12 = 0;
  4026. if (++i13 == ne03) {
  4027. i13 = 0;
  4028. }
  4029. }
  4030. }
  4031. }
  4032. }
  4033. }
  4034. }
  4035. }
  4036. } else {
  4037. GGML_ASSERT(false); // TODO: implement
  4038. }
  4039. }
  4040. static void ggml_compute_forward_dup_f32(
  4041. const struct ggml_compute_params * params,
  4042. const struct ggml_tensor * src0,
  4043. struct ggml_tensor * dst) {
  4044. GGML_ASSERT(params->ith == 0);
  4045. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4046. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4047. return;
  4048. }
  4049. const int64_t ne00 = src0->ne[0];
  4050. const int64_t ne01 = src0->ne[1];
  4051. const int64_t ne02 = src0->ne[2];
  4052. const int64_t ne03 = src0->ne[3];
  4053. const size_t nb00 = src0->nb[0];
  4054. const size_t nb01 = src0->nb[1];
  4055. const size_t nb02 = src0->nb[2];
  4056. const size_t nb03 = src0->nb[3];
  4057. const size_t nb0 = dst->nb[0];
  4058. const size_t nb1 = dst->nb[1];
  4059. const size_t nb2 = dst->nb[2];
  4060. const size_t nb3 = dst->nb[3];
  4061. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4062. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4063. return;
  4064. }
  4065. if (src0->type == dst->type &&
  4066. src0->ne[0] == dst->ne[0] &&
  4067. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4068. // copy by rows
  4069. const size_t rs = ne00*nb00;
  4070. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4071. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4072. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4073. memcpy(
  4074. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4075. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4076. rs);
  4077. }
  4078. }
  4079. }
  4080. return;
  4081. }
  4082. if (ggml_is_contiguous(dst)) {
  4083. // TODO: simplify
  4084. if (src0->nb[0] == sizeof(float)) {
  4085. if (dst->type == GGML_TYPE_F32) {
  4086. size_t id = 0;
  4087. const size_t rs = ne00*nb00;
  4088. for (int i03 = 0; i03 < ne03; i03++) {
  4089. for (int i02 = 0; i02 < ne02; i02++) {
  4090. for (int i01 = 0; i01 < ne01; i01++) {
  4091. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4092. char * dst_ptr = (char *) dst->data + id*rs;
  4093. memcpy(dst_ptr, src0_ptr, rs);
  4094. id++;
  4095. }
  4096. }
  4097. }
  4098. } else if (dst->type == GGML_TYPE_F16) {
  4099. size_t id = 0;
  4100. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4101. for (int i03 = 0; i03 < ne03; i03++) {
  4102. for (int i02 = 0; i02 < ne02; i02++) {
  4103. for (int i01 = 0; i01 < ne01; i01++) {
  4104. for (int i00 = 0; i00 < ne00; i00++) {
  4105. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4106. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4107. id++;
  4108. }
  4109. }
  4110. }
  4111. }
  4112. } else {
  4113. GGML_ASSERT(false); // TODO: implement
  4114. }
  4115. } else {
  4116. //printf("%s: this is not optimal - fix me\n", __func__);
  4117. if (dst->type == GGML_TYPE_F32) {
  4118. size_t id = 0;
  4119. float * dst_ptr = (float *) dst->data;
  4120. for (int i03 = 0; i03 < ne03; i03++) {
  4121. for (int i02 = 0; i02 < ne02; i02++) {
  4122. for (int i01 = 0; i01 < ne01; i01++) {
  4123. for (int i00 = 0; i00 < ne00; i00++) {
  4124. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4125. dst_ptr[id] = *src0_ptr;
  4126. id++;
  4127. }
  4128. }
  4129. }
  4130. }
  4131. } else if (dst->type == GGML_TYPE_F16) {
  4132. size_t id = 0;
  4133. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4134. for (int i03 = 0; i03 < ne03; i03++) {
  4135. for (int i02 = 0; i02 < ne02; i02++) {
  4136. for (int i01 = 0; i01 < ne01; i01++) {
  4137. for (int i00 = 0; i00 < ne00; i00++) {
  4138. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4139. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4140. id++;
  4141. }
  4142. }
  4143. }
  4144. }
  4145. } else {
  4146. GGML_ASSERT(false); // TODO: implement
  4147. }
  4148. }
  4149. return;
  4150. }
  4151. // dst counters
  4152. int64_t i10 = 0;
  4153. int64_t i11 = 0;
  4154. int64_t i12 = 0;
  4155. int64_t i13 = 0;
  4156. if (dst->type == GGML_TYPE_F32) {
  4157. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4158. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4159. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4160. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4161. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4162. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4163. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4164. if (++i10 == dst->ne[0]) {
  4165. i10 = 0;
  4166. if (++i11 == dst->ne[1]) {
  4167. i11 = 0;
  4168. if (++i12 == dst->ne[2]) {
  4169. i12 = 0;
  4170. if (++i13 == dst->ne[3]) {
  4171. i13 = 0;
  4172. }
  4173. }
  4174. }
  4175. }
  4176. }
  4177. }
  4178. }
  4179. }
  4180. } else if (dst->type == GGML_TYPE_F16) {
  4181. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4182. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4183. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4184. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4185. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4186. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4187. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4188. if (++i10 == dst->ne[0]) {
  4189. i10 = 0;
  4190. if (++i11 == dst->ne[1]) {
  4191. i11 = 0;
  4192. if (++i12 == dst->ne[2]) {
  4193. i12 = 0;
  4194. if (++i13 == dst->ne[3]) {
  4195. i13 = 0;
  4196. }
  4197. }
  4198. }
  4199. }
  4200. }
  4201. }
  4202. }
  4203. }
  4204. } else {
  4205. GGML_ASSERT(false); // TODO: implement
  4206. }
  4207. }
  4208. static void ggml_compute_forward_dup(
  4209. const struct ggml_compute_params * params,
  4210. const struct ggml_tensor * src0,
  4211. struct ggml_tensor * dst) {
  4212. switch (src0->type) {
  4213. case GGML_TYPE_F16:
  4214. {
  4215. ggml_compute_forward_dup_f16(params, src0, dst);
  4216. } break;
  4217. case GGML_TYPE_F32:
  4218. {
  4219. ggml_compute_forward_dup_f32(params, src0, dst);
  4220. } break;
  4221. case GGML_TYPE_Q4_0:
  4222. case GGML_TYPE_Q4_1:
  4223. case GGML_TYPE_I8:
  4224. case GGML_TYPE_I16:
  4225. case GGML_TYPE_I32:
  4226. case GGML_TYPE_COUNT:
  4227. {
  4228. GGML_ASSERT(false);
  4229. } break;
  4230. }
  4231. }
  4232. // ggml_compute_forward_add
  4233. static void ggml_compute_forward_add_f32(
  4234. const struct ggml_compute_params * params,
  4235. const struct ggml_tensor * src0,
  4236. const struct ggml_tensor * src1,
  4237. struct ggml_tensor * dst) {
  4238. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4239. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4240. return;
  4241. }
  4242. const int ith = params->ith;
  4243. const int nth = params->nth;
  4244. const int n = ggml_nrows(src0);
  4245. const int nc = src0->ne[0];
  4246. const size_t nb00 = src0->nb[0];
  4247. const size_t nb01 = src0->nb[1];
  4248. const size_t nb10 = src1->nb[0];
  4249. const size_t nb11 = src1->nb[1];
  4250. const size_t nb0 = dst->nb[0];
  4251. const size_t nb1 = dst->nb[1];
  4252. GGML_ASSERT( nb0 == sizeof(float));
  4253. GGML_ASSERT(nb00 == sizeof(float));
  4254. if (nb10 == sizeof(float)) {
  4255. for (int j = ith; j < n; j += nth) {
  4256. #ifdef GGML_USE_ACCELERATE
  4257. vDSP_vadd(
  4258. (float *) ((char *) src0->data + j*nb01), 1,
  4259. (float *) ((char *) src1->data + j*nb11), 1,
  4260. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4261. #else
  4262. ggml_vec_add_f32(nc,
  4263. (float *) ((char *) dst->data + j*nb1),
  4264. (float *) ((char *) src0->data + j*nb01),
  4265. (float *) ((char *) src1->data + j*nb11));
  4266. #endif
  4267. }
  4268. } else {
  4269. // src1 is not contiguous
  4270. for (int j = ith; j < n; j += nth) {
  4271. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4272. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4273. for (int i = 0; i < nc; i++) {
  4274. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4275. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4276. }
  4277. }
  4278. }
  4279. }
  4280. static void ggml_compute_forward_add(
  4281. const struct ggml_compute_params * params,
  4282. const struct ggml_tensor * src0,
  4283. const struct ggml_tensor * src1,
  4284. struct ggml_tensor * dst) {
  4285. switch (src0->type) {
  4286. case GGML_TYPE_F32:
  4287. {
  4288. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4289. } break;
  4290. case GGML_TYPE_Q4_0:
  4291. case GGML_TYPE_Q4_1:
  4292. case GGML_TYPE_I8:
  4293. case GGML_TYPE_I16:
  4294. case GGML_TYPE_I32:
  4295. case GGML_TYPE_F16:
  4296. case GGML_TYPE_COUNT:
  4297. {
  4298. GGML_ASSERT(false);
  4299. } break;
  4300. }
  4301. }
  4302. // ggml_compute_forward_sub
  4303. static void ggml_compute_forward_sub_f32(
  4304. const struct ggml_compute_params * params,
  4305. const struct ggml_tensor * src0,
  4306. const struct ggml_tensor * src1,
  4307. struct ggml_tensor * dst) {
  4308. assert(params->ith == 0);
  4309. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4310. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4311. return;
  4312. }
  4313. const int n = ggml_nrows(src0);
  4314. const int nc = src0->ne[0];
  4315. assert( dst->nb[0] == sizeof(float));
  4316. assert(src0->nb[0] == sizeof(float));
  4317. assert(src1->nb[0] == sizeof(float));
  4318. for (int i = 0; i < n; i++) {
  4319. ggml_vec_sub_f32(nc,
  4320. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4321. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4322. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4323. }
  4324. }
  4325. static void ggml_compute_forward_sub(
  4326. const struct ggml_compute_params * params,
  4327. const struct ggml_tensor * src0,
  4328. const struct ggml_tensor * src1,
  4329. struct ggml_tensor * dst) {
  4330. switch (src0->type) {
  4331. case GGML_TYPE_F32:
  4332. {
  4333. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4334. } break;
  4335. case GGML_TYPE_Q4_0:
  4336. case GGML_TYPE_Q4_1:
  4337. case GGML_TYPE_I8:
  4338. case GGML_TYPE_I16:
  4339. case GGML_TYPE_I32:
  4340. case GGML_TYPE_F16:
  4341. case GGML_TYPE_COUNT:
  4342. {
  4343. GGML_ASSERT(false);
  4344. } break;
  4345. }
  4346. }
  4347. // ggml_compute_forward_mul
  4348. static void ggml_compute_forward_mul_f32(
  4349. const struct ggml_compute_params * params,
  4350. const struct ggml_tensor * src0,
  4351. const struct ggml_tensor * src1,
  4352. struct ggml_tensor * dst) {
  4353. assert(params->ith == 0);
  4354. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4355. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4356. return;
  4357. }
  4358. const int n = ggml_nrows(src0);
  4359. const int nc = src0->ne[0];
  4360. assert( dst->nb[0] == sizeof(float));
  4361. assert(src0->nb[0] == sizeof(float));
  4362. assert(src1->nb[0] == sizeof(float));
  4363. for (int i = 0; i < n; i++) {
  4364. ggml_vec_mul_f32(nc,
  4365. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4366. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4367. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4368. }
  4369. }
  4370. static void ggml_compute_forward_mul(
  4371. const struct ggml_compute_params * params,
  4372. const struct ggml_tensor * src0,
  4373. const struct ggml_tensor * src1,
  4374. struct ggml_tensor * dst) {
  4375. switch (src0->type) {
  4376. case GGML_TYPE_F32:
  4377. {
  4378. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4379. } break;
  4380. case GGML_TYPE_Q4_0:
  4381. case GGML_TYPE_Q4_1:
  4382. case GGML_TYPE_I8:
  4383. case GGML_TYPE_I16:
  4384. case GGML_TYPE_I32:
  4385. case GGML_TYPE_F16:
  4386. case GGML_TYPE_COUNT:
  4387. {
  4388. GGML_ASSERT(false);
  4389. } break;
  4390. }
  4391. }
  4392. // ggml_compute_forward_div
  4393. static void ggml_compute_forward_div_f32(
  4394. const struct ggml_compute_params * params,
  4395. const struct ggml_tensor * src0,
  4396. const struct ggml_tensor * src1,
  4397. struct ggml_tensor * dst) {
  4398. assert(params->ith == 0);
  4399. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4400. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4401. return;
  4402. }
  4403. const int n = ggml_nrows(src0);
  4404. const int nc = src0->ne[0];
  4405. assert( dst->nb[0] == sizeof(float));
  4406. assert(src0->nb[0] == sizeof(float));
  4407. assert(src1->nb[0] == sizeof(float));
  4408. for (int i = 0; i < n; i++) {
  4409. ggml_vec_div_f32(nc,
  4410. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4411. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4412. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4413. }
  4414. }
  4415. static void ggml_compute_forward_div(
  4416. const struct ggml_compute_params * params,
  4417. const struct ggml_tensor * src0,
  4418. const struct ggml_tensor * src1,
  4419. struct ggml_tensor * dst) {
  4420. switch (src0->type) {
  4421. case GGML_TYPE_F32:
  4422. {
  4423. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4424. } break;
  4425. case GGML_TYPE_Q4_0:
  4426. case GGML_TYPE_Q4_1:
  4427. case GGML_TYPE_I8:
  4428. case GGML_TYPE_I16:
  4429. case GGML_TYPE_I32:
  4430. case GGML_TYPE_F16:
  4431. case GGML_TYPE_COUNT:
  4432. {
  4433. GGML_ASSERT(false);
  4434. } break;
  4435. }
  4436. }
  4437. // ggml_compute_forward_sqr
  4438. static void ggml_compute_forward_sqr_f32(
  4439. const struct ggml_compute_params * params,
  4440. const struct ggml_tensor * src0,
  4441. struct ggml_tensor * dst) {
  4442. assert(params->ith == 0);
  4443. assert(ggml_are_same_shape(src0, dst));
  4444. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4445. return;
  4446. }
  4447. const int n = ggml_nrows(src0);
  4448. const int nc = src0->ne[0];
  4449. assert( dst->nb[0] == sizeof(float));
  4450. assert(src0->nb[0] == sizeof(float));
  4451. for (int i = 0; i < n; i++) {
  4452. ggml_vec_sqr_f32(nc,
  4453. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4454. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4455. }
  4456. }
  4457. static void ggml_compute_forward_sqr(
  4458. const struct ggml_compute_params * params,
  4459. const struct ggml_tensor * src0,
  4460. struct ggml_tensor * dst) {
  4461. switch (src0->type) {
  4462. case GGML_TYPE_F32:
  4463. {
  4464. ggml_compute_forward_sqr_f32(params, src0, dst);
  4465. } break;
  4466. case GGML_TYPE_Q4_0:
  4467. case GGML_TYPE_Q4_1:
  4468. case GGML_TYPE_I8:
  4469. case GGML_TYPE_I16:
  4470. case GGML_TYPE_I32:
  4471. case GGML_TYPE_F16:
  4472. case GGML_TYPE_COUNT:
  4473. {
  4474. GGML_ASSERT(false);
  4475. } break;
  4476. }
  4477. }
  4478. // ggml_compute_forward_sqrt
  4479. static void ggml_compute_forward_sqrt_f32(
  4480. const struct ggml_compute_params * params,
  4481. const struct ggml_tensor * src0,
  4482. struct ggml_tensor * dst) {
  4483. assert(params->ith == 0);
  4484. assert(ggml_are_same_shape(src0, dst));
  4485. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4486. return;
  4487. }
  4488. const int n = ggml_nrows(src0);
  4489. const int nc = src0->ne[0];
  4490. assert( dst->nb[0] == sizeof(float));
  4491. assert(src0->nb[0] == sizeof(float));
  4492. for (int i = 0; i < n; i++) {
  4493. ggml_vec_sqrt_f32(nc,
  4494. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4495. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4496. }
  4497. }
  4498. static void ggml_compute_forward_sqrt(
  4499. const struct ggml_compute_params * params,
  4500. const struct ggml_tensor * src0,
  4501. struct ggml_tensor * dst) {
  4502. switch (src0->type) {
  4503. case GGML_TYPE_F32:
  4504. {
  4505. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4506. } break;
  4507. case GGML_TYPE_Q4_0:
  4508. case GGML_TYPE_Q4_1:
  4509. case GGML_TYPE_I8:
  4510. case GGML_TYPE_I16:
  4511. case GGML_TYPE_I32:
  4512. case GGML_TYPE_F16:
  4513. case GGML_TYPE_COUNT:
  4514. {
  4515. GGML_ASSERT(false);
  4516. } break;
  4517. }
  4518. }
  4519. // ggml_compute_forward_sum
  4520. static void ggml_compute_forward_sum_f32(
  4521. const struct ggml_compute_params * params,
  4522. const struct ggml_tensor * src0,
  4523. struct ggml_tensor * dst) {
  4524. assert(params->ith == 0);
  4525. assert(ggml_is_scalar(dst));
  4526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4527. return;
  4528. }
  4529. assert(ggml_is_scalar(dst));
  4530. assert(src0->nb[0] == sizeof(float));
  4531. const int64_t ne00 = src0->ne[0];
  4532. const int64_t ne01 = src0->ne[1];
  4533. const int64_t ne02 = src0->ne[2];
  4534. const int64_t ne03 = src0->ne[3];
  4535. const size_t nb01 = src0->nb[1];
  4536. const size_t nb02 = src0->nb[2];
  4537. const size_t nb03 = src0->nb[3];
  4538. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4539. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4540. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4541. ggml_vec_sum_f32(ne00,
  4542. (float *) (dst->data),
  4543. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4544. }
  4545. }
  4546. }
  4547. }
  4548. static void ggml_compute_forward_sum(
  4549. const struct ggml_compute_params * params,
  4550. const struct ggml_tensor * src0,
  4551. struct ggml_tensor * dst) {
  4552. switch (src0->type) {
  4553. case GGML_TYPE_F32:
  4554. {
  4555. ggml_compute_forward_sum_f32(params, src0, dst);
  4556. } break;
  4557. case GGML_TYPE_Q4_0:
  4558. case GGML_TYPE_Q4_1:
  4559. case GGML_TYPE_I8:
  4560. case GGML_TYPE_I16:
  4561. case GGML_TYPE_I32:
  4562. case GGML_TYPE_F16:
  4563. case GGML_TYPE_COUNT:
  4564. {
  4565. GGML_ASSERT(false);
  4566. } break;
  4567. }
  4568. }
  4569. // ggml_compute_forward_mean
  4570. static void ggml_compute_forward_mean_f32(
  4571. const struct ggml_compute_params * params,
  4572. const struct ggml_tensor * src0,
  4573. struct ggml_tensor * dst) {
  4574. assert(params->ith == 0);
  4575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4576. return;
  4577. }
  4578. assert(src0->nb[0] == sizeof(float));
  4579. const int64_t ne00 = src0->ne[0];
  4580. const int64_t ne01 = src0->ne[1];
  4581. const int64_t ne02 = src0->ne[2];
  4582. const int64_t ne03 = src0->ne[3];
  4583. const size_t nb01 = src0->nb[1];
  4584. const size_t nb02 = src0->nb[2];
  4585. const size_t nb03 = src0->nb[3];
  4586. const int64_t ne0 = dst->ne[0];
  4587. const int64_t ne1 = dst->ne[1];
  4588. const int64_t ne2 = dst->ne[2];
  4589. const int64_t ne3 = dst->ne[3];
  4590. assert(ne0 == 1);
  4591. assert(ne1 == ne01);
  4592. assert(ne2 == ne02);
  4593. assert(ne3 == ne03);
  4594. UNUSED(ne0);
  4595. UNUSED(ne1);
  4596. UNUSED(ne2);
  4597. UNUSED(ne3);
  4598. const size_t nb1 = dst->nb[1];
  4599. const size_t nb2 = dst->nb[2];
  4600. const size_t nb3 = dst->nb[3];
  4601. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4602. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4603. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4604. ggml_vec_sum_f32(ne00,
  4605. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4606. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4607. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4608. }
  4609. }
  4610. }
  4611. }
  4612. static void ggml_compute_forward_mean(
  4613. const struct ggml_compute_params * params,
  4614. const struct ggml_tensor * src0,
  4615. struct ggml_tensor * dst) {
  4616. switch (src0->type) {
  4617. case GGML_TYPE_F32:
  4618. {
  4619. ggml_compute_forward_mean_f32(params, src0, dst);
  4620. } break;
  4621. case GGML_TYPE_Q4_0:
  4622. case GGML_TYPE_Q4_1:
  4623. case GGML_TYPE_I8:
  4624. case GGML_TYPE_I16:
  4625. case GGML_TYPE_I32:
  4626. case GGML_TYPE_F16:
  4627. case GGML_TYPE_COUNT:
  4628. {
  4629. GGML_ASSERT(false);
  4630. } break;
  4631. }
  4632. }
  4633. // ggml_compute_forward_repeat
  4634. static void ggml_compute_forward_repeat_f32(
  4635. const struct ggml_compute_params * params,
  4636. const struct ggml_tensor * src0,
  4637. struct ggml_tensor * dst) {
  4638. assert(params->ith == 0);
  4639. assert(ggml_can_repeat(src0, dst));
  4640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4641. return;
  4642. }
  4643. // TODO: implement support for rank > 2 tensors
  4644. assert(src0->ne[2] == 1);
  4645. assert(src0->ne[3] == 1);
  4646. assert( dst->ne[2] == 1);
  4647. assert( dst->ne[3] == 1);
  4648. const int nc = dst->ne[0];
  4649. const int nr = dst->ne[1];
  4650. const int nc0 = src0->ne[0];
  4651. const int nr0 = src0->ne[1];
  4652. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4653. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4654. // TODO: support for transposed / permuted tensors
  4655. assert( dst->nb[0] == sizeof(float));
  4656. assert(src0->nb[0] == sizeof(float));
  4657. // TODO: maybe this is not optimal?
  4658. for (int i = 0; i < nrr; i++) {
  4659. for (int j = 0; j < ncr; j++) {
  4660. for (int k = 0; k < nr0; k++) {
  4661. ggml_vec_cpy_f32(nc0,
  4662. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4663. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4664. }
  4665. }
  4666. }
  4667. }
  4668. static void ggml_compute_forward_repeat(
  4669. const struct ggml_compute_params * params,
  4670. const struct ggml_tensor * src0,
  4671. struct ggml_tensor * dst) {
  4672. switch (src0->type) {
  4673. case GGML_TYPE_F32:
  4674. {
  4675. ggml_compute_forward_repeat_f32(params, src0, dst);
  4676. } break;
  4677. case GGML_TYPE_Q4_0:
  4678. case GGML_TYPE_Q4_1:
  4679. case GGML_TYPE_I8:
  4680. case GGML_TYPE_I16:
  4681. case GGML_TYPE_I32:
  4682. case GGML_TYPE_F16:
  4683. case GGML_TYPE_COUNT:
  4684. {
  4685. GGML_ASSERT(false);
  4686. } break;
  4687. }
  4688. }
  4689. // ggml_compute_forward_abs
  4690. static void ggml_compute_forward_abs_f32(
  4691. const struct ggml_compute_params * params,
  4692. const struct ggml_tensor * src0,
  4693. struct ggml_tensor * dst) {
  4694. assert(params->ith == 0);
  4695. assert(ggml_are_same_shape(src0, dst));
  4696. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4697. return;
  4698. }
  4699. const int n = ggml_nrows(src0);
  4700. const int nc = src0->ne[0];
  4701. assert(dst->nb[0] == sizeof(float));
  4702. assert(src0->nb[0] == sizeof(float));
  4703. for (int i = 0; i < n; i++) {
  4704. ggml_vec_abs_f32(nc,
  4705. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4706. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4707. }
  4708. }
  4709. static void ggml_compute_forward_abs(
  4710. const struct ggml_compute_params * params,
  4711. const struct ggml_tensor * src0,
  4712. struct ggml_tensor * dst) {
  4713. switch (src0->type) {
  4714. case GGML_TYPE_F32:
  4715. {
  4716. ggml_compute_forward_abs_f32(params, src0, dst);
  4717. } break;
  4718. case GGML_TYPE_Q4_0:
  4719. case GGML_TYPE_Q4_1:
  4720. case GGML_TYPE_I8:
  4721. case GGML_TYPE_I16:
  4722. case GGML_TYPE_I32:
  4723. case GGML_TYPE_F16:
  4724. case GGML_TYPE_COUNT:
  4725. {
  4726. GGML_ASSERT(false);
  4727. } break;
  4728. }
  4729. }
  4730. // ggml_compute_forward_sgn
  4731. static void ggml_compute_forward_sgn_f32(
  4732. const struct ggml_compute_params * params,
  4733. const struct ggml_tensor * src0,
  4734. struct ggml_tensor * dst) {
  4735. assert(params->ith == 0);
  4736. assert(ggml_are_same_shape(src0, dst));
  4737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4738. return;
  4739. }
  4740. const int n = ggml_nrows(src0);
  4741. const int nc = src0->ne[0];
  4742. assert(dst->nb[0] == sizeof(float));
  4743. assert(src0->nb[0] == sizeof(float));
  4744. for (int i = 0; i < n; i++) {
  4745. ggml_vec_sgn_f32(nc,
  4746. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4747. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4748. }
  4749. }
  4750. static void ggml_compute_forward_sgn(
  4751. const struct ggml_compute_params * params,
  4752. const struct ggml_tensor * src0,
  4753. struct ggml_tensor * dst) {
  4754. switch (src0->type) {
  4755. case GGML_TYPE_F32:
  4756. {
  4757. ggml_compute_forward_sgn_f32(params, src0, dst);
  4758. } break;
  4759. case GGML_TYPE_Q4_0:
  4760. case GGML_TYPE_Q4_1:
  4761. case GGML_TYPE_I8:
  4762. case GGML_TYPE_I16:
  4763. case GGML_TYPE_I32:
  4764. case GGML_TYPE_F16:
  4765. case GGML_TYPE_COUNT:
  4766. {
  4767. GGML_ASSERT(false);
  4768. } break;
  4769. }
  4770. }
  4771. // ggml_compute_forward_neg
  4772. static void ggml_compute_forward_neg_f32(
  4773. const struct ggml_compute_params * params,
  4774. const struct ggml_tensor * src0,
  4775. struct ggml_tensor * dst) {
  4776. assert(params->ith == 0);
  4777. assert(ggml_are_same_shape(src0, dst));
  4778. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4779. return;
  4780. }
  4781. const int n = ggml_nrows(src0);
  4782. const int nc = src0->ne[0];
  4783. assert(dst->nb[0] == sizeof(float));
  4784. assert(src0->nb[0] == sizeof(float));
  4785. for (int i = 0; i < n; i++) {
  4786. ggml_vec_neg_f32(nc,
  4787. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4788. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4789. }
  4790. }
  4791. static void ggml_compute_forward_neg(
  4792. const struct ggml_compute_params * params,
  4793. const struct ggml_tensor * src0,
  4794. struct ggml_tensor * dst) {
  4795. switch (src0->type) {
  4796. case GGML_TYPE_F32:
  4797. {
  4798. ggml_compute_forward_neg_f32(params, src0, dst);
  4799. } break;
  4800. case GGML_TYPE_Q4_0:
  4801. case GGML_TYPE_Q4_1:
  4802. case GGML_TYPE_I8:
  4803. case GGML_TYPE_I16:
  4804. case GGML_TYPE_I32:
  4805. case GGML_TYPE_F16:
  4806. case GGML_TYPE_COUNT:
  4807. {
  4808. GGML_ASSERT(false);
  4809. } break;
  4810. }
  4811. }
  4812. // ggml_compute_forward_step
  4813. static void ggml_compute_forward_step_f32(
  4814. const struct ggml_compute_params * params,
  4815. const struct ggml_tensor * src0,
  4816. struct ggml_tensor * dst) {
  4817. assert(params->ith == 0);
  4818. assert(ggml_are_same_shape(src0, dst));
  4819. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4820. return;
  4821. }
  4822. const int n = ggml_nrows(src0);
  4823. const int nc = src0->ne[0];
  4824. assert(dst->nb[0] == sizeof(float));
  4825. assert(src0->nb[0] == sizeof(float));
  4826. for (int i = 0; i < n; i++) {
  4827. ggml_vec_step_f32(nc,
  4828. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4829. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4830. }
  4831. }
  4832. static void ggml_compute_forward_step(
  4833. const struct ggml_compute_params * params,
  4834. const struct ggml_tensor * src0,
  4835. struct ggml_tensor * dst) {
  4836. switch (src0->type) {
  4837. case GGML_TYPE_F32:
  4838. {
  4839. ggml_compute_forward_step_f32(params, src0, dst);
  4840. } break;
  4841. case GGML_TYPE_Q4_0:
  4842. case GGML_TYPE_Q4_1:
  4843. case GGML_TYPE_I8:
  4844. case GGML_TYPE_I16:
  4845. case GGML_TYPE_I32:
  4846. case GGML_TYPE_F16:
  4847. case GGML_TYPE_COUNT:
  4848. {
  4849. GGML_ASSERT(false);
  4850. } break;
  4851. }
  4852. }
  4853. // ggml_compute_forward_relu
  4854. static void ggml_compute_forward_relu_f32(
  4855. const struct ggml_compute_params * params,
  4856. const struct ggml_tensor * src0,
  4857. struct ggml_tensor * dst) {
  4858. assert(params->ith == 0);
  4859. assert(ggml_are_same_shape(src0, dst));
  4860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4861. return;
  4862. }
  4863. const int n = ggml_nrows(src0);
  4864. const int nc = src0->ne[0];
  4865. assert(dst->nb[0] == sizeof(float));
  4866. assert(src0->nb[0] == sizeof(float));
  4867. for (int i = 0; i < n; i++) {
  4868. ggml_vec_relu_f32(nc,
  4869. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4870. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4871. }
  4872. }
  4873. static void ggml_compute_forward_relu(
  4874. const struct ggml_compute_params * params,
  4875. const struct ggml_tensor * src0,
  4876. struct ggml_tensor * dst) {
  4877. switch (src0->type) {
  4878. case GGML_TYPE_F32:
  4879. {
  4880. ggml_compute_forward_relu_f32(params, src0, dst);
  4881. } break;
  4882. case GGML_TYPE_Q4_0:
  4883. case GGML_TYPE_Q4_1:
  4884. case GGML_TYPE_I8:
  4885. case GGML_TYPE_I16:
  4886. case GGML_TYPE_I32:
  4887. case GGML_TYPE_F16:
  4888. case GGML_TYPE_COUNT:
  4889. {
  4890. GGML_ASSERT(false);
  4891. } break;
  4892. }
  4893. }
  4894. // ggml_compute_forward_gelu
  4895. static void ggml_compute_forward_gelu_f32(
  4896. const struct ggml_compute_params * params,
  4897. const struct ggml_tensor * src0,
  4898. struct ggml_tensor * dst) {
  4899. GGML_ASSERT(ggml_is_contiguous(src0));
  4900. GGML_ASSERT(ggml_is_contiguous(dst));
  4901. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4902. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4903. return;
  4904. }
  4905. const int ith = params->ith;
  4906. const int nth = params->nth;
  4907. const int nc = src0->ne[0];
  4908. const int nr = ggml_nrows(src0);
  4909. // rows per thread
  4910. const int dr = (nr + nth - 1)/nth;
  4911. // row range for this thread
  4912. const int ir0 = dr*ith;
  4913. const int ir1 = MIN(ir0 + dr, nr);
  4914. for (int i1 = ir0; i1 < ir1; i1++) {
  4915. ggml_vec_gelu_f32(nc,
  4916. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4917. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4918. #ifndef NDEBUG
  4919. for (int k = 0; k < nc; k++) {
  4920. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4921. UNUSED(x);
  4922. assert(!isnan(x));
  4923. assert(!isinf(x));
  4924. }
  4925. #endif
  4926. }
  4927. }
  4928. static void ggml_compute_forward_gelu(
  4929. const struct ggml_compute_params * params,
  4930. const struct ggml_tensor * src0,
  4931. struct ggml_tensor * dst) {
  4932. switch (src0->type) {
  4933. case GGML_TYPE_F32:
  4934. {
  4935. ggml_compute_forward_gelu_f32(params, src0, dst);
  4936. } break;
  4937. case GGML_TYPE_Q4_0:
  4938. case GGML_TYPE_Q4_1:
  4939. case GGML_TYPE_I8:
  4940. case GGML_TYPE_I16:
  4941. case GGML_TYPE_I32:
  4942. case GGML_TYPE_F16:
  4943. case GGML_TYPE_COUNT:
  4944. {
  4945. GGML_ASSERT(false);
  4946. } break;
  4947. }
  4948. //printf("XXXXXXXX gelu\n");
  4949. }
  4950. // ggml_compute_forward_silu
  4951. static void ggml_compute_forward_silu_f32(
  4952. const struct ggml_compute_params * params,
  4953. const struct ggml_tensor * src0,
  4954. struct ggml_tensor * dst) {
  4955. GGML_ASSERT(ggml_is_contiguous(src0));
  4956. GGML_ASSERT(ggml_is_contiguous(dst));
  4957. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4958. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4959. return;
  4960. }
  4961. const int ith = params->ith;
  4962. const int nth = params->nth;
  4963. const int nc = src0->ne[0];
  4964. const int nr = ggml_nrows(src0);
  4965. // rows per thread
  4966. const int dr = (nr + nth - 1)/nth;
  4967. // row range for this thread
  4968. const int ir0 = dr*ith;
  4969. const int ir1 = MIN(ir0 + dr, nr);
  4970. for (int i1 = ir0; i1 < ir1; i1++) {
  4971. ggml_vec_silu_f32(nc,
  4972. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4973. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4974. #ifndef NDEBUG
  4975. for (int k = 0; k < nc; k++) {
  4976. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4977. UNUSED(x);
  4978. assert(!isnan(x));
  4979. assert(!isinf(x));
  4980. }
  4981. #endif
  4982. }
  4983. }
  4984. static void ggml_compute_forward_silu(
  4985. const struct ggml_compute_params * params,
  4986. const struct ggml_tensor * src0,
  4987. struct ggml_tensor * dst) {
  4988. switch (src0->type) {
  4989. case GGML_TYPE_F32:
  4990. {
  4991. ggml_compute_forward_silu_f32(params, src0, dst);
  4992. } break;
  4993. case GGML_TYPE_Q4_0:
  4994. case GGML_TYPE_Q4_1:
  4995. case GGML_TYPE_I8:
  4996. case GGML_TYPE_I16:
  4997. case GGML_TYPE_I32:
  4998. case GGML_TYPE_F16:
  4999. case GGML_TYPE_COUNT:
  5000. {
  5001. GGML_ASSERT(false);
  5002. } break;
  5003. }
  5004. }
  5005. // ggml_compute_forward_norm
  5006. static void ggml_compute_forward_norm_f32(
  5007. const struct ggml_compute_params * params,
  5008. const struct ggml_tensor * src0,
  5009. struct ggml_tensor * dst) {
  5010. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5012. return;
  5013. }
  5014. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5015. const int ith = params->ith;
  5016. const int nth = params->nth;
  5017. const int64_t ne00 = src0->ne[0];
  5018. const int64_t ne01 = src0->ne[1];
  5019. const int64_t ne02 = src0->ne[2];
  5020. const int64_t ne03 = src0->ne[3];
  5021. const size_t nb01 = src0->nb[1];
  5022. const size_t nb02 = src0->nb[2];
  5023. const size_t nb03 = src0->nb[3];
  5024. const size_t nb1 = dst->nb[1];
  5025. const size_t nb2 = dst->nb[2];
  5026. const size_t nb3 = dst->nb[3];
  5027. const float eps = 1e-5f; // TODO: make this a parameter
  5028. // TODO: optimize
  5029. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5030. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5031. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5032. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5033. ggml_float sum = 0.0;
  5034. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5035. sum += (ggml_float)x[i00];
  5036. }
  5037. float mean = sum/ne00;
  5038. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5039. ggml_float sum2 = 0.0;
  5040. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5041. float v = x[i00] - mean;
  5042. y[i00] = v;
  5043. sum2 += (ggml_float)(v*v);
  5044. }
  5045. float variance = sum2/ne00;
  5046. const float scale = 1.0f/sqrtf(variance + eps);
  5047. ggml_vec_scale_f32(ne00, y, scale);
  5048. }
  5049. }
  5050. }
  5051. }
  5052. static void ggml_compute_forward_norm(
  5053. const struct ggml_compute_params * params,
  5054. const struct ggml_tensor * src0,
  5055. struct ggml_tensor * dst) {
  5056. switch (src0->type) {
  5057. case GGML_TYPE_F32:
  5058. {
  5059. ggml_compute_forward_norm_f32(params, src0, dst);
  5060. } break;
  5061. case GGML_TYPE_Q4_0:
  5062. case GGML_TYPE_Q4_1:
  5063. case GGML_TYPE_I8:
  5064. case GGML_TYPE_I16:
  5065. case GGML_TYPE_I32:
  5066. case GGML_TYPE_F16:
  5067. case GGML_TYPE_COUNT:
  5068. {
  5069. GGML_ASSERT(false);
  5070. } break;
  5071. }
  5072. }
  5073. static void ggml_compute_forward_rms_norm_f32(
  5074. const struct ggml_compute_params * params,
  5075. const struct ggml_tensor * src0,
  5076. struct ggml_tensor * dst) {
  5077. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5079. return;
  5080. }
  5081. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5082. const int ith = params->ith;
  5083. const int nth = params->nth;
  5084. const int64_t ne00 = src0->ne[0];
  5085. const int64_t ne01 = src0->ne[1];
  5086. const int64_t ne02 = src0->ne[2];
  5087. const int64_t ne03 = src0->ne[3];
  5088. const size_t nb01 = src0->nb[1];
  5089. const size_t nb02 = src0->nb[2];
  5090. const size_t nb03 = src0->nb[3];
  5091. const size_t nb1 = dst->nb[1];
  5092. const size_t nb2 = dst->nb[2];
  5093. const size_t nb3 = dst->nb[3];
  5094. const float eps = 1e-6f; // TODO: make this a parameter
  5095. // TODO: optimize
  5096. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5097. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5098. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5099. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5100. ggml_float sum = 0.0;
  5101. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5102. sum += (ggml_float)(x[i00] * x[i00]);
  5103. }
  5104. float mean = sum/ne00;
  5105. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5106. memcpy(y, x, ne00 * sizeof(float));
  5107. // for (int i00 = 0; i00 < ne00; i00++) {
  5108. // y[i00] = x[i00];
  5109. // }
  5110. const float scale = 1.0f/sqrtf(mean + eps);
  5111. ggml_vec_scale_f32(ne00, y, scale);
  5112. }
  5113. }
  5114. }
  5115. }
  5116. static void ggml_compute_forward_rms_norm(
  5117. const struct ggml_compute_params * params,
  5118. const struct ggml_tensor * src0,
  5119. struct ggml_tensor * dst) {
  5120. switch (src0->type) {
  5121. case GGML_TYPE_F32:
  5122. {
  5123. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5124. } break;
  5125. case GGML_TYPE_Q4_0:
  5126. case GGML_TYPE_Q4_1:
  5127. case GGML_TYPE_I8:
  5128. case GGML_TYPE_I16:
  5129. case GGML_TYPE_I32:
  5130. case GGML_TYPE_F16:
  5131. case GGML_TYPE_COUNT:
  5132. {
  5133. GGML_ASSERT(false);
  5134. } break;
  5135. }
  5136. }
  5137. // ggml_compute_forward_mul_mat
  5138. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5139. // helper function to determine if it is better to use BLAS or not
  5140. // for large matrices, BLAS is faster
  5141. static bool ggml_compute_forward_mul_mat_use_blas(
  5142. const struct ggml_tensor * src0,
  5143. const struct ggml_tensor * src1,
  5144. struct ggml_tensor * dst) {
  5145. //const int64_t ne00 = src0->ne[0];
  5146. //const int64_t ne01 = src0->ne[1];
  5147. const int64_t ne10 = src1->ne[0];
  5148. const int64_t ne0 = dst->ne[0];
  5149. const int64_t ne1 = dst->ne[1];
  5150. // TODO: find the optimal values for these
  5151. if (ggml_is_contiguous(src0) &&
  5152. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5153. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5154. return true;
  5155. }
  5156. return false;
  5157. }
  5158. #endif
  5159. static void ggml_compute_forward_mul_mat_f32(
  5160. const struct ggml_compute_params * params,
  5161. const struct ggml_tensor * src0,
  5162. const struct ggml_tensor * src1,
  5163. struct ggml_tensor * dst) {
  5164. int64_t t0 = ggml_perf_time_us();
  5165. UNUSED(t0);
  5166. const int64_t ne00 = src0->ne[0];
  5167. const int64_t ne01 = src0->ne[1];
  5168. const int64_t ne02 = src0->ne[2];
  5169. const int64_t ne03 = src0->ne[3];
  5170. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5171. const int64_t ne10 = src1->ne[0];
  5172. #endif
  5173. const int64_t ne11 = src1->ne[1];
  5174. #ifndef NDEBUG
  5175. const int64_t ne12 = src1->ne[2];
  5176. const int64_t ne13 = src1->ne[3];
  5177. const int64_t ne0 = dst->ne[0];
  5178. const int64_t ne1 = dst->ne[1];
  5179. const int64_t ne2 = dst->ne[2];
  5180. const int64_t ne3 = dst->ne[3];
  5181. const int nb00 = src0->nb[0];
  5182. #endif
  5183. const int nb01 = src0->nb[1];
  5184. const int nb02 = src0->nb[2];
  5185. const int nb03 = src0->nb[3];
  5186. #ifndef NDEBUG
  5187. const int nb10 = src1->nb[0];
  5188. #endif
  5189. const int nb11 = src1->nb[1];
  5190. const int nb12 = src1->nb[2];
  5191. const int nb13 = src1->nb[3];
  5192. const int nb0 = dst->nb[0];
  5193. const int nb1 = dst->nb[1];
  5194. const int nb2 = dst->nb[2];
  5195. const int nb3 = dst->nb[3];
  5196. const int ith = params->ith;
  5197. const int nth = params->nth;
  5198. assert(ne02 == ne12);
  5199. assert(ne03 == ne13);
  5200. assert(ne2 == ne12);
  5201. assert(ne3 == ne13);
  5202. // we don't support permuted src0 or src1
  5203. assert(nb00 == sizeof(float));
  5204. assert(nb10 == sizeof(float));
  5205. // dst cannot be transposed or permuted
  5206. assert(nb0 == sizeof(float));
  5207. assert(nb0 <= nb1);
  5208. assert(nb1 <= nb2);
  5209. assert(nb2 <= nb3);
  5210. assert(ne0 == ne01);
  5211. assert(ne1 == ne11);
  5212. assert(ne2 == ne02);
  5213. assert(ne3 == ne03);
  5214. // nb01 >= nb00 - src0 is not transposed
  5215. // compute by src0 rows
  5216. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5217. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5218. if (params->ith != 0) {
  5219. return;
  5220. }
  5221. if (params->type == GGML_TASK_INIT) {
  5222. return;
  5223. }
  5224. if (params->type == GGML_TASK_FINALIZE) {
  5225. return;
  5226. }
  5227. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5228. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5229. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5230. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5231. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5232. // zT = y * xT
  5233. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5234. ne11, ne01, ne10,
  5235. 1.0f, y, ne10,
  5236. x, ne10,
  5237. 0.0f, d, ne01);
  5238. }
  5239. }
  5240. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5241. return;
  5242. }
  5243. #endif
  5244. if (params->type == GGML_TASK_INIT) {
  5245. return;
  5246. }
  5247. if (params->type == GGML_TASK_FINALIZE) {
  5248. return;
  5249. }
  5250. // parallelize by src0 rows using ggml_vec_dot_f32
  5251. // total rows in src0
  5252. const int nr = ne01*ne02*ne03;
  5253. // rows per thread
  5254. const int dr = (nr + nth - 1)/nth;
  5255. // row range for this thread
  5256. const int ir0 = dr*ith;
  5257. const int ir1 = MIN(ir0 + dr, nr);
  5258. for (int ir = ir0; ir < ir1; ++ir) {
  5259. // src0 indices
  5260. const int i03 = ir/(ne02*ne01);
  5261. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5262. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5263. for (int64_t ic = 0; ic < ne11; ++ic) {
  5264. // src1 indices
  5265. const int i13 = i03;
  5266. const int i12 = i02;
  5267. const int i11 = ic;
  5268. // dst indices
  5269. const int i0 = i01;
  5270. const int i1 = i11;
  5271. const int i2 = i02;
  5272. const int i3 = i03;
  5273. ggml_vec_dot_f32(ne00,
  5274. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5275. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5276. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5277. }
  5278. }
  5279. //int64_t t1 = ggml_perf_time_us();
  5280. //static int64_t acc = 0;
  5281. //acc += t1 - t0;
  5282. //if (t1 - t0 > 10) {
  5283. // printf("\n");
  5284. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5285. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5286. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5287. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5288. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5289. //}
  5290. }
  5291. static void ggml_compute_forward_mul_mat_f16_f32(
  5292. const struct ggml_compute_params * params,
  5293. const struct ggml_tensor * src0,
  5294. const struct ggml_tensor * src1,
  5295. struct ggml_tensor * dst) {
  5296. int64_t t0 = ggml_perf_time_us();
  5297. UNUSED(t0);
  5298. const int64_t ne00 = src0->ne[0];
  5299. const int64_t ne01 = src0->ne[1];
  5300. const int64_t ne02 = src0->ne[2];
  5301. const int64_t ne03 = src0->ne[3];
  5302. const int64_t ne10 = src1->ne[0];
  5303. const int64_t ne11 = src1->ne[1];
  5304. const int64_t ne12 = src1->ne[2];
  5305. const int64_t ne13 = src1->ne[3];
  5306. const int64_t ne0 = dst->ne[0];
  5307. const int64_t ne1 = dst->ne[1];
  5308. const int64_t ne2 = dst->ne[2];
  5309. const int64_t ne3 = dst->ne[3];
  5310. //const int64_t ne = ne0*ne1*ne2*ne3;
  5311. const int nb00 = src0->nb[0];
  5312. const int nb01 = src0->nb[1];
  5313. const int nb02 = src0->nb[2];
  5314. const int nb03 = src0->nb[3];
  5315. const int nb10 = src1->nb[0];
  5316. const int nb11 = src1->nb[1];
  5317. const int nb12 = src1->nb[2];
  5318. const int nb13 = src1->nb[3];
  5319. const int nb0 = dst->nb[0];
  5320. const int nb1 = dst->nb[1];
  5321. const int nb2 = dst->nb[2];
  5322. const int nb3 = dst->nb[3];
  5323. const int ith = params->ith;
  5324. const int nth = params->nth;
  5325. GGML_ASSERT(ne02 == ne12);
  5326. GGML_ASSERT(ne03 == ne13);
  5327. GGML_ASSERT(ne2 == ne12);
  5328. GGML_ASSERT(ne3 == ne13);
  5329. // TODO: we don't support permuted src0
  5330. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5331. // dst cannot be transposed or permuted
  5332. GGML_ASSERT(nb0 == sizeof(float));
  5333. GGML_ASSERT(nb0 <= nb1);
  5334. GGML_ASSERT(nb1 <= nb2);
  5335. GGML_ASSERT(nb2 <= nb3);
  5336. GGML_ASSERT(ne0 == ne01);
  5337. GGML_ASSERT(ne1 == ne11);
  5338. GGML_ASSERT(ne2 == ne02);
  5339. GGML_ASSERT(ne3 == ne03);
  5340. // nb01 >= nb00 - src0 is not transposed
  5341. // compute by src0 rows
  5342. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5343. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5344. GGML_ASSERT(nb10 == sizeof(float));
  5345. if (params->ith != 0) {
  5346. return;
  5347. }
  5348. if (params->type == GGML_TASK_INIT) {
  5349. return;
  5350. }
  5351. if (params->type == GGML_TASK_FINALIZE) {
  5352. return;
  5353. }
  5354. float * const wdata = params->wdata;
  5355. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5356. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5357. {
  5358. size_t id = 0;
  5359. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5360. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5361. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5362. }
  5363. }
  5364. }
  5365. const float * x = wdata;
  5366. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5367. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5368. // zT = y * xT
  5369. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5370. ne11, ne01, ne10,
  5371. 1.0f, y, ne10,
  5372. x, ne10,
  5373. 0.0f, d, ne01);
  5374. }
  5375. }
  5376. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5377. return;
  5378. }
  5379. #endif
  5380. if (params->type == GGML_TASK_INIT) {
  5381. ggml_fp16_t * const wdata = params->wdata;
  5382. size_t id = 0;
  5383. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5384. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5385. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5386. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5387. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5388. }
  5389. }
  5390. }
  5391. }
  5392. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5393. return;
  5394. }
  5395. if (params->type == GGML_TASK_FINALIZE) {
  5396. return;
  5397. }
  5398. // fp16 -> half the size, so divide by 2
  5399. // TODO: do not support transposed src1
  5400. assert(nb10/2 == sizeof(ggml_fp16_t));
  5401. // parallelize by src0 rows using ggml_vec_dot_f16
  5402. // total rows in src0
  5403. const int nr = ne01*ne02*ne03;
  5404. // rows per thread
  5405. const int dr = (nr + nth - 1)/nth;
  5406. // row range for this thread
  5407. const int ir0 = dr*ith;
  5408. const int ir1 = MIN(ir0 + dr, nr);
  5409. ggml_fp16_t * wdata = params->wdata;
  5410. for (int ir = ir0; ir < ir1; ++ir) {
  5411. // src0 indices
  5412. const int i03 = ir/(ne02*ne01);
  5413. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5414. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5415. const int i13 = i03;
  5416. const int i12 = i02;
  5417. const int i0 = i01;
  5418. const int i2 = i02;
  5419. const int i3 = i03;
  5420. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5421. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5422. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5423. for (int64_t ic = 0; ic < ne11; ++ic) {
  5424. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5425. }
  5426. }
  5427. //int64_t t1 = ggml_time_us();
  5428. //static int64_t acc = 0;
  5429. //acc += t1 - t0;
  5430. //if (t1 - t0 > 10) {
  5431. // printf("\n");
  5432. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5433. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5434. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5435. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5436. //}
  5437. }
  5438. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5439. [GGML_TYPE_Q4_0] = {
  5440. .dequantize_row_q = dequantize_row_q4_0,
  5441. .quantize_row_q = quantize_row_q4_0,
  5442. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5443. .vec_dot_q = ggml_vec_dot_q4_0,
  5444. },
  5445. [GGML_TYPE_Q4_1] = {
  5446. .dequantize_row_q = dequantize_row_q4_1,
  5447. .quantize_row_q = quantize_row_q4_1,
  5448. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5449. .vec_dot_q = ggml_vec_dot_q4_1,
  5450. },
  5451. };
  5452. // For internal test use
  5453. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5454. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5455. return quantize_fns[i];
  5456. }
  5457. static void ggml_compute_forward_mul_mat_q_f32(
  5458. const struct ggml_compute_params * params,
  5459. const struct ggml_tensor * src0,
  5460. const struct ggml_tensor * src1,
  5461. struct ggml_tensor * dst) {
  5462. int64_t t0 = ggml_perf_time_us();
  5463. UNUSED(t0);
  5464. const int64_t ne00 = src0->ne[0];
  5465. const int64_t ne01 = src0->ne[1];
  5466. const int64_t ne02 = src0->ne[2];
  5467. const int64_t ne03 = src0->ne[3];
  5468. const int64_t ne10 = src1->ne[0];
  5469. const int64_t ne11 = src1->ne[1];
  5470. const int64_t ne12 = src1->ne[2];
  5471. const int64_t ne13 = src1->ne[3];
  5472. const int64_t ne0 = dst->ne[0];
  5473. const int64_t ne1 = dst->ne[1];
  5474. const int64_t ne2 = dst->ne[2];
  5475. const int64_t ne3 = dst->ne[3];
  5476. const int nb00 = src0->nb[0];
  5477. const int nb01 = src0->nb[1];
  5478. const int nb02 = src0->nb[2];
  5479. const int nb03 = src0->nb[3];
  5480. const int nb10 = src1->nb[0];
  5481. const int nb11 = src1->nb[1];
  5482. const int nb12 = src1->nb[2];
  5483. const int nb13 = src1->nb[3];
  5484. const int nb0 = dst->nb[0];
  5485. const int nb1 = dst->nb[1];
  5486. const int nb2 = dst->nb[2];
  5487. const int nb3 = dst->nb[3];
  5488. const int ith = params->ith;
  5489. const int nth = params->nth;
  5490. GGML_ASSERT(ne02 == ne12);
  5491. GGML_ASSERT(ne03 == ne13);
  5492. GGML_ASSERT(ne2 == ne12);
  5493. GGML_ASSERT(ne3 == ne13);
  5494. const enum ggml_type type = src0->type;
  5495. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5496. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5497. // we don't support permuted src0 or src1
  5498. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5499. GGML_ASSERT(nb10 == sizeof(float));
  5500. // dst cannot be transposed or permuted
  5501. GGML_ASSERT(nb0 == sizeof(float));
  5502. GGML_ASSERT(nb0 <= nb1);
  5503. GGML_ASSERT(nb1 <= nb2);
  5504. GGML_ASSERT(nb2 <= nb3);
  5505. GGML_ASSERT(ne0 == ne01);
  5506. GGML_ASSERT(ne1 == ne11);
  5507. GGML_ASSERT(ne2 == ne02);
  5508. GGML_ASSERT(ne3 == ne03);
  5509. // nb01 >= nb00 - src0 is not transposed
  5510. // compute by src0 rows
  5511. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5512. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5513. if (params->ith != 0) {
  5514. return;
  5515. }
  5516. if (params->type == GGML_TASK_INIT) {
  5517. return;
  5518. }
  5519. if (params->type == GGML_TASK_FINALIZE) {
  5520. return;
  5521. }
  5522. float * const wdata = params->wdata;
  5523. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5524. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5525. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5526. {
  5527. size_t id = 0;
  5528. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5529. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5530. id += ne00;
  5531. }
  5532. }
  5533. const float * x = wdata;
  5534. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5535. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5536. // zT = y * xT
  5537. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5538. ne11, ne01, ne10,
  5539. 1.0f, y, ne10,
  5540. x, ne10,
  5541. 0.0f, d, ne01);
  5542. }
  5543. }
  5544. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5545. return;
  5546. }
  5547. #endif
  5548. if (params->type == GGML_TASK_INIT) {
  5549. char * wdata = params->wdata;
  5550. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5551. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5552. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5553. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5554. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5555. wdata += row_size;
  5556. }
  5557. }
  5558. }
  5559. return;
  5560. }
  5561. if (params->type == GGML_TASK_FINALIZE) {
  5562. return;
  5563. }
  5564. // parallelize by src0 rows using ggml_vec_dot_q
  5565. // total rows in src0
  5566. const int nr = ne01*ne02*ne03;
  5567. // rows per thread
  5568. const int dr = (nr + nth - 1)/nth;
  5569. // row range for this thread
  5570. const int ir0 = dr*ith;
  5571. const int ir1 = MIN(ir0 + dr, nr);
  5572. void * wdata = params->wdata;
  5573. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5574. for (int ir = ir0; ir < ir1; ++ir) {
  5575. // src0 indices
  5576. const int i03 = ir/(ne02*ne01);
  5577. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5578. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5579. const int i13 = i03;
  5580. const int i12 = i02;
  5581. const int i0 = i01;
  5582. const int i2 = i02;
  5583. const int i3 = i03;
  5584. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5585. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5586. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5587. assert(ne00 % 32 == 0);
  5588. for (int64_t ic = 0; ic < ne11; ++ic) {
  5589. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5590. }
  5591. }
  5592. //int64_t t1 = ggml_time_us();
  5593. //static int64_t acc = 0;
  5594. //acc += t1 - t0;
  5595. //if (t1 - t0 > 10) {
  5596. // printf("\n");
  5597. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5598. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5599. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5600. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5601. //}
  5602. }
  5603. static void ggml_compute_forward_mul_mat(
  5604. const struct ggml_compute_params * params,
  5605. const struct ggml_tensor * src0,
  5606. const struct ggml_tensor * src1,
  5607. struct ggml_tensor * dst) {
  5608. switch (src0->type) {
  5609. case GGML_TYPE_Q4_0:
  5610. case GGML_TYPE_Q4_1:
  5611. {
  5612. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5613. } break;
  5614. case GGML_TYPE_F16:
  5615. {
  5616. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5617. } break;
  5618. case GGML_TYPE_F32:
  5619. {
  5620. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5621. } break;
  5622. case GGML_TYPE_I8:
  5623. case GGML_TYPE_I16:
  5624. case GGML_TYPE_I32:
  5625. case GGML_TYPE_COUNT:
  5626. {
  5627. GGML_ASSERT(false);
  5628. } break;
  5629. }
  5630. #if 0
  5631. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5632. static int first = 8;
  5633. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5634. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5635. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5636. if (first) {
  5637. --first;
  5638. } else {
  5639. for (int k = 0; k < dst->ne[1]; ++k) {
  5640. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5641. for (int i = 0; i < 16; ++i) {
  5642. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5643. }
  5644. printf("\n");
  5645. }
  5646. printf("\n");
  5647. }
  5648. printf("\n");
  5649. exit(0);
  5650. }
  5651. } else {
  5652. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5653. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5654. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5655. }
  5656. #endif
  5657. }
  5658. // ggml_compute_forward_scale
  5659. static void ggml_compute_forward_scale_f32(
  5660. const struct ggml_compute_params * params,
  5661. const struct ggml_tensor * src0,
  5662. const struct ggml_tensor * src1,
  5663. struct ggml_tensor * dst) {
  5664. GGML_ASSERT(ggml_is_contiguous(src0));
  5665. GGML_ASSERT(ggml_is_contiguous(dst));
  5666. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5667. GGML_ASSERT(ggml_is_scalar(src1));
  5668. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5669. return;
  5670. }
  5671. // scale factor
  5672. const float v = *(float *) src1->data;
  5673. const int ith = params->ith;
  5674. const int nth = params->nth;
  5675. const int nc = src0->ne[0];
  5676. const int nr = ggml_nrows(src0);
  5677. // rows per thread
  5678. const int dr = (nr + nth - 1)/nth;
  5679. // row range for this thread
  5680. const int ir0 = dr*ith;
  5681. const int ir1 = MIN(ir0 + dr, nr);
  5682. for (int i1 = ir0; i1 < ir1; i1++) {
  5683. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5684. }
  5685. }
  5686. static void ggml_compute_forward_scale(
  5687. const struct ggml_compute_params * params,
  5688. const struct ggml_tensor * src0,
  5689. const struct ggml_tensor * src1,
  5690. struct ggml_tensor * dst) {
  5691. switch (src0->type) {
  5692. case GGML_TYPE_F32:
  5693. {
  5694. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5695. } break;
  5696. case GGML_TYPE_Q4_0:
  5697. case GGML_TYPE_Q4_1:
  5698. case GGML_TYPE_I8:
  5699. case GGML_TYPE_I16:
  5700. case GGML_TYPE_I32:
  5701. case GGML_TYPE_F16:
  5702. case GGML_TYPE_COUNT:
  5703. {
  5704. GGML_ASSERT(false);
  5705. } break;
  5706. }
  5707. }
  5708. // ggml_compute_forward_cpy
  5709. static void ggml_compute_forward_cpy(
  5710. const struct ggml_compute_params * params,
  5711. const struct ggml_tensor * src0,
  5712. struct ggml_tensor * dst) {
  5713. ggml_compute_forward_dup(params, src0, dst);
  5714. }
  5715. // ggml_compute_forward_cont
  5716. static void ggml_compute_forward_cont(
  5717. const struct ggml_compute_params * params,
  5718. const struct ggml_tensor * src0,
  5719. struct ggml_tensor * dst) {
  5720. ggml_compute_forward_dup(params, src0, dst);
  5721. }
  5722. // ggml_compute_forward_reshape
  5723. static void ggml_compute_forward_reshape(
  5724. const struct ggml_compute_params * params,
  5725. const struct ggml_tensor * src0,
  5726. struct ggml_tensor * dst) {
  5727. // NOP
  5728. UNUSED(params);
  5729. UNUSED(src0);
  5730. UNUSED(dst);
  5731. }
  5732. // ggml_compute_forward_view
  5733. static void ggml_compute_forward_view(
  5734. const struct ggml_compute_params * params,
  5735. const struct ggml_tensor * src0) {
  5736. // NOP
  5737. UNUSED(params);
  5738. UNUSED(src0);
  5739. }
  5740. // ggml_compute_forward_permute
  5741. static void ggml_compute_forward_permute(
  5742. const struct ggml_compute_params * params,
  5743. const struct ggml_tensor * src0) {
  5744. // NOP
  5745. UNUSED(params);
  5746. UNUSED(src0);
  5747. }
  5748. // ggml_compute_forward_transpose
  5749. static void ggml_compute_forward_transpose(
  5750. const struct ggml_compute_params * params,
  5751. const struct ggml_tensor * src0) {
  5752. // NOP
  5753. UNUSED(params);
  5754. UNUSED(src0);
  5755. }
  5756. // ggml_compute_forward_get_rows
  5757. static void ggml_compute_forward_get_rows_q(
  5758. const struct ggml_compute_params * params,
  5759. const struct ggml_tensor * src0,
  5760. const struct ggml_tensor * src1,
  5761. struct ggml_tensor * dst) {
  5762. assert(params->ith == 0);
  5763. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5764. return;
  5765. }
  5766. const int nc = src0->ne[0];
  5767. const int nr = ggml_nelements(src1);
  5768. const enum ggml_type type = src0->type;
  5769. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5770. assert( dst->ne[0] == nc);
  5771. assert( dst->ne[1] == nr);
  5772. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5773. for (int i = 0; i < nr; ++i) {
  5774. const int r = ((int32_t *) src1->data)[i];
  5775. dequantize_row_q(
  5776. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5777. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5778. }
  5779. }
  5780. static void ggml_compute_forward_get_rows_f16(
  5781. const struct ggml_compute_params * params,
  5782. const struct ggml_tensor * src0,
  5783. const struct ggml_tensor * src1,
  5784. struct ggml_tensor * dst) {
  5785. assert(params->ith == 0);
  5786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5787. return;
  5788. }
  5789. const int nc = src0->ne[0];
  5790. const int nr = ggml_nelements(src1);
  5791. assert( dst->ne[0] == nc);
  5792. assert( dst->ne[1] == nr);
  5793. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5794. for (int i = 0; i < nr; ++i) {
  5795. const int r = ((int32_t *) src1->data)[i];
  5796. for (int j = 0; j < nc; ++j) {
  5797. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5798. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5799. }
  5800. }
  5801. }
  5802. static void ggml_compute_forward_get_rows_f32(
  5803. const struct ggml_compute_params * params,
  5804. const struct ggml_tensor * src0,
  5805. const struct ggml_tensor * src1,
  5806. struct ggml_tensor * dst) {
  5807. assert(params->ith == 0);
  5808. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5809. return;
  5810. }
  5811. const int nc = src0->ne[0];
  5812. const int nr = ggml_nelements(src1);
  5813. assert( dst->ne[0] == nc);
  5814. assert( dst->ne[1] == nr);
  5815. assert(src0->nb[0] == sizeof(float));
  5816. for (int i = 0; i < nr; ++i) {
  5817. const int r = ((int32_t *) src1->data)[i];
  5818. ggml_vec_cpy_f32(nc,
  5819. (float *) ((char *) dst->data + i*dst->nb[1]),
  5820. (float *) ((char *) src0->data + r*src0->nb[1]));
  5821. }
  5822. }
  5823. static void ggml_compute_forward_get_rows(
  5824. const struct ggml_compute_params * params,
  5825. const struct ggml_tensor * src0,
  5826. const struct ggml_tensor * src1,
  5827. struct ggml_tensor * dst) {
  5828. switch (src0->type) {
  5829. case GGML_TYPE_Q4_0:
  5830. case GGML_TYPE_Q4_1:
  5831. {
  5832. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5833. } break;
  5834. case GGML_TYPE_F16:
  5835. {
  5836. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5837. } break;
  5838. case GGML_TYPE_F32:
  5839. {
  5840. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5841. } break;
  5842. case GGML_TYPE_I8:
  5843. case GGML_TYPE_I16:
  5844. case GGML_TYPE_I32:
  5845. case GGML_TYPE_COUNT:
  5846. {
  5847. GGML_ASSERT(false);
  5848. } break;
  5849. }
  5850. //static bool first = true;
  5851. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5852. //if (first) {
  5853. // first = false;
  5854. //} else {
  5855. // for (int k = 0; k < dst->ne[1]; ++k) {
  5856. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5857. // for (int i = 0; i < 16; ++i) {
  5858. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5859. // }
  5860. // printf("\n");
  5861. // }
  5862. // printf("\n");
  5863. // }
  5864. // printf("\n");
  5865. // exit(0);
  5866. //}
  5867. }
  5868. // ggml_compute_forward_diag_mask_inf
  5869. static void ggml_compute_forward_diag_mask_inf_f32(
  5870. const struct ggml_compute_params * params,
  5871. const struct ggml_tensor * src0,
  5872. const struct ggml_tensor * src1,
  5873. struct ggml_tensor * dst) {
  5874. assert(params->ith == 0);
  5875. assert(src1->type == GGML_TYPE_I32);
  5876. assert(ggml_nelements(src1) == 1);
  5877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5878. return;
  5879. }
  5880. const int n_past = ((int32_t *) src1->data)[0];
  5881. // TODO: handle transposed/permuted matrices
  5882. const int n = ggml_nrows(src0);
  5883. const int nc = src0->ne[0];
  5884. const int nr = src0->ne[1];
  5885. const int nz = n/nr;
  5886. assert( dst->nb[0] == sizeof(float));
  5887. assert(src0->nb[0] == sizeof(float));
  5888. for (int k = 0; k < nz; k++) {
  5889. for (int j = 0; j < nr; j++) {
  5890. for (int i = n_past; i < nc; i++) {
  5891. if (i > n_past + j) {
  5892. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5893. }
  5894. }
  5895. }
  5896. }
  5897. }
  5898. static void ggml_compute_forward_diag_mask_inf(
  5899. const struct ggml_compute_params * params,
  5900. const struct ggml_tensor * src0,
  5901. const struct ggml_tensor * src1,
  5902. struct ggml_tensor * dst) {
  5903. switch (src0->type) {
  5904. case GGML_TYPE_F32:
  5905. {
  5906. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5907. } break;
  5908. case GGML_TYPE_Q4_0:
  5909. case GGML_TYPE_Q4_1:
  5910. case GGML_TYPE_I8:
  5911. case GGML_TYPE_I16:
  5912. case GGML_TYPE_I32:
  5913. case GGML_TYPE_F16:
  5914. case GGML_TYPE_COUNT:
  5915. {
  5916. GGML_ASSERT(false);
  5917. } break;
  5918. }
  5919. }
  5920. // ggml_compute_forward_soft_max
  5921. static void ggml_compute_forward_soft_max_f32(
  5922. const struct ggml_compute_params * params,
  5923. const struct ggml_tensor * src0,
  5924. struct ggml_tensor * dst) {
  5925. GGML_ASSERT(ggml_is_contiguous(src0));
  5926. GGML_ASSERT(ggml_is_contiguous(dst));
  5927. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5928. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5929. return;
  5930. }
  5931. // TODO: handle transposed/permuted matrices
  5932. const int ith = params->ith;
  5933. const int nth = params->nth;
  5934. const int nc = src0->ne[0];
  5935. const int nr = ggml_nrows(src0);
  5936. // rows per thread
  5937. const int dr = (nr + nth - 1)/nth;
  5938. // row range for this thread
  5939. const int ir0 = dr*ith;
  5940. const int ir1 = MIN(ir0 + dr, nr);
  5941. for (int i1 = ir0; i1 < ir1; i1++) {
  5942. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5943. #ifndef NDEBUG
  5944. for (int i = 0; i < nc; ++i) {
  5945. //printf("p[%d] = %f\n", i, p[i]);
  5946. assert(!isnan(p[i]));
  5947. }
  5948. #endif
  5949. float max = -INFINITY;
  5950. ggml_vec_max_f32(nc, &max, p);
  5951. ggml_float sum = 0.0;
  5952. uint16_t scvt;
  5953. for (int i = 0; i < nc; i++) {
  5954. if (p[i] == -INFINITY) {
  5955. p[i] = 0.0f;
  5956. } else {
  5957. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5958. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5959. memcpy(&scvt, &s, sizeof(scvt));
  5960. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5961. sum += (ggml_float)val;
  5962. p[i] = val;
  5963. }
  5964. }
  5965. assert(sum > 0.0);
  5966. sum = 1.0/sum;
  5967. ggml_vec_scale_f32(nc, p, sum);
  5968. #ifndef NDEBUG
  5969. for (int i = 0; i < nc; ++i) {
  5970. assert(!isnan(p[i]));
  5971. assert(!isinf(p[i]));
  5972. }
  5973. #endif
  5974. }
  5975. }
  5976. static void ggml_compute_forward_soft_max(
  5977. const struct ggml_compute_params * params,
  5978. const struct ggml_tensor * src0,
  5979. struct ggml_tensor * dst) {
  5980. switch (src0->type) {
  5981. case GGML_TYPE_F32:
  5982. {
  5983. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5984. } break;
  5985. case GGML_TYPE_Q4_0:
  5986. case GGML_TYPE_Q4_1:
  5987. case GGML_TYPE_I8:
  5988. case GGML_TYPE_I16:
  5989. case GGML_TYPE_I32:
  5990. case GGML_TYPE_F16:
  5991. case GGML_TYPE_COUNT:
  5992. {
  5993. GGML_ASSERT(false);
  5994. } break;
  5995. }
  5996. }
  5997. // ggml_compute_forward_rope
  5998. static void ggml_compute_forward_rope_f32(
  5999. const struct ggml_compute_params * params,
  6000. const struct ggml_tensor * src0,
  6001. const struct ggml_tensor * src1,
  6002. struct ggml_tensor * dst) {
  6003. assert(src1->type == GGML_TYPE_I32);
  6004. assert(ggml_nelements(src1) == 3);
  6005. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6006. return;
  6007. }
  6008. const int n_past = ((int32_t *) src1->data)[0];
  6009. const int n_dims = ((int32_t *) src1->data)[1];
  6010. const int mode = ((int32_t *) src1->data)[2];
  6011. //const int64_t ne0 = src0->ne[0];
  6012. const int64_t ne1 = src0->ne[1];
  6013. const int64_t ne2 = src0->ne[2];
  6014. const int64_t ne3 = src0->ne[3];
  6015. const int nb0 = src0->nb[0];
  6016. const int nb1 = src0->nb[1];
  6017. const int nb2 = src0->nb[2];
  6018. const int nb3 = src0->nb[3];
  6019. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6020. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6021. assert(nb0 == sizeof(float));
  6022. const int ith = params->ith;
  6023. const int nth = params->nth;
  6024. const int nr = ggml_nrows(src0);
  6025. // rows per thread
  6026. const int dr = (nr + nth - 1)/nth;
  6027. // row range for this thread
  6028. const int ir0 = dr*ith;
  6029. const int ir1 = MIN(ir0 + dr, nr);
  6030. // row index used to determine which thread to use
  6031. int ir = 0;
  6032. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6033. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6034. const int p = (mode == 0 ? n_past + i2 : i2);
  6035. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6036. if (ir++ < ir0) continue;
  6037. if (ir > ir1) break;
  6038. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6039. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  6040. const float cos_theta = cosf(p*theta);
  6041. const float sin_theta = sinf(p*theta);
  6042. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6043. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6044. const float x0 = src[0];
  6045. const float x1 = src[1];
  6046. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6047. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6048. }
  6049. }
  6050. }
  6051. }
  6052. }
  6053. static void ggml_compute_forward_rope_f16(
  6054. const struct ggml_compute_params * params,
  6055. const struct ggml_tensor * src0,
  6056. const struct ggml_tensor * src1,
  6057. struct ggml_tensor * dst) {
  6058. assert(src1->type == GGML_TYPE_I32);
  6059. assert(ggml_nelements(src1) == 3);
  6060. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6061. return;
  6062. }
  6063. const int n_past = ((int32_t *) src1->data)[0];
  6064. const int n_dims = ((int32_t *) src1->data)[1];
  6065. const int mode = ((int32_t *) src1->data)[2];
  6066. //const int64_t ne0 = src0->ne[0];
  6067. const int64_t ne1 = src0->ne[1];
  6068. const int64_t ne2 = src0->ne[2];
  6069. const int64_t ne3 = src0->ne[3];
  6070. const int nb0 = src0->nb[0];
  6071. const int nb1 = src0->nb[1];
  6072. const int nb2 = src0->nb[2];
  6073. const int nb3 = src0->nb[3];
  6074. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6075. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6076. assert(nb0 == sizeof(ggml_fp16_t));
  6077. const int ith = params->ith;
  6078. const int nth = params->nth;
  6079. const int nr = ggml_nrows(src0);
  6080. // rows per thread
  6081. const int dr = (nr + nth - 1)/nth;
  6082. // row range for this thread
  6083. const int ir0 = dr*ith;
  6084. const int ir1 = MIN(ir0 + dr, nr);
  6085. // row index used to determine which thread to use
  6086. int ir = 0;
  6087. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6088. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6089. const int p = (mode == 0 ? n_past + i2 : i2);
  6090. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6091. if (ir++ < ir0) continue;
  6092. if (ir > ir1) break;
  6093. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6094. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  6095. const float cos_theta = cosf(p*theta);
  6096. const float sin_theta = sinf(p*theta);
  6097. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6098. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6099. const float x0 = ggml_fp16_to_fp32(src[0]);
  6100. const float x1 = ggml_fp16_to_fp32(src[1]);
  6101. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6102. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6103. }
  6104. }
  6105. }
  6106. }
  6107. }
  6108. static void ggml_compute_forward_rope(
  6109. const struct ggml_compute_params * params,
  6110. const struct ggml_tensor * src0,
  6111. const struct ggml_tensor * src1,
  6112. struct ggml_tensor * dst) {
  6113. switch (src0->type) {
  6114. case GGML_TYPE_F16:
  6115. {
  6116. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6117. } break;
  6118. case GGML_TYPE_F32:
  6119. {
  6120. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6121. } break;
  6122. case GGML_TYPE_Q4_0:
  6123. case GGML_TYPE_Q4_1:
  6124. case GGML_TYPE_I8:
  6125. case GGML_TYPE_I16:
  6126. case GGML_TYPE_I32:
  6127. case GGML_TYPE_COUNT:
  6128. {
  6129. GGML_ASSERT(false);
  6130. } break;
  6131. }
  6132. }
  6133. // ggml_compute_forward_conv_1d_1s
  6134. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6135. const struct ggml_compute_params * params,
  6136. const struct ggml_tensor * src0,
  6137. const struct ggml_tensor * src1,
  6138. struct ggml_tensor * dst) {
  6139. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6140. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6141. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6142. int64_t t0 = ggml_perf_time_us();
  6143. UNUSED(t0);
  6144. const int64_t ne00 = src0->ne[0];
  6145. const int64_t ne01 = src0->ne[1];
  6146. const int64_t ne02 = src0->ne[2];
  6147. //const int64_t ne03 = src0->ne[3];
  6148. const int64_t ne10 = src1->ne[0];
  6149. const int64_t ne11 = src1->ne[1];
  6150. //const int64_t ne12 = src1->ne[2];
  6151. //const int64_t ne13 = src1->ne[3];
  6152. //const int64_t ne0 = dst->ne[0];
  6153. //const int64_t ne1 = dst->ne[1];
  6154. //const int64_t ne2 = dst->ne[2];
  6155. //const int64_t ne3 = dst->ne[3];
  6156. //const int64_t ne = ne0*ne1*ne2*ne3;
  6157. const int nb00 = src0->nb[0];
  6158. const int nb01 = src0->nb[1];
  6159. const int nb02 = src0->nb[2];
  6160. //const int nb03 = src0->nb[3];
  6161. const int nb10 = src1->nb[0];
  6162. const int nb11 = src1->nb[1];
  6163. //const int nb12 = src1->nb[2];
  6164. //const int nb13 = src1->nb[3];
  6165. //const int nb0 = dst->nb[0];
  6166. const int nb1 = dst->nb[1];
  6167. //const int nb2 = dst->nb[2];
  6168. //const int nb3 = dst->nb[3];
  6169. const int ith = params->ith;
  6170. const int nth = params->nth;
  6171. const int nk = ne00;
  6172. const int nh = nk/2;
  6173. const int ew0 = ggml_up32(ne01);
  6174. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6175. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6176. GGML_ASSERT(nb10 == sizeof(float));
  6177. if (params->type == GGML_TASK_INIT) {
  6178. // TODO: fix this memset (wsize is overestimated)
  6179. memset(params->wdata, 0, params->wsize);
  6180. // prepare kernel data (src0)
  6181. {
  6182. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6183. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6184. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6185. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6186. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6187. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6188. dst_data[i00*ew0 + i01] = src[i00];
  6189. }
  6190. }
  6191. }
  6192. }
  6193. // prepare source data (src1)
  6194. {
  6195. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6196. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6197. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6198. ggml_fp16_t * dst_data = wdata;
  6199. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6200. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6201. }
  6202. }
  6203. }
  6204. return;
  6205. }
  6206. if (params->type == GGML_TASK_FINALIZE) {
  6207. return;
  6208. }
  6209. // total rows in dst
  6210. const int nr = ne02;
  6211. // rows per thread
  6212. const int dr = (nr + nth - 1)/nth;
  6213. // row range for this thread
  6214. const int ir0 = dr*ith;
  6215. const int ir1 = MIN(ir0 + dr, nr);
  6216. for (int i1 = ir0; i1 < ir1; i1++) {
  6217. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6218. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6219. dst_data[i0] = 0;
  6220. for (int k = -nh; k <= nh; k++) {
  6221. float v = 0.0f;
  6222. ggml_vec_dot_f16(ew0, &v,
  6223. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6224. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6225. dst_data[i0] += v;
  6226. }
  6227. }
  6228. }
  6229. }
  6230. static void ggml_compute_forward_conv_1d_1s_f32(
  6231. const struct ggml_compute_params * params,
  6232. const struct ggml_tensor * src0,
  6233. const struct ggml_tensor * src1,
  6234. struct ggml_tensor * dst) {
  6235. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6236. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6237. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6238. int64_t t0 = ggml_perf_time_us();
  6239. UNUSED(t0);
  6240. const int64_t ne00 = src0->ne[0];
  6241. const int64_t ne01 = src0->ne[1];
  6242. const int64_t ne02 = src0->ne[2];
  6243. //const int64_t ne03 = src0->ne[3];
  6244. const int64_t ne10 = src1->ne[0];
  6245. const int64_t ne11 = src1->ne[1];
  6246. //const int64_t ne12 = src1->ne[2];
  6247. //const int64_t ne13 = src1->ne[3];
  6248. //const int64_t ne0 = dst->ne[0];
  6249. //const int64_t ne1 = dst->ne[1];
  6250. //const int64_t ne2 = dst->ne[2];
  6251. //const int64_t ne3 = dst->ne[3];
  6252. //const int64_t ne = ne0*ne1*ne2*ne3;
  6253. const int nb00 = src0->nb[0];
  6254. const int nb01 = src0->nb[1];
  6255. const int nb02 = src0->nb[2];
  6256. //const int nb03 = src0->nb[3];
  6257. const int nb10 = src1->nb[0];
  6258. const int nb11 = src1->nb[1];
  6259. //const int nb12 = src1->nb[2];
  6260. //const int nb13 = src1->nb[3];
  6261. //const int nb0 = dst->nb[0];
  6262. const int nb1 = dst->nb[1];
  6263. //const int nb2 = dst->nb[2];
  6264. //const int nb3 = dst->nb[3];
  6265. const int ith = params->ith;
  6266. const int nth = params->nth;
  6267. const int nk = ne00;
  6268. const int nh = nk/2;
  6269. const int ew0 = ggml_up32(ne01);
  6270. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6271. GGML_ASSERT(nb00 == sizeof(float));
  6272. GGML_ASSERT(nb10 == sizeof(float));
  6273. if (params->type == GGML_TASK_INIT) {
  6274. // TODO: fix this memset (wsize is overestimated)
  6275. memset(params->wdata, 0, params->wsize);
  6276. // prepare kernel data (src0)
  6277. {
  6278. float * const wdata = (float *) params->wdata + 0;
  6279. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6280. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6281. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6282. float * dst_data = wdata + i02*ew0*ne00;
  6283. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6284. dst_data[i00*ew0 + i01] = src[i00];
  6285. }
  6286. }
  6287. }
  6288. }
  6289. // prepare source data (src1)
  6290. {
  6291. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6292. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6293. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6294. float * dst_data = wdata;
  6295. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6296. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6297. }
  6298. }
  6299. }
  6300. return;
  6301. }
  6302. if (params->type == GGML_TASK_FINALIZE) {
  6303. return;
  6304. }
  6305. // total rows in dst
  6306. const int nr = ne02;
  6307. // rows per thread
  6308. const int dr = (nr + nth - 1)/nth;
  6309. // row range for this thread
  6310. const int ir0 = dr*ith;
  6311. const int ir1 = MIN(ir0 + dr, nr);
  6312. for (int i1 = ir0; i1 < ir1; i1++) {
  6313. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6314. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6315. dst_data[i0] = 0;
  6316. for (int k = -nh; k <= nh; k++) {
  6317. float v = 0.0f;
  6318. ggml_vec_dot_f32(ew0, &v,
  6319. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6320. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6321. dst_data[i0] += v;
  6322. }
  6323. }
  6324. }
  6325. }
  6326. static void ggml_compute_forward_conv_1d_1s(
  6327. const struct ggml_compute_params * params,
  6328. const struct ggml_tensor * src0,
  6329. const struct ggml_tensor * src1,
  6330. struct ggml_tensor * dst) {
  6331. switch (src0->type) {
  6332. case GGML_TYPE_F16:
  6333. {
  6334. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6335. } break;
  6336. case GGML_TYPE_F32:
  6337. {
  6338. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6339. } break;
  6340. case GGML_TYPE_Q4_0:
  6341. case GGML_TYPE_Q4_1:
  6342. case GGML_TYPE_I8:
  6343. case GGML_TYPE_I16:
  6344. case GGML_TYPE_I32:
  6345. case GGML_TYPE_COUNT:
  6346. {
  6347. GGML_ASSERT(false);
  6348. } break;
  6349. }
  6350. }
  6351. // ggml_compute_forward_conv_1d_2s
  6352. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6353. const struct ggml_compute_params * params,
  6354. const struct ggml_tensor * src0,
  6355. const struct ggml_tensor * src1,
  6356. struct ggml_tensor * dst) {
  6357. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6358. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6359. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6360. int64_t t0 = ggml_perf_time_us();
  6361. UNUSED(t0);
  6362. const int64_t ne00 = src0->ne[0];
  6363. const int64_t ne01 = src0->ne[1];
  6364. const int64_t ne02 = src0->ne[2];
  6365. //const int64_t ne03 = src0->ne[3];
  6366. const int64_t ne10 = src1->ne[0];
  6367. const int64_t ne11 = src1->ne[1];
  6368. //const int64_t ne12 = src1->ne[2];
  6369. //const int64_t ne13 = src1->ne[3];
  6370. //const int64_t ne0 = dst->ne[0];
  6371. //const int64_t ne1 = dst->ne[1];
  6372. //const int64_t ne2 = dst->ne[2];
  6373. //const int64_t ne3 = dst->ne[3];
  6374. //const int64_t ne = ne0*ne1*ne2*ne3;
  6375. const int nb00 = src0->nb[0];
  6376. const int nb01 = src0->nb[1];
  6377. const int nb02 = src0->nb[2];
  6378. //const int nb03 = src0->nb[3];
  6379. const int nb10 = src1->nb[0];
  6380. const int nb11 = src1->nb[1];
  6381. //const int nb12 = src1->nb[2];
  6382. //const int nb13 = src1->nb[3];
  6383. //const int nb0 = dst->nb[0];
  6384. const int nb1 = dst->nb[1];
  6385. //const int nb2 = dst->nb[2];
  6386. //const int nb3 = dst->nb[3];
  6387. const int ith = params->ith;
  6388. const int nth = params->nth;
  6389. const int nk = ne00;
  6390. const int nh = nk/2;
  6391. const int ew0 = ggml_up32(ne01);
  6392. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6393. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6394. GGML_ASSERT(nb10 == sizeof(float));
  6395. if (params->type == GGML_TASK_INIT) {
  6396. // TODO: fix this memset (wsize is overestimated)
  6397. memset(params->wdata, 0, params->wsize);
  6398. // prepare kernel data (src0)
  6399. {
  6400. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6401. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6402. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6403. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6404. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6405. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6406. dst_data[i00*ew0 + i01] = src[i00];
  6407. }
  6408. }
  6409. }
  6410. }
  6411. // prepare source data (src1)
  6412. {
  6413. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6414. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6415. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6416. ggml_fp16_t * dst_data = wdata;
  6417. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6418. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6419. }
  6420. }
  6421. }
  6422. return;
  6423. }
  6424. if (params->type == GGML_TASK_FINALIZE) {
  6425. return;
  6426. }
  6427. // total rows in dst
  6428. const int nr = ne02;
  6429. // rows per thread
  6430. const int dr = (nr + nth - 1)/nth;
  6431. // row range for this thread
  6432. const int ir0 = dr*ith;
  6433. const int ir1 = MIN(ir0 + dr, nr);
  6434. for (int i1 = ir0; i1 < ir1; i1++) {
  6435. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6436. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6437. dst_data[i0/2] = 0;
  6438. for (int k = -nh; k <= nh; k++) {
  6439. float v = 0.0f;
  6440. ggml_vec_dot_f16(ew0, &v,
  6441. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6442. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6443. dst_data[i0/2] += v;
  6444. }
  6445. }
  6446. }
  6447. }
  6448. static void ggml_compute_forward_conv_1d_2s_f32(
  6449. const struct ggml_compute_params * params,
  6450. const struct ggml_tensor * src0,
  6451. const struct ggml_tensor * src1,
  6452. struct ggml_tensor * dst) {
  6453. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6454. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6455. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6456. int64_t t0 = ggml_perf_time_us();
  6457. UNUSED(t0);
  6458. const int64_t ne00 = src0->ne[0];
  6459. const int64_t ne01 = src0->ne[1];
  6460. const int64_t ne02 = src0->ne[2];
  6461. //const int64_t ne03 = src0->ne[3];
  6462. const int64_t ne10 = src1->ne[0];
  6463. const int64_t ne11 = src1->ne[1];
  6464. //const int64_t ne12 = src1->ne[2];
  6465. //const int64_t ne13 = src1->ne[3];
  6466. //const int64_t ne0 = dst->ne[0];
  6467. //const int64_t ne1 = dst->ne[1];
  6468. //const int64_t ne2 = dst->ne[2];
  6469. //const int64_t ne3 = dst->ne[3];
  6470. //const int64_t ne = ne0*ne1*ne2*ne3;
  6471. const int nb00 = src0->nb[0];
  6472. const int nb01 = src0->nb[1];
  6473. const int nb02 = src0->nb[2];
  6474. //const int nb03 = src0->nb[3];
  6475. const int nb10 = src1->nb[0];
  6476. const int nb11 = src1->nb[1];
  6477. //const int nb12 = src1->nb[2];
  6478. //const int nb13 = src1->nb[3];
  6479. //const int nb0 = dst->nb[0];
  6480. const int nb1 = dst->nb[1];
  6481. //const int nb2 = dst->nb[2];
  6482. //const int nb3 = dst->nb[3];
  6483. const int ith = params->ith;
  6484. const int nth = params->nth;
  6485. const int nk = ne00;
  6486. const int nh = nk/2;
  6487. const int ew0 = ggml_up32(ne01);
  6488. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6489. GGML_ASSERT(nb00 == sizeof(float));
  6490. GGML_ASSERT(nb10 == sizeof(float));
  6491. if (params->type == GGML_TASK_INIT) {
  6492. // TODO: fix this memset (wsize is overestimated)
  6493. memset(params->wdata, 0, params->wsize);
  6494. // prepare kernel data (src0)
  6495. {
  6496. float * const wdata = (float *) params->wdata + 0;
  6497. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6498. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6499. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6500. float * dst_data = wdata + i02*ew0*ne00;
  6501. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6502. dst_data[i00*ew0 + i01] = src[i00];
  6503. }
  6504. }
  6505. }
  6506. }
  6507. // prepare source data (src1)
  6508. {
  6509. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6510. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6511. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6512. float * dst_data = wdata;
  6513. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6514. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6515. }
  6516. }
  6517. }
  6518. return;
  6519. }
  6520. if (params->type == GGML_TASK_FINALIZE) {
  6521. return;
  6522. }
  6523. // total rows in dst
  6524. const int nr = ne02;
  6525. // rows per thread
  6526. const int dr = (nr + nth - 1)/nth;
  6527. // row range for this thread
  6528. const int ir0 = dr*ith;
  6529. const int ir1 = MIN(ir0 + dr, nr);
  6530. for (int i1 = ir0; i1 < ir1; i1++) {
  6531. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6532. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6533. dst_data[i0/2] = 0;
  6534. for (int k = -nh; k <= nh; k++) {
  6535. float v = 0.0f;
  6536. ggml_vec_dot_f32(ew0, &v,
  6537. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6538. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6539. dst_data[i0/2] += v;
  6540. }
  6541. }
  6542. }
  6543. }
  6544. static void ggml_compute_forward_conv_1d_2s(
  6545. const struct ggml_compute_params * params,
  6546. const struct ggml_tensor * src0,
  6547. const struct ggml_tensor * src1,
  6548. struct ggml_tensor * dst) {
  6549. switch (src0->type) {
  6550. case GGML_TYPE_F16:
  6551. {
  6552. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6553. } break;
  6554. case GGML_TYPE_F32:
  6555. {
  6556. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6557. } break;
  6558. case GGML_TYPE_Q4_0:
  6559. case GGML_TYPE_Q4_1:
  6560. case GGML_TYPE_I8:
  6561. case GGML_TYPE_I16:
  6562. case GGML_TYPE_I32:
  6563. case GGML_TYPE_COUNT:
  6564. {
  6565. GGML_ASSERT(false);
  6566. } break;
  6567. }
  6568. }
  6569. // ggml_compute_forward_flash_attn
  6570. static void ggml_compute_forward_flash_attn_f32(
  6571. const struct ggml_compute_params * params,
  6572. const struct ggml_tensor * q,
  6573. const struct ggml_tensor * k,
  6574. const struct ggml_tensor * v,
  6575. const bool masked,
  6576. struct ggml_tensor * dst) {
  6577. int64_t t0 = ggml_perf_time_us();
  6578. UNUSED(t0);
  6579. const int64_t neq0 = q->ne[0];
  6580. const int64_t neq1 = q->ne[1];
  6581. const int64_t neq2 = q->ne[2];
  6582. const int64_t neq3 = q->ne[3];
  6583. const int64_t nek0 = k->ne[0];
  6584. const int64_t nek1 = k->ne[1];
  6585. //const int64_t nek2 = k->ne[2];
  6586. //const int64_t nek3 = k->ne[3];
  6587. //const int64_t nev0 = v->ne[0];
  6588. const int64_t nev1 = v->ne[1];
  6589. //const int64_t nev2 = v->ne[2];
  6590. //const int64_t nev3 = v->ne[3];
  6591. const int64_t ne0 = dst->ne[0];
  6592. const int64_t ne1 = dst->ne[1];
  6593. //const int64_t ne2 = dst->ne[2];
  6594. //const int64_t ne3 = dst->ne[3];
  6595. const int nbk0 = k->nb[0];
  6596. const int nbk1 = k->nb[1];
  6597. const int nbk2 = k->nb[2];
  6598. const int nbk3 = k->nb[3];
  6599. const int nbq0 = q->nb[0];
  6600. const int nbq1 = q->nb[1];
  6601. const int nbq2 = q->nb[2];
  6602. const int nbq3 = q->nb[3];
  6603. const int nbv0 = v->nb[0];
  6604. const int nbv1 = v->nb[1];
  6605. const int nbv2 = v->nb[2];
  6606. const int nbv3 = v->nb[3];
  6607. const int nb0 = dst->nb[0];
  6608. const int nb1 = dst->nb[1];
  6609. const int nb2 = dst->nb[2];
  6610. const int nb3 = dst->nb[3];
  6611. const int ith = params->ith;
  6612. const int nth = params->nth;
  6613. const int64_t D = neq0;
  6614. const int64_t N = neq1;
  6615. const int64_t P = nek1 - N;
  6616. const int64_t M = P + N;
  6617. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6618. GGML_ASSERT(ne0 == D);
  6619. GGML_ASSERT(ne1 == N);
  6620. GGML_ASSERT(P >= 0);
  6621. GGML_ASSERT(nbq0 == sizeof(float));
  6622. GGML_ASSERT(nbk0 == sizeof(float));
  6623. GGML_ASSERT(nbv0 == sizeof(float));
  6624. GGML_ASSERT(neq0 == D);
  6625. GGML_ASSERT(nek0 == D);
  6626. GGML_ASSERT(nev1 == D);
  6627. GGML_ASSERT(neq1 == N);
  6628. GGML_ASSERT(nek1 == N + P);
  6629. GGML_ASSERT(nev1 == D);
  6630. // dst cannot be transposed or permuted
  6631. GGML_ASSERT(nb0 == sizeof(float));
  6632. GGML_ASSERT(nb0 <= nb1);
  6633. GGML_ASSERT(nb1 <= nb2);
  6634. GGML_ASSERT(nb2 <= nb3);
  6635. if (params->type == GGML_TASK_INIT) {
  6636. return;
  6637. }
  6638. if (params->type == GGML_TASK_FINALIZE) {
  6639. return;
  6640. }
  6641. // parallelize by q rows using ggml_vec_dot_f32
  6642. // total rows in q
  6643. const int nr = neq1*neq2*neq3;
  6644. // rows per thread
  6645. const int dr = (nr + nth - 1)/nth;
  6646. // row range for this thread
  6647. const int ir0 = dr*ith;
  6648. const int ir1 = MIN(ir0 + dr, nr);
  6649. const float scale = 1.0f/sqrtf(D);
  6650. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6651. for (int ir = ir0; ir < ir1; ++ir) {
  6652. // q indices
  6653. const int iq3 = ir/(neq2*neq1);
  6654. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6655. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6656. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6657. for (int i = M; i < Mup; ++i) {
  6658. S[i] = -INFINITY;
  6659. }
  6660. for (int64_t ic = 0; ic < nek1; ++ic) {
  6661. // k indices
  6662. const int ik3 = iq3;
  6663. const int ik2 = iq2;
  6664. const int ik1 = ic;
  6665. // S indices
  6666. const int i1 = ik1;
  6667. ggml_vec_dot_f32(neq0,
  6668. S + i1,
  6669. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6670. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6671. }
  6672. // scale
  6673. ggml_vec_scale_f32(nek1, S, scale);
  6674. if (masked) {
  6675. for (int64_t i = P; i < M; i++) {
  6676. if (i > P + iq1) {
  6677. S[i] = -INFINITY;
  6678. }
  6679. }
  6680. }
  6681. // softmax
  6682. {
  6683. float max = -INFINITY;
  6684. ggml_vec_max_f32(M, &max, S);
  6685. ggml_float sum = 0.0;
  6686. {
  6687. #ifdef GGML_SOFT_MAX_ACCELERATE
  6688. max = -max;
  6689. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6690. vvexpf(S, S, &Mup);
  6691. ggml_vec_sum_f32(Mup, &sum, S);
  6692. #else
  6693. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6694. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6695. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6696. float * SS = S + i;
  6697. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6698. if (SS[j] == -INFINITY) {
  6699. SS[j] = 0.0f;
  6700. } else {
  6701. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6702. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6703. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6704. sump[j] += (ggml_float)val;
  6705. SS[j] = val;
  6706. }
  6707. }
  6708. }
  6709. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6710. sum += sump[i];
  6711. }
  6712. #endif
  6713. }
  6714. assert(sum > 0.0);
  6715. sum = 1.0/sum;
  6716. ggml_vec_scale_f32(M, S, sum);
  6717. #ifndef NDEBUG
  6718. for (int i = 0; i < M; ++i) {
  6719. assert(!isnan(S[i]));
  6720. assert(!isinf(S[i]));
  6721. }
  6722. #endif
  6723. }
  6724. for (int64_t ic = 0; ic < nev1; ++ic) {
  6725. // dst indices
  6726. const int i1 = iq1;
  6727. const int i2 = iq2;
  6728. const int i3 = iq3;
  6729. ggml_vec_dot_f32(nek1,
  6730. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6731. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6732. S);
  6733. }
  6734. }
  6735. }
  6736. static void ggml_compute_forward_flash_attn_f16(
  6737. const struct ggml_compute_params * params,
  6738. const struct ggml_tensor * q,
  6739. const struct ggml_tensor * k,
  6740. const struct ggml_tensor * v,
  6741. const bool masked,
  6742. struct ggml_tensor * dst) {
  6743. int64_t t0 = ggml_perf_time_us();
  6744. UNUSED(t0);
  6745. const int64_t neq0 = q->ne[0];
  6746. const int64_t neq1 = q->ne[1];
  6747. const int64_t neq2 = q->ne[2];
  6748. const int64_t neq3 = q->ne[3];
  6749. const int64_t nek0 = k->ne[0];
  6750. const int64_t nek1 = k->ne[1];
  6751. //const int64_t nek2 = k->ne[2];
  6752. //const int64_t nek3 = k->ne[3];
  6753. //const int64_t nev0 = v->ne[0];
  6754. const int64_t nev1 = v->ne[1];
  6755. //const int64_t nev2 = v->ne[2];
  6756. //const int64_t nev3 = v->ne[3];
  6757. const int64_t ne0 = dst->ne[0];
  6758. const int64_t ne1 = dst->ne[1];
  6759. //const int64_t ne2 = dst->ne[2];
  6760. //const int64_t ne3 = dst->ne[3];
  6761. const int nbk0 = k->nb[0];
  6762. const int nbk1 = k->nb[1];
  6763. const int nbk2 = k->nb[2];
  6764. const int nbk3 = k->nb[3];
  6765. const int nbq0 = q->nb[0];
  6766. const int nbq1 = q->nb[1];
  6767. const int nbq2 = q->nb[2];
  6768. const int nbq3 = q->nb[3];
  6769. const int nbv0 = v->nb[0];
  6770. const int nbv1 = v->nb[1];
  6771. const int nbv2 = v->nb[2];
  6772. const int nbv3 = v->nb[3];
  6773. const int nb0 = dst->nb[0];
  6774. const int nb1 = dst->nb[1];
  6775. const int nb2 = dst->nb[2];
  6776. const int nb3 = dst->nb[3];
  6777. const int ith = params->ith;
  6778. const int nth = params->nth;
  6779. const int64_t D = neq0;
  6780. const int64_t N = neq1;
  6781. const int64_t P = nek1 - N;
  6782. const int64_t M = P + N;
  6783. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6784. GGML_ASSERT(ne0 == D);
  6785. GGML_ASSERT(ne1 == N);
  6786. GGML_ASSERT(P >= 0);
  6787. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6788. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6789. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6790. GGML_ASSERT(neq0 == D);
  6791. GGML_ASSERT(nek0 == D);
  6792. GGML_ASSERT(nev1 == D);
  6793. GGML_ASSERT(neq1 == N);
  6794. GGML_ASSERT(nek1 == N + P);
  6795. GGML_ASSERT(nev1 == D);
  6796. // dst cannot be transposed or permuted
  6797. GGML_ASSERT(nb0 == sizeof(float));
  6798. GGML_ASSERT(nb0 <= nb1);
  6799. GGML_ASSERT(nb1 <= nb2);
  6800. GGML_ASSERT(nb2 <= nb3);
  6801. if (params->type == GGML_TASK_INIT) {
  6802. return;
  6803. }
  6804. if (params->type == GGML_TASK_FINALIZE) {
  6805. return;
  6806. }
  6807. // parallelize by q rows using ggml_vec_dot_f32
  6808. // total rows in q
  6809. const int nr = neq1*neq2*neq3;
  6810. // rows per thread
  6811. const int dr = (nr + nth - 1)/nth;
  6812. // row range for this thread
  6813. const int ir0 = dr*ith;
  6814. const int ir1 = MIN(ir0 + dr, nr);
  6815. const float scale = 1.0f/sqrtf(D);
  6816. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6817. for (int ir = ir0; ir < ir1; ++ir) {
  6818. // q indices
  6819. const int iq3 = ir/(neq2*neq1);
  6820. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6821. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6822. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6823. for (int i = M; i < Mup; ++i) {
  6824. S[i] = -INFINITY;
  6825. }
  6826. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6827. for (int64_t ic = 0; ic < nek1; ++ic) {
  6828. // k indices
  6829. const int ik3 = iq3;
  6830. const int ik2 = iq2;
  6831. const int ik1 = ic;
  6832. // S indices
  6833. const int i1 = ik1;
  6834. ggml_vec_dot_f16(neq0,
  6835. S + i1,
  6836. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6837. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6838. }
  6839. } else {
  6840. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6841. // k indices
  6842. const int ik3 = iq3;
  6843. const int ik2 = iq2;
  6844. const int ik1 = ic;
  6845. // S indices
  6846. const int i1 = ik1;
  6847. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6848. S + i1,
  6849. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6850. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6851. }
  6852. }
  6853. // scale
  6854. ggml_vec_scale_f32(nek1, S, scale);
  6855. if (masked) {
  6856. for (int64_t i = P; i < M; i++) {
  6857. if (i > P + iq1) {
  6858. S[i] = -INFINITY;
  6859. }
  6860. }
  6861. }
  6862. // softmax
  6863. {
  6864. float max = -INFINITY;
  6865. ggml_vec_max_f32(M, &max, S);
  6866. ggml_float sum = 0.0;
  6867. {
  6868. #ifdef GGML_SOFT_MAX_ACCELERATE
  6869. max = -max;
  6870. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6871. vvexpf(S, S, &Mup);
  6872. ggml_vec_sum_f32(Mup, &sum, S);
  6873. #else
  6874. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6875. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6876. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6877. float * SS = S + i;
  6878. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6879. if (SS[j] == -INFINITY) {
  6880. SS[j] = 0.0f;
  6881. } else {
  6882. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6883. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6884. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6885. sump[j] += (ggml_float)val;
  6886. SS[j] = val;
  6887. }
  6888. }
  6889. }
  6890. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6891. sum += sump[i];
  6892. }
  6893. #endif
  6894. }
  6895. assert(sum > 0.0);
  6896. sum = 1.0/sum;
  6897. ggml_vec_scale_f32(M, S, sum);
  6898. #ifndef NDEBUG
  6899. for (int i = 0; i < M; ++i) {
  6900. assert(!isnan(S[i]));
  6901. assert(!isinf(S[i]));
  6902. }
  6903. #endif
  6904. }
  6905. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6906. for (int64_t i = 0; i < M; i++) {
  6907. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6908. }
  6909. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6910. for (int64_t ic = 0; ic < nev1; ++ic) {
  6911. // dst indices
  6912. const int i1 = iq1;
  6913. const int i2 = iq2;
  6914. const int i3 = iq3;
  6915. ggml_vec_dot_f16(nek1,
  6916. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6917. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6918. S16);
  6919. }
  6920. } else {
  6921. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6922. // dst indices
  6923. const int i1 = iq1;
  6924. const int i2 = iq2;
  6925. const int i3 = iq3;
  6926. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6927. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6928. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6929. S16);
  6930. }
  6931. }
  6932. }
  6933. }
  6934. static void ggml_compute_forward_flash_attn(
  6935. const struct ggml_compute_params * params,
  6936. const struct ggml_tensor * q,
  6937. const struct ggml_tensor * k,
  6938. const struct ggml_tensor * v,
  6939. const bool masked,
  6940. struct ggml_tensor * dst) {
  6941. switch (q->type) {
  6942. case GGML_TYPE_F16:
  6943. {
  6944. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6945. } break;
  6946. case GGML_TYPE_F32:
  6947. {
  6948. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6949. } break;
  6950. case GGML_TYPE_Q4_0:
  6951. case GGML_TYPE_Q4_1:
  6952. case GGML_TYPE_I8:
  6953. case GGML_TYPE_I16:
  6954. case GGML_TYPE_I32:
  6955. case GGML_TYPE_COUNT:
  6956. {
  6957. GGML_ASSERT(false);
  6958. } break;
  6959. }
  6960. }
  6961. // ggml_compute_forward_flash_ff
  6962. static void ggml_compute_forward_flash_ff_f16(
  6963. const struct ggml_compute_params * params,
  6964. const struct ggml_tensor * a, // F16
  6965. const struct ggml_tensor * b0, // F16 fc_w
  6966. const struct ggml_tensor * b1, // F32 fc_b
  6967. const struct ggml_tensor * c0, // F16 proj_w
  6968. const struct ggml_tensor * c1, // F32 proj_b
  6969. struct ggml_tensor * dst) {
  6970. int64_t t0 = ggml_perf_time_us();
  6971. UNUSED(t0);
  6972. const int64_t nea0 = a->ne[0];
  6973. const int64_t nea1 = a->ne[1];
  6974. const int64_t nea2 = a->ne[2];
  6975. const int64_t nea3 = a->ne[3];
  6976. const int64_t neb00 = b0->ne[0];
  6977. const int64_t neb01 = b0->ne[1];
  6978. //const int64_t neb02 = b0->ne[2];
  6979. //const int64_t neb03 = b0->ne[3];
  6980. const int64_t neb10 = b1->ne[0];
  6981. const int64_t neb11 = b1->ne[1];
  6982. //const int64_t neb12 = b1->ne[2];
  6983. //const int64_t neb13 = b1->ne[3];
  6984. const int64_t nec00 = c0->ne[0];
  6985. const int64_t nec01 = c0->ne[1];
  6986. //const int64_t nec02 = c0->ne[2];
  6987. //const int64_t nec03 = c0->ne[3];
  6988. const int64_t nec10 = c1->ne[0];
  6989. const int64_t nec11 = c1->ne[1];
  6990. //const int64_t nec12 = c1->ne[2];
  6991. //const int64_t nec13 = c1->ne[3];
  6992. const int64_t ne0 = dst->ne[0];
  6993. const int64_t ne1 = dst->ne[1];
  6994. const int64_t ne2 = dst->ne[2];
  6995. //const int64_t ne3 = dst->ne[3];
  6996. const int nba0 = a->nb[0];
  6997. const int nba1 = a->nb[1];
  6998. const int nba2 = a->nb[2];
  6999. const int nba3 = a->nb[3];
  7000. const int nbb00 = b0->nb[0];
  7001. const int nbb01 = b0->nb[1];
  7002. const int nbb02 = b0->nb[2];
  7003. const int nbb03 = b0->nb[3];
  7004. const int nbb10 = b1->nb[0];
  7005. //const int nbb11 = b1->nb[1];
  7006. //const int nbb12 = b1->nb[2];
  7007. //const int nbb13 = b1->nb[3];
  7008. const int nbc00 = c0->nb[0];
  7009. const int nbc01 = c0->nb[1];
  7010. const int nbc02 = c0->nb[2];
  7011. const int nbc03 = c0->nb[3];
  7012. const int nbc10 = c1->nb[0];
  7013. //const int nbc11 = c1->nb[1];
  7014. //const int nbc12 = c1->nb[2];
  7015. //const int nbc13 = c1->nb[3];
  7016. const int nb0 = dst->nb[0];
  7017. const int nb1 = dst->nb[1];
  7018. const int nb2 = dst->nb[2];
  7019. const int nb3 = dst->nb[3];
  7020. const int ith = params->ith;
  7021. const int nth = params->nth;
  7022. const int64_t D = nea0;
  7023. //const int64_t N = nea1;
  7024. const int64_t M = neb01;
  7025. GGML_ASSERT(ne0 == nea0);
  7026. GGML_ASSERT(ne1 == nea1);
  7027. GGML_ASSERT(ne2 == nea2);
  7028. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7029. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7030. GGML_ASSERT(nbb10 == sizeof(float));
  7031. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7032. GGML_ASSERT(nbc10 == sizeof(float));
  7033. GGML_ASSERT(neb00 == D);
  7034. GGML_ASSERT(neb01 == M);
  7035. GGML_ASSERT(neb10 == M);
  7036. GGML_ASSERT(neb11 == 1);
  7037. GGML_ASSERT(nec00 == M);
  7038. GGML_ASSERT(nec01 == D);
  7039. GGML_ASSERT(nec10 == D);
  7040. GGML_ASSERT(nec11 == 1);
  7041. // dst cannot be transposed or permuted
  7042. GGML_ASSERT(nb0 == sizeof(float));
  7043. GGML_ASSERT(nb0 <= nb1);
  7044. GGML_ASSERT(nb1 <= nb2);
  7045. GGML_ASSERT(nb2 <= nb3);
  7046. if (params->type == GGML_TASK_INIT) {
  7047. return;
  7048. }
  7049. if (params->type == GGML_TASK_FINALIZE) {
  7050. return;
  7051. }
  7052. // parallelize by a rows using ggml_vec_dot_f32
  7053. // total rows in a
  7054. const int nr = nea1*nea2*nea3;
  7055. // rows per thread
  7056. const int dr = (nr + nth - 1)/nth;
  7057. // row range for this thread
  7058. const int ir0 = dr*ith;
  7059. const int ir1 = MIN(ir0 + dr, nr);
  7060. for (int ir = ir0; ir < ir1; ++ir) {
  7061. // a indices
  7062. const int ia3 = ir/(nea2*nea1);
  7063. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7064. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7065. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7066. for (int64_t ic = 0; ic < neb01; ++ic) {
  7067. // b0 indices
  7068. const int ib03 = ia3;
  7069. const int ib02 = ia2;
  7070. const int ib01 = ic;
  7071. // S indices
  7072. const int i1 = ib01;
  7073. ggml_vec_dot_f16(nea0,
  7074. S + i1,
  7075. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7076. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7077. }
  7078. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7079. //ggml_vec_gelu_f32(neb01, S, S);
  7080. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7081. for (int64_t i = 0; i < M; i++) {
  7082. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7083. }
  7084. ggml_vec_gelu_f16(neb01, S16, S16);
  7085. {
  7086. // dst indices
  7087. const int i1 = ia1;
  7088. const int i2 = ia2;
  7089. const int i3 = ia3;
  7090. for (int64_t ic = 0; ic < nec01; ++ic) {
  7091. ggml_vec_dot_f16(neb01,
  7092. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7093. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7094. S16);
  7095. }
  7096. ggml_vec_add_f32(nec01,
  7097. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7098. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7099. (float *) c1->data);
  7100. }
  7101. }
  7102. }
  7103. static void ggml_compute_forward_flash_ff(
  7104. const struct ggml_compute_params * params,
  7105. const struct ggml_tensor * a,
  7106. const struct ggml_tensor * b0,
  7107. const struct ggml_tensor * b1,
  7108. const struct ggml_tensor * c0,
  7109. const struct ggml_tensor * c1,
  7110. struct ggml_tensor * dst) {
  7111. switch (b0->type) {
  7112. case GGML_TYPE_F16:
  7113. {
  7114. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7115. } break;
  7116. case GGML_TYPE_F32:
  7117. {
  7118. GGML_ASSERT(false); // TODO
  7119. } break;
  7120. case GGML_TYPE_Q4_0:
  7121. case GGML_TYPE_Q4_1:
  7122. case GGML_TYPE_I8:
  7123. case GGML_TYPE_I16:
  7124. case GGML_TYPE_I32:
  7125. case GGML_TYPE_COUNT:
  7126. {
  7127. GGML_ASSERT(false);
  7128. } break;
  7129. }
  7130. }
  7131. /////////////////////////////////
  7132. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7133. GGML_ASSERT(params);
  7134. switch (tensor->op) {
  7135. case GGML_OP_DUP:
  7136. {
  7137. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7138. } break;
  7139. case GGML_OP_ADD:
  7140. {
  7141. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7142. } break;
  7143. case GGML_OP_SUB:
  7144. {
  7145. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7146. } break;
  7147. case GGML_OP_MUL:
  7148. {
  7149. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7150. } break;
  7151. case GGML_OP_DIV:
  7152. {
  7153. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7154. } break;
  7155. case GGML_OP_SQR:
  7156. {
  7157. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7158. } break;
  7159. case GGML_OP_SQRT:
  7160. {
  7161. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7162. } break;
  7163. case GGML_OP_SUM:
  7164. {
  7165. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7166. } break;
  7167. case GGML_OP_MEAN:
  7168. {
  7169. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7170. } break;
  7171. case GGML_OP_REPEAT:
  7172. {
  7173. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7174. } break;
  7175. case GGML_OP_ABS:
  7176. {
  7177. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7178. } break;
  7179. case GGML_OP_SGN:
  7180. {
  7181. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7182. } break;
  7183. case GGML_OP_NEG:
  7184. {
  7185. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7186. } break;
  7187. case GGML_OP_STEP:
  7188. {
  7189. ggml_compute_forward_step(params, tensor->src0, tensor);
  7190. } break;
  7191. case GGML_OP_RELU:
  7192. {
  7193. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7194. } break;
  7195. case GGML_OP_GELU:
  7196. {
  7197. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7198. } break;
  7199. case GGML_OP_SILU:
  7200. {
  7201. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7202. } break;
  7203. case GGML_OP_NORM:
  7204. {
  7205. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7206. } break;
  7207. case GGML_OP_RMS_NORM:
  7208. {
  7209. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7210. } break;
  7211. case GGML_OP_MUL_MAT:
  7212. {
  7213. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7214. } break;
  7215. case GGML_OP_SCALE:
  7216. {
  7217. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7218. } break;
  7219. case GGML_OP_CPY:
  7220. {
  7221. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7222. } break;
  7223. case GGML_OP_CONT:
  7224. {
  7225. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7226. } break;
  7227. case GGML_OP_RESHAPE:
  7228. {
  7229. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7230. } break;
  7231. case GGML_OP_VIEW:
  7232. {
  7233. ggml_compute_forward_view(params, tensor->src0);
  7234. } break;
  7235. case GGML_OP_PERMUTE:
  7236. {
  7237. ggml_compute_forward_permute(params, tensor->src0);
  7238. } break;
  7239. case GGML_OP_TRANSPOSE:
  7240. {
  7241. ggml_compute_forward_transpose(params, tensor->src0);
  7242. } break;
  7243. case GGML_OP_GET_ROWS:
  7244. {
  7245. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7246. } break;
  7247. case GGML_OP_DIAG_MASK_INF:
  7248. {
  7249. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7250. } break;
  7251. case GGML_OP_SOFT_MAX:
  7252. {
  7253. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7254. } break;
  7255. case GGML_OP_ROPE:
  7256. {
  7257. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7258. } break;
  7259. case GGML_OP_CONV_1D_1S:
  7260. {
  7261. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7262. } break;
  7263. case GGML_OP_CONV_1D_2S:
  7264. {
  7265. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7266. } break;
  7267. case GGML_OP_FLASH_ATTN:
  7268. {
  7269. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7270. GGML_ASSERT(t == 0 || t == 1);
  7271. bool masked = t != 0;
  7272. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7273. } break;
  7274. case GGML_OP_FLASH_FF:
  7275. {
  7276. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7277. } break;
  7278. case GGML_OP_NONE:
  7279. {
  7280. // nop
  7281. } break;
  7282. case GGML_OP_COUNT:
  7283. {
  7284. GGML_ASSERT(false);
  7285. } break;
  7286. }
  7287. }
  7288. ////////////////////////////////////////////////////////////////////////////////
  7289. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7290. struct ggml_tensor * src0 = tensor->src0;
  7291. struct ggml_tensor * src1 = tensor->src1;
  7292. switch (tensor->op) {
  7293. case GGML_OP_DUP:
  7294. {
  7295. if (src0->grad) {
  7296. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7297. }
  7298. } break;
  7299. case GGML_OP_ADD:
  7300. {
  7301. if (src0->grad) {
  7302. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7303. }
  7304. if (src1->grad) {
  7305. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7306. }
  7307. } break;
  7308. case GGML_OP_SUB:
  7309. {
  7310. if (src0->grad) {
  7311. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7312. }
  7313. if (src1->grad) {
  7314. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7315. }
  7316. } break;
  7317. case GGML_OP_MUL:
  7318. {
  7319. if (src0->grad) {
  7320. src0->grad =
  7321. ggml_add_impl(ctx,
  7322. src0->grad,
  7323. ggml_mul(ctx, src1, tensor->grad),
  7324. inplace);
  7325. }
  7326. if (src1->grad) {
  7327. src1->grad =
  7328. ggml_add_impl(ctx,
  7329. src1->grad,
  7330. ggml_mul(ctx, src0, tensor->grad),
  7331. inplace);
  7332. }
  7333. } break;
  7334. case GGML_OP_DIV:
  7335. {
  7336. if (src0->grad) {
  7337. src0->grad =
  7338. ggml_add_impl(ctx,
  7339. src0->grad,
  7340. ggml_div(ctx, tensor->grad, src1),
  7341. inplace);
  7342. }
  7343. if (src1->grad) {
  7344. src1->grad =
  7345. ggml_sub_impl(ctx,
  7346. src1->grad,
  7347. ggml_mul(ctx,
  7348. tensor->grad,
  7349. ggml_div(ctx, tensor, src1)),
  7350. inplace);
  7351. }
  7352. } break;
  7353. case GGML_OP_SQR:
  7354. {
  7355. if (src0->grad) {
  7356. src0->grad =
  7357. ggml_add_impl(ctx,
  7358. src0->grad,
  7359. ggml_mul(ctx,
  7360. ggml_mul(ctx, src0, tensor->grad),
  7361. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7362. inplace);
  7363. }
  7364. } break;
  7365. case GGML_OP_SQRT:
  7366. {
  7367. if (src0->grad) {
  7368. src0->grad =
  7369. ggml_add_impl(ctx,
  7370. src0->grad,
  7371. ggml_div(ctx,
  7372. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7373. tensor),
  7374. inplace);
  7375. }
  7376. } break;
  7377. case GGML_OP_SUM:
  7378. {
  7379. if (src0->grad) {
  7380. src0->grad =
  7381. ggml_add_impl(ctx,
  7382. src0->grad,
  7383. ggml_repeat(ctx, tensor->grad, src0->grad),
  7384. inplace);
  7385. }
  7386. } break;
  7387. case GGML_OP_MEAN:
  7388. {
  7389. GGML_ASSERT(false); // TODO: implement
  7390. } break;
  7391. case GGML_OP_REPEAT:
  7392. {
  7393. if (src0->grad) {
  7394. src0->grad =
  7395. ggml_add_impl(ctx,
  7396. src0->grad,
  7397. ggml_sum(ctx, tensor->grad),
  7398. inplace);
  7399. }
  7400. } break;
  7401. case GGML_OP_ABS:
  7402. {
  7403. if (src0->grad) {
  7404. src0->grad =
  7405. ggml_add_impl(ctx,
  7406. src0->grad,
  7407. ggml_mul(ctx,
  7408. ggml_sgn(ctx, src0),
  7409. tensor->grad),
  7410. inplace);
  7411. }
  7412. } break;
  7413. case GGML_OP_SGN:
  7414. {
  7415. if (src0->grad) {
  7416. // noop
  7417. }
  7418. } break;
  7419. case GGML_OP_NEG:
  7420. {
  7421. if (src0->grad) {
  7422. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7423. }
  7424. } break;
  7425. case GGML_OP_STEP:
  7426. {
  7427. if (src0->grad) {
  7428. // noop
  7429. }
  7430. } break;
  7431. case GGML_OP_RELU:
  7432. {
  7433. if (src0->grad) {
  7434. src0->grad = ggml_sub_impl(ctx,
  7435. src0->grad,
  7436. ggml_mul(ctx,
  7437. ggml_step(ctx, src0),
  7438. tensor->grad),
  7439. inplace);
  7440. }
  7441. } break;
  7442. case GGML_OP_GELU:
  7443. {
  7444. GGML_ASSERT(false); // TODO: not implemented
  7445. } break;
  7446. case GGML_OP_SILU:
  7447. {
  7448. GGML_ASSERT(false); // TODO: not implemented
  7449. } break;
  7450. case GGML_OP_NORM:
  7451. {
  7452. GGML_ASSERT(false); // TODO: not implemented
  7453. } break;
  7454. case GGML_OP_RMS_NORM:
  7455. {
  7456. GGML_ASSERT(false); // TODO: not implemented
  7457. } break;
  7458. case GGML_OP_MUL_MAT:
  7459. {
  7460. if (src0->grad) {
  7461. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7462. GGML_ASSERT(false);
  7463. }
  7464. if (src1->grad) {
  7465. src1->grad =
  7466. ggml_add_impl(ctx,
  7467. src1->grad,
  7468. ggml_mul_mat(ctx,
  7469. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  7470. tensor->grad),
  7471. inplace);
  7472. }
  7473. } break;
  7474. case GGML_OP_SCALE:
  7475. {
  7476. GGML_ASSERT(false); // TODO: not implemented
  7477. } break;
  7478. case GGML_OP_CPY:
  7479. {
  7480. GGML_ASSERT(false); // TODO: not implemented
  7481. } break;
  7482. case GGML_OP_CONT:
  7483. {
  7484. GGML_ASSERT(false); // TODO: not implemented
  7485. } break;
  7486. case GGML_OP_RESHAPE:
  7487. {
  7488. GGML_ASSERT(false); // TODO: not implemented
  7489. } break;
  7490. case GGML_OP_VIEW:
  7491. {
  7492. GGML_ASSERT(false); // not supported
  7493. } break;
  7494. case GGML_OP_PERMUTE:
  7495. {
  7496. GGML_ASSERT(false); // TODO: not implemented
  7497. } break;
  7498. case GGML_OP_TRANSPOSE:
  7499. {
  7500. GGML_ASSERT(false); // TODO: not implemented
  7501. } break;
  7502. case GGML_OP_GET_ROWS:
  7503. {
  7504. GGML_ASSERT(false); // TODO: not implemented
  7505. } break;
  7506. case GGML_OP_DIAG_MASK_INF:
  7507. {
  7508. GGML_ASSERT(false); // TODO: not implemented
  7509. } break;
  7510. case GGML_OP_SOFT_MAX:
  7511. {
  7512. GGML_ASSERT(false); // TODO: not implemented
  7513. } break;
  7514. case GGML_OP_ROPE:
  7515. {
  7516. GGML_ASSERT(false); // TODO: not implemented
  7517. } break;
  7518. case GGML_OP_CONV_1D_1S:
  7519. {
  7520. GGML_ASSERT(false); // TODO: not implemented
  7521. } break;
  7522. case GGML_OP_CONV_1D_2S:
  7523. {
  7524. GGML_ASSERT(false); // TODO: not implemented
  7525. } break;
  7526. case GGML_OP_FLASH_ATTN:
  7527. {
  7528. GGML_ASSERT(false); // not supported
  7529. } break;
  7530. case GGML_OP_FLASH_FF:
  7531. {
  7532. GGML_ASSERT(false); // not supported
  7533. } break;
  7534. case GGML_OP_NONE:
  7535. {
  7536. // nop
  7537. } break;
  7538. case GGML_OP_COUNT:
  7539. {
  7540. GGML_ASSERT(false);
  7541. } break;
  7542. }
  7543. }
  7544. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7545. if (node->grad == NULL) {
  7546. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7547. // it can also happen during forward pass, if the user performs computations with constants
  7548. if (node->op != GGML_OP_NONE) {
  7549. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7550. }
  7551. }
  7552. // check if already visited
  7553. for (int i = 0; i < cgraph->n_nodes; i++) {
  7554. if (cgraph->nodes[i] == node) {
  7555. return;
  7556. }
  7557. }
  7558. for (int i = 0; i < cgraph->n_leafs; i++) {
  7559. if (cgraph->leafs[i] == node) {
  7560. return;
  7561. }
  7562. }
  7563. if (node->src0) {
  7564. ggml_visit_parents(cgraph, node->src0);
  7565. }
  7566. if (node->src1) {
  7567. ggml_visit_parents(cgraph, node->src1);
  7568. }
  7569. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7570. if (node->opt[i]) {
  7571. ggml_visit_parents(cgraph, node->opt[i]);
  7572. }
  7573. }
  7574. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7575. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7576. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7577. cgraph->leafs[cgraph->n_leafs] = node;
  7578. cgraph->n_leafs++;
  7579. } else {
  7580. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7581. cgraph->nodes[cgraph->n_nodes] = node;
  7582. cgraph->grads[cgraph->n_nodes] = node->grad;
  7583. cgraph->n_nodes++;
  7584. }
  7585. }
  7586. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7587. if (!expand) {
  7588. cgraph->n_nodes = 0;
  7589. cgraph->n_leafs = 0;
  7590. }
  7591. const int n0 = cgraph->n_nodes;
  7592. UNUSED(n0);
  7593. ggml_visit_parents(cgraph, tensor);
  7594. const int n_new = cgraph->n_nodes - n0;
  7595. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7596. if (n_new > 0) {
  7597. // the last added node should always be starting point
  7598. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7599. }
  7600. }
  7601. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7602. ggml_build_forward_impl(cgraph, tensor, true);
  7603. }
  7604. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7605. struct ggml_cgraph result = {
  7606. /*.n_nodes =*/ 0,
  7607. /*.n_leafs =*/ 0,
  7608. /*.n_threads =*/ 0,
  7609. /*.work_size =*/ 0,
  7610. /*.work =*/ NULL,
  7611. /*.nodes =*/ { NULL },
  7612. /*.grads =*/ { NULL },
  7613. /*.leafs =*/ { NULL },
  7614. /*.perf_runs =*/ 0,
  7615. /*.perf_cycles =*/ 0,
  7616. /*.perf_time_us =*/ 0,
  7617. };
  7618. ggml_build_forward_impl(&result, tensor, false);
  7619. return result;
  7620. }
  7621. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7622. struct ggml_cgraph result = *gf;
  7623. GGML_ASSERT(gf->n_nodes > 0);
  7624. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7625. if (keep) {
  7626. for (int i = 0; i < gf->n_nodes; i++) {
  7627. struct ggml_tensor * node = gf->nodes[i];
  7628. if (node->grad) {
  7629. node->grad = ggml_dup_tensor(ctx, node);
  7630. gf->grads[i] = node->grad;
  7631. }
  7632. }
  7633. }
  7634. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7635. struct ggml_tensor * node = gf->nodes[i];
  7636. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7637. if (node->grad) {
  7638. ggml_compute_backward(ctx, node, keep);
  7639. }
  7640. }
  7641. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7642. struct ggml_tensor * node = gf->nodes[i];
  7643. if (node->is_param) {
  7644. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7645. ggml_build_forward_impl(&result, node->grad, true);
  7646. }
  7647. }
  7648. return result;
  7649. }
  7650. //
  7651. // thread data
  7652. //
  7653. // synchronization is done via busy loops
  7654. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7655. //
  7656. #ifdef __APPLE__
  7657. //#include <os/lock.h>
  7658. //
  7659. //typedef os_unfair_lock ggml_lock_t;
  7660. //
  7661. //#define ggml_lock_init(x) UNUSED(x)
  7662. //#define ggml_lock_destroy(x) UNUSED(x)
  7663. //#define ggml_lock_lock os_unfair_lock_lock
  7664. //#define ggml_lock_unlock os_unfair_lock_unlock
  7665. //
  7666. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7667. typedef int ggml_lock_t;
  7668. #define ggml_lock_init(x) UNUSED(x)
  7669. #define ggml_lock_destroy(x) UNUSED(x)
  7670. #define ggml_lock_lock(x) UNUSED(x)
  7671. #define ggml_lock_unlock(x) UNUSED(x)
  7672. #define GGML_LOCK_INITIALIZER 0
  7673. typedef pthread_t ggml_thread_t;
  7674. #define ggml_thread_create pthread_create
  7675. #define ggml_thread_join pthread_join
  7676. #else
  7677. //typedef pthread_spinlock_t ggml_lock_t;
  7678. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7679. //#define ggml_lock_destroy pthread_spin_destroy
  7680. //#define ggml_lock_lock pthread_spin_lock
  7681. //#define ggml_lock_unlock pthread_spin_unlock
  7682. typedef int ggml_lock_t;
  7683. #define ggml_lock_init(x) UNUSED(x)
  7684. #define ggml_lock_destroy(x) UNUSED(x)
  7685. #define ggml_lock_lock(x) UNUSED(x)
  7686. #define ggml_lock_unlock(x) UNUSED(x)
  7687. #define GGML_LOCK_INITIALIZER 0
  7688. typedef pthread_t ggml_thread_t;
  7689. #define ggml_thread_create pthread_create
  7690. #define ggml_thread_join pthread_join
  7691. #endif
  7692. struct ggml_compute_state_shared {
  7693. ggml_lock_t spin;
  7694. int n_threads;
  7695. // synchronization primitives
  7696. atomic_int n_ready;
  7697. atomic_bool has_work;
  7698. atomic_bool stop; // stop all threads
  7699. };
  7700. struct ggml_compute_state {
  7701. ggml_thread_t thrd;
  7702. struct ggml_compute_params params;
  7703. struct ggml_tensor * node;
  7704. struct ggml_compute_state_shared * shared;
  7705. };
  7706. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7707. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7708. const int n_threads = state->shared->n_threads;
  7709. while (true) {
  7710. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7711. atomic_store(&state->shared->has_work, false);
  7712. } else {
  7713. while (atomic_load(&state->shared->has_work)) {
  7714. if (atomic_load(&state->shared->stop)) {
  7715. return 0;
  7716. }
  7717. ggml_lock_lock (&state->shared->spin);
  7718. ggml_lock_unlock(&state->shared->spin);
  7719. }
  7720. }
  7721. atomic_fetch_sub(&state->shared->n_ready, 1);
  7722. // wait for work
  7723. while (!atomic_load(&state->shared->has_work)) {
  7724. if (atomic_load(&state->shared->stop)) {
  7725. return 0;
  7726. }
  7727. ggml_lock_lock (&state->shared->spin);
  7728. ggml_lock_unlock(&state->shared->spin);
  7729. }
  7730. // check if we should stop
  7731. if (atomic_load(&state->shared->stop)) {
  7732. break;
  7733. }
  7734. if (state->node) {
  7735. if (state->params.ith < state->params.nth) {
  7736. ggml_compute_forward(&state->params, state->node);
  7737. }
  7738. state->node = NULL;
  7739. } else {
  7740. break;
  7741. }
  7742. }
  7743. return 0;
  7744. }
  7745. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7746. const int n_threads = cgraph->n_threads;
  7747. struct ggml_compute_state_shared state_shared = {
  7748. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7749. /*.n_threads =*/ n_threads,
  7750. /*.n_ready =*/ 0,
  7751. /*.has_work =*/ false,
  7752. /*.stop =*/ false,
  7753. };
  7754. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7755. // create thread pool
  7756. if (n_threads > 1) {
  7757. ggml_lock_init(&state_shared.spin);
  7758. atomic_store(&state_shared.has_work, true);
  7759. for (int j = 0; j < n_threads - 1; j++) {
  7760. workers[j] = (struct ggml_compute_state) {
  7761. .thrd = 0,
  7762. .params = {
  7763. .type = GGML_TASK_COMPUTE,
  7764. .ith = j + 1,
  7765. .nth = n_threads,
  7766. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7767. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7768. },
  7769. .node = NULL,
  7770. .shared = &state_shared,
  7771. };
  7772. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7773. GGML_ASSERT(rc == 0);
  7774. UNUSED(rc);
  7775. }
  7776. }
  7777. // initialize tasks + work buffer
  7778. {
  7779. size_t work_size = 0;
  7780. // thread scheduling for the different operations
  7781. for (int i = 0; i < cgraph->n_nodes; i++) {
  7782. struct ggml_tensor * node = cgraph->nodes[i];
  7783. switch (node->op) {
  7784. case GGML_OP_DUP:
  7785. {
  7786. node->n_tasks = 1;
  7787. } break;
  7788. case GGML_OP_ADD:
  7789. {
  7790. node->n_tasks = n_threads;
  7791. } break;
  7792. case GGML_OP_SUB:
  7793. case GGML_OP_MUL:
  7794. case GGML_OP_DIV:
  7795. case GGML_OP_SQR:
  7796. case GGML_OP_SQRT:
  7797. case GGML_OP_SUM:
  7798. case GGML_OP_MEAN:
  7799. case GGML_OP_REPEAT:
  7800. case GGML_OP_ABS:
  7801. case GGML_OP_SGN:
  7802. case GGML_OP_NEG:
  7803. case GGML_OP_STEP:
  7804. case GGML_OP_RELU:
  7805. {
  7806. node->n_tasks = 1;
  7807. } break;
  7808. case GGML_OP_GELU:
  7809. {
  7810. node->n_tasks = n_threads;
  7811. } break;
  7812. case GGML_OP_SILU:
  7813. {
  7814. node->n_tasks = n_threads;
  7815. } break;
  7816. case GGML_OP_NORM:
  7817. case GGML_OP_RMS_NORM:
  7818. {
  7819. node->n_tasks = n_threads;
  7820. } break;
  7821. case GGML_OP_MUL_MAT:
  7822. {
  7823. node->n_tasks = n_threads;
  7824. // TODO: use different scheduling for different matrix sizes
  7825. //const int nr0 = ggml_nrows(node->src0);
  7826. //const int nr1 = ggml_nrows(node->src1);
  7827. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7828. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7829. size_t cur = 0;
  7830. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7831. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7832. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7833. node->n_tasks = 1; // TODO: this actually is doing nothing
  7834. // the threads are still spinning
  7835. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7836. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7837. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7838. //printf("cur = %zu\n", cur);
  7839. } else {
  7840. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7841. }
  7842. #else
  7843. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7844. #endif
  7845. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7846. cur = 0;
  7847. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7848. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7849. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7850. node->n_tasks = 1;
  7851. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7852. } else
  7853. #endif
  7854. {
  7855. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7856. }
  7857. } else {
  7858. GGML_ASSERT(false);
  7859. }
  7860. work_size = MAX(work_size, cur);
  7861. } break;
  7862. case GGML_OP_SCALE:
  7863. {
  7864. node->n_tasks = n_threads;
  7865. } break;
  7866. case GGML_OP_CPY:
  7867. case GGML_OP_CONT:
  7868. case GGML_OP_RESHAPE:
  7869. case GGML_OP_VIEW:
  7870. case GGML_OP_PERMUTE:
  7871. case GGML_OP_TRANSPOSE:
  7872. case GGML_OP_GET_ROWS:
  7873. case GGML_OP_DIAG_MASK_INF:
  7874. {
  7875. node->n_tasks = 1;
  7876. } break;
  7877. case GGML_OP_SOFT_MAX:
  7878. {
  7879. node->n_tasks = n_threads;
  7880. } break;
  7881. case GGML_OP_ROPE:
  7882. {
  7883. node->n_tasks = n_threads;
  7884. } break;
  7885. case GGML_OP_CONV_1D_1S:
  7886. case GGML_OP_CONV_1D_2S:
  7887. {
  7888. node->n_tasks = n_threads;
  7889. GGML_ASSERT(node->src0->ne[3] == 1);
  7890. GGML_ASSERT(node->src1->ne[2] == 1);
  7891. GGML_ASSERT(node->src1->ne[3] == 1);
  7892. size_t cur = 0;
  7893. const int nk = node->src0->ne[0];
  7894. if (node->src0->type == GGML_TYPE_F16 &&
  7895. node->src1->type == GGML_TYPE_F32) {
  7896. cur = sizeof(ggml_fp16_t)*(
  7897. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7898. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7899. );
  7900. } else if (node->src0->type == GGML_TYPE_F32 &&
  7901. node->src1->type == GGML_TYPE_F32) {
  7902. cur = sizeof(float)*(
  7903. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7904. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7905. );
  7906. } else {
  7907. GGML_ASSERT(false);
  7908. }
  7909. work_size = MAX(work_size, cur);
  7910. } break;
  7911. case GGML_OP_FLASH_ATTN:
  7912. {
  7913. node->n_tasks = n_threads;
  7914. size_t cur = 0;
  7915. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7916. if (node->src1->type == GGML_TYPE_F32) {
  7917. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7918. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7919. }
  7920. if (node->src1->type == GGML_TYPE_F16) {
  7921. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7922. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7923. }
  7924. work_size = MAX(work_size, cur);
  7925. } break;
  7926. case GGML_OP_FLASH_FF:
  7927. {
  7928. node->n_tasks = n_threads;
  7929. size_t cur = 0;
  7930. if (node->src1->type == GGML_TYPE_F32) {
  7931. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7932. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7933. }
  7934. if (node->src1->type == GGML_TYPE_F16) {
  7935. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7936. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7937. }
  7938. work_size = MAX(work_size, cur);
  7939. } break;
  7940. case GGML_OP_NONE:
  7941. {
  7942. node->n_tasks = 1;
  7943. } break;
  7944. case GGML_OP_COUNT:
  7945. {
  7946. GGML_ASSERT(false);
  7947. } break;
  7948. }
  7949. }
  7950. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7951. GGML_ASSERT(false); // TODO: better handling
  7952. }
  7953. if (work_size > 0 && cgraph->work == NULL) {
  7954. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7955. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7956. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7957. }
  7958. }
  7959. const int64_t perf_start_cycles = ggml_perf_cycles();
  7960. const int64_t perf_start_time_us = ggml_perf_time_us();
  7961. for (int i = 0; i < cgraph->n_nodes; i++) {
  7962. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7963. struct ggml_tensor * node = cgraph->nodes[i];
  7964. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7965. //if (node->grad == NULL && node->perf_runs > 0) {
  7966. // continue;
  7967. //}
  7968. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7969. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7970. // INIT
  7971. struct ggml_compute_params params = {
  7972. /*.type =*/ GGML_TASK_INIT,
  7973. /*.ith =*/ 0,
  7974. /*.nth =*/ node->n_tasks,
  7975. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7976. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7977. };
  7978. ggml_compute_forward(&params, node);
  7979. // COMPUTE
  7980. if (node->n_tasks > 1) {
  7981. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7982. atomic_store(&state_shared.has_work, false);
  7983. }
  7984. while (atomic_load(&state_shared.has_work)) {
  7985. ggml_lock_lock (&state_shared.spin);
  7986. ggml_lock_unlock(&state_shared.spin);
  7987. }
  7988. // launch thread pool
  7989. for (int j = 0; j < n_threads - 1; j++) {
  7990. workers[j].params = (struct ggml_compute_params) {
  7991. .type = GGML_TASK_COMPUTE,
  7992. .ith = j + 1,
  7993. .nth = node->n_tasks,
  7994. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7995. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7996. };
  7997. workers[j].node = node;
  7998. }
  7999. atomic_fetch_sub(&state_shared.n_ready, 1);
  8000. while (atomic_load(&state_shared.n_ready) > 0) {
  8001. ggml_lock_lock (&state_shared.spin);
  8002. ggml_lock_unlock(&state_shared.spin);
  8003. }
  8004. atomic_store(&state_shared.has_work, true);
  8005. }
  8006. params.type = GGML_TASK_COMPUTE;
  8007. ggml_compute_forward(&params, node);
  8008. // wait for thread pool
  8009. if (node->n_tasks > 1) {
  8010. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8011. atomic_store(&state_shared.has_work, false);
  8012. }
  8013. while (atomic_load(&state_shared.has_work)) {
  8014. ggml_lock_lock (&state_shared.spin);
  8015. ggml_lock_unlock(&state_shared.spin);
  8016. }
  8017. atomic_fetch_sub(&state_shared.n_ready, 1);
  8018. while (atomic_load(&state_shared.n_ready) != 0) {
  8019. ggml_lock_lock (&state_shared.spin);
  8020. ggml_lock_unlock(&state_shared.spin);
  8021. }
  8022. }
  8023. // FINALIZE
  8024. if (node->n_tasks > 1) {
  8025. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8026. atomic_store(&state_shared.has_work, false);
  8027. }
  8028. while (atomic_load(&state_shared.has_work)) {
  8029. ggml_lock_lock (&state_shared.spin);
  8030. ggml_lock_unlock(&state_shared.spin);
  8031. }
  8032. // launch thread pool
  8033. for (int j = 0; j < n_threads - 1; j++) {
  8034. workers[j].params = (struct ggml_compute_params) {
  8035. .type = GGML_TASK_FINALIZE,
  8036. .ith = j + 1,
  8037. .nth = node->n_tasks,
  8038. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8039. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8040. };
  8041. workers[j].node = node;
  8042. }
  8043. atomic_fetch_sub(&state_shared.n_ready, 1);
  8044. while (atomic_load(&state_shared.n_ready) > 0) {
  8045. ggml_lock_lock (&state_shared.spin);
  8046. ggml_lock_unlock(&state_shared.spin);
  8047. }
  8048. atomic_store(&state_shared.has_work, true);
  8049. }
  8050. params.type = GGML_TASK_FINALIZE;
  8051. ggml_compute_forward(&params, node);
  8052. // wait for thread pool
  8053. if (node->n_tasks > 1) {
  8054. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8055. atomic_store(&state_shared.has_work, false);
  8056. }
  8057. while (atomic_load(&state_shared.has_work)) {
  8058. ggml_lock_lock (&state_shared.spin);
  8059. ggml_lock_unlock(&state_shared.spin);
  8060. }
  8061. atomic_fetch_sub(&state_shared.n_ready, 1);
  8062. while (atomic_load(&state_shared.n_ready) != 0) {
  8063. ggml_lock_lock (&state_shared.spin);
  8064. ggml_lock_unlock(&state_shared.spin);
  8065. }
  8066. }
  8067. // performance stats (node)
  8068. {
  8069. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8070. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8071. node->perf_runs++;
  8072. node->perf_cycles += perf_cycles_cur;
  8073. node->perf_time_us += perf_time_us_cur;
  8074. }
  8075. }
  8076. // join thread pool
  8077. if (n_threads > 1) {
  8078. atomic_store(&state_shared.stop, true);
  8079. atomic_store(&state_shared.has_work, true);
  8080. for (int j = 0; j < n_threads - 1; j++) {
  8081. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8082. GGML_ASSERT(rc == 0);
  8083. UNUSED(rc);
  8084. }
  8085. ggml_lock_destroy(&state_shared.spin);
  8086. }
  8087. // performance stats (graph)
  8088. {
  8089. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8090. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8091. cgraph->perf_runs++;
  8092. cgraph->perf_cycles += perf_cycles_cur;
  8093. cgraph->perf_time_us += perf_time_us_cur;
  8094. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8095. __func__, cgraph->perf_runs,
  8096. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8097. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8098. (double) perf_time_us_cur / 1000.0,
  8099. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8100. }
  8101. }
  8102. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8103. for (int i = 0; i < cgraph->n_nodes; i++) {
  8104. struct ggml_tensor * grad = cgraph->grads[i];
  8105. if (grad) {
  8106. ggml_set_zero(grad);
  8107. }
  8108. }
  8109. }
  8110. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8111. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8112. GGML_PRINT("=== GRAPH ===\n");
  8113. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8114. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8115. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8116. for (int i = 0; i < cgraph->n_nodes; i++) {
  8117. struct ggml_tensor * node = cgraph->nodes[i];
  8118. perf_total_per_op_us[node->op] += node->perf_time_us;
  8119. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8120. i,
  8121. node->ne[0], node->ne[1], node->ne[2],
  8122. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8123. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8124. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8125. (double) node->perf_time_us / 1000.0,
  8126. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8127. }
  8128. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8129. for (int i = 0; i < cgraph->n_leafs; i++) {
  8130. struct ggml_tensor * node = cgraph->leafs[i];
  8131. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8132. i,
  8133. node->ne[0], node->ne[1],
  8134. GGML_OP_LABEL[node->op]);
  8135. }
  8136. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8137. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8138. }
  8139. GGML_PRINT("========================================\n");
  8140. }
  8141. // check if node is part of the graph
  8142. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8143. if (cgraph == NULL) {
  8144. return true;
  8145. }
  8146. for (int i = 0; i < cgraph->n_nodes; i++) {
  8147. if (cgraph->nodes[i] == node) {
  8148. return true;
  8149. }
  8150. }
  8151. return false;
  8152. }
  8153. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8154. for (int i = 0; i < cgraph->n_nodes; i++) {
  8155. struct ggml_tensor * parent = cgraph->nodes[i];
  8156. if (parent->grad == node) {
  8157. return parent;
  8158. }
  8159. }
  8160. return NULL;
  8161. }
  8162. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8163. char color[16];
  8164. FILE * fp = fopen(filename, "w");
  8165. GGML_ASSERT(fp);
  8166. fprintf(fp, "digraph G {\n");
  8167. fprintf(fp, " newrank = true;\n");
  8168. fprintf(fp, " rankdir = LR;\n");
  8169. for (int i = 0; i < gb->n_nodes; i++) {
  8170. struct ggml_tensor * node = gb->nodes[i];
  8171. if (ggml_graph_get_parent(gb, node) != NULL) {
  8172. continue;
  8173. }
  8174. if (node->is_param) {
  8175. snprintf(color, sizeof(color), "yellow");
  8176. } else if (node->grad) {
  8177. if (ggml_graph_find(gf, node)) {
  8178. snprintf(color, sizeof(color), "green");
  8179. } else {
  8180. snprintf(color, sizeof(color), "lightblue");
  8181. }
  8182. } else {
  8183. snprintf(color, sizeof(color), "white");
  8184. }
  8185. fprintf(fp, " \"%p\" [ \
  8186. style = filled; fillcolor = %s; shape = record; \
  8187. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8188. (void *) node, color,
  8189. i, node->ne[0], node->ne[1],
  8190. GGML_OP_SYMBOL[node->op]);
  8191. if (node->grad) {
  8192. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8193. } else {
  8194. fprintf(fp, "\"; ]\n");
  8195. }
  8196. }
  8197. for (int i = 0; i < gb->n_leafs; i++) {
  8198. struct ggml_tensor * node = gb->leafs[i];
  8199. snprintf(color, sizeof(color), "pink");
  8200. if (ggml_nelements(node) == 1) {
  8201. fprintf(fp, " \"%p\" [ \
  8202. style = filled; fillcolor = %s; shape = record; \
  8203. label=\"<x>%.1e\"; ]\n",
  8204. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8205. } else {
  8206. fprintf(fp, " \"%p\" [ \
  8207. style = filled; fillcolor = %s; shape = record; \
  8208. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8209. (void *) node, color,
  8210. i, node->ne[0], node->ne[1]);
  8211. }
  8212. }
  8213. for (int i = 0; i < gb->n_nodes; i++) {
  8214. struct ggml_tensor * node = gb->nodes[i];
  8215. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8216. if (node->src0) {
  8217. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8218. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8219. parent0 ? (void *) parent0 : (void *) node->src0,
  8220. parent0 ? "g" : "x",
  8221. parent ? (void *) parent : (void *) node,
  8222. parent ? "g" : "x",
  8223. parent ? "empty" : "vee",
  8224. parent ? "dashed" : "solid");
  8225. }
  8226. if (node->src1) {
  8227. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8228. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8229. parent1 ? (void *) parent1 : (void *) node->src1,
  8230. parent1 ? "g" : "x",
  8231. parent ? (void *) parent : (void *) node,
  8232. parent ? "g" : "x",
  8233. parent ? "empty" : "vee",
  8234. parent ? "dashed" : "solid");
  8235. }
  8236. }
  8237. for (int i = 0; i < gb->n_leafs; i++) {
  8238. struct ggml_tensor * node = gb->leafs[i];
  8239. if (node->src0) {
  8240. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8241. (void *) node->src0, "x",
  8242. (void *) node, "x");
  8243. }
  8244. if (node->src1) {
  8245. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8246. (void *) node->src1, "x",
  8247. (void *) node, "x");
  8248. }
  8249. }
  8250. fprintf(fp, "}\n");
  8251. fclose(fp);
  8252. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8253. }
  8254. ////////////////////////////////////////////////////////////////////////////////
  8255. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8256. int i = 0;
  8257. for (int p = 0; p < np; ++p) {
  8258. const int64_t ne = ggml_nelements(ps[p]) ;
  8259. // TODO: add function to set tensor from array
  8260. for (int64_t j = 0; j < ne; ++j) {
  8261. ggml_set_f32_1d(ps[p], j, x[i++]);
  8262. }
  8263. }
  8264. }
  8265. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8266. int i = 0;
  8267. for (int p = 0; p < np; ++p) {
  8268. const int64_t ne = ggml_nelements(ps[p]) ;
  8269. // TODO: add function to get all elements at once
  8270. for (int64_t j = 0; j < ne; ++j) {
  8271. x[i++] = ggml_get_f32_1d(ps[p], j);
  8272. }
  8273. }
  8274. }
  8275. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8276. int i = 0;
  8277. for (int p = 0; p < np; ++p) {
  8278. const int64_t ne = ggml_nelements(ps[p]) ;
  8279. // TODO: add function to get all elements at once
  8280. for (int64_t j = 0; j < ne; ++j) {
  8281. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8282. }
  8283. }
  8284. }
  8285. //
  8286. // ADAM
  8287. //
  8288. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8289. //
  8290. static enum ggml_opt_result ggml_opt_adam(
  8291. struct ggml_context * ctx,
  8292. struct ggml_opt_params params,
  8293. struct ggml_tensor * f,
  8294. struct ggml_cgraph * gf,
  8295. struct ggml_cgraph * gb) {
  8296. GGML_ASSERT(ggml_is_scalar(f));
  8297. gf->n_threads = params.n_threads;
  8298. gb->n_threads = params.n_threads;
  8299. // these will store the parameters we want to optimize
  8300. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8301. int np = 0;
  8302. int nx = 0;
  8303. for (int i = 0; i < gf->n_nodes; ++i) {
  8304. if (gf->nodes[i]->is_param) {
  8305. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8306. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8307. ps[np++] = gf->nodes[i];
  8308. nx += ggml_nelements(gf->nodes[i]);
  8309. }
  8310. }
  8311. // constants
  8312. const float alpha = params.adam.alpha;
  8313. const float beta1 = params.adam.beta1;
  8314. const float beta2 = params.adam.beta2;
  8315. const float eps = params.adam.eps;
  8316. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8317. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8318. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8319. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8320. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8321. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8322. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8323. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8324. // initialize
  8325. ggml_vec_set_f32(nx, m, 0.0f);
  8326. ggml_vec_set_f32(nx, v, 0.0f);
  8327. // update view
  8328. ggml_opt_get_params(np, ps, x);
  8329. // compute the function value
  8330. ggml_graph_reset (gf);
  8331. ggml_set_f32 (f->grad, 1.0f);
  8332. ggml_graph_compute(ctx, gb);
  8333. float fx_prev = ggml_get_f32_1d(f, 0);
  8334. if (pf) {
  8335. pf[0] = fx_prev;
  8336. }
  8337. int n_no_improvement = 0;
  8338. float fx_best = fx_prev;
  8339. // run the optimizer
  8340. for (int t = 0; t < params.adam.n_iter; ++t) {
  8341. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8342. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8343. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8344. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8345. for (int i = 0; i < np; ++i) {
  8346. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8347. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8348. }
  8349. const int64_t t_start_wall = ggml_time_us();
  8350. const int64_t t_start_cpu = ggml_cycles();
  8351. UNUSED(t_start_wall);
  8352. UNUSED(t_start_cpu);
  8353. {
  8354. // update the gradient
  8355. ggml_opt_get_grad(np, ps, g1);
  8356. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8357. ggml_vec_scale_f32(nx, m, beta1);
  8358. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8359. // g2 = g1^2
  8360. ggml_vec_sqr_f32 (nx, g2, g1);
  8361. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8362. ggml_vec_scale_f32(nx, v, beta2);
  8363. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8364. // m^hat = m_t / (1 - beta1^t)
  8365. // v^hat = v_t / (1 - beta2^t)
  8366. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8367. ggml_vec_cpy_f32 (nx, mh, m);
  8368. ggml_vec_cpy_f32 (nx, vh, v);
  8369. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8370. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8371. ggml_vec_sqrt_f32 (nx, vh, vh);
  8372. ggml_vec_acc1_f32 (nx, vh, eps);
  8373. ggml_vec_div_f32 (nx, mh, mh, vh);
  8374. ggml_vec_sub_f32 (nx, x, x, mh);
  8375. // update the parameters
  8376. ggml_opt_set_params(np, ps, x);
  8377. }
  8378. ggml_graph_reset (gf);
  8379. ggml_set_f32 (f->grad, 1.0f);
  8380. ggml_graph_compute(ctx, gb);
  8381. const float fx = ggml_get_f32_1d(f, 0);
  8382. // check convergence
  8383. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8384. GGML_PRINT_DEBUG("converged\n");
  8385. return GGML_OPT_OK;
  8386. }
  8387. // delta-based convergence test
  8388. if (pf != NULL) {
  8389. // need at least params.past iterations to start checking for convergence
  8390. if (params.past <= t) {
  8391. const float rate = (pf[t%params.past] - fx)/fx;
  8392. if (fabsf(rate) < params.delta) {
  8393. return GGML_OPT_OK;
  8394. }
  8395. }
  8396. pf[t%params.past] = fx;
  8397. }
  8398. // check for improvement
  8399. if (params.max_no_improvement > 0) {
  8400. if (fx_best > fx) {
  8401. fx_best = fx;
  8402. n_no_improvement = 0;
  8403. } else {
  8404. ++n_no_improvement;
  8405. if (n_no_improvement >= params.max_no_improvement) {
  8406. return GGML_OPT_OK;
  8407. }
  8408. }
  8409. }
  8410. fx_prev = fx;
  8411. {
  8412. const int64_t t_end_cpu = ggml_cycles();
  8413. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8414. UNUSED(t_end_cpu);
  8415. const int64_t t_end_wall = ggml_time_us();
  8416. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8417. UNUSED(t_end_wall);
  8418. }
  8419. }
  8420. return GGML_OPT_DID_NOT_CONVERGE;
  8421. }
  8422. //
  8423. // L-BFGS
  8424. //
  8425. // the L-BFGS implementation below is based on the following implementation:
  8426. //
  8427. // https://github.com/chokkan/liblbfgs
  8428. //
  8429. struct ggml_lbfgs_iteration_data {
  8430. float alpha;
  8431. float ys;
  8432. float * s;
  8433. float * y;
  8434. };
  8435. static enum ggml_opt_result linesearch_backtracking(
  8436. struct ggml_context * ctx,
  8437. const struct ggml_opt_params * params,
  8438. int nx,
  8439. float * x,
  8440. float * fx,
  8441. float * g,
  8442. float * d,
  8443. float * step,
  8444. const float * xp,
  8445. struct ggml_tensor * f,
  8446. struct ggml_cgraph * gf,
  8447. struct ggml_cgraph * gb,
  8448. const int np,
  8449. struct ggml_tensor * ps[]) {
  8450. int count = 0;
  8451. float width = 0.0f;
  8452. float dg = 0.0f;
  8453. float finit = 0.0f;
  8454. float dginit = 0.0f;
  8455. float dgtest = 0.0f;
  8456. const float dec = 0.5f;
  8457. const float inc = 2.1f;
  8458. if (*step <= 0.f) {
  8459. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8460. }
  8461. // compute the initial gradient in the search direction
  8462. ggml_vec_dot_f32(nx, &dginit, g, d);
  8463. // make sure that d points to a descent direction
  8464. if (0 < dginit) {
  8465. return GGML_LINESEARCH_FAIL;
  8466. }
  8467. // initialize local variables
  8468. finit = *fx;
  8469. dgtest = params->lbfgs.ftol*dginit;
  8470. while (true) {
  8471. ggml_vec_cpy_f32(nx, x, xp);
  8472. ggml_vec_mad_f32(nx, x, d, *step);
  8473. // evaluate the function and gradient values
  8474. {
  8475. ggml_opt_set_params(np, ps, x);
  8476. ggml_graph_reset (gf);
  8477. ggml_set_f32 (f->grad, 1.0f);
  8478. ggml_graph_compute(ctx, gb);
  8479. ggml_opt_get_grad(np, ps, g);
  8480. *fx = ggml_get_f32_1d(f, 0);
  8481. }
  8482. ++count;
  8483. if (*fx > finit + (*step)*dgtest) {
  8484. width = dec;
  8485. } else {
  8486. // Armijo condition is satisfied
  8487. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8488. return count;
  8489. }
  8490. ggml_vec_dot_f32(nx, &dg, g, d);
  8491. // check the Wolfe condition
  8492. if (dg < params->lbfgs.wolfe * dginit) {
  8493. width = inc;
  8494. } else {
  8495. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8496. // regular Wolfe conditions
  8497. return count;
  8498. }
  8499. if(dg > -params->lbfgs.wolfe*dginit) {
  8500. width = dec;
  8501. } else {
  8502. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8503. return count;
  8504. }
  8505. return count;
  8506. }
  8507. }
  8508. if (*step < params->lbfgs.min_step) {
  8509. return GGML_LINESEARCH_MINIMUM_STEP;
  8510. }
  8511. if (*step > params->lbfgs.max_step) {
  8512. return GGML_LINESEARCH_MAXIMUM_STEP;
  8513. }
  8514. if (params->lbfgs.max_linesearch <= count) {
  8515. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8516. }
  8517. (*step) *= width;
  8518. }
  8519. return GGML_LINESEARCH_FAIL;
  8520. }
  8521. static enum ggml_opt_result ggml_opt_lbfgs(
  8522. struct ggml_context * ctx,
  8523. struct ggml_opt_params params,
  8524. struct ggml_tensor * f,
  8525. struct ggml_cgraph * gf,
  8526. struct ggml_cgraph * gb) {
  8527. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8528. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8529. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8530. return GGML_OPT_INVALID_WOLFE;
  8531. }
  8532. }
  8533. gf->n_threads = params.n_threads;
  8534. gb->n_threads = params.n_threads;
  8535. const int m = params.lbfgs.m;
  8536. // these will store the parameters we want to optimize
  8537. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8538. int np = 0;
  8539. int nx = 0;
  8540. for (int i = 0; i < gf->n_nodes; ++i) {
  8541. if (gf->nodes[i]->is_param) {
  8542. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8543. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8544. ps[np++] = gf->nodes[i];
  8545. nx += ggml_nelements(gf->nodes[i]);
  8546. }
  8547. }
  8548. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8549. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8550. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8551. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8552. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8553. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8554. float fx = 0.0f; // cost function value
  8555. float xnorm = 0.0f; // ||x||
  8556. float gnorm = 0.0f; // ||g||
  8557. float step = 0.0f;
  8558. // initialize x from the graph nodes
  8559. ggml_opt_get_params(np, ps, x);
  8560. // the L-BFGS memory
  8561. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8562. for (int i = 0; i < m; ++i) {
  8563. lm[i].alpha = 0.0f;
  8564. lm[i].ys = 0.0f;
  8565. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8566. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8567. }
  8568. // evaluate the function value and its gradient
  8569. {
  8570. ggml_opt_set_params(np, ps, x);
  8571. ggml_graph_reset (gf);
  8572. ggml_set_f32 (f->grad, 1.0f);
  8573. ggml_graph_compute(ctx, gb);
  8574. ggml_opt_get_grad(np, ps, g);
  8575. fx = ggml_get_f32_1d(f, 0);
  8576. }
  8577. if (pf) {
  8578. pf[0] = fx;
  8579. }
  8580. float fx_best = fx;
  8581. // search direction = -gradient
  8582. ggml_vec_neg_f32(nx, d, g);
  8583. // ||x||, ||g||
  8584. ggml_vec_norm_f32(nx, &xnorm, x);
  8585. ggml_vec_norm_f32(nx, &gnorm, g);
  8586. if (xnorm < 1.0f) {
  8587. xnorm = 1.0f;
  8588. }
  8589. // already optimized
  8590. if (gnorm/xnorm <= params.lbfgs.eps) {
  8591. return GGML_OPT_OK;
  8592. }
  8593. // initial step
  8594. ggml_vec_norm_inv_f32(nx, &step, d);
  8595. int j = 0;
  8596. int k = 1;
  8597. int ls = 0;
  8598. int end = 0;
  8599. int bound = 0;
  8600. int n_no_improvement = 0;
  8601. float ys = 0.0f;
  8602. float yy = 0.0f;
  8603. float beta = 0.0f;
  8604. while (true) {
  8605. // store the current position and gradient vectors
  8606. ggml_vec_cpy_f32(nx, xp, x);
  8607. ggml_vec_cpy_f32(nx, gp, g);
  8608. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8609. if (ls < 0) {
  8610. // linesearch failed - go back to the previous point and return
  8611. ggml_vec_cpy_f32(nx, x, xp);
  8612. ggml_vec_cpy_f32(nx, g, gp);
  8613. return ls;
  8614. }
  8615. ggml_vec_norm_f32(nx, &xnorm, x);
  8616. ggml_vec_norm_f32(nx, &gnorm, g);
  8617. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8618. if (xnorm < 1.0f) {
  8619. xnorm = 1.0f;
  8620. }
  8621. if (gnorm/xnorm <= params.lbfgs.eps) {
  8622. // converged
  8623. return GGML_OPT_OK;
  8624. }
  8625. // delta-based convergence test
  8626. if (pf != NULL) {
  8627. // need at least params.past iterations to start checking for convergence
  8628. if (params.past <= k) {
  8629. const float rate = (pf[k%params.past] - fx)/fx;
  8630. if (fabsf(rate) < params.delta) {
  8631. return GGML_OPT_OK;
  8632. }
  8633. }
  8634. pf[k%params.past] = fx;
  8635. }
  8636. // check for improvement
  8637. if (params.max_no_improvement > 0) {
  8638. if (fx < fx_best) {
  8639. fx_best = fx;
  8640. n_no_improvement = 0;
  8641. } else {
  8642. n_no_improvement++;
  8643. if (n_no_improvement >= params.max_no_improvement) {
  8644. return GGML_OPT_OK;
  8645. }
  8646. }
  8647. }
  8648. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8649. // reached the maximum number of iterations
  8650. return GGML_OPT_DID_NOT_CONVERGE;
  8651. }
  8652. // update vectors s and y:
  8653. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8654. // y_{k+1} = g_{k+1} - g_{k}.
  8655. //
  8656. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8657. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8658. // compute scalars ys and yy:
  8659. // ys = y^t \cdot s -> 1 / \rho.
  8660. // yy = y^t \cdot y.
  8661. //
  8662. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8663. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8664. lm[end].ys = ys;
  8665. // find new search direction
  8666. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8667. bound = (m <= k) ? m : k;
  8668. k++;
  8669. end = (end + 1)%m;
  8670. // initialize search direction with -g
  8671. ggml_vec_neg_f32(nx, d, g);
  8672. j = end;
  8673. for (int i = 0; i < bound; ++i) {
  8674. j = (j + m - 1) % m;
  8675. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8676. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8677. lm[j].alpha /= lm[j].ys;
  8678. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8679. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8680. }
  8681. ggml_vec_scale_f32(nx, d, ys/yy);
  8682. for (int i = 0; i < bound; ++i) {
  8683. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8684. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8685. beta /= lm[j].ys;
  8686. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8687. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8688. j = (j + 1)%m;
  8689. }
  8690. step = 1.0;
  8691. }
  8692. return GGML_OPT_DID_NOT_CONVERGE;
  8693. }
  8694. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8695. struct ggml_opt_params result;
  8696. switch (type) {
  8697. case GGML_OPT_ADAM:
  8698. {
  8699. result = (struct ggml_opt_params) {
  8700. .type = GGML_OPT_ADAM,
  8701. .n_threads = 1,
  8702. .past = 0,
  8703. .delta = 1e-5f,
  8704. .max_no_improvement = 100,
  8705. .print_forward_graph = true,
  8706. .print_backward_graph = true,
  8707. .adam = {
  8708. .n_iter = 10000,
  8709. .alpha = 0.001f,
  8710. .beta1 = 0.9f,
  8711. .beta2 = 0.999f,
  8712. .eps = 1e-8f,
  8713. .eps_f = 1e-5f,
  8714. .eps_g = 1e-3f,
  8715. },
  8716. };
  8717. } break;
  8718. case GGML_OPT_LBFGS:
  8719. {
  8720. result = (struct ggml_opt_params) {
  8721. .type = GGML_OPT_LBFGS,
  8722. .n_threads = 1,
  8723. .past = 0,
  8724. .delta = 1e-5f,
  8725. .max_no_improvement = 0,
  8726. .print_forward_graph = true,
  8727. .print_backward_graph = true,
  8728. .lbfgs = {
  8729. .m = 6,
  8730. .n_iter = 100,
  8731. .max_linesearch = 20,
  8732. .eps = 1e-5f,
  8733. .ftol = 1e-4f,
  8734. .wolfe = 0.9f,
  8735. .min_step = 1e-20f,
  8736. .max_step = 1e+20f,
  8737. .linesearch = GGML_LINESEARCH_DEFAULT,
  8738. },
  8739. };
  8740. } break;
  8741. }
  8742. return result;
  8743. }
  8744. enum ggml_opt_result ggml_opt(
  8745. struct ggml_context * ctx,
  8746. struct ggml_opt_params params,
  8747. struct ggml_tensor * f) {
  8748. bool free_ctx = false;
  8749. if (ctx == NULL) {
  8750. struct ggml_init_params params_ctx = {
  8751. .mem_size = 16*1024*1024,
  8752. .mem_buffer = NULL,
  8753. .no_alloc = false,
  8754. };
  8755. ctx = ggml_init(params_ctx);
  8756. if (ctx == NULL) {
  8757. return GGML_OPT_NO_CONTEXT;
  8758. }
  8759. free_ctx = true;
  8760. }
  8761. enum ggml_opt_result result = GGML_OPT_OK;
  8762. // build forward + backward compute graphs
  8763. struct ggml_cgraph gf = ggml_build_forward (f);
  8764. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8765. switch (params.type) {
  8766. case GGML_OPT_ADAM:
  8767. {
  8768. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8769. } break;
  8770. case GGML_OPT_LBFGS:
  8771. {
  8772. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8773. } break;
  8774. }
  8775. if (params.print_forward_graph) {
  8776. ggml_graph_print (&gf);
  8777. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8778. }
  8779. if (params.print_backward_graph) {
  8780. ggml_graph_print (&gb);
  8781. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8782. }
  8783. if (free_ctx) {
  8784. ggml_free(ctx);
  8785. }
  8786. return result;
  8787. }
  8788. ////////////////////////////////////////////////////////////////////////////////
  8789. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8790. assert(k % QK == 0);
  8791. const int nb = k / QK;
  8792. for (int j = 0; j < n; j += k) {
  8793. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8794. quantize_row_q4_0_reference(src + j, y, k);
  8795. for (int i = 0; i < nb; i++) {
  8796. for (int l = 0; l < QK; l += 2) {
  8797. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8798. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8799. hist[vi0]++;
  8800. hist[vi1]++;
  8801. }
  8802. }
  8803. }
  8804. return (n/QK*sizeof(block_q4_0));
  8805. }
  8806. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8807. assert(k % QK == 0);
  8808. const int nb = k / QK;
  8809. for (int j = 0; j < n; j += k) {
  8810. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8811. quantize_row_q4_1_reference(src + j, y, k);
  8812. for (int i = 0; i < nb; i++) {
  8813. for (int l = 0; l < QK; l += 2) {
  8814. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8815. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8816. hist[vi0]++;
  8817. hist[vi1]++;
  8818. }
  8819. }
  8820. }
  8821. return (n/QK*sizeof(block_q4_1));
  8822. }
  8823. ////////////////////////////////////////////////////////////////////////////////
  8824. int ggml_cpu_has_avx(void) {
  8825. #if defined(__AVX__)
  8826. return 1;
  8827. #else
  8828. return 0;
  8829. #endif
  8830. }
  8831. int ggml_cpu_has_avx2(void) {
  8832. #if defined(__AVX2__)
  8833. return 1;
  8834. #else
  8835. return 0;
  8836. #endif
  8837. }
  8838. int ggml_cpu_has_avx512(void) {
  8839. #if defined(__AVX512F__)
  8840. return 1;
  8841. #else
  8842. return 0;
  8843. #endif
  8844. }
  8845. int ggml_cpu_has_fma(void) {
  8846. #if defined(__FMA__)
  8847. return 1;
  8848. #else
  8849. return 0;
  8850. #endif
  8851. }
  8852. int ggml_cpu_has_neon(void) {
  8853. #if defined(__ARM_NEON)
  8854. return 1;
  8855. #else
  8856. return 0;
  8857. #endif
  8858. }
  8859. int ggml_cpu_has_arm_fma(void) {
  8860. #if defined(__ARM_FEATURE_FMA)
  8861. return 1;
  8862. #else
  8863. return 0;
  8864. #endif
  8865. }
  8866. int ggml_cpu_has_f16c(void) {
  8867. #if defined(__F16C__)
  8868. return 1;
  8869. #else
  8870. return 0;
  8871. #endif
  8872. }
  8873. int ggml_cpu_has_fp16_va(void) {
  8874. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8875. return 1;
  8876. #else
  8877. return 0;
  8878. #endif
  8879. }
  8880. int ggml_cpu_has_wasm_simd(void) {
  8881. #if defined(__wasm_simd128__)
  8882. return 1;
  8883. #else
  8884. return 0;
  8885. #endif
  8886. }
  8887. int ggml_cpu_has_blas(void) {
  8888. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8889. return 1;
  8890. #else
  8891. return 0;
  8892. #endif
  8893. }
  8894. int ggml_cpu_has_sse3(void) {
  8895. #if defined(__SSE3__)
  8896. return 1;
  8897. #else
  8898. return 0;
  8899. #endif
  8900. }
  8901. int ggml_cpu_has_vsx(void) {
  8902. #if defined(__POWER9_VECTOR__)
  8903. return 1;
  8904. #else
  8905. return 0;
  8906. #endif
  8907. }
  8908. ////////////////////////////////////////////////////////////////////////////////