ggml.c 740 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. static void atomic_store(atomic_int * ptr, LONG val) {
  53. InterlockedExchange(ptr, val);
  54. }
  55. static LONG atomic_load(atomic_int * ptr) {
  56. return InterlockedCompareExchange(ptr, 0, 0);
  57. }
  58. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  59. return InterlockedExchangeAdd(ptr, inc);
  60. }
  61. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  62. return atomic_fetch_add(ptr, -(dec));
  63. }
  64. typedef HANDLE pthread_t;
  65. typedef DWORD thread_ret_t;
  66. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  67. (void) unused;
  68. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  69. if (handle == NULL)
  70. {
  71. return EAGAIN;
  72. }
  73. *out = handle;
  74. return 0;
  75. }
  76. static int pthread_join(pthread_t thread, void * unused) {
  77. (void) unused;
  78. int ret = (int) WaitForSingleObject(thread, INFINITE);
  79. CloseHandle(thread);
  80. return ret;
  81. }
  82. static int sched_yield (void) {
  83. Sleep (0);
  84. return 0;
  85. }
  86. #else
  87. #include <pthread.h>
  88. #include <stdatomic.h>
  89. typedef void * thread_ret_t;
  90. #include <sys/types.h>
  91. #include <sys/stat.h>
  92. #include <unistd.h>
  93. #endif
  94. #ifdef GGML_USE_CPU_HBM
  95. #include <hbwmalloc.h>
  96. #endif
  97. #if defined(__APPLE__)
  98. #include <TargetConditionals.h>
  99. #endif
  100. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  101. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  102. #include <sys/wait.h>
  103. void ggml_print_backtrace(void) {
  104. /*
  105. #include <execinfo.h>
  106. #include <dlfcn.h>
  107. void * trace[100];
  108. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  109. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  110. */
  111. // backtrack_symbols does not show line numbers, use gdb instead
  112. char attach[32];
  113. snprintf(attach, sizeof(attach), "attach %d", getpid());
  114. int pid = fork();
  115. if (pid == 0) {
  116. execlp("gdb", "gdb", "--batch",
  117. "-ex", "set style enabled on",
  118. "-ex", attach,
  119. "-ex", "bt -frame-info source-and-location",
  120. "-ex", "detach",
  121. "-ex", "quit",
  122. (char *) NULL);
  123. } else {
  124. waitpid(pid, NULL, 0);
  125. }
  126. }
  127. #else
  128. void ggml_print_backtrace(void) {
  129. // platform not supported
  130. }
  131. #endif
  132. /*#define GGML_PERF*/
  133. #define GGML_DEBUG 0
  134. #define GGML_GELU_FP16
  135. #define GGML_GELU_QUICK_FP16
  136. #define GGML_SILU_FP16
  137. // #define GGML_CROSS_ENTROPY_EXP_FP16
  138. // #define GGML_FLASH_ATTN_EXP_FP16
  139. #define GGML_SOFT_MAX_UNROLL 4
  140. #define GGML_VEC_DOT_UNROLL 2
  141. #define GGML_VEC_MAD_UNROLL 32
  142. //
  143. // logging
  144. //
  145. #if (GGML_DEBUG >= 1)
  146. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG(...)
  149. #endif
  150. #if (GGML_DEBUG >= 5)
  151. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  152. #else
  153. #define GGML_PRINT_DEBUG_5(...)
  154. #endif
  155. #if (GGML_DEBUG >= 10)
  156. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  157. #else
  158. #define GGML_PRINT_DEBUG_10(...)
  159. #endif
  160. #define GGML_PRINT(...) printf(__VA_ARGS__)
  161. //
  162. // end of logging block
  163. //
  164. #ifdef GGML_USE_ACCELERATE
  165. // uncomment to use vDSP for soft max computation
  166. // note: not sure if it is actually faster
  167. //#define GGML_SOFT_MAX_ACCELERATE
  168. #endif
  169. #if defined(_MSC_VER) || defined(__MINGW32__)
  170. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  171. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  172. #else
  173. inline static void * ggml_aligned_malloc(size_t size) {
  174. if (size == 0) {
  175. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  176. return NULL;
  177. }
  178. void * aligned_memory = NULL;
  179. #ifdef GGML_USE_CPU_HBM
  180. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  181. #elif GGML_USE_METAL
  182. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  183. #else
  184. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  185. #endif
  186. if (result != 0) {
  187. // Handle allocation failure
  188. const char *error_desc = "unknown allocation error";
  189. switch (result) {
  190. case EINVAL:
  191. error_desc = "invalid alignment value";
  192. break;
  193. case ENOMEM:
  194. error_desc = "insufficient memory";
  195. break;
  196. }
  197. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  198. GGML_ASSERT(false);
  199. return NULL;
  200. }
  201. return aligned_memory;
  202. }
  203. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  204. #ifdef GGML_USE_CPU_HBM
  205. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  206. #else
  207. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  208. #endif
  209. #endif
  210. inline static void * ggml_malloc(size_t size) {
  211. if (size == 0) {
  212. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  213. return NULL;
  214. }
  215. void * result = malloc(size);
  216. if (result == NULL) {
  217. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  218. GGML_ASSERT(false);
  219. }
  220. return result;
  221. }
  222. // calloc
  223. inline static void * ggml_calloc(size_t num, size_t size) {
  224. if (num == 0 || size == 0) {
  225. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  226. return NULL;
  227. }
  228. void * result = calloc(num, size);
  229. if (result == NULL) {
  230. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  231. GGML_ASSERT(false);
  232. }
  233. return result;
  234. }
  235. #define GGML_MALLOC(size) ggml_malloc(size)
  236. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  237. #define GGML_FREE(ptr) free(ptr)
  238. #define UNUSED GGML_UNUSED
  239. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  240. #if defined(GGML_USE_ACCELERATE)
  241. #include <Accelerate/Accelerate.h>
  242. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  243. #include "ggml-opencl.h"
  244. #endif
  245. #elif defined(GGML_USE_OPENBLAS)
  246. #if defined(GGML_BLAS_USE_MKL)
  247. #include <mkl.h>
  248. #else
  249. #include <cblas.h>
  250. #endif
  251. #elif defined(GGML_USE_CLBLAST)
  252. #include "ggml-opencl.h"
  253. #endif
  254. // floating point type used to accumulate sums
  255. typedef double ggml_float;
  256. #undef MIN
  257. #undef MAX
  258. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  259. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  260. //
  261. // global data
  262. //
  263. // precomputed gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  265. // precomputed quick gelu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  272. float ggml_table_f32_f16[1 << 16];
  273. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  274. switch (status) {
  275. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  276. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  277. case GGML_STATUS_SUCCESS: return "GGML status: success";
  278. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  279. }
  280. return "GGML status: unknown";
  281. }
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  284. return GGML_FP16_TO_FP32(x);
  285. }
  286. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  287. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  291. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  292. return GGML_BF16_TO_FP32(x); // it just left shifts
  293. }
  294. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  295. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  296. return GGML_FP32_TO_BF16(x);
  297. }
  298. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  299. for (int64_t i = 0; i < n; i++) {
  300. y[i] = GGML_FP16_TO_FP32(x[i]);
  301. }
  302. }
  303. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  304. int64_t i = 0;
  305. #if defined(__F16C__)
  306. for (; i + 7 < n; i += 8) {
  307. __m256 x_vec = _mm256_loadu_ps(x + i);
  308. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  309. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  310. }
  311. for(; i + 3 < n; i += 4) {
  312. __m128 x_vec = _mm_loadu_ps(x + i);
  313. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  314. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  315. }
  316. #endif
  317. for (; i < n; i++) {
  318. y[i] = GGML_FP32_TO_FP16(x[i]);
  319. }
  320. }
  321. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  322. int64_t i = 0;
  323. #if defined(__AVX512F__)
  324. for (; i + 16 <= n; i += 16) {
  325. _mm512_storeu_ps(y + i,
  326. _mm512_castsi512_ps(
  327. _mm512_slli_epi32(
  328. _mm512_cvtepu16_epi32(
  329. _mm256_loadu_si256(
  330. (const __m256i *)(x + i))),
  331. 16)));
  332. }
  333. #elif defined(__AVX2__)
  334. for (; i + 8 <= n; i += 8) {
  335. _mm256_storeu_ps(y + i,
  336. _mm256_castsi256_ps(
  337. _mm256_slli_epi32(
  338. _mm256_cvtepu16_epi32(
  339. _mm_loadu_si128(
  340. (const __m128i *)(x + i))),
  341. 16)));
  342. }
  343. #endif
  344. for (; i < n; i++) {
  345. y[i] = GGML_BF16_TO_FP32(x[i]);
  346. }
  347. }
  348. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  349. int i = 0;
  350. #if defined(__AVX512BF16__)
  351. for (; i + 32 <= n; i += 32) {
  352. _mm512_storeu_ps(
  353. (__m512 *)(y + i),
  354. (__m512)_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  355. _mm512_loadu_ps(x + i)));
  356. }
  357. #endif
  358. for (; i < n; i++) {
  359. y[i] = GGML_FP32_TO_BF16(x[i]);
  360. }
  361. }
  362. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  363. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  364. }
  365. //
  366. // timing
  367. //
  368. #if defined(_MSC_VER) || defined(__MINGW32__)
  369. static int64_t timer_freq, timer_start;
  370. void ggml_time_init(void) {
  371. LARGE_INTEGER t;
  372. QueryPerformanceFrequency(&t);
  373. timer_freq = t.QuadPart;
  374. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  375. // and the uptime is high enough.
  376. // We subtract the program start time to reduce the likelihood of that happening.
  377. QueryPerformanceCounter(&t);
  378. timer_start = t.QuadPart;
  379. }
  380. int64_t ggml_time_ms(void) {
  381. LARGE_INTEGER t;
  382. QueryPerformanceCounter(&t);
  383. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  384. }
  385. int64_t ggml_time_us(void) {
  386. LARGE_INTEGER t;
  387. QueryPerformanceCounter(&t);
  388. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  389. }
  390. #else
  391. void ggml_time_init(void) {}
  392. int64_t ggml_time_ms(void) {
  393. struct timespec ts;
  394. clock_gettime(CLOCK_MONOTONIC, &ts);
  395. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  396. }
  397. int64_t ggml_time_us(void) {
  398. struct timespec ts;
  399. clock_gettime(CLOCK_MONOTONIC, &ts);
  400. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  401. }
  402. #endif
  403. int64_t ggml_cycles(void) {
  404. return clock();
  405. }
  406. int64_t ggml_cycles_per_ms(void) {
  407. return CLOCKS_PER_SEC/1000;
  408. }
  409. #ifdef GGML_PERF
  410. #define ggml_perf_time_ms() ggml_time_ms()
  411. #define ggml_perf_time_us() ggml_time_us()
  412. #define ggml_perf_cycles() ggml_cycles()
  413. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  414. #else
  415. #define ggml_perf_time_ms() 0
  416. #define ggml_perf_time_us() 0
  417. #define ggml_perf_cycles() 0
  418. #define ggml_perf_cycles_per_ms() 0
  419. #endif
  420. //
  421. // cross-platform UTF-8 file paths
  422. //
  423. #ifdef _WIN32
  424. static wchar_t * ggml_mbstowcs(const char * mbs) {
  425. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  426. if (!wlen) {
  427. errno = EINVAL;
  428. return NULL;
  429. }
  430. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  431. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  432. if (!wlen) {
  433. GGML_FREE(wbuf);
  434. errno = EINVAL;
  435. return NULL;
  436. }
  437. return wbuf;
  438. }
  439. #endif
  440. FILE * ggml_fopen(const char * fname, const char * mode) {
  441. #ifdef _WIN32
  442. FILE * file = NULL;
  443. // convert fname (UTF-8)
  444. wchar_t * wfname = ggml_mbstowcs(fname);
  445. if (wfname) {
  446. // convert mode (ANSI)
  447. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  448. wchar_t * wmode_p = wmode;
  449. do {
  450. *wmode_p++ = (wchar_t)*mode;
  451. } while (*mode++);
  452. // open file
  453. file = _wfopen(wfname, wmode);
  454. GGML_FREE(wfname);
  455. GGML_FREE(wmode);
  456. }
  457. return file;
  458. #else
  459. return fopen(fname, mode);
  460. #endif
  461. }
  462. //
  463. // cache line
  464. //
  465. #if defined(__cpp_lib_hardware_interference_size)
  466. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  467. #else
  468. #if defined(__POWER9_VECTOR__)
  469. #define CACHE_LINE_SIZE 128
  470. #else
  471. #define CACHE_LINE_SIZE 64
  472. #endif
  473. #endif
  474. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  475. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  476. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  477. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  478. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  479. [GGML_TYPE_I8] = {
  480. .type_name = "i8",
  481. .blck_size = 1,
  482. .type_size = sizeof(int8_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I16] = {
  486. .type_name = "i16",
  487. .blck_size = 1,
  488. .type_size = sizeof(int16_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I32] = {
  492. .type_name = "i32",
  493. .blck_size = 1,
  494. .type_size = sizeof(int32_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_I64] = {
  498. .type_name = "i64",
  499. .blck_size = 1,
  500. .type_size = sizeof(int64_t),
  501. .is_quantized = false,
  502. },
  503. [GGML_TYPE_F64] = {
  504. .type_name = "f64",
  505. .blck_size = 1,
  506. .type_size = sizeof(double),
  507. .is_quantized = false,
  508. .nrows = 1,
  509. },
  510. [GGML_TYPE_F32] = {
  511. .type_name = "f32",
  512. .blck_size = 1,
  513. .type_size = sizeof(float),
  514. .is_quantized = false,
  515. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  516. .vec_dot_type = GGML_TYPE_F32,
  517. .nrows = 1,
  518. },
  519. [GGML_TYPE_F16] = {
  520. .type_name = "f16",
  521. .blck_size = 1,
  522. .type_size = sizeof(ggml_fp16_t),
  523. .is_quantized = false,
  524. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  525. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  526. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  527. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  528. .vec_dot_type = GGML_TYPE_F16,
  529. .nrows = 1,
  530. },
  531. [GGML_TYPE_Q4_0] = {
  532. .type_name = "q4_0",
  533. .blck_size = QK4_0,
  534. .type_size = sizeof(block_q4_0),
  535. .is_quantized = true,
  536. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  537. .from_float = quantize_row_q4_0,
  538. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  539. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  540. .vec_dot_type = GGML_TYPE_Q8_0,
  541. #if defined (__ARM_FEATURE_MATMUL_INT8)
  542. .nrows = 2,
  543. #else
  544. .nrows = 1,
  545. #endif
  546. },
  547. [GGML_TYPE_Q4_1] = {
  548. .type_name = "q4_1",
  549. .blck_size = QK4_1,
  550. .type_size = sizeof(block_q4_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  553. .from_float = quantize_row_q4_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  555. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. #if defined (__ARM_FEATURE_MATMUL_INT8)
  558. .nrows = 2,
  559. #else
  560. .nrows = 1,
  561. #endif
  562. },
  563. [4] = { // GGML_TYPE_Q4_2
  564. .type_name = "DEPRECATED",
  565. .blck_size = 0,
  566. .type_size = 0,
  567. .is_quantized = false,
  568. .to_float = NULL,
  569. .from_float = NULL,
  570. .from_float_reference = NULL,
  571. .vec_dot = NULL,
  572. .vec_dot_type = GGML_TYPE_COUNT,
  573. .nrows = 1,
  574. },
  575. [5] = { // GGML_TYPE_Q4_3
  576. .type_name = "DEPRECATED",
  577. .blck_size = 0,
  578. .type_size = 0,
  579. .is_quantized = false,
  580. .to_float = NULL,
  581. .from_float = NULL,
  582. .from_float_reference = NULL,
  583. .vec_dot = NULL,
  584. .vec_dot_type = GGML_TYPE_COUNT,
  585. .nrows = 1,
  586. },
  587. [GGML_TYPE_Q5_0] = {
  588. .type_name = "q5_0",
  589. .blck_size = QK5_0,
  590. .type_size = sizeof(block_q5_0),
  591. .is_quantized = true,
  592. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  593. .from_float = quantize_row_q5_0,
  594. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  595. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  596. .vec_dot_type = GGML_TYPE_Q8_0,
  597. .nrows = 1,
  598. },
  599. [GGML_TYPE_Q5_1] = {
  600. .type_name = "q5_1",
  601. .blck_size = QK5_1,
  602. .type_size = sizeof(block_q5_1),
  603. .is_quantized = true,
  604. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  605. .from_float = quantize_row_q5_1,
  606. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  607. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  608. .vec_dot_type = GGML_TYPE_Q8_1,
  609. .nrows = 1,
  610. },
  611. [GGML_TYPE_Q8_0] = {
  612. .type_name = "q8_0",
  613. .blck_size = QK8_0,
  614. .type_size = sizeof(block_q8_0),
  615. .is_quantized = true,
  616. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  617. .from_float = quantize_row_q8_0,
  618. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  619. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  620. .vec_dot_type = GGML_TYPE_Q8_0,
  621. #if defined (__ARM_FEATURE_MATMUL_INT8)
  622. .nrows = 2,
  623. #else
  624. .nrows = 1,
  625. #endif
  626. },
  627. [GGML_TYPE_Q8_1] = {
  628. .type_name = "q8_1",
  629. .blck_size = QK8_1,
  630. .type_size = sizeof(block_q8_1),
  631. .is_quantized = true,
  632. .from_float = quantize_row_q8_1,
  633. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  634. .vec_dot_type = GGML_TYPE_Q8_1,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_Q2_K] = {
  638. .type_name = "q2_K",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_q2_K),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  643. .from_float = quantize_row_q2_K,
  644. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  645. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_Q3_K] = {
  650. .type_name = "q3_K",
  651. .blck_size = QK_K,
  652. .type_size = sizeof(block_q3_K),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  655. .from_float = quantize_row_q3_K,
  656. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  657. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  658. .vec_dot_type = GGML_TYPE_Q8_K,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_Q4_K] = {
  662. .type_name = "q4_K",
  663. .blck_size = QK_K,
  664. .type_size = sizeof(block_q4_K),
  665. .is_quantized = true,
  666. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  667. .from_float = quantize_row_q4_K,
  668. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  669. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  670. .vec_dot_type = GGML_TYPE_Q8_K,
  671. .nrows = 1,
  672. },
  673. [GGML_TYPE_Q5_K] = {
  674. .type_name = "q5_K",
  675. .blck_size = QK_K,
  676. .type_size = sizeof(block_q5_K),
  677. .is_quantized = true,
  678. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  679. .from_float = quantize_row_q5_K,
  680. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  681. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  682. .vec_dot_type = GGML_TYPE_Q8_K,
  683. .nrows = 1,
  684. },
  685. [GGML_TYPE_Q6_K] = {
  686. .type_name = "q6_K",
  687. .blck_size = QK_K,
  688. .type_size = sizeof(block_q6_K),
  689. .is_quantized = true,
  690. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  691. .from_float = quantize_row_q6_K,
  692. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  693. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  694. .vec_dot_type = GGML_TYPE_Q8_K,
  695. .nrows = 1,
  696. },
  697. [GGML_TYPE_IQ2_XXS] = {
  698. .type_name = "iq2_xxs",
  699. .blck_size = QK_K,
  700. .type_size = sizeof(block_iq2_xxs),
  701. .is_quantized = true,
  702. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  703. .from_float = NULL,
  704. .from_float_reference = NULL,
  705. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  706. .vec_dot_type = GGML_TYPE_Q8_K,
  707. .nrows = 1,
  708. },
  709. [GGML_TYPE_IQ2_XS] = {
  710. .type_name = "iq2_xs",
  711. .blck_size = QK_K,
  712. .type_size = sizeof(block_iq2_xs),
  713. .is_quantized = true,
  714. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  715. .from_float = NULL,
  716. .from_float_reference = NULL,
  717. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  718. .vec_dot_type = GGML_TYPE_Q8_K,
  719. .nrows = 1,
  720. },
  721. [GGML_TYPE_IQ3_XXS] = {
  722. .type_name = "iq3_xxs",
  723. .blck_size = QK_K,
  724. .type_size = sizeof(block_iq3_xxs),
  725. .is_quantized = true,
  726. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  727. .from_float = quantize_row_iq3_xxs,
  728. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  729. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  730. .vec_dot_type = GGML_TYPE_Q8_K,
  731. .nrows = 1,
  732. },
  733. [GGML_TYPE_IQ3_S] = {
  734. .type_name = "iq3_s",
  735. .blck_size = QK_K,
  736. .type_size = sizeof(block_iq3_s),
  737. .is_quantized = true,
  738. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  739. .from_float = quantize_row_iq3_s,
  740. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  741. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  742. .vec_dot_type = GGML_TYPE_Q8_K,
  743. .nrows = 1,
  744. },
  745. [GGML_TYPE_IQ2_S] = {
  746. .type_name = "iq2_s",
  747. .blck_size = QK_K,
  748. .type_size = sizeof(block_iq2_s),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  751. .from_float = quantize_row_iq2_s,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  753. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  754. .vec_dot_type = GGML_TYPE_Q8_K,
  755. .nrows = 1,
  756. },
  757. [GGML_TYPE_IQ1_S] = {
  758. .type_name = "iq1_s",
  759. .blck_size = QK_K,
  760. .type_size = sizeof(block_iq1_s),
  761. .is_quantized = true,
  762. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  763. .from_float = NULL,
  764. .from_float_reference = NULL,
  765. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  766. .vec_dot_type = GGML_TYPE_Q8_K,
  767. .nrows = 1,
  768. },
  769. [GGML_TYPE_IQ1_M] = {
  770. .type_name = "iq1_m",
  771. .blck_size = QK_K,
  772. .type_size = sizeof(block_iq1_m),
  773. .is_quantized = true,
  774. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  775. .from_float = NULL,
  776. .from_float_reference = NULL,
  777. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  778. .vec_dot_type = GGML_TYPE_Q8_K,
  779. .nrows = 1,
  780. },
  781. [GGML_TYPE_IQ4_NL] = {
  782. .type_name = "iq4_nl",
  783. .blck_size = QK4_NL,
  784. .type_size = sizeof(block_iq4_nl),
  785. .is_quantized = true,
  786. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  787. .from_float = quantize_row_iq4_nl,
  788. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  789. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  790. .vec_dot_type = GGML_TYPE_Q8_0,
  791. .nrows = 1,
  792. },
  793. [GGML_TYPE_IQ4_XS] = {
  794. .type_name = "iq4_xs",
  795. #if QK_K == 64
  796. .blck_size = QK4_NL,
  797. #else
  798. .blck_size = QK_K,
  799. #endif
  800. .type_size = sizeof(block_iq4_xs),
  801. .is_quantized = true,
  802. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  803. .from_float = quantize_row_iq4_xs,
  804. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  805. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  806. #if QK_K == 64
  807. .vec_dot_type = GGML_TYPE_Q8_0,
  808. #else
  809. .vec_dot_type = GGML_TYPE_Q8_K,
  810. #endif
  811. .nrows = 1,
  812. },
  813. [GGML_TYPE_Q8_K] = {
  814. .type_name = "q8_K",
  815. .blck_size = QK_K,
  816. .type_size = sizeof(block_q8_K),
  817. .is_quantized = true,
  818. .from_float = quantize_row_q8_K,
  819. },
  820. [GGML_TYPE_BF16] = {
  821. .type_name = "bf16",
  822. .blck_size = 1,
  823. .type_size = sizeof(ggml_bf16_t),
  824. .is_quantized = false,
  825. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  826. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  827. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  828. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  829. .vec_dot_type = GGML_TYPE_BF16,
  830. .nrows = 1,
  831. }
  832. };
  833. // For internal test use
  834. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  835. GGML_ASSERT(type < GGML_TYPE_COUNT);
  836. return type_traits[type];
  837. }
  838. //
  839. // simd mappings
  840. //
  841. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  842. // we then implement the fundamental computation operations below using only these macros
  843. // adding support for new architectures requires to define the corresponding SIMD macros
  844. //
  845. // GGML_F32_STEP / GGML_F16_STEP
  846. // number of elements to process in a single step
  847. //
  848. // GGML_F32_EPR / GGML_F16_EPR
  849. // number of elements to fit in a single register
  850. //
  851. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  852. #define GGML_SIMD
  853. // F32 NEON
  854. #define GGML_F32_STEP 16
  855. #define GGML_F32_EPR 4
  856. #define GGML_F32x4 float32x4_t
  857. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  858. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  859. #define GGML_F32x4_LOAD vld1q_f32
  860. #define GGML_F32x4_STORE vst1q_f32
  861. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  862. #define GGML_F32x4_ADD vaddq_f32
  863. #define GGML_F32x4_MUL vmulq_f32
  864. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  865. #define GGML_F32x4_REDUCE(res, x) \
  866. { \
  867. int offset = GGML_F32_ARR >> 1; \
  868. for (int i = 0; i < offset; ++i) { \
  869. x[i] = vaddq_f32(x[i], x[offset+i]); \
  870. } \
  871. offset >>= 1; \
  872. for (int i = 0; i < offset; ++i) { \
  873. x[i] = vaddq_f32(x[i], x[offset+i]); \
  874. } \
  875. offset >>= 1; \
  876. for (int i = 0; i < offset; ++i) { \
  877. x[i] = vaddq_f32(x[i], x[offset+i]); \
  878. } \
  879. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  880. }
  881. #define GGML_F32_VEC GGML_F32x4
  882. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  883. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  884. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  885. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  886. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  887. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  888. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  889. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  890. // F16 NEON
  891. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  892. #define GGML_F16_STEP 32
  893. #define GGML_F16_EPR 8
  894. #define GGML_F16x8 float16x8_t
  895. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  896. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  897. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  898. #define GGML_F16x8_STORE vst1q_f16
  899. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  900. #define GGML_F16x8_ADD vaddq_f16
  901. #define GGML_F16x8_MUL vmulq_f16
  902. #define GGML_F16x8_REDUCE(res, x) \
  903. do { \
  904. int offset = GGML_F16_ARR >> 1; \
  905. for (int i = 0; i < offset; ++i) { \
  906. x[i] = vaddq_f16(x[i], x[offset+i]); \
  907. } \
  908. offset >>= 1; \
  909. for (int i = 0; i < offset; ++i) { \
  910. x[i] = vaddq_f16(x[i], x[offset+i]); \
  911. } \
  912. offset >>= 1; \
  913. for (int i = 0; i < offset; ++i) { \
  914. x[i] = vaddq_f16(x[i], x[offset+i]); \
  915. } \
  916. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  917. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  918. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  919. } while (0)
  920. #define GGML_F16_VEC GGML_F16x8
  921. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  922. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  923. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  924. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  925. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  926. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  927. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  928. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  929. #else
  930. // if FP16 vector arithmetic is not supported, we use FP32 instead
  931. // and take advantage of the vcvt_ functions to convert to/from FP16
  932. #define GGML_F16_STEP 16
  933. #define GGML_F16_EPR 4
  934. #define GGML_F32Cx4 float32x4_t
  935. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  936. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  937. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  938. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  939. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  940. #define GGML_F32Cx4_ADD vaddq_f32
  941. #define GGML_F32Cx4_MUL vmulq_f32
  942. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  943. #define GGML_F16_VEC GGML_F32Cx4
  944. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  945. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  946. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  947. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  948. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  949. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  950. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  951. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  952. #endif
  953. #elif defined(__AVX512F__)
  954. #define GGML_SIMD
  955. // F32 AVX512
  956. #define GGML_F32_STEP 64
  957. #define GGML_F32_EPR 16
  958. #define GGML_F32x16 __m512
  959. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  960. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  961. #define GGML_F32x16_LOAD _mm512_loadu_ps
  962. #define GGML_F32x16_STORE _mm512_storeu_ps
  963. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  964. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  965. #define GGML_F32x16_ADD _mm512_add_ps
  966. #define GGML_F32x16_MUL _mm512_mul_ps
  967. #define GGML_F32x16_REDUCE(res, x) \
  968. do { \
  969. int offset = GGML_F32_ARR >> 1; \
  970. for (int i = 0; i < offset; ++i) { \
  971. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  972. } \
  973. offset >>= 1; \
  974. for (int i = 0; i < offset; ++i) { \
  975. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  976. } \
  977. offset >>= 1; \
  978. for (int i = 0; i < offset; ++i) { \
  979. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  980. } \
  981. res = _mm512_reduce_add_ps(x[0]); \
  982. } while (0)
  983. // TODO: is this optimal ?
  984. #define GGML_F32_VEC GGML_F32x16
  985. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  986. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  987. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  988. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  989. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  990. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  991. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  992. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  993. // F16 AVX512
  994. // F16 AVX
  995. #define GGML_F16_STEP 64
  996. #define GGML_F16_EPR 16
  997. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  998. #define GGML_F32Cx16 __m512
  999. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1000. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1001. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1002. // so F16C guard isn't required
  1003. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1004. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1005. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1006. #define GGML_F32Cx16_ADD _mm512_add_ps
  1007. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1008. #define GGML_F32Cx16_REDUCE(res, x) \
  1009. do { \
  1010. int offset = GGML_F32_ARR >> 1; \
  1011. for (int i = 0; i < offset; ++i) { \
  1012. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1013. } \
  1014. offset >>= 1; \
  1015. for (int i = 0; i < offset; ++i) { \
  1016. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1017. } \
  1018. offset >>= 1; \
  1019. for (int i = 0; i < offset; ++i) { \
  1020. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1021. } \
  1022. res = _mm512_reduce_add_ps(x[0]); \
  1023. } while (0)
  1024. #define GGML_F16_VEC GGML_F32Cx16
  1025. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1026. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1027. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1028. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1029. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1030. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1031. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1032. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1033. #elif defined(__AVX__)
  1034. #define GGML_SIMD
  1035. // F32 AVX
  1036. #define GGML_F32_STEP 32
  1037. #define GGML_F32_EPR 8
  1038. #define GGML_F32x8 __m256
  1039. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1040. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1041. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1042. #define GGML_F32x8_STORE _mm256_storeu_ps
  1043. #if defined(__FMA__)
  1044. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1045. #else
  1046. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1047. #endif
  1048. #define GGML_F32x8_ADD _mm256_add_ps
  1049. #define GGML_F32x8_MUL _mm256_mul_ps
  1050. #define GGML_F32x8_REDUCE(res, x) \
  1051. do { \
  1052. int offset = GGML_F32_ARR >> 1; \
  1053. for (int i = 0; i < offset; ++i) { \
  1054. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1055. } \
  1056. offset >>= 1; \
  1057. for (int i = 0; i < offset; ++i) { \
  1058. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1059. } \
  1060. offset >>= 1; \
  1061. for (int i = 0; i < offset; ++i) { \
  1062. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1063. } \
  1064. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1065. _mm256_extractf128_ps(x[0], 1)); \
  1066. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1067. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1068. } while (0)
  1069. // TODO: is this optimal ?
  1070. #define GGML_F32_VEC GGML_F32x8
  1071. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1072. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1073. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1074. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1075. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1076. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1077. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1078. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1079. // F16 AVX
  1080. #define GGML_F16_STEP 32
  1081. #define GGML_F16_EPR 8
  1082. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1083. #define GGML_F32Cx8 __m256
  1084. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1085. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1086. #if defined(__F16C__)
  1087. // the _mm256_cvt intrinsics require F16C
  1088. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1089. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1090. #else
  1091. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1092. float tmp[8];
  1093. for (int i = 0; i < 8; i++) {
  1094. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1095. }
  1096. return _mm256_loadu_ps(tmp);
  1097. }
  1098. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1099. float arr[8];
  1100. _mm256_storeu_ps(arr, y);
  1101. for (int i = 0; i < 8; i++)
  1102. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1103. }
  1104. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1105. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1106. #endif
  1107. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1108. #define GGML_F32Cx8_ADD _mm256_add_ps
  1109. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1110. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1111. #define GGML_F16_VEC GGML_F32Cx8
  1112. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1113. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1114. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1115. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1116. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1117. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1118. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1119. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1120. #elif defined(__POWER9_VECTOR__)
  1121. #define GGML_SIMD
  1122. // F32 POWER9
  1123. #define GGML_F32_STEP 32
  1124. #define GGML_F32_EPR 4
  1125. #define GGML_F32x4 vector float
  1126. #define GGML_F32x4_ZERO 0.0f
  1127. #define GGML_F32x4_SET1 vec_splats
  1128. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1129. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1130. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1131. #define GGML_F32x4_ADD vec_add
  1132. #define GGML_F32x4_MUL vec_mul
  1133. #define GGML_F32x4_REDUCE(res, x) \
  1134. { \
  1135. int offset = GGML_F32_ARR >> 1; \
  1136. for (int i = 0; i < offset; ++i) { \
  1137. x[i] = vec_add(x[i], x[offset+i]); \
  1138. } \
  1139. offset >>= 1; \
  1140. for (int i = 0; i < offset; ++i) { \
  1141. x[i] = vec_add(x[i], x[offset+i]); \
  1142. } \
  1143. offset >>= 1; \
  1144. for (int i = 0; i < offset; ++i) { \
  1145. x[i] = vec_add(x[i], x[offset+i]); \
  1146. } \
  1147. res = vec_extract(x[0], 0) + \
  1148. vec_extract(x[0], 1) + \
  1149. vec_extract(x[0], 2) + \
  1150. vec_extract(x[0], 3); \
  1151. }
  1152. #define GGML_F32_VEC GGML_F32x4
  1153. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1154. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1155. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1156. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1157. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1158. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1159. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1160. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1161. // F16 POWER9
  1162. #define GGML_F16_STEP GGML_F32_STEP
  1163. #define GGML_F16_EPR GGML_F32_EPR
  1164. #define GGML_F16_VEC GGML_F32x4
  1165. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1166. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1167. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1168. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1169. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1170. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1171. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1172. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1173. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1174. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1175. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1176. #define GGML_F16_VEC_STORE(p, r, i) \
  1177. if (i & 0x1) \
  1178. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1179. r[i - GGML_ENDIAN_BYTE(0)]), \
  1180. 0, p - GGML_F16_EPR)
  1181. #elif defined(__wasm_simd128__)
  1182. #define GGML_SIMD
  1183. // F32 WASM
  1184. #define GGML_F32_STEP 16
  1185. #define GGML_F32_EPR 4
  1186. #define GGML_F32x4 v128_t
  1187. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1188. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1189. #define GGML_F32x4_LOAD wasm_v128_load
  1190. #define GGML_F32x4_STORE wasm_v128_store
  1191. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1192. #define GGML_F32x4_ADD wasm_f32x4_add
  1193. #define GGML_F32x4_MUL wasm_f32x4_mul
  1194. #define GGML_F32x4_REDUCE(res, x) \
  1195. { \
  1196. int offset = GGML_F32_ARR >> 1; \
  1197. for (int i = 0; i < offset; ++i) { \
  1198. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1199. } \
  1200. offset >>= 1; \
  1201. for (int i = 0; i < offset; ++i) { \
  1202. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1203. } \
  1204. offset >>= 1; \
  1205. for (int i = 0; i < offset; ++i) { \
  1206. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1207. } \
  1208. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1209. wasm_f32x4_extract_lane(x[0], 1) + \
  1210. wasm_f32x4_extract_lane(x[0], 2) + \
  1211. wasm_f32x4_extract_lane(x[0], 3); \
  1212. }
  1213. #define GGML_F32_VEC GGML_F32x4
  1214. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1215. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1216. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1217. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1218. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1219. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1220. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1221. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1222. // F16 WASM
  1223. #define GGML_F16_STEP 16
  1224. #define GGML_F16_EPR 4
  1225. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1226. float tmp[4];
  1227. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1228. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1229. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1230. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1231. return wasm_v128_load(tmp);
  1232. }
  1233. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1234. float tmp[4];
  1235. wasm_v128_store(tmp, x);
  1236. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1237. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1238. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1239. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1240. }
  1241. #define GGML_F16x4 v128_t
  1242. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1243. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1244. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1245. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1246. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1247. #define GGML_F16x4_ADD wasm_f32x4_add
  1248. #define GGML_F16x4_MUL wasm_f32x4_mul
  1249. #define GGML_F16x4_REDUCE(res, x) \
  1250. { \
  1251. int offset = GGML_F16_ARR >> 1; \
  1252. for (int i = 0; i < offset; ++i) { \
  1253. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1254. } \
  1255. offset >>= 1; \
  1256. for (int i = 0; i < offset; ++i) { \
  1257. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1258. } \
  1259. offset >>= 1; \
  1260. for (int i = 0; i < offset; ++i) { \
  1261. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1262. } \
  1263. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1264. wasm_f32x4_extract_lane(x[0], 1) + \
  1265. wasm_f32x4_extract_lane(x[0], 2) + \
  1266. wasm_f32x4_extract_lane(x[0], 3); \
  1267. }
  1268. #define GGML_F16_VEC GGML_F16x4
  1269. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1270. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1271. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1272. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1273. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1274. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1275. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1276. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1277. #elif defined(__SSE3__)
  1278. #define GGML_SIMD
  1279. // F32 SSE
  1280. #define GGML_F32_STEP 32
  1281. #define GGML_F32_EPR 4
  1282. #define GGML_F32x4 __m128
  1283. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1284. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1285. #define GGML_F32x4_LOAD _mm_loadu_ps
  1286. #define GGML_F32x4_STORE _mm_storeu_ps
  1287. #if defined(__FMA__)
  1288. // TODO: Does this work?
  1289. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1290. #else
  1291. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1292. #endif
  1293. #define GGML_F32x4_ADD _mm_add_ps
  1294. #define GGML_F32x4_MUL _mm_mul_ps
  1295. #define GGML_F32x4_REDUCE(res, x) \
  1296. { \
  1297. int offset = GGML_F32_ARR >> 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1300. } \
  1301. offset >>= 1; \
  1302. for (int i = 0; i < offset; ++i) { \
  1303. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1304. } \
  1305. offset >>= 1; \
  1306. for (int i = 0; i < offset; ++i) { \
  1307. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1308. } \
  1309. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1310. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1311. }
  1312. // TODO: is this optimal ?
  1313. #define GGML_F32_VEC GGML_F32x4
  1314. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1315. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1316. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1317. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1318. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1319. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1320. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1321. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1322. // F16 SSE
  1323. #define GGML_F16_STEP 32
  1324. #define GGML_F16_EPR 4
  1325. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1326. float tmp[4];
  1327. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1328. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1329. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1330. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1331. return _mm_loadu_ps(tmp);
  1332. }
  1333. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1334. float arr[4];
  1335. _mm_storeu_ps(arr, y);
  1336. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1337. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1338. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1339. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1340. }
  1341. #define GGML_F32Cx4 __m128
  1342. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1343. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1344. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1345. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1346. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1347. #define GGML_F32Cx4_ADD _mm_add_ps
  1348. #define GGML_F32Cx4_MUL _mm_mul_ps
  1349. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1350. #define GGML_F16_VEC GGML_F32Cx4
  1351. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1352. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1353. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1354. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1355. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1356. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1357. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1358. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1359. #endif
  1360. // GGML_F32_ARR / GGML_F16_ARR
  1361. // number of registers to use per step
  1362. #ifdef GGML_SIMD
  1363. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1364. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1365. #endif
  1366. //
  1367. // fundamental operations
  1368. //
  1369. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1370. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1371. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1372. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1373. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1374. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1375. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1376. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1377. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1378. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1379. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1380. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1381. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1382. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1383. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1384. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1385. assert(nrc == 1);
  1386. UNUSED(nrc);
  1387. UNUSED(bx);
  1388. UNUSED(by);
  1389. UNUSED(bs);
  1390. #if defined(GGML_SIMD)
  1391. float sumf = 0.0f;
  1392. const int np = (n & ~(GGML_F32_STEP - 1));
  1393. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1394. GGML_F32_VEC ax[GGML_F32_ARR];
  1395. GGML_F32_VEC ay[GGML_F32_ARR];
  1396. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1397. for (int j = 0; j < GGML_F32_ARR; j++) {
  1398. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1399. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1400. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1401. }
  1402. }
  1403. // reduce sum0..sum3 to sum0
  1404. GGML_F32_VEC_REDUCE(sumf, sum);
  1405. // leftovers
  1406. for (int i = np; i < n; ++i) {
  1407. sumf += x[i]*y[i];
  1408. }
  1409. #else
  1410. // scalar
  1411. ggml_float sumf = 0.0;
  1412. for (int i = 0; i < n; ++i) {
  1413. sumf += (ggml_float)(x[i]*y[i]);
  1414. }
  1415. #endif
  1416. *s = sumf;
  1417. }
  1418. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1419. assert(nrc == 1);
  1420. UNUSED(nrc);
  1421. UNUSED(bx);
  1422. UNUSED(by);
  1423. UNUSED(bs);
  1424. int i = 0;
  1425. ggml_float sumf = 0;
  1426. #if defined(__AVX512BF16__)
  1427. __m512 c1 = _mm512_setzero_ps();
  1428. __m512 c2 = _mm512_setzero_ps();
  1429. for (; i + 64 <= n; i += 64) {
  1430. c1 = _mm512_dpbf16_ps(c1, (__m512bh)_mm512_loadu_ps((const float *)(x + i)),
  1431. (__m512bh)_mm512_loadu_ps((const float *)(y + i)));
  1432. c2 = _mm512_dpbf16_ps(c2, (__m512bh)_mm512_loadu_ps((const float *)(x + i + 32)),
  1433. (__m512bh)_mm512_loadu_ps((const float *)(y + i + 32)));
  1434. }
  1435. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1436. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1437. #elif defined(__AVX512F__)
  1438. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1439. __m512 c1 = _mm512_setzero_ps();
  1440. __m512 c2 = _mm512_setzero_ps();
  1441. for (; i + 32 <= n; i += 32) {
  1442. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1443. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1444. }
  1445. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1446. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1447. #undef LOAD
  1448. #elif defined(__AVX2__)
  1449. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1450. __m256 c1 = _mm256_setzero_ps();
  1451. __m256 c2 = _mm256_setzero_ps();
  1452. __m256 c3 = _mm256_setzero_ps();
  1453. __m256 c4 = _mm256_setzero_ps();
  1454. for (; i + 32 <= n; i += 32) {
  1455. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1456. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1457. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1458. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1459. }
  1460. __m128 g;
  1461. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1462. _mm256_add_ps(c2, c4));
  1463. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1464. _mm256_castps256_ps128(c1));
  1465. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1466. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1467. sumf += (ggml_float)_mm_cvtss_f32(g);
  1468. #undef LOAD
  1469. #endif
  1470. for (; i < n; ++i) {
  1471. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1472. GGML_BF16_TO_FP32(y[i]));
  1473. }
  1474. *s = sumf;
  1475. }
  1476. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1477. assert(nrc == 1);
  1478. UNUSED(nrc);
  1479. UNUSED(bx);
  1480. UNUSED(by);
  1481. UNUSED(bs);
  1482. ggml_float sumf = 0.0;
  1483. #if defined(GGML_SIMD)
  1484. const int np = (n & ~(GGML_F16_STEP - 1));
  1485. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1486. GGML_F16_VEC ax[GGML_F16_ARR];
  1487. GGML_F16_VEC ay[GGML_F16_ARR];
  1488. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1489. for (int j = 0; j < GGML_F16_ARR; j++) {
  1490. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1491. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1492. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1493. }
  1494. }
  1495. // reduce sum0..sum3 to sum0
  1496. GGML_F16_VEC_REDUCE(sumf, sum);
  1497. // leftovers
  1498. for (int i = np; i < n; ++i) {
  1499. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1500. }
  1501. #else
  1502. for (int i = 0; i < n; ++i) {
  1503. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1504. }
  1505. #endif
  1506. *s = sumf;
  1507. }
  1508. // compute GGML_VEC_DOT_UNROLL dot products at once
  1509. // xs - x row stride in bytes
  1510. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1511. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1512. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1513. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1514. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1515. }
  1516. #if defined(GGML_SIMD)
  1517. const int np = (n & ~(GGML_F16_STEP - 1));
  1518. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1519. GGML_F16_VEC ax[GGML_F16_ARR];
  1520. GGML_F16_VEC ay[GGML_F16_ARR];
  1521. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1522. for (int j = 0; j < GGML_F16_ARR; j++) {
  1523. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1524. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1525. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1526. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1527. }
  1528. }
  1529. }
  1530. // reduce sum0..sum3 to sum0
  1531. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1532. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1533. }
  1534. // leftovers
  1535. for (int i = np; i < n; ++i) {
  1536. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1537. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1538. }
  1539. }
  1540. #else
  1541. for (int i = 0; i < n; ++i) {
  1542. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1543. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1544. }
  1545. }
  1546. #endif
  1547. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1548. s[i] = sumf[i];
  1549. }
  1550. }
  1551. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1552. #if defined(GGML_SIMD)
  1553. const int np = (n & ~(GGML_F32_STEP - 1));
  1554. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1555. GGML_F32_VEC ax[GGML_F32_ARR];
  1556. GGML_F32_VEC ay[GGML_F32_ARR];
  1557. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1558. for (int j = 0; j < GGML_F32_ARR; j++) {
  1559. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1560. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1561. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1562. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1563. }
  1564. }
  1565. // leftovers
  1566. for (int i = np; i < n; ++i) {
  1567. y[i] += x[i]*v;
  1568. }
  1569. #else
  1570. // scalar
  1571. for (int i = 0; i < n; ++i) {
  1572. y[i] += x[i]*v;
  1573. }
  1574. #endif
  1575. }
  1576. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1577. #if defined(GGML_SIMD)
  1578. const int np = (n & ~(GGML_F16_STEP - 1));
  1579. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1580. GGML_F16_VEC ax[GGML_F16_ARR];
  1581. GGML_F16_VEC ay[GGML_F16_ARR];
  1582. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1583. for (int j = 0; j < GGML_F16_ARR; j++) {
  1584. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1585. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1586. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1587. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1588. }
  1589. }
  1590. // leftovers
  1591. for (int i = np; i < n; ++i) {
  1592. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1593. }
  1594. #else
  1595. // scalar
  1596. for (int i = 0; i < n; ++i) {
  1597. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1598. }
  1599. #endif
  1600. }
  1601. // xs and vs are byte strides of x and v
  1602. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1603. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1604. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1605. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1606. x[i] = (const float *) ((const char *) xv + i*xs);
  1607. v[i] = (const float *) ((const char *) vv + i*vs);
  1608. }
  1609. #if defined(GGML_SIMD)
  1610. const int np = (n & ~(GGML_F32_STEP - 1));
  1611. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1612. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1613. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1614. }
  1615. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1616. GGML_F32_VEC ay[GGML_F32_ARR];
  1617. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1618. for (int j = 0; j < GGML_F32_ARR; j++) {
  1619. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1620. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1621. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1622. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1623. }
  1624. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1625. }
  1626. }
  1627. // leftovers
  1628. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1629. for (int i = np; i < n; ++i) {
  1630. y[i] += x[k][i]*v[k][0];
  1631. }
  1632. }
  1633. #else
  1634. // scalar
  1635. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1636. for (int i = 0; i < n; ++i) {
  1637. y[i] += x[k][i]*v[k][0];
  1638. }
  1639. }
  1640. #endif
  1641. }
  1642. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1643. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1644. #if defined(GGML_USE_ACCELERATE)
  1645. vDSP_vsmul(y, 1, &v, y, 1, n);
  1646. #elif defined(GGML_SIMD)
  1647. const int np = (n & ~(GGML_F32_STEP - 1));
  1648. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1649. GGML_F32_VEC ay[GGML_F32_ARR];
  1650. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1651. for (int j = 0; j < GGML_F32_ARR; j++) {
  1652. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1653. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1654. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1655. }
  1656. }
  1657. // leftovers
  1658. for (int i = np; i < n; ++i) {
  1659. y[i] *= v;
  1660. }
  1661. #else
  1662. // scalar
  1663. for (int i = 0; i < n; ++i) {
  1664. y[i] *= v;
  1665. }
  1666. #endif
  1667. }
  1668. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1669. #if defined(GGML_SIMD)
  1670. const int np = (n & ~(GGML_F16_STEP - 1));
  1671. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1672. GGML_F16_VEC ay[GGML_F16_ARR];
  1673. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1674. for (int j = 0; j < GGML_F16_ARR; j++) {
  1675. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1676. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1677. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1678. }
  1679. }
  1680. // leftovers
  1681. for (int i = np; i < n; ++i) {
  1682. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1683. }
  1684. #else
  1685. // scalar
  1686. for (int i = 0; i < n; ++i) {
  1687. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1688. }
  1689. #endif
  1690. }
  1691. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1692. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1693. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1694. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1695. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1696. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1697. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1698. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1699. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1700. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1701. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1702. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1703. // TODO: optimize performance
  1704. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1705. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1706. static const float GELU_COEF_A = 0.044715f;
  1707. static const float GELU_QUICK_COEF = -1.702f;
  1708. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1709. inline static float ggml_gelu_f32(float x) {
  1710. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1711. }
  1712. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1713. const uint16_t * i16 = (const uint16_t *) x;
  1714. for (int i = 0; i < n; ++i) {
  1715. y[i] = ggml_table_gelu_f16[i16[i]];
  1716. }
  1717. }
  1718. #ifdef GGML_GELU_FP16
  1719. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1720. uint16_t t;
  1721. for (int i = 0; i < n; ++i) {
  1722. if (x[i] <= -10.0f) {
  1723. y[i] = 0.0f;
  1724. } else if (x[i] >= 10.0f) {
  1725. y[i] = x[i];
  1726. } else {
  1727. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1728. memcpy(&t, &fp16, sizeof(uint16_t));
  1729. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1730. }
  1731. }
  1732. }
  1733. #else
  1734. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1735. for (int i = 0; i < n; ++i) {
  1736. y[i] = ggml_gelu_f32(x[i]);
  1737. }
  1738. }
  1739. #endif
  1740. inline static float ggml_gelu_quick_f32(float x) {
  1741. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1742. }
  1743. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1744. // const uint16_t * i16 = (const uint16_t *) x;
  1745. // for (int i = 0; i < n; ++i) {
  1746. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1747. // }
  1748. //}
  1749. #ifdef GGML_GELU_QUICK_FP16
  1750. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1751. uint16_t t;
  1752. for (int i = 0; i < n; ++i) {
  1753. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1754. memcpy(&t, &fp16, sizeof(uint16_t));
  1755. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1756. }
  1757. }
  1758. #else
  1759. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1760. for (int i = 0; i < n; ++i) {
  1761. y[i] = ggml_gelu_quick_f32(x[i]);
  1762. }
  1763. }
  1764. #endif
  1765. // Sigmoid Linear Unit (SiLU) function
  1766. inline static float ggml_silu_f32(float x) {
  1767. return x/(1.0f + expf(-x));
  1768. }
  1769. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1770. // const uint16_t * i16 = (const uint16_t *) x;
  1771. // for (int i = 0; i < n; ++i) {
  1772. // y[i] = ggml_table_silu_f16[i16[i]];
  1773. // }
  1774. //}
  1775. #ifdef GGML_SILU_FP16
  1776. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1777. uint16_t t;
  1778. for (int i = 0; i < n; ++i) {
  1779. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1780. memcpy(&t, &fp16, sizeof(uint16_t));
  1781. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1782. }
  1783. }
  1784. #else
  1785. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1786. for (int i = 0; i < n; ++i) {
  1787. y[i] = ggml_silu_f32(x[i]);
  1788. }
  1789. }
  1790. #endif
  1791. inline static float ggml_silu_backward_f32(float x, float dy) {
  1792. const float s = 1.0f/(1.0f + expf(-x));
  1793. return dy*s*(1.0f + x*(1.0f - s));
  1794. }
  1795. #ifdef GGML_SILU_FP16
  1796. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1797. for (int i = 0; i < n; ++i) {
  1798. // we did not use x[i] to compute forward silu but its f16 equivalent
  1799. // take derivative at f16 of x[i]:
  1800. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1801. float usedx = GGML_FP16_TO_FP32(fp16);
  1802. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1803. }
  1804. }
  1805. #else
  1806. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1807. for (int i = 0; i < n; ++i) {
  1808. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1809. }
  1810. }
  1811. #endif
  1812. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1813. #ifndef GGML_USE_ACCELERATE
  1814. ggml_float sum = 0.0;
  1815. for (int i = 0; i < n; ++i) {
  1816. sum += (ggml_float)x[i];
  1817. }
  1818. *s = sum;
  1819. #else
  1820. vDSP_sve(x, 1, s, n);
  1821. #endif
  1822. }
  1823. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1824. ggml_float sum = 0.0;
  1825. for (int i = 0; i < n; ++i) {
  1826. sum += (ggml_float)x[i];
  1827. }
  1828. *s = sum;
  1829. }
  1830. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1831. float sum = 0.0f;
  1832. for (int i = 0; i < n; ++i) {
  1833. sum += GGML_FP16_TO_FP32(x[i]);
  1834. }
  1835. *s = sum;
  1836. }
  1837. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  1838. float sum = 0.0f;
  1839. for (int i = 0; i < n; ++i) {
  1840. sum += GGML_BF16_TO_FP32(x[i]);
  1841. }
  1842. *s = sum;
  1843. }
  1844. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1845. #ifndef GGML_USE_ACCELERATE
  1846. float max = -INFINITY;
  1847. for (int i = 0; i < n; ++i) {
  1848. max = MAX(max, x[i]);
  1849. }
  1850. *s = max;
  1851. #else
  1852. vDSP_maxv(x, 1, s, n);
  1853. #endif
  1854. }
  1855. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1856. ggml_vec_norm_f32(n, s, x);
  1857. *s = 1.f/(*s);
  1858. }
  1859. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1860. float max = -INFINITY;
  1861. int idx = 0;
  1862. for (int i = 0; i < n; ++i) {
  1863. max = MAX(max, x[i]);
  1864. if (max == x[i]) { idx = i; }
  1865. }
  1866. *s = idx;
  1867. }
  1868. //
  1869. // data types
  1870. //
  1871. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1872. "NONE",
  1873. "DUP",
  1874. "ADD",
  1875. "ADD1",
  1876. "ACC",
  1877. "SUB",
  1878. "MUL",
  1879. "DIV",
  1880. "SQR",
  1881. "SQRT",
  1882. "LOG",
  1883. "SUM",
  1884. "SUM_ROWS",
  1885. "MEAN",
  1886. "ARGMAX",
  1887. "REPEAT",
  1888. "REPEAT_BACK",
  1889. "CONCAT",
  1890. "SILU_BACK",
  1891. "NORM",
  1892. "RMS_NORM",
  1893. "RMS_NORM_BACK",
  1894. "GROUP_NORM",
  1895. "MUL_MAT",
  1896. "MUL_MAT_ID",
  1897. "OUT_PROD",
  1898. "SCALE",
  1899. "SET",
  1900. "CPY",
  1901. "CONT",
  1902. "RESHAPE",
  1903. "VIEW",
  1904. "PERMUTE",
  1905. "TRANSPOSE",
  1906. "GET_ROWS",
  1907. "GET_ROWS_BACK",
  1908. "DIAG",
  1909. "DIAG_MASK_INF",
  1910. "DIAG_MASK_ZERO",
  1911. "SOFT_MAX",
  1912. "SOFT_MAX_BACK",
  1913. "ROPE",
  1914. "ROPE_BACK",
  1915. "CLAMP",
  1916. "CONV_TRANSPOSE_1D",
  1917. "IM2COL",
  1918. "CONV_TRANSPOSE_2D",
  1919. "POOL_1D",
  1920. "POOL_2D",
  1921. "UPSCALE",
  1922. "PAD",
  1923. "ARANGE",
  1924. "TIMESTEP_EMBEDDING",
  1925. "ARGSORT",
  1926. "LEAKY_RELU",
  1927. "FLASH_ATTN",
  1928. "FLASH_ATTN_EXT",
  1929. "FLASH_FF",
  1930. "FLASH_ATTN_BACK",
  1931. "SSM_CONV",
  1932. "SSM_SCAN",
  1933. "WIN_PART",
  1934. "WIN_UNPART",
  1935. "GET_REL_POS",
  1936. "ADD_REL_POS",
  1937. "UNARY",
  1938. "MAP_UNARY",
  1939. "MAP_BINARY",
  1940. "MAP_CUSTOM1_F32",
  1941. "MAP_CUSTOM2_F32",
  1942. "MAP_CUSTOM3_F32",
  1943. "MAP_CUSTOM1",
  1944. "MAP_CUSTOM2",
  1945. "MAP_CUSTOM3",
  1946. "CROSS_ENTROPY_LOSS",
  1947. "CROSS_ENTROPY_LOSS_BACK",
  1948. };
  1949. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1950. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1951. "none",
  1952. "x",
  1953. "x+y",
  1954. "x+y",
  1955. "view(x,nb,offset)+=y->x",
  1956. "x-y",
  1957. "x*y",
  1958. "x/y",
  1959. "x^2",
  1960. "√x",
  1961. "log(x)",
  1962. "Σx",
  1963. "Σx_k",
  1964. "Σx/n",
  1965. "argmax(x)",
  1966. "repeat(x)",
  1967. "repeat_back(x)",
  1968. "concat(x, y)",
  1969. "silu_back(x)",
  1970. "norm(x)",
  1971. "rms_norm(x)",
  1972. "rms_norm_back(x)",
  1973. "group_norm(x)",
  1974. "X*Y",
  1975. "X[i]*Y",
  1976. "X*Y",
  1977. "x*v",
  1978. "y-\\>view(x)",
  1979. "x-\\>y",
  1980. "cont(x)",
  1981. "reshape(x)",
  1982. "view(x)",
  1983. "permute(x)",
  1984. "transpose(x)",
  1985. "get_rows(x)",
  1986. "get_rows_back(x)",
  1987. "diag(x)",
  1988. "diag_mask_inf(x)",
  1989. "diag_mask_zero(x)",
  1990. "soft_max(x)",
  1991. "soft_max_back(x)",
  1992. "rope(x)",
  1993. "rope_back(x)",
  1994. "clamp(x)",
  1995. "conv_transpose_1d(x)",
  1996. "im2col(x)",
  1997. "conv_transpose_2d(x)",
  1998. "pool_1d(x)",
  1999. "pool_2d(x)",
  2000. "upscale(x)",
  2001. "pad(x)",
  2002. "arange(start, stop, step)",
  2003. "timestep_embedding(timesteps, dim, max_period)",
  2004. "argsort(x)",
  2005. "leaky_relu(x)",
  2006. "flash_attn(x)",
  2007. "flash_attn_ext(x)",
  2008. "flash_ff(x)",
  2009. "flash_attn_back(x)",
  2010. "ssm_conv(x)",
  2011. "ssm_scan(x)",
  2012. "win_part(x)",
  2013. "win_unpart(x)",
  2014. "get_rel_pos(x)",
  2015. "add_rel_pos(x)",
  2016. "unary(x)",
  2017. "f(x)",
  2018. "f(x,y)",
  2019. "custom_f32(x)",
  2020. "custom_f32(x,y)",
  2021. "custom_f32(x,y,z)",
  2022. "custom(x)",
  2023. "custom(x,y)",
  2024. "custom(x,y,z)",
  2025. "cross_entropy_loss(x,y)",
  2026. "cross_entropy_loss_back(x,y)",
  2027. };
  2028. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2029. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2030. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2031. "ABS",
  2032. "SGN",
  2033. "NEG",
  2034. "STEP",
  2035. "TANH",
  2036. "ELU",
  2037. "RELU",
  2038. "SIGMOID",
  2039. "GELU",
  2040. "GELU_QUICK",
  2041. "SILU",
  2042. "HARDSWISH",
  2043. "HARDSIGMOID",
  2044. };
  2045. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2046. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2047. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2048. // WARN:
  2049. // Mis-configuration can lead to problem that's hard to reason about:
  2050. // * At best it crash or talks nosense.
  2051. // * At worst it talks slightly difference but hard to perceive.
  2052. //
  2053. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2054. // Take care about compile options (e.g., GGML_USE_xxx).
  2055. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2056. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2057. static void ggml_setup_op_has_task_pass(void) {
  2058. { // INIT
  2059. bool * p = GGML_OP_HAS_INIT;
  2060. p[GGML_OP_ACC ] = true;
  2061. p[GGML_OP_MUL_MAT ] = true;
  2062. p[GGML_OP_MUL_MAT_ID ] = true;
  2063. p[GGML_OP_OUT_PROD ] = true;
  2064. p[GGML_OP_SET ] = true;
  2065. p[GGML_OP_GET_ROWS_BACK ] = true;
  2066. p[GGML_OP_DIAG_MASK_INF ] = true;
  2067. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2068. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2069. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2070. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2071. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2072. p[GGML_OP_ADD_REL_POS ] = true;
  2073. }
  2074. { // FINALIZE
  2075. bool * p = GGML_OP_HAS_FINALIZE;
  2076. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2077. }
  2078. }
  2079. //
  2080. // ggml context
  2081. //
  2082. struct ggml_context {
  2083. size_t mem_size;
  2084. void * mem_buffer;
  2085. bool mem_buffer_owned;
  2086. bool no_alloc;
  2087. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  2088. int n_objects;
  2089. struct ggml_object * objects_begin;
  2090. struct ggml_object * objects_end;
  2091. struct ggml_scratch scratch;
  2092. struct ggml_scratch scratch_save;
  2093. };
  2094. struct ggml_context_container {
  2095. bool used;
  2096. struct ggml_context context;
  2097. };
  2098. //
  2099. // NUMA support
  2100. //
  2101. #define GGML_NUMA_MAX_NODES 8
  2102. #define GGML_NUMA_MAX_CPUS 512
  2103. struct ggml_numa_node {
  2104. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2105. uint32_t n_cpus;
  2106. };
  2107. struct ggml_numa_nodes {
  2108. enum ggml_numa_strategy numa_strategy;
  2109. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2110. uint32_t n_nodes;
  2111. uint32_t total_cpus; // hardware threads on system
  2112. uint32_t current_node; // node on which main process is execting
  2113. #if defined(__gnu_linux__)
  2114. cpu_set_t cpuset; // cpuset from numactl
  2115. #else
  2116. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2117. #endif
  2118. };
  2119. //
  2120. // ggml state
  2121. //
  2122. struct ggml_state {
  2123. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2124. struct ggml_numa_nodes numa;
  2125. };
  2126. // global state
  2127. static struct ggml_state g_state;
  2128. static atomic_int g_state_barrier = 0;
  2129. // barrier via spin lock
  2130. inline static void ggml_critical_section_start(void) {
  2131. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2132. while (processing > 0) {
  2133. // wait for other threads to finish
  2134. atomic_fetch_sub(&g_state_barrier, 1);
  2135. sched_yield(); // TODO: reconsider this
  2136. processing = atomic_fetch_add(&g_state_barrier, 1);
  2137. }
  2138. }
  2139. // TODO: make this somehow automatically executed
  2140. // some sort of "sentry" mechanism
  2141. inline static void ggml_critical_section_end(void) {
  2142. atomic_fetch_sub(&g_state_barrier, 1);
  2143. }
  2144. #if defined(__gnu_linux__)
  2145. static cpu_set_t ggml_get_numa_affinity(void) {
  2146. cpu_set_t cpuset;
  2147. pthread_t thread;
  2148. thread = pthread_self();
  2149. CPU_ZERO(&cpuset);
  2150. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2151. return cpuset;
  2152. }
  2153. #else
  2154. static uint32_t ggml_get_numa_affinity(void) {
  2155. return 0; // no NUMA support
  2156. }
  2157. #endif
  2158. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2159. if (g_state.numa.n_nodes > 0) {
  2160. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2161. return;
  2162. }
  2163. #if defined(__gnu_linux__)
  2164. struct stat st;
  2165. char path[256];
  2166. int rv;
  2167. // set numa scheme
  2168. g_state.numa.numa_strategy = numa_flag;
  2169. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2170. g_state.numa.cpuset = ggml_get_numa_affinity();
  2171. // enumerate nodes
  2172. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2173. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2174. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2175. if (stat(path, &st) != 0) { break; }
  2176. ++g_state.numa.n_nodes;
  2177. }
  2178. // enumerate CPUs
  2179. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2180. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2181. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2182. if (stat(path, &st) != 0) { break; }
  2183. ++g_state.numa.total_cpus;
  2184. }
  2185. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2186. // figure out which node we're on
  2187. uint current_cpu;
  2188. int getcpu_ret = 0;
  2189. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2190. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2191. #else
  2192. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2193. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2194. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2195. # endif
  2196. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2197. #endif
  2198. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2199. g_state.numa.n_nodes = 0;
  2200. return;
  2201. }
  2202. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2203. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2204. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2205. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2206. node->n_cpus = 0;
  2207. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2208. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2209. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2210. if (stat(path, &st) == 0) {
  2211. node->cpus[node->n_cpus++] = c;
  2212. GGML_PRINT_DEBUG(" %u", c);
  2213. }
  2214. }
  2215. GGML_PRINT_DEBUG("\n");
  2216. }
  2217. if (ggml_is_numa()) {
  2218. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2219. if (fptr != NULL) {
  2220. char buf[42];
  2221. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2222. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2223. }
  2224. fclose(fptr);
  2225. }
  2226. }
  2227. #else
  2228. GGML_UNUSED(numa_flag);
  2229. // TODO
  2230. #endif
  2231. }
  2232. bool ggml_is_numa(void) {
  2233. return g_state.numa.n_nodes > 1;
  2234. }
  2235. ////////////////////////////////////////////////////////////////////////////////
  2236. void ggml_print_object(const struct ggml_object * obj) {
  2237. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2238. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2239. }
  2240. void ggml_print_objects(const struct ggml_context * ctx) {
  2241. struct ggml_object * obj = ctx->objects_begin;
  2242. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2243. while (obj != NULL) {
  2244. ggml_print_object(obj);
  2245. obj = obj->next;
  2246. }
  2247. GGML_PRINT("%s: --- end ---\n", __func__);
  2248. }
  2249. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2252. }
  2253. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2254. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2255. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2256. }
  2257. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2258. size_t nbytes;
  2259. size_t blck_size = ggml_blck_size(tensor->type);
  2260. if (blck_size == 1) {
  2261. nbytes = ggml_type_size(tensor->type);
  2262. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2263. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2264. }
  2265. }
  2266. else {
  2267. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2268. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2269. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2270. }
  2271. }
  2272. return nbytes;
  2273. }
  2274. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2275. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2276. }
  2277. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2278. return type_traits[type].blck_size;
  2279. }
  2280. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2281. return type_traits[type].type_size;
  2282. }
  2283. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2284. assert(ne % ggml_blck_size(type) == 0);
  2285. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2286. }
  2287. double ggml_type_sizef(enum ggml_type type) {
  2288. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2289. }
  2290. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2291. return type_traits[type].type_name;
  2292. }
  2293. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2294. return type_traits[type].is_quantized;
  2295. }
  2296. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2297. return GGML_OP_NAME[op];
  2298. }
  2299. const char * ggml_op_symbol(enum ggml_op op) {
  2300. return GGML_OP_SYMBOL[op];
  2301. }
  2302. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2303. return GGML_UNARY_OP_NAME[op];
  2304. }
  2305. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2306. if (t->op == GGML_OP_UNARY) {
  2307. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2308. return ggml_unary_op_name(uop);
  2309. }
  2310. else {
  2311. return ggml_op_name(t->op);
  2312. }
  2313. }
  2314. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2315. return ggml_type_size(tensor->type);
  2316. }
  2317. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2318. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2319. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2320. }
  2321. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2322. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2323. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2324. }
  2325. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2326. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2327. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2328. }
  2329. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2330. return tensor->ne[3] == 1;
  2331. }
  2332. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2333. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2334. if (tensor->ne[i] > 1) {
  2335. return i + 1;
  2336. }
  2337. }
  2338. return 1;
  2339. }
  2340. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2341. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2342. return (t0->ne[0] == t1->ne[0]) &&
  2343. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2344. (t1->ne[3]%t0->ne[3] == 0);
  2345. }
  2346. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2348. return (t0->ne[1] == t1->ne[1]) &&
  2349. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2350. (t1->ne[3]%t0->ne[3] == 0);
  2351. }
  2352. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2353. enum ggml_type wtype = GGML_TYPE_COUNT;
  2354. switch (ftype) {
  2355. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2356. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2357. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2358. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2359. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2360. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2361. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2362. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2363. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2364. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2365. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2366. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2367. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2368. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2369. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2370. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2371. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2372. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2373. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2374. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2375. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2376. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2377. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2378. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2379. }
  2380. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2381. return wtype;
  2382. }
  2383. size_t ggml_tensor_overhead(void) {
  2384. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2385. }
  2386. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2387. return tensor->nb[0] > tensor->nb[1];
  2388. }
  2389. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2390. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2391. return
  2392. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2393. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2394. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2395. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2396. }
  2397. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2398. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2399. return
  2400. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2401. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2402. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2403. }
  2404. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2405. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2406. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2407. }
  2408. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2409. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2410. return
  2411. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2412. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2413. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2414. }
  2415. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2416. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2417. if (tensor->ne[i] == 0) {
  2418. // empty if any dimension has no elements
  2419. return true;
  2420. }
  2421. }
  2422. return false;
  2423. }
  2424. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2425. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2426. return
  2427. (t0->ne[0] == t1->ne[0] ) &&
  2428. (t0->ne[1] == t1->ne[1] ) &&
  2429. (t0->ne[2] == t1->ne[2] ) &&
  2430. (t0->ne[3] == t1->ne[3] );
  2431. }
  2432. // check if t1 can be represented as a repeatition of t0
  2433. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2434. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2435. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2436. (t1->ne[0]%t0->ne[0] == 0) &&
  2437. (t1->ne[1]%t0->ne[1] == 0) &&
  2438. (t1->ne[2]%t0->ne[2] == 0) &&
  2439. (t1->ne[3]%t0->ne[3] == 0);
  2440. }
  2441. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2442. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2443. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2444. }
  2445. static inline int ggml_up32(int n) {
  2446. return (n + 31) & ~31;
  2447. }
  2448. //static inline int ggml_up64(int n) {
  2449. // return (n + 63) & ~63;
  2450. //}
  2451. static inline int ggml_up(int n, int m) {
  2452. // assert m is a power of 2
  2453. GGML_ASSERT((m & (m - 1)) == 0);
  2454. return (n + m - 1) & ~(m - 1);
  2455. }
  2456. // assert that pointer is aligned to GGML_MEM_ALIGN
  2457. #define ggml_assert_aligned(ptr) \
  2458. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2459. ////////////////////////////////////////////////////////////////////////////////
  2460. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2461. // make this function thread safe
  2462. ggml_critical_section_start();
  2463. static bool is_first_call = true;
  2464. if (is_first_call) {
  2465. // initialize time system (required on Windows)
  2466. ggml_time_init();
  2467. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2468. {
  2469. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2470. for (int i = 0; i < (1 << 16); ++i) {
  2471. union {
  2472. uint16_t u16;
  2473. ggml_fp16_t fp16;
  2474. } u = {i};
  2475. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2476. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2477. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2478. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2479. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2480. }
  2481. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2482. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2483. }
  2484. // initialize g_state
  2485. {
  2486. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2487. g_state = (struct ggml_state) {
  2488. /*.contexts =*/ { { 0 } },
  2489. /*.numa =*/ {
  2490. .n_nodes = 0,
  2491. .total_cpus = 0,
  2492. },
  2493. };
  2494. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2495. g_state.contexts[i].used = false;
  2496. }
  2497. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2498. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2499. }
  2500. #if defined(GGML_USE_CLBLAST)
  2501. ggml_cl_init();
  2502. #endif
  2503. ggml_setup_op_has_task_pass();
  2504. is_first_call = false;
  2505. }
  2506. // find non-used context in g_state
  2507. struct ggml_context * ctx = NULL;
  2508. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2509. if (!g_state.contexts[i].used) {
  2510. g_state.contexts[i].used = true;
  2511. ctx = &g_state.contexts[i].context;
  2512. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2513. break;
  2514. }
  2515. }
  2516. if (ctx == NULL) {
  2517. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2518. ggml_critical_section_end();
  2519. return NULL;
  2520. }
  2521. // allow to call ggml_init with 0 size
  2522. if (params.mem_size == 0) {
  2523. params.mem_size = GGML_MEM_ALIGN;
  2524. }
  2525. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2526. *ctx = (struct ggml_context) {
  2527. /*.mem_size =*/ mem_size,
  2528. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2529. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2530. /*.no_alloc =*/ params.no_alloc,
  2531. /*.no_alloc_save =*/ params.no_alloc,
  2532. /*.n_objects =*/ 0,
  2533. /*.objects_begin =*/ NULL,
  2534. /*.objects_end =*/ NULL,
  2535. /*.scratch =*/ { 0, 0, NULL, },
  2536. /*.scratch_save =*/ { 0, 0, NULL, },
  2537. };
  2538. GGML_ASSERT(ctx->mem_buffer != NULL);
  2539. ggml_assert_aligned(ctx->mem_buffer);
  2540. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2541. ggml_critical_section_end();
  2542. return ctx;
  2543. }
  2544. void ggml_free(struct ggml_context * ctx) {
  2545. if (ctx == NULL) {
  2546. return;
  2547. }
  2548. // make this function thread safe
  2549. ggml_critical_section_start();
  2550. bool found = false;
  2551. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2552. if (&g_state.contexts[i].context == ctx) {
  2553. g_state.contexts[i].used = false;
  2554. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2555. __func__, i, ggml_used_mem(ctx));
  2556. if (ctx->mem_buffer_owned) {
  2557. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2558. }
  2559. found = true;
  2560. break;
  2561. }
  2562. }
  2563. if (!found) {
  2564. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2565. }
  2566. ggml_critical_section_end();
  2567. }
  2568. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2569. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2570. }
  2571. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2572. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2573. ctx->scratch = scratch;
  2574. return result;
  2575. }
  2576. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2577. return ctx->no_alloc;
  2578. }
  2579. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2580. ctx->no_alloc = no_alloc;
  2581. }
  2582. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2583. return ctx->mem_buffer;
  2584. }
  2585. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2586. return ctx->mem_size;
  2587. }
  2588. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2589. size_t max_size = 0;
  2590. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2591. size_t bytes = ggml_nbytes(tensor);
  2592. max_size = MAX(max_size, bytes);
  2593. }
  2594. return max_size;
  2595. }
  2596. // IMPORTANT:
  2597. // when creating "opt" tensors, always save and load the scratch buffer
  2598. // this is an error prone process, but it is necessary to support inplace
  2599. // operators when using scratch buffers
  2600. // TODO: implement a better way
  2601. static void ggml_scratch_save(struct ggml_context * ctx) {
  2602. // this is needed to allow opt tensors to store their data
  2603. // TODO: again, need to find a better way
  2604. ctx->no_alloc_save = ctx->no_alloc;
  2605. ctx->no_alloc = false;
  2606. ctx->scratch_save = ctx->scratch;
  2607. ctx->scratch.data = NULL;
  2608. }
  2609. static void ggml_scratch_load(struct ggml_context * ctx) {
  2610. ctx->no_alloc = ctx->no_alloc_save;
  2611. ctx->scratch = ctx->scratch_save;
  2612. }
  2613. ////////////////////////////////////////////////////////////////////////////////
  2614. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2615. // always insert objects at the end of the context's memory pool
  2616. struct ggml_object * obj_cur = ctx->objects_end;
  2617. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2618. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2619. const size_t cur_end = cur_offs + cur_size;
  2620. // align to GGML_MEM_ALIGN
  2621. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2622. char * const mem_buffer = ctx->mem_buffer;
  2623. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2624. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2625. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2626. __func__, cur_end + size_needed, ctx->mem_size);
  2627. assert(false);
  2628. return NULL;
  2629. }
  2630. *obj_new = (struct ggml_object) {
  2631. .offs = cur_end + GGML_OBJECT_SIZE,
  2632. .size = size_needed,
  2633. .next = NULL,
  2634. .type = type,
  2635. };
  2636. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2637. if (obj_cur != NULL) {
  2638. obj_cur->next = obj_new;
  2639. } else {
  2640. // this is the first object in this context
  2641. ctx->objects_begin = obj_new;
  2642. }
  2643. ctx->objects_end = obj_new;
  2644. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2645. return obj_new;
  2646. }
  2647. static struct ggml_tensor * ggml_new_tensor_impl(
  2648. struct ggml_context * ctx,
  2649. enum ggml_type type,
  2650. int n_dims,
  2651. const int64_t * ne,
  2652. struct ggml_tensor * view_src,
  2653. size_t view_offs) {
  2654. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2655. // find the base tensor and absolute offset
  2656. if (view_src != NULL && view_src->view_src != NULL) {
  2657. view_offs += view_src->view_offs;
  2658. view_src = view_src->view_src;
  2659. }
  2660. size_t data_size = ggml_row_size(type, ne[0]);
  2661. for (int i = 1; i < n_dims; i++) {
  2662. data_size *= ne[i];
  2663. }
  2664. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2665. void * data = view_src != NULL ? view_src->data : NULL;
  2666. if (data != NULL) {
  2667. data = (char *) data + view_offs;
  2668. }
  2669. size_t obj_alloc_size = 0;
  2670. if (view_src == NULL && !ctx->no_alloc) {
  2671. if (ctx->scratch.data != NULL) {
  2672. // allocate tensor data in the scratch buffer
  2673. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2674. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2675. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2676. assert(false);
  2677. return NULL;
  2678. }
  2679. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2680. ctx->scratch.offs += data_size;
  2681. } else {
  2682. // allocate tensor data in the context's memory pool
  2683. obj_alloc_size = data_size;
  2684. }
  2685. }
  2686. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2687. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2688. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2689. *result = (struct ggml_tensor) {
  2690. /*.type =*/ type,
  2691. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2692. /*.buffer =*/ NULL,
  2693. /*.ne =*/ { 1, 1, 1, 1 },
  2694. /*.nb =*/ { 0, 0, 0, 0 },
  2695. /*.op =*/ GGML_OP_NONE,
  2696. /*.op_params =*/ { 0 },
  2697. /*.flags =*/ 0,
  2698. /*.grad =*/ NULL,
  2699. /*.src =*/ { NULL },
  2700. /*.perf_runs =*/ 0,
  2701. /*.perf_cycles =*/ 0,
  2702. /*.perf_time_us =*/ 0,
  2703. /*.view_src =*/ view_src,
  2704. /*.view_offs =*/ view_offs,
  2705. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2706. /*.name =*/ { 0 },
  2707. /*.extra =*/ NULL,
  2708. /*.padding =*/ { 0 },
  2709. };
  2710. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2711. //ggml_assert_aligned(result->data);
  2712. for (int i = 0; i < n_dims; i++) {
  2713. result->ne[i] = ne[i];
  2714. }
  2715. result->nb[0] = ggml_type_size(type);
  2716. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2717. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2718. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2719. }
  2720. ctx->n_objects++;
  2721. return result;
  2722. }
  2723. struct ggml_tensor * ggml_new_tensor(
  2724. struct ggml_context * ctx,
  2725. enum ggml_type type,
  2726. int n_dims,
  2727. const int64_t * ne) {
  2728. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2729. }
  2730. struct ggml_tensor * ggml_new_tensor_1d(
  2731. struct ggml_context * ctx,
  2732. enum ggml_type type,
  2733. int64_t ne0) {
  2734. return ggml_new_tensor(ctx, type, 1, &ne0);
  2735. }
  2736. struct ggml_tensor * ggml_new_tensor_2d(
  2737. struct ggml_context * ctx,
  2738. enum ggml_type type,
  2739. int64_t ne0,
  2740. int64_t ne1) {
  2741. const int64_t ne[2] = { ne0, ne1 };
  2742. return ggml_new_tensor(ctx, type, 2, ne);
  2743. }
  2744. struct ggml_tensor * ggml_new_tensor_3d(
  2745. struct ggml_context * ctx,
  2746. enum ggml_type type,
  2747. int64_t ne0,
  2748. int64_t ne1,
  2749. int64_t ne2) {
  2750. const int64_t ne[3] = { ne0, ne1, ne2 };
  2751. return ggml_new_tensor(ctx, type, 3, ne);
  2752. }
  2753. struct ggml_tensor * ggml_new_tensor_4d(
  2754. struct ggml_context * ctx,
  2755. enum ggml_type type,
  2756. int64_t ne0,
  2757. int64_t ne1,
  2758. int64_t ne2,
  2759. int64_t ne3) {
  2760. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2761. return ggml_new_tensor(ctx, type, 4, ne);
  2762. }
  2763. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2764. ggml_scratch_save(ctx);
  2765. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2766. ggml_scratch_load(ctx);
  2767. ggml_set_i32(result, value);
  2768. return result;
  2769. }
  2770. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2771. ggml_scratch_save(ctx);
  2772. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2773. ggml_scratch_load(ctx);
  2774. ggml_set_f32(result, value);
  2775. return result;
  2776. }
  2777. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2778. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2779. }
  2780. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2781. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2782. assert(params_size <= GGML_MAX_OP_PARAMS);
  2783. memcpy(tensor->op_params, params, params_size);
  2784. }
  2785. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2786. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2787. return ((const int32_t *)(tensor->op_params))[i];
  2788. }
  2789. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2790. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2791. return ((const float *)(tensor->op_params))[i];
  2792. }
  2793. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2794. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2795. ((int32_t *)(tensor->op_params))[i] = value;
  2796. }
  2797. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2798. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2799. ((float *)(tensor->op_params))[i] = value;
  2800. }
  2801. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2802. memset(tensor->data, 0, ggml_nbytes(tensor));
  2803. return tensor;
  2804. }
  2805. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2806. const int n = ggml_nrows(tensor);
  2807. const int nc = tensor->ne[0];
  2808. const size_t n1 = tensor->nb[1];
  2809. char * const data = tensor->data;
  2810. switch (tensor->type) {
  2811. case GGML_TYPE_I8:
  2812. {
  2813. assert(tensor->nb[0] == sizeof(int8_t));
  2814. for (int i = 0; i < n; i++) {
  2815. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2816. }
  2817. } break;
  2818. case GGML_TYPE_I16:
  2819. {
  2820. assert(tensor->nb[0] == sizeof(int16_t));
  2821. for (int i = 0; i < n; i++) {
  2822. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2823. }
  2824. } break;
  2825. case GGML_TYPE_I32:
  2826. {
  2827. assert(tensor->nb[0] == sizeof(int32_t));
  2828. for (int i = 0; i < n; i++) {
  2829. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2830. }
  2831. } break;
  2832. case GGML_TYPE_F16:
  2833. {
  2834. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2835. for (int i = 0; i < n; i++) {
  2836. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2837. }
  2838. } break;
  2839. case GGML_TYPE_BF16:
  2840. {
  2841. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2842. for (int i = 0; i < n; i++) {
  2843. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2844. }
  2845. } break;
  2846. case GGML_TYPE_F32:
  2847. {
  2848. assert(tensor->nb[0] == sizeof(float));
  2849. for (int i = 0; i < n; i++) {
  2850. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2851. }
  2852. } break;
  2853. default:
  2854. {
  2855. GGML_ASSERT(false);
  2856. } break;
  2857. }
  2858. return tensor;
  2859. }
  2860. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2861. const int n = ggml_nrows(tensor);
  2862. const int nc = tensor->ne[0];
  2863. const size_t n1 = tensor->nb[1];
  2864. char * const data = tensor->data;
  2865. switch (tensor->type) {
  2866. case GGML_TYPE_I8:
  2867. {
  2868. assert(tensor->nb[0] == sizeof(int8_t));
  2869. for (int i = 0; i < n; i++) {
  2870. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2871. }
  2872. } break;
  2873. case GGML_TYPE_I16:
  2874. {
  2875. assert(tensor->nb[0] == sizeof(int16_t));
  2876. for (int i = 0; i < n; i++) {
  2877. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2878. }
  2879. } break;
  2880. case GGML_TYPE_I32:
  2881. {
  2882. assert(tensor->nb[0] == sizeof(int32_t));
  2883. for (int i = 0; i < n; i++) {
  2884. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2885. }
  2886. } break;
  2887. case GGML_TYPE_F16:
  2888. {
  2889. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2890. for (int i = 0; i < n; i++) {
  2891. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2892. }
  2893. } break;
  2894. case GGML_TYPE_BF16:
  2895. {
  2896. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  2897. for (int i = 0; i < n; i++) {
  2898. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2899. }
  2900. } break;
  2901. case GGML_TYPE_F32:
  2902. {
  2903. assert(tensor->nb[0] == sizeof(float));
  2904. for (int i = 0; i < n; i++) {
  2905. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2906. }
  2907. } break;
  2908. default:
  2909. {
  2910. GGML_ASSERT(false);
  2911. } break;
  2912. }
  2913. return tensor;
  2914. }
  2915. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2916. const int64_t ne2 = tensor->ne[2];
  2917. const int64_t ne1 = tensor->ne[1];
  2918. const int64_t ne0 = tensor->ne[0];
  2919. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2920. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2921. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2922. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2923. if (i0) {
  2924. * i0 = i0_;
  2925. }
  2926. if (i1) {
  2927. * i1 = i1_;
  2928. }
  2929. if (i2) {
  2930. * i2 = i2_;
  2931. }
  2932. if (i3) {
  2933. * i3 = i3_;
  2934. }
  2935. }
  2936. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2937. if (!ggml_is_contiguous(tensor)) {
  2938. int64_t id[4] = { 0, 0, 0, 0 };
  2939. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2940. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2941. }
  2942. switch (tensor->type) {
  2943. case GGML_TYPE_I8:
  2944. {
  2945. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2946. return ((int8_t *)(tensor->data))[i];
  2947. }
  2948. case GGML_TYPE_I16:
  2949. {
  2950. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2951. return ((int16_t *)(tensor->data))[i];
  2952. }
  2953. case GGML_TYPE_I32:
  2954. {
  2955. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2956. return ((int32_t *)(tensor->data))[i];
  2957. }
  2958. case GGML_TYPE_F16:
  2959. {
  2960. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2961. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2962. }
  2963. case GGML_TYPE_BF16:
  2964. {
  2965. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2966. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2967. }
  2968. case GGML_TYPE_F32:
  2969. {
  2970. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2971. return ((float *)(tensor->data))[i];
  2972. }
  2973. default:
  2974. {
  2975. GGML_ASSERT(false);
  2976. }
  2977. }
  2978. return 0.0f;
  2979. }
  2980. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2981. if (!ggml_is_contiguous(tensor)) {
  2982. int64_t id[4] = { 0, 0, 0, 0 };
  2983. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2984. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2985. return;
  2986. }
  2987. switch (tensor->type) {
  2988. case GGML_TYPE_I8:
  2989. {
  2990. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2991. ((int8_t *)(tensor->data))[i] = value;
  2992. } break;
  2993. case GGML_TYPE_I16:
  2994. {
  2995. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2996. ((int16_t *)(tensor->data))[i] = value;
  2997. } break;
  2998. case GGML_TYPE_I32:
  2999. {
  3000. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3001. ((int32_t *)(tensor->data))[i] = value;
  3002. } break;
  3003. case GGML_TYPE_F16:
  3004. {
  3005. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3006. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3007. } break;
  3008. case GGML_TYPE_BF16:
  3009. {
  3010. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3011. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3012. } break;
  3013. case GGML_TYPE_F32:
  3014. {
  3015. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3016. ((float *)(tensor->data))[i] = value;
  3017. } break;
  3018. default:
  3019. {
  3020. GGML_ASSERT(false);
  3021. } break;
  3022. }
  3023. }
  3024. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3025. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3026. switch (tensor->type) {
  3027. case GGML_TYPE_I8:
  3028. return ((int8_t *) data)[0];
  3029. case GGML_TYPE_I16:
  3030. return ((int16_t *) data)[0];
  3031. case GGML_TYPE_I32:
  3032. return ((int32_t *) data)[0];
  3033. case GGML_TYPE_F16:
  3034. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3035. case GGML_TYPE_BF16:
  3036. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3037. case GGML_TYPE_F32:
  3038. return ((float *) data)[0];
  3039. default:
  3040. GGML_ASSERT(false);
  3041. }
  3042. return 0.0f;
  3043. }
  3044. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3045. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3046. switch (tensor->type) {
  3047. case GGML_TYPE_I8:
  3048. {
  3049. ((int8_t *)(data))[0] = value;
  3050. } break;
  3051. case GGML_TYPE_I16:
  3052. {
  3053. ((int16_t *)(data))[0] = value;
  3054. } break;
  3055. case GGML_TYPE_I32:
  3056. {
  3057. ((int32_t *)(data))[0] = value;
  3058. } break;
  3059. case GGML_TYPE_F16:
  3060. {
  3061. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3062. } break;
  3063. case GGML_TYPE_BF16:
  3064. {
  3065. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3066. } break;
  3067. case GGML_TYPE_F32:
  3068. {
  3069. ((float *)(data))[0] = value;
  3070. } break;
  3071. default:
  3072. {
  3073. GGML_ASSERT(false);
  3074. } break;
  3075. }
  3076. }
  3077. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3078. if (!ggml_is_contiguous(tensor)) {
  3079. int64_t id[4] = { 0, 0, 0, 0 };
  3080. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3081. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3082. }
  3083. switch (tensor->type) {
  3084. case GGML_TYPE_I8:
  3085. {
  3086. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3087. return ((int8_t *)(tensor->data))[i];
  3088. }
  3089. case GGML_TYPE_I16:
  3090. {
  3091. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3092. return ((int16_t *)(tensor->data))[i];
  3093. }
  3094. case GGML_TYPE_I32:
  3095. {
  3096. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3097. return ((int32_t *)(tensor->data))[i];
  3098. }
  3099. case GGML_TYPE_F16:
  3100. {
  3101. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3102. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3103. }
  3104. case GGML_TYPE_BF16:
  3105. {
  3106. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3107. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3108. }
  3109. case GGML_TYPE_F32:
  3110. {
  3111. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3112. return ((float *)(tensor->data))[i];
  3113. }
  3114. default:
  3115. {
  3116. GGML_ASSERT(false);
  3117. }
  3118. }
  3119. return 0.0f;
  3120. }
  3121. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3122. if (!ggml_is_contiguous(tensor)) {
  3123. int64_t id[4] = { 0, 0, 0, 0 };
  3124. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3125. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3126. return;
  3127. }
  3128. switch (tensor->type) {
  3129. case GGML_TYPE_I8:
  3130. {
  3131. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3132. ((int8_t *)(tensor->data))[i] = value;
  3133. } break;
  3134. case GGML_TYPE_I16:
  3135. {
  3136. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3137. ((int16_t *)(tensor->data))[i] = value;
  3138. } break;
  3139. case GGML_TYPE_I32:
  3140. {
  3141. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3142. ((int32_t *)(tensor->data))[i] = value;
  3143. } break;
  3144. case GGML_TYPE_F16:
  3145. {
  3146. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3147. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3148. } break;
  3149. case GGML_TYPE_BF16:
  3150. {
  3151. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3152. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3153. } break;
  3154. case GGML_TYPE_F32:
  3155. {
  3156. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3157. ((float *)(tensor->data))[i] = value;
  3158. } break;
  3159. default:
  3160. {
  3161. GGML_ASSERT(false);
  3162. } break;
  3163. }
  3164. }
  3165. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3166. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3167. switch (tensor->type) {
  3168. case GGML_TYPE_I8:
  3169. return ((int8_t *) data)[0];
  3170. case GGML_TYPE_I16:
  3171. return ((int16_t *) data)[0];
  3172. case GGML_TYPE_I32:
  3173. return ((int32_t *) data)[0];
  3174. case GGML_TYPE_F16:
  3175. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3176. case GGML_TYPE_BF16:
  3177. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3178. case GGML_TYPE_F32:
  3179. return ((float *) data)[0];
  3180. default:
  3181. GGML_ASSERT(false);
  3182. }
  3183. return 0.0f;
  3184. }
  3185. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3186. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3187. switch (tensor->type) {
  3188. case GGML_TYPE_I8:
  3189. {
  3190. ((int8_t *)(data))[0] = value;
  3191. } break;
  3192. case GGML_TYPE_I16:
  3193. {
  3194. ((int16_t *)(data))[0] = value;
  3195. } break;
  3196. case GGML_TYPE_I32:
  3197. {
  3198. ((int32_t *)(data))[0] = value;
  3199. } break;
  3200. case GGML_TYPE_F16:
  3201. {
  3202. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3203. } break;
  3204. case GGML_TYPE_BF16:
  3205. {
  3206. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3207. } break;
  3208. case GGML_TYPE_F32:
  3209. {
  3210. ((float *)(data))[0] = value;
  3211. } break;
  3212. default:
  3213. {
  3214. GGML_ASSERT(false);
  3215. } break;
  3216. }
  3217. }
  3218. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3219. return tensor->data;
  3220. }
  3221. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3222. assert(tensor->type == GGML_TYPE_F32);
  3223. return (float *)(tensor->data);
  3224. }
  3225. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3226. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3227. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3228. }
  3229. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3230. return tensor->name;
  3231. }
  3232. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3233. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3234. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3235. return tensor;
  3236. }
  3237. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3238. va_list args;
  3239. va_start(args, fmt);
  3240. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3241. va_end(args);
  3242. return tensor;
  3243. }
  3244. struct ggml_tensor * ggml_view_tensor(
  3245. struct ggml_context * ctx,
  3246. struct ggml_tensor * src) {
  3247. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3248. ggml_format_name(result, "%s (view)", src->name);
  3249. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3250. result->nb[i] = src->nb[i];
  3251. }
  3252. return result;
  3253. }
  3254. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3255. struct ggml_object * obj = ctx->objects_begin;
  3256. char * const mem_buffer = ctx->mem_buffer;
  3257. while (obj != NULL) {
  3258. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3259. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3260. }
  3261. obj = obj->next;
  3262. }
  3263. return NULL;
  3264. }
  3265. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3266. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3267. obj = obj->next;
  3268. char * const mem_buffer = ctx->mem_buffer;
  3269. while (obj != NULL) {
  3270. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3271. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3272. }
  3273. obj = obj->next;
  3274. }
  3275. return NULL;
  3276. }
  3277. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3278. struct ggml_object * obj = ctx->objects_begin;
  3279. char * const mem_buffer = ctx->mem_buffer;
  3280. while (obj != NULL) {
  3281. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3282. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3283. if (strcmp(cur->name, name) == 0) {
  3284. return cur;
  3285. }
  3286. }
  3287. obj = obj->next;
  3288. }
  3289. return NULL;
  3290. }
  3291. ////////////////////////////////////////////////////////////////////////////////
  3292. // ggml_dup
  3293. static struct ggml_tensor * ggml_dup_impl(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a,
  3296. bool inplace) {
  3297. bool is_node = false;
  3298. if (!inplace && (a->grad)) {
  3299. is_node = true;
  3300. }
  3301. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3302. result->op = GGML_OP_DUP;
  3303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3304. result->src[0] = a;
  3305. return result;
  3306. }
  3307. struct ggml_tensor * ggml_dup(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a) {
  3310. return ggml_dup_impl(ctx, a, false);
  3311. }
  3312. struct ggml_tensor * ggml_dup_inplace(
  3313. struct ggml_context * ctx,
  3314. struct ggml_tensor * a) {
  3315. return ggml_dup_impl(ctx, a, true);
  3316. }
  3317. // ggml_add
  3318. static struct ggml_tensor * ggml_add_impl(
  3319. struct ggml_context * ctx,
  3320. struct ggml_tensor * a,
  3321. struct ggml_tensor * b,
  3322. bool inplace) {
  3323. GGML_ASSERT(ggml_can_repeat(b, a));
  3324. bool is_node = false;
  3325. if (!inplace && (a->grad || b->grad)) {
  3326. // TODO: support backward pass for broadcasting
  3327. GGML_ASSERT(ggml_are_same_shape(a, b));
  3328. is_node = true;
  3329. }
  3330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3331. result->op = GGML_OP_ADD;
  3332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3333. result->src[0] = a;
  3334. result->src[1] = b;
  3335. return result;
  3336. }
  3337. struct ggml_tensor * ggml_add(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a,
  3340. struct ggml_tensor * b) {
  3341. return ggml_add_impl(ctx, a, b, false);
  3342. }
  3343. struct ggml_tensor * ggml_add_inplace(
  3344. struct ggml_context * ctx,
  3345. struct ggml_tensor * a,
  3346. struct ggml_tensor * b) {
  3347. return ggml_add_impl(ctx, a, b, true);
  3348. }
  3349. // ggml_add_cast
  3350. static struct ggml_tensor * ggml_add_cast_impl(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. struct ggml_tensor * b,
  3354. enum ggml_type type) {
  3355. // TODO: support less-strict constraint
  3356. // GGML_ASSERT(ggml_can_repeat(b, a));
  3357. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3358. // currently only supported for quantized input and f16
  3359. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3360. a->type == GGML_TYPE_F16 ||
  3361. a->type == GGML_TYPE_BF16);
  3362. bool is_node = false;
  3363. if (a->grad || b->grad) {
  3364. // TODO: support backward pass for broadcasting
  3365. GGML_ASSERT(ggml_are_same_shape(a, b));
  3366. is_node = true;
  3367. }
  3368. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3369. result->op = GGML_OP_ADD;
  3370. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3371. result->src[0] = a;
  3372. result->src[1] = b;
  3373. return result;
  3374. }
  3375. struct ggml_tensor * ggml_add_cast(
  3376. struct ggml_context * ctx,
  3377. struct ggml_tensor * a,
  3378. struct ggml_tensor * b,
  3379. enum ggml_type type) {
  3380. return ggml_add_cast_impl(ctx, a, b, type);
  3381. }
  3382. // ggml_add1
  3383. static struct ggml_tensor * ggml_add1_impl(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a,
  3386. struct ggml_tensor * b,
  3387. bool inplace) {
  3388. GGML_ASSERT(ggml_is_scalar(b));
  3389. GGML_ASSERT(ggml_is_padded_1d(a));
  3390. bool is_node = false;
  3391. if (a->grad || b->grad) {
  3392. is_node = true;
  3393. }
  3394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3395. result->op = GGML_OP_ADD1;
  3396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3397. result->src[0] = a;
  3398. result->src[1] = b;
  3399. return result;
  3400. }
  3401. struct ggml_tensor * ggml_add1(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a,
  3404. struct ggml_tensor * b) {
  3405. return ggml_add1_impl(ctx, a, b, false);
  3406. }
  3407. struct ggml_tensor * ggml_add1_inplace(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a,
  3410. struct ggml_tensor * b) {
  3411. return ggml_add1_impl(ctx, a, b, true);
  3412. }
  3413. // ggml_acc
  3414. static struct ggml_tensor * ggml_acc_impl(
  3415. struct ggml_context * ctx,
  3416. struct ggml_tensor * a,
  3417. struct ggml_tensor * b,
  3418. size_t nb1,
  3419. size_t nb2,
  3420. size_t nb3,
  3421. size_t offset,
  3422. bool inplace) {
  3423. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3424. GGML_ASSERT(ggml_is_contiguous(a));
  3425. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3426. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3427. bool is_node = false;
  3428. if (!inplace && (a->grad || b->grad)) {
  3429. is_node = true;
  3430. }
  3431. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3432. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3433. ggml_set_op_params(result, params, sizeof(params));
  3434. result->op = GGML_OP_ACC;
  3435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3436. result->src[0] = a;
  3437. result->src[1] = b;
  3438. return result;
  3439. }
  3440. struct ggml_tensor * ggml_acc(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a,
  3443. struct ggml_tensor * b,
  3444. size_t nb1,
  3445. size_t nb2,
  3446. size_t nb3,
  3447. size_t offset) {
  3448. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3449. }
  3450. struct ggml_tensor * ggml_acc_inplace(
  3451. struct ggml_context * ctx,
  3452. struct ggml_tensor * a,
  3453. struct ggml_tensor * b,
  3454. size_t nb1,
  3455. size_t nb2,
  3456. size_t nb3,
  3457. size_t offset) {
  3458. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3459. }
  3460. // ggml_sub
  3461. static struct ggml_tensor * ggml_sub_impl(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. struct ggml_tensor * b,
  3465. bool inplace) {
  3466. GGML_ASSERT(ggml_are_same_shape(a, b));
  3467. bool is_node = false;
  3468. if (!inplace && (a->grad || b->grad)) {
  3469. is_node = true;
  3470. }
  3471. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3472. result->op = GGML_OP_SUB;
  3473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3474. result->src[0] = a;
  3475. result->src[1] = b;
  3476. return result;
  3477. }
  3478. struct ggml_tensor * ggml_sub(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a,
  3481. struct ggml_tensor * b) {
  3482. return ggml_sub_impl(ctx, a, b, false);
  3483. }
  3484. struct ggml_tensor * ggml_sub_inplace(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. struct ggml_tensor * b) {
  3488. return ggml_sub_impl(ctx, a, b, true);
  3489. }
  3490. // ggml_mul
  3491. static struct ggml_tensor * ggml_mul_impl(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a,
  3494. struct ggml_tensor * b,
  3495. bool inplace) {
  3496. GGML_ASSERT(ggml_can_repeat(b, a));
  3497. bool is_node = false;
  3498. if (!inplace && (a->grad || b->grad)) {
  3499. // TODO: support backward pass for broadcasting
  3500. GGML_ASSERT(ggml_are_same_shape(a, b));
  3501. is_node = true;
  3502. }
  3503. if (inplace) {
  3504. GGML_ASSERT(!is_node);
  3505. }
  3506. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3507. result->op = GGML_OP_MUL;
  3508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3509. result->src[0] = a;
  3510. result->src[1] = b;
  3511. return result;
  3512. }
  3513. struct ggml_tensor * ggml_mul(
  3514. struct ggml_context * ctx,
  3515. struct ggml_tensor * a,
  3516. struct ggml_tensor * b) {
  3517. return ggml_mul_impl(ctx, a, b, false);
  3518. }
  3519. struct ggml_tensor * ggml_mul_inplace(
  3520. struct ggml_context * ctx,
  3521. struct ggml_tensor * a,
  3522. struct ggml_tensor * b) {
  3523. return ggml_mul_impl(ctx, a, b, true);
  3524. }
  3525. // ggml_div
  3526. static struct ggml_tensor * ggml_div_impl(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a,
  3529. struct ggml_tensor * b,
  3530. bool inplace) {
  3531. GGML_ASSERT(ggml_can_repeat(b, a));
  3532. bool is_node = false;
  3533. if (!inplace && (a->grad || b->grad)) {
  3534. is_node = true;
  3535. }
  3536. if (inplace) {
  3537. GGML_ASSERT(!is_node);
  3538. }
  3539. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3540. result->op = GGML_OP_DIV;
  3541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3542. result->src[0] = a;
  3543. result->src[1] = b;
  3544. return result;
  3545. }
  3546. struct ggml_tensor * ggml_div(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. struct ggml_tensor * b) {
  3550. return ggml_div_impl(ctx, a, b, false);
  3551. }
  3552. struct ggml_tensor * ggml_div_inplace(
  3553. struct ggml_context * ctx,
  3554. struct ggml_tensor * a,
  3555. struct ggml_tensor * b) {
  3556. return ggml_div_impl(ctx, a, b, true);
  3557. }
  3558. // ggml_sqr
  3559. static struct ggml_tensor * ggml_sqr_impl(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a,
  3562. bool inplace) {
  3563. bool is_node = false;
  3564. if (!inplace && (a->grad)) {
  3565. is_node = true;
  3566. }
  3567. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3568. result->op = GGML_OP_SQR;
  3569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3570. result->src[0] = a;
  3571. return result;
  3572. }
  3573. struct ggml_tensor * ggml_sqr(
  3574. struct ggml_context * ctx,
  3575. struct ggml_tensor * a) {
  3576. return ggml_sqr_impl(ctx, a, false);
  3577. }
  3578. struct ggml_tensor * ggml_sqr_inplace(
  3579. struct ggml_context * ctx,
  3580. struct ggml_tensor * a) {
  3581. return ggml_sqr_impl(ctx, a, true);
  3582. }
  3583. // ggml_sqrt
  3584. static struct ggml_tensor * ggml_sqrt_impl(
  3585. struct ggml_context * ctx,
  3586. struct ggml_tensor * a,
  3587. bool inplace) {
  3588. bool is_node = false;
  3589. if (!inplace && (a->grad)) {
  3590. is_node = true;
  3591. }
  3592. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3593. result->op = GGML_OP_SQRT;
  3594. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3595. result->src[0] = a;
  3596. return result;
  3597. }
  3598. struct ggml_tensor * ggml_sqrt(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a) {
  3601. return ggml_sqrt_impl(ctx, a, false);
  3602. }
  3603. struct ggml_tensor * ggml_sqrt_inplace(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a) {
  3606. return ggml_sqrt_impl(ctx, a, true);
  3607. }
  3608. // ggml_log
  3609. static struct ggml_tensor * ggml_log_impl(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a,
  3612. bool inplace) {
  3613. bool is_node = false;
  3614. if (!inplace && (a->grad)) {
  3615. is_node = true;
  3616. }
  3617. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3618. result->op = GGML_OP_LOG;
  3619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3620. result->src[0] = a;
  3621. return result;
  3622. }
  3623. struct ggml_tensor * ggml_log(
  3624. struct ggml_context * ctx,
  3625. struct ggml_tensor * a) {
  3626. return ggml_log_impl(ctx, a, false);
  3627. }
  3628. struct ggml_tensor * ggml_log_inplace(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a) {
  3631. return ggml_log_impl(ctx, a, true);
  3632. }
  3633. // ggml_sum
  3634. struct ggml_tensor * ggml_sum(
  3635. struct ggml_context * ctx,
  3636. struct ggml_tensor * a) {
  3637. bool is_node = false;
  3638. if (a->grad) {
  3639. is_node = true;
  3640. }
  3641. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3642. result->op = GGML_OP_SUM;
  3643. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3644. result->src[0] = a;
  3645. return result;
  3646. }
  3647. // ggml_sum_rows
  3648. struct ggml_tensor * ggml_sum_rows(
  3649. struct ggml_context * ctx,
  3650. struct ggml_tensor * a) {
  3651. bool is_node = false;
  3652. if (a->grad) {
  3653. is_node = true;
  3654. }
  3655. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3656. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3657. ne[i] = a->ne[i];
  3658. }
  3659. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3660. result->op = GGML_OP_SUM_ROWS;
  3661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3662. result->src[0] = a;
  3663. return result;
  3664. }
  3665. // ggml_mean
  3666. struct ggml_tensor * ggml_mean(
  3667. struct ggml_context * ctx,
  3668. struct ggml_tensor * a) {
  3669. bool is_node = false;
  3670. if (a->grad) {
  3671. GGML_ASSERT(false); // TODO: implement
  3672. is_node = true;
  3673. }
  3674. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3675. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3676. result->op = GGML_OP_MEAN;
  3677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3678. result->src[0] = a;
  3679. return result;
  3680. }
  3681. // ggml_argmax
  3682. struct ggml_tensor * ggml_argmax(
  3683. struct ggml_context * ctx,
  3684. struct ggml_tensor * a) {
  3685. GGML_ASSERT(ggml_is_matrix(a));
  3686. bool is_node = false;
  3687. if (a->grad) {
  3688. GGML_ASSERT(false);
  3689. is_node = true;
  3690. }
  3691. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3692. result->op = GGML_OP_ARGMAX;
  3693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3694. result->src[0] = a;
  3695. return result;
  3696. }
  3697. // ggml_repeat
  3698. struct ggml_tensor * ggml_repeat(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. struct ggml_tensor * b) {
  3702. GGML_ASSERT(ggml_can_repeat(a, b));
  3703. bool is_node = false;
  3704. if (a->grad) {
  3705. is_node = true;
  3706. }
  3707. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3708. result->op = GGML_OP_REPEAT;
  3709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3710. result->src[0] = a;
  3711. return result;
  3712. }
  3713. // ggml_repeat_back
  3714. struct ggml_tensor * ggml_repeat_back(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. struct ggml_tensor * b) {
  3718. GGML_ASSERT(ggml_can_repeat(b, a));
  3719. bool is_node = false;
  3720. if (a->grad) {
  3721. is_node = true;
  3722. }
  3723. if (ggml_are_same_shape(a, b) && !is_node) {
  3724. return a;
  3725. }
  3726. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3727. result->op = GGML_OP_REPEAT_BACK;
  3728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3729. result->src[0] = a;
  3730. return result;
  3731. }
  3732. // ggml_concat
  3733. struct ggml_tensor * ggml_concat(
  3734. struct ggml_context* ctx,
  3735. struct ggml_tensor* a,
  3736. struct ggml_tensor* b) {
  3737. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3738. bool is_node = false;
  3739. if (a->grad || b->grad) {
  3740. is_node = true;
  3741. }
  3742. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3743. result->op = GGML_OP_CONCAT;
  3744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3745. result->src[0] = a;
  3746. result->src[1] = b;
  3747. return result;
  3748. }
  3749. // ggml_abs
  3750. struct ggml_tensor * ggml_abs(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a) {
  3753. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3754. }
  3755. struct ggml_tensor * ggml_abs_inplace(
  3756. struct ggml_context * ctx,
  3757. struct ggml_tensor * a) {
  3758. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3759. }
  3760. // ggml_sgn
  3761. struct ggml_tensor * ggml_sgn(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a) {
  3764. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3765. }
  3766. struct ggml_tensor * ggml_sgn_inplace(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a) {
  3769. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3770. }
  3771. // ggml_neg
  3772. struct ggml_tensor * ggml_neg(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a) {
  3775. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3776. }
  3777. struct ggml_tensor * ggml_neg_inplace(
  3778. struct ggml_context * ctx,
  3779. struct ggml_tensor * a) {
  3780. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3781. }
  3782. // ggml_step
  3783. struct ggml_tensor * ggml_step(
  3784. struct ggml_context * ctx,
  3785. struct ggml_tensor * a) {
  3786. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3787. }
  3788. struct ggml_tensor * ggml_step_inplace(
  3789. struct ggml_context * ctx,
  3790. struct ggml_tensor * a) {
  3791. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3792. }
  3793. // ggml_tanh
  3794. struct ggml_tensor * ggml_tanh(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a) {
  3797. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3798. }
  3799. struct ggml_tensor * ggml_tanh_inplace(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a) {
  3802. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3803. }
  3804. // ggml_elu
  3805. struct ggml_tensor * ggml_elu(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a) {
  3808. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3809. }
  3810. struct ggml_tensor * ggml_elu_inplace(
  3811. struct ggml_context * ctx,
  3812. struct ggml_tensor * a) {
  3813. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3814. }
  3815. // ggml_relu
  3816. struct ggml_tensor * ggml_relu(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a) {
  3819. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3820. }
  3821. struct ggml_tensor * ggml_relu_inplace(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * a) {
  3824. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3825. }
  3826. // ggml_leaky_relu
  3827. struct ggml_tensor * ggml_leaky_relu(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3830. bool is_node = false;
  3831. if (!inplace && (a->grad)) {
  3832. is_node = true;
  3833. }
  3834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3835. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3836. result->op = GGML_OP_LEAKY_RELU;
  3837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3838. result->src[0] = a;
  3839. return result;
  3840. }
  3841. // ggml_sigmoid
  3842. struct ggml_tensor * ggml_sigmoid(
  3843. struct ggml_context * ctx,
  3844. struct ggml_tensor * a) {
  3845. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  3846. }
  3847. struct ggml_tensor * ggml_sigmoid_inplace(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a) {
  3850. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  3851. }
  3852. // ggml_gelu
  3853. struct ggml_tensor * ggml_gelu(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * a) {
  3856. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3857. }
  3858. struct ggml_tensor * ggml_gelu_inplace(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a) {
  3861. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3862. }
  3863. // ggml_gelu_quick
  3864. struct ggml_tensor * ggml_gelu_quick(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a) {
  3867. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3868. }
  3869. struct ggml_tensor * ggml_gelu_quick_inplace(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a) {
  3872. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3873. }
  3874. // ggml_silu
  3875. struct ggml_tensor * ggml_silu(
  3876. struct ggml_context * ctx,
  3877. struct ggml_tensor * a) {
  3878. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3879. }
  3880. struct ggml_tensor * ggml_silu_inplace(
  3881. struct ggml_context * ctx,
  3882. struct ggml_tensor * a) {
  3883. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3884. }
  3885. // ggml_silu_back
  3886. struct ggml_tensor * ggml_silu_back(
  3887. struct ggml_context * ctx,
  3888. struct ggml_tensor * a,
  3889. struct ggml_tensor * b) {
  3890. bool is_node = false;
  3891. if (a->grad || b->grad) {
  3892. // TODO: implement backward
  3893. is_node = true;
  3894. }
  3895. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3896. result->op = GGML_OP_SILU_BACK;
  3897. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3898. result->src[0] = a;
  3899. result->src[1] = b;
  3900. return result;
  3901. }
  3902. // ggml hardswish
  3903. struct ggml_tensor * ggml_hardswish(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a) {
  3906. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3907. }
  3908. // ggml hardsigmoid
  3909. struct ggml_tensor * ggml_hardsigmoid(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a) {
  3912. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3913. }
  3914. // ggml_norm
  3915. static struct ggml_tensor * ggml_norm_impl(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a,
  3918. float eps,
  3919. bool inplace) {
  3920. bool is_node = false;
  3921. if (!inplace && (a->grad)) {
  3922. GGML_ASSERT(false); // TODO: implement backward
  3923. is_node = true;
  3924. }
  3925. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3926. ggml_set_op_params(result, &eps, sizeof(eps));
  3927. result->op = GGML_OP_NORM;
  3928. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3929. result->src[0] = a;
  3930. return result;
  3931. }
  3932. struct ggml_tensor * ggml_norm(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a,
  3935. float eps) {
  3936. return ggml_norm_impl(ctx, a, eps, false);
  3937. }
  3938. struct ggml_tensor * ggml_norm_inplace(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a,
  3941. float eps) {
  3942. return ggml_norm_impl(ctx, a, eps, true);
  3943. }
  3944. // ggml_rms_norm
  3945. static struct ggml_tensor * ggml_rms_norm_impl(
  3946. struct ggml_context * ctx,
  3947. struct ggml_tensor * a,
  3948. float eps,
  3949. bool inplace) {
  3950. bool is_node = false;
  3951. if (!inplace && (a->grad)) {
  3952. is_node = true;
  3953. }
  3954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3955. ggml_set_op_params(result, &eps, sizeof(eps));
  3956. result->op = GGML_OP_RMS_NORM;
  3957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3958. result->src[0] = a;
  3959. return result;
  3960. }
  3961. struct ggml_tensor * ggml_rms_norm(
  3962. struct ggml_context * ctx,
  3963. struct ggml_tensor * a,
  3964. float eps) {
  3965. return ggml_rms_norm_impl(ctx, a, eps, false);
  3966. }
  3967. struct ggml_tensor * ggml_rms_norm_inplace(
  3968. struct ggml_context * ctx,
  3969. struct ggml_tensor * a,
  3970. float eps) {
  3971. return ggml_rms_norm_impl(ctx, a, eps, true);
  3972. }
  3973. // ggml_rms_norm_back
  3974. struct ggml_tensor * ggml_rms_norm_back(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a,
  3977. struct ggml_tensor * b,
  3978. float eps) {
  3979. bool is_node = false;
  3980. if (a->grad) {
  3981. // TODO: implement backward
  3982. is_node = true;
  3983. }
  3984. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3985. ggml_set_op_params(result, &eps, sizeof(eps));
  3986. result->op = GGML_OP_RMS_NORM_BACK;
  3987. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3988. result->src[0] = a;
  3989. result->src[1] = b;
  3990. return result;
  3991. }
  3992. // ggml_group_norm
  3993. static struct ggml_tensor * ggml_group_norm_impl(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a,
  3996. int n_groups,
  3997. bool inplace) {
  3998. bool is_node = false;
  3999. if (!inplace && (a->grad)) {
  4000. GGML_ASSERT(false); // TODO: implement backward
  4001. is_node = true;
  4002. }
  4003. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4004. result->op_params[0] = n_groups;
  4005. result->op = GGML_OP_GROUP_NORM;
  4006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4007. result->src[0] = a;
  4008. return result;
  4009. }
  4010. struct ggml_tensor * ggml_group_norm(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a,
  4013. int n_groups) {
  4014. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4015. }
  4016. struct ggml_tensor * ggml_group_norm_inplace(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a,
  4019. int n_groups) {
  4020. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4021. }
  4022. // ggml_mul_mat
  4023. struct ggml_tensor * ggml_mul_mat(
  4024. struct ggml_context * ctx,
  4025. struct ggml_tensor * a,
  4026. struct ggml_tensor * b) {
  4027. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4028. GGML_ASSERT(!ggml_is_transposed(a));
  4029. bool is_node = false;
  4030. if (a->grad || b->grad) {
  4031. is_node = true;
  4032. }
  4033. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4034. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4035. result->op = GGML_OP_MUL_MAT;
  4036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4037. result->src[0] = a;
  4038. result->src[1] = b;
  4039. return result;
  4040. }
  4041. void ggml_mul_mat_set_prec(
  4042. struct ggml_tensor * a,
  4043. enum ggml_prec prec) {
  4044. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4045. const int32_t prec_i32 = (int32_t) prec;
  4046. ggml_set_op_params_i32(a, 0, prec_i32);
  4047. }
  4048. // ggml_mul_mat_id
  4049. /*
  4050. c = ggml_mul_mat_id(ctx, as, b, ids);
  4051. as -> [cols, rows, n_expert]
  4052. ids -> [n_experts_used, n_tokens] (i32)
  4053. b -> [cols, n_expert_used, n_tokens]
  4054. c -> [cols, n_expert_used, n_tokens]
  4055. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4056. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4057. */
  4058. struct ggml_tensor * ggml_mul_mat_id(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * as,
  4061. struct ggml_tensor * b,
  4062. struct ggml_tensor * ids) {
  4063. GGML_ASSERT(!ggml_is_transposed(as));
  4064. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4065. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4066. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4067. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4068. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4069. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4070. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4071. bool is_node = false;
  4072. if (as->grad || b->grad) {
  4073. is_node = true;
  4074. }
  4075. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4076. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4077. result->op = GGML_OP_MUL_MAT_ID;
  4078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4079. result->src[0] = as;
  4080. result->src[1] = b;
  4081. result->src[2] = ids;
  4082. return result;
  4083. }
  4084. // ggml_out_prod
  4085. struct ggml_tensor * ggml_out_prod(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. struct ggml_tensor * b) {
  4089. GGML_ASSERT(ggml_can_out_prod(a, b));
  4090. GGML_ASSERT(!ggml_is_transposed(a));
  4091. bool is_node = false;
  4092. if (a->grad || b->grad) {
  4093. is_node = true;
  4094. }
  4095. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4096. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4097. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4098. result->op = GGML_OP_OUT_PROD;
  4099. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4100. result->src[0] = a;
  4101. result->src[1] = b;
  4102. return result;
  4103. }
  4104. // ggml_scale
  4105. static struct ggml_tensor * ggml_scale_impl(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. float s,
  4109. bool inplace) {
  4110. GGML_ASSERT(ggml_is_padded_1d(a));
  4111. bool is_node = false;
  4112. if (a->grad) {
  4113. is_node = true;
  4114. }
  4115. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4116. ggml_set_op_params(result, &s, sizeof(s));
  4117. result->op = GGML_OP_SCALE;
  4118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4119. result->src[0] = a;
  4120. return result;
  4121. }
  4122. struct ggml_tensor * ggml_scale(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a,
  4125. float s) {
  4126. return ggml_scale_impl(ctx, a, s, false);
  4127. }
  4128. struct ggml_tensor * ggml_scale_inplace(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a,
  4131. float s) {
  4132. return ggml_scale_impl(ctx, a, s, true);
  4133. }
  4134. // ggml_set
  4135. static struct ggml_tensor * ggml_set_impl(
  4136. struct ggml_context * ctx,
  4137. struct ggml_tensor * a,
  4138. struct ggml_tensor * b,
  4139. size_t nb1,
  4140. size_t nb2,
  4141. size_t nb3,
  4142. size_t offset,
  4143. bool inplace) {
  4144. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4145. bool is_node = false;
  4146. if (a->grad || b->grad) {
  4147. is_node = true;
  4148. }
  4149. // make a view of the destination
  4150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4151. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4152. ggml_set_op_params(result, params, sizeof(params));
  4153. result->op = GGML_OP_SET;
  4154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4155. result->src[0] = a;
  4156. result->src[1] = b;
  4157. return result;
  4158. }
  4159. struct ggml_tensor * ggml_set(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a,
  4162. struct ggml_tensor * b,
  4163. size_t nb1,
  4164. size_t nb2,
  4165. size_t nb3,
  4166. size_t offset) {
  4167. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4168. }
  4169. struct ggml_tensor * ggml_set_inplace(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a,
  4172. struct ggml_tensor * b,
  4173. size_t nb1,
  4174. size_t nb2,
  4175. size_t nb3,
  4176. size_t offset) {
  4177. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4178. }
  4179. struct ggml_tensor * ggml_set_1d(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a,
  4182. struct ggml_tensor * b,
  4183. size_t offset) {
  4184. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4185. }
  4186. struct ggml_tensor * ggml_set_1d_inplace(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. struct ggml_tensor * b,
  4190. size_t offset) {
  4191. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4192. }
  4193. struct ggml_tensor * ggml_set_2d(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. struct ggml_tensor * b,
  4197. size_t nb1,
  4198. size_t offset) {
  4199. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4200. }
  4201. struct ggml_tensor * ggml_set_2d_inplace(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a,
  4204. struct ggml_tensor * b,
  4205. size_t nb1,
  4206. size_t offset) {
  4207. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4208. }
  4209. // ggml_cpy
  4210. static struct ggml_tensor * ggml_cpy_impl(
  4211. struct ggml_context * ctx,
  4212. struct ggml_tensor * a,
  4213. struct ggml_tensor * b) {
  4214. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4215. bool is_node = false;
  4216. if (a->grad || b->grad) {
  4217. // inplace is false and either one have a grad
  4218. is_node = true;
  4219. }
  4220. // make a view of the destination
  4221. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4222. if (strlen(b->name) > 0) {
  4223. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4224. } else {
  4225. ggml_format_name(result, "%s (copy)", a->name);
  4226. }
  4227. result->op = GGML_OP_CPY;
  4228. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4229. result->src[0] = a;
  4230. result->src[1] = b;
  4231. return result;
  4232. }
  4233. struct ggml_tensor * ggml_cpy(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a,
  4236. struct ggml_tensor * b) {
  4237. return ggml_cpy_impl(ctx, a, b);
  4238. }
  4239. struct ggml_tensor * ggml_cast(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a,
  4242. enum ggml_type type) {
  4243. bool is_node = false;
  4244. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4245. ggml_format_name(result, "%s (copy)", a->name);
  4246. result->op = GGML_OP_CPY;
  4247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4248. result->src[0] = a;
  4249. result->src[1] = result;
  4250. return result;
  4251. }
  4252. // ggml_cont
  4253. static struct ggml_tensor * ggml_cont_impl(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a) {
  4256. bool is_node = false;
  4257. if (a->grad) {
  4258. is_node = true;
  4259. }
  4260. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4261. ggml_format_name(result, "%s (cont)", a->name);
  4262. result->op = GGML_OP_CONT;
  4263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4264. result->src[0] = a;
  4265. return result;
  4266. }
  4267. struct ggml_tensor * ggml_cont(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a) {
  4270. return ggml_cont_impl(ctx, a);
  4271. }
  4272. // make contiguous, with new shape
  4273. GGML_API struct ggml_tensor * ggml_cont_1d(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a,
  4276. int64_t ne0) {
  4277. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4278. }
  4279. GGML_API struct ggml_tensor * ggml_cont_2d(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a,
  4282. int64_t ne0,
  4283. int64_t ne1) {
  4284. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4285. }
  4286. GGML_API struct ggml_tensor * ggml_cont_3d(
  4287. struct ggml_context * ctx,
  4288. struct ggml_tensor * a,
  4289. int64_t ne0,
  4290. int64_t ne1,
  4291. int64_t ne2) {
  4292. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4293. }
  4294. struct ggml_tensor * ggml_cont_4d(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a,
  4297. int64_t ne0,
  4298. int64_t ne1,
  4299. int64_t ne2,
  4300. int64_t ne3) {
  4301. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4302. bool is_node = false;
  4303. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4304. ggml_format_name(result, "%s (cont)", a->name);
  4305. result->op = GGML_OP_CONT;
  4306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4307. result->src[0] = a;
  4308. return result;
  4309. }
  4310. // ggml_reshape
  4311. struct ggml_tensor * ggml_reshape(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a,
  4314. struct ggml_tensor * b) {
  4315. GGML_ASSERT(ggml_is_contiguous(a));
  4316. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4317. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4318. bool is_node = false;
  4319. if (a->grad) {
  4320. is_node = true;
  4321. }
  4322. if (b->grad) {
  4323. // gradient propagation is not supported
  4324. //GGML_ASSERT(false);
  4325. }
  4326. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4327. ggml_format_name(result, "%s (reshaped)", a->name);
  4328. result->op = GGML_OP_RESHAPE;
  4329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4330. result->src[0] = a;
  4331. return result;
  4332. }
  4333. struct ggml_tensor * ggml_reshape_1d(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a,
  4336. int64_t ne0) {
  4337. GGML_ASSERT(ggml_is_contiguous(a));
  4338. GGML_ASSERT(ggml_nelements(a) == ne0);
  4339. bool is_node = false;
  4340. if (a->grad) {
  4341. is_node = true;
  4342. }
  4343. const int64_t ne[1] = { ne0 };
  4344. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4345. ggml_format_name(result, "%s (reshaped)", a->name);
  4346. result->op = GGML_OP_RESHAPE;
  4347. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4348. result->src[0] = a;
  4349. return result;
  4350. }
  4351. struct ggml_tensor * ggml_reshape_2d(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a,
  4354. int64_t ne0,
  4355. int64_t ne1) {
  4356. GGML_ASSERT(ggml_is_contiguous(a));
  4357. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4358. bool is_node = false;
  4359. if (a->grad) {
  4360. is_node = true;
  4361. }
  4362. const int64_t ne[2] = { ne0, ne1 };
  4363. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4364. ggml_format_name(result, "%s (reshaped)", a->name);
  4365. result->op = GGML_OP_RESHAPE;
  4366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4367. result->src[0] = a;
  4368. return result;
  4369. }
  4370. struct ggml_tensor * ggml_reshape_3d(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. int64_t ne0,
  4374. int64_t ne1,
  4375. int64_t ne2) {
  4376. GGML_ASSERT(ggml_is_contiguous(a));
  4377. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4378. bool is_node = false;
  4379. if (a->grad) {
  4380. is_node = true;
  4381. }
  4382. const int64_t ne[3] = { ne0, ne1, ne2 };
  4383. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4384. ggml_format_name(result, "%s (reshaped)", a->name);
  4385. result->op = GGML_OP_RESHAPE;
  4386. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4387. result->src[0] = a;
  4388. return result;
  4389. }
  4390. struct ggml_tensor * ggml_reshape_4d(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a,
  4393. int64_t ne0,
  4394. int64_t ne1,
  4395. int64_t ne2,
  4396. int64_t ne3) {
  4397. GGML_ASSERT(ggml_is_contiguous(a));
  4398. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4399. bool is_node = false;
  4400. if (a->grad) {
  4401. is_node = true;
  4402. }
  4403. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4404. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4405. ggml_format_name(result, "%s (reshaped)", a->name);
  4406. result->op = GGML_OP_RESHAPE;
  4407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4408. result->src[0] = a;
  4409. return result;
  4410. }
  4411. static struct ggml_tensor * ggml_view_impl(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. int n_dims,
  4415. const int64_t * ne,
  4416. size_t offset) {
  4417. bool is_node = false;
  4418. if (a->grad) {
  4419. is_node = true;
  4420. }
  4421. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4422. ggml_format_name(result, "%s (view)", a->name);
  4423. ggml_set_op_params(result, &offset, sizeof(offset));
  4424. result->op = GGML_OP_VIEW;
  4425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4426. result->src[0] = a;
  4427. return result;
  4428. }
  4429. // ggml_view_1d
  4430. struct ggml_tensor * ggml_view_1d(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. int64_t ne0,
  4434. size_t offset) {
  4435. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4436. return result;
  4437. }
  4438. // ggml_view_2d
  4439. struct ggml_tensor * ggml_view_2d(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. int64_t ne0,
  4443. int64_t ne1,
  4444. size_t nb1,
  4445. size_t offset) {
  4446. const int64_t ne[2] = { ne0, ne1 };
  4447. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4448. result->nb[1] = nb1;
  4449. result->nb[2] = result->nb[1]*ne1;
  4450. result->nb[3] = result->nb[2];
  4451. return result;
  4452. }
  4453. // ggml_view_3d
  4454. struct ggml_tensor * ggml_view_3d(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a,
  4457. int64_t ne0,
  4458. int64_t ne1,
  4459. int64_t ne2,
  4460. size_t nb1,
  4461. size_t nb2,
  4462. size_t offset) {
  4463. const int64_t ne[3] = { ne0, ne1, ne2 };
  4464. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4465. result->nb[1] = nb1;
  4466. result->nb[2] = nb2;
  4467. result->nb[3] = result->nb[2]*ne2;
  4468. return result;
  4469. }
  4470. // ggml_view_4d
  4471. struct ggml_tensor * ggml_view_4d(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a,
  4474. int64_t ne0,
  4475. int64_t ne1,
  4476. int64_t ne2,
  4477. int64_t ne3,
  4478. size_t nb1,
  4479. size_t nb2,
  4480. size_t nb3,
  4481. size_t offset) {
  4482. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4483. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4484. result->nb[1] = nb1;
  4485. result->nb[2] = nb2;
  4486. result->nb[3] = nb3;
  4487. return result;
  4488. }
  4489. // ggml_permute
  4490. struct ggml_tensor * ggml_permute(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. int axis0,
  4494. int axis1,
  4495. int axis2,
  4496. int axis3) {
  4497. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4498. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4499. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4500. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4501. GGML_ASSERT(axis0 != axis1);
  4502. GGML_ASSERT(axis0 != axis2);
  4503. GGML_ASSERT(axis0 != axis3);
  4504. GGML_ASSERT(axis1 != axis2);
  4505. GGML_ASSERT(axis1 != axis3);
  4506. GGML_ASSERT(axis2 != axis3);
  4507. bool is_node = false;
  4508. if (a->grad) {
  4509. is_node = true;
  4510. }
  4511. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4512. ggml_format_name(result, "%s (permuted)", a->name);
  4513. int ne[GGML_MAX_DIMS];
  4514. int nb[GGML_MAX_DIMS];
  4515. ne[axis0] = a->ne[0];
  4516. ne[axis1] = a->ne[1];
  4517. ne[axis2] = a->ne[2];
  4518. ne[axis3] = a->ne[3];
  4519. nb[axis0] = a->nb[0];
  4520. nb[axis1] = a->nb[1];
  4521. nb[axis2] = a->nb[2];
  4522. nb[axis3] = a->nb[3];
  4523. result->ne[0] = ne[0];
  4524. result->ne[1] = ne[1];
  4525. result->ne[2] = ne[2];
  4526. result->ne[3] = ne[3];
  4527. result->nb[0] = nb[0];
  4528. result->nb[1] = nb[1];
  4529. result->nb[2] = nb[2];
  4530. result->nb[3] = nb[3];
  4531. result->op = GGML_OP_PERMUTE;
  4532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4533. result->src[0] = a;
  4534. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4535. ggml_set_op_params(result, params, sizeof(params));
  4536. return result;
  4537. }
  4538. // ggml_transpose
  4539. struct ggml_tensor * ggml_transpose(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a) {
  4542. bool is_node = false;
  4543. if (a->grad) {
  4544. is_node = true;
  4545. }
  4546. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4547. ggml_format_name(result, "%s (transposed)", a->name);
  4548. result->ne[0] = a->ne[1];
  4549. result->ne[1] = a->ne[0];
  4550. result->nb[0] = a->nb[1];
  4551. result->nb[1] = a->nb[0];
  4552. result->op = GGML_OP_TRANSPOSE;
  4553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4554. result->src[0] = a;
  4555. return result;
  4556. }
  4557. // ggml_get_rows
  4558. struct ggml_tensor * ggml_get_rows(
  4559. struct ggml_context * ctx,
  4560. struct ggml_tensor * a,
  4561. struct ggml_tensor * b) {
  4562. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4563. GGML_ASSERT(b->ne[3] == 1);
  4564. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4565. bool is_node = false;
  4566. if (a->grad || b->grad) {
  4567. is_node = true;
  4568. }
  4569. // TODO: implement non F32 return
  4570. enum ggml_type type = GGML_TYPE_F32;
  4571. if (a->type == GGML_TYPE_I32) {
  4572. type = a->type;
  4573. }
  4574. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4575. result->op = GGML_OP_GET_ROWS;
  4576. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4577. result->src[0] = a;
  4578. result->src[1] = b;
  4579. return result;
  4580. }
  4581. // ggml_get_rows_back
  4582. struct ggml_tensor * ggml_get_rows_back(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a,
  4585. struct ggml_tensor * b,
  4586. struct ggml_tensor * c) {
  4587. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4588. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4589. bool is_node = false;
  4590. if (a->grad || b->grad) {
  4591. is_node = true;
  4592. }
  4593. // TODO: implement non F32 return
  4594. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4595. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4596. result->op = GGML_OP_GET_ROWS_BACK;
  4597. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4598. result->src[0] = a;
  4599. result->src[1] = b;
  4600. return result;
  4601. }
  4602. // ggml_diag
  4603. struct ggml_tensor * ggml_diag(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a) {
  4606. GGML_ASSERT(a->ne[1] == 1);
  4607. bool is_node = false;
  4608. if (a->grad) {
  4609. is_node = true;
  4610. }
  4611. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4612. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4613. result->op = GGML_OP_DIAG;
  4614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4615. result->src[0] = a;
  4616. return result;
  4617. }
  4618. // ggml_diag_mask_inf
  4619. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. int n_past,
  4623. bool inplace) {
  4624. bool is_node = false;
  4625. if (a->grad) {
  4626. is_node = true;
  4627. }
  4628. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4629. int32_t params[] = { n_past };
  4630. ggml_set_op_params(result, params, sizeof(params));
  4631. result->op = GGML_OP_DIAG_MASK_INF;
  4632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4633. result->src[0] = a;
  4634. return result;
  4635. }
  4636. struct ggml_tensor * ggml_diag_mask_inf(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a,
  4639. int n_past) {
  4640. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4641. }
  4642. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. int n_past) {
  4646. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4647. }
  4648. // ggml_diag_mask_zero
  4649. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4650. struct ggml_context * ctx,
  4651. struct ggml_tensor * a,
  4652. int n_past,
  4653. bool inplace) {
  4654. bool is_node = false;
  4655. if (a->grad) {
  4656. is_node = true;
  4657. }
  4658. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4659. int32_t params[] = { n_past };
  4660. ggml_set_op_params(result, params, sizeof(params));
  4661. result->op = GGML_OP_DIAG_MASK_ZERO;
  4662. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4663. result->src[0] = a;
  4664. return result;
  4665. }
  4666. struct ggml_tensor * ggml_diag_mask_zero(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a,
  4669. int n_past) {
  4670. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4671. }
  4672. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4673. struct ggml_context * ctx,
  4674. struct ggml_tensor * a,
  4675. int n_past) {
  4676. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4677. }
  4678. // ggml_soft_max
  4679. static struct ggml_tensor * ggml_soft_max_impl(
  4680. struct ggml_context * ctx,
  4681. struct ggml_tensor * a,
  4682. struct ggml_tensor * mask,
  4683. float scale,
  4684. float max_bias,
  4685. bool inplace) {
  4686. GGML_ASSERT(ggml_is_contiguous(a));
  4687. if (mask) {
  4688. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  4689. GGML_ASSERT(ggml_is_contiguous(mask));
  4690. GGML_ASSERT(ggml_is_matrix(mask));
  4691. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  4692. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  4693. }
  4694. if (max_bias > 0.0f) {
  4695. GGML_ASSERT(mask);
  4696. }
  4697. bool is_node = false;
  4698. if (a->grad) {
  4699. is_node = true;
  4700. }
  4701. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4702. float params[] = { scale, max_bias };
  4703. ggml_set_op_params(result, params, sizeof(params));
  4704. result->op = GGML_OP_SOFT_MAX;
  4705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4706. result->src[0] = a;
  4707. result->src[1] = mask;
  4708. return result;
  4709. }
  4710. struct ggml_tensor * ggml_soft_max(
  4711. struct ggml_context * ctx,
  4712. struct ggml_tensor * a) {
  4713. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  4714. }
  4715. struct ggml_tensor * ggml_soft_max_inplace(
  4716. struct ggml_context * ctx,
  4717. struct ggml_tensor * a) {
  4718. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  4719. }
  4720. struct ggml_tensor * ggml_soft_max_ext(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * mask,
  4724. float scale,
  4725. float max_bias) {
  4726. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  4727. }
  4728. // ggml_soft_max_back
  4729. static struct ggml_tensor * ggml_soft_max_back_impl(
  4730. struct ggml_context * ctx,
  4731. struct ggml_tensor * a,
  4732. struct ggml_tensor * b,
  4733. bool inplace) {
  4734. bool is_node = false;
  4735. if (a->grad || b->grad) {
  4736. is_node = true; // TODO : implement backward pass
  4737. }
  4738. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4739. result->op = GGML_OP_SOFT_MAX_BACK;
  4740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4741. result->src[0] = a;
  4742. result->src[1] = b;
  4743. return result;
  4744. }
  4745. struct ggml_tensor * ggml_soft_max_back(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. struct ggml_tensor * b) {
  4749. return ggml_soft_max_back_impl(ctx, a, b, false);
  4750. }
  4751. struct ggml_tensor * ggml_soft_max_back_inplace(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. struct ggml_tensor * b) {
  4755. return ggml_soft_max_back_impl(ctx, a, b, true);
  4756. }
  4757. // ggml_rope
  4758. static struct ggml_tensor * ggml_rope_impl(
  4759. struct ggml_context * ctx,
  4760. struct ggml_tensor * a,
  4761. struct ggml_tensor * b,
  4762. int n_dims,
  4763. int mode,
  4764. int n_ctx,
  4765. int n_orig_ctx,
  4766. float freq_base,
  4767. float freq_scale,
  4768. float ext_factor,
  4769. float attn_factor,
  4770. float beta_fast,
  4771. float beta_slow,
  4772. float xpos_base,
  4773. bool xpos_down,
  4774. bool inplace) {
  4775. GGML_ASSERT(ggml_is_vector(b));
  4776. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4777. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4778. bool is_node = false;
  4779. if (a->grad) {
  4780. is_node = true;
  4781. }
  4782. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4783. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4784. memcpy(params + 5, &freq_base, sizeof(float));
  4785. memcpy(params + 6, &freq_scale, sizeof(float));
  4786. memcpy(params + 7, &ext_factor, sizeof(float));
  4787. memcpy(params + 8, &attn_factor, sizeof(float));
  4788. memcpy(params + 9, &beta_fast, sizeof(float));
  4789. memcpy(params + 10, &beta_slow, sizeof(float));
  4790. memcpy(params + 11, &xpos_base, sizeof(float));
  4791. memcpy(params + 12, &xpos_down, sizeof(bool));
  4792. ggml_set_op_params(result, params, sizeof(params));
  4793. result->op = GGML_OP_ROPE;
  4794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4795. result->src[0] = a;
  4796. result->src[1] = b;
  4797. return result;
  4798. }
  4799. struct ggml_tensor * ggml_rope(
  4800. struct ggml_context * ctx,
  4801. struct ggml_tensor * a,
  4802. struct ggml_tensor * b,
  4803. int n_dims,
  4804. int mode,
  4805. int n_ctx) {
  4806. return ggml_rope_impl(
  4807. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4808. );
  4809. }
  4810. struct ggml_tensor * ggml_rope_inplace(
  4811. struct ggml_context * ctx,
  4812. struct ggml_tensor * a,
  4813. struct ggml_tensor * b,
  4814. int n_dims,
  4815. int mode,
  4816. int n_ctx) {
  4817. return ggml_rope_impl(
  4818. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4819. );
  4820. }
  4821. struct ggml_tensor * ggml_rope_custom(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a,
  4824. struct ggml_tensor * b,
  4825. int n_dims,
  4826. int mode,
  4827. int n_ctx,
  4828. int n_orig_ctx,
  4829. float freq_base,
  4830. float freq_scale,
  4831. float ext_factor,
  4832. float attn_factor,
  4833. float beta_fast,
  4834. float beta_slow) {
  4835. return ggml_rope_impl(
  4836. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4837. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4838. );
  4839. }
  4840. struct ggml_tensor * ggml_rope_custom_inplace(
  4841. struct ggml_context * ctx,
  4842. struct ggml_tensor * a,
  4843. struct ggml_tensor * b,
  4844. int n_dims,
  4845. int mode,
  4846. int n_ctx,
  4847. int n_orig_ctx,
  4848. float freq_base,
  4849. float freq_scale,
  4850. float ext_factor,
  4851. float attn_factor,
  4852. float beta_fast,
  4853. float beta_slow) {
  4854. return ggml_rope_impl(
  4855. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4856. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4857. );
  4858. }
  4859. struct ggml_tensor * ggml_rope_xpos_inplace(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. struct ggml_tensor * b,
  4863. int n_dims,
  4864. float base,
  4865. bool down) {
  4866. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4867. }
  4868. // ggml_rope_back
  4869. struct ggml_tensor * ggml_rope_back(
  4870. struct ggml_context * ctx,
  4871. struct ggml_tensor * a,
  4872. struct ggml_tensor * b,
  4873. int n_dims,
  4874. int mode,
  4875. int n_ctx,
  4876. int n_orig_ctx,
  4877. float freq_base,
  4878. float freq_scale,
  4879. float ext_factor,
  4880. float attn_factor,
  4881. float beta_fast,
  4882. float beta_slow,
  4883. float xpos_base,
  4884. bool xpos_down) {
  4885. GGML_ASSERT(ggml_is_vector(b));
  4886. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4887. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4888. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4889. bool is_node = false;
  4890. if (a->grad) {
  4891. is_node = false; // TODO: implement backward
  4892. }
  4893. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4894. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4895. memcpy(params + 5, &freq_base, sizeof(float));
  4896. memcpy(params + 6, &freq_scale, sizeof(float));
  4897. memcpy(params + 7, &ext_factor, sizeof(float));
  4898. memcpy(params + 8, &attn_factor, sizeof(float));
  4899. memcpy(params + 9, &beta_fast, sizeof(float));
  4900. memcpy(params + 10, &beta_slow, sizeof(float));
  4901. memcpy(params + 11, &xpos_base, sizeof(float));
  4902. memcpy(params + 12, &xpos_down, sizeof(bool));
  4903. ggml_set_op_params(result, params, sizeof(params));
  4904. result->op = GGML_OP_ROPE_BACK;
  4905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4906. result->src[0] = a;
  4907. result->src[1] = b;
  4908. return result;
  4909. }
  4910. // ggml_clamp
  4911. struct ggml_tensor * ggml_clamp(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. float min,
  4915. float max) {
  4916. bool is_node = false;
  4917. if (a->grad) {
  4918. GGML_ASSERT(false); // TODO: implement backward
  4919. is_node = true;
  4920. }
  4921. // TODO: when implement backward, fix this:
  4922. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4923. float params[] = { min, max };
  4924. ggml_set_op_params(result, params, sizeof(params));
  4925. result->op = GGML_OP_CLAMP;
  4926. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4927. result->src[0] = a;
  4928. return result;
  4929. }
  4930. // ggml_conv_1d
  4931. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4932. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4933. }
  4934. GGML_API struct ggml_tensor * ggml_conv_1d(
  4935. struct ggml_context * ctx,
  4936. struct ggml_tensor * a,
  4937. struct ggml_tensor * b,
  4938. int s0,
  4939. int p0,
  4940. int d0) {
  4941. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4942. struct ggml_tensor * result =
  4943. ggml_mul_mat(ctx,
  4944. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4945. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4946. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4947. return result;
  4948. }
  4949. // ggml_conv_1d_ph
  4950. struct ggml_tensor* ggml_conv_1d_ph(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a,
  4953. struct ggml_tensor * b,
  4954. int s,
  4955. int d) {
  4956. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4957. }
  4958. // ggml_conv_transpose_1d
  4959. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4960. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4961. }
  4962. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4963. struct ggml_context * ctx,
  4964. struct ggml_tensor * a,
  4965. struct ggml_tensor * b,
  4966. int s0,
  4967. int p0,
  4968. int d0) {
  4969. GGML_ASSERT(ggml_is_matrix(b));
  4970. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4971. GGML_ASSERT(a->ne[3] == 1);
  4972. GGML_ASSERT(p0 == 0);
  4973. GGML_ASSERT(d0 == 1);
  4974. bool is_node = false;
  4975. if (a->grad || b->grad) {
  4976. GGML_ASSERT(false); // TODO: implement backward
  4977. is_node = true;
  4978. }
  4979. const int64_t ne[4] = {
  4980. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4981. a->ne[1], b->ne[2], 1,
  4982. };
  4983. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4984. int32_t params[] = { s0, p0, d0 };
  4985. ggml_set_op_params(result, params, sizeof(params));
  4986. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4987. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4988. result->src[0] = a;
  4989. result->src[1] = b;
  4990. return result;
  4991. }
  4992. // ggml_conv_depthwise
  4993. struct ggml_tensor * ggml_conv_depthwise_2d(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. struct ggml_tensor * b,
  4997. int s0,
  4998. int s1,
  4999. int p0,
  5000. int p1,
  5001. int d0,
  5002. int d1) {
  5003. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5004. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5005. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5006. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5007. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5008. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5009. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5010. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5011. return result;
  5012. }
  5013. // ggml_conv_2d
  5014. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5015. // a: [OC,IC, KH, KW]
  5016. // b: [N, IC, IH, IW]
  5017. // result: [N, OH, OW, IC*KH*KW]
  5018. struct ggml_tensor * ggml_im2col(
  5019. struct ggml_context * ctx,
  5020. struct ggml_tensor * a,
  5021. struct ggml_tensor * b,
  5022. int s0,
  5023. int s1,
  5024. int p0,
  5025. int p1,
  5026. int d0,
  5027. int d1,
  5028. bool is_2D,
  5029. enum ggml_type dst_type) {
  5030. if(is_2D) {
  5031. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5032. } else {
  5033. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5034. }
  5035. bool is_node = false;
  5036. if (a->grad || b->grad) {
  5037. GGML_ASSERT(false); // TODO: implement backward
  5038. is_node = true;
  5039. }
  5040. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5041. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5042. const int64_t ne[4] = {
  5043. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5044. OW,
  5045. is_2D ? OH : b->ne[2],
  5046. is_2D ? b->ne[3] : 1,
  5047. };
  5048. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5049. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5050. ggml_set_op_params(result, params, sizeof(params));
  5051. result->op = GGML_OP_IM2COL;
  5052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5053. result->src[0] = a;
  5054. result->src[1] = b;
  5055. return result;
  5056. }
  5057. // a: [OC,IC, KH, KW]
  5058. // b: [N, IC, IH, IW]
  5059. // result: [N, OC, OH, OW]
  5060. struct ggml_tensor * ggml_conv_2d(
  5061. struct ggml_context * ctx,
  5062. struct ggml_tensor * a,
  5063. struct ggml_tensor * b,
  5064. int s0,
  5065. int s1,
  5066. int p0,
  5067. int p1,
  5068. int d0,
  5069. int d1) {
  5070. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5071. struct ggml_tensor * result =
  5072. ggml_mul_mat(ctx,
  5073. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5074. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5075. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5076. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5077. return result;
  5078. }
  5079. // ggml_conv_2d_sk_p0
  5080. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. struct ggml_tensor * b) {
  5084. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5085. }
  5086. // ggml_conv_2d_s1_ph
  5087. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5088. struct ggml_context * ctx,
  5089. struct ggml_tensor * a,
  5090. struct ggml_tensor * b) {
  5091. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5092. }
  5093. // ggml_conv_transpose_2d_p0
  5094. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5095. return (ins - 1) * s - 2 * p + ks;
  5096. }
  5097. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. struct ggml_tensor * b,
  5101. int stride) {
  5102. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5103. bool is_node = false;
  5104. if (a->grad || b->grad) {
  5105. GGML_ASSERT(false); // TODO: implement backward
  5106. is_node = true;
  5107. }
  5108. const int64_t ne[4] = {
  5109. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5110. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5111. a->ne[2], b->ne[3],
  5112. };
  5113. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5114. ggml_set_op_params_i32(result, 0, stride);
  5115. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5117. result->src[0] = a;
  5118. result->src[1] = b;
  5119. return result;
  5120. }
  5121. // ggml_pool_*
  5122. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5123. return (ins + 2 * p - ks) / s + 1;
  5124. }
  5125. // ggml_pool_1d
  5126. struct ggml_tensor * ggml_pool_1d(
  5127. struct ggml_context * ctx,
  5128. struct ggml_tensor * a,
  5129. enum ggml_op_pool op,
  5130. int k0,
  5131. int s0,
  5132. int p0) {
  5133. bool is_node = false;
  5134. if (a->grad) {
  5135. GGML_ASSERT(false); // TODO: implement backward
  5136. is_node = true;
  5137. }
  5138. const int64_t ne[4] = {
  5139. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5140. a->ne[1],
  5141. a->ne[2],
  5142. a->ne[3],
  5143. };
  5144. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5145. int32_t params[] = { op, k0, s0, p0 };
  5146. ggml_set_op_params(result, params, sizeof(params));
  5147. result->op = GGML_OP_POOL_1D;
  5148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5149. result->src[0] = a;
  5150. return result;
  5151. }
  5152. // ggml_pool_2d
  5153. struct ggml_tensor * ggml_pool_2d(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. enum ggml_op_pool op,
  5157. int k0,
  5158. int k1,
  5159. int s0,
  5160. int s1,
  5161. float p0,
  5162. float p1) {
  5163. bool is_node = false;
  5164. if (a->grad) {
  5165. GGML_ASSERT(false); // TODO: implement backward
  5166. is_node = true;
  5167. }
  5168. struct ggml_tensor * result;
  5169. const int64_t ne[3] = {
  5170. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5171. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5172. a->ne[2],
  5173. };
  5174. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5175. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5176. ggml_set_op_params(result, params, sizeof(params));
  5177. result->op = GGML_OP_POOL_2D;
  5178. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5179. result->src[0] = a;
  5180. return result;
  5181. }
  5182. // ggml_upscale
  5183. static struct ggml_tensor * ggml_upscale_impl(
  5184. struct ggml_context * ctx,
  5185. struct ggml_tensor * a,
  5186. int scale_factor) {
  5187. bool is_node = false;
  5188. if (a->grad) {
  5189. GGML_ASSERT(false); // TODO: implement backward
  5190. is_node = true;
  5191. }
  5192. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5193. a->ne[0] * scale_factor,
  5194. a->ne[1] * scale_factor,
  5195. a->ne[2], a->ne[3]);
  5196. result->op = GGML_OP_UPSCALE;
  5197. result->op_params[0] = scale_factor;
  5198. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5199. result->src[0] = a;
  5200. return result;
  5201. }
  5202. struct ggml_tensor * ggml_pad(
  5203. struct ggml_context * ctx,
  5204. struct ggml_tensor * a,
  5205. int p0, int p1, int p2, int p3) {
  5206. bool is_node = false;
  5207. if (a->grad) {
  5208. GGML_ASSERT(false); // TODO: implement backward
  5209. is_node = true;
  5210. }
  5211. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5212. a->ne[0] + p0,
  5213. a->ne[1] + p1,
  5214. a->ne[2] + p2,
  5215. a->ne[3] + p3);
  5216. result->op = GGML_OP_PAD;
  5217. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5218. result->src[0] = a;
  5219. return result;
  5220. }
  5221. struct ggml_tensor * ggml_upscale(
  5222. struct ggml_context * ctx,
  5223. struct ggml_tensor * a,
  5224. int scale_factor) {
  5225. return ggml_upscale_impl(ctx, a, scale_factor);
  5226. }
  5227. struct ggml_tensor * ggml_arange(
  5228. struct ggml_context * ctx,
  5229. float start,
  5230. float stop,
  5231. float step) {
  5232. GGML_ASSERT(stop > start);
  5233. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5234. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5235. result->op = GGML_OP_ARANGE;
  5236. ggml_set_op_params_f32(result, 0, start);
  5237. ggml_set_op_params_f32(result, 1, stop);
  5238. ggml_set_op_params_f32(result, 2, step);
  5239. return result;
  5240. }
  5241. struct ggml_tensor * ggml_timestep_embedding(
  5242. struct ggml_context * ctx,
  5243. struct ggml_tensor * timesteps,
  5244. int dim,
  5245. int max_period) {
  5246. bool is_node = false;
  5247. if (timesteps->grad) {
  5248. GGML_ASSERT(false); // TODO: implement backward
  5249. is_node = true;
  5250. }
  5251. int actual_dim = dim;
  5252. if (dim % 2 != 0) {
  5253. actual_dim = dim + 1;
  5254. }
  5255. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5256. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5257. ggml_set_op_params_i32(result, 0, dim);
  5258. ggml_set_op_params_i32(result, 1, max_period);
  5259. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5260. result->src[0] = timesteps;
  5261. return result;
  5262. }
  5263. // ggml_argsort
  5264. struct ggml_tensor * ggml_argsort(
  5265. struct ggml_context * ctx,
  5266. struct ggml_tensor * a,
  5267. enum ggml_sort_order order) {
  5268. bool is_node = false;
  5269. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5270. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5271. result->op = GGML_OP_ARGSORT;
  5272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5273. result->src[0] = a;
  5274. return result;
  5275. }
  5276. // ggml_top_k
  5277. struct ggml_tensor * ggml_top_k(
  5278. struct ggml_context * ctx,
  5279. struct ggml_tensor * a,
  5280. int k) {
  5281. GGML_ASSERT(a->ne[0] >= k);
  5282. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5283. result = ggml_view_4d(ctx, result,
  5284. k, result->ne[1], result->ne[2], result->ne[3],
  5285. result->nb[1], result->nb[2], result->nb[3],
  5286. 0);
  5287. return result;
  5288. }
  5289. // ggml_flash_attn
  5290. struct ggml_tensor * ggml_flash_attn(
  5291. struct ggml_context * ctx,
  5292. struct ggml_tensor * q,
  5293. struct ggml_tensor * k,
  5294. struct ggml_tensor * v,
  5295. bool masked) {
  5296. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5297. // TODO: check if vT can be multiplied by (k*qT)
  5298. bool is_node = false;
  5299. if (q->grad || k->grad || v->grad) {
  5300. is_node = true;
  5301. }
  5302. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5303. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5304. int32_t t = masked ? 1 : 0;
  5305. ggml_set_op_params(result, &t, sizeof(t));
  5306. result->op = GGML_OP_FLASH_ATTN;
  5307. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5308. result->src[0] = q;
  5309. result->src[1] = k;
  5310. result->src[2] = v;
  5311. return result;
  5312. }
  5313. // ggml_flash_attn_ext
  5314. struct ggml_tensor * ggml_flash_attn_ext(
  5315. struct ggml_context * ctx,
  5316. struct ggml_tensor * q,
  5317. struct ggml_tensor * k,
  5318. struct ggml_tensor * v,
  5319. struct ggml_tensor * mask,
  5320. float scale,
  5321. float max_bias) {
  5322. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5323. // TODO: check if vT can be multiplied by (k*qT)
  5324. if (mask) {
  5325. GGML_ASSERT(ggml_is_contiguous(mask));
  5326. GGML_ASSERT(mask->ne[2] == 1);
  5327. GGML_ASSERT(mask->ne[3] == 1);
  5328. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5329. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5330. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5331. }
  5332. if (max_bias > 0.0f) {
  5333. GGML_ASSERT(mask);
  5334. }
  5335. bool is_node = false;
  5336. if (q->grad || k->grad || v->grad) {
  5337. is_node = true;
  5338. }
  5339. // permute(0, 2, 1, 3)
  5340. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5341. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5342. float params[] = { scale, max_bias };
  5343. ggml_set_op_params(result, params, sizeof(params));
  5344. result->op = GGML_OP_FLASH_ATTN_EXT;
  5345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5346. result->src[0] = q;
  5347. result->src[1] = k;
  5348. result->src[2] = v;
  5349. result->src[3] = mask;
  5350. return result;
  5351. }
  5352. void ggml_flash_attn_ext_set_prec(
  5353. struct ggml_tensor * a,
  5354. enum ggml_prec prec) {
  5355. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5356. const int32_t prec_i32 = (int32_t) prec;
  5357. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5358. }
  5359. // ggml_flash_ff
  5360. struct ggml_tensor * ggml_flash_ff(
  5361. struct ggml_context * ctx,
  5362. struct ggml_tensor * a,
  5363. struct ggml_tensor * b0,
  5364. struct ggml_tensor * b1,
  5365. struct ggml_tensor * c0,
  5366. struct ggml_tensor * c1) {
  5367. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5368. // TODO: more checks
  5369. bool is_node = false;
  5370. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5371. is_node = true;
  5372. }
  5373. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5374. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5375. result->op = GGML_OP_FLASH_FF;
  5376. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5377. result->src[0] = a;
  5378. result->src[1] = b0;
  5379. result->src[2] = b1;
  5380. result->src[3] = c0;
  5381. result->src[4] = c1;
  5382. return result;
  5383. }
  5384. // ggml_flash_attn_back
  5385. struct ggml_tensor * ggml_flash_attn_back(
  5386. struct ggml_context * ctx,
  5387. struct ggml_tensor * q,
  5388. struct ggml_tensor * k,
  5389. struct ggml_tensor * v,
  5390. struct ggml_tensor * d,
  5391. bool masked) {
  5392. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5393. // TODO: check if vT can be multiplied by (k*qT)
  5394. // d shape [D,N,ne2,ne3]
  5395. // q shape [D,N,ne2,ne3]
  5396. // k shape [D,M,kvne2,ne3]
  5397. // v shape [M,D,kvne2,ne3]
  5398. const int64_t D = q->ne[0];
  5399. const int64_t N = q->ne[1];
  5400. const int64_t M = k->ne[1];
  5401. const int64_t ne2 = q->ne[2];
  5402. const int64_t ne3 = q->ne[3];
  5403. const int64_t kvne2 = k->ne[2];
  5404. GGML_ASSERT(k->ne[0] == D);
  5405. GGML_ASSERT(v->ne[0] == M);
  5406. GGML_ASSERT(v->ne[1] == D);
  5407. GGML_ASSERT(d->ne[0] == D);
  5408. GGML_ASSERT(d->ne[1] == N);
  5409. GGML_ASSERT(k->ne[2] == kvne2);
  5410. GGML_ASSERT(k->ne[3] == ne3);
  5411. GGML_ASSERT(v->ne[2] == kvne2);
  5412. GGML_ASSERT(v->ne[3] == ne3);
  5413. GGML_ASSERT(d->ne[2] == ne2);
  5414. GGML_ASSERT(d->ne[3] == ne3);
  5415. GGML_ASSERT(ne2 % kvne2 == 0);
  5416. bool is_node = false;
  5417. if (q->grad || k->grad || v->grad) {
  5418. // when using this operation (in backwards pass) these grads are set.
  5419. // we don't want to create (big) grad of our result, so is_node is false.
  5420. is_node = false;
  5421. }
  5422. // store gradients of q, k and v as continuous tensors concatenated in result.
  5423. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5424. const int64_t elem_q = ggml_nelements(q);
  5425. const int64_t elem_k = ggml_nelements(k);
  5426. const int64_t elem_v = ggml_nelements(v);
  5427. enum ggml_type result_type = GGML_TYPE_F32;
  5428. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5429. const size_t tsize = ggml_type_size(result_type);
  5430. const size_t offs_q = 0;
  5431. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5432. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5433. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5434. const size_t nelements = (end + tsize - 1)/tsize;
  5435. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5436. int32_t masked_i = masked ? 1 : 0;
  5437. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5438. result->op = GGML_OP_FLASH_ATTN_BACK;
  5439. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5440. result->src[0] = q;
  5441. result->src[1] = k;
  5442. result->src[2] = v;
  5443. result->src[3] = d;
  5444. return result;
  5445. }
  5446. // ggml_ssm_conv
  5447. struct ggml_tensor * ggml_ssm_conv(
  5448. struct ggml_context * ctx,
  5449. struct ggml_tensor * s,
  5450. struct ggml_tensor * x,
  5451. struct ggml_tensor * c,
  5452. struct ggml_tensor * sq) {
  5453. GGML_ASSERT(ggml_is_3d(s));
  5454. GGML_ASSERT(ggml_is_matrix(x));
  5455. GGML_ASSERT(ggml_is_matrix(c));
  5456. GGML_ASSERT(ggml_is_matrix(sq));
  5457. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5458. const int64_t d_conv = c->ne[0];
  5459. const int64_t d_inner = c->ne[1];
  5460. const int64_t n_tokens = x->ne[1];
  5461. const int64_t n_kv = s->ne[2];
  5462. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5463. GGML_ASSERT( s->ne[1] == d_inner);
  5464. GGML_ASSERT( x->ne[0] == d_inner);
  5465. GGML_ASSERT(sq->ne[0] == n_kv);
  5466. GGML_ASSERT(sq->ne[1] == n_tokens);
  5467. bool is_node = false;
  5468. if (s->grad || x->grad || c->grad || sq->grad) {
  5469. GGML_ASSERT(false); // TODO: implement
  5470. is_node = true;
  5471. }
  5472. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5473. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5474. result->op = GGML_OP_SSM_CONV;
  5475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5476. result->src[0] = s;
  5477. result->src[1] = x;
  5478. result->src[2] = c;
  5479. result->src[3] = sq;
  5480. return result;
  5481. }
  5482. // ggml_ssm_scan
  5483. struct ggml_tensor * ggml_ssm_scan(
  5484. struct ggml_context * ctx,
  5485. struct ggml_tensor * s,
  5486. struct ggml_tensor * x,
  5487. struct ggml_tensor * dt,
  5488. struct ggml_tensor * A,
  5489. struct ggml_tensor * B,
  5490. struct ggml_tensor * C,
  5491. struct ggml_tensor * sq) {
  5492. GGML_ASSERT(ggml_is_contiguous(s));
  5493. GGML_ASSERT(ggml_is_contiguous(x));
  5494. GGML_ASSERT(ggml_is_contiguous(dt));
  5495. GGML_ASSERT(ggml_is_contiguous(A));
  5496. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5497. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5498. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5499. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5500. {
  5501. const int64_t d_state = s->ne[0];
  5502. const int64_t d_inner = s->ne[1];
  5503. const int64_t n_tokens = x->ne[1];
  5504. GGML_ASSERT(x->ne[0] == d_inner);
  5505. GGML_ASSERT(A->ne[0] == d_state);
  5506. GGML_ASSERT(A->ne[1] == d_inner);
  5507. GGML_ASSERT(B->ne[0] == d_state);
  5508. GGML_ASSERT(B->ne[1] == n_tokens);
  5509. GGML_ASSERT(C->ne[0] == d_state);
  5510. GGML_ASSERT(C->ne[1] == n_tokens);
  5511. }
  5512. bool is_node = false;
  5513. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5514. GGML_ASSERT(false); // TODO: implement
  5515. is_node = true;
  5516. }
  5517. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5518. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5519. result->op = GGML_OP_SSM_SCAN;
  5520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5521. result->src[0] = s;
  5522. result->src[1] = x;
  5523. result->src[2] = dt;
  5524. result->src[3] = A;
  5525. result->src[4] = B;
  5526. result->src[5] = C;
  5527. result->src[6] = sq;
  5528. return result;
  5529. }
  5530. // ggml_win_part
  5531. struct ggml_tensor * ggml_win_part(
  5532. struct ggml_context * ctx,
  5533. struct ggml_tensor * a,
  5534. int w) {
  5535. GGML_ASSERT(a->ne[3] == 1);
  5536. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5537. bool is_node = false;
  5538. if (a->grad) {
  5539. GGML_ASSERT(false); // TODO: implement backward
  5540. is_node = true;
  5541. }
  5542. // padding
  5543. const int px = (w - a->ne[1]%w)%w;
  5544. const int py = (w - a->ne[2]%w)%w;
  5545. const int npx = (px + a->ne[1])/w;
  5546. const int npy = (py + a->ne[2])/w;
  5547. const int np = npx*npy;
  5548. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5549. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5550. int32_t params[] = { npx, npy, w };
  5551. ggml_set_op_params(result, params, sizeof(params));
  5552. result->op = GGML_OP_WIN_PART;
  5553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5554. result->src[0] = a;
  5555. return result;
  5556. }
  5557. // ggml_win_unpart
  5558. struct ggml_tensor * ggml_win_unpart(
  5559. struct ggml_context * ctx,
  5560. struct ggml_tensor * a,
  5561. int w0,
  5562. int h0,
  5563. int w) {
  5564. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5565. bool is_node = false;
  5566. if (a->grad) {
  5567. GGML_ASSERT(false); // TODO: implement backward
  5568. is_node = true;
  5569. }
  5570. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5571. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5572. int32_t params[] = { w };
  5573. ggml_set_op_params(result, params, sizeof(params));
  5574. result->op = GGML_OP_WIN_UNPART;
  5575. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5576. result->src[0] = a;
  5577. return result;
  5578. }
  5579. // ggml_get_rel_pos
  5580. struct ggml_tensor * ggml_get_rel_pos(
  5581. struct ggml_context * ctx,
  5582. struct ggml_tensor * a,
  5583. int qh,
  5584. int kh) {
  5585. GGML_ASSERT(qh == kh);
  5586. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5587. bool is_node = false;
  5588. if (a->grad) {
  5589. GGML_ASSERT(false); // TODO: implement backward
  5590. is_node = true;
  5591. }
  5592. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5593. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5594. result->op = GGML_OP_GET_REL_POS;
  5595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5596. result->src[0] = a;
  5597. return result;
  5598. }
  5599. // ggml_add_rel_pos
  5600. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5601. struct ggml_context * ctx,
  5602. struct ggml_tensor * a,
  5603. struct ggml_tensor * pw,
  5604. struct ggml_tensor * ph,
  5605. bool inplace) {
  5606. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5607. GGML_ASSERT(ggml_is_contiguous(a));
  5608. GGML_ASSERT(ggml_is_contiguous(pw));
  5609. GGML_ASSERT(ggml_is_contiguous(ph));
  5610. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5611. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5612. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5613. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5614. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5615. bool is_node = false;
  5616. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5617. is_node = true;
  5618. }
  5619. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5620. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5621. result->op = GGML_OP_ADD_REL_POS;
  5622. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5623. result->src[0] = a;
  5624. result->src[1] = pw;
  5625. result->src[2] = ph;
  5626. return result;
  5627. }
  5628. struct ggml_tensor * ggml_add_rel_pos(
  5629. struct ggml_context * ctx,
  5630. struct ggml_tensor * a,
  5631. struct ggml_tensor * pw,
  5632. struct ggml_tensor * ph) {
  5633. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5634. }
  5635. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5636. struct ggml_context * ctx,
  5637. struct ggml_tensor * a,
  5638. struct ggml_tensor * pw,
  5639. struct ggml_tensor * ph) {
  5640. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5641. }
  5642. // gmml_unary
  5643. static struct ggml_tensor * ggml_unary_impl(
  5644. struct ggml_context * ctx,
  5645. struct ggml_tensor * a,
  5646. enum ggml_unary_op op,
  5647. bool inplace) {
  5648. bool is_node = false;
  5649. if (!inplace && (a->grad)) {
  5650. is_node = true;
  5651. }
  5652. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5653. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5654. result->op = GGML_OP_UNARY;
  5655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5656. result->src[0] = a;
  5657. return result;
  5658. }
  5659. struct ggml_tensor * ggml_unary(
  5660. struct ggml_context * ctx,
  5661. struct ggml_tensor * a,
  5662. enum ggml_unary_op op) {
  5663. return ggml_unary_impl(ctx, a, op, false);
  5664. }
  5665. struct ggml_tensor * ggml_unary_inplace(
  5666. struct ggml_context * ctx,
  5667. struct ggml_tensor * a,
  5668. enum ggml_unary_op op) {
  5669. return ggml_unary_impl(ctx, a, op, true);
  5670. }
  5671. // ggml_map_unary
  5672. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5673. struct ggml_context * ctx,
  5674. struct ggml_tensor * a,
  5675. const ggml_unary_op_f32_t fun,
  5676. bool inplace) {
  5677. bool is_node = false;
  5678. if (!inplace && a->grad) {
  5679. is_node = true;
  5680. }
  5681. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5682. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5683. result->op = GGML_OP_MAP_UNARY;
  5684. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5685. result->src[0] = a;
  5686. return result;
  5687. }
  5688. struct ggml_tensor * ggml_map_unary_f32(
  5689. struct ggml_context * ctx,
  5690. struct ggml_tensor * a,
  5691. const ggml_unary_op_f32_t fun) {
  5692. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5693. }
  5694. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5695. struct ggml_context * ctx,
  5696. struct ggml_tensor * a,
  5697. const ggml_unary_op_f32_t fun) {
  5698. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5699. }
  5700. // ggml_map_binary
  5701. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5702. struct ggml_context * ctx,
  5703. struct ggml_tensor * a,
  5704. struct ggml_tensor * b,
  5705. const ggml_binary_op_f32_t fun,
  5706. bool inplace) {
  5707. GGML_ASSERT(ggml_are_same_shape(a, b));
  5708. bool is_node = false;
  5709. if (!inplace && (a->grad || b->grad)) {
  5710. is_node = true;
  5711. }
  5712. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5713. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5714. result->op = GGML_OP_MAP_BINARY;
  5715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5716. result->src[0] = a;
  5717. result->src[1] = b;
  5718. return result;
  5719. }
  5720. struct ggml_tensor * ggml_map_binary_f32(
  5721. struct ggml_context * ctx,
  5722. struct ggml_tensor * a,
  5723. struct ggml_tensor * b,
  5724. const ggml_binary_op_f32_t fun) {
  5725. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5726. }
  5727. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5728. struct ggml_context * ctx,
  5729. struct ggml_tensor * a,
  5730. struct ggml_tensor * b,
  5731. const ggml_binary_op_f32_t fun) {
  5732. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5733. }
  5734. // ggml_map_custom1_f32
  5735. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5736. struct ggml_context * ctx,
  5737. struct ggml_tensor * a,
  5738. const ggml_custom1_op_f32_t fun,
  5739. bool inplace) {
  5740. bool is_node = false;
  5741. if (!inplace && a->grad) {
  5742. is_node = true;
  5743. }
  5744. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5745. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5746. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5748. result->src[0] = a;
  5749. return result;
  5750. }
  5751. struct ggml_tensor * ggml_map_custom1_f32(
  5752. struct ggml_context * ctx,
  5753. struct ggml_tensor * a,
  5754. const ggml_custom1_op_f32_t fun) {
  5755. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5756. }
  5757. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5758. struct ggml_context * ctx,
  5759. struct ggml_tensor * a,
  5760. const ggml_custom1_op_f32_t fun) {
  5761. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5762. }
  5763. // ggml_map_custom2_f32
  5764. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5765. struct ggml_context * ctx,
  5766. struct ggml_tensor * a,
  5767. struct ggml_tensor * b,
  5768. const ggml_custom2_op_f32_t fun,
  5769. bool inplace) {
  5770. bool is_node = false;
  5771. if (!inplace && (a->grad || b->grad)) {
  5772. is_node = true;
  5773. }
  5774. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5775. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5776. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5778. result->src[0] = a;
  5779. result->src[1] = b;
  5780. return result;
  5781. }
  5782. struct ggml_tensor * ggml_map_custom2_f32(
  5783. struct ggml_context * ctx,
  5784. struct ggml_tensor * a,
  5785. struct ggml_tensor * b,
  5786. const ggml_custom2_op_f32_t fun) {
  5787. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5788. }
  5789. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5790. struct ggml_context * ctx,
  5791. struct ggml_tensor * a,
  5792. struct ggml_tensor * b,
  5793. const ggml_custom2_op_f32_t fun) {
  5794. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5795. }
  5796. // ggml_map_custom3_f32
  5797. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5798. struct ggml_context * ctx,
  5799. struct ggml_tensor * a,
  5800. struct ggml_tensor * b,
  5801. struct ggml_tensor * c,
  5802. const ggml_custom3_op_f32_t fun,
  5803. bool inplace) {
  5804. bool is_node = false;
  5805. if (!inplace && (a->grad || b->grad || c->grad)) {
  5806. is_node = true;
  5807. }
  5808. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5809. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5810. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5811. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5812. result->src[0] = a;
  5813. result->src[1] = b;
  5814. result->src[2] = c;
  5815. return result;
  5816. }
  5817. struct ggml_tensor * ggml_map_custom3_f32(
  5818. struct ggml_context * ctx,
  5819. struct ggml_tensor * a,
  5820. struct ggml_tensor * b,
  5821. struct ggml_tensor * c,
  5822. const ggml_custom3_op_f32_t fun) {
  5823. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5824. }
  5825. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5826. struct ggml_context * ctx,
  5827. struct ggml_tensor * a,
  5828. struct ggml_tensor * b,
  5829. struct ggml_tensor * c,
  5830. const ggml_custom3_op_f32_t fun) {
  5831. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5832. }
  5833. // ggml_map_custom1
  5834. struct ggml_map_custom1_op_params {
  5835. ggml_custom1_op_t fun;
  5836. int n_tasks;
  5837. void * userdata;
  5838. };
  5839. static struct ggml_tensor * ggml_map_custom1_impl(
  5840. struct ggml_context * ctx,
  5841. struct ggml_tensor * a,
  5842. const ggml_custom1_op_t fun,
  5843. int n_tasks,
  5844. void * userdata,
  5845. bool inplace) {
  5846. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5847. bool is_node = false;
  5848. if (!inplace && a->grad) {
  5849. is_node = true;
  5850. }
  5851. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5852. struct ggml_map_custom1_op_params params = {
  5853. /*.fun =*/ fun,
  5854. /*.n_tasks =*/ n_tasks,
  5855. /*.userdata =*/ userdata
  5856. };
  5857. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5858. result->op = GGML_OP_MAP_CUSTOM1;
  5859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5860. result->src[0] = a;
  5861. return result;
  5862. }
  5863. struct ggml_tensor * ggml_map_custom1(
  5864. struct ggml_context * ctx,
  5865. struct ggml_tensor * a,
  5866. const ggml_custom1_op_t fun,
  5867. int n_tasks,
  5868. void * userdata) {
  5869. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5870. }
  5871. struct ggml_tensor * ggml_map_custom1_inplace(
  5872. struct ggml_context * ctx,
  5873. struct ggml_tensor * a,
  5874. const ggml_custom1_op_t fun,
  5875. int n_tasks,
  5876. void * userdata) {
  5877. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5878. }
  5879. // ggml_map_custom2
  5880. struct ggml_map_custom2_op_params {
  5881. ggml_custom2_op_t fun;
  5882. int n_tasks;
  5883. void * userdata;
  5884. };
  5885. static struct ggml_tensor * ggml_map_custom2_impl(
  5886. struct ggml_context * ctx,
  5887. struct ggml_tensor * a,
  5888. struct ggml_tensor * b,
  5889. const ggml_custom2_op_t fun,
  5890. int n_tasks,
  5891. void * userdata,
  5892. bool inplace) {
  5893. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5894. bool is_node = false;
  5895. if (!inplace && (a->grad || b->grad)) {
  5896. is_node = true;
  5897. }
  5898. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5899. struct ggml_map_custom2_op_params params = {
  5900. /*.fun =*/ fun,
  5901. /*.n_tasks =*/ n_tasks,
  5902. /*.userdata =*/ userdata
  5903. };
  5904. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5905. result->op = GGML_OP_MAP_CUSTOM2;
  5906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5907. result->src[0] = a;
  5908. result->src[1] = b;
  5909. return result;
  5910. }
  5911. struct ggml_tensor * ggml_map_custom2(
  5912. struct ggml_context * ctx,
  5913. struct ggml_tensor * a,
  5914. struct ggml_tensor * b,
  5915. const ggml_custom2_op_t fun,
  5916. int n_tasks,
  5917. void * userdata) {
  5918. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5919. }
  5920. struct ggml_tensor * ggml_map_custom2_inplace(
  5921. struct ggml_context * ctx,
  5922. struct ggml_tensor * a,
  5923. struct ggml_tensor * b,
  5924. const ggml_custom2_op_t fun,
  5925. int n_tasks,
  5926. void * userdata) {
  5927. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5928. }
  5929. // ggml_map_custom3
  5930. struct ggml_map_custom3_op_params {
  5931. ggml_custom3_op_t fun;
  5932. int n_tasks;
  5933. void * userdata;
  5934. };
  5935. static struct ggml_tensor * ggml_map_custom3_impl(
  5936. struct ggml_context * ctx,
  5937. struct ggml_tensor * a,
  5938. struct ggml_tensor * b,
  5939. struct ggml_tensor * c,
  5940. const ggml_custom3_op_t fun,
  5941. int n_tasks,
  5942. void * userdata,
  5943. bool inplace) {
  5944. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5945. bool is_node = false;
  5946. if (!inplace && (a->grad || b->grad || c->grad)) {
  5947. is_node = true;
  5948. }
  5949. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5950. struct ggml_map_custom3_op_params params = {
  5951. /*.fun =*/ fun,
  5952. /*.n_tasks =*/ n_tasks,
  5953. /*.userdata =*/ userdata
  5954. };
  5955. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5956. result->op = GGML_OP_MAP_CUSTOM3;
  5957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5958. result->src[0] = a;
  5959. result->src[1] = b;
  5960. result->src[2] = c;
  5961. return result;
  5962. }
  5963. struct ggml_tensor * ggml_map_custom3(
  5964. struct ggml_context * ctx,
  5965. struct ggml_tensor * a,
  5966. struct ggml_tensor * b,
  5967. struct ggml_tensor * c,
  5968. const ggml_custom3_op_t fun,
  5969. int n_tasks,
  5970. void * userdata) {
  5971. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5972. }
  5973. struct ggml_tensor * ggml_map_custom3_inplace(
  5974. struct ggml_context * ctx,
  5975. struct ggml_tensor * a,
  5976. struct ggml_tensor * b,
  5977. struct ggml_tensor * c,
  5978. const ggml_custom3_op_t fun,
  5979. int n_tasks,
  5980. void * userdata) {
  5981. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5982. }
  5983. // ggml_cross_entropy_loss
  5984. struct ggml_tensor * ggml_cross_entropy_loss(
  5985. struct ggml_context * ctx,
  5986. struct ggml_tensor * a,
  5987. struct ggml_tensor * b) {
  5988. GGML_ASSERT(ggml_are_same_shape(a, b));
  5989. bool is_node = false;
  5990. if (a->grad || b->grad) {
  5991. is_node = true;
  5992. }
  5993. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5994. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5996. result->src[0] = a;
  5997. result->src[1] = b;
  5998. return result;
  5999. }
  6000. // ggml_cross_entropy_loss_back
  6001. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6002. struct ggml_context * ctx,
  6003. struct ggml_tensor * a,
  6004. struct ggml_tensor * b,
  6005. struct ggml_tensor * c) {
  6006. GGML_ASSERT(ggml_are_same_shape(a, b));
  6007. GGML_ASSERT(ggml_is_scalar(c));
  6008. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6009. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6010. result->grad = NULL;
  6011. result->src[0] = a;
  6012. result->src[1] = b;
  6013. result->src[2] = c;
  6014. return result;
  6015. }
  6016. ////////////////////////////////////////////////////////////////////////////////
  6017. void ggml_set_param(
  6018. struct ggml_context * ctx,
  6019. struct ggml_tensor * tensor) {
  6020. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6021. GGML_ASSERT(tensor->grad == NULL);
  6022. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6023. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6024. }
  6025. // ggml_compute_forward_dup
  6026. static void ggml_compute_forward_dup_same_cont(
  6027. const struct ggml_compute_params * params,
  6028. struct ggml_tensor * dst) {
  6029. const struct ggml_tensor * src0 = dst->src[0];
  6030. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6031. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6032. GGML_ASSERT(src0->type == dst->type);
  6033. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6034. return;
  6035. }
  6036. const size_t nb00 = src0->nb[0];
  6037. const size_t nb0 = dst->nb[0];
  6038. const int ith = params->ith; // thread index
  6039. const int nth = params->nth; // number of threads
  6040. // parallelize by elements
  6041. const int ne = ggml_nelements(dst);
  6042. const int dr = (ne + nth - 1) / nth;
  6043. const int ie0 = dr * ith;
  6044. const int ie1 = MIN(ie0 + dr, ne);
  6045. if (ie0 < ie1) {
  6046. memcpy(
  6047. ((char *) dst->data + ie0*nb0),
  6048. ((char *) src0->data + ie0*nb00),
  6049. (ie1 - ie0) * ggml_type_size(src0->type));
  6050. }
  6051. }
  6052. static void ggml_compute_forward_dup_f16(
  6053. const struct ggml_compute_params * params,
  6054. struct ggml_tensor * dst) {
  6055. const struct ggml_tensor * src0 = dst->src[0];
  6056. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6057. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6058. return;
  6059. }
  6060. GGML_TENSOR_UNARY_OP_LOCALS
  6061. const int ith = params->ith; // thread index
  6062. const int nth = params->nth; // number of threads
  6063. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6064. ggml_compute_forward_dup_same_cont(params, dst);
  6065. return;
  6066. }
  6067. // parallelize by rows
  6068. const int nr = ne01;
  6069. // number of rows per thread
  6070. const int dr = (nr + nth - 1) / nth;
  6071. // row range for this thread
  6072. const int ir0 = dr * ith;
  6073. const int ir1 = MIN(ir0 + dr, nr);
  6074. if (src0->type == dst->type &&
  6075. ne00 == ne0 &&
  6076. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6077. // copy by rows
  6078. const size_t rs = ne00*nb00;
  6079. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6080. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6081. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6082. memcpy(
  6083. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6084. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6085. rs);
  6086. }
  6087. }
  6088. }
  6089. return;
  6090. }
  6091. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6092. if (ggml_is_contiguous(dst)) {
  6093. if (nb00 == sizeof(ggml_fp16_t)) {
  6094. if (dst->type == GGML_TYPE_F16) {
  6095. size_t id = 0;
  6096. const size_t rs = ne00 * nb00;
  6097. char * dst_ptr = (char *) dst->data;
  6098. for (int i03 = 0; i03 < ne03; i03++) {
  6099. for (int i02 = 0; i02 < ne02; i02++) {
  6100. id += rs * ir0;
  6101. for (int i01 = ir0; i01 < ir1; i01++) {
  6102. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6103. memcpy(dst_ptr + id, src0_ptr, rs);
  6104. id += rs;
  6105. }
  6106. id += rs * (ne01 - ir1);
  6107. }
  6108. }
  6109. } else if (dst->type == GGML_TYPE_F32) {
  6110. size_t id = 0;
  6111. float * dst_ptr = (float *) dst->data;
  6112. for (int i03 = 0; i03 < ne03; i03++) {
  6113. for (int i02 = 0; i02 < ne02; i02++) {
  6114. id += ne00 * ir0;
  6115. for (int i01 = ir0; i01 < ir1; i01++) {
  6116. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6117. for (int i00 = 0; i00 < ne00; i00++) {
  6118. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6119. id++;
  6120. }
  6121. }
  6122. id += ne00 * (ne01 - ir1);
  6123. }
  6124. }
  6125. } else if (type_traits[dst->type].from_float) {
  6126. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6127. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6128. size_t id = 0;
  6129. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6130. char * dst_ptr = (char *) dst->data;
  6131. for (int i03 = 0; i03 < ne03; i03++) {
  6132. for (int i02 = 0; i02 < ne02; i02++) {
  6133. id += rs * ir0;
  6134. for (int i01 = ir0; i01 < ir1; i01++) {
  6135. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6136. for (int i00 = 0; i00 < ne00; i00++) {
  6137. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6138. }
  6139. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6140. id += rs;
  6141. }
  6142. id += rs * (ne01 - ir1);
  6143. }
  6144. }
  6145. } else {
  6146. GGML_ASSERT(false); // TODO: implement
  6147. }
  6148. } else {
  6149. //printf("%s: this is not optimal - fix me\n", __func__);
  6150. if (dst->type == GGML_TYPE_F32) {
  6151. size_t id = 0;
  6152. float * dst_ptr = (float *) dst->data;
  6153. for (int i03 = 0; i03 < ne03; i03++) {
  6154. for (int i02 = 0; i02 < ne02; i02++) {
  6155. id += ne00 * ir0;
  6156. for (int i01 = ir0; i01 < ir1; i01++) {
  6157. for (int i00 = 0; i00 < ne00; i00++) {
  6158. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6159. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6160. id++;
  6161. }
  6162. }
  6163. id += ne00 * (ne01 - ir1);
  6164. }
  6165. }
  6166. } else if (dst->type == GGML_TYPE_F16) {
  6167. size_t id = 0;
  6168. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6169. for (int i03 = 0; i03 < ne03; i03++) {
  6170. for (int i02 = 0; i02 < ne02; i02++) {
  6171. id += ne00 * ir0;
  6172. for (int i01 = ir0; i01 < ir1; i01++) {
  6173. for (int i00 = 0; i00 < ne00; i00++) {
  6174. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6175. dst_ptr[id] = *src0_ptr;
  6176. id++;
  6177. }
  6178. }
  6179. id += ne00 * (ne01 - ir1);
  6180. }
  6181. }
  6182. } else {
  6183. GGML_ASSERT(false); // TODO: implement
  6184. }
  6185. }
  6186. return;
  6187. }
  6188. // dst counters
  6189. int64_t i10 = 0;
  6190. int64_t i11 = 0;
  6191. int64_t i12 = 0;
  6192. int64_t i13 = 0;
  6193. if (dst->type == GGML_TYPE_F16) {
  6194. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6195. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6196. i10 += ne00 * ir0;
  6197. while (i10 >= ne0) {
  6198. i10 -= ne0;
  6199. if (++i11 == ne1) {
  6200. i11 = 0;
  6201. if (++i12 == ne2) {
  6202. i12 = 0;
  6203. if (++i13 == ne3) {
  6204. i13 = 0;
  6205. }
  6206. }
  6207. }
  6208. }
  6209. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6210. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6211. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6212. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6213. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6214. if (++i10 == ne00) {
  6215. i10 = 0;
  6216. if (++i11 == ne01) {
  6217. i11 = 0;
  6218. if (++i12 == ne02) {
  6219. i12 = 0;
  6220. if (++i13 == ne03) {
  6221. i13 = 0;
  6222. }
  6223. }
  6224. }
  6225. }
  6226. }
  6227. }
  6228. i10 += ne00 * (ne01 - ir1);
  6229. while (i10 >= ne0) {
  6230. i10 -= ne0;
  6231. if (++i11 == ne1) {
  6232. i11 = 0;
  6233. if (++i12 == ne2) {
  6234. i12 = 0;
  6235. if (++i13 == ne3) {
  6236. i13 = 0;
  6237. }
  6238. }
  6239. }
  6240. }
  6241. }
  6242. }
  6243. } else if (dst->type == GGML_TYPE_F32) {
  6244. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6245. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6246. i10 += ne00 * ir0;
  6247. while (i10 >= ne0) {
  6248. i10 -= ne0;
  6249. if (++i11 == ne1) {
  6250. i11 = 0;
  6251. if (++i12 == ne2) {
  6252. i12 = 0;
  6253. if (++i13 == ne3) {
  6254. i13 = 0;
  6255. }
  6256. }
  6257. }
  6258. }
  6259. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6260. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6261. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6262. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6263. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6264. if (++i10 == ne0) {
  6265. i10 = 0;
  6266. if (++i11 == ne1) {
  6267. i11 = 0;
  6268. if (++i12 == ne2) {
  6269. i12 = 0;
  6270. if (++i13 == ne3) {
  6271. i13 = 0;
  6272. }
  6273. }
  6274. }
  6275. }
  6276. }
  6277. }
  6278. i10 += ne00 * (ne01 - ir1);
  6279. while (i10 >= ne0) {
  6280. i10 -= ne0;
  6281. if (++i11 == ne1) {
  6282. i11 = 0;
  6283. if (++i12 == ne2) {
  6284. i12 = 0;
  6285. if (++i13 == ne3) {
  6286. i13 = 0;
  6287. }
  6288. }
  6289. }
  6290. }
  6291. }
  6292. }
  6293. } else {
  6294. GGML_ASSERT(false); // TODO: implement
  6295. }
  6296. }
  6297. static void ggml_compute_forward_dup_bf16(
  6298. const struct ggml_compute_params * params,
  6299. struct ggml_tensor * dst) {
  6300. const struct ggml_tensor * src0 = dst->src[0];
  6301. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6302. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6303. return;
  6304. }
  6305. GGML_TENSOR_UNARY_OP_LOCALS
  6306. const int ith = params->ith; // thread index
  6307. const int nth = params->nth; // number of threads
  6308. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6309. ggml_compute_forward_dup_same_cont(params, dst);
  6310. return;
  6311. }
  6312. // parallelize by rows
  6313. const int nr = ne01;
  6314. // number of rows per thread
  6315. const int dr = (nr + nth - 1) / nth;
  6316. // row range for this thread
  6317. const int ir0 = dr * ith;
  6318. const int ir1 = MIN(ir0 + dr, nr);
  6319. if (src0->type == dst->type &&
  6320. ne00 == ne0 &&
  6321. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6322. // copy by rows
  6323. const size_t rs = ne00*nb00;
  6324. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6325. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6326. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6327. memcpy(
  6328. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6329. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6330. rs);
  6331. }
  6332. }
  6333. }
  6334. return;
  6335. }
  6336. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6337. if (ggml_is_contiguous(dst)) {
  6338. if (nb00 == sizeof(ggml_bf16_t)) {
  6339. if (dst->type == GGML_TYPE_BF16) {
  6340. size_t id = 0;
  6341. const size_t rs = ne00 * nb00;
  6342. char * dst_ptr = (char *) dst->data;
  6343. for (int i03 = 0; i03 < ne03; i03++) {
  6344. for (int i02 = 0; i02 < ne02; i02++) {
  6345. id += rs * ir0;
  6346. for (int i01 = ir0; i01 < ir1; i01++) {
  6347. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6348. memcpy(dst_ptr + id, src0_ptr, rs);
  6349. id += rs;
  6350. }
  6351. id += rs * (ne01 - ir1);
  6352. }
  6353. }
  6354. } else if (dst->type == GGML_TYPE_F16) {
  6355. size_t id = 0;
  6356. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6357. for (int i03 = 0; i03 < ne03; i03++) {
  6358. for (int i02 = 0; i02 < ne02; i02++) {
  6359. id += ne00 * ir0;
  6360. for (int i01 = ir0; i01 < ir1; i01++) {
  6361. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6362. for (int i00 = 0; i00 < ne00; i00++) {
  6363. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6364. id++;
  6365. }
  6366. }
  6367. id += ne00 * (ne01 - ir1);
  6368. }
  6369. }
  6370. } else if (dst->type == GGML_TYPE_F32) {
  6371. size_t id = 0;
  6372. float * dst_ptr = (float *) dst->data;
  6373. for (int i03 = 0; i03 < ne03; i03++) {
  6374. for (int i02 = 0; i02 < ne02; i02++) {
  6375. id += ne00 * ir0;
  6376. for (int i01 = ir0; i01 < ir1; i01++) {
  6377. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6378. for (int i00 = 0; i00 < ne00; i00++) {
  6379. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6380. id++;
  6381. }
  6382. }
  6383. id += ne00 * (ne01 - ir1);
  6384. }
  6385. }
  6386. } else if (type_traits[dst->type].from_float) {
  6387. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6388. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6389. size_t id = 0;
  6390. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6391. char * dst_ptr = (char *) dst->data;
  6392. for (int i03 = 0; i03 < ne03; i03++) {
  6393. for (int i02 = 0; i02 < ne02; i02++) {
  6394. id += rs * ir0;
  6395. for (int i01 = ir0; i01 < ir1; i01++) {
  6396. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6397. for (int i00 = 0; i00 < ne00; i00++) {
  6398. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6399. }
  6400. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6401. id += rs;
  6402. }
  6403. id += rs * (ne01 - ir1);
  6404. }
  6405. }
  6406. } else {
  6407. GGML_ASSERT(false); // TODO: implement
  6408. }
  6409. } else {
  6410. //printf("%s: this is not optimal - fix me\n", __func__);
  6411. if (dst->type == GGML_TYPE_F32) {
  6412. size_t id = 0;
  6413. float * dst_ptr = (float *) dst->data;
  6414. for (int i03 = 0; i03 < ne03; i03++) {
  6415. for (int i02 = 0; i02 < ne02; i02++) {
  6416. id += ne00 * ir0;
  6417. for (int i01 = ir0; i01 < ir1; i01++) {
  6418. for (int i00 = 0; i00 < ne00; i00++) {
  6419. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6420. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6421. id++;
  6422. }
  6423. }
  6424. id += ne00 * (ne01 - ir1);
  6425. }
  6426. }
  6427. } else if (dst->type == GGML_TYPE_BF16) {
  6428. size_t id = 0;
  6429. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6430. for (int i03 = 0; i03 < ne03; i03++) {
  6431. for (int i02 = 0; i02 < ne02; i02++) {
  6432. id += ne00 * ir0;
  6433. for (int i01 = ir0; i01 < ir1; i01++) {
  6434. for (int i00 = 0; i00 < ne00; i00++) {
  6435. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6436. dst_ptr[id] = *src0_ptr;
  6437. id++;
  6438. }
  6439. }
  6440. id += ne00 * (ne01 - ir1);
  6441. }
  6442. }
  6443. } else if (dst->type == GGML_TYPE_F16) {
  6444. size_t id = 0;
  6445. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6446. for (int i03 = 0; i03 < ne03; i03++) {
  6447. for (int i02 = 0; i02 < ne02; i02++) {
  6448. id += ne00 * ir0;
  6449. for (int i01 = ir0; i01 < ir1; i01++) {
  6450. for (int i00 = 0; i00 < ne00; i00++) {
  6451. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6452. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6453. id++;
  6454. }
  6455. }
  6456. id += ne00 * (ne01 - ir1);
  6457. }
  6458. }
  6459. } else {
  6460. GGML_ASSERT(false); // TODO: implement
  6461. }
  6462. }
  6463. return;
  6464. }
  6465. // dst counters
  6466. int64_t i10 = 0;
  6467. int64_t i11 = 0;
  6468. int64_t i12 = 0;
  6469. int64_t i13 = 0;
  6470. if (dst->type == GGML_TYPE_BF16) {
  6471. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6472. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6473. i10 += ne00 * ir0;
  6474. while (i10 >= ne0) {
  6475. i10 -= ne0;
  6476. if (++i11 == ne1) {
  6477. i11 = 0;
  6478. if (++i12 == ne2) {
  6479. i12 = 0;
  6480. if (++i13 == ne3) {
  6481. i13 = 0;
  6482. }
  6483. }
  6484. }
  6485. }
  6486. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6487. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6488. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6489. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6490. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6491. if (++i10 == ne00) {
  6492. i10 = 0;
  6493. if (++i11 == ne01) {
  6494. i11 = 0;
  6495. if (++i12 == ne02) {
  6496. i12 = 0;
  6497. if (++i13 == ne03) {
  6498. i13 = 0;
  6499. }
  6500. }
  6501. }
  6502. }
  6503. }
  6504. }
  6505. i10 += ne00 * (ne01 - ir1);
  6506. while (i10 >= ne0) {
  6507. i10 -= ne0;
  6508. if (++i11 == ne1) {
  6509. i11 = 0;
  6510. if (++i12 == ne2) {
  6511. i12 = 0;
  6512. if (++i13 == ne3) {
  6513. i13 = 0;
  6514. }
  6515. }
  6516. }
  6517. }
  6518. }
  6519. }
  6520. } else if (dst->type == GGML_TYPE_F16) {
  6521. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6522. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6523. i10 += ne00 * ir0;
  6524. while (i10 >= ne0) {
  6525. i10 -= ne0;
  6526. if (++i11 == ne1) {
  6527. i11 = 0;
  6528. if (++i12 == ne2) {
  6529. i12 = 0;
  6530. if (++i13 == ne3) {
  6531. i13 = 0;
  6532. }
  6533. }
  6534. }
  6535. }
  6536. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6537. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6538. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6539. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6540. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6541. if (++i10 == ne0) {
  6542. i10 = 0;
  6543. if (++i11 == ne1) {
  6544. i11 = 0;
  6545. if (++i12 == ne2) {
  6546. i12 = 0;
  6547. if (++i13 == ne3) {
  6548. i13 = 0;
  6549. }
  6550. }
  6551. }
  6552. }
  6553. }
  6554. }
  6555. i10 += ne00 * (ne01 - ir1);
  6556. while (i10 >= ne0) {
  6557. i10 -= ne0;
  6558. if (++i11 == ne1) {
  6559. i11 = 0;
  6560. if (++i12 == ne2) {
  6561. i12 = 0;
  6562. if (++i13 == ne3) {
  6563. i13 = 0;
  6564. }
  6565. }
  6566. }
  6567. }
  6568. }
  6569. }
  6570. } else if (dst->type == GGML_TYPE_F32) {
  6571. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6572. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6573. i10 += ne00 * ir0;
  6574. while (i10 >= ne0) {
  6575. i10 -= ne0;
  6576. if (++i11 == ne1) {
  6577. i11 = 0;
  6578. if (++i12 == ne2) {
  6579. i12 = 0;
  6580. if (++i13 == ne3) {
  6581. i13 = 0;
  6582. }
  6583. }
  6584. }
  6585. }
  6586. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6587. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6588. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6589. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6590. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6591. if (++i10 == ne0) {
  6592. i10 = 0;
  6593. if (++i11 == ne1) {
  6594. i11 = 0;
  6595. if (++i12 == ne2) {
  6596. i12 = 0;
  6597. if (++i13 == ne3) {
  6598. i13 = 0;
  6599. }
  6600. }
  6601. }
  6602. }
  6603. }
  6604. }
  6605. i10 += ne00 * (ne01 - ir1);
  6606. while (i10 >= ne0) {
  6607. i10 -= ne0;
  6608. if (++i11 == ne1) {
  6609. i11 = 0;
  6610. if (++i12 == ne2) {
  6611. i12 = 0;
  6612. if (++i13 == ne3) {
  6613. i13 = 0;
  6614. }
  6615. }
  6616. }
  6617. }
  6618. }
  6619. }
  6620. } else {
  6621. GGML_ASSERT(false); // TODO: implement
  6622. }
  6623. }
  6624. static void ggml_compute_forward_dup_f32(
  6625. const struct ggml_compute_params * params,
  6626. struct ggml_tensor * dst) {
  6627. const struct ggml_tensor * src0 = dst->src[0];
  6628. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6629. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6630. return;
  6631. }
  6632. GGML_TENSOR_UNARY_OP_LOCALS
  6633. const int ith = params->ith; // thread index
  6634. const int nth = params->nth; // number of threads
  6635. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6636. ggml_compute_forward_dup_same_cont(params, dst);
  6637. return;
  6638. }
  6639. // parallelize by rows
  6640. const int nr = ne01;
  6641. // number of rows per thread
  6642. const int dr = (nr + nth - 1) / nth;
  6643. // row range for this thread
  6644. const int ir0 = dr * ith;
  6645. const int ir1 = MIN(ir0 + dr, nr);
  6646. if (src0->type == dst->type &&
  6647. ne00 == ne0 &&
  6648. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6649. // copy by rows
  6650. const size_t rs = ne00*nb00;
  6651. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6652. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6653. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6654. memcpy(
  6655. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6656. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6657. rs);
  6658. }
  6659. }
  6660. }
  6661. return;
  6662. }
  6663. if (ggml_is_contiguous(dst)) {
  6664. // TODO: simplify
  6665. if (nb00 == sizeof(float)) {
  6666. if (dst->type == GGML_TYPE_F32) {
  6667. size_t id = 0;
  6668. const size_t rs = ne00 * nb00;
  6669. char * dst_ptr = (char *) dst->data;
  6670. for (int i03 = 0; i03 < ne03; i03++) {
  6671. for (int i02 = 0; i02 < ne02; i02++) {
  6672. id += rs * ir0;
  6673. for (int i01 = ir0; i01 < ir1; i01++) {
  6674. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6675. memcpy(dst_ptr + id, src0_ptr, rs);
  6676. id += rs;
  6677. }
  6678. id += rs * (ne01 - ir1);
  6679. }
  6680. }
  6681. } else if (type_traits[dst->type].from_float) {
  6682. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6683. size_t id = 0;
  6684. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6685. char * dst_ptr = (char *) dst->data;
  6686. for (int i03 = 0; i03 < ne03; i03++) {
  6687. for (int i02 = 0; i02 < ne02; i02++) {
  6688. id += rs * ir0;
  6689. for (int i01 = ir0; i01 < ir1; i01++) {
  6690. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6691. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6692. id += rs;
  6693. }
  6694. id += rs * (ne01 - ir1);
  6695. }
  6696. }
  6697. } else {
  6698. GGML_ASSERT(false); // TODO: implement
  6699. }
  6700. } else {
  6701. //printf("%s: this is not optimal - fix me\n", __func__);
  6702. if (dst->type == GGML_TYPE_F32) {
  6703. size_t id = 0;
  6704. float * dst_ptr = (float *) dst->data;
  6705. for (int i03 = 0; i03 < ne03; i03++) {
  6706. for (int i02 = 0; i02 < ne02; i02++) {
  6707. id += ne00 * ir0;
  6708. for (int i01 = ir0; i01 < ir1; i01++) {
  6709. for (int i00 = 0; i00 < ne00; i00++) {
  6710. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6711. dst_ptr[id] = *src0_ptr;
  6712. id++;
  6713. }
  6714. }
  6715. id += ne00 * (ne01 - ir1);
  6716. }
  6717. }
  6718. } else if (dst->type == GGML_TYPE_F16) {
  6719. size_t id = 0;
  6720. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6721. for (int i03 = 0; i03 < ne03; i03++) {
  6722. for (int i02 = 0; i02 < ne02; i02++) {
  6723. id += ne00 * ir0;
  6724. for (int i01 = ir0; i01 < ir1; i01++) {
  6725. for (int i00 = 0; i00 < ne00; i00++) {
  6726. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6727. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6728. id++;
  6729. }
  6730. }
  6731. id += ne00 * (ne01 - ir1);
  6732. }
  6733. }
  6734. } else if (dst->type == GGML_TYPE_BF16) {
  6735. size_t id = 0;
  6736. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6737. for (int i03 = 0; i03 < ne03; i03++) {
  6738. for (int i02 = 0; i02 < ne02; i02++) {
  6739. id += ne00 * ir0;
  6740. for (int i01 = ir0; i01 < ir1; i01++) {
  6741. for (int i00 = 0; i00 < ne00; i00++) {
  6742. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6743. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  6744. id++;
  6745. }
  6746. }
  6747. id += ne00 * (ne01 - ir1);
  6748. }
  6749. }
  6750. } else {
  6751. GGML_ASSERT(false); // TODO: implement
  6752. }
  6753. }
  6754. return;
  6755. }
  6756. // dst counters
  6757. int64_t i10 = 0;
  6758. int64_t i11 = 0;
  6759. int64_t i12 = 0;
  6760. int64_t i13 = 0;
  6761. if (dst->type == GGML_TYPE_F32) {
  6762. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6763. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6764. i10 += ne00 * ir0;
  6765. while (i10 >= ne0) {
  6766. i10 -= ne0;
  6767. if (++i11 == ne1) {
  6768. i11 = 0;
  6769. if (++i12 == ne2) {
  6770. i12 = 0;
  6771. if (++i13 == ne3) {
  6772. i13 = 0;
  6773. }
  6774. }
  6775. }
  6776. }
  6777. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6778. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6779. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6780. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6781. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6782. if (++i10 == ne0) {
  6783. i10 = 0;
  6784. if (++i11 == ne1) {
  6785. i11 = 0;
  6786. if (++i12 == ne2) {
  6787. i12 = 0;
  6788. if (++i13 == ne3) {
  6789. i13 = 0;
  6790. }
  6791. }
  6792. }
  6793. }
  6794. }
  6795. }
  6796. i10 += ne00 * (ne01 - ir1);
  6797. while (i10 >= ne0) {
  6798. i10 -= ne0;
  6799. if (++i11 == ne1) {
  6800. i11 = 0;
  6801. if (++i12 == ne2) {
  6802. i12 = 0;
  6803. if (++i13 == ne3) {
  6804. i13 = 0;
  6805. }
  6806. }
  6807. }
  6808. }
  6809. }
  6810. }
  6811. } else if (dst->type == GGML_TYPE_F16) {
  6812. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6813. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6814. i10 += ne00 * ir0;
  6815. while (i10 >= ne0) {
  6816. i10 -= ne0;
  6817. if (++i11 == ne1) {
  6818. i11 = 0;
  6819. if (++i12 == ne2) {
  6820. i12 = 0;
  6821. if (++i13 == ne3) {
  6822. i13 = 0;
  6823. }
  6824. }
  6825. }
  6826. }
  6827. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6828. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6829. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6830. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6831. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6832. if (++i10 == ne0) {
  6833. i10 = 0;
  6834. if (++i11 == ne1) {
  6835. i11 = 0;
  6836. if (++i12 == ne2) {
  6837. i12 = 0;
  6838. if (++i13 == ne3) {
  6839. i13 = 0;
  6840. }
  6841. }
  6842. }
  6843. }
  6844. }
  6845. }
  6846. i10 += ne00 * (ne01 - ir1);
  6847. while (i10 >= ne0) {
  6848. i10 -= ne0;
  6849. if (++i11 == ne1) {
  6850. i11 = 0;
  6851. if (++i12 == ne2) {
  6852. i12 = 0;
  6853. if (++i13 == ne3) {
  6854. i13 = 0;
  6855. }
  6856. }
  6857. }
  6858. }
  6859. }
  6860. }
  6861. } else if (dst->type == GGML_TYPE_BF16) {
  6862. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6863. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6864. i10 += ne00 * ir0;
  6865. while (i10 >= ne0) {
  6866. i10 -= ne0;
  6867. if (++i11 == ne1) {
  6868. i11 = 0;
  6869. if (++i12 == ne2) {
  6870. i12 = 0;
  6871. if (++i13 == ne3) {
  6872. i13 = 0;
  6873. }
  6874. }
  6875. }
  6876. }
  6877. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6878. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6879. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6880. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6881. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  6882. if (++i10 == ne0) {
  6883. i10 = 0;
  6884. if (++i11 == ne1) {
  6885. i11 = 0;
  6886. if (++i12 == ne2) {
  6887. i12 = 0;
  6888. if (++i13 == ne3) {
  6889. i13 = 0;
  6890. }
  6891. }
  6892. }
  6893. }
  6894. }
  6895. }
  6896. i10 += ne00 * (ne01 - ir1);
  6897. while (i10 >= ne0) {
  6898. i10 -= ne0;
  6899. if (++i11 == ne1) {
  6900. i11 = 0;
  6901. if (++i12 == ne2) {
  6902. i12 = 0;
  6903. if (++i13 == ne3) {
  6904. i13 = 0;
  6905. }
  6906. }
  6907. }
  6908. }
  6909. }
  6910. }
  6911. } else {
  6912. GGML_ASSERT(false); // TODO: implement
  6913. }
  6914. }
  6915. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6916. static void ggml_compute_forward_dup_bytes(
  6917. const struct ggml_compute_params * params,
  6918. struct ggml_tensor * dst) {
  6919. const struct ggml_tensor * src0 = dst->src[0];
  6920. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6921. GGML_ASSERT(src0->type == dst->type);
  6922. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6923. return;
  6924. }
  6925. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6926. ggml_compute_forward_dup_same_cont(params, dst);
  6927. return;
  6928. }
  6929. GGML_TENSOR_UNARY_OP_LOCALS;
  6930. const size_t type_size = ggml_type_size(src0->type);
  6931. const int ith = params->ith; // thread index
  6932. const int nth = params->nth; // number of threads
  6933. // parallelize by rows
  6934. const int nr = ne01;
  6935. // number of rows per thread
  6936. const int dr = (nr + nth - 1) / nth;
  6937. // row range for this thread
  6938. const int ir0 = dr * ith;
  6939. const int ir1 = MIN(ir0 + dr, nr);
  6940. if (src0->type == dst->type &&
  6941. ne00 == ne0 &&
  6942. nb00 == type_size && nb0 == type_size) {
  6943. // copy by rows
  6944. const size_t rs = ne00 * type_size;
  6945. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6946. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6947. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6948. memcpy(
  6949. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6950. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6951. rs);
  6952. }
  6953. }
  6954. }
  6955. return;
  6956. }
  6957. if (ggml_is_contiguous(dst)) {
  6958. size_t id = 0;
  6959. char * dst_ptr = (char *) dst->data;
  6960. const size_t rs = ne00 * type_size;
  6961. if (nb00 == type_size) {
  6962. // src0 is contigous on first dimension, copy by rows
  6963. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6964. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6965. id += rs * ir0;
  6966. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6967. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6968. memcpy(dst_ptr + id, src0_ptr, rs);
  6969. id += rs;
  6970. }
  6971. id += rs * (ne01 - ir1);
  6972. }
  6973. }
  6974. } else {
  6975. //printf("%s: this is not optimal - fix me\n", __func__);
  6976. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6977. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6978. id += rs * ir0;
  6979. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6980. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6981. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6982. memcpy(dst_ptr + id, src0_ptr, type_size);
  6983. id += type_size;
  6984. }
  6985. }
  6986. id += rs * (ne01 - ir1);
  6987. }
  6988. }
  6989. }
  6990. return;
  6991. }
  6992. // dst counters
  6993. int64_t i10 = 0;
  6994. int64_t i11 = 0;
  6995. int64_t i12 = 0;
  6996. int64_t i13 = 0;
  6997. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6998. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6999. i10 += ne00 * ir0;
  7000. while (i10 >= ne0) {
  7001. i10 -= ne0;
  7002. if (++i11 == ne1) {
  7003. i11 = 0;
  7004. if (++i12 == ne2) {
  7005. i12 = 0;
  7006. if (++i13 == ne3) {
  7007. i13 = 0;
  7008. }
  7009. }
  7010. }
  7011. }
  7012. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7013. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7014. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7015. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7016. memcpy(dst_ptr, src0_ptr, type_size);
  7017. if (++i10 == ne0) {
  7018. i10 = 0;
  7019. if (++i11 == ne1) {
  7020. i11 = 0;
  7021. if (++i12 == ne2) {
  7022. i12 = 0;
  7023. if (++i13 == ne3) {
  7024. i13 = 0;
  7025. }
  7026. }
  7027. }
  7028. }
  7029. }
  7030. }
  7031. i10 += ne00 * (ne01 - ir1);
  7032. while (i10 >= ne0) {
  7033. i10 -= ne0;
  7034. if (++i11 == ne1) {
  7035. i11 = 0;
  7036. if (++i12 == ne2) {
  7037. i12 = 0;
  7038. if (++i13 == ne3) {
  7039. i13 = 0;
  7040. }
  7041. }
  7042. }
  7043. }
  7044. }
  7045. }
  7046. }
  7047. static void ggml_compute_forward_dup(
  7048. const struct ggml_compute_params * params,
  7049. struct ggml_tensor * dst) {
  7050. const struct ggml_tensor * src0 = dst->src[0];
  7051. if (src0->type == dst->type) {
  7052. ggml_compute_forward_dup_bytes(params, dst);
  7053. return;
  7054. }
  7055. switch (src0->type) {
  7056. case GGML_TYPE_F16:
  7057. {
  7058. ggml_compute_forward_dup_f16(params, dst);
  7059. } break;
  7060. case GGML_TYPE_BF16:
  7061. {
  7062. ggml_compute_forward_dup_bf16(params, dst);
  7063. } break;
  7064. case GGML_TYPE_F32:
  7065. {
  7066. ggml_compute_forward_dup_f32(params, dst);
  7067. } break;
  7068. default:
  7069. {
  7070. GGML_ASSERT(false);
  7071. } break;
  7072. }
  7073. }
  7074. // ggml_compute_forward_add
  7075. static void ggml_compute_forward_add_f32(
  7076. const struct ggml_compute_params * params,
  7077. struct ggml_tensor * dst) {
  7078. const struct ggml_tensor * src0 = dst->src[0];
  7079. const struct ggml_tensor * src1 = dst->src[1];
  7080. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7081. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7082. return;
  7083. }
  7084. const int ith = params->ith;
  7085. const int nth = params->nth;
  7086. #ifdef GGML_USE_CLBLAST
  7087. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7088. // TODO: OpenCL kernel support full broadcast
  7089. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7090. if (ith == 0) {
  7091. ggml_cl_add(src0, src1, dst);
  7092. }
  7093. return;
  7094. }
  7095. #endif
  7096. const int nr = ggml_nrows(src0);
  7097. GGML_TENSOR_BINARY_OP_LOCALS
  7098. GGML_ASSERT( nb0 == sizeof(float));
  7099. GGML_ASSERT(nb00 == sizeof(float));
  7100. // rows per thread
  7101. const int dr = (nr + nth - 1)/nth;
  7102. // row range for this thread
  7103. const int ir0 = dr*ith;
  7104. const int ir1 = MIN(ir0 + dr, nr);
  7105. if (nb10 == sizeof(float)) {
  7106. for (int ir = ir0; ir < ir1; ++ir) {
  7107. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7108. const int64_t i03 = ir/(ne02*ne01);
  7109. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7110. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7111. const int64_t i13 = i03 % ne13;
  7112. const int64_t i12 = i02 % ne12;
  7113. const int64_t i11 = i01 % ne11;
  7114. const int64_t nr0 = ne00 / ne10;
  7115. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7116. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7117. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7118. for (int64_t r = 0; r < nr0; ++r) {
  7119. #ifdef GGML_USE_ACCELERATE
  7120. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7121. #else
  7122. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7123. #endif
  7124. }
  7125. }
  7126. } else {
  7127. // src1 is not contiguous
  7128. for (int ir = ir0; ir < ir1; ++ir) {
  7129. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7130. const int64_t i03 = ir/(ne02*ne01);
  7131. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7132. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7133. const int64_t i13 = i03 % ne13;
  7134. const int64_t i12 = i02 % ne12;
  7135. const int64_t i11 = i01 % ne11;
  7136. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7137. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7138. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7139. const int64_t i10 = i0 % ne10;
  7140. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7141. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7142. }
  7143. }
  7144. }
  7145. }
  7146. static void ggml_compute_forward_add_f16_f32(
  7147. const struct ggml_compute_params * params,
  7148. struct ggml_tensor * dst) {
  7149. const struct ggml_tensor * src0 = dst->src[0];
  7150. const struct ggml_tensor * src1 = dst->src[1];
  7151. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7152. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7153. return;
  7154. }
  7155. const int ith = params->ith;
  7156. const int nth = params->nth;
  7157. const int nr = ggml_nrows(src0);
  7158. GGML_TENSOR_BINARY_OP_LOCALS
  7159. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7160. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7161. if (dst->type == GGML_TYPE_F32) {
  7162. GGML_ASSERT( nb0 == sizeof(float));
  7163. }
  7164. else {
  7165. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7166. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7167. }
  7168. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7169. // rows per thread
  7170. const int dr = (nr + nth - 1)/nth;
  7171. // row range for this thread
  7172. const int ir0 = dr*ith;
  7173. const int ir1 = MIN(ir0 + dr, nr);
  7174. if (nb10 == sizeof(float)) {
  7175. if (dst->type == GGML_TYPE_F16) {
  7176. for (int ir = ir0; ir < ir1; ++ir) {
  7177. // src0, src1 and dst are same shape => same indices
  7178. const int i3 = ir/(ne2*ne1);
  7179. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7180. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7181. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7182. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7183. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7184. for (int i = 0; i < ne0; i++) {
  7185. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7186. }
  7187. }
  7188. } else {
  7189. for (int ir = ir0; ir < ir1; ++ir) {
  7190. // src0, src1 and dst are same shape => same indices
  7191. const int i3 = ir/(ne2*ne1);
  7192. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7193. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7194. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7195. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7196. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7197. for (int i = 0; i < ne0; i++) {
  7198. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7199. }
  7200. }
  7201. }
  7202. }
  7203. else {
  7204. // src1 is not contiguous
  7205. GGML_ASSERT(false);
  7206. }
  7207. }
  7208. static void ggml_compute_forward_add_bf16_f32(
  7209. const struct ggml_compute_params * params,
  7210. struct ggml_tensor * dst) {
  7211. const struct ggml_tensor * src0 = dst->src[0];
  7212. const struct ggml_tensor * src1 = dst->src[1];
  7213. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7214. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7215. return;
  7216. }
  7217. const int ith = params->ith;
  7218. const int nth = params->nth;
  7219. const int nr = ggml_nrows(src0);
  7220. GGML_TENSOR_BINARY_OP_LOCALS
  7221. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7222. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7223. if (dst->type == GGML_TYPE_F32) {
  7224. GGML_ASSERT( nb0 == sizeof(float));
  7225. }
  7226. else {
  7227. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7228. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7229. }
  7230. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7231. // rows per thread
  7232. const int dr = (nr + nth - 1)/nth;
  7233. // row range for this thread
  7234. const int ir0 = dr*ith;
  7235. const int ir1 = MIN(ir0 + dr, nr);
  7236. if (nb10 == sizeof(float)) {
  7237. if (dst->type == GGML_TYPE_BF16) {
  7238. for (int ir = ir0; ir < ir1; ++ir) {
  7239. // src0, src1 and dst are same shape => same indices
  7240. const int i3 = ir/(ne2*ne1);
  7241. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7242. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7243. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7244. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7245. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7246. for (int i = 0; i < ne0; i++) {
  7247. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7248. }
  7249. }
  7250. } else {
  7251. for (int ir = ir0; ir < ir1; ++ir) {
  7252. // src0, src1 and dst are same shape => same indices
  7253. const int i3 = ir/(ne2*ne1);
  7254. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7255. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7256. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7257. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7258. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7259. for (int i = 0; i < ne0; i++) {
  7260. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7261. }
  7262. }
  7263. }
  7264. }
  7265. else {
  7266. // src1 is not contiguous
  7267. GGML_ASSERT(false);
  7268. }
  7269. }
  7270. static void ggml_compute_forward_add_f16_f16(
  7271. const struct ggml_compute_params * params,
  7272. struct ggml_tensor * dst) {
  7273. const struct ggml_tensor * src0 = dst->src[0];
  7274. const struct ggml_tensor * src1 = dst->src[1];
  7275. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7276. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7277. return;
  7278. }
  7279. const int ith = params->ith;
  7280. const int nth = params->nth;
  7281. const int nr = ggml_nrows(src0);
  7282. GGML_TENSOR_BINARY_OP_LOCALS
  7283. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7284. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7285. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7286. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7287. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7288. // rows per thread
  7289. const int dr = (nr + nth - 1)/nth;
  7290. // row range for this thread
  7291. const int ir0 = dr*ith;
  7292. const int ir1 = MIN(ir0 + dr, nr);
  7293. if (nb10 == sizeof(ggml_fp16_t)) {
  7294. for (int ir = ir0; ir < ir1; ++ir) {
  7295. // src0, src1 and dst are same shape => same indices
  7296. const int i3 = ir/(ne2*ne1);
  7297. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7298. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7299. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7300. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7301. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7302. for (int i = 0; i < ne0; i++) {
  7303. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7304. }
  7305. }
  7306. }
  7307. else {
  7308. // src1 is not contiguous
  7309. GGML_ASSERT(false);
  7310. }
  7311. }
  7312. static void ggml_compute_forward_add_bf16_bf16(
  7313. const struct ggml_compute_params * params,
  7314. struct ggml_tensor * dst) {
  7315. const struct ggml_tensor * src0 = dst->src[0];
  7316. const struct ggml_tensor * src1 = dst->src[1];
  7317. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7318. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7319. return;
  7320. }
  7321. const int ith = params->ith;
  7322. const int nth = params->nth;
  7323. const int nr = ggml_nrows(src0);
  7324. GGML_TENSOR_BINARY_OP_LOCALS
  7325. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7326. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7327. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7328. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7329. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7330. // rows per thread
  7331. const int dr = (nr + nth - 1)/nth;
  7332. // row range for this thread
  7333. const int ir0 = dr*ith;
  7334. const int ir1 = MIN(ir0 + dr, nr);
  7335. if (nb10 == sizeof(ggml_bf16_t)) {
  7336. for (int ir = ir0; ir < ir1; ++ir) {
  7337. // src0, src1 and dst are same shape => same indices
  7338. const int i3 = ir/(ne2*ne1);
  7339. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7340. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7341. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7342. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7343. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7344. for (int i = 0; i < ne0; i++) {
  7345. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7346. }
  7347. }
  7348. }
  7349. else {
  7350. // src1 is not contiguous
  7351. GGML_ASSERT(false);
  7352. }
  7353. }
  7354. static void ggml_compute_forward_add_q_f32(
  7355. const struct ggml_compute_params * params,
  7356. struct ggml_tensor * dst) {
  7357. const struct ggml_tensor * src0 = dst->src[0];
  7358. const struct ggml_tensor * src1 = dst->src[1];
  7359. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7360. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7361. return;
  7362. }
  7363. const int nr = ggml_nrows(src0);
  7364. GGML_TENSOR_BINARY_OP_LOCALS
  7365. const int ith = params->ith;
  7366. const int nth = params->nth;
  7367. const enum ggml_type type = src0->type;
  7368. const enum ggml_type dtype = dst->type;
  7369. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7370. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7371. // we don't support permuted src0 or src1
  7372. GGML_ASSERT(nb00 == ggml_type_size(type));
  7373. GGML_ASSERT(nb10 == sizeof(float));
  7374. // dst cannot be transposed or permuted
  7375. GGML_ASSERT(nb0 <= nb1);
  7376. GGML_ASSERT(nb1 <= nb2);
  7377. GGML_ASSERT(nb2 <= nb3);
  7378. GGML_ASSERT(ggml_is_quantized(src0->type));
  7379. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7380. // rows per thread
  7381. const int dr = (nr + nth - 1)/nth;
  7382. // row range for this thread
  7383. const int ir0 = dr*ith;
  7384. const int ir1 = MIN(ir0 + dr, nr);
  7385. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7386. for (int ir = ir0; ir < ir1; ++ir) {
  7387. // src0 indices
  7388. const int i03 = ir/(ne02*ne01);
  7389. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7390. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7391. // src1 and dst are same shape as src0 => same indices
  7392. const int i13 = i03;
  7393. const int i12 = i02;
  7394. const int i11 = i01;
  7395. const int i3 = i03;
  7396. const int i2 = i02;
  7397. const int i1 = i01;
  7398. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7399. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7400. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7401. assert(ne00 % 32 == 0);
  7402. // unquantize row from src0 to temp buffer
  7403. dequantize_row_q(src0_row, wdata, ne00);
  7404. // add src1
  7405. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7406. // quantize row to dst
  7407. if (quantize_row_q != NULL) {
  7408. quantize_row_q(wdata, dst_row, ne00);
  7409. } else {
  7410. memcpy(dst_row, wdata, ne0*nb0);
  7411. }
  7412. }
  7413. }
  7414. static void ggml_compute_forward_add(
  7415. const struct ggml_compute_params * params,
  7416. struct ggml_tensor * dst) {
  7417. const struct ggml_tensor * src0 = dst->src[0];
  7418. const struct ggml_tensor * src1 = dst->src[1];
  7419. switch (src0->type) {
  7420. case GGML_TYPE_F32:
  7421. {
  7422. if (src1->type == GGML_TYPE_F32) {
  7423. ggml_compute_forward_add_f32(params, dst);
  7424. }
  7425. else {
  7426. GGML_ASSERT(false);
  7427. }
  7428. } break;
  7429. case GGML_TYPE_F16:
  7430. {
  7431. if (src1->type == GGML_TYPE_F16) {
  7432. ggml_compute_forward_add_f16_f16(params, dst);
  7433. }
  7434. else if (src1->type == GGML_TYPE_F32) {
  7435. ggml_compute_forward_add_f16_f32(params, dst);
  7436. }
  7437. else {
  7438. GGML_ASSERT(false);
  7439. }
  7440. } break;
  7441. case GGML_TYPE_BF16:
  7442. {
  7443. if (src1->type == GGML_TYPE_BF16) {
  7444. ggml_compute_forward_add_bf16_bf16(params, dst);
  7445. }
  7446. else if (src1->type == GGML_TYPE_F32) {
  7447. ggml_compute_forward_add_bf16_f32(params, dst);
  7448. }
  7449. else {
  7450. GGML_ASSERT(false);
  7451. }
  7452. } break;
  7453. case GGML_TYPE_Q4_0:
  7454. case GGML_TYPE_Q4_1:
  7455. case GGML_TYPE_Q5_0:
  7456. case GGML_TYPE_Q5_1:
  7457. case GGML_TYPE_Q8_0:
  7458. case GGML_TYPE_Q2_K:
  7459. case GGML_TYPE_Q3_K:
  7460. case GGML_TYPE_Q4_K:
  7461. case GGML_TYPE_Q5_K:
  7462. case GGML_TYPE_Q6_K:
  7463. case GGML_TYPE_IQ2_XXS:
  7464. case GGML_TYPE_IQ2_XS:
  7465. case GGML_TYPE_IQ3_XXS:
  7466. case GGML_TYPE_IQ1_S:
  7467. case GGML_TYPE_IQ1_M:
  7468. case GGML_TYPE_IQ4_NL:
  7469. case GGML_TYPE_IQ4_XS:
  7470. case GGML_TYPE_IQ3_S:
  7471. case GGML_TYPE_IQ2_S:
  7472. {
  7473. ggml_compute_forward_add_q_f32(params, dst);
  7474. } break;
  7475. default:
  7476. {
  7477. GGML_ASSERT(false);
  7478. } break;
  7479. }
  7480. }
  7481. // ggml_compute_forward_add1
  7482. static void ggml_compute_forward_add1_f32(
  7483. const struct ggml_compute_params * params,
  7484. struct ggml_tensor * dst) {
  7485. const struct ggml_tensor * src0 = dst->src[0];
  7486. const struct ggml_tensor * src1 = dst->src[1];
  7487. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7488. GGML_ASSERT(ggml_is_scalar(src1));
  7489. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7490. return;
  7491. }
  7492. const int ith = params->ith;
  7493. const int nth = params->nth;
  7494. const int nr = ggml_nrows(src0);
  7495. GGML_TENSOR_UNARY_OP_LOCALS
  7496. GGML_ASSERT( nb0 == sizeof(float));
  7497. GGML_ASSERT(nb00 == sizeof(float));
  7498. // rows per thread
  7499. const int dr = (nr + nth - 1)/nth;
  7500. // row range for this thread
  7501. const int ir0 = dr*ith;
  7502. const int ir1 = MIN(ir0 + dr, nr);
  7503. for (int ir = ir0; ir < ir1; ++ir) {
  7504. // src0 and dst are same shape => same indices
  7505. const int i3 = ir/(ne2*ne1);
  7506. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7507. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7508. #ifdef GGML_USE_ACCELERATE
  7509. UNUSED(ggml_vec_add1_f32);
  7510. vDSP_vadd(
  7511. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7512. (float *) ((char *) src1->data), 0,
  7513. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7514. ne0);
  7515. #else
  7516. ggml_vec_add1_f32(ne0,
  7517. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7518. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7519. *(float *) src1->data);
  7520. #endif
  7521. }
  7522. }
  7523. static void ggml_compute_forward_add1_f16_f32(
  7524. const struct ggml_compute_params * params,
  7525. struct ggml_tensor * dst) {
  7526. const struct ggml_tensor * src0 = dst->src[0];
  7527. const struct ggml_tensor * src1 = dst->src[1];
  7528. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7529. GGML_ASSERT(ggml_is_scalar(src1));
  7530. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7531. return;
  7532. }
  7533. // scalar to add
  7534. const float v = *(float *) src1->data;
  7535. const int ith = params->ith;
  7536. const int nth = params->nth;
  7537. const int nr = ggml_nrows(src0);
  7538. GGML_TENSOR_UNARY_OP_LOCALS
  7539. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7540. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7541. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7542. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7543. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7544. // rows per thread
  7545. const int dr = (nr + nth - 1)/nth;
  7546. // row range for this thread
  7547. const int ir0 = dr*ith;
  7548. const int ir1 = MIN(ir0 + dr, nr);
  7549. for (int ir = ir0; ir < ir1; ++ir) {
  7550. // src0 and dst are same shape => same indices
  7551. const int i3 = ir/(ne2*ne1);
  7552. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7553. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7554. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7555. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7556. for (int i = 0; i < ne0; i++) {
  7557. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7558. }
  7559. }
  7560. }
  7561. static void ggml_compute_forward_add1_f16_f16(
  7562. const struct ggml_compute_params * params,
  7563. struct ggml_tensor * dst) {
  7564. const struct ggml_tensor * src0 = dst->src[0];
  7565. const struct ggml_tensor * src1 = dst->src[1];
  7566. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7567. GGML_ASSERT(ggml_is_scalar(src1));
  7568. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7569. return;
  7570. }
  7571. // scalar to add
  7572. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7573. const int ith = params->ith;
  7574. const int nth = params->nth;
  7575. const int nr = ggml_nrows(src0);
  7576. GGML_TENSOR_UNARY_OP_LOCALS
  7577. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7578. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7579. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7580. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7581. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7582. // rows per thread
  7583. const int dr = (nr + nth - 1)/nth;
  7584. // row range for this thread
  7585. const int ir0 = dr*ith;
  7586. const int ir1 = MIN(ir0 + dr, nr);
  7587. for (int ir = ir0; ir < ir1; ++ir) {
  7588. // src0 and dst are same shape => same indices
  7589. const int i3 = ir/(ne2*ne1);
  7590. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7591. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7592. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7593. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7594. for (int i = 0; i < ne0; i++) {
  7595. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7596. }
  7597. }
  7598. }
  7599. static void ggml_compute_forward_add1_q_f32(
  7600. const struct ggml_compute_params * params,
  7601. struct ggml_tensor * dst) {
  7602. const struct ggml_tensor * src0 = dst->src[0];
  7603. const struct ggml_tensor * src1 = dst->src[1];
  7604. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7605. GGML_ASSERT(ggml_is_scalar(src1));
  7606. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7607. return;
  7608. }
  7609. // scalar to add
  7610. const float v = *(float *) src1->data;
  7611. const int ith = params->ith;
  7612. const int nth = params->nth;
  7613. const int nr = ggml_nrows(src0);
  7614. GGML_TENSOR_UNARY_OP_LOCALS
  7615. const enum ggml_type type = src0->type;
  7616. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7617. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7618. // we don't support permuted src0
  7619. GGML_ASSERT(nb00 == ggml_type_size(type));
  7620. // dst cannot be transposed or permuted
  7621. GGML_ASSERT(nb0 <= nb1);
  7622. GGML_ASSERT(nb1 <= nb2);
  7623. GGML_ASSERT(nb2 <= nb3);
  7624. GGML_ASSERT(ggml_is_quantized(src0->type));
  7625. GGML_ASSERT(dst->type == src0->type);
  7626. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7627. // rows per thread
  7628. const int dr = (nr + nth - 1)/nth;
  7629. // row range for this thread
  7630. const int ir0 = dr*ith;
  7631. const int ir1 = MIN(ir0 + dr, nr);
  7632. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7633. for (int ir = ir0; ir < ir1; ++ir) {
  7634. // src0 and dst are same shape => same indices
  7635. const int i3 = ir/(ne2*ne1);
  7636. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7637. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7638. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7639. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7640. assert(ne0 % 32 == 0);
  7641. // unquantize row from src0 to temp buffer
  7642. dequantize_row_q(src0_row, wdata, ne0);
  7643. // add src1
  7644. ggml_vec_acc1_f32(ne0, wdata, v);
  7645. // quantize row to dst
  7646. quantize_row_q(wdata, dst_row, ne0);
  7647. }
  7648. }
  7649. static void ggml_compute_forward_add1_bf16_f32(
  7650. const struct ggml_compute_params * params,
  7651. struct ggml_tensor * dst) {
  7652. const struct ggml_tensor * src0 = dst->src[0];
  7653. const struct ggml_tensor * src1 = dst->src[1];
  7654. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7655. GGML_ASSERT(ggml_is_scalar(src1));
  7656. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7657. return;
  7658. }
  7659. // scalar to add
  7660. const float v = *(float *) src1->data;
  7661. const int ith = params->ith;
  7662. const int nth = params->nth;
  7663. const int nr = ggml_nrows(src0);
  7664. GGML_TENSOR_UNARY_OP_LOCALS
  7665. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7666. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7667. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7668. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7669. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7670. // rows per thread
  7671. const int dr = (nr + nth - 1)/nth;
  7672. // row range for this thread
  7673. const int ir0 = dr*ith;
  7674. const int ir1 = MIN(ir0 + dr, nr);
  7675. for (int ir = ir0; ir < ir1; ++ir) {
  7676. // src0 and dst are same shape => same indices
  7677. const int i3 = ir/(ne2*ne1);
  7678. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7679. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7680. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7681. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7682. for (int i = 0; i < ne0; i++) {
  7683. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7684. }
  7685. }
  7686. }
  7687. static void ggml_compute_forward_add1_bf16_bf16(
  7688. const struct ggml_compute_params * params,
  7689. struct ggml_tensor * dst) {
  7690. const struct ggml_tensor * src0 = dst->src[0];
  7691. const struct ggml_tensor * src1 = dst->src[1];
  7692. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7693. GGML_ASSERT(ggml_is_scalar(src1));
  7694. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7695. return;
  7696. }
  7697. // scalar to add
  7698. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  7699. const int ith = params->ith;
  7700. const int nth = params->nth;
  7701. const int nr = ggml_nrows(src0);
  7702. GGML_TENSOR_UNARY_OP_LOCALS
  7703. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7704. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7705. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7706. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7707. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7708. // rows per thread
  7709. const int dr = (nr + nth - 1)/nth;
  7710. // row range for this thread
  7711. const int ir0 = dr*ith;
  7712. const int ir1 = MIN(ir0 + dr, nr);
  7713. for (int ir = ir0; ir < ir1; ++ir) {
  7714. // src0 and dst are same shape => same indices
  7715. const int i3 = ir/(ne2*ne1);
  7716. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7717. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7718. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7719. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7720. for (int i = 0; i < ne0; i++) {
  7721. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7722. }
  7723. }
  7724. }
  7725. static void ggml_compute_forward_add1(
  7726. const struct ggml_compute_params * params,
  7727. struct ggml_tensor * dst) {
  7728. const struct ggml_tensor * src0 = dst->src[0];
  7729. const struct ggml_tensor * src1 = dst->src[1];
  7730. switch (src0->type) {
  7731. case GGML_TYPE_F32:
  7732. {
  7733. ggml_compute_forward_add1_f32(params, dst);
  7734. } break;
  7735. case GGML_TYPE_F16:
  7736. {
  7737. if (src1->type == GGML_TYPE_F16) {
  7738. ggml_compute_forward_add1_f16_f16(params, dst);
  7739. }
  7740. else if (src1->type == GGML_TYPE_F32) {
  7741. ggml_compute_forward_add1_f16_f32(params, dst);
  7742. }
  7743. else {
  7744. GGML_ASSERT(false);
  7745. }
  7746. } break;
  7747. case GGML_TYPE_BF16:
  7748. {
  7749. if (src1->type == GGML_TYPE_BF16) {
  7750. ggml_compute_forward_add1_bf16_bf16(params, dst);
  7751. }
  7752. else if (src1->type == GGML_TYPE_F32) {
  7753. ggml_compute_forward_add1_bf16_f32(params, dst);
  7754. }
  7755. else {
  7756. GGML_ASSERT(false);
  7757. }
  7758. } break;
  7759. case GGML_TYPE_Q4_0:
  7760. case GGML_TYPE_Q4_1:
  7761. case GGML_TYPE_Q5_0:
  7762. case GGML_TYPE_Q5_1:
  7763. case GGML_TYPE_Q8_0:
  7764. case GGML_TYPE_Q8_1:
  7765. case GGML_TYPE_Q2_K:
  7766. case GGML_TYPE_Q3_K:
  7767. case GGML_TYPE_Q4_K:
  7768. case GGML_TYPE_Q5_K:
  7769. case GGML_TYPE_Q6_K:
  7770. case GGML_TYPE_IQ2_XXS:
  7771. case GGML_TYPE_IQ2_XS:
  7772. case GGML_TYPE_IQ3_XXS:
  7773. case GGML_TYPE_IQ1_S:
  7774. case GGML_TYPE_IQ1_M:
  7775. case GGML_TYPE_IQ4_NL:
  7776. case GGML_TYPE_IQ4_XS:
  7777. case GGML_TYPE_IQ3_S:
  7778. case GGML_TYPE_IQ2_S:
  7779. {
  7780. ggml_compute_forward_add1_q_f32(params, dst);
  7781. } break;
  7782. default:
  7783. {
  7784. GGML_ASSERT(false);
  7785. } break;
  7786. }
  7787. }
  7788. // ggml_compute_forward_acc
  7789. static void ggml_compute_forward_acc_f32(
  7790. const struct ggml_compute_params * params,
  7791. struct ggml_tensor * dst) {
  7792. const struct ggml_tensor * src0 = dst->src[0];
  7793. const struct ggml_tensor * src1 = dst->src[1];
  7794. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7795. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7796. // view src0 and dst with these strides and data offset inbytes during acc
  7797. // nb0 is implicitly element_size because src0 and dst are contiguous
  7798. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7799. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7800. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7801. size_t offset = ((int32_t *) dst->op_params)[3];
  7802. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7803. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  7804. if (params->ith != 0) {
  7805. return;
  7806. }
  7807. // memcpy needs to be synchronized across threads to avoid race conditions.
  7808. // => do it in INIT phase
  7809. memcpy(
  7810. ((char *) dst->data),
  7811. ((char *) src0->data),
  7812. ggml_nbytes(dst));
  7813. }
  7814. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7815. return;
  7816. }
  7817. const int ith = params->ith;
  7818. const int nth = params->nth;
  7819. const int nr = ggml_nrows(src1);
  7820. const int nc = src1->ne[0];
  7821. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  7822. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  7823. // src0 and dst as viewed during acc
  7824. const size_t nb0 = ggml_element_size(src0);
  7825. const size_t nb00 = nb0;
  7826. const size_t nb01 = nb1;
  7827. const size_t nb02 = nb2;
  7828. const size_t nb03 = nb3;
  7829. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7830. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7831. GGML_ASSERT(nb10 == sizeof(float));
  7832. // rows per thread
  7833. const int dr = (nr + nth - 1)/nth;
  7834. // row range for this thread
  7835. const int ir0 = dr*ith;
  7836. const int ir1 = MIN(ir0 + dr, nr);
  7837. for (int ir = ir0; ir < ir1; ++ir) {
  7838. // src0 and dst are viewed with shape of src1 and offset
  7839. // => same indices
  7840. const int i3 = ir/(ne12*ne11);
  7841. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7842. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7843. #ifdef GGML_USE_ACCELERATE
  7844. vDSP_vadd(
  7845. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7846. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7847. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7848. #else
  7849. ggml_vec_add_f32(nc,
  7850. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7851. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7852. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7853. #endif
  7854. }
  7855. }
  7856. static void ggml_compute_forward_acc(
  7857. const struct ggml_compute_params * params,
  7858. struct ggml_tensor * dst) {
  7859. const struct ggml_tensor * src0 = dst->src[0];
  7860. switch (src0->type) {
  7861. case GGML_TYPE_F32:
  7862. {
  7863. ggml_compute_forward_acc_f32(params, dst);
  7864. } break;
  7865. case GGML_TYPE_F16:
  7866. case GGML_TYPE_BF16:
  7867. case GGML_TYPE_Q4_0:
  7868. case GGML_TYPE_Q4_1:
  7869. case GGML_TYPE_Q5_0:
  7870. case GGML_TYPE_Q5_1:
  7871. case GGML_TYPE_Q8_0:
  7872. case GGML_TYPE_Q8_1:
  7873. case GGML_TYPE_Q2_K:
  7874. case GGML_TYPE_Q3_K:
  7875. case GGML_TYPE_Q4_K:
  7876. case GGML_TYPE_Q5_K:
  7877. case GGML_TYPE_Q6_K:
  7878. case GGML_TYPE_IQ2_XXS:
  7879. case GGML_TYPE_IQ2_XS:
  7880. case GGML_TYPE_IQ3_XXS:
  7881. case GGML_TYPE_IQ1_S:
  7882. case GGML_TYPE_IQ1_M:
  7883. case GGML_TYPE_IQ4_NL:
  7884. case GGML_TYPE_IQ4_XS:
  7885. case GGML_TYPE_IQ3_S:
  7886. case GGML_TYPE_IQ2_S:
  7887. default:
  7888. {
  7889. GGML_ASSERT(false);
  7890. } break;
  7891. }
  7892. }
  7893. // ggml_compute_forward_sub
  7894. static void ggml_compute_forward_sub_f32(
  7895. const struct ggml_compute_params * params,
  7896. struct ggml_tensor * dst) {
  7897. const struct ggml_tensor * src0 = dst->src[0];
  7898. const struct ggml_tensor * src1 = dst->src[1];
  7899. assert(params->ith == 0);
  7900. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7901. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7902. return;
  7903. }
  7904. const int nr = ggml_nrows(src0);
  7905. GGML_TENSOR_BINARY_OP_LOCALS
  7906. GGML_ASSERT( nb0 == sizeof(float));
  7907. GGML_ASSERT(nb00 == sizeof(float));
  7908. if (nb10 == sizeof(float)) {
  7909. for (int ir = 0; ir < nr; ++ir) {
  7910. // src0, src1 and dst are same shape => same indices
  7911. const int i3 = ir/(ne2*ne1);
  7912. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7913. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7914. #ifdef GGML_USE_ACCELERATE
  7915. vDSP_vsub(
  7916. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7917. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7918. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7919. ne0);
  7920. #else
  7921. ggml_vec_sub_f32(ne0,
  7922. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7923. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7924. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7925. #endif
  7926. // }
  7927. // }
  7928. }
  7929. } else {
  7930. // src1 is not contiguous
  7931. for (int ir = 0; ir < nr; ++ir) {
  7932. // src0, src1 and dst are same shape => same indices
  7933. const int i3 = ir/(ne2*ne1);
  7934. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7935. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7936. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7937. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7938. for (int i0 = 0; i0 < ne0; i0++) {
  7939. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7940. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7941. }
  7942. }
  7943. }
  7944. }
  7945. static void ggml_compute_forward_sub(
  7946. const struct ggml_compute_params * params,
  7947. struct ggml_tensor * dst) {
  7948. const struct ggml_tensor * src0 = dst->src[0];
  7949. switch (src0->type) {
  7950. case GGML_TYPE_F32:
  7951. {
  7952. ggml_compute_forward_sub_f32(params, dst);
  7953. } break;
  7954. default:
  7955. {
  7956. GGML_ASSERT(false);
  7957. } break;
  7958. }
  7959. }
  7960. // ggml_compute_forward_mul
  7961. static void ggml_compute_forward_mul_f32(
  7962. const struct ggml_compute_params * params,
  7963. struct ggml_tensor * dst) {
  7964. const struct ggml_tensor * src0 = dst->src[0];
  7965. const struct ggml_tensor * src1 = dst->src[1];
  7966. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7967. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7968. return;
  7969. }
  7970. const int ith = params->ith;
  7971. const int nth = params->nth;
  7972. #if defined(GGML_USE_CLBLAST)
  7973. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7974. // TODO: OpenCL kernel support full broadcast
  7975. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7976. if (ith == 0) {
  7977. ggml_cl_mul(src0, src1, dst);
  7978. }
  7979. return;
  7980. }
  7981. #endif
  7982. const int64_t nr = ggml_nrows(src0);
  7983. GGML_TENSOR_BINARY_OP_LOCALS
  7984. GGML_ASSERT( nb0 == sizeof(float));
  7985. GGML_ASSERT(nb00 == sizeof(float));
  7986. if (nb10 == sizeof(float)) {
  7987. for (int64_t ir = ith; ir < nr; ir += nth) {
  7988. // src0 and dst are same shape => same indices
  7989. const int64_t i03 = ir/(ne02*ne01);
  7990. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7991. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7992. const int64_t i13 = i03 % ne13;
  7993. const int64_t i12 = i02 % ne12;
  7994. const int64_t i11 = i01 % ne11;
  7995. const int64_t nr0 = ne00 / ne10;
  7996. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7997. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7998. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7999. for (int64_t r = 0 ; r < nr0; ++r) {
  8000. #ifdef GGML_USE_ACCELERATE
  8001. UNUSED(ggml_vec_mul_f32);
  8002. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8003. #else
  8004. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8005. #endif
  8006. }
  8007. }
  8008. } else {
  8009. // src1 is not contiguous
  8010. for (int64_t ir = ith; ir < nr; ir += nth) {
  8011. // src0 and dst are same shape => same indices
  8012. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8013. const int64_t i03 = ir/(ne02*ne01);
  8014. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8015. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8016. const int64_t i13 = i03 % ne13;
  8017. const int64_t i12 = i02 % ne12;
  8018. const int64_t i11 = i01 % ne11;
  8019. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8020. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8021. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8022. const int64_t i10 = i0 % ne10;
  8023. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8024. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8025. }
  8026. }
  8027. }
  8028. }
  8029. static void ggml_compute_forward_mul(
  8030. const struct ggml_compute_params * params,
  8031. struct ggml_tensor * dst) {
  8032. const struct ggml_tensor * src0 = dst->src[0];
  8033. const struct ggml_tensor * src1 = dst->src[1];
  8034. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8035. switch (src0->type) {
  8036. case GGML_TYPE_F32:
  8037. {
  8038. ggml_compute_forward_mul_f32(params, dst);
  8039. } break;
  8040. default:
  8041. {
  8042. GGML_ASSERT(false);
  8043. } break;
  8044. }
  8045. }
  8046. // ggml_compute_forward_div
  8047. static void ggml_compute_forward_div_f32(
  8048. const struct ggml_compute_params * params,
  8049. struct ggml_tensor * dst) {
  8050. const struct ggml_tensor * src0 = dst->src[0];
  8051. const struct ggml_tensor * src1 = dst->src[1];
  8052. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8053. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8054. return;
  8055. }
  8056. const int ith = params->ith;
  8057. const int nth = params->nth;
  8058. const int64_t nr = ggml_nrows(src0);
  8059. GGML_TENSOR_BINARY_OP_LOCALS
  8060. GGML_ASSERT( nb0 == sizeof(float));
  8061. GGML_ASSERT(nb00 == sizeof(float));
  8062. if (nb10 == sizeof(float)) {
  8063. for (int64_t ir = ith; ir < nr; ir += nth) {
  8064. // src0 and dst are same shape => same indices
  8065. const int64_t i03 = ir/(ne02*ne01);
  8066. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8067. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8068. const int64_t i13 = i03 % ne13;
  8069. const int64_t i12 = i02 % ne12;
  8070. const int64_t i11 = i01 % ne11;
  8071. const int64_t nr0 = ne00 / ne10;
  8072. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8073. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8074. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8075. for (int64_t r = 0; r < nr0; ++r) {
  8076. #ifdef GGML_USE_ACCELERATE
  8077. UNUSED(ggml_vec_div_f32);
  8078. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8079. #else
  8080. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8081. #endif
  8082. }
  8083. }
  8084. } else {
  8085. // src1 is not contiguous
  8086. for (int64_t ir = ith; ir < nr; ir += nth) {
  8087. // src0 and dst are same shape => same indices
  8088. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8089. const int64_t i03 = ir/(ne02*ne01);
  8090. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8091. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8092. const int64_t i13 = i03 % ne13;
  8093. const int64_t i12 = i02 % ne12;
  8094. const int64_t i11 = i01 % ne11;
  8095. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8096. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8097. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8098. const int64_t i10 = i0 % ne10;
  8099. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8100. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8101. }
  8102. }
  8103. }
  8104. }
  8105. static void ggml_compute_forward_div(
  8106. const struct ggml_compute_params * params,
  8107. struct ggml_tensor * dst) {
  8108. const struct ggml_tensor * src0 = dst->src[0];
  8109. switch (src0->type) {
  8110. case GGML_TYPE_F32:
  8111. {
  8112. ggml_compute_forward_div_f32(params, dst);
  8113. } break;
  8114. default:
  8115. {
  8116. GGML_ASSERT(false);
  8117. } break;
  8118. }
  8119. }
  8120. // ggml_compute_forward_sqr
  8121. static void ggml_compute_forward_sqr_f32(
  8122. const struct ggml_compute_params * params,
  8123. struct ggml_tensor * dst) {
  8124. const struct ggml_tensor * src0 = dst->src[0];
  8125. assert(params->ith == 0);
  8126. assert(ggml_are_same_shape(src0, dst));
  8127. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8128. return;
  8129. }
  8130. const int n = ggml_nrows(src0);
  8131. const int nc = src0->ne[0];
  8132. assert( dst->nb[0] == sizeof(float));
  8133. assert(src0->nb[0] == sizeof(float));
  8134. for (int i = 0; i < n; i++) {
  8135. ggml_vec_sqr_f32(nc,
  8136. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8137. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8138. }
  8139. }
  8140. static void ggml_compute_forward_sqr(
  8141. const struct ggml_compute_params * params,
  8142. struct ggml_tensor * dst) {
  8143. const struct ggml_tensor * src0 = dst->src[0];
  8144. switch (src0->type) {
  8145. case GGML_TYPE_F32:
  8146. {
  8147. ggml_compute_forward_sqr_f32(params, dst);
  8148. } break;
  8149. default:
  8150. {
  8151. GGML_ASSERT(false);
  8152. } break;
  8153. }
  8154. }
  8155. // ggml_compute_forward_sqrt
  8156. static void ggml_compute_forward_sqrt_f32(
  8157. const struct ggml_compute_params * params,
  8158. struct ggml_tensor * dst) {
  8159. const struct ggml_tensor * src0 = dst->src[0];
  8160. assert(params->ith == 0);
  8161. assert(ggml_are_same_shape(src0, dst));
  8162. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8163. return;
  8164. }
  8165. const int n = ggml_nrows(src0);
  8166. const int nc = src0->ne[0];
  8167. assert( dst->nb[0] == sizeof(float));
  8168. assert(src0->nb[0] == sizeof(float));
  8169. for (int i = 0; i < n; i++) {
  8170. ggml_vec_sqrt_f32(nc,
  8171. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8172. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8173. }
  8174. }
  8175. static void ggml_compute_forward_sqrt(
  8176. const struct ggml_compute_params * params,
  8177. struct ggml_tensor * dst) {
  8178. const struct ggml_tensor * src0 = dst->src[0];
  8179. switch (src0->type) {
  8180. case GGML_TYPE_F32:
  8181. {
  8182. ggml_compute_forward_sqrt_f32(params, dst);
  8183. } break;
  8184. default:
  8185. {
  8186. GGML_ASSERT(false);
  8187. } break;
  8188. }
  8189. }
  8190. // ggml_compute_forward_log
  8191. static void ggml_compute_forward_log_f32(
  8192. const struct ggml_compute_params * params,
  8193. struct ggml_tensor * dst) {
  8194. const struct ggml_tensor * src0 = dst->src[0];
  8195. GGML_ASSERT(params->ith == 0);
  8196. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8197. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8198. return;
  8199. }
  8200. const int n = ggml_nrows(src0);
  8201. const int nc = src0->ne[0];
  8202. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8203. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8204. for (int i = 0; i < n; i++) {
  8205. ggml_vec_log_f32(nc,
  8206. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8207. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8208. }
  8209. }
  8210. static void ggml_compute_forward_log(
  8211. const struct ggml_compute_params * params,
  8212. struct ggml_tensor * dst) {
  8213. const struct ggml_tensor * src0 = dst->src[0];
  8214. switch (src0->type) {
  8215. case GGML_TYPE_F32:
  8216. {
  8217. ggml_compute_forward_log_f32(params, dst);
  8218. } break;
  8219. default:
  8220. {
  8221. GGML_ASSERT(false);
  8222. } break;
  8223. }
  8224. }
  8225. // ggml_compute_forward_sum
  8226. static void ggml_compute_forward_sum_f32(
  8227. const struct ggml_compute_params * params,
  8228. struct ggml_tensor * dst) {
  8229. const struct ggml_tensor * src0 = dst->src[0];
  8230. assert(params->ith == 0);
  8231. assert(ggml_is_scalar(dst));
  8232. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8233. return;
  8234. }
  8235. assert(ggml_is_scalar(dst));
  8236. assert(src0->nb[0] == sizeof(float));
  8237. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8238. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8239. ggml_float sum = 0;
  8240. ggml_float row_sum = 0;
  8241. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8242. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8243. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8244. ggml_vec_sum_f32_ggf(ne00,
  8245. &row_sum,
  8246. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8247. sum += row_sum;
  8248. }
  8249. }
  8250. }
  8251. ((float *) dst->data)[0] = sum;
  8252. }
  8253. static void ggml_compute_forward_sum_f16(
  8254. const struct ggml_compute_params * params,
  8255. struct ggml_tensor * dst) {
  8256. const struct ggml_tensor * src0 = dst->src[0];
  8257. assert(params->ith == 0);
  8258. assert(ggml_is_scalar(dst));
  8259. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8260. return;
  8261. }
  8262. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8263. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8264. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8265. float sum = 0;
  8266. float row_sum = 0;
  8267. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8268. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8269. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8270. ggml_vec_sum_f16_ggf(ne00,
  8271. &row_sum,
  8272. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8273. sum += row_sum;
  8274. }
  8275. }
  8276. }
  8277. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8278. }
  8279. static void ggml_compute_forward_sum_bf16(
  8280. const struct ggml_compute_params * params,
  8281. struct ggml_tensor * dst) {
  8282. const struct ggml_tensor * src0 = dst->src[0];
  8283. assert(params->ith == 0);
  8284. assert(ggml_is_scalar(dst));
  8285. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8286. return;
  8287. }
  8288. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8289. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8290. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8291. float sum = 0;
  8292. float row_sum = 0;
  8293. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8294. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8295. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8296. ggml_vec_sum_bf16_ggf(ne00,
  8297. &row_sum,
  8298. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8299. sum += row_sum;
  8300. }
  8301. }
  8302. }
  8303. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8304. }
  8305. static void ggml_compute_forward_sum(
  8306. const struct ggml_compute_params * params,
  8307. struct ggml_tensor * dst) {
  8308. const struct ggml_tensor * src0 = dst->src[0];
  8309. switch (src0->type) {
  8310. case GGML_TYPE_F32:
  8311. {
  8312. ggml_compute_forward_sum_f32(params, dst);
  8313. } break;
  8314. case GGML_TYPE_F16:
  8315. {
  8316. ggml_compute_forward_sum_f16(params, dst);
  8317. } break;
  8318. case GGML_TYPE_BF16:
  8319. {
  8320. ggml_compute_forward_sum_bf16(params, dst);
  8321. } break;
  8322. default:
  8323. {
  8324. GGML_ASSERT(false);
  8325. } break;
  8326. }
  8327. }
  8328. // ggml_compute_forward_sum_rows
  8329. static void ggml_compute_forward_sum_rows_f32(
  8330. const struct ggml_compute_params * params,
  8331. struct ggml_tensor * dst) {
  8332. const struct ggml_tensor * src0 = dst->src[0];
  8333. GGML_ASSERT(params->ith == 0);
  8334. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8335. return;
  8336. }
  8337. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8338. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8339. GGML_TENSOR_UNARY_OP_LOCALS
  8340. GGML_ASSERT(ne0 == 1);
  8341. GGML_ASSERT(ne1 == ne01);
  8342. GGML_ASSERT(ne2 == ne02);
  8343. GGML_ASSERT(ne3 == ne03);
  8344. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8345. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8346. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8347. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8348. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8349. float row_sum = 0;
  8350. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8351. dst_row[0] = row_sum;
  8352. }
  8353. }
  8354. }
  8355. }
  8356. static void ggml_compute_forward_sum_rows(
  8357. const struct ggml_compute_params * params,
  8358. struct ggml_tensor * dst) {
  8359. const struct ggml_tensor * src0 = dst->src[0];
  8360. switch (src0->type) {
  8361. case GGML_TYPE_F32:
  8362. {
  8363. ggml_compute_forward_sum_rows_f32(params, dst);
  8364. } break;
  8365. default:
  8366. {
  8367. GGML_ASSERT(false);
  8368. } break;
  8369. }
  8370. }
  8371. // ggml_compute_forward_mean
  8372. static void ggml_compute_forward_mean_f32(
  8373. const struct ggml_compute_params * params,
  8374. struct ggml_tensor * dst) {
  8375. const struct ggml_tensor * src0 = dst->src[0];
  8376. assert(params->ith == 0);
  8377. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8378. return;
  8379. }
  8380. assert(src0->nb[0] == sizeof(float));
  8381. GGML_TENSOR_UNARY_OP_LOCALS
  8382. assert(ne0 == 1);
  8383. assert(ne1 == ne01);
  8384. assert(ne2 == ne02);
  8385. assert(ne3 == ne03);
  8386. UNUSED(ne0);
  8387. UNUSED(ne1);
  8388. UNUSED(ne2);
  8389. UNUSED(ne3);
  8390. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8391. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8392. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8393. ggml_vec_sum_f32(ne00,
  8394. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8395. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8396. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8397. }
  8398. }
  8399. }
  8400. }
  8401. static void ggml_compute_forward_mean(
  8402. const struct ggml_compute_params * params,
  8403. struct ggml_tensor * dst) {
  8404. const struct ggml_tensor * src0 = dst->src[0];
  8405. switch (src0->type) {
  8406. case GGML_TYPE_F32:
  8407. {
  8408. ggml_compute_forward_mean_f32(params, dst);
  8409. } break;
  8410. default:
  8411. {
  8412. GGML_ASSERT(false);
  8413. } break;
  8414. }
  8415. }
  8416. // ggml_compute_forward_argmax
  8417. static void ggml_compute_forward_argmax_f32(
  8418. const struct ggml_compute_params * params,
  8419. struct ggml_tensor * dst) {
  8420. const struct ggml_tensor * src0 = dst->src[0];
  8421. assert(params->ith == 0);
  8422. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8423. return;
  8424. }
  8425. assert(src0->nb[0] == sizeof(float));
  8426. assert(dst->nb[0] == sizeof(float));
  8427. const int64_t ne00 = src0->ne[0];
  8428. const int64_t ne01 = src0->ne[1];
  8429. const size_t nb01 = src0->nb[1];
  8430. const size_t nb0 = dst->nb[0];
  8431. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8432. float * src = (float *) ((char *) src0->data + i1*nb01);
  8433. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8434. int v = 0;
  8435. ggml_vec_argmax_f32(ne00, &v, src);
  8436. dst_[0] = v;
  8437. }
  8438. }
  8439. static void ggml_compute_forward_argmax(
  8440. const struct ggml_compute_params * params,
  8441. struct ggml_tensor * dst) {
  8442. const struct ggml_tensor * src0 = dst->src[0];
  8443. switch (src0->type) {
  8444. case GGML_TYPE_F32:
  8445. {
  8446. ggml_compute_forward_argmax_f32(params, dst);
  8447. } break;
  8448. default:
  8449. {
  8450. GGML_ASSERT(false);
  8451. } break;
  8452. }
  8453. }
  8454. // ggml_compute_forward_repeat
  8455. static void ggml_compute_forward_repeat_f32(
  8456. const struct ggml_compute_params * params,
  8457. struct ggml_tensor * dst) {
  8458. const struct ggml_tensor * src0 = dst->src[0];
  8459. GGML_ASSERT(params->ith == 0);
  8460. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8461. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8462. return;
  8463. }
  8464. GGML_TENSOR_UNARY_OP_LOCALS
  8465. // guaranteed to be an integer due to the check in ggml_can_repeat
  8466. const int nr0 = (int)(ne0/ne00);
  8467. const int nr1 = (int)(ne1/ne01);
  8468. const int nr2 = (int)(ne2/ne02);
  8469. const int nr3 = (int)(ne3/ne03);
  8470. // TODO: support for transposed / permuted tensors
  8471. GGML_ASSERT(nb0 == sizeof(float));
  8472. GGML_ASSERT(nb00 == sizeof(float));
  8473. // TODO: maybe this is not optimal?
  8474. for (int i3 = 0; i3 < nr3; i3++) {
  8475. for (int k3 = 0; k3 < ne03; k3++) {
  8476. for (int i2 = 0; i2 < nr2; i2++) {
  8477. for (int k2 = 0; k2 < ne02; k2++) {
  8478. for (int i1 = 0; i1 < nr1; i1++) {
  8479. for (int k1 = 0; k1 < ne01; k1++) {
  8480. for (int i0 = 0; i0 < nr0; i0++) {
  8481. ggml_vec_cpy_f32(ne00,
  8482. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8483. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8484. }
  8485. }
  8486. }
  8487. }
  8488. }
  8489. }
  8490. }
  8491. }
  8492. static void ggml_compute_forward_repeat_f16(
  8493. const struct ggml_compute_params * params,
  8494. struct ggml_tensor * dst) {
  8495. const struct ggml_tensor * src0 = dst->src[0];
  8496. GGML_ASSERT(params->ith == 0);
  8497. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8498. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8499. return;
  8500. }
  8501. GGML_TENSOR_UNARY_OP_LOCALS
  8502. // guaranteed to be an integer due to the check in ggml_can_repeat
  8503. const int nr0 = (int)(ne0/ne00);
  8504. const int nr1 = (int)(ne1/ne01);
  8505. const int nr2 = (int)(ne2/ne02);
  8506. const int nr3 = (int)(ne3/ne03);
  8507. // TODO: support for transposed / permuted tensors
  8508. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8509. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8510. // TODO: maybe this is not optimal?
  8511. for (int i3 = 0; i3 < nr3; i3++) {
  8512. for (int k3 = 0; k3 < ne03; k3++) {
  8513. for (int i2 = 0; i2 < nr2; i2++) {
  8514. for (int k2 = 0; k2 < ne02; k2++) {
  8515. for (int i1 = 0; i1 < nr1; i1++) {
  8516. for (int k1 = 0; k1 < ne01; k1++) {
  8517. for (int i0 = 0; i0 < nr0; i0++) {
  8518. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8519. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8520. // ggml_vec_cpy_f16(ne00, y, x)
  8521. for (int i = 0; i < ne00; ++i) {
  8522. y[i] = x[i];
  8523. }
  8524. }
  8525. }
  8526. }
  8527. }
  8528. }
  8529. }
  8530. }
  8531. }
  8532. static void ggml_compute_forward_repeat(
  8533. const struct ggml_compute_params * params,
  8534. struct ggml_tensor * dst) {
  8535. const struct ggml_tensor * src0 = dst->src[0];
  8536. switch (src0->type) {
  8537. case GGML_TYPE_F16:
  8538. case GGML_TYPE_BF16:
  8539. case GGML_TYPE_I16:
  8540. {
  8541. ggml_compute_forward_repeat_f16(params, dst);
  8542. } break;
  8543. case GGML_TYPE_F32:
  8544. case GGML_TYPE_I32:
  8545. {
  8546. ggml_compute_forward_repeat_f32(params, dst);
  8547. } break;
  8548. default:
  8549. {
  8550. GGML_ASSERT(false);
  8551. } break;
  8552. }
  8553. }
  8554. // ggml_compute_forward_repeat_back
  8555. static void ggml_compute_forward_repeat_back_f32(
  8556. const struct ggml_compute_params * params,
  8557. struct ggml_tensor * dst) {
  8558. const struct ggml_tensor * src0 = dst->src[0];
  8559. GGML_ASSERT(params->ith == 0);
  8560. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8561. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8562. return;
  8563. }
  8564. GGML_TENSOR_UNARY_OP_LOCALS
  8565. // guaranteed to be an integer due to the check in ggml_can_repeat
  8566. const int nr0 = (int)(ne00/ne0);
  8567. const int nr1 = (int)(ne01/ne1);
  8568. const int nr2 = (int)(ne02/ne2);
  8569. const int nr3 = (int)(ne03/ne3);
  8570. // TODO: support for transposed / permuted tensors
  8571. GGML_ASSERT(nb0 == sizeof(float));
  8572. GGML_ASSERT(nb00 == sizeof(float));
  8573. if (ggml_is_contiguous(dst)) {
  8574. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8575. } else {
  8576. for (int k3 = 0; k3 < ne3; k3++) {
  8577. for (int k2 = 0; k2 < ne2; k2++) {
  8578. for (int k1 = 0; k1 < ne1; k1++) {
  8579. ggml_vec_set_f32(ne0,
  8580. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8581. 0);
  8582. }
  8583. }
  8584. }
  8585. }
  8586. // TODO: maybe this is not optimal?
  8587. for (int i3 = 0; i3 < nr3; i3++) {
  8588. for (int k3 = 0; k3 < ne3; k3++) {
  8589. for (int i2 = 0; i2 < nr2; i2++) {
  8590. for (int k2 = 0; k2 < ne2; k2++) {
  8591. for (int i1 = 0; i1 < nr1; i1++) {
  8592. for (int k1 = 0; k1 < ne1; k1++) {
  8593. for (int i0 = 0; i0 < nr0; i0++) {
  8594. ggml_vec_acc_f32(ne0,
  8595. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8596. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8597. }
  8598. }
  8599. }
  8600. }
  8601. }
  8602. }
  8603. }
  8604. }
  8605. static void ggml_compute_forward_repeat_back(
  8606. const struct ggml_compute_params * params,
  8607. struct ggml_tensor * dst) {
  8608. const struct ggml_tensor * src0 = dst->src[0];
  8609. switch (src0->type) {
  8610. case GGML_TYPE_F32:
  8611. {
  8612. ggml_compute_forward_repeat_back_f32(params, dst);
  8613. } break;
  8614. default:
  8615. {
  8616. GGML_ASSERT(false);
  8617. } break;
  8618. }
  8619. }
  8620. // ggml_compute_forward_concat
  8621. static void ggml_compute_forward_concat_f32(
  8622. const struct ggml_compute_params * params,
  8623. struct ggml_tensor * dst) {
  8624. const struct ggml_tensor * src0 = dst->src[0];
  8625. const struct ggml_tensor * src1 = dst->src[1];
  8626. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8627. return;
  8628. }
  8629. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8630. const int ith = params->ith;
  8631. const int nth = params->nth;
  8632. GGML_TENSOR_BINARY_OP_LOCALS
  8633. // TODO: support for transposed / permuted tensors
  8634. GGML_ASSERT(nb0 == sizeof(float));
  8635. GGML_ASSERT(nb00 == sizeof(float));
  8636. GGML_ASSERT(nb10 == sizeof(float));
  8637. for (int i3 = 0; i3 < ne3; i3++) {
  8638. for (int i2 = ith; i2 < ne2; i2 += nth) {
  8639. if (i2 < ne02) { // src0
  8640. for (int i1 = 0; i1 < ne1; i1++) {
  8641. for (int i0 = 0; i0 < ne0; i0++) {
  8642. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8643. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8644. *y = *x;
  8645. }
  8646. }
  8647. } // src1
  8648. else {
  8649. for (int i1 = 0; i1 < ne1; i1++) {
  8650. for (int i0 = 0; i0 < ne0; i0++) {
  8651. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8652. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8653. *y = *x;
  8654. }
  8655. }
  8656. }
  8657. }
  8658. }
  8659. }
  8660. static void ggml_compute_forward_concat(
  8661. const struct ggml_compute_params* params,
  8662. struct ggml_tensor* dst) {
  8663. const struct ggml_tensor * src0 = dst->src[0];
  8664. switch (src0->type) {
  8665. case GGML_TYPE_F32:
  8666. case GGML_TYPE_I32:
  8667. {
  8668. ggml_compute_forward_concat_f32(params, dst);
  8669. } break;
  8670. default:
  8671. {
  8672. GGML_ASSERT(false);
  8673. } break;
  8674. }
  8675. }
  8676. // ggml_compute_forward_abs
  8677. static void ggml_compute_forward_abs_f32(
  8678. const struct ggml_compute_params * params,
  8679. struct ggml_tensor * dst) {
  8680. const struct ggml_tensor * src0 = dst->src[0];
  8681. assert(params->ith == 0);
  8682. assert(ggml_are_same_shape(src0, dst));
  8683. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8684. return;
  8685. }
  8686. const int n = ggml_nrows(src0);
  8687. const int nc = src0->ne[0];
  8688. assert(dst->nb[0] == sizeof(float));
  8689. assert(src0->nb[0] == sizeof(float));
  8690. for (int i = 0; i < n; i++) {
  8691. ggml_vec_abs_f32(nc,
  8692. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8693. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8694. }
  8695. }
  8696. static void ggml_compute_forward_abs(
  8697. const struct ggml_compute_params * params,
  8698. struct ggml_tensor * dst) {
  8699. const struct ggml_tensor * src0 = dst->src[0];
  8700. switch (src0->type) {
  8701. case GGML_TYPE_F32:
  8702. {
  8703. ggml_compute_forward_abs_f32(params, dst);
  8704. } break;
  8705. default:
  8706. {
  8707. GGML_ASSERT(false);
  8708. } break;
  8709. }
  8710. }
  8711. // ggml_compute_forward_sgn
  8712. static void ggml_compute_forward_sgn_f32(
  8713. const struct ggml_compute_params * params,
  8714. struct ggml_tensor * dst) {
  8715. const struct ggml_tensor * src0 = dst->src[0];
  8716. assert(params->ith == 0);
  8717. assert(ggml_are_same_shape(src0, dst));
  8718. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8719. return;
  8720. }
  8721. const int n = ggml_nrows(src0);
  8722. const int nc = src0->ne[0];
  8723. assert(dst->nb[0] == sizeof(float));
  8724. assert(src0->nb[0] == sizeof(float));
  8725. for (int i = 0; i < n; i++) {
  8726. ggml_vec_sgn_f32(nc,
  8727. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8728. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8729. }
  8730. }
  8731. static void ggml_compute_forward_sgn(
  8732. const struct ggml_compute_params * params,
  8733. struct ggml_tensor * dst) {
  8734. const struct ggml_tensor * src0 = dst->src[0];
  8735. switch (src0->type) {
  8736. case GGML_TYPE_F32:
  8737. {
  8738. ggml_compute_forward_sgn_f32(params, dst);
  8739. } break;
  8740. default:
  8741. {
  8742. GGML_ASSERT(false);
  8743. } break;
  8744. }
  8745. }
  8746. // ggml_compute_forward_neg
  8747. static void ggml_compute_forward_neg_f32(
  8748. const struct ggml_compute_params * params,
  8749. struct ggml_tensor * dst) {
  8750. const struct ggml_tensor * src0 = dst->src[0];
  8751. assert(params->ith == 0);
  8752. assert(ggml_are_same_shape(src0, dst));
  8753. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8754. return;
  8755. }
  8756. const int n = ggml_nrows(src0);
  8757. const int nc = src0->ne[0];
  8758. assert(dst->nb[0] == sizeof(float));
  8759. assert(src0->nb[0] == sizeof(float));
  8760. for (int i = 0; i < n; i++) {
  8761. ggml_vec_neg_f32(nc,
  8762. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8763. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8764. }
  8765. }
  8766. static void ggml_compute_forward_neg(
  8767. const struct ggml_compute_params * params,
  8768. struct ggml_tensor * dst) {
  8769. const struct ggml_tensor * src0 = dst->src[0];
  8770. switch (src0->type) {
  8771. case GGML_TYPE_F32:
  8772. {
  8773. ggml_compute_forward_neg_f32(params, dst);
  8774. } break;
  8775. default:
  8776. {
  8777. GGML_ASSERT(false);
  8778. } break;
  8779. }
  8780. }
  8781. // ggml_compute_forward_step
  8782. static void ggml_compute_forward_step_f32(
  8783. const struct ggml_compute_params * params,
  8784. struct ggml_tensor * dst) {
  8785. const struct ggml_tensor * src0 = dst->src[0];
  8786. assert(params->ith == 0);
  8787. assert(ggml_are_same_shape(src0, dst));
  8788. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8789. return;
  8790. }
  8791. const int n = ggml_nrows(src0);
  8792. const int nc = src0->ne[0];
  8793. assert(dst->nb[0] == sizeof(float));
  8794. assert(src0->nb[0] == sizeof(float));
  8795. for (int i = 0; i < n; i++) {
  8796. ggml_vec_step_f32(nc,
  8797. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8798. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8799. }
  8800. }
  8801. static void ggml_compute_forward_step(
  8802. const struct ggml_compute_params * params,
  8803. struct ggml_tensor * dst) {
  8804. const struct ggml_tensor * src0 = dst->src[0];
  8805. switch (src0->type) {
  8806. case GGML_TYPE_F32:
  8807. {
  8808. ggml_compute_forward_step_f32(params, dst);
  8809. } break;
  8810. default:
  8811. {
  8812. GGML_ASSERT(false);
  8813. } break;
  8814. }
  8815. }
  8816. // ggml_compute_forward_tanh
  8817. static void ggml_compute_forward_tanh_f32(
  8818. const struct ggml_compute_params * params,
  8819. struct ggml_tensor * dst) {
  8820. const struct ggml_tensor * src0 = dst->src[0];
  8821. assert(params->ith == 0);
  8822. assert(ggml_are_same_shape(src0, dst));
  8823. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8824. return;
  8825. }
  8826. const int n = ggml_nrows(src0);
  8827. const int nc = src0->ne[0];
  8828. assert(dst->nb[0] == sizeof(float));
  8829. assert(src0->nb[0] == sizeof(float));
  8830. for (int i = 0; i < n; i++) {
  8831. ggml_vec_tanh_f32(nc,
  8832. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8833. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8834. }
  8835. }
  8836. static void ggml_compute_forward_tanh(
  8837. const struct ggml_compute_params * params,
  8838. struct ggml_tensor * dst) {
  8839. const struct ggml_tensor * src0 = dst->src[0];
  8840. switch (src0->type) {
  8841. case GGML_TYPE_F32:
  8842. {
  8843. ggml_compute_forward_tanh_f32(params, dst);
  8844. } break;
  8845. default:
  8846. {
  8847. GGML_ASSERT(false);
  8848. } break;
  8849. }
  8850. }
  8851. // ggml_compute_forward_elu
  8852. static void ggml_compute_forward_elu_f32(
  8853. const struct ggml_compute_params * params,
  8854. struct ggml_tensor * dst) {
  8855. const struct ggml_tensor * src0 = dst->src[0];
  8856. assert(params->ith == 0);
  8857. assert(ggml_are_same_shape(src0, dst));
  8858. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8859. return;
  8860. }
  8861. const int n = ggml_nrows(src0);
  8862. const int nc = src0->ne[0];
  8863. assert(dst->nb[0] == sizeof(float));
  8864. assert(src0->nb[0] == sizeof(float));
  8865. for (int i = 0; i < n; i++) {
  8866. ggml_vec_elu_f32(nc,
  8867. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8868. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8869. }
  8870. }
  8871. static void ggml_compute_forward_elu(
  8872. const struct ggml_compute_params * params,
  8873. struct ggml_tensor * dst) {
  8874. const struct ggml_tensor * src0 = dst->src[0];
  8875. switch (src0->type) {
  8876. case GGML_TYPE_F32:
  8877. {
  8878. ggml_compute_forward_elu_f32(params, dst);
  8879. } break;
  8880. default:
  8881. {
  8882. GGML_ASSERT(false);
  8883. } break;
  8884. }
  8885. }
  8886. // ggml_compute_forward_relu
  8887. static void ggml_compute_forward_relu_f32(
  8888. const struct ggml_compute_params * params,
  8889. struct ggml_tensor * dst) {
  8890. const struct ggml_tensor * src0 = dst->src[0];
  8891. assert(params->ith == 0);
  8892. assert(ggml_are_same_shape(src0, dst));
  8893. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8894. return;
  8895. }
  8896. const int n = ggml_nrows(src0);
  8897. const int nc = src0->ne[0];
  8898. assert(dst->nb[0] == sizeof(float));
  8899. assert(src0->nb[0] == sizeof(float));
  8900. for (int i = 0; i < n; i++) {
  8901. ggml_vec_relu_f32(nc,
  8902. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8903. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8904. }
  8905. }
  8906. static void ggml_compute_forward_relu(
  8907. const struct ggml_compute_params * params,
  8908. struct ggml_tensor * dst) {
  8909. const struct ggml_tensor * src0 = dst->src[0];
  8910. switch (src0->type) {
  8911. case GGML_TYPE_F32:
  8912. {
  8913. ggml_compute_forward_relu_f32(params, dst);
  8914. } break;
  8915. default:
  8916. {
  8917. GGML_ASSERT(false);
  8918. } break;
  8919. }
  8920. }
  8921. // ggml_compute_forward_sigmoid
  8922. static void ggml_compute_forward_sigmoid_f32(
  8923. const struct ggml_compute_params * params,
  8924. struct ggml_tensor * dst) {
  8925. const struct ggml_tensor * src0 = dst->src[0];
  8926. assert(params->ith == 0);
  8927. assert(ggml_are_same_shape(src0, dst));
  8928. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8929. return;
  8930. }
  8931. const int n = ggml_nrows(src0);
  8932. const int nc = src0->ne[0];
  8933. assert(dst->nb[0] == sizeof(float));
  8934. assert(src0->nb[0] == sizeof(float));
  8935. for (int i = 0; i < n; i++) {
  8936. ggml_vec_sigmoid_f32(nc,
  8937. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8938. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8939. }
  8940. }
  8941. static void ggml_compute_forward_sigmoid(
  8942. const struct ggml_compute_params * params,
  8943. struct ggml_tensor * dst) {
  8944. const struct ggml_tensor * src0 = dst->src[0];
  8945. switch (src0->type) {
  8946. case GGML_TYPE_F32:
  8947. {
  8948. ggml_compute_forward_sigmoid_f32(params, dst);
  8949. } break;
  8950. default:
  8951. {
  8952. GGML_ASSERT(false);
  8953. } break;
  8954. }
  8955. }
  8956. // ggml_compute_forward_gelu
  8957. static void ggml_compute_forward_gelu_f32(
  8958. const struct ggml_compute_params * params,
  8959. struct ggml_tensor * dst) {
  8960. const struct ggml_tensor * src0 = dst->src[0];
  8961. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8962. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8963. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8964. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8965. return;
  8966. }
  8967. const int ith = params->ith;
  8968. const int nth = params->nth;
  8969. const int nc = src0->ne[0];
  8970. const int nr = ggml_nrows(src0);
  8971. // rows per thread
  8972. const int dr = (nr + nth - 1)/nth;
  8973. // row range for this thread
  8974. const int ir0 = dr*ith;
  8975. const int ir1 = MIN(ir0 + dr, nr);
  8976. for (int i1 = ir0; i1 < ir1; i1++) {
  8977. ggml_vec_gelu_f32(nc,
  8978. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8979. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8980. #ifndef NDEBUG
  8981. for (int k = 0; k < nc; k++) {
  8982. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8983. UNUSED(x);
  8984. assert(!isnan(x));
  8985. assert(!isinf(x));
  8986. }
  8987. #endif
  8988. }
  8989. }
  8990. static void ggml_compute_forward_gelu(
  8991. const struct ggml_compute_params * params,
  8992. struct ggml_tensor * dst) {
  8993. const struct ggml_tensor * src0 = dst->src[0];
  8994. switch (src0->type) {
  8995. case GGML_TYPE_F32:
  8996. {
  8997. ggml_compute_forward_gelu_f32(params, dst);
  8998. } break;
  8999. default:
  9000. {
  9001. GGML_ASSERT(false);
  9002. } break;
  9003. }
  9004. }
  9005. // ggml_compute_forward_gelu_quick
  9006. static void ggml_compute_forward_gelu_quick_f32(
  9007. const struct ggml_compute_params * params,
  9008. struct ggml_tensor * dst) {
  9009. const struct ggml_tensor * src0 = dst->src[0];
  9010. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9011. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9012. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9013. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9014. return;
  9015. }
  9016. const int ith = params->ith;
  9017. const int nth = params->nth;
  9018. const int nc = src0->ne[0];
  9019. const int nr = ggml_nrows(src0);
  9020. // rows per thread
  9021. const int dr = (nr + nth - 1)/nth;
  9022. // row range for this thread
  9023. const int ir0 = dr*ith;
  9024. const int ir1 = MIN(ir0 + dr, nr);
  9025. for (int i1 = ir0; i1 < ir1; i1++) {
  9026. ggml_vec_gelu_quick_f32(nc,
  9027. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9028. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9029. #ifndef NDEBUG
  9030. for (int k = 0; k < nc; k++) {
  9031. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9032. UNUSED(x);
  9033. assert(!isnan(x));
  9034. assert(!isinf(x));
  9035. }
  9036. #endif
  9037. }
  9038. }
  9039. static void ggml_compute_forward_gelu_quick(
  9040. const struct ggml_compute_params * params,
  9041. struct ggml_tensor * dst) {
  9042. const struct ggml_tensor * src0 = dst->src[0];
  9043. switch (src0->type) {
  9044. case GGML_TYPE_F32:
  9045. {
  9046. ggml_compute_forward_gelu_quick_f32(params, dst);
  9047. } break;
  9048. default:
  9049. {
  9050. GGML_ASSERT(false);
  9051. } break;
  9052. }
  9053. }
  9054. // ggml_compute_forward_silu
  9055. static void ggml_compute_forward_silu_f32(
  9056. const struct ggml_compute_params * params,
  9057. struct ggml_tensor * dst) {
  9058. const struct ggml_tensor * src0 = dst->src[0];
  9059. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9060. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9061. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9062. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9063. return;
  9064. }
  9065. const int ith = params->ith;
  9066. const int nth = params->nth;
  9067. const int nc = src0->ne[0];
  9068. const int nr = ggml_nrows(src0);
  9069. // rows per thread
  9070. const int dr = (nr + nth - 1)/nth;
  9071. // row range for this thread
  9072. const int ir0 = dr*ith;
  9073. const int ir1 = MIN(ir0 + dr, nr);
  9074. for (int i1 = ir0; i1 < ir1; i1++) {
  9075. ggml_vec_silu_f32(nc,
  9076. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9077. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9078. #ifndef NDEBUG
  9079. for (int k = 0; k < nc; k++) {
  9080. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9081. UNUSED(x);
  9082. assert(!isnan(x));
  9083. assert(!isinf(x));
  9084. }
  9085. #endif
  9086. }
  9087. }
  9088. static void ggml_compute_forward_silu(
  9089. const struct ggml_compute_params * params,
  9090. struct ggml_tensor * dst) {
  9091. const struct ggml_tensor * src0 = dst->src[0];
  9092. switch (src0->type) {
  9093. case GGML_TYPE_F32:
  9094. {
  9095. ggml_compute_forward_silu_f32(params, dst);
  9096. } break;
  9097. default:
  9098. {
  9099. GGML_ASSERT(false);
  9100. } break;
  9101. }
  9102. }
  9103. // ggml_compute_forward_leaky_relu
  9104. static void ggml_compute_forward_leaky_relu_f32(
  9105. const struct ggml_compute_params * params,
  9106. struct ggml_tensor * dst) {
  9107. const struct ggml_tensor * src0 = dst->src[0];
  9108. assert(params->ith == 0);
  9109. assert(ggml_are_same_shape(src0, dst));
  9110. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9111. return;
  9112. }
  9113. const int n = ggml_nrows(src0);
  9114. const int nc = src0->ne[0];
  9115. float negative_slope;
  9116. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9117. assert(dst->nb[0] == sizeof(float));
  9118. assert(src0->nb[0] == sizeof(float));
  9119. for (int i = 0; i < n; i++) {
  9120. ggml_vec_leaky_relu_f32(nc,
  9121. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9122. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9123. }
  9124. }
  9125. static void ggml_compute_forward_leaky_relu(
  9126. const struct ggml_compute_params * params,
  9127. struct ggml_tensor * dst) {
  9128. const struct ggml_tensor * src0 = dst->src[0];
  9129. switch (src0->type) {
  9130. case GGML_TYPE_F32:
  9131. {
  9132. ggml_compute_forward_leaky_relu_f32(params, dst);
  9133. } break;
  9134. default:
  9135. {
  9136. GGML_ASSERT(false);
  9137. } break;
  9138. }
  9139. }
  9140. // ggml_compute_forward_silu_back
  9141. static void ggml_compute_forward_silu_back_f32(
  9142. const struct ggml_compute_params * params,
  9143. struct ggml_tensor * dst) {
  9144. const struct ggml_tensor * src0 = dst->src[0];
  9145. const struct ggml_tensor * grad = dst->src[1];
  9146. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9147. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9148. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9149. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9150. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9151. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9152. return;
  9153. }
  9154. const int ith = params->ith;
  9155. const int nth = params->nth;
  9156. const int nc = src0->ne[0];
  9157. const int nr = ggml_nrows(src0);
  9158. // rows per thread
  9159. const int dr = (nr + nth - 1)/nth;
  9160. // row range for this thread
  9161. const int ir0 = dr*ith;
  9162. const int ir1 = MIN(ir0 + dr, nr);
  9163. for (int i1 = ir0; i1 < ir1; i1++) {
  9164. ggml_vec_silu_backward_f32(nc,
  9165. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9166. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9167. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9168. #ifndef NDEBUG
  9169. for (int k = 0; k < nc; k++) {
  9170. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9171. UNUSED(x);
  9172. assert(!isnan(x));
  9173. assert(!isinf(x));
  9174. }
  9175. #endif
  9176. }
  9177. }
  9178. static void ggml_compute_forward_silu_back(
  9179. const struct ggml_compute_params * params,
  9180. struct ggml_tensor * dst) {
  9181. const struct ggml_tensor * src0 = dst->src[0];
  9182. switch (src0->type) {
  9183. case GGML_TYPE_F32:
  9184. {
  9185. ggml_compute_forward_silu_back_f32(params, dst);
  9186. } break;
  9187. default:
  9188. {
  9189. GGML_ASSERT(false);
  9190. } break;
  9191. }
  9192. }
  9193. static void ggml_compute_forward_hardswish_f32(
  9194. const struct ggml_compute_params * params,
  9195. struct ggml_tensor * dst) {
  9196. const struct ggml_tensor * src0 = dst->src[0];
  9197. assert(params->ith == 0);
  9198. assert(ggml_are_same_shape(src0, dst));
  9199. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9200. return;
  9201. }
  9202. const int n = ggml_nrows(src0);
  9203. const int nc = src0->ne[0];
  9204. assert(dst->nb[0] == sizeof(float));
  9205. assert(src0->nb[0] == sizeof(float));
  9206. for (int i = 0; i < n; i++) {
  9207. ggml_vec_hardswish_f32(nc,
  9208. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9209. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9210. }
  9211. }
  9212. static void ggml_compute_forward_hardswish(
  9213. const struct ggml_compute_params * params,
  9214. struct ggml_tensor * dst) {
  9215. const struct ggml_tensor * src0 = dst->src[0];
  9216. switch (src0->type) {
  9217. case GGML_TYPE_F32:
  9218. {
  9219. ggml_compute_forward_hardswish_f32(params, dst);
  9220. } break;
  9221. default:
  9222. {
  9223. GGML_ASSERT(false);
  9224. } break;
  9225. }
  9226. }
  9227. static void ggml_compute_forward_hardsigmoid_f32(
  9228. const struct ggml_compute_params * params,
  9229. struct ggml_tensor * dst) {
  9230. const struct ggml_tensor * src0 = dst->src[0];
  9231. assert(params->ith == 0);
  9232. assert(ggml_are_same_shape(src0, dst));
  9233. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9234. return;
  9235. }
  9236. const int n = ggml_nrows(src0);
  9237. const int nc = src0->ne[0];
  9238. assert(dst->nb[0] == sizeof(float));
  9239. assert(src0->nb[0] == sizeof(float));
  9240. for (int i = 0; i < n; i++) {
  9241. ggml_vec_hardsigmoid_f32(nc,
  9242. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9243. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9244. }
  9245. }
  9246. static void ggml_compute_forward_hardsigmoid(
  9247. const struct ggml_compute_params * params,
  9248. struct ggml_tensor * dst) {
  9249. const struct ggml_tensor * src0 = dst->src[0];
  9250. switch (src0->type) {
  9251. case GGML_TYPE_F32:
  9252. {
  9253. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9254. } break;
  9255. default:
  9256. {
  9257. GGML_ASSERT(false);
  9258. } break;
  9259. }
  9260. }
  9261. // ggml_compute_forward_norm
  9262. static void ggml_compute_forward_norm_f32(
  9263. const struct ggml_compute_params * params,
  9264. struct ggml_tensor * dst) {
  9265. const struct ggml_tensor * src0 = dst->src[0];
  9266. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9267. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9268. return;
  9269. }
  9270. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9271. const int ith = params->ith;
  9272. const int nth = params->nth;
  9273. GGML_TENSOR_UNARY_OP_LOCALS
  9274. float eps;
  9275. memcpy(&eps, dst->op_params, sizeof(float));
  9276. GGML_ASSERT(eps > 0.0f);
  9277. // TODO: optimize
  9278. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9279. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9280. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9281. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9282. ggml_float sum = 0.0;
  9283. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9284. sum += (ggml_float)x[i00];
  9285. }
  9286. float mean = sum/ne00;
  9287. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9288. ggml_float sum2 = 0.0;
  9289. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9290. float v = x[i00] - mean;
  9291. y[i00] = v;
  9292. sum2 += (ggml_float)(v*v);
  9293. }
  9294. float variance = sum2/ne00;
  9295. const float scale = 1.0f/sqrtf(variance + eps);
  9296. ggml_vec_scale_f32(ne00, y, scale);
  9297. }
  9298. }
  9299. }
  9300. }
  9301. static void ggml_compute_forward_norm(
  9302. const struct ggml_compute_params * params,
  9303. struct ggml_tensor * dst) {
  9304. const struct ggml_tensor * src0 = dst->src[0];
  9305. switch (src0->type) {
  9306. case GGML_TYPE_F32:
  9307. {
  9308. ggml_compute_forward_norm_f32(params, dst);
  9309. } break;
  9310. default:
  9311. {
  9312. GGML_ASSERT(false);
  9313. } break;
  9314. }
  9315. }
  9316. // ggml_compute_forward_group_rms_norm
  9317. static void ggml_compute_forward_rms_norm_f32(
  9318. const struct ggml_compute_params * params,
  9319. struct ggml_tensor * dst) {
  9320. const struct ggml_tensor * src0 = dst->src[0];
  9321. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9322. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9323. return;
  9324. }
  9325. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9326. const int ith = params->ith;
  9327. const int nth = params->nth;
  9328. GGML_TENSOR_UNARY_OP_LOCALS
  9329. float eps;
  9330. memcpy(&eps, dst->op_params, sizeof(float));
  9331. GGML_ASSERT(eps > 0.0f);
  9332. // TODO: optimize
  9333. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9334. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9335. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9336. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9337. ggml_float sum = 0.0;
  9338. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9339. sum += (ggml_float)(x[i00] * x[i00]);
  9340. }
  9341. const float mean = sum/ne00;
  9342. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9343. memcpy(y, x, ne00 * sizeof(float));
  9344. // for (int i00 = 0; i00 < ne00; i00++) {
  9345. // y[i00] = x[i00];
  9346. // }
  9347. const float scale = 1.0f/sqrtf(mean + eps);
  9348. ggml_vec_scale_f32(ne00, y, scale);
  9349. }
  9350. }
  9351. }
  9352. }
  9353. static void ggml_compute_forward_rms_norm(
  9354. const struct ggml_compute_params * params,
  9355. struct ggml_tensor * dst) {
  9356. const struct ggml_tensor * src0 = dst->src[0];
  9357. switch (src0->type) {
  9358. case GGML_TYPE_F32:
  9359. {
  9360. ggml_compute_forward_rms_norm_f32(params, dst);
  9361. } break;
  9362. default:
  9363. {
  9364. GGML_ASSERT(false);
  9365. } break;
  9366. }
  9367. }
  9368. static void ggml_compute_forward_rms_norm_back_f32(
  9369. const struct ggml_compute_params * params,
  9370. struct ggml_tensor * dst) {
  9371. const struct ggml_tensor * src0 = dst->src[0];
  9372. const struct ggml_tensor * src1 = dst->src[1];
  9373. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9374. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9375. return;
  9376. }
  9377. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9378. const int ith = params->ith;
  9379. const int nth = params->nth;
  9380. GGML_TENSOR_BINARY_OP_LOCALS
  9381. float eps;
  9382. memcpy(&eps, dst->op_params, sizeof(float));
  9383. // TODO: optimize
  9384. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9385. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9386. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9387. // src1 is same shape as src0 => same indices
  9388. const int64_t i11 = i01;
  9389. const int64_t i12 = i02;
  9390. const int64_t i13 = i03;
  9391. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9392. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9393. ggml_float sum_xx = 0.0;
  9394. ggml_float sum_xdz = 0.0;
  9395. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9396. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9397. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9398. }
  9399. //const float mean = (float)(sum_xx)/ne00;
  9400. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9401. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9402. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9403. // we could cache rms from forward pass to improve performance.
  9404. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9405. //const float rms = sqrtf(mean_eps);
  9406. const float rrms = 1.0f / sqrtf(mean_eps);
  9407. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9408. {
  9409. // z = rms_norm(x)
  9410. //
  9411. // rms_norm(src0) =
  9412. // scale(
  9413. // src0,
  9414. // div(
  9415. // 1,
  9416. // sqrt(
  9417. // add(
  9418. // scale(
  9419. // sum(
  9420. // sqr(
  9421. // src0)),
  9422. // (1.0/N)),
  9423. // eps))));
  9424. // postorder:
  9425. // ## op args grad
  9426. // 00 param src0 grad[#00]
  9427. // 01 const 1
  9428. // 02 sqr (#00) grad[#02]
  9429. // 03 sum (#02) grad[#03]
  9430. // 04 const 1/N
  9431. // 05 scale (#03, #04) grad[#05]
  9432. // 06 const eps
  9433. // 07 add (#05, #06) grad[#07]
  9434. // 08 sqrt (#07) grad[#08]
  9435. // 09 div (#01,#08) grad[#09]
  9436. // 10 scale (#00,#09) grad[#10]
  9437. //
  9438. // backward pass, given grad[#10]
  9439. // #10: scale
  9440. // grad[#00] += scale(grad[#10],#09)
  9441. // grad[#09] += sum(mul(grad[#10],#00))
  9442. // #09: div
  9443. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9444. // #08: sqrt
  9445. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9446. // #07: add
  9447. // grad[#05] += grad[#07]
  9448. // #05: scale
  9449. // grad[#03] += scale(grad[#05],#04)
  9450. // #03: sum
  9451. // grad[#02] += repeat(grad[#03], #02)
  9452. // #02:
  9453. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9454. //
  9455. // substitute and simplify:
  9456. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9457. // grad[#02] = repeat(grad[#03], #02)
  9458. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9459. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9460. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9461. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9462. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9463. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9464. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9465. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9466. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9467. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9468. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9469. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9470. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9471. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9472. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9473. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9474. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9475. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9476. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9477. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9478. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9479. // a = b*c + d*e
  9480. // a = b*c*f/f + d*e*f/f
  9481. // a = (b*c*f + d*e*f)*(1/f)
  9482. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9483. // a = (b + d*e/c)*c
  9484. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9485. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9486. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9487. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9488. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9489. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9490. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9491. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9492. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9493. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9494. }
  9495. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9496. // post-order:
  9497. // dx := x
  9498. // dx := scale(dx,-mean_xdz/mean_eps)
  9499. // dx := add(dx, dz)
  9500. // dx := scale(dx, rrms)
  9501. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9502. ggml_vec_cpy_f32 (ne00, dx, x);
  9503. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9504. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9505. ggml_vec_acc_f32 (ne00, dx, dz);
  9506. ggml_vec_scale_f32(ne00, dx, rrms);
  9507. }
  9508. }
  9509. }
  9510. }
  9511. static void ggml_compute_forward_rms_norm_back(
  9512. const struct ggml_compute_params * params,
  9513. struct ggml_tensor * dst) {
  9514. const struct ggml_tensor * src0 = dst->src[0];
  9515. switch (src0->type) {
  9516. case GGML_TYPE_F32:
  9517. {
  9518. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9519. } break;
  9520. default:
  9521. {
  9522. GGML_ASSERT(false);
  9523. } break;
  9524. }
  9525. }
  9526. // ggml_compute_forward_group_norm
  9527. static void ggml_compute_forward_group_norm_f32(
  9528. const struct ggml_compute_params * params,
  9529. struct ggml_tensor * dst) {
  9530. const struct ggml_tensor * src0 = dst->src[0];
  9531. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9532. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9533. return;
  9534. }
  9535. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9536. const int ith = params->ith;
  9537. const int nth = params->nth;
  9538. GGML_TENSOR_UNARY_OP_LOCALS
  9539. const float eps = 1e-6f; // TODO: make this a parameter
  9540. // TODO: optimize
  9541. int n_channels = src0->ne[2];
  9542. int n_groups = dst->op_params[0];
  9543. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9544. for (int i = ith; i < n_groups; i += nth) {
  9545. int start = i * n_channels_per_group;
  9546. int end = start + n_channels_per_group;
  9547. if (end > n_channels) {
  9548. end = n_channels;
  9549. }
  9550. int step = end - start;
  9551. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9552. ggml_float sum = 0.0;
  9553. for (int64_t i02 = start; i02 < end; i02++) {
  9554. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9555. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9556. ggml_float sumr = 0.0;
  9557. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9558. sumr += (ggml_float)x[i00];
  9559. }
  9560. sum += sumr;
  9561. }
  9562. }
  9563. const float mean = sum / (ne00 * ne01 * step);
  9564. ggml_float sum2 = 0.0;
  9565. for (int64_t i02 = start; i02 < end; i02++) {
  9566. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9567. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9568. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9569. ggml_float sumr = 0.0;
  9570. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9571. float v = x[i00] - mean;
  9572. y[i00] = v;
  9573. sumr += (ggml_float)(v * v);
  9574. }
  9575. sum2 += sumr;
  9576. }
  9577. }
  9578. const float variance = sum2 / (ne00 * ne01 * step);
  9579. const float scale = 1.0f / sqrtf(variance + eps);
  9580. for (int64_t i02 = start; i02 < end; i02++) {
  9581. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9582. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9583. ggml_vec_scale_f32(ne00, y, scale);
  9584. }
  9585. }
  9586. }
  9587. }
  9588. }
  9589. static void ggml_compute_forward_group_norm(
  9590. const struct ggml_compute_params * params,
  9591. struct ggml_tensor * dst) {
  9592. const struct ggml_tensor * src0 = dst->src[0];
  9593. switch (src0->type) {
  9594. case GGML_TYPE_F32:
  9595. {
  9596. ggml_compute_forward_group_norm_f32(params, dst);
  9597. } break;
  9598. default:
  9599. {
  9600. GGML_ASSERT(false);
  9601. } break;
  9602. }
  9603. }
  9604. // ggml_compute_forward_mul_mat
  9605. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9606. // helper function to determine if it is better to use BLAS or not
  9607. // for large matrices, BLAS is faster
  9608. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  9609. const struct ggml_tensor * src0 = dst->src[0];
  9610. const struct ggml_tensor * src1 = dst->src[1];
  9611. //const int64_t ne00 = src0->ne[0];
  9612. //const int64_t ne01 = src0->ne[1];
  9613. const int64_t ne10 = src1->ne[0];
  9614. const int64_t ne0 = dst->ne[0];
  9615. const int64_t ne1 = dst->ne[1];
  9616. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  9617. // all the experts for each batch element and the processing would become incredibly slow
  9618. // TODO: find the optimal values for these
  9619. if (dst->op != GGML_OP_MUL_MAT_ID &&
  9620. ggml_is_contiguous(src0) &&
  9621. ggml_is_contiguous(src1) &&
  9622. //src0->type == GGML_TYPE_F32 &&
  9623. src1->type == GGML_TYPE_F32 &&
  9624. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9625. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9626. return true;
  9627. }
  9628. return false;
  9629. }
  9630. #endif
  9631. static void ggml_compute_forward_mul_mat(
  9632. const struct ggml_compute_params * params,
  9633. struct ggml_tensor * dst) {
  9634. const struct ggml_tensor * src0 = dst->src[0];
  9635. const struct ggml_tensor * src1 = dst->src[1];
  9636. int64_t t0 = ggml_perf_time_us();
  9637. UNUSED(t0);
  9638. GGML_TENSOR_BINARY_OP_LOCALS
  9639. const int ith = params->ith;
  9640. const int nth = params->nth;
  9641. const enum ggml_type type = src0->type;
  9642. const bool src1_cont = ggml_is_contiguous(src1);
  9643. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9644. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9645. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9646. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  9647. GGML_ASSERT(ne0 == ne01);
  9648. GGML_ASSERT(ne1 == ne11);
  9649. GGML_ASSERT(ne2 == ne12);
  9650. GGML_ASSERT(ne3 == ne13);
  9651. // we don't support permuted src0 or src1
  9652. GGML_ASSERT(nb00 == ggml_type_size(type));
  9653. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9654. // dst cannot be transposed or permuted
  9655. GGML_ASSERT(nb0 == sizeof(float));
  9656. GGML_ASSERT(nb0 <= nb1);
  9657. GGML_ASSERT(nb1 <= nb2);
  9658. GGML_ASSERT(nb2 <= nb3);
  9659. // broadcast factors
  9660. const int64_t r2 = ne12/ne02;
  9661. const int64_t r3 = ne13/ne03;
  9662. // nb01 >= nb00 - src0 is not transposed
  9663. // compute by src0 rows
  9664. #if defined(GGML_USE_CLBLAST)
  9665. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9666. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  9667. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9668. }
  9669. return;
  9670. }
  9671. #endif
  9672. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9673. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  9674. const int64_t ne_plane = ne01*ne00;
  9675. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  9676. UNUSED(desired_wsize);
  9677. if (params->type == GGML_TASK_TYPE_INIT) {
  9678. if (type != GGML_TYPE_F32) {
  9679. assert(params->wsize >= desired_wsize);
  9680. // parallelize by src0 rows
  9681. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9682. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9683. // broadcast src0 into src1 across 2nd,3rd dimension
  9684. const int64_t i03 = i13/r3;
  9685. const int64_t i02 = i12/r2;
  9686. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9687. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9688. ggml_to_float_t const to_float = type_traits[type].to_float;
  9689. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9690. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  9691. }
  9692. }
  9693. }
  9694. }
  9695. return;
  9696. }
  9697. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9698. return;
  9699. }
  9700. // perform sgemm, parallelization controlled by blas lib
  9701. if (ith != 0) {
  9702. return;
  9703. }
  9704. //const int64_t tgemm0 = ggml_perf_time_us();
  9705. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9706. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9707. const int64_t i03 = i13/r3;
  9708. const int64_t i02 = i12/r2;
  9709. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9710. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9711. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9712. if (type != GGML_TYPE_F32) {
  9713. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9714. }
  9715. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9716. ne1, ne01, ne10,
  9717. 1.0f, y, ne10,
  9718. x, ne00,
  9719. 0.0f, d, ne01);
  9720. }
  9721. }
  9722. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  9723. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9724. return;
  9725. }
  9726. #endif
  9727. #if GGML_USE_LLAMAFILE
  9728. if (src1_cont) {
  9729. for (int64_t i13 = 0; i13 < ne13; i13++)
  9730. for (int64_t i12 = 0; i12 < ne12; i12++)
  9731. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9732. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9733. nb01/ggml_type_size(src0->type),
  9734. (const char *)src1->data + i12*nb12 + i13*nb13,
  9735. nb11/ggml_type_size(src1->type),
  9736. (char *)dst->data + i12*nb2 + i13*nb3,
  9737. nb1/ggml_type_size(dst->type),
  9738. ith, nth,
  9739. params->type,
  9740. src0->type,
  9741. src1->type,
  9742. dst->type))
  9743. goto UseGgmlGemm1;
  9744. return;
  9745. }
  9746. UseGgmlGemm1:;
  9747. #endif
  9748. if (params->type == GGML_TASK_TYPE_INIT) {
  9749. if (ith != 0) {
  9750. return;
  9751. }
  9752. if (src1->type != vec_dot_type) {
  9753. char * wdata = params->wdata;
  9754. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9755. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9756. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9757. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9758. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9759. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9760. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9761. wdata += row_size;
  9762. }
  9763. }
  9764. }
  9765. }
  9766. return;
  9767. }
  9768. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9769. return;
  9770. }
  9771. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9772. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9773. #if GGML_USE_LLAMAFILE
  9774. if (src1->type != vec_dot_type) {
  9775. for (int64_t i13 = 0; i13 < ne13; i13++)
  9776. for (int64_t i12 = 0; i12 < ne12; i12++)
  9777. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9778. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9779. nb01/ggml_type_size(src0->type),
  9780. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  9781. row_size/ggml_type_size(vec_dot_type),
  9782. (char *)dst->data + i12*nb2 + i13*nb3,
  9783. nb1/ggml_type_size(dst->type),
  9784. ith, nth,
  9785. params->type,
  9786. src0->type,
  9787. vec_dot_type,
  9788. dst->type))
  9789. goto UseGgmlGemm2;
  9790. return;
  9791. }
  9792. UseGgmlGemm2:;
  9793. #endif
  9794. const int64_t nr0 = ne01; // src0 rows
  9795. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  9796. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9797. // distribute the thread work across the inner or outer loop based on which one is larger
  9798. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9799. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9800. const int64_t ith0 = ith % nth0;
  9801. const int64_t ith1 = ith / nth0;
  9802. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9803. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9804. const int64_t ir010 = dr0*ith0;
  9805. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9806. const int64_t ir110 = dr1*ith1;
  9807. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9808. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9809. // threads with no work simply yield (not sure if it helps)
  9810. if (ir010 >= ir011 || ir110 >= ir111) {
  9811. sched_yield();
  9812. return;
  9813. }
  9814. assert(ne12 % ne02 == 0);
  9815. assert(ne13 % ne03 == 0);
  9816. // block-tiling attempt
  9817. const int64_t blck_0 = 16;
  9818. const int64_t blck_1 = 16;
  9819. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  9820. int64_t nrc = vec_dot_num_rows;
  9821. // TODO: currently the mmla kernels support only even numbered rows/cols.
  9822. // this check can be removed once they are extended to support odd numbered rows/cols too
  9823. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  9824. nrc = 1;
  9825. }
  9826. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  9827. // attempt to reduce false-sharing (does not seem to make a difference)
  9828. // 16 * 2, accounting for mmla kernels
  9829. float tmp[32];
  9830. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9831. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9832. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  9833. const int64_t i13 = (ir1/(ne12*ne1));
  9834. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  9835. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  9836. // broadcast src0 into src1
  9837. const int64_t i03 = i13/r3;
  9838. const int64_t i02 = i12/r2;
  9839. const int64_t i1 = i11;
  9840. const int64_t i2 = i12;
  9841. const int64_t i3 = i13;
  9842. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9843. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9844. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9845. // the original src1 data pointer, so we should index using the indices directly
  9846. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9847. const char * src1_col = (const char *) wdata +
  9848. (src1_cont || src1->type != vec_dot_type
  9849. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9850. : (i11*nb11 + i12*nb12 + i13*nb13));
  9851. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9852. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9853. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9854. //}
  9855. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  9856. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  9857. }
  9858. for (int cn = 0; cn < nrc; ++cn) {
  9859. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9860. }
  9861. }
  9862. }
  9863. }
  9864. }
  9865. // ggml_compute_forward_mul_mat_id
  9866. static void ggml_compute_forward_mul_mat_id(
  9867. const struct ggml_compute_params * params,
  9868. struct ggml_tensor * dst) {
  9869. const struct ggml_tensor * src0 = dst->src[0];
  9870. const struct ggml_tensor * src1 = dst->src[1];
  9871. const struct ggml_tensor * ids = dst->src[2];
  9872. GGML_TENSOR_BINARY_OP_LOCALS
  9873. const int ith = params->ith;
  9874. const int nth = params->nth;
  9875. const enum ggml_type type = src0->type;
  9876. const bool src1_cont = ggml_is_contiguous(src1);
  9877. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9878. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9879. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9880. // we don't support permuted src0 or src1
  9881. GGML_ASSERT(nb00 == ggml_type_size(type));
  9882. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9883. // dst cannot be transposed or permuted
  9884. GGML_ASSERT(nb0 == sizeof(float));
  9885. GGML_ASSERT(nb0 <= nb1);
  9886. GGML_ASSERT(nb1 <= nb2);
  9887. GGML_ASSERT(nb2 <= nb3);
  9888. // row groups
  9889. const int n_ids = ids->ne[0]; // n_expert_used
  9890. const int n_as = ne02; // n_expert
  9891. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  9892. (char *) params->wdata :
  9893. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  9894. struct mmid_row_mapping {
  9895. int32_t i1;
  9896. int32_t i2;
  9897. };
  9898. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  9899. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  9900. if (params->type == GGML_TASK_TYPE_INIT) {
  9901. if (ith != 0) {
  9902. return;
  9903. }
  9904. char * wdata = params->wdata;
  9905. if (src1->type != vec_dot_type) {
  9906. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9907. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9908. assert(src1->type == GGML_TYPE_F32);
  9909. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9910. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9911. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9912. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9913. wdata += row_size;
  9914. }
  9915. }
  9916. }
  9917. }
  9918. // initialize matrix_row_counts
  9919. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  9920. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  9921. // group rows by src0 matrix
  9922. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  9923. for (int id = 0; id < n_ids; ++id) {
  9924. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  9925. assert(i02 >= 0 && i02 < n_as);
  9926. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  9927. matrix_row_counts[i02] += 1;
  9928. }
  9929. }
  9930. return;
  9931. }
  9932. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9933. return;
  9934. }
  9935. // compute each matrix multiplication in sequence
  9936. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9937. const int64_t cne1 = matrix_row_counts[cur_a];
  9938. if (cne1 == 0) {
  9939. continue;
  9940. }
  9941. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  9942. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9943. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9944. const int64_t nr0 = ne01; // src0 rows
  9945. const int64_t nr1 = cne1; // src1 rows
  9946. // distribute the thread work across the inner or outer loop based on which one is larger
  9947. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9948. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9949. const int64_t ith0 = ith % nth0;
  9950. const int64_t ith1 = ith / nth0;
  9951. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9952. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9953. const int64_t ir010 = dr0*ith0;
  9954. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9955. const int64_t ir110 = dr1*ith1;
  9956. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9957. // threads with no work simply yield (not sure if it helps)
  9958. //if (ir010 >= ir011 || ir110 >= ir111) {
  9959. // sched_yield();
  9960. // continue;
  9961. //}
  9962. // block-tiling attempt
  9963. const int64_t blck_0 = 16;
  9964. const int64_t blck_1 = 16;
  9965. // attempt to reduce false-sharing (does not seem to make a difference)
  9966. float tmp[16];
  9967. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9968. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9969. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9970. const int64_t _i12 = ir1; // logical row index for this expert
  9971. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  9972. const int id = row_mapping.i1; // selected expert index
  9973. const int64_t i11 = id % ne11;
  9974. const int64_t i12 = row_mapping.i2; // row index in src1
  9975. const int64_t i1 = id; // selected expert index
  9976. const int64_t i2 = i12; // row
  9977. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9978. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9979. // the original src1 data pointer, so we should index using the indices directly
  9980. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9981. const char * src1_col = (const char *) wdata +
  9982. (src1_cont || src1->type != vec_dot_type
  9983. ? (i11 + i12*ne11)*row_size
  9984. : (i11*nb11 + i12*nb12));
  9985. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  9986. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9987. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9988. //}
  9989. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9990. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  9991. }
  9992. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9993. }
  9994. }
  9995. }
  9996. }
  9997. #undef MMID_MATRIX_ROW
  9998. }
  9999. // ggml_compute_forward_out_prod
  10000. static void ggml_compute_forward_out_prod_f32(
  10001. const struct ggml_compute_params * params,
  10002. struct ggml_tensor * dst) {
  10003. const struct ggml_tensor * src0 = dst->src[0];
  10004. const struct ggml_tensor * src1 = dst->src[1];
  10005. // int64_t t0 = ggml_perf_time_us();
  10006. // UNUSED(t0);
  10007. GGML_TENSOR_BINARY_OP_LOCALS
  10008. const int ith = params->ith;
  10009. const int nth = params->nth;
  10010. GGML_ASSERT(ne0 == ne00);
  10011. GGML_ASSERT(ne1 == ne10);
  10012. GGML_ASSERT(ne2 == ne02);
  10013. GGML_ASSERT(ne02 == ne12);
  10014. GGML_ASSERT(ne3 == ne13);
  10015. GGML_ASSERT(ne03 == ne13);
  10016. // we don't support permuted src0 or src1
  10017. GGML_ASSERT(nb00 == sizeof(float));
  10018. // dst cannot be transposed or permuted
  10019. GGML_ASSERT(nb0 == sizeof(float));
  10020. // GGML_ASSERT(nb0 <= nb1);
  10021. // GGML_ASSERT(nb1 <= nb2);
  10022. // GGML_ASSERT(nb2 <= nb3);
  10023. // nb01 >= nb00 - src0 is not transposed
  10024. // compute by src0 rows
  10025. // TODO: #if defined(GGML_USE_CLBLAST)
  10026. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10027. bool use_blas = ggml_is_matrix(src0) &&
  10028. ggml_is_matrix(src1) &&
  10029. ggml_is_contiguous(src0) &&
  10030. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10031. #endif
  10032. if (params->type == GGML_TASK_TYPE_INIT) {
  10033. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10034. if (use_blas) {
  10035. return;
  10036. }
  10037. #endif
  10038. if (ith != 0) {
  10039. return;
  10040. }
  10041. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10042. return;
  10043. }
  10044. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10045. return;
  10046. }
  10047. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10048. if (use_blas) {
  10049. if (params->ith != 0) { // All threads other than the first do no work.
  10050. return;
  10051. }
  10052. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10053. // src0: (k,n)
  10054. // src1: (k,m)
  10055. // dst: (m,n)
  10056. //
  10057. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10058. // Also expressed as (major,minor)
  10059. // a: (m,k): so src1 transposed
  10060. // b: (k,n): so src0
  10061. // c: (m,n)
  10062. //
  10063. // However, if ggml_is_transposed(src1) is true, then
  10064. // src1->data already contains a transposed version, so sgemm mustn't
  10065. // transpose it further.
  10066. int n = src0->ne[0];
  10067. int k = src0->ne[1];
  10068. int m = src1->ne[0];
  10069. int transposeA, lda;
  10070. if (!ggml_is_transposed(src1)) {
  10071. transposeA = CblasTrans;
  10072. lda = m;
  10073. } else {
  10074. transposeA = CblasNoTrans;
  10075. lda = k;
  10076. }
  10077. float * a = (float *) ((char *) src1->data);
  10078. float * b = (float *) ((char *) src0->data);
  10079. float * c = (float *) ((char *) dst->data);
  10080. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10081. return;
  10082. }
  10083. #endif
  10084. // dst[:,:,:,:] = 0
  10085. // for i2,i3:
  10086. // for i1:
  10087. // for i01:
  10088. // for i0:
  10089. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10090. // parallelize by last three dimensions
  10091. // total rows in dst
  10092. const int64_t nr = ne1*ne2*ne3;
  10093. // rows per thread
  10094. const int64_t dr = (nr + nth - 1)/nth;
  10095. // row range for this thread
  10096. const int64_t ir0 = dr*ith;
  10097. const int64_t ir1 = MIN(ir0 + dr, nr);
  10098. // block-tiling attempt
  10099. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10100. const int64_t blck_1 = 16;
  10101. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10102. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10103. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10104. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10105. for (int64_t ir = bir; ir < bir1; ++ir) {
  10106. // dst indices
  10107. const int64_t i3 = ir/(ne2*ne1);
  10108. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10109. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10110. const int64_t i02 = i2;
  10111. const int64_t i03 = i3;
  10112. //const int64_t i10 = i1;
  10113. const int64_t i12 = i2;
  10114. const int64_t i13 = i3;
  10115. #if GGML_VEC_MAD_UNROLL > 2
  10116. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10117. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10118. const int64_t i11 = i01;
  10119. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10120. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10121. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10122. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10123. }
  10124. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10125. const int64_t i11 = i01;
  10126. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10127. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10128. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10129. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10130. }
  10131. #else
  10132. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10133. const int64_t i11 = i01;
  10134. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10135. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10136. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10137. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10138. }
  10139. #endif
  10140. }
  10141. }
  10142. }
  10143. //int64_t t1 = ggml_perf_time_us();
  10144. //static int64_t acc = 0;
  10145. //acc += t1 - t0;
  10146. //if (t1 - t0 > 10) {
  10147. // printf("\n");
  10148. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10149. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10150. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10151. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10152. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10153. //}
  10154. }
  10155. static void ggml_compute_forward_out_prod_q_f32(
  10156. const struct ggml_compute_params * params,
  10157. struct ggml_tensor * dst) {
  10158. const struct ggml_tensor * src0 = dst->src[0];
  10159. const struct ggml_tensor * src1 = dst->src[1];
  10160. // int64_t t0 = ggml_perf_time_us();
  10161. // UNUSED(t0);
  10162. GGML_TENSOR_BINARY_OP_LOCALS;
  10163. const int ith = params->ith;
  10164. const int nth = params->nth;
  10165. const enum ggml_type type = src0->type;
  10166. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10167. GGML_ASSERT(ne02 == ne12);
  10168. GGML_ASSERT(ne03 == ne13);
  10169. GGML_ASSERT(ne2 == ne12);
  10170. GGML_ASSERT(ne3 == ne13);
  10171. // we don't support permuted src0 dim0
  10172. GGML_ASSERT(nb00 == ggml_type_size(type));
  10173. // dst dim0 cannot be transposed or permuted
  10174. GGML_ASSERT(nb0 == sizeof(float));
  10175. // GGML_ASSERT(nb0 <= nb1);
  10176. // GGML_ASSERT(nb1 <= nb2);
  10177. // GGML_ASSERT(nb2 <= nb3);
  10178. GGML_ASSERT(ne0 == ne00);
  10179. GGML_ASSERT(ne1 == ne10);
  10180. GGML_ASSERT(ne2 == ne02);
  10181. GGML_ASSERT(ne3 == ne03);
  10182. // nb01 >= nb00 - src0 is not transposed
  10183. // compute by src0 rows
  10184. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10185. if (params->type == GGML_TASK_TYPE_INIT) {
  10186. if (ith != 0) {
  10187. return;
  10188. }
  10189. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10190. return;
  10191. }
  10192. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10193. return;
  10194. }
  10195. // parallelize by last three dimensions
  10196. // total rows in dst
  10197. const int64_t nr = ne1*ne2*ne3;
  10198. // rows per thread
  10199. const int64_t dr = (nr + nth - 1)/nth;
  10200. // row range for this thread
  10201. const int64_t ir0 = dr*ith;
  10202. const int64_t ir1 = MIN(ir0 + dr, nr);
  10203. // dst[:,:,:,:] = 0
  10204. // for i2,i3:
  10205. // for i1:
  10206. // for i01:
  10207. // for i0:
  10208. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10209. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10210. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10211. // dst indices
  10212. const int64_t i3 = ir/(ne2*ne1);
  10213. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10214. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10215. const int64_t i02 = i2;
  10216. const int64_t i03 = i3;
  10217. //const int64_t i10 = i1;
  10218. const int64_t i12 = i2;
  10219. const int64_t i13 = i3;
  10220. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10221. const int64_t i11 = i01;
  10222. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10223. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10224. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10225. dequantize_row_q(s0, wdata, ne0);
  10226. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10227. }
  10228. }
  10229. //int64_t t1 = ggml_perf_time_us();
  10230. //static int64_t acc = 0;
  10231. //acc += t1 - t0;
  10232. //if (t1 - t0 > 10) {
  10233. // printf("\n");
  10234. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10235. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10236. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10237. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10238. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10239. //}
  10240. }
  10241. static void ggml_compute_forward_out_prod(
  10242. const struct ggml_compute_params * params,
  10243. struct ggml_tensor * dst) {
  10244. const struct ggml_tensor * src0 = dst->src[0];
  10245. switch (src0->type) {
  10246. case GGML_TYPE_Q4_0:
  10247. case GGML_TYPE_Q4_1:
  10248. case GGML_TYPE_Q5_0:
  10249. case GGML_TYPE_Q5_1:
  10250. case GGML_TYPE_Q8_0:
  10251. case GGML_TYPE_Q2_K:
  10252. case GGML_TYPE_Q3_K:
  10253. case GGML_TYPE_Q4_K:
  10254. case GGML_TYPE_Q5_K:
  10255. case GGML_TYPE_Q6_K:
  10256. case GGML_TYPE_IQ2_XXS:
  10257. case GGML_TYPE_IQ2_XS:
  10258. case GGML_TYPE_IQ3_XXS:
  10259. case GGML_TYPE_IQ1_S:
  10260. case GGML_TYPE_IQ1_M:
  10261. case GGML_TYPE_IQ4_NL:
  10262. case GGML_TYPE_IQ4_XS:
  10263. case GGML_TYPE_IQ3_S:
  10264. case GGML_TYPE_IQ2_S:
  10265. {
  10266. ggml_compute_forward_out_prod_q_f32(params, dst);
  10267. } break;
  10268. case GGML_TYPE_F16:
  10269. {
  10270. GGML_ASSERT(false); // todo
  10271. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10272. } break;
  10273. case GGML_TYPE_F32:
  10274. {
  10275. ggml_compute_forward_out_prod_f32(params, dst);
  10276. } break;
  10277. default:
  10278. {
  10279. GGML_ASSERT(false);
  10280. } break;
  10281. }
  10282. }
  10283. // ggml_compute_forward_scale
  10284. static void ggml_compute_forward_scale_f32(
  10285. const struct ggml_compute_params * params,
  10286. struct ggml_tensor * dst) {
  10287. const struct ggml_tensor * src0 = dst->src[0];
  10288. GGML_ASSERT(ggml_is_contiguous(src0));
  10289. GGML_ASSERT(ggml_is_contiguous(dst));
  10290. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10291. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10292. return;
  10293. }
  10294. // scale factor
  10295. float v;
  10296. memcpy(&v, dst->op_params, sizeof(float));
  10297. const int ith = params->ith;
  10298. const int nth = params->nth;
  10299. const int nc = src0->ne[0];
  10300. const int nr = ggml_nrows(src0);
  10301. // rows per thread
  10302. const int dr = (nr + nth - 1)/nth;
  10303. // row range for this thread
  10304. const int ir0 = dr*ith;
  10305. const int ir1 = MIN(ir0 + dr, nr);
  10306. const size_t nb01 = src0->nb[1];
  10307. const size_t nb1 = dst->nb[1];
  10308. for (int i1 = ir0; i1 < ir1; i1++) {
  10309. if (dst->data != src0->data) {
  10310. // src0 is same shape as dst => same indices
  10311. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10312. }
  10313. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10314. }
  10315. }
  10316. static void ggml_compute_forward_scale(
  10317. const struct ggml_compute_params * params,
  10318. struct ggml_tensor * dst) {
  10319. const struct ggml_tensor * src0 = dst->src[0];
  10320. switch (src0->type) {
  10321. case GGML_TYPE_F32:
  10322. {
  10323. ggml_compute_forward_scale_f32(params, dst);
  10324. } break;
  10325. default:
  10326. {
  10327. GGML_ASSERT(false);
  10328. } break;
  10329. }
  10330. }
  10331. // ggml_compute_forward_set
  10332. static void ggml_compute_forward_set_f32(
  10333. const struct ggml_compute_params * params,
  10334. struct ggml_tensor * dst) {
  10335. const struct ggml_tensor * src0 = dst->src[0];
  10336. const struct ggml_tensor * src1 = dst->src[1];
  10337. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10338. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10339. // view src0 and dst with these strides and data offset inbytes during set
  10340. // nb0 is implicitly element_size because src0 and dst are contiguous
  10341. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10342. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10343. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10344. size_t offset = ((int32_t *) dst->op_params)[3];
  10345. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10346. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10347. if (params->ith != 0) {
  10348. return;
  10349. }
  10350. // memcpy needs to be synchronized across threads to avoid race conditions.
  10351. // => do it in INIT phase
  10352. memcpy(
  10353. ((char *) dst->data),
  10354. ((char *) src0->data),
  10355. ggml_nbytes(dst));
  10356. }
  10357. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10358. return;
  10359. }
  10360. const int ith = params->ith;
  10361. const int nth = params->nth;
  10362. const int nr = ggml_nrows(src1);
  10363. const int nc = src1->ne[0];
  10364. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10365. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10366. // src0 and dst as viewed during set
  10367. const size_t nb0 = ggml_element_size(src0);
  10368. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10369. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10370. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10371. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10372. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10373. GGML_ASSERT(nb10 == sizeof(float));
  10374. // rows per thread
  10375. const int dr = (nr + nth - 1)/nth;
  10376. // row range for this thread
  10377. const int ir0 = dr*ith;
  10378. const int ir1 = MIN(ir0 + dr, nr);
  10379. for (int ir = ir0; ir < ir1; ++ir) {
  10380. // src0 and dst are viewed with shape of src1 and offset
  10381. // => same indices
  10382. const int i3 = ir/(ne12*ne11);
  10383. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10384. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10385. ggml_vec_cpy_f32(nc,
  10386. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10387. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10388. }
  10389. }
  10390. static void ggml_compute_forward_set(
  10391. const struct ggml_compute_params * params,
  10392. struct ggml_tensor * dst) {
  10393. const struct ggml_tensor * src0 = dst->src[0];
  10394. switch (src0->type) {
  10395. case GGML_TYPE_F32:
  10396. {
  10397. ggml_compute_forward_set_f32(params, dst);
  10398. } break;
  10399. case GGML_TYPE_F16:
  10400. case GGML_TYPE_BF16:
  10401. case GGML_TYPE_Q4_0:
  10402. case GGML_TYPE_Q4_1:
  10403. case GGML_TYPE_Q5_0:
  10404. case GGML_TYPE_Q5_1:
  10405. case GGML_TYPE_Q8_0:
  10406. case GGML_TYPE_Q8_1:
  10407. case GGML_TYPE_Q2_K:
  10408. case GGML_TYPE_Q3_K:
  10409. case GGML_TYPE_Q4_K:
  10410. case GGML_TYPE_Q5_K:
  10411. case GGML_TYPE_Q6_K:
  10412. case GGML_TYPE_IQ2_XXS:
  10413. case GGML_TYPE_IQ2_XS:
  10414. case GGML_TYPE_IQ3_XXS:
  10415. case GGML_TYPE_IQ1_S:
  10416. case GGML_TYPE_IQ1_M:
  10417. case GGML_TYPE_IQ4_NL:
  10418. case GGML_TYPE_IQ4_XS:
  10419. case GGML_TYPE_IQ3_S:
  10420. case GGML_TYPE_IQ2_S:
  10421. default:
  10422. {
  10423. GGML_ASSERT(false);
  10424. } break;
  10425. }
  10426. }
  10427. // ggml_compute_forward_cpy
  10428. static void ggml_compute_forward_cpy(
  10429. const struct ggml_compute_params * params,
  10430. struct ggml_tensor * dst) {
  10431. ggml_compute_forward_dup(params, dst);
  10432. }
  10433. // ggml_compute_forward_cont
  10434. static void ggml_compute_forward_cont(
  10435. const struct ggml_compute_params * params,
  10436. struct ggml_tensor * dst) {
  10437. ggml_compute_forward_dup(params, dst);
  10438. }
  10439. // ggml_compute_forward_reshape
  10440. static void ggml_compute_forward_reshape(
  10441. const struct ggml_compute_params * params,
  10442. struct ggml_tensor * dst) {
  10443. // NOP
  10444. UNUSED(params);
  10445. UNUSED(dst);
  10446. }
  10447. // ggml_compute_forward_view
  10448. static void ggml_compute_forward_view(
  10449. const struct ggml_compute_params * params,
  10450. const struct ggml_tensor * dst) {
  10451. // NOP
  10452. UNUSED(params);
  10453. UNUSED(dst);
  10454. }
  10455. // ggml_compute_forward_permute
  10456. static void ggml_compute_forward_permute(
  10457. const struct ggml_compute_params * params,
  10458. const struct ggml_tensor * dst) {
  10459. // NOP
  10460. UNUSED(params);
  10461. UNUSED(dst);
  10462. }
  10463. // ggml_compute_forward_transpose
  10464. static void ggml_compute_forward_transpose(
  10465. const struct ggml_compute_params * params,
  10466. const struct ggml_tensor * dst) {
  10467. // NOP
  10468. UNUSED(params);
  10469. UNUSED(dst);
  10470. }
  10471. // ggml_compute_forward_get_rows
  10472. static void ggml_compute_forward_get_rows_q(
  10473. const struct ggml_compute_params * params,
  10474. struct ggml_tensor * dst) {
  10475. const struct ggml_tensor * src0 = dst->src[0];
  10476. const struct ggml_tensor * src1 = dst->src[1];
  10477. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10478. return;
  10479. }
  10480. GGML_TENSOR_BINARY_OP_LOCALS
  10481. const int64_t nc = ne00;
  10482. const int64_t nr = ggml_nelements(src1);
  10483. const enum ggml_type type = src0->type;
  10484. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10485. assert(ne0 == nc);
  10486. assert(ne02 == ne11);
  10487. assert(nb00 == ggml_type_size(type));
  10488. assert(ggml_nrows(dst) == nr);
  10489. const int ith = params->ith;
  10490. const int nth = params->nth;
  10491. // rows per thread
  10492. const int dr = (nr + nth - 1)/nth;
  10493. // row range for this thread
  10494. const int ir0 = dr*ith;
  10495. const int ir1 = MIN(ir0 + dr, nr);
  10496. for (int64_t i = ir0; i < ir1; ++i) {
  10497. const int64_t i12 = i/(ne11*ne10);
  10498. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10499. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10500. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10501. dequantize_row_q(
  10502. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10503. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10504. }
  10505. }
  10506. static void ggml_compute_forward_get_rows_f16(
  10507. const struct ggml_compute_params * params,
  10508. struct ggml_tensor * dst) {
  10509. const struct ggml_tensor * src0 = dst->src[0];
  10510. const struct ggml_tensor * src1 = dst->src[1];
  10511. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10512. return;
  10513. }
  10514. GGML_TENSOR_BINARY_OP_LOCALS
  10515. const int64_t nc = ne00;
  10516. const int64_t nr = ggml_nelements(src1);
  10517. assert(ne0 == nc);
  10518. assert(ne02 == ne11);
  10519. assert(nb00 == sizeof(ggml_fp16_t));
  10520. assert(ggml_nrows(dst) == nr);
  10521. const int ith = params->ith;
  10522. const int nth = params->nth;
  10523. // rows per thread
  10524. const int dr = (nr + nth - 1)/nth;
  10525. // row range for this thread
  10526. const int ir0 = dr*ith;
  10527. const int ir1 = MIN(ir0 + dr, nr);
  10528. for (int64_t i = ir0; i < ir1; ++i) {
  10529. const int64_t i12 = i/(ne11*ne10);
  10530. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10531. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10532. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10533. ggml_fp16_to_fp32_row(
  10534. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10535. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10536. }
  10537. }
  10538. static void ggml_compute_forward_get_rows_bf16(
  10539. const struct ggml_compute_params * params,
  10540. struct ggml_tensor * dst) {
  10541. const struct ggml_tensor * src0 = dst->src[0];
  10542. const struct ggml_tensor * src1 = dst->src[1];
  10543. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10544. return;
  10545. }
  10546. GGML_TENSOR_BINARY_OP_LOCALS
  10547. const int64_t nc = ne00;
  10548. const int64_t nr = ggml_nelements(src1);
  10549. assert(ne0 == nc);
  10550. assert(ne02 == ne11);
  10551. assert(nb00 == sizeof(ggml_bf16_t));
  10552. assert(ggml_nrows(dst) == nr);
  10553. const int ith = params->ith;
  10554. const int nth = params->nth;
  10555. // rows per thread
  10556. const int dr = (nr + nth - 1)/nth;
  10557. // row range for this thread
  10558. const int ir0 = dr*ith;
  10559. const int ir1 = MIN(ir0 + dr, nr);
  10560. for (int64_t i = ir0; i < ir1; ++i) {
  10561. const int64_t i12 = i/(ne11*ne10);
  10562. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10563. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10564. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10565. ggml_bf16_to_fp32_row(
  10566. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10567. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10568. }
  10569. }
  10570. static void ggml_compute_forward_get_rows_f32(
  10571. const struct ggml_compute_params * params,
  10572. struct ggml_tensor * dst) {
  10573. const struct ggml_tensor * src0 = dst->src[0];
  10574. const struct ggml_tensor * src1 = dst->src[1];
  10575. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10576. return;
  10577. }
  10578. GGML_TENSOR_BINARY_OP_LOCALS
  10579. const int64_t nc = ne00;
  10580. const int64_t nr = ggml_nelements(src1);
  10581. assert(ne0 == nc);
  10582. assert(ne02 == ne11);
  10583. assert(nb00 == sizeof(float));
  10584. assert(ggml_nrows(dst) == nr);
  10585. const int ith = params->ith;
  10586. const int nth = params->nth;
  10587. // rows per thread
  10588. const int dr = (nr + nth - 1)/nth;
  10589. // row range for this thread
  10590. const int ir0 = dr*ith;
  10591. const int ir1 = MIN(ir0 + dr, nr);
  10592. for (int64_t i = ir0; i < ir1; ++i) {
  10593. const int64_t i12 = i/(ne11*ne10);
  10594. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10595. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10596. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10597. ggml_vec_cpy_f32(nc,
  10598. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10599. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10600. }
  10601. }
  10602. static void ggml_compute_forward_get_rows(
  10603. const struct ggml_compute_params * params,
  10604. struct ggml_tensor * dst) {
  10605. const struct ggml_tensor * src0 = dst->src[0];
  10606. switch (src0->type) {
  10607. case GGML_TYPE_Q4_0:
  10608. case GGML_TYPE_Q4_1:
  10609. case GGML_TYPE_Q5_0:
  10610. case GGML_TYPE_Q5_1:
  10611. case GGML_TYPE_Q8_0:
  10612. case GGML_TYPE_Q8_1:
  10613. case GGML_TYPE_Q2_K:
  10614. case GGML_TYPE_Q3_K:
  10615. case GGML_TYPE_Q4_K:
  10616. case GGML_TYPE_Q5_K:
  10617. case GGML_TYPE_Q6_K:
  10618. case GGML_TYPE_IQ2_XXS:
  10619. case GGML_TYPE_IQ2_XS:
  10620. case GGML_TYPE_IQ3_XXS:
  10621. case GGML_TYPE_IQ1_S:
  10622. case GGML_TYPE_IQ1_M:
  10623. case GGML_TYPE_IQ4_NL:
  10624. case GGML_TYPE_IQ4_XS:
  10625. case GGML_TYPE_IQ3_S:
  10626. case GGML_TYPE_IQ2_S:
  10627. {
  10628. ggml_compute_forward_get_rows_q(params, dst);
  10629. } break;
  10630. case GGML_TYPE_F16:
  10631. {
  10632. ggml_compute_forward_get_rows_f16(params, dst);
  10633. } break;
  10634. case GGML_TYPE_BF16:
  10635. {
  10636. ggml_compute_forward_get_rows_bf16(params, dst);
  10637. } break;
  10638. case GGML_TYPE_F32:
  10639. case GGML_TYPE_I32:
  10640. {
  10641. ggml_compute_forward_get_rows_f32(params, dst);
  10642. } break;
  10643. default:
  10644. {
  10645. GGML_ASSERT(false);
  10646. } break;
  10647. }
  10648. //static bool first = true;
  10649. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10650. //if (first) {
  10651. // first = false;
  10652. //} else {
  10653. // for (int k = 0; k < dst->ne[1]; ++k) {
  10654. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10655. // for (int i = 0; i < 16; ++i) {
  10656. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10657. // }
  10658. // printf("\n");
  10659. // }
  10660. // printf("\n");
  10661. // }
  10662. // printf("\n");
  10663. // exit(0);
  10664. //}
  10665. }
  10666. // ggml_compute_forward_get_rows_back
  10667. static void ggml_compute_forward_get_rows_back_f32_f16(
  10668. const struct ggml_compute_params * params,
  10669. struct ggml_tensor * dst) {
  10670. const struct ggml_tensor * src0 = dst->src[0];
  10671. const struct ggml_tensor * src1 = dst->src[1];
  10672. GGML_ASSERT(params->ith == 0);
  10673. GGML_ASSERT(ggml_is_contiguous(dst));
  10674. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10675. if (params->type == GGML_TASK_TYPE_INIT) {
  10676. if (params->ith != 0) {
  10677. return;
  10678. }
  10679. memset(dst->data, 0, ggml_nbytes(dst));
  10680. }
  10681. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10682. return;
  10683. }
  10684. const int nc = src0->ne[0];
  10685. const int nr = ggml_nelements(src1);
  10686. GGML_ASSERT( dst->ne[0] == nc);
  10687. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10688. for (int i = 0; i < nr; ++i) {
  10689. const int r = ((int32_t *) src1->data)[i];
  10690. for (int j = 0; j < nc; ++j) {
  10691. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10692. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10693. }
  10694. }
  10695. }
  10696. static void ggml_compute_forward_get_rows_back_f32(
  10697. const struct ggml_compute_params * params,
  10698. struct ggml_tensor * dst) {
  10699. const struct ggml_tensor * src0 = dst->src[0];
  10700. const struct ggml_tensor * src1 = dst->src[1];
  10701. GGML_ASSERT(params->ith == 0);
  10702. GGML_ASSERT(ggml_is_contiguous(dst));
  10703. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10704. if (params->type == GGML_TASK_TYPE_INIT) {
  10705. if (params->ith != 0) {
  10706. return;
  10707. }
  10708. memset(dst->data, 0, ggml_nbytes(dst));
  10709. }
  10710. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10711. return;
  10712. }
  10713. const int nc = src0->ne[0];
  10714. const int nr = ggml_nelements(src1);
  10715. GGML_ASSERT( dst->ne[0] == nc);
  10716. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10717. for (int i = 0; i < nr; ++i) {
  10718. const int r = ((int32_t *) src1->data)[i];
  10719. ggml_vec_add_f32(nc,
  10720. (float *) ((char *) dst->data + r*dst->nb[1]),
  10721. (float *) ((char *) dst->data + r*dst->nb[1]),
  10722. (float *) ((char *) src0->data + i*src0->nb[1]));
  10723. }
  10724. }
  10725. static void ggml_compute_forward_get_rows_back(
  10726. const struct ggml_compute_params * params,
  10727. struct ggml_tensor * dst) {
  10728. const struct ggml_tensor * src0 = dst->src[0];
  10729. switch (src0->type) {
  10730. case GGML_TYPE_F16:
  10731. {
  10732. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  10733. } break;
  10734. case GGML_TYPE_F32:
  10735. {
  10736. ggml_compute_forward_get_rows_back_f32(params, dst);
  10737. } break;
  10738. default:
  10739. {
  10740. GGML_ASSERT(false);
  10741. } break;
  10742. }
  10743. //static bool first = true;
  10744. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10745. //if (first) {
  10746. // first = false;
  10747. //} else {
  10748. // for (int k = 0; k < dst->ne[1]; ++k) {
  10749. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10750. // for (int i = 0; i < 16; ++i) {
  10751. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10752. // }
  10753. // printf("\n");
  10754. // }
  10755. // printf("\n");
  10756. // }
  10757. // printf("\n");
  10758. // exit(0);
  10759. //}
  10760. }
  10761. // ggml_compute_forward_diag
  10762. static void ggml_compute_forward_diag_f32(
  10763. const struct ggml_compute_params * params,
  10764. struct ggml_tensor * dst) {
  10765. const struct ggml_tensor * src0 = dst->src[0];
  10766. GGML_ASSERT(params->ith == 0);
  10767. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10768. return;
  10769. }
  10770. // TODO: handle transposed/permuted matrices
  10771. GGML_TENSOR_UNARY_OP_LOCALS
  10772. GGML_ASSERT(ne00 == ne0);
  10773. GGML_ASSERT(ne00 == ne1);
  10774. GGML_ASSERT(ne01 == 1);
  10775. GGML_ASSERT(ne02 == ne2);
  10776. GGML_ASSERT(ne03 == ne3);
  10777. GGML_ASSERT(nb00 == sizeof(float));
  10778. GGML_ASSERT(nb0 == sizeof(float));
  10779. for (int i3 = 0; i3 < ne3; i3++) {
  10780. for (int i2 = 0; i2 < ne2; i2++) {
  10781. for (int i1 = 0; i1 < ne1; i1++) {
  10782. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10783. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10784. for (int i0 = 0; i0 < i1; i0++) {
  10785. d[i0] = 0;
  10786. }
  10787. d[i1] = s[i1];
  10788. for (int i0 = i1+1; i0 < ne0; i0++) {
  10789. d[i0] = 0;
  10790. }
  10791. }
  10792. }
  10793. }
  10794. }
  10795. static void ggml_compute_forward_diag(
  10796. const struct ggml_compute_params * params,
  10797. struct ggml_tensor * dst) {
  10798. const struct ggml_tensor * src0 = dst->src[0];
  10799. switch (src0->type) {
  10800. case GGML_TYPE_F32:
  10801. {
  10802. ggml_compute_forward_diag_f32(params, dst);
  10803. } break;
  10804. default:
  10805. {
  10806. GGML_ASSERT(false);
  10807. } break;
  10808. }
  10809. }
  10810. // ggml_compute_forward_diag_mask_inf
  10811. static void ggml_compute_forward_diag_mask_f32(
  10812. const struct ggml_compute_params * params,
  10813. struct ggml_tensor * dst,
  10814. const float value) {
  10815. const struct ggml_tensor * src0 = dst->src[0];
  10816. const int ith = params->ith;
  10817. const int nth = params->nth;
  10818. const int n_past = ((int32_t *) dst->op_params)[0];
  10819. const bool inplace = src0->data == dst->data;
  10820. GGML_ASSERT(n_past >= 0);
  10821. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10822. if (ith != 0) {
  10823. return;
  10824. }
  10825. // memcpy needs to be synchronized across threads to avoid race conditions.
  10826. // => do it in INIT phase
  10827. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10828. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10829. memcpy(
  10830. ((char *) dst->data),
  10831. ((char *) src0->data),
  10832. ggml_nbytes(dst));
  10833. }
  10834. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10835. return;
  10836. }
  10837. // TODO: handle transposed/permuted matrices
  10838. const int n = ggml_nrows(src0);
  10839. const int nc = src0->ne[0];
  10840. const int nr = src0->ne[1];
  10841. const int nz = n/nr;
  10842. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10843. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10844. for (int k = 0; k < nz; k++) {
  10845. for (int j = ith; j < nr; j += nth) {
  10846. for (int i = n_past; i < nc; i++) {
  10847. if (i > n_past + j) {
  10848. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10849. }
  10850. }
  10851. }
  10852. }
  10853. }
  10854. static void ggml_compute_forward_diag_mask_inf(
  10855. const struct ggml_compute_params * params,
  10856. struct ggml_tensor * dst) {
  10857. const struct ggml_tensor * src0 = dst->src[0];
  10858. switch (src0->type) {
  10859. case GGML_TYPE_F32:
  10860. {
  10861. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  10862. } break;
  10863. default:
  10864. {
  10865. GGML_ASSERT(false);
  10866. } break;
  10867. }
  10868. }
  10869. static void ggml_compute_forward_diag_mask_zero(
  10870. const struct ggml_compute_params * params,
  10871. struct ggml_tensor * dst) {
  10872. const struct ggml_tensor * src0 = dst->src[0];
  10873. switch (src0->type) {
  10874. case GGML_TYPE_F32:
  10875. {
  10876. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  10877. } break;
  10878. default:
  10879. {
  10880. GGML_ASSERT(false);
  10881. } break;
  10882. }
  10883. }
  10884. // ggml_compute_forward_soft_max
  10885. static void ggml_compute_forward_soft_max_f32(
  10886. const struct ggml_compute_params * params,
  10887. struct ggml_tensor * dst) {
  10888. const struct ggml_tensor * src0 = dst->src[0];
  10889. const struct ggml_tensor * src1 = dst->src[1];
  10890. assert(ggml_is_contiguous(dst));
  10891. assert(ggml_are_same_shape(src0, dst));
  10892. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10893. return;
  10894. }
  10895. float scale = 1.0f;
  10896. float max_bias = 0.0f;
  10897. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  10898. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  10899. // TODO: handle transposed/permuted matrices
  10900. const int ith = params->ith;
  10901. const int nth = params->nth;
  10902. GGML_TENSOR_UNARY_OP_LOCALS
  10903. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  10904. // TODO: is this supposed to be ceil instead of floor?
  10905. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  10906. const uint32_t n_head = ne02;
  10907. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  10908. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  10909. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  10910. const int nc = src0->ne[0];
  10911. const int nr = ggml_nrows(src0);
  10912. // rows per thread
  10913. const int dr = (nr + nth - 1)/nth;
  10914. // row range for this thread
  10915. const int ir0 = dr*ith;
  10916. const int ir1 = MIN(ir0 + dr, nr);
  10917. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  10918. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  10919. for (int i1 = ir0; i1 < ir1; i1++) {
  10920. // ALiBi
  10921. const uint32_t h = (i1/ne01)%ne02; // head
  10922. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  10923. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  10924. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  10925. // broadcast the mask across rows
  10926. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10927. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10928. ggml_vec_cpy_f32 (nc, wp, sp);
  10929. ggml_vec_scale_f32(nc, wp, scale);
  10930. if (mp_f32) {
  10931. if (use_f16) {
  10932. for (int i = 0; i < nc; ++i) {
  10933. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  10934. }
  10935. } else {
  10936. for (int i = 0; i < nc; ++i) {
  10937. wp[i] += slope*mp_f32[i];
  10938. }
  10939. }
  10940. }
  10941. #ifndef NDEBUG
  10942. for (int i = 0; i < nc; ++i) {
  10943. //printf("p[%d] = %f\n", i, p[i]);
  10944. assert(!isnan(wp[i]));
  10945. }
  10946. #endif
  10947. float max = -INFINITY;
  10948. ggml_vec_max_f32(nc, &max, wp);
  10949. ggml_float sum = 0.0;
  10950. uint16_t scvt;
  10951. for (int i = 0; i < nc; i++) {
  10952. if (wp[i] == -INFINITY) {
  10953. dp[i] = 0.0f;
  10954. } else {
  10955. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  10956. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  10957. memcpy(&scvt, &s, sizeof(scvt));
  10958. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  10959. sum += (ggml_float)val;
  10960. dp[i] = val;
  10961. }
  10962. }
  10963. assert(sum > 0.0);
  10964. sum = 1.0/sum;
  10965. ggml_vec_scale_f32(nc, dp, sum);
  10966. #ifndef NDEBUG
  10967. for (int i = 0; i < nc; ++i) {
  10968. assert(!isnan(dp[i]));
  10969. assert(!isinf(dp[i]));
  10970. }
  10971. #endif
  10972. }
  10973. }
  10974. static void ggml_compute_forward_soft_max(
  10975. const struct ggml_compute_params * params,
  10976. struct ggml_tensor * dst) {
  10977. const struct ggml_tensor * src0 = dst->src[0];
  10978. switch (src0->type) {
  10979. case GGML_TYPE_F32:
  10980. {
  10981. ggml_compute_forward_soft_max_f32(params, dst);
  10982. } break;
  10983. default:
  10984. {
  10985. GGML_ASSERT(false);
  10986. } break;
  10987. }
  10988. }
  10989. // ggml_compute_forward_soft_max_back
  10990. static void ggml_compute_forward_soft_max_back_f32(
  10991. const struct ggml_compute_params * params,
  10992. struct ggml_tensor * dst) {
  10993. const struct ggml_tensor * src0 = dst->src[0];
  10994. const struct ggml_tensor * src1 = dst->src[1];
  10995. GGML_ASSERT(ggml_is_contiguous(src0));
  10996. GGML_ASSERT(ggml_is_contiguous(src1));
  10997. GGML_ASSERT(ggml_is_contiguous(dst));
  10998. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10999. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11000. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11001. return;
  11002. }
  11003. // TODO: handle transposed/permuted matrices
  11004. const int ith = params->ith;
  11005. const int nth = params->nth;
  11006. const int nc = src0->ne[0];
  11007. const int nr = ggml_nrows(src0);
  11008. // rows per thread
  11009. const int dr = (nr + nth - 1)/nth;
  11010. // row range for this thread
  11011. const int ir0 = dr*ith;
  11012. const int ir1 = MIN(ir0 + dr, nr);
  11013. for (int i1 = ir0; i1 < ir1; i1++) {
  11014. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11015. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11016. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11017. #ifndef NDEBUG
  11018. for (int i = 0; i < nc; ++i) {
  11019. //printf("p[%d] = %f\n", i, p[i]);
  11020. assert(!isnan(dy[i]));
  11021. assert(!isnan(y[i]));
  11022. }
  11023. #endif
  11024. // Jii = yi - yi*yi
  11025. // Jij = -yi*yj
  11026. // J = diag(y)-y.T*y
  11027. // dx = J * dy
  11028. // dxk = sum_i(Jki * dyi)
  11029. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11030. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11031. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11032. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11033. // dxk = -yk * dot(y, dy) + yk*dyk
  11034. // dxk = yk * (- dot(y, dy) + dyk)
  11035. // dxk = yk * (dyk - dot(y, dy))
  11036. //
  11037. // post-order:
  11038. // dot_y_dy := dot(y, dy)
  11039. // dx := dy
  11040. // dx := dx - dot_y_dy
  11041. // dx := dx * y
  11042. // linear runtime, no additional memory
  11043. float dot_y_dy = 0;
  11044. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11045. ggml_vec_cpy_f32 (nc, dx, dy);
  11046. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11047. ggml_vec_mul_f32 (nc, dx, dx, y);
  11048. #ifndef NDEBUG
  11049. for (int i = 0; i < nc; ++i) {
  11050. assert(!isnan(dx[i]));
  11051. assert(!isinf(dx[i]));
  11052. }
  11053. #endif
  11054. }
  11055. }
  11056. static void ggml_compute_forward_soft_max_back(
  11057. const struct ggml_compute_params * params,
  11058. struct ggml_tensor * dst) {
  11059. const struct ggml_tensor * src0 = dst->src[0];
  11060. switch (src0->type) {
  11061. case GGML_TYPE_F32:
  11062. {
  11063. ggml_compute_forward_soft_max_back_f32(params, dst);
  11064. } break;
  11065. default:
  11066. {
  11067. GGML_ASSERT(false);
  11068. } break;
  11069. }
  11070. }
  11071. // ggml_compute_forward_clamp
  11072. static void ggml_compute_forward_clamp_f32(
  11073. const struct ggml_compute_params * params,
  11074. struct ggml_tensor * dst) {
  11075. const struct ggml_tensor * src0 = dst->src[0];
  11076. assert(params->ith == 0);
  11077. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11078. return;
  11079. }
  11080. float min;
  11081. float max;
  11082. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11083. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11084. const int ith = params->ith;
  11085. const int nth = params->nth;
  11086. const int n = ggml_nrows(src0);
  11087. const int nc = src0->ne[0];
  11088. const size_t nb00 = src0->nb[0];
  11089. const size_t nb01 = src0->nb[1];
  11090. const size_t nb0 = dst->nb[0];
  11091. const size_t nb1 = dst->nb[1];
  11092. GGML_ASSERT( nb0 == sizeof(float));
  11093. GGML_ASSERT(nb00 == sizeof(float));
  11094. for (int j = ith; j < n; j += nth) {
  11095. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11096. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11097. for (int i = 0; i < nc; i++) {
  11098. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11099. }
  11100. }
  11101. }
  11102. static void ggml_compute_forward_clamp(
  11103. const struct ggml_compute_params * params,
  11104. struct ggml_tensor * dst) {
  11105. const struct ggml_tensor * src0 = dst->src[0];
  11106. switch (src0->type) {
  11107. case GGML_TYPE_F32:
  11108. {
  11109. ggml_compute_forward_clamp_f32(params, dst);
  11110. } break;
  11111. case GGML_TYPE_F16:
  11112. case GGML_TYPE_BF16:
  11113. case GGML_TYPE_Q4_0:
  11114. case GGML_TYPE_Q4_1:
  11115. case GGML_TYPE_Q5_0:
  11116. case GGML_TYPE_Q5_1:
  11117. case GGML_TYPE_Q8_0:
  11118. case GGML_TYPE_Q8_1:
  11119. case GGML_TYPE_Q2_K:
  11120. case GGML_TYPE_Q3_K:
  11121. case GGML_TYPE_Q4_K:
  11122. case GGML_TYPE_Q5_K:
  11123. case GGML_TYPE_Q6_K:
  11124. case GGML_TYPE_IQ2_XXS:
  11125. case GGML_TYPE_IQ2_XS:
  11126. case GGML_TYPE_IQ3_XXS:
  11127. case GGML_TYPE_IQ1_S:
  11128. case GGML_TYPE_IQ1_M:
  11129. case GGML_TYPE_IQ4_NL:
  11130. case GGML_TYPE_IQ4_XS:
  11131. case GGML_TYPE_IQ3_S:
  11132. case GGML_TYPE_IQ2_S:
  11133. case GGML_TYPE_Q8_K:
  11134. case GGML_TYPE_I8:
  11135. case GGML_TYPE_I16:
  11136. case GGML_TYPE_I32:
  11137. case GGML_TYPE_I64:
  11138. case GGML_TYPE_F64:
  11139. case GGML_TYPE_COUNT:
  11140. {
  11141. GGML_ASSERT(false);
  11142. } break;
  11143. }
  11144. }
  11145. // ggml_compute_forward_rope
  11146. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11147. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11148. return 1 - MIN(1, MAX(0, y));
  11149. }
  11150. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11151. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11152. static void rope_yarn(
  11153. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11154. float * cos_theta, float * sin_theta
  11155. ) {
  11156. // Get n-d rotational scaling corrected for extrapolation
  11157. float theta_interp = freq_scale * theta_extrap;
  11158. float theta = theta_interp;
  11159. if (ext_factor != 0.0f) {
  11160. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11161. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11162. // Get n-d magnitude scaling corrected for interpolation
  11163. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11164. }
  11165. *cos_theta = cosf(theta) * mscale;
  11166. *sin_theta = sinf(theta) * mscale;
  11167. }
  11168. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11169. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11170. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11171. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11172. }
  11173. static void ggml_rope_cache_init(
  11174. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11175. float * cache, float sin_sign, float theta_scale
  11176. ) {
  11177. float theta = theta_base;
  11178. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11179. rope_yarn(
  11180. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11181. );
  11182. cache[i0 + 1] *= sin_sign;
  11183. theta *= theta_scale;
  11184. }
  11185. }
  11186. GGML_CALL void ggml_rope_yarn_corr_dims(
  11187. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11188. ) {
  11189. // start and end correction dims
  11190. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11191. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11192. dims[0] = MAX(0, start);
  11193. dims[1] = MIN(n_dims - 1, end);
  11194. }
  11195. static void ggml_compute_forward_rope_f32(
  11196. const struct ggml_compute_params * params,
  11197. struct ggml_tensor * dst,
  11198. const bool forward) {
  11199. const struct ggml_tensor * src0 = dst->src[0];
  11200. const struct ggml_tensor * src1 = dst->src[1];
  11201. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11202. return;
  11203. }
  11204. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11205. // these two only relevant for xPos RoPE:
  11206. float xpos_base;
  11207. bool xpos_down;
  11208. //const int n_past = ((int32_t *) dst->op_params)[0];
  11209. const int n_dims = ((int32_t *) dst->op_params)[1];
  11210. const int mode = ((int32_t *) dst->op_params)[2];
  11211. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11212. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11213. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11214. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11215. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11216. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11217. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11218. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11219. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11220. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11221. GGML_TENSOR_UNARY_OP_LOCALS
  11222. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11223. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11224. GGML_ASSERT(nb00 == sizeof(float));
  11225. const int ith = params->ith;
  11226. const int nth = params->nth;
  11227. const int nr = ggml_nrows(dst);
  11228. GGML_ASSERT(n_dims <= ne0);
  11229. GGML_ASSERT(n_dims % 2 == 0);
  11230. // rows per thread
  11231. const int dr = (nr + nth - 1)/nth;
  11232. // row range for this thread
  11233. const int ir0 = dr*ith;
  11234. const int ir1 = MIN(ir0 + dr, nr);
  11235. // row index used to determine which thread to use
  11236. int ir = 0;
  11237. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11238. const float inv_ndims = -1.f/n_dims;
  11239. float corr_dims[2];
  11240. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11241. const bool is_neox = mode & 2;
  11242. const bool is_glm = mode & 4;
  11243. // backward process uses inverse rotation by cos and sin.
  11244. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11245. // this essentially just switches the sign of sin.
  11246. const float sin_sign = forward ? 1.0f : -1.0f;
  11247. const int32_t * pos = (const int32_t *) src1->data;
  11248. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11249. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11250. const int64_t p = pos[i2];
  11251. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11252. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11253. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11254. }
  11255. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11256. if (ir++ < ir0) continue;
  11257. if (ir > ir1) break;
  11258. float theta_base = (float)p;
  11259. if (is_glm) {
  11260. theta_base = MIN(p, n_ctx - 2);
  11261. float block_theta = MAX(p - (n_ctx - 2), 0);
  11262. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11263. const float cos_theta = cosf(theta_base);
  11264. const float sin_theta = sinf(theta_base) * sin_sign;
  11265. const float cos_block_theta = cosf(block_theta);
  11266. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11267. theta_base *= theta_scale;
  11268. block_theta *= theta_scale;
  11269. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11270. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11271. const float x0 = src[0];
  11272. const float x1 = src[n_dims/2];
  11273. const float x2 = src[n_dims];
  11274. const float x3 = src[n_dims/2*3];
  11275. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11276. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11277. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11278. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11279. }
  11280. } else if (!is_neox) {
  11281. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11282. const float cos_theta = cache[i0 + 0];
  11283. const float sin_theta = cache[i0 + 1];
  11284. // zeta scaling for xPos only:
  11285. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11286. if (xpos_down) zeta = 1.0f / zeta;
  11287. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11288. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11289. const float x0 = src[0];
  11290. const float x1 = src[1];
  11291. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11292. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11293. }
  11294. } else {
  11295. // TODO: this might be wrong for ne0 != n_dims - need double check
  11296. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11297. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11298. theta_base *= freq_scale;
  11299. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11300. if (ic < n_dims) {
  11301. const int64_t ib = 0;
  11302. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11303. float cur_rot = inv_ndims * ic - ib;
  11304. float cos_theta, sin_theta;
  11305. rope_yarn(
  11306. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11307. &cos_theta, &sin_theta
  11308. );
  11309. sin_theta *= sin_sign;
  11310. theta_base *= theta_scale;
  11311. const int64_t i0 = ib*n_dims + ic/2;
  11312. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11313. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11314. const float x0 = src[0];
  11315. const float x1 = src[n_dims/2];
  11316. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11317. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11318. } else {
  11319. const int64_t i0 = ic;
  11320. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11321. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11322. dst_data[0] = src[0];
  11323. dst_data[1] = src[1];
  11324. }
  11325. }
  11326. }
  11327. }
  11328. }
  11329. }
  11330. }
  11331. static void ggml_compute_forward_rope_f16(
  11332. const struct ggml_compute_params * params,
  11333. struct ggml_tensor * dst,
  11334. const bool forward) {
  11335. const struct ggml_tensor * src0 = dst->src[0];
  11336. const struct ggml_tensor * src1 = dst->src[1];
  11337. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11338. return;
  11339. }
  11340. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11341. //const int n_past = ((int32_t *) dst->op_params)[0];
  11342. const int n_dims = ((int32_t *) dst->op_params)[1];
  11343. const int mode = ((int32_t *) dst->op_params)[2];
  11344. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11345. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11346. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11347. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11348. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11349. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11350. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11351. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11352. GGML_TENSOR_UNARY_OP_LOCALS
  11353. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11354. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11355. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11356. const int ith = params->ith;
  11357. const int nth = params->nth;
  11358. const int nr = ggml_nrows(dst);
  11359. GGML_ASSERT(n_dims <= ne0);
  11360. GGML_ASSERT(n_dims % 2 == 0);
  11361. // rows per thread
  11362. const int dr = (nr + nth - 1)/nth;
  11363. // row range for this thread
  11364. const int ir0 = dr*ith;
  11365. const int ir1 = MIN(ir0 + dr, nr);
  11366. // row index used to determine which thread to use
  11367. int ir = 0;
  11368. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11369. const float inv_ndims = -1.f/n_dims;
  11370. float corr_dims[2];
  11371. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11372. const bool is_neox = mode & 2;
  11373. const bool is_glm = mode & 4;
  11374. // backward process uses inverse rotation by cos and sin.
  11375. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11376. // this essentially just switches the sign of sin.
  11377. const float sin_sign = forward ? 1.0f : -1.0f;
  11378. const int32_t * pos = (const int32_t *) src1->data;
  11379. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11380. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11381. const int64_t p = pos[i2];
  11382. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11383. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11384. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11385. }
  11386. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11387. if (ir++ < ir0) continue;
  11388. if (ir > ir1) break;
  11389. float theta_base = (float)p;
  11390. if (is_glm) {
  11391. theta_base = MIN(p, n_ctx - 2);
  11392. float block_theta = MAX(p - (n_ctx - 2), 0);
  11393. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11394. const float cos_theta = cosf(theta_base);
  11395. const float sin_theta = sinf(theta_base) * sin_sign;
  11396. const float cos_block_theta = cosf(block_theta);
  11397. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11398. theta_base *= theta_scale;
  11399. block_theta *= theta_scale;
  11400. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11401. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11402. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11403. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11404. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11405. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11406. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11407. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11408. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11409. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11410. }
  11411. } else if (!is_neox) {
  11412. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11413. const float cos_theta = cache[i0 + 0];
  11414. const float sin_theta = cache[i0 + 1];
  11415. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11416. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11417. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11418. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11419. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11420. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11421. }
  11422. } else {
  11423. // TODO: this might be wrong for ne0 != n_dims - need double check
  11424. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11425. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11426. theta_base *= freq_scale;
  11427. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11428. if (ic < n_dims) {
  11429. const int64_t ib = 0;
  11430. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11431. float cur_rot = inv_ndims * ic - ib;
  11432. float cos_theta, sin_theta;
  11433. rope_yarn(
  11434. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11435. &cos_theta, &sin_theta
  11436. );
  11437. sin_theta *= sin_sign;
  11438. theta_base *= theta_scale;
  11439. const int64_t i0 = ib*n_dims + ic/2;
  11440. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11441. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11442. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11443. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11444. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11445. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11446. } else {
  11447. const int64_t i0 = ic;
  11448. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11449. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11450. dst_data[0] = src[0];
  11451. dst_data[1] = src[1];
  11452. }
  11453. }
  11454. }
  11455. }
  11456. }
  11457. }
  11458. }
  11459. static void ggml_compute_forward_rope(
  11460. const struct ggml_compute_params * params,
  11461. struct ggml_tensor * dst) {
  11462. const struct ggml_tensor * src0 = dst->src[0];
  11463. switch (src0->type) {
  11464. case GGML_TYPE_F16:
  11465. {
  11466. ggml_compute_forward_rope_f16(params, dst, true);
  11467. } break;
  11468. case GGML_TYPE_F32:
  11469. {
  11470. ggml_compute_forward_rope_f32(params, dst, true);
  11471. } break;
  11472. default:
  11473. {
  11474. GGML_ASSERT(false);
  11475. } break;
  11476. }
  11477. }
  11478. // ggml_compute_forward_rope_back
  11479. static void ggml_compute_forward_rope_back(
  11480. const struct ggml_compute_params * params,
  11481. struct ggml_tensor * dst) {
  11482. const struct ggml_tensor * src0 = dst->src[0];
  11483. switch (src0->type) {
  11484. case GGML_TYPE_F16:
  11485. {
  11486. ggml_compute_forward_rope_f16(params, dst, false);
  11487. } break;
  11488. case GGML_TYPE_F32:
  11489. {
  11490. ggml_compute_forward_rope_f32(params, dst, false);
  11491. } break;
  11492. default:
  11493. {
  11494. GGML_ASSERT(false);
  11495. } break;
  11496. }
  11497. }
  11498. // ggml_compute_forward_conv_transpose_1d
  11499. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11500. const struct ggml_compute_params * params,
  11501. struct ggml_tensor * dst) {
  11502. const struct ggml_tensor * src0 = dst->src[0];
  11503. const struct ggml_tensor * src1 = dst->src[1];
  11504. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11505. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11506. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11507. int64_t t0 = ggml_perf_time_us();
  11508. UNUSED(t0);
  11509. GGML_TENSOR_BINARY_OP_LOCALS
  11510. const int ith = params->ith;
  11511. const int nth = params->nth;
  11512. const int nk = ne00*ne01*ne02;
  11513. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11514. GGML_ASSERT(nb10 == sizeof(float));
  11515. if (params->type == GGML_TASK_TYPE_INIT) {
  11516. if (ith != 0) {
  11517. return;
  11518. }
  11519. memset(params->wdata, 0, params->wsize);
  11520. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11521. {
  11522. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11523. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11524. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11525. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11526. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11527. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11528. dst_data[i00*ne02 + i02] = src[i00];
  11529. }
  11530. }
  11531. }
  11532. }
  11533. // permute source data (src1) from (L x Cin) to (Cin x L)
  11534. {
  11535. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11536. ggml_fp16_t * dst_data = wdata;
  11537. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11538. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11539. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11540. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11541. }
  11542. }
  11543. }
  11544. // need to zero dst since we are accumulating into it
  11545. memset(dst->data, 0, ggml_nbytes(dst));
  11546. return;
  11547. }
  11548. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11549. return;
  11550. }
  11551. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11552. // total rows in dst
  11553. const int nr = ne1;
  11554. // rows per thread
  11555. const int dr = (nr + nth - 1)/nth;
  11556. // row range for this thread
  11557. const int ir0 = dr*ith;
  11558. const int ir1 = MIN(ir0 + dr, nr);
  11559. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11560. ggml_fp16_t * const wdata_src = wdata + nk;
  11561. for (int i1 = ir0; i1 < ir1; i1++) {
  11562. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11563. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11564. for (int i10 = 0; i10 < ne10; i10++) {
  11565. const int i1n = i10*ne11;
  11566. for (int i00 = 0; i00 < ne00; i00++) {
  11567. float v = 0;
  11568. ggml_vec_dot_f16(ne02, &v, 0,
  11569. (ggml_fp16_t *) wdata_src + i1n, 0,
  11570. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11571. dst_data[i10*s0 + i00] += v;
  11572. }
  11573. }
  11574. }
  11575. }
  11576. static void ggml_compute_forward_conv_transpose_1d_f32(
  11577. const struct ggml_compute_params * params,
  11578. struct ggml_tensor * dst) {
  11579. const struct ggml_tensor * src0 = dst->src[0];
  11580. const struct ggml_tensor * src1 = dst->src[1];
  11581. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11582. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11583. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11584. int64_t t0 = ggml_perf_time_us();
  11585. UNUSED(t0);
  11586. GGML_TENSOR_BINARY_OP_LOCALS
  11587. const int ith = params->ith;
  11588. const int nth = params->nth;
  11589. const int nk = ne00*ne01*ne02;
  11590. GGML_ASSERT(nb00 == sizeof(float));
  11591. GGML_ASSERT(nb10 == sizeof(float));
  11592. if (params->type == GGML_TASK_TYPE_INIT) {
  11593. if (ith != 0) {
  11594. return;
  11595. }
  11596. memset(params->wdata, 0, params->wsize);
  11597. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11598. {
  11599. float * const wdata = (float *) params->wdata + 0;
  11600. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11601. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11602. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11603. float * dst_data = wdata + i01*ne00*ne02;
  11604. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11605. dst_data[i00*ne02 + i02] = src[i00];
  11606. }
  11607. }
  11608. }
  11609. }
  11610. // prepare source data (src1)
  11611. {
  11612. float * const wdata = (float *) params->wdata + nk;
  11613. float * dst_data = wdata;
  11614. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11615. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11616. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11617. dst_data[i10*ne11 + i11] = src[i10];
  11618. }
  11619. }
  11620. }
  11621. // need to zero dst since we are accumulating into it
  11622. memset(dst->data, 0, ggml_nbytes(dst));
  11623. return;
  11624. }
  11625. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11626. return;
  11627. }
  11628. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11629. // total rows in dst
  11630. const int nr = ne1;
  11631. // rows per thread
  11632. const int dr = (nr + nth - 1)/nth;
  11633. // row range for this thread
  11634. const int ir0 = dr*ith;
  11635. const int ir1 = MIN(ir0 + dr, nr);
  11636. float * const wdata = (float *) params->wdata + 0;
  11637. float * const wdata_src = wdata + nk;
  11638. for (int i1 = ir0; i1 < ir1; i1++) {
  11639. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11640. float * wdata_kernel = wdata + i1*ne02*ne00;
  11641. for (int i10 = 0; i10 < ne10; i10++) {
  11642. const int i1n = i10*ne11;
  11643. for (int i00 = 0; i00 < ne00; i00++) {
  11644. float v = 0;
  11645. ggml_vec_dot_f32(ne02, &v, 0,
  11646. wdata_src + i1n, 0,
  11647. wdata_kernel + i00*ne02, 0, 1);
  11648. dst_data[i10*s0 + i00] += v;
  11649. }
  11650. }
  11651. }
  11652. }
  11653. static void ggml_compute_forward_conv_transpose_1d(
  11654. const struct ggml_compute_params * params,
  11655. struct ggml_tensor * dst) {
  11656. const struct ggml_tensor * src0 = dst->src[0];
  11657. switch (src0->type) {
  11658. case GGML_TYPE_F16:
  11659. {
  11660. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11661. } break;
  11662. case GGML_TYPE_F32:
  11663. {
  11664. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11665. } break;
  11666. default:
  11667. {
  11668. GGML_ASSERT(false);
  11669. } break;
  11670. }
  11671. }
  11672. // src0: kernel [OC, IC, KH, KW]
  11673. // src1: image [N, IC, IH, IW]
  11674. // dst: result [N, OH, OW, IC*KH*KW]
  11675. static void ggml_compute_forward_im2col_f32(
  11676. const struct ggml_compute_params * params,
  11677. struct ggml_tensor * dst) {
  11678. const struct ggml_tensor * src0 = dst->src[0];
  11679. const struct ggml_tensor * src1 = dst->src[1];
  11680. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11681. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11682. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11683. int64_t t0 = ggml_perf_time_us();
  11684. UNUSED(t0);
  11685. GGML_TENSOR_BINARY_OP_LOCALS;
  11686. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11687. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11688. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11689. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11690. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11691. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11692. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11693. const int ith = params->ith;
  11694. const int nth = params->nth;
  11695. const int64_t N = is_2D ? ne13 : ne12;
  11696. const int64_t IC = is_2D ? ne12 : ne11;
  11697. const int64_t IH = is_2D ? ne11 : 1;
  11698. const int64_t IW = ne10;
  11699. const int64_t KH = is_2D ? ne01 : 1;
  11700. const int64_t KW = ne00;
  11701. const int64_t OH = is_2D ? ne2 : 1;
  11702. const int64_t OW = ne1;
  11703. int ofs0 = is_2D ? nb13 : nb12;
  11704. int ofs1 = is_2D ? nb12 : nb11;
  11705. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11706. GGML_ASSERT(nb10 == sizeof(float));
  11707. if (params->type == GGML_TASK_TYPE_INIT) {
  11708. return;
  11709. }
  11710. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11711. return;
  11712. }
  11713. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11714. {
  11715. float * const wdata = (float *) dst->data;
  11716. for (int64_t in = 0; in < N; in++) {
  11717. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11718. for (int64_t iow = 0; iow < OW; iow++) {
  11719. for (int64_t iic = ith; iic < IC; iic += nth) {
  11720. // micro kernel
  11721. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11722. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11723. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11724. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11725. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11726. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11727. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11728. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11729. } else {
  11730. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11731. }
  11732. }
  11733. }
  11734. }
  11735. }
  11736. }
  11737. }
  11738. }
  11739. }
  11740. // src0: kernel [OC, IC, KH, KW]
  11741. // src1: image [N, IC, IH, IW]
  11742. // dst: result [N, OH, OW, IC*KH*KW]
  11743. static void ggml_compute_forward_im2col_f16(
  11744. const struct ggml_compute_params * params,
  11745. struct ggml_tensor * dst) {
  11746. const struct ggml_tensor * src0 = dst->src[0];
  11747. const struct ggml_tensor * src1 = dst->src[1];
  11748. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11749. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11750. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11751. int64_t t0 = ggml_perf_time_us();
  11752. UNUSED(t0);
  11753. GGML_TENSOR_BINARY_OP_LOCALS;
  11754. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11755. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11756. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11757. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11758. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11759. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11760. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11761. const int ith = params->ith;
  11762. const int nth = params->nth;
  11763. const int64_t N = is_2D ? ne13 : ne12;
  11764. const int64_t IC = is_2D ? ne12 : ne11;
  11765. const int64_t IH = is_2D ? ne11 : 1;
  11766. const int64_t IW = ne10;
  11767. const int64_t KH = is_2D ? ne01 : 1;
  11768. const int64_t KW = ne00;
  11769. const int64_t OH = is_2D ? ne2 : 1;
  11770. const int64_t OW = ne1;
  11771. int ofs0 = is_2D ? nb13 : nb12;
  11772. int ofs1 = is_2D ? nb12 : nb11;
  11773. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11774. GGML_ASSERT(nb10 == sizeof(float));
  11775. if (params->type == GGML_TASK_TYPE_INIT) {
  11776. return;
  11777. }
  11778. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11779. return;
  11780. }
  11781. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11782. {
  11783. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11784. for (int64_t in = 0; in < N; in++) {
  11785. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11786. for (int64_t iow = 0; iow < OW; iow++) {
  11787. for (int64_t iic = ith; iic < IC; iic += nth) {
  11788. // micro kernel
  11789. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11790. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11791. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11792. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11793. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11794. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11795. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11796. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11797. } else {
  11798. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11799. }
  11800. }
  11801. }
  11802. }
  11803. }
  11804. }
  11805. }
  11806. }
  11807. }
  11808. static void ggml_compute_forward_im2col(
  11809. const struct ggml_compute_params * params,
  11810. struct ggml_tensor * dst) {
  11811. switch (dst->type) {
  11812. case GGML_TYPE_F16:
  11813. {
  11814. ggml_compute_forward_im2col_f16(params, dst);
  11815. } break;
  11816. case GGML_TYPE_F32:
  11817. {
  11818. ggml_compute_forward_im2col_f32(params, dst);
  11819. } break;
  11820. default:
  11821. {
  11822. GGML_ASSERT(false);
  11823. } break;
  11824. }
  11825. }
  11826. // ggml_compute_forward_conv_transpose_2d
  11827. static void ggml_compute_forward_conv_transpose_2d(
  11828. const struct ggml_compute_params * params,
  11829. struct ggml_tensor * dst) {
  11830. const struct ggml_tensor * src0 = dst->src[0];
  11831. const struct ggml_tensor * src1 = dst->src[1];
  11832. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11833. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11834. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11835. int64_t t0 = ggml_perf_time_us();
  11836. UNUSED(t0);
  11837. GGML_TENSOR_BINARY_OP_LOCALS
  11838. const int ith = params->ith;
  11839. const int nth = params->nth;
  11840. const int nk = ne00*ne01*ne02*ne03;
  11841. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11842. GGML_ASSERT(nb10 == sizeof(float));
  11843. if (params->type == GGML_TASK_TYPE_INIT) {
  11844. if (ith != 0) {
  11845. return;
  11846. }
  11847. memset(params->wdata, 0, params->wsize);
  11848. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11849. {
  11850. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11851. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11852. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11853. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11854. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11855. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11856. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11857. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11858. }
  11859. }
  11860. }
  11861. }
  11862. }
  11863. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11864. {
  11865. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11866. for (int i12 = 0; i12 < ne12; i12++) {
  11867. for (int i11 = 0; i11 < ne11; i11++) {
  11868. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11869. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11870. for (int i10 = 0; i10 < ne10; i10++) {
  11871. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11872. }
  11873. }
  11874. }
  11875. }
  11876. memset(dst->data, 0, ggml_nbytes(dst));
  11877. return;
  11878. }
  11879. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11880. return;
  11881. }
  11882. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11883. // total patches in dst
  11884. const int np = ne2;
  11885. // patches per thread
  11886. const int dp = (np + nth - 1)/nth;
  11887. // patch range for this thread
  11888. const int ip0 = dp*ith;
  11889. const int ip1 = MIN(ip0 + dp, np);
  11890. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11891. ggml_fp16_t * const wdata_src = wdata + nk;
  11892. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11893. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11894. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11895. for (int i11 = 0; i11 < ne11; i11++) {
  11896. for (int i10 = 0; i10 < ne10; i10++) {
  11897. const int i1n = i11*ne10*ne12 + i10*ne12;
  11898. for (int i01 = 0; i01 < ne01; i01++) {
  11899. for (int i00 = 0; i00 < ne00; i00++) {
  11900. float v = 0;
  11901. ggml_vec_dot_f16(ne03, &v, 0,
  11902. wdata_src + i1n, 0,
  11903. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11904. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11905. }
  11906. }
  11907. }
  11908. }
  11909. }
  11910. }
  11911. // ggml_compute_forward_pool_1d_sk_p0
  11912. static void ggml_compute_forward_pool_1d_sk_p0(
  11913. const struct ggml_compute_params * params,
  11914. const enum ggml_op_pool op,
  11915. const int k,
  11916. struct ggml_tensor * dst) {
  11917. const struct ggml_tensor * src = dst->src[0];
  11918. assert(src->type == GGML_TYPE_F32);
  11919. assert(params->ith == 0);
  11920. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11921. return;
  11922. }
  11923. const char * cdata = (const char *)src->data;
  11924. const char * const data_end = cdata + ggml_nbytes(src);
  11925. float * drow = (float *)dst->data;
  11926. const int64_t rs = dst->ne[0];
  11927. while (cdata < data_end) {
  11928. const float * const srow = (const float *)cdata;
  11929. int j = 0;
  11930. for (int64_t i = 0; i < rs; ++i) {
  11931. switch (op) {
  11932. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11933. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11934. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11935. }
  11936. for (int ki = 0; ki < k; ++ki) {
  11937. switch (op) {
  11938. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11939. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11940. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11941. }
  11942. ++j;
  11943. }
  11944. switch (op) {
  11945. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11946. case GGML_OP_POOL_MAX: break;
  11947. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11948. }
  11949. }
  11950. cdata += src->nb[1];
  11951. drow += rs;
  11952. }
  11953. }
  11954. // ggml_compute_forward_pool_1d
  11955. static void ggml_compute_forward_pool_1d(
  11956. const struct ggml_compute_params * params,
  11957. struct ggml_tensor * dst) {
  11958. const int32_t * opts = (const int32_t *)dst->op_params;
  11959. enum ggml_op_pool op = opts[0];
  11960. const int k0 = opts[1];
  11961. const int s0 = opts[2];
  11962. const int p0 = opts[3];
  11963. GGML_ASSERT(p0 == 0); // padding not supported
  11964. GGML_ASSERT(k0 == s0); // only s = k supported
  11965. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11966. }
  11967. // ggml_compute_forward_pool_2d
  11968. static void ggml_compute_forward_pool_2d(
  11969. const struct ggml_compute_params * params,
  11970. struct ggml_tensor * dst) {
  11971. const struct ggml_tensor * src = dst->src[0];
  11972. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11973. GGML_ASSERT(params->ith == 0);
  11974. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11975. return;
  11976. }
  11977. const int32_t * opts = (const int32_t *)dst->op_params;
  11978. enum ggml_op_pool op = opts[0];
  11979. const int k0 = opts[1];
  11980. const int k1 = opts[2];
  11981. const int s0 = opts[3];
  11982. const int s1 = opts[4];
  11983. const int p0 = opts[5];
  11984. const int p1 = opts[6];
  11985. const char * cdata = (const char*)src->data;
  11986. const char * const data_end = cdata + ggml_nbytes(src);
  11987. const int64_t px = dst->ne[0];
  11988. const int64_t py = dst->ne[1];
  11989. const int64_t pa = px * py;
  11990. float * dplane = (float *)dst->data;
  11991. const int ka = k0 * k1;
  11992. const int offset0 = -p0;
  11993. const int offset1 = -p1;
  11994. while (cdata < data_end) {
  11995. for (int oy = 0; oy < py; ++oy) {
  11996. float * const drow = dplane + oy * px;
  11997. for (int ox = 0; ox < px; ++ox) {
  11998. float * const out = drow + ox;
  11999. switch (op) {
  12000. case GGML_OP_POOL_AVG: *out = 0; break;
  12001. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12002. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12003. }
  12004. const int ix = offset0 + ox * s0;
  12005. const int iy = offset1 + oy * s1;
  12006. for (int ky = 0; ky < k1; ++ky) {
  12007. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12008. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12009. for (int kx = 0; kx < k0; ++kx) {
  12010. int j = ix + kx;
  12011. if (j < 0 || j >= src->ne[0]) continue;
  12012. switch (op) {
  12013. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12014. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12015. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12016. }
  12017. }
  12018. }
  12019. switch (op) {
  12020. case GGML_OP_POOL_AVG: *out /= ka; break;
  12021. case GGML_OP_POOL_MAX: break;
  12022. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12023. }
  12024. }
  12025. }
  12026. cdata += src->nb[2];
  12027. dplane += pa;
  12028. }
  12029. }
  12030. // ggml_compute_forward_upscale
  12031. static void ggml_compute_forward_upscale_f32(
  12032. const struct ggml_compute_params * params,
  12033. struct ggml_tensor * dst) {
  12034. const struct ggml_tensor * src0 = dst->src[0];
  12035. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12036. return;
  12037. }
  12038. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12039. const int ith = params->ith;
  12040. const int nth = params->nth;
  12041. GGML_TENSOR_UNARY_OP_LOCALS
  12042. const int scale_factor = dst->op_params[0];
  12043. // TODO: optimize
  12044. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12045. const int64_t i03 = i3;
  12046. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12047. const int64_t i02 = i2;
  12048. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12049. const int64_t i01 = i1 / scale_factor;
  12050. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12051. const int64_t i00 = i0 / scale_factor;
  12052. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12053. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12054. *y = *x;
  12055. }
  12056. }
  12057. }
  12058. }
  12059. }
  12060. static void ggml_compute_forward_upscale(
  12061. const struct ggml_compute_params * params,
  12062. struct ggml_tensor * dst) {
  12063. const struct ggml_tensor * src0 = dst->src[0];
  12064. switch (src0->type) {
  12065. case GGML_TYPE_F32:
  12066. {
  12067. ggml_compute_forward_upscale_f32(params, dst);
  12068. } break;
  12069. default:
  12070. {
  12071. GGML_ASSERT(false);
  12072. } break;
  12073. }
  12074. }
  12075. // ggml_compute_forward_pad
  12076. static void ggml_compute_forward_pad_f32(
  12077. const struct ggml_compute_params * params,
  12078. struct ggml_tensor * dst) {
  12079. const struct ggml_tensor * src0 = dst->src[0];
  12080. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12081. return;
  12082. }
  12083. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12084. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12085. const int ith = params->ith;
  12086. const int nth = params->nth;
  12087. GGML_TENSOR_UNARY_OP_LOCALS
  12088. float * dst_ptr = (float *) dst->data;
  12089. // TODO: optimize
  12090. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12091. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12092. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12093. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12094. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12095. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12096. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12097. dst_ptr[dst_idx] = *src_ptr;
  12098. } else {
  12099. dst_ptr[dst_idx] = 0;
  12100. }
  12101. }
  12102. }
  12103. }
  12104. }
  12105. }
  12106. static void ggml_compute_forward_pad(
  12107. const struct ggml_compute_params * params,
  12108. struct ggml_tensor * dst) {
  12109. const struct ggml_tensor * src0 = dst->src[0];
  12110. switch (src0->type) {
  12111. case GGML_TYPE_F32:
  12112. {
  12113. ggml_compute_forward_pad_f32(params, dst);
  12114. } break;
  12115. default:
  12116. {
  12117. GGML_ASSERT(false);
  12118. } break;
  12119. }
  12120. }
  12121. // ggml_compute_forward_arange
  12122. static void ggml_compute_forward_arange_f32(
  12123. const struct ggml_compute_params * params,
  12124. struct ggml_tensor * dst) {
  12125. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12126. return;
  12127. }
  12128. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12129. const int ith = params->ith;
  12130. const int nth = params->nth;
  12131. const float start = ggml_get_op_params_f32(dst, 0);
  12132. const float stop = ggml_get_op_params_f32(dst, 1);
  12133. const float step = ggml_get_op_params_f32(dst, 2);
  12134. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12135. GGML_ASSERT(ggml_nelements(dst) == steps);
  12136. for (int64_t i = ith; i < steps; i+= nth) {
  12137. float value = start + step * i;
  12138. ((float *)dst->data)[i] = value;
  12139. }
  12140. }
  12141. static void ggml_compute_forward_arange(
  12142. const struct ggml_compute_params * params,
  12143. struct ggml_tensor * dst) {
  12144. switch (dst->type) {
  12145. case GGML_TYPE_F32:
  12146. {
  12147. ggml_compute_forward_arange_f32(params, dst);
  12148. } break;
  12149. default:
  12150. {
  12151. GGML_ASSERT(false);
  12152. } break;
  12153. }
  12154. }
  12155. static void ggml_compute_forward_timestep_embedding_f32(
  12156. const struct ggml_compute_params * params,
  12157. struct ggml_tensor * dst) {
  12158. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12159. return;
  12160. }
  12161. const struct ggml_tensor * src0 = dst->src[0];
  12162. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12163. const int ith = params->ith;
  12164. const int nth = params->nth;
  12165. GGML_TENSOR_UNARY_OP_LOCALS
  12166. const int dim = ggml_get_op_params_i32(dst, 0);
  12167. const int max_period = ggml_get_op_params_i32(dst, 1);
  12168. int half = dim / 2;
  12169. for (int64_t i = 0; i < ne00; i++) {
  12170. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12171. for (int64_t j = ith; j < half; j += nth) {
  12172. float timestep = ((float *)src0->data)[i];
  12173. float freq = (float)expf(-logf(max_period) * j / half);
  12174. float arg = timestep * freq;
  12175. embed_data[j] = cosf(arg);
  12176. embed_data[j + half] = sinf(arg);
  12177. }
  12178. if (dim % 2 != 0 && ith == 0) {
  12179. embed_data[dim] = 0.f;
  12180. }
  12181. }
  12182. }
  12183. static void ggml_compute_forward_timestep_embedding(
  12184. const struct ggml_compute_params * params,
  12185. struct ggml_tensor * dst) {
  12186. const struct ggml_tensor * src0 = dst->src[0];
  12187. switch (src0->type) {
  12188. case GGML_TYPE_F32:
  12189. {
  12190. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12191. } break;
  12192. default:
  12193. {
  12194. GGML_ASSERT(false);
  12195. } break;
  12196. }
  12197. }
  12198. // ggml_compute_forward_argsort
  12199. static void ggml_compute_forward_argsort_f32(
  12200. const struct ggml_compute_params * params,
  12201. struct ggml_tensor * dst) {
  12202. const struct ggml_tensor * src0 = dst->src[0];
  12203. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12204. return;
  12205. }
  12206. GGML_TENSOR_UNARY_OP_LOCALS
  12207. GGML_ASSERT(nb0 == sizeof(float));
  12208. const int ith = params->ith;
  12209. const int nth = params->nth;
  12210. const int64_t nr = ggml_nrows(src0);
  12211. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12212. for (int64_t i = ith; i < nr; i += nth) {
  12213. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12214. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12215. for (int64_t j = 0; j < ne0; j++) {
  12216. dst_data[j] = j;
  12217. }
  12218. // C doesn't have a functional sort, so we do a bubble sort instead
  12219. for (int64_t j = 0; j < ne0; j++) {
  12220. for (int64_t k = j + 1; k < ne0; k++) {
  12221. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12222. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12223. int32_t tmp = dst_data[j];
  12224. dst_data[j] = dst_data[k];
  12225. dst_data[k] = tmp;
  12226. }
  12227. }
  12228. }
  12229. }
  12230. }
  12231. static void ggml_compute_forward_argsort(
  12232. const struct ggml_compute_params * params,
  12233. struct ggml_tensor * dst) {
  12234. const struct ggml_tensor * src0 = dst->src[0];
  12235. switch (src0->type) {
  12236. case GGML_TYPE_F32:
  12237. {
  12238. ggml_compute_forward_argsort_f32(params, dst);
  12239. } break;
  12240. default:
  12241. {
  12242. GGML_ASSERT(false);
  12243. } break;
  12244. }
  12245. }
  12246. // ggml_compute_forward_flash_attn
  12247. static void ggml_compute_forward_flash_attn_f32(
  12248. const struct ggml_compute_params * params,
  12249. const bool masked,
  12250. struct ggml_tensor * dst) {
  12251. const struct ggml_tensor * q = dst->src[0];
  12252. const struct ggml_tensor * k = dst->src[1];
  12253. const struct ggml_tensor * v = dst->src[2];
  12254. int64_t t0 = ggml_perf_time_us();
  12255. UNUSED(t0);
  12256. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12257. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12258. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12259. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12260. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12261. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12262. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12263. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12264. const int ith = params->ith;
  12265. const int nth = params->nth;
  12266. const int64_t D = neq0;
  12267. const int64_t N = neq1;
  12268. const int64_t P = nek1 - N;
  12269. const int64_t M = P + N;
  12270. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12271. GGML_ASSERT(ne0 == D);
  12272. GGML_ASSERT(ne1 == N);
  12273. GGML_ASSERT(P >= 0);
  12274. GGML_ASSERT(nbq0 == sizeof(float));
  12275. GGML_ASSERT(nbk0 == sizeof(float));
  12276. GGML_ASSERT(nbv0 == sizeof(float));
  12277. GGML_ASSERT(neq0 == D);
  12278. GGML_ASSERT(nek0 == D);
  12279. GGML_ASSERT(nev1 == D);
  12280. GGML_ASSERT(neq1 == N);
  12281. GGML_ASSERT(nek1 == N + P);
  12282. GGML_ASSERT(nev1 == D);
  12283. // dst cannot be transposed or permuted
  12284. GGML_ASSERT(nb0 == sizeof(float));
  12285. GGML_ASSERT(nb0 <= nb1);
  12286. GGML_ASSERT(nb1 <= nb2);
  12287. GGML_ASSERT(nb2 <= nb3);
  12288. if (params->type == GGML_TASK_TYPE_INIT) {
  12289. return;
  12290. }
  12291. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12292. return;
  12293. }
  12294. // parallelize by q rows using ggml_vec_dot_f32
  12295. // total rows in q
  12296. const int nr = neq1*neq2*neq3;
  12297. // rows per thread
  12298. const int dr = (nr + nth - 1)/nth;
  12299. // row range for this thread
  12300. const int ir0 = dr*ith;
  12301. const int ir1 = MIN(ir0 + dr, nr);
  12302. const float scale = 1.0f/sqrtf(D);
  12303. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12304. for (int ir = ir0; ir < ir1; ++ir) {
  12305. // q indices
  12306. const int iq3 = ir/(neq2*neq1);
  12307. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12308. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12309. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12310. for (int i = M; i < Mup; ++i) {
  12311. S[i] = -INFINITY;
  12312. }
  12313. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12314. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12315. // k indices
  12316. const int ik3 = iq3;
  12317. const int ik2 = iq2 % nek2;
  12318. const int ik1 = ic;
  12319. // S indices
  12320. const int i1 = ik1;
  12321. ggml_vec_dot_f32(neq0,
  12322. S + i1, 0,
  12323. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12324. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12325. }
  12326. // scale
  12327. ggml_vec_scale_f32(masked_begin, S, scale);
  12328. for (int64_t i = masked_begin; i < M; i++) {
  12329. S[i] = -INFINITY;
  12330. }
  12331. // softmax
  12332. // exclude known -INF S[..] values from max and loop
  12333. // dont forget to set their SW values to zero
  12334. {
  12335. float max = -INFINITY;
  12336. ggml_vec_max_f32(masked_begin, &max, S);
  12337. ggml_float sum = 0.0;
  12338. {
  12339. #ifdef GGML_SOFT_MAX_ACCELERATE
  12340. max = -max;
  12341. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12342. vvexpf(S, S, &Mup);
  12343. ggml_vec_sum_f32(Mup, &sum, S);
  12344. #else
  12345. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12346. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12347. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12348. if (i >= masked_begin) {
  12349. break;
  12350. }
  12351. float * SS = S + i;
  12352. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12353. if (i + j >= masked_begin) {
  12354. break;
  12355. } else if (SS[j] == -INFINITY) {
  12356. SS[j] = 0.0f;
  12357. } else {
  12358. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12359. const float val = expf(SS[j] - max);
  12360. #else
  12361. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12362. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12363. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12364. #endif
  12365. sump[j] += (ggml_float)val;
  12366. SS[j] = val;
  12367. }
  12368. }
  12369. }
  12370. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12371. sum += sump[i];
  12372. }
  12373. #endif
  12374. }
  12375. assert(sum > 0.0);
  12376. sum = 1.0/sum;
  12377. ggml_vec_scale_f32(masked_begin, S, sum);
  12378. #ifndef NDEBUG
  12379. for (int i = 0; i < masked_begin; ++i) {
  12380. assert(!isnan(S[i]));
  12381. assert(!isinf(S[i]));
  12382. }
  12383. #endif
  12384. }
  12385. for (int64_t ic = 0; ic < nev1; ++ic) {
  12386. // dst indices
  12387. const int i1 = iq1;
  12388. const int i2 = iq2;
  12389. const int i3 = iq3;
  12390. // v indices
  12391. const int iv2 = iq2 % nev2;
  12392. const int iv3 = iq3;
  12393. ggml_vec_dot_f32(masked_begin,
  12394. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12395. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12396. S, 0, 1);
  12397. }
  12398. }
  12399. }
  12400. static void ggml_compute_forward_flash_attn_f16(
  12401. const struct ggml_compute_params * params,
  12402. const bool masked,
  12403. struct ggml_tensor * dst) {
  12404. const struct ggml_tensor * q = dst->src[0];
  12405. const struct ggml_tensor * k = dst->src[1];
  12406. const struct ggml_tensor * v = dst->src[2];
  12407. int64_t t0 = ggml_perf_time_us();
  12408. UNUSED(t0);
  12409. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12410. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12411. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12412. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12413. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12414. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12415. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12416. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12417. const int ith = params->ith;
  12418. const int nth = params->nth;
  12419. const int64_t D = neq0;
  12420. const int64_t N = neq1;
  12421. const int64_t P = nek1 - N;
  12422. const int64_t M = P + N;
  12423. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12424. GGML_ASSERT(ne0 == D);
  12425. GGML_ASSERT(ne1 == N);
  12426. GGML_ASSERT(P >= 0);
  12427. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12428. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12429. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12430. GGML_ASSERT(neq0 == D);
  12431. GGML_ASSERT(nek0 == D);
  12432. GGML_ASSERT(nev1 == D);
  12433. GGML_ASSERT(neq1 == N);
  12434. GGML_ASSERT(nek1 == N + P);
  12435. GGML_ASSERT(nev1 == D);
  12436. // dst cannot be transposed or permuted
  12437. GGML_ASSERT(nb0 == sizeof(float));
  12438. GGML_ASSERT(nb0 <= nb1);
  12439. GGML_ASSERT(nb1 <= nb2);
  12440. GGML_ASSERT(nb2 <= nb3);
  12441. if (params->type == GGML_TASK_TYPE_INIT) {
  12442. return;
  12443. }
  12444. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12445. return;
  12446. }
  12447. // parallelize by q rows using ggml_vec_dot_f32
  12448. // total rows in q
  12449. const int nr = neq1*neq2*neq3;
  12450. // rows per thread
  12451. const int dr = (nr + nth - 1)/nth;
  12452. // row range for this thread
  12453. const int ir0 = dr*ith;
  12454. const int ir1 = MIN(ir0 + dr, nr);
  12455. const float scale = 1.0f/sqrtf(D);
  12456. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12457. for (int ir = ir0; ir < ir1; ++ir) {
  12458. // q indices
  12459. const int iq3 = ir/(neq2*neq1);
  12460. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12461. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12462. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12463. for (int i = M; i < Mup; ++i) {
  12464. S[i] = -INFINITY;
  12465. }
  12466. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12467. for (int64_t ic = 0; ic < nek1; ++ic) {
  12468. // k indices
  12469. const int ik3 = iq3;
  12470. const int ik2 = iq2 % nek2;
  12471. const int ik1 = ic;
  12472. // S indices
  12473. const int i1 = ik1;
  12474. ggml_vec_dot_f16(neq0,
  12475. S + i1, 0,
  12476. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12477. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12478. }
  12479. } else {
  12480. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12481. // k indices
  12482. const int ik3 = iq3;
  12483. const int ik2 = iq2 % nek2;
  12484. const int ik1 = ic;
  12485. // S indices
  12486. const int i1 = ik1;
  12487. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12488. S + i1,
  12489. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12490. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12491. }
  12492. }
  12493. // scale
  12494. ggml_vec_scale_f32(nek1, S, scale);
  12495. if (masked) {
  12496. for (int64_t i = P; i < M; i++) {
  12497. if (i > P + iq1) {
  12498. S[i] = -INFINITY;
  12499. }
  12500. }
  12501. }
  12502. // softmax
  12503. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12504. // dont forget to set their S values to zero
  12505. {
  12506. float max = -INFINITY;
  12507. ggml_vec_max_f32(M, &max, S);
  12508. ggml_float sum = 0.0;
  12509. {
  12510. #ifdef GGML_SOFT_MAX_ACCELERATE
  12511. max = -max;
  12512. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12513. vvexpf(S, S, &Mup);
  12514. ggml_vec_sum_f32(Mup, &sum, S);
  12515. #else
  12516. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  12517. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12518. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12519. float * SS = S + i;
  12520. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12521. if (SS[j] == -INFINITY) {
  12522. SS[j] = 0.0f;
  12523. } else {
  12524. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12525. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12526. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12527. sump[j] += (ggml_float)val;
  12528. SS[j] = val;
  12529. }
  12530. }
  12531. }
  12532. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12533. sum += sump[i];
  12534. }
  12535. #endif
  12536. }
  12537. assert(sum > 0.0);
  12538. sum = 1.0/sum;
  12539. ggml_vec_scale_f32(M, S, sum);
  12540. #ifndef NDEBUG
  12541. for (int i = 0; i < M; ++i) {
  12542. assert(!isnan(S[i]));
  12543. assert(!isinf(S[i]));
  12544. }
  12545. #endif
  12546. }
  12547. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12548. for (int64_t i = 0; i < M; i++) {
  12549. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12550. }
  12551. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12552. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12553. for (int64_t ic = 0; ic < nev1; ++ic) {
  12554. // dst indices
  12555. const int i1 = iq1;
  12556. const int i2 = iq2;
  12557. const int i3 = iq3;
  12558. // v indices
  12559. const int iv2 = iq2 % nev2;
  12560. const int iv3 = iq3;
  12561. ggml_vec_dot_f16(nev0,
  12562. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12563. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12564. S16, 0, 1);
  12565. }
  12566. } else {
  12567. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12568. // dst indices
  12569. const int i1 = iq1;
  12570. const int i2 = iq2;
  12571. const int i3 = iq3;
  12572. // v indices
  12573. const int iv2 = iq2 % nev2;
  12574. const int iv3 = iq3;
  12575. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12576. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12577. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12578. S16);
  12579. }
  12580. }
  12581. }
  12582. }
  12583. static void ggml_compute_forward_flash_attn(
  12584. const struct ggml_compute_params * params,
  12585. const bool masked,
  12586. struct ggml_tensor * dst) {
  12587. const struct ggml_tensor * q = dst->src[0];
  12588. switch (q->type) {
  12589. case GGML_TYPE_F16:
  12590. {
  12591. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  12592. } break;
  12593. case GGML_TYPE_F32:
  12594. {
  12595. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  12596. } break;
  12597. default:
  12598. {
  12599. GGML_ASSERT(false);
  12600. } break;
  12601. }
  12602. }
  12603. // ggml_compute_forward_flash_attn_ext
  12604. static void ggml_compute_forward_flash_attn_ext_f16(
  12605. const struct ggml_compute_params * params,
  12606. const struct ggml_tensor * q,
  12607. const struct ggml_tensor * k,
  12608. const struct ggml_tensor * v,
  12609. const struct ggml_tensor * mask,
  12610. struct ggml_tensor * dst) {
  12611. int64_t t0 = ggml_perf_time_us();
  12612. UNUSED(t0);
  12613. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12614. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12615. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12616. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12617. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12618. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12619. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12620. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12621. const int ith = params->ith;
  12622. const int nth = params->nth;
  12623. const int64_t D = neq0;
  12624. const int64_t N = neq1;
  12625. GGML_ASSERT(ne0 == D);
  12626. GGML_ASSERT(ne2 == N);
  12627. GGML_ASSERT(nbq0 == sizeof(float));
  12628. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12629. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12630. GGML_ASSERT(neq0 == D);
  12631. GGML_ASSERT(nek0 == D);
  12632. GGML_ASSERT(nev0 == D);
  12633. GGML_ASSERT(neq1 == N);
  12634. GGML_ASSERT(nev0 == D);
  12635. // dst cannot be transposed or permuted
  12636. GGML_ASSERT(nb0 == sizeof(float));
  12637. GGML_ASSERT(nb0 <= nb1);
  12638. GGML_ASSERT(nb1 <= nb2);
  12639. GGML_ASSERT(nb2 <= nb3);
  12640. // broadcast factors
  12641. const int64_t rk2 = neq2/nek2;
  12642. const int64_t rk3 = neq3/nek3;
  12643. const int64_t rv2 = neq2/nev2;
  12644. const int64_t rv3 = neq3/nev3;
  12645. if (params->type == GGML_TASK_TYPE_INIT) {
  12646. return;
  12647. }
  12648. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12649. return;
  12650. }
  12651. // parallelize by q rows using ggml_vec_dot_f32
  12652. // total rows in q
  12653. const int nr = neq1*neq2*neq3;
  12654. // rows per thread
  12655. const int dr = (nr + nth - 1)/nth;
  12656. // row range for this thread
  12657. const int ir0 = dr*ith;
  12658. const int ir1 = MIN(ir0 + dr, nr);
  12659. float scale = 1.0f;
  12660. float max_bias = 0.0f;
  12661. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12662. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12663. const uint32_t n_head = neq2;
  12664. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12665. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12666. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12667. // loop over n_batch and n_head
  12668. for (int ir = ir0; ir < ir1; ++ir) {
  12669. // q indices
  12670. const int iq3 = ir/(neq2*neq1);
  12671. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12672. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12673. const uint32_t h = iq2; // head
  12674. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12675. float S = 0.0f;
  12676. float M = -INFINITY;
  12677. float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
  12678. ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
  12679. ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
  12680. memset(V16, 0, D*sizeof(ggml_fp16_t));
  12681. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12682. // k indices
  12683. const int ik3 = iq3 / rk3;
  12684. const int ik2 = iq2 / rk2;
  12685. // v indices
  12686. const int iv3 = iq3 / rv3;
  12687. const int iv2 = iq2 / rv2;
  12688. // online softmax / attention
  12689. // loop over n_kv and n_head_kv
  12690. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12691. for (int64_t ic = 0; ic < nek1; ++ic) {
  12692. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12693. if (mv == -INFINITY) {
  12694. continue;
  12695. }
  12696. float s;
  12697. // convert Q to F16 in V32
  12698. {
  12699. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12700. for (int64_t d = 0; d < D; ++d) {
  12701. Q16[d] = GGML_FP32_TO_FP16(pq[d]);
  12702. }
  12703. }
  12704. ggml_vec_dot_f16(D,
  12705. &s, 0,
  12706. (ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12707. Q16, 0, 1);
  12708. s = s*scale + mv;
  12709. const float Mold = M;
  12710. float ms = 1.0f;
  12711. float vs = 1.0f;
  12712. if (s > M) {
  12713. M = s;
  12714. ms = expf(Mold - M);
  12715. // V = V*expf(Mold - M)
  12716. ggml_vec_scale_f16(D, V16, ms);
  12717. } else {
  12718. vs = expf(s - M);
  12719. }
  12720. const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12721. // V += v*expf(s - M)
  12722. ggml_vec_mad_f16(D, V16, v16, vs);
  12723. S = S*ms + vs;
  12724. }
  12725. // V /= S
  12726. for (int64_t d = 0; d < D; ++d) {
  12727. V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
  12728. }
  12729. // dst indices
  12730. const int i1 = iq1;
  12731. const int i2 = iq2;
  12732. const int i3 = iq3;
  12733. // original
  12734. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12735. // permute(0, 2, 1, 3)
  12736. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
  12737. }
  12738. }
  12739. static void ggml_compute_forward_flash_attn_ext(
  12740. const struct ggml_compute_params * params,
  12741. const struct ggml_tensor * q,
  12742. const struct ggml_tensor * k,
  12743. const struct ggml_tensor * v,
  12744. const struct ggml_tensor * mask,
  12745. struct ggml_tensor * dst) {
  12746. switch (dst->op_params[2]) {
  12747. case GGML_PREC_DEFAULT:
  12748. case GGML_PREC_F32:
  12749. {
  12750. // uses F32 accumulators
  12751. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12752. } break;
  12753. default:
  12754. {
  12755. GGML_ASSERT(false);
  12756. } break;
  12757. }
  12758. }
  12759. // ggml_compute_forward_flash_ff
  12760. static void ggml_compute_forward_flash_ff_f16(
  12761. const struct ggml_compute_params * params,
  12762. struct ggml_tensor * dst) {
  12763. const struct ggml_tensor * a = dst->src[0]; // F16
  12764. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  12765. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  12766. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  12767. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  12768. int64_t t0 = ggml_perf_time_us();
  12769. UNUSED(t0);
  12770. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  12771. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  12772. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  12773. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  12774. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  12775. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  12776. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  12777. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  12778. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  12779. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  12780. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12781. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12782. const int ith = params->ith;
  12783. const int nth = params->nth;
  12784. const int64_t D = nea0;
  12785. //const int64_t N = nea1;
  12786. const int64_t M = neb01;
  12787. GGML_ASSERT(ne0 == nea0);
  12788. GGML_ASSERT(ne1 == nea1);
  12789. GGML_ASSERT(ne2 == nea2);
  12790. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12791. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12792. GGML_ASSERT(nbb10 == sizeof(float));
  12793. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12794. GGML_ASSERT(nbc10 == sizeof(float));
  12795. GGML_ASSERT(neb00 == D);
  12796. GGML_ASSERT(neb01 == M);
  12797. GGML_ASSERT(neb10 == M);
  12798. GGML_ASSERT(neb11 == 1);
  12799. GGML_ASSERT(nec00 == M);
  12800. GGML_ASSERT(nec01 == D);
  12801. GGML_ASSERT(nec10 == D);
  12802. GGML_ASSERT(nec11 == 1);
  12803. // dst cannot be transposed or permuted
  12804. GGML_ASSERT(nb0 == sizeof(float));
  12805. GGML_ASSERT(nb0 <= nb1);
  12806. GGML_ASSERT(nb1 <= nb2);
  12807. GGML_ASSERT(nb2 <= nb3);
  12808. if (params->type == GGML_TASK_TYPE_INIT) {
  12809. return;
  12810. }
  12811. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12812. return;
  12813. }
  12814. // parallelize by a rows using ggml_vec_dot_f32
  12815. // total rows in a
  12816. const int nr = nea1*nea2*nea3;
  12817. // rows per thread
  12818. const int dr = (nr + nth - 1)/nth;
  12819. // row range for this thread
  12820. const int ir0 = dr*ith;
  12821. const int ir1 = MIN(ir0 + dr, nr);
  12822. for (int ir = ir0; ir < ir1; ++ir) {
  12823. // a indices
  12824. const int ia3 = ir/(nea2*nea1);
  12825. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12826. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12827. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12828. for (int64_t ic = 0; ic < neb01; ++ic) {
  12829. // b0 indices
  12830. const int ib03 = ia3;
  12831. const int ib02 = ia2;
  12832. const int ib01 = ic;
  12833. // S indices
  12834. const int i1 = ib01;
  12835. ggml_vec_dot_f16(nea0,
  12836. S + i1, 0,
  12837. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  12838. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  12839. }
  12840. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12841. //ggml_vec_gelu_f32(neb01, S, S);
  12842. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12843. for (int64_t i = 0; i < M; i++) {
  12844. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12845. }
  12846. ggml_vec_gelu_f16(neb01, S16, S16);
  12847. {
  12848. // dst indices
  12849. const int i1 = ia1;
  12850. const int i2 = ia2;
  12851. const int i3 = ia3;
  12852. for (int64_t ic = 0; ic < nec01; ++ic) {
  12853. ggml_vec_dot_f16(neb01,
  12854. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12855. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  12856. S16, 0, 1);
  12857. }
  12858. ggml_vec_add_f32(nec01,
  12859. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12860. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12861. (float *) c1->data);
  12862. }
  12863. }
  12864. }
  12865. static void ggml_compute_forward_flash_ff(
  12866. const struct ggml_compute_params * params,
  12867. struct ggml_tensor * dst) {
  12868. const struct ggml_tensor * b0 = dst->src[1];
  12869. switch (b0->type) {
  12870. case GGML_TYPE_F16:
  12871. {
  12872. ggml_compute_forward_flash_ff_f16(params, dst);
  12873. } break;
  12874. case GGML_TYPE_F32:
  12875. {
  12876. GGML_ASSERT(false); // TODO
  12877. } break;
  12878. default:
  12879. {
  12880. GGML_ASSERT(false);
  12881. } break;
  12882. }
  12883. }
  12884. // ggml_compute_forward_flash_attn_back
  12885. static void ggml_compute_forward_flash_attn_back_f32(
  12886. const struct ggml_compute_params * params,
  12887. const bool masked,
  12888. struct ggml_tensor * dst) {
  12889. const struct ggml_tensor * q = dst->src[0];
  12890. const struct ggml_tensor * k = dst->src[1];
  12891. const struct ggml_tensor * v = dst->src[2];
  12892. const struct ggml_tensor * d = dst->src[3];
  12893. int64_t t0 = ggml_perf_time_us();
  12894. UNUSED(t0);
  12895. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12896. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12897. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12898. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12899. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12900. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12901. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12902. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12903. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12904. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12905. const int ith = params->ith;
  12906. const int nth = params->nth;
  12907. const int64_t D = neq0;
  12908. const int64_t N = neq1;
  12909. const int64_t P = nek1 - N;
  12910. const int64_t M = P + N;
  12911. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12912. const int mxDM = MAX(D, Mup);
  12913. // GGML_ASSERT(ne0 == D);
  12914. // GGML_ASSERT(ne1 == N);
  12915. GGML_ASSERT(P >= 0);
  12916. GGML_ASSERT(nbq0 == sizeof(float));
  12917. GGML_ASSERT(nbk0 == sizeof(float));
  12918. GGML_ASSERT(nbv0 == sizeof(float));
  12919. GGML_ASSERT(neq0 == D);
  12920. GGML_ASSERT(nek0 == D);
  12921. GGML_ASSERT(nev1 == D);
  12922. GGML_ASSERT(ned0 == D);
  12923. GGML_ASSERT(neq1 == N);
  12924. GGML_ASSERT(nek1 == N + P);
  12925. GGML_ASSERT(nev1 == D);
  12926. GGML_ASSERT(ned1 == N);
  12927. // dst cannot be transposed or permuted
  12928. GGML_ASSERT(nb0 == sizeof(float));
  12929. GGML_ASSERT(nb0 <= nb1);
  12930. GGML_ASSERT(nb1 <= nb2);
  12931. GGML_ASSERT(nb2 <= nb3);
  12932. if (params->type == GGML_TASK_TYPE_INIT) {
  12933. if (ith == 0) {
  12934. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12935. }
  12936. return;
  12937. }
  12938. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12939. return;
  12940. }
  12941. const int64_t elem_q = ggml_nelements(q);
  12942. const int64_t elem_k = ggml_nelements(k);
  12943. enum ggml_type result_type = dst->type;
  12944. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12945. const size_t tsize = ggml_type_size(result_type);
  12946. const size_t offs_q = 0;
  12947. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12948. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12949. void * grad_q = (char *) dst->data;
  12950. void * grad_k = (char *) dst->data + offs_k;
  12951. void * grad_v = (char *) dst->data + offs_v;
  12952. const size_t nbgq1 = nb0*neq0;
  12953. const size_t nbgq2 = nb0*neq0*neq1;
  12954. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12955. const size_t nbgk1 = nb0*nek0;
  12956. const size_t nbgk2 = nb0*nek0*nek1;
  12957. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12958. const size_t nbgv1 = nb0*nev0;
  12959. const size_t nbgv2 = nb0*nev0*nev1;
  12960. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12961. // parallelize by k rows using ggml_vec_dot_f32
  12962. // total rows in k
  12963. const int nr = nek2*nek3;
  12964. // rows per thread
  12965. const int dr = (nr + nth - 1)/nth;
  12966. // row range for this thread
  12967. const int ir0 = dr*ith;
  12968. const int ir1 = MIN(ir0 + dr, nr);
  12969. const float scale = 1.0f/sqrtf(D);
  12970. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12971. // how often k2 (and v2) is repeated in q2
  12972. int nrep = neq2/nek2;
  12973. for (int ir = ir0; ir < ir1; ++ir) {
  12974. // q indices
  12975. const int ik3 = ir/(nek2);
  12976. const int ik2 = ir - ik3*nek2;
  12977. const int iq3 = ik3;
  12978. const int id3 = ik3;
  12979. const int iv3 = ik3;
  12980. const int iv2 = ik2;
  12981. for (int irep = 0; irep < nrep; ++irep) {
  12982. const int iq2 = ik2 + irep*nek2;
  12983. const int id2 = iq2;
  12984. // (ik2 + irep*nek2) % nek2 == ik2
  12985. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12986. const int id1 = iq1;
  12987. // not sure about CACHE_LINE_SIZE_F32..
  12988. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12989. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12990. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12991. for (int i = M; i < Mup; ++i) {
  12992. S[i] = -INFINITY;
  12993. }
  12994. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12995. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12996. // k indices
  12997. const int ik1 = ic;
  12998. // S indices
  12999. const int i1 = ik1;
  13000. ggml_vec_dot_f32(neq0,
  13001. S + i1, 0,
  13002. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13003. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13004. }
  13005. // scale
  13006. ggml_vec_scale_f32(masked_begin, S, scale);
  13007. for (int64_t i = masked_begin; i < M; i++) {
  13008. S[i] = -INFINITY;
  13009. }
  13010. // softmax
  13011. // exclude known -INF S[..] values from max and loop
  13012. // dont forget to set their SM values to zero
  13013. {
  13014. float max = -INFINITY;
  13015. ggml_vec_max_f32(masked_begin, &max, S);
  13016. ggml_float sum = 0.0;
  13017. {
  13018. #ifdef GGML_SOFT_MAX_ACCELERATE
  13019. max = -max;
  13020. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13021. vvexpf(SM, SM, &Mup);
  13022. ggml_vec_sum_f32(Mup, &sum, SM);
  13023. #else
  13024. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  13025. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  13026. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  13027. if (i >= masked_begin) {
  13028. break;
  13029. }
  13030. float * SR = S + i;
  13031. float * SW = SM + i;
  13032. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  13033. if (i + j >= masked_begin) {
  13034. break;
  13035. } else if (SR[j] == -INFINITY) {
  13036. SW[j] = 0.0f;
  13037. } else {
  13038. #ifndef GGML_FLASH_ATTN_EXP_FP16
  13039. const float val = expf(SR[j] - max);
  13040. #else
  13041. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  13042. memcpy(&scvt[j], &s, sizeof(uint16_t));
  13043. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  13044. #endif
  13045. sump[j] += (ggml_float)val;
  13046. SW[j] = val;
  13047. }
  13048. }
  13049. }
  13050. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  13051. sum += sump[i];
  13052. }
  13053. #endif
  13054. }
  13055. assert(sum > 0.0);
  13056. sum = 1.0/sum;
  13057. ggml_vec_scale_f32(masked_begin, SM, sum);
  13058. }
  13059. // step-by-step explanation
  13060. {
  13061. // forward-process shape grads from backward process
  13062. // parallel_for ik2,ik3:
  13063. // for irep:
  13064. // iq2 = ik2 + irep*nek2
  13065. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13066. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13067. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13068. // for iq1:
  13069. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13070. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13071. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13072. // S0 = -Inf [D,1,1,1]
  13073. // ~S1[i] = dot(kcur[:D,i], qcur)
  13074. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13075. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13076. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13077. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13078. // ~S5[i] = dot(vcur[:,i], S4)
  13079. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13080. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13081. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13082. // dst backward-/ grad[dst] = d
  13083. //
  13084. // output gradients with their dependencies:
  13085. //
  13086. // grad[kcur] = grad[S1].T @ qcur
  13087. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13088. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13089. // grad[S4] = grad[S5] @ vcur
  13090. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13091. // grad[qcur] = grad[S1] @ kcur
  13092. // grad[vcur] = grad[S5].T @ S4
  13093. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13094. //
  13095. // in post-order:
  13096. //
  13097. // S1 = qcur @ kcur.T
  13098. // S2 = S1 * scale
  13099. // S3 = diag_mask_inf(S2, P)
  13100. // S4 = softmax(S3)
  13101. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13102. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13103. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13104. // grad[qcur] = grad[S1] @ kcur
  13105. // grad[kcur] = grad[S1].T @ qcur
  13106. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13107. //
  13108. // using less variables (SM=S4):
  13109. //
  13110. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13111. // SM = softmax(S)
  13112. // S = d[:D,iq1,iq2,iq3] @ vcur
  13113. // dot_SM_gradSM = dot(SM, S)
  13114. // S = SM * (S - dot(SM, S))
  13115. // S = diag_mask_zero(S, P) * scale
  13116. //
  13117. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13118. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13119. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13120. }
  13121. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13122. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13123. // for ic:
  13124. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13125. // exclude known future zero S[..] values from operation
  13126. ggml_vec_set_f32(masked_begin, S, 0);
  13127. for (int64_t ic = 0; ic < D; ++ic) {
  13128. ggml_vec_mad_f32(masked_begin,
  13129. S,
  13130. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13131. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13132. }
  13133. // S = SM * (S - dot(SM, S))
  13134. float dot_SM_gradSM = 0;
  13135. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13136. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13137. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13138. // S = diag_mask_zero(S, P) * scale
  13139. // already done by above ggml_vec_set_f32
  13140. // exclude known zero S[..] values from operation
  13141. ggml_vec_scale_f32(masked_begin, S, scale);
  13142. // S shape [M,1]
  13143. // SM shape [M,1]
  13144. // kcur shape [D,M]
  13145. // qcur shape [D,1]
  13146. // vcur shape [M,D]
  13147. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13148. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13149. // for ic:
  13150. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13151. // exclude known zero S[..] values from loop
  13152. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13153. ggml_vec_mad_f32(D,
  13154. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13155. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13156. S[ic]);
  13157. }
  13158. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13159. // for ic:
  13160. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13161. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13162. // exclude known zero S[..] values from loop
  13163. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13164. ggml_vec_mad_f32(D,
  13165. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13166. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13167. S[ic]);
  13168. }
  13169. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13170. // for ic:
  13171. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13172. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13173. // exclude known zero SM[..] values from mad
  13174. for (int64_t ic = 0; ic < D; ++ic) {
  13175. ggml_vec_mad_f32(masked_begin,
  13176. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13177. SM,
  13178. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13179. }
  13180. }
  13181. }
  13182. }
  13183. }
  13184. static void ggml_compute_forward_flash_attn_back(
  13185. const struct ggml_compute_params * params,
  13186. const bool masked,
  13187. struct ggml_tensor * dst) {
  13188. const struct ggml_tensor * q = dst->src[0];
  13189. switch (q->type) {
  13190. case GGML_TYPE_F32:
  13191. {
  13192. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13193. } break;
  13194. default:
  13195. {
  13196. GGML_ASSERT(false);
  13197. } break;
  13198. }
  13199. }
  13200. // ggml_compute_forward_ssm_conv
  13201. static void ggml_compute_forward_ssm_conv_f32(
  13202. const struct ggml_compute_params * params,
  13203. struct ggml_tensor * dst) {
  13204. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13205. return;
  13206. }
  13207. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13208. const struct ggml_tensor * src1 = dst->src[1]; // x
  13209. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13210. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13211. const int ith = params->ith;
  13212. const int nth = params->nth;
  13213. const int nc = src2->ne[0]; // d_conv
  13214. const int nr = src0->ne[1]; // d_inner
  13215. const int n_t = src1->ne[1]; // n_tokens
  13216. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13217. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13218. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13219. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13220. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13221. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13222. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13223. // for use with the destination state offset between sequences
  13224. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13225. // rows per thread
  13226. const int dr = (nr + nth - 1)/nth;
  13227. // row range for this thread
  13228. const int ir0 = dr*ith;
  13229. const int ir1 = MIN(ir0 + dr, nr);
  13230. const int ir = ir1 - ir0;
  13231. if (n_kv > 1) {
  13232. // multiple sequences means it's hard to know when it's the first time a state is read,
  13233. // so copy them all over to the destination, just to be sure.
  13234. for (int i3 = 0; i3 < n_kv; ++i3) {
  13235. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13236. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13237. // can't use memcpy because of d_conv vs d_conv - 1
  13238. for (int i1 = 0; i1 < ir; ++i1) {
  13239. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13240. // copy s0 to last (d_conv - 1) columns of s
  13241. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13242. }
  13243. }
  13244. }
  13245. }
  13246. for (int i2 = 0; i2 < n_t; ++i2) {
  13247. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13248. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13249. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13250. float * s0; // {d_conv - 1, d_inner, n_kv}
  13251. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13252. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13253. int ne0s0;
  13254. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13255. // avoid needing to copy the state for the first token
  13256. if (i2 == 0) {
  13257. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13258. ne0s0 = src0->ne[0];
  13259. } else {
  13260. // the source is the last (d_conv - 1) columns of the destination
  13261. s0 = s + 1;
  13262. ne0s0 = nc;
  13263. }
  13264. // d_inner
  13265. for (int i1 = 0; i1 < ir; ++i1) {
  13266. // shift state left
  13267. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13268. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13269. }
  13270. // insert x on the last column
  13271. s[(nc - 1) + i1*nc] = x0[i1];
  13272. }
  13273. // handle copies when there are multiple output states
  13274. for (int i3 = 1; i3 < n_kv; ++i3) {
  13275. int32_t seq = sq[i3];
  13276. if (0 <= seq && seq < n_kv) {
  13277. float * s1 = s + (seq - sq[0])*nc*nr;
  13278. memcpy(s1, s, nc*ir*sizeof(float));
  13279. } else {
  13280. // stop at negative or too big seq_ids
  13281. break;
  13282. }
  13283. }
  13284. // it seems a little faster when this is separate from the state shift
  13285. for (int i1 = 0; i1 < ir; ++i1) {
  13286. // rowwise dot product
  13287. float sumf = 0.0f;
  13288. for (int i0 = 0; i0 < nc; ++i0) {
  13289. int i = i0 + i1*nc;
  13290. sumf += s[i] * c[i];
  13291. }
  13292. x[i1] = sumf;
  13293. }
  13294. }
  13295. }
  13296. static void ggml_compute_forward_ssm_conv(
  13297. const struct ggml_compute_params * params,
  13298. struct ggml_tensor * dst) {
  13299. switch (dst->src[0]->type) {
  13300. case GGML_TYPE_F32:
  13301. {
  13302. ggml_compute_forward_ssm_conv_f32(params, dst);
  13303. } break;
  13304. default:
  13305. {
  13306. GGML_ASSERT(false);
  13307. } break;
  13308. }
  13309. }
  13310. // ggml_compute_forward_ssm_scan
  13311. static void ggml_compute_forward_ssm_scan_f32(
  13312. const struct ggml_compute_params * params,
  13313. struct ggml_tensor * dst) {
  13314. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13315. return;
  13316. }
  13317. const struct ggml_tensor * src0 = dst->src[0]; // s
  13318. const struct ggml_tensor * src1 = dst->src[1]; // x
  13319. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13320. const struct ggml_tensor * src3 = dst->src[3]; // A
  13321. const struct ggml_tensor * src4 = dst->src[4]; // B
  13322. const struct ggml_tensor * src5 = dst->src[5]; // C
  13323. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13324. const int ith = params->ith;
  13325. const int nth = params->nth;
  13326. const int64_t nc = src0->ne[0]; // d_state
  13327. const int64_t nr = src0->ne[1]; // d_inner
  13328. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13329. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13330. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13331. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13332. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13333. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13334. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13335. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13336. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13337. // required for the dot product between s and C, and when copying the states
  13338. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13339. // required for per-sequence offsets for states
  13340. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13341. // required to get correct offset for state destination (i.e. src1->nb[2])
  13342. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13343. // rows per thread
  13344. const int dr = (nr + nth - 1)/nth;
  13345. // row range for this thread
  13346. const int ir0 = dr*ith;
  13347. const int ir1 = MIN(ir0 + dr, nr);
  13348. const int ir = ir1 - ir0;
  13349. if (n_kv > 1) {
  13350. // it's hard to know if the source states have already been copied
  13351. // when there are multiple, so copy them already.
  13352. for (int i3 = 0; i3 < n_kv; ++i3) {
  13353. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13354. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13355. memcpy(s, s0, nc*ir*sizeof(float));
  13356. }
  13357. }
  13358. for (int i2 = 0; i2 < n_t; ++i2) {
  13359. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13360. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13361. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13362. float * s0;
  13363. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13364. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13365. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13366. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13367. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13368. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13369. // avoid needing to copy the state for the first token
  13370. if (i2 == 0) {
  13371. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13372. } else {
  13373. // otherwise the source is the same as the destination
  13374. s0 = s;
  13375. }
  13376. // d_inner
  13377. for (int i1 = 0; i1 < ir; ++i1) {
  13378. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13379. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13380. float x_dt = x[i1] * dt_soft_plus;
  13381. float sumf = 0.0f;
  13382. // d_state
  13383. for (int i0 = 0; i0 < nc; ++i0) {
  13384. int i = i0 + i1*nc;
  13385. // state = prev_state * dA + dB * x
  13386. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13387. // y = rowwise_dotprod(state, C)
  13388. sumf += state * C[i0];
  13389. s[i] = state;
  13390. }
  13391. y[i1] = sumf;
  13392. }
  13393. // handle copies when there are multiple output states
  13394. for (int i3 = 1; i3 < n_kv; ++i3) {
  13395. int32_t seq = sq[i3];
  13396. if (0 <= seq && seq < n_kv) {
  13397. float * s1 = s + (seq - sq[0])*nc*nr;
  13398. memcpy(s1, s, nc*ir*sizeof(float));
  13399. } else {
  13400. // stop at negative or too big seq_ids
  13401. break;
  13402. }
  13403. }
  13404. }
  13405. }
  13406. static void ggml_compute_forward_ssm_scan(
  13407. const struct ggml_compute_params * params,
  13408. struct ggml_tensor * dst) {
  13409. switch (dst->src[0]->type) {
  13410. case GGML_TYPE_F32:
  13411. {
  13412. ggml_compute_forward_ssm_scan_f32(params, dst);
  13413. } break;
  13414. default:
  13415. {
  13416. GGML_ASSERT(false);
  13417. } break;
  13418. }
  13419. }
  13420. // ggml_compute_forward_win_part
  13421. static void ggml_compute_forward_win_part_f32(
  13422. const struct ggml_compute_params * params,
  13423. struct ggml_tensor * dst) {
  13424. const struct ggml_tensor * src0 = dst->src[0];
  13425. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13426. return;
  13427. }
  13428. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13429. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13430. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13431. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13432. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13433. assert(ne00 == ne0);
  13434. assert(ne3 == nep0*nep1);
  13435. // TODO: optimize / multi-thread
  13436. for (int py = 0; py < nep1; ++py) {
  13437. for (int px = 0; px < nep0; ++px) {
  13438. const int64_t i3 = py*nep0 + px;
  13439. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13440. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13441. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13442. const int64_t i02 = py*w + i2;
  13443. const int64_t i01 = px*w + i1;
  13444. const int64_t i00 = i0;
  13445. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13446. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13447. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13448. ((float *) dst->data)[i] = 0.0f;
  13449. } else {
  13450. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13451. }
  13452. }
  13453. }
  13454. }
  13455. }
  13456. }
  13457. }
  13458. static void ggml_compute_forward_win_part(
  13459. const struct ggml_compute_params * params,
  13460. struct ggml_tensor * dst) {
  13461. const struct ggml_tensor * src0 = dst->src[0];
  13462. switch (src0->type) {
  13463. case GGML_TYPE_F32:
  13464. {
  13465. ggml_compute_forward_win_part_f32(params, dst);
  13466. } break;
  13467. default:
  13468. {
  13469. GGML_ASSERT(false);
  13470. } break;
  13471. }
  13472. }
  13473. // ggml_compute_forward_win_unpart
  13474. static void ggml_compute_forward_win_unpart_f32(
  13475. const struct ggml_compute_params * params,
  13476. struct ggml_tensor * dst) {
  13477. const struct ggml_tensor * src0 = dst->src[0];
  13478. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13479. return;
  13480. }
  13481. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13482. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13483. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13484. // padding
  13485. const int px = (w - ne1%w)%w;
  13486. //const int py = (w - ne2%w)%w;
  13487. const int npx = (px + ne1)/w;
  13488. //const int npy = (py + ne2)/w;
  13489. assert(ne0 == ne00);
  13490. // TODO: optimize / multi-thread
  13491. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13492. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13493. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13494. const int ip2 = i2/w;
  13495. const int ip1 = i1/w;
  13496. const int64_t i02 = i2%w;
  13497. const int64_t i01 = i1%w;
  13498. const int64_t i00 = i0;
  13499. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13500. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13501. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13502. }
  13503. }
  13504. }
  13505. }
  13506. static void ggml_compute_forward_win_unpart(
  13507. const struct ggml_compute_params * params,
  13508. struct ggml_tensor * dst) {
  13509. const struct ggml_tensor * src0 = dst->src[0];
  13510. switch (src0->type) {
  13511. case GGML_TYPE_F32:
  13512. {
  13513. ggml_compute_forward_win_unpart_f32(params, dst);
  13514. } break;
  13515. default:
  13516. {
  13517. GGML_ASSERT(false);
  13518. } break;
  13519. }
  13520. }
  13521. //gmml_compute_forward_unary
  13522. static void ggml_compute_forward_unary(
  13523. const struct ggml_compute_params * params,
  13524. struct ggml_tensor * dst) {
  13525. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13526. switch (op) {
  13527. case GGML_UNARY_OP_ABS:
  13528. {
  13529. ggml_compute_forward_abs(params, dst);
  13530. } break;
  13531. case GGML_UNARY_OP_SGN:
  13532. {
  13533. ggml_compute_forward_sgn(params, dst);
  13534. } break;
  13535. case GGML_UNARY_OP_NEG:
  13536. {
  13537. ggml_compute_forward_neg(params, dst);
  13538. } break;
  13539. case GGML_UNARY_OP_STEP:
  13540. {
  13541. ggml_compute_forward_step(params, dst);
  13542. } break;
  13543. case GGML_UNARY_OP_TANH:
  13544. {
  13545. ggml_compute_forward_tanh(params, dst);
  13546. } break;
  13547. case GGML_UNARY_OP_ELU:
  13548. {
  13549. ggml_compute_forward_elu(params, dst);
  13550. } break;
  13551. case GGML_UNARY_OP_RELU:
  13552. {
  13553. ggml_compute_forward_relu(params, dst);
  13554. } break;
  13555. case GGML_UNARY_OP_SIGMOID:
  13556. {
  13557. ggml_compute_forward_sigmoid(params, dst);
  13558. } break;
  13559. case GGML_UNARY_OP_GELU:
  13560. {
  13561. ggml_compute_forward_gelu(params, dst);
  13562. } break;
  13563. case GGML_UNARY_OP_GELU_QUICK:
  13564. {
  13565. ggml_compute_forward_gelu_quick(params, dst);
  13566. } break;
  13567. case GGML_UNARY_OP_SILU:
  13568. {
  13569. ggml_compute_forward_silu(params, dst);
  13570. } break;
  13571. case GGML_UNARY_OP_HARDSWISH:
  13572. {
  13573. ggml_compute_forward_hardswish(params, dst);
  13574. } break;
  13575. case GGML_UNARY_OP_HARDSIGMOID:
  13576. {
  13577. ggml_compute_forward_hardsigmoid(params, dst);
  13578. } break;
  13579. default:
  13580. {
  13581. GGML_ASSERT(false);
  13582. } break;
  13583. }
  13584. }
  13585. // ggml_compute_forward_get_rel_pos
  13586. static void ggml_compute_forward_get_rel_pos_f16(
  13587. const struct ggml_compute_params * params,
  13588. struct ggml_tensor * dst) {
  13589. const struct ggml_tensor * src0 = dst->src[0];
  13590. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13591. return;
  13592. }
  13593. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13594. GGML_TENSOR_UNARY_OP_LOCALS
  13595. const int64_t w = ne1;
  13596. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13597. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13598. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13599. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13600. const int64_t pos = (w - i1 - 1) + i2;
  13601. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13602. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13603. }
  13604. }
  13605. }
  13606. }
  13607. static void ggml_compute_forward_get_rel_pos(
  13608. const struct ggml_compute_params * params,
  13609. struct ggml_tensor * dst) {
  13610. const struct ggml_tensor * src0 = dst->src[0];
  13611. switch (src0->type) {
  13612. case GGML_TYPE_F16:
  13613. case GGML_TYPE_BF16:
  13614. {
  13615. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13616. } break;
  13617. default:
  13618. {
  13619. GGML_ASSERT(false);
  13620. } break;
  13621. }
  13622. }
  13623. // ggml_compute_forward_add_rel_pos
  13624. static void ggml_compute_forward_add_rel_pos_f32(
  13625. const struct ggml_compute_params * params,
  13626. struct ggml_tensor * dst) {
  13627. const struct ggml_tensor * src0 = dst->src[0];
  13628. const struct ggml_tensor * src1 = dst->src[1];
  13629. const struct ggml_tensor * src2 = dst->src[2];
  13630. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13631. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13632. if (params->ith != 0) {
  13633. return;
  13634. }
  13635. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13636. return;
  13637. }
  13638. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13639. return;
  13640. }
  13641. int64_t t0 = ggml_perf_time_us();
  13642. UNUSED(t0);
  13643. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13644. float * src1_data = (float *) src1->data;
  13645. float * src2_data = (float *) src2->data;
  13646. float * dst_data = (float *) dst->data;
  13647. const int64_t ne10 = src1->ne[0];
  13648. const int64_t ne11 = src1->ne[1];
  13649. const int64_t ne12 = src1->ne[2];
  13650. const int64_t ne13 = src1->ne[3];
  13651. const int ith = params->ith;
  13652. const int nth = params->nth;
  13653. // total patches in dst
  13654. const int np = ne13;
  13655. // patches per thread
  13656. const int dp = (np + nth - 1)/nth;
  13657. // patch range for this thread
  13658. const int ip0 = dp*ith;
  13659. const int ip1 = MIN(ip0 + dp, np);
  13660. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13661. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13662. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13663. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13664. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13665. const int64_t jp0 = jp1 + i10;
  13666. const float src1_e = src1_data[jp0];
  13667. const float src2_e = src2_data[jp0];
  13668. const int64_t jdh = jp0 * ne10;
  13669. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13670. for (int64_t j = 0; j < ne10; ++j) {
  13671. dst_data[jdh + j ] += src2_e;
  13672. dst_data[jdw + j*ne10] += src1_e;
  13673. }
  13674. }
  13675. }
  13676. }
  13677. }
  13678. }
  13679. static void ggml_compute_forward_add_rel_pos(
  13680. const struct ggml_compute_params * params,
  13681. struct ggml_tensor * dst) {
  13682. const struct ggml_tensor * src0 = dst->src[0];
  13683. switch (src0->type) {
  13684. case GGML_TYPE_F32:
  13685. {
  13686. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13687. } break;
  13688. default:
  13689. {
  13690. GGML_ASSERT(false);
  13691. } break;
  13692. }
  13693. }
  13694. // ggml_compute_forward_map_unary
  13695. static void ggml_compute_forward_map_unary_f32(
  13696. const struct ggml_compute_params * params,
  13697. struct ggml_tensor * dst,
  13698. const ggml_unary_op_f32_t fun) {
  13699. const struct ggml_tensor * src0 = dst->src[0];
  13700. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13701. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13702. return;
  13703. }
  13704. const int n = ggml_nrows(src0);
  13705. const int nc = src0->ne[0];
  13706. assert( dst->nb[0] == sizeof(float));
  13707. assert(src0->nb[0] == sizeof(float));
  13708. for (int i = 0; i < n; i++) {
  13709. fun(nc,
  13710. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13711. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13712. }
  13713. }
  13714. static void ggml_compute_forward_map_unary(
  13715. const struct ggml_compute_params * params,
  13716. struct ggml_tensor * dst,
  13717. const ggml_unary_op_f32_t fun) {
  13718. const struct ggml_tensor * src0 = dst->src[0];
  13719. switch (src0->type) {
  13720. case GGML_TYPE_F32:
  13721. {
  13722. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13723. } break;
  13724. default:
  13725. {
  13726. GGML_ASSERT(false);
  13727. } break;
  13728. }
  13729. }
  13730. // ggml_compute_forward_map_binary
  13731. static void ggml_compute_forward_map_binary_f32(
  13732. const struct ggml_compute_params * params,
  13733. struct ggml_tensor * dst,
  13734. const ggml_binary_op_f32_t fun) {
  13735. const struct ggml_tensor * src0 = dst->src[0];
  13736. const struct ggml_tensor * src1 = dst->src[1];
  13737. assert(params->ith == 0);
  13738. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13739. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13740. return;
  13741. }
  13742. const int n = ggml_nrows(src0);
  13743. const int nc = src0->ne[0];
  13744. assert( dst->nb[0] == sizeof(float));
  13745. assert(src0->nb[0] == sizeof(float));
  13746. assert(src1->nb[0] == sizeof(float));
  13747. for (int i = 0; i < n; i++) {
  13748. fun(nc,
  13749. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13750. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13751. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13752. }
  13753. }
  13754. static void ggml_compute_forward_map_binary(
  13755. const struct ggml_compute_params * params,
  13756. struct ggml_tensor * dst,
  13757. const ggml_binary_op_f32_t fun) {
  13758. const struct ggml_tensor * src0 = dst->src[0];
  13759. switch (src0->type) {
  13760. case GGML_TYPE_F32:
  13761. {
  13762. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13763. } break;
  13764. default:
  13765. {
  13766. GGML_ASSERT(false);
  13767. } break;
  13768. }
  13769. }
  13770. // ggml_compute_forward_map_custom1
  13771. static void ggml_compute_forward_map_custom1_f32(
  13772. const struct ggml_compute_params * params,
  13773. struct ggml_tensor * dst,
  13774. const ggml_custom1_op_f32_t fun) {
  13775. const struct ggml_tensor * a = dst->src[0];
  13776. assert(params->ith == 0);
  13777. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13778. return;
  13779. }
  13780. fun(dst, a);
  13781. }
  13782. // ggml_compute_forward_map_custom2
  13783. static void ggml_compute_forward_map_custom2_f32(
  13784. const struct ggml_compute_params * params,
  13785. struct ggml_tensor * dst,
  13786. const ggml_custom2_op_f32_t fun) {
  13787. const struct ggml_tensor * a = dst->src[0];
  13788. const struct ggml_tensor * b = dst->src[1];
  13789. assert(params->ith == 0);
  13790. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13791. return;
  13792. }
  13793. fun(dst, a, b);
  13794. }
  13795. // ggml_compute_forward_map_custom3
  13796. static void ggml_compute_forward_map_custom3_f32(
  13797. const struct ggml_compute_params * params,
  13798. struct ggml_tensor * dst,
  13799. const ggml_custom3_op_f32_t fun) {
  13800. const struct ggml_tensor * a = dst->src[0];
  13801. const struct ggml_tensor * b = dst->src[1];
  13802. const struct ggml_tensor * c = dst->src[1];
  13803. assert(params->ith == 0);
  13804. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13805. return;
  13806. }
  13807. fun(dst, a, b, c);
  13808. }
  13809. // ggml_compute_forward_map_custom1
  13810. static void ggml_compute_forward_map_custom1(
  13811. const struct ggml_compute_params * params,
  13812. struct ggml_tensor * dst) {
  13813. const struct ggml_tensor * a = dst->src[0];
  13814. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13815. return;
  13816. }
  13817. struct ggml_map_custom1_op_params p;
  13818. memcpy(&p, dst->op_params, sizeof(p));
  13819. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13820. }
  13821. // ggml_compute_forward_map_custom2
  13822. static void ggml_compute_forward_map_custom2(
  13823. const struct ggml_compute_params * params,
  13824. struct ggml_tensor * dst) {
  13825. const struct ggml_tensor * a = dst->src[0];
  13826. const struct ggml_tensor * b = dst->src[1];
  13827. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13828. return;
  13829. }
  13830. struct ggml_map_custom2_op_params p;
  13831. memcpy(&p, dst->op_params, sizeof(p));
  13832. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13833. }
  13834. // ggml_compute_forward_map_custom3
  13835. static void ggml_compute_forward_map_custom3(
  13836. const struct ggml_compute_params * params,
  13837. struct ggml_tensor * dst) {
  13838. const struct ggml_tensor * a = dst->src[0];
  13839. const struct ggml_tensor * b = dst->src[1];
  13840. const struct ggml_tensor * c = dst->src[2];
  13841. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13842. return;
  13843. }
  13844. struct ggml_map_custom3_op_params p;
  13845. memcpy(&p, dst->op_params, sizeof(p));
  13846. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13847. }
  13848. // ggml_compute_forward_cross_entropy_loss
  13849. static void ggml_compute_forward_cross_entropy_loss_f32(
  13850. const struct ggml_compute_params * params,
  13851. struct ggml_tensor * dst) {
  13852. const struct ggml_tensor * src0 = dst->src[0];
  13853. const struct ggml_tensor * src1 = dst->src[1];
  13854. GGML_ASSERT(ggml_is_contiguous(src0));
  13855. GGML_ASSERT(ggml_is_contiguous(src1));
  13856. GGML_ASSERT(ggml_is_scalar(dst));
  13857. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13858. const int ith = params->ith;
  13859. const int nth = params->nth;
  13860. float * sums = (float *) params->wdata;
  13861. // TODO: handle transposed/permuted matrices
  13862. const int nc = src0->ne[0];
  13863. const int nr = ggml_nrows(src0);
  13864. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13865. if (params->type == GGML_TASK_TYPE_INIT) {
  13866. if (ith == 0) {
  13867. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13868. }
  13869. return;
  13870. }
  13871. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13872. if (ith == 0) {
  13873. float * dp = (float *) dst->data;
  13874. ggml_vec_sum_f32(nth, dp, sums);
  13875. dp[0] *= -1.0f / (float) nr;
  13876. }
  13877. return;
  13878. }
  13879. const double eps = 1e-9;
  13880. // rows per thread
  13881. const int dr = (nr + nth - 1)/nth;
  13882. // row range for this thread
  13883. const int ir0 = dr*ith;
  13884. const int ir1 = MIN(ir0 + dr, nr);
  13885. for (int i1 = ir0; i1 < ir1; i1++) {
  13886. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13887. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13888. float * st = ((float *) params->wdata) + nth + ith*nc;
  13889. #ifndef NDEBUG
  13890. for (int i = 0; i < nc; ++i) {
  13891. //printf("p[%d] = %f\n", i, p[i]);
  13892. assert(!isnan(s0[i]));
  13893. assert(!isnan(s1[i]));
  13894. }
  13895. #endif
  13896. // soft_max
  13897. ggml_float sum = 0.0;
  13898. {
  13899. float max = -INFINITY;
  13900. ggml_vec_max_f32(nc, &max, s0);
  13901. uint16_t scvt; UNUSED(scvt);
  13902. for (int i = 0; i < nc; i++) {
  13903. if (s0[i] == -INFINITY) {
  13904. st[i] = 0.0f;
  13905. } else {
  13906. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13907. const float s = s0[i] - max;
  13908. const float val = expf(s);
  13909. #else
  13910. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13911. memcpy(&scvt, &s, sizeof(scvt));
  13912. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13913. #endif
  13914. sum += (ggml_float)val;
  13915. st[i] = val;
  13916. }
  13917. }
  13918. assert(sum > 0.0);
  13919. // sum = 1.0/sum;
  13920. }
  13921. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13922. sum = (1.0 - eps) / sum;
  13923. ggml_vec_scale_f32(nc, st, sum);
  13924. ggml_vec_add1_f32(nc, st, st, eps);
  13925. ggml_vec_log_f32(nc, st, st);
  13926. ggml_vec_mul_f32(nc, st, st, s1);
  13927. float st_sum = 0;
  13928. ggml_vec_sum_f32(nc, &st_sum, st);
  13929. sums[ith] += st_sum;
  13930. #ifndef NDEBUG
  13931. for (int i = 0; i < nc; ++i) {
  13932. assert(!isnan(st[i]));
  13933. assert(!isinf(st[i]));
  13934. }
  13935. #endif
  13936. }
  13937. }
  13938. static void ggml_compute_forward_cross_entropy_loss(
  13939. const struct ggml_compute_params * params,
  13940. struct ggml_tensor * dst) {
  13941. const struct ggml_tensor * src0 = dst->src[0];
  13942. switch (src0->type) {
  13943. case GGML_TYPE_F32:
  13944. {
  13945. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13946. } break;
  13947. default:
  13948. {
  13949. GGML_ASSERT(false);
  13950. } break;
  13951. }
  13952. }
  13953. // ggml_compute_forward_cross_entropy_loss_back
  13954. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13955. const struct ggml_compute_params * params,
  13956. struct ggml_tensor * dst) {
  13957. const struct ggml_tensor * src0 = dst->src[0];
  13958. const struct ggml_tensor * src1 = dst->src[1];
  13959. const struct ggml_tensor * opt0 = dst->src[2];
  13960. GGML_ASSERT(ggml_is_contiguous(dst));
  13961. GGML_ASSERT(ggml_is_contiguous(src0));
  13962. GGML_ASSERT(ggml_is_contiguous(src1));
  13963. GGML_ASSERT(ggml_is_contiguous(opt0));
  13964. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13965. const int64_t ith = params->ith;
  13966. const int64_t nth = params->nth;
  13967. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13968. return;
  13969. }
  13970. const double eps = 1e-9;
  13971. // TODO: handle transposed/permuted matrices
  13972. const int64_t nc = src0->ne[0];
  13973. const int64_t nr = ggml_nrows(src0);
  13974. // rows per thread
  13975. const int64_t dr = (nr + nth - 1)/nth;
  13976. // row range for this thread
  13977. const int64_t ir0 = dr*ith;
  13978. const int64_t ir1 = MIN(ir0 + dr, nr);
  13979. float * d = (float *) opt0->data;
  13980. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13981. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13982. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13983. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13984. #ifndef NDEBUG
  13985. for (int i = 0; i < nc; ++i) {
  13986. //printf("p[%d] = %f\n", i, p[i]);
  13987. assert(!isnan(s0[i]));
  13988. assert(!isnan(s1[i]));
  13989. }
  13990. #endif
  13991. // soft_max
  13992. ggml_float sum = 0.0;
  13993. {
  13994. float max = -INFINITY;
  13995. ggml_vec_max_f32(nc, &max, s0);
  13996. uint16_t scvt; UNUSED(scvt);
  13997. for (int i = 0; i < nc; i++) {
  13998. if (s0[i] == -INFINITY) {
  13999. ds0[i] = 0.0f;
  14000. } else {
  14001. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  14002. const float s = s0[i] - max;
  14003. const float val = expf(s);
  14004. #else
  14005. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  14006. memcpy(&scvt, &s, sizeof(scvt));
  14007. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  14008. #endif
  14009. sum += (ggml_float)val;
  14010. ds0[i] = val;
  14011. }
  14012. }
  14013. assert(sum > 0.0);
  14014. sum = (1.0 - eps)/sum;
  14015. }
  14016. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14017. ggml_vec_scale_f32(nc, ds0, sum);
  14018. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14019. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14020. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14021. #ifndef NDEBUG
  14022. for (int i = 0; i < nc; ++i) {
  14023. assert(!isnan(ds0[i]));
  14024. assert(!isinf(ds0[i]));
  14025. }
  14026. #endif
  14027. }
  14028. }
  14029. static void ggml_compute_forward_cross_entropy_loss_back(
  14030. const struct ggml_compute_params * params,
  14031. struct ggml_tensor * dst) {
  14032. const struct ggml_tensor * src0 = dst->src[0];
  14033. switch (src0->type) {
  14034. case GGML_TYPE_F32:
  14035. {
  14036. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14037. } break;
  14038. default:
  14039. {
  14040. GGML_ASSERT(false);
  14041. } break;
  14042. }
  14043. }
  14044. /////////////////////////////////
  14045. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  14046. GGML_ASSERT(params);
  14047. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14048. return;
  14049. }
  14050. switch (tensor->op) {
  14051. case GGML_OP_DUP:
  14052. {
  14053. ggml_compute_forward_dup(params, tensor);
  14054. } break;
  14055. case GGML_OP_ADD:
  14056. {
  14057. ggml_compute_forward_add(params, tensor);
  14058. } break;
  14059. case GGML_OP_ADD1:
  14060. {
  14061. ggml_compute_forward_add1(params, tensor);
  14062. } break;
  14063. case GGML_OP_ACC:
  14064. {
  14065. ggml_compute_forward_acc(params, tensor);
  14066. } break;
  14067. case GGML_OP_SUB:
  14068. {
  14069. ggml_compute_forward_sub(params, tensor);
  14070. } break;
  14071. case GGML_OP_MUL:
  14072. {
  14073. ggml_compute_forward_mul(params, tensor);
  14074. } break;
  14075. case GGML_OP_DIV:
  14076. {
  14077. ggml_compute_forward_div(params, tensor);
  14078. } break;
  14079. case GGML_OP_SQR:
  14080. {
  14081. ggml_compute_forward_sqr(params, tensor);
  14082. } break;
  14083. case GGML_OP_SQRT:
  14084. {
  14085. ggml_compute_forward_sqrt(params, tensor);
  14086. } break;
  14087. case GGML_OP_LOG:
  14088. {
  14089. ggml_compute_forward_log(params, tensor);
  14090. } break;
  14091. case GGML_OP_SUM:
  14092. {
  14093. ggml_compute_forward_sum(params, tensor);
  14094. } break;
  14095. case GGML_OP_SUM_ROWS:
  14096. {
  14097. ggml_compute_forward_sum_rows(params, tensor);
  14098. } break;
  14099. case GGML_OP_MEAN:
  14100. {
  14101. ggml_compute_forward_mean(params, tensor);
  14102. } break;
  14103. case GGML_OP_ARGMAX:
  14104. {
  14105. ggml_compute_forward_argmax(params, tensor);
  14106. } break;
  14107. case GGML_OP_REPEAT:
  14108. {
  14109. ggml_compute_forward_repeat(params, tensor);
  14110. } break;
  14111. case GGML_OP_REPEAT_BACK:
  14112. {
  14113. ggml_compute_forward_repeat_back(params, tensor);
  14114. } break;
  14115. case GGML_OP_CONCAT:
  14116. {
  14117. ggml_compute_forward_concat(params, tensor);
  14118. } break;
  14119. case GGML_OP_SILU_BACK:
  14120. {
  14121. ggml_compute_forward_silu_back(params, tensor);
  14122. } break;
  14123. case GGML_OP_NORM:
  14124. {
  14125. ggml_compute_forward_norm(params, tensor);
  14126. } break;
  14127. case GGML_OP_RMS_NORM:
  14128. {
  14129. ggml_compute_forward_rms_norm(params, tensor);
  14130. } break;
  14131. case GGML_OP_RMS_NORM_BACK:
  14132. {
  14133. ggml_compute_forward_rms_norm_back(params, tensor);
  14134. } break;
  14135. case GGML_OP_GROUP_NORM:
  14136. {
  14137. ggml_compute_forward_group_norm(params, tensor);
  14138. } break;
  14139. case GGML_OP_MUL_MAT:
  14140. {
  14141. ggml_compute_forward_mul_mat(params, tensor);
  14142. } break;
  14143. case GGML_OP_MUL_MAT_ID:
  14144. {
  14145. ggml_compute_forward_mul_mat_id(params, tensor);
  14146. } break;
  14147. case GGML_OP_OUT_PROD:
  14148. {
  14149. ggml_compute_forward_out_prod(params, tensor);
  14150. } break;
  14151. case GGML_OP_SCALE:
  14152. {
  14153. ggml_compute_forward_scale(params, tensor);
  14154. } break;
  14155. case GGML_OP_SET:
  14156. {
  14157. ggml_compute_forward_set(params, tensor);
  14158. } break;
  14159. case GGML_OP_CPY:
  14160. {
  14161. ggml_compute_forward_cpy(params, tensor);
  14162. } break;
  14163. case GGML_OP_CONT:
  14164. {
  14165. ggml_compute_forward_cont(params, tensor);
  14166. } break;
  14167. case GGML_OP_RESHAPE:
  14168. {
  14169. ggml_compute_forward_reshape(params, tensor);
  14170. } break;
  14171. case GGML_OP_VIEW:
  14172. {
  14173. ggml_compute_forward_view(params, tensor);
  14174. } break;
  14175. case GGML_OP_PERMUTE:
  14176. {
  14177. ggml_compute_forward_permute(params, tensor);
  14178. } break;
  14179. case GGML_OP_TRANSPOSE:
  14180. {
  14181. ggml_compute_forward_transpose(params, tensor);
  14182. } break;
  14183. case GGML_OP_GET_ROWS:
  14184. {
  14185. ggml_compute_forward_get_rows(params, tensor);
  14186. } break;
  14187. case GGML_OP_GET_ROWS_BACK:
  14188. {
  14189. ggml_compute_forward_get_rows_back(params, tensor);
  14190. } break;
  14191. case GGML_OP_DIAG:
  14192. {
  14193. ggml_compute_forward_diag(params, tensor);
  14194. } break;
  14195. case GGML_OP_DIAG_MASK_INF:
  14196. {
  14197. ggml_compute_forward_diag_mask_inf(params, tensor);
  14198. } break;
  14199. case GGML_OP_DIAG_MASK_ZERO:
  14200. {
  14201. ggml_compute_forward_diag_mask_zero(params, tensor);
  14202. } break;
  14203. case GGML_OP_SOFT_MAX:
  14204. {
  14205. ggml_compute_forward_soft_max(params, tensor);
  14206. } break;
  14207. case GGML_OP_SOFT_MAX_BACK:
  14208. {
  14209. ggml_compute_forward_soft_max_back(params, tensor);
  14210. } break;
  14211. case GGML_OP_ROPE:
  14212. {
  14213. ggml_compute_forward_rope(params, tensor);
  14214. } break;
  14215. case GGML_OP_ROPE_BACK:
  14216. {
  14217. ggml_compute_forward_rope_back(params, tensor);
  14218. } break;
  14219. case GGML_OP_CLAMP:
  14220. {
  14221. ggml_compute_forward_clamp(params, tensor);
  14222. } break;
  14223. case GGML_OP_CONV_TRANSPOSE_1D:
  14224. {
  14225. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14226. } break;
  14227. case GGML_OP_IM2COL:
  14228. {
  14229. ggml_compute_forward_im2col(params, tensor);
  14230. } break;
  14231. case GGML_OP_CONV_TRANSPOSE_2D:
  14232. {
  14233. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14234. } break;
  14235. case GGML_OP_POOL_1D:
  14236. {
  14237. ggml_compute_forward_pool_1d(params, tensor);
  14238. } break;
  14239. case GGML_OP_POOL_2D:
  14240. {
  14241. ggml_compute_forward_pool_2d(params, tensor);
  14242. } break;
  14243. case GGML_OP_UPSCALE:
  14244. {
  14245. ggml_compute_forward_upscale(params, tensor);
  14246. } break;
  14247. case GGML_OP_PAD:
  14248. {
  14249. ggml_compute_forward_pad(params, tensor);
  14250. } break;
  14251. case GGML_OP_ARANGE:
  14252. {
  14253. ggml_compute_forward_arange(params, tensor);
  14254. } break;
  14255. case GGML_OP_TIMESTEP_EMBEDDING:
  14256. {
  14257. ggml_compute_forward_timestep_embedding(params, tensor);
  14258. } break;
  14259. case GGML_OP_ARGSORT:
  14260. {
  14261. ggml_compute_forward_argsort(params, tensor);
  14262. } break;
  14263. case GGML_OP_LEAKY_RELU:
  14264. {
  14265. ggml_compute_forward_leaky_relu(params, tensor);
  14266. } break;
  14267. case GGML_OP_FLASH_ATTN:
  14268. {
  14269. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14270. GGML_ASSERT(t == 0 || t == 1);
  14271. const bool masked = t != 0;
  14272. ggml_compute_forward_flash_attn(params, masked, tensor);
  14273. } break;
  14274. case GGML_OP_FLASH_ATTN_EXT:
  14275. {
  14276. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14277. } break;
  14278. case GGML_OP_FLASH_FF:
  14279. {
  14280. ggml_compute_forward_flash_ff(params, tensor);
  14281. } break;
  14282. case GGML_OP_FLASH_ATTN_BACK:
  14283. {
  14284. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14285. GGML_ASSERT(t == 0 || t == 1);
  14286. bool masked = t != 0;
  14287. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14288. } break;
  14289. case GGML_OP_SSM_CONV:
  14290. {
  14291. ggml_compute_forward_ssm_conv(params, tensor);
  14292. } break;
  14293. case GGML_OP_SSM_SCAN:
  14294. {
  14295. ggml_compute_forward_ssm_scan(params, tensor);
  14296. } break;
  14297. case GGML_OP_WIN_PART:
  14298. {
  14299. ggml_compute_forward_win_part(params, tensor);
  14300. } break;
  14301. case GGML_OP_WIN_UNPART:
  14302. {
  14303. ggml_compute_forward_win_unpart(params, tensor);
  14304. } break;
  14305. case GGML_OP_UNARY:
  14306. {
  14307. ggml_compute_forward_unary(params, tensor);
  14308. } break;
  14309. case GGML_OP_GET_REL_POS:
  14310. {
  14311. ggml_compute_forward_get_rel_pos(params, tensor);
  14312. } break;
  14313. case GGML_OP_ADD_REL_POS:
  14314. {
  14315. ggml_compute_forward_add_rel_pos(params, tensor);
  14316. } break;
  14317. case GGML_OP_MAP_UNARY:
  14318. {
  14319. ggml_unary_op_f32_t fun;
  14320. memcpy(&fun, tensor->op_params, sizeof(fun));
  14321. ggml_compute_forward_map_unary(params, tensor, fun);
  14322. }
  14323. break;
  14324. case GGML_OP_MAP_BINARY:
  14325. {
  14326. ggml_binary_op_f32_t fun;
  14327. memcpy(&fun, tensor->op_params, sizeof(fun));
  14328. ggml_compute_forward_map_binary(params, tensor, fun);
  14329. }
  14330. break;
  14331. case GGML_OP_MAP_CUSTOM1_F32:
  14332. {
  14333. ggml_custom1_op_f32_t fun;
  14334. memcpy(&fun, tensor->op_params, sizeof(fun));
  14335. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14336. }
  14337. break;
  14338. case GGML_OP_MAP_CUSTOM2_F32:
  14339. {
  14340. ggml_custom2_op_f32_t fun;
  14341. memcpy(&fun, tensor->op_params, sizeof(fun));
  14342. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14343. }
  14344. break;
  14345. case GGML_OP_MAP_CUSTOM3_F32:
  14346. {
  14347. ggml_custom3_op_f32_t fun;
  14348. memcpy(&fun, tensor->op_params, sizeof(fun));
  14349. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14350. }
  14351. break;
  14352. case GGML_OP_MAP_CUSTOM1:
  14353. {
  14354. ggml_compute_forward_map_custom1(params, tensor);
  14355. }
  14356. break;
  14357. case GGML_OP_MAP_CUSTOM2:
  14358. {
  14359. ggml_compute_forward_map_custom2(params, tensor);
  14360. }
  14361. break;
  14362. case GGML_OP_MAP_CUSTOM3:
  14363. {
  14364. ggml_compute_forward_map_custom3(params, tensor);
  14365. }
  14366. break;
  14367. case GGML_OP_CROSS_ENTROPY_LOSS:
  14368. {
  14369. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14370. }
  14371. break;
  14372. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14373. {
  14374. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14375. }
  14376. break;
  14377. case GGML_OP_NONE:
  14378. {
  14379. // nop
  14380. } break;
  14381. case GGML_OP_COUNT:
  14382. {
  14383. GGML_ASSERT(false);
  14384. } break;
  14385. }
  14386. }
  14387. ////////////////////////////////////////////////////////////////////////////////
  14388. static size_t ggml_hash_size(size_t min_sz) {
  14389. // next primes after powers of two
  14390. static const size_t primes[] = {
  14391. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14392. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14393. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14394. 16777259, 33554467, 67108879, 134217757, 268435459,
  14395. 536870923, 1073741827, 2147483659
  14396. };
  14397. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14398. // find the smallest prime that is larger or equal to min_sz
  14399. size_t l = 0;
  14400. size_t r = n_primes;
  14401. while (l < r) {
  14402. size_t m = (l + r)/2;
  14403. if (primes[m] < min_sz) {
  14404. l = m + 1;
  14405. } else {
  14406. r = m;
  14407. }
  14408. }
  14409. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14410. return sz;
  14411. }
  14412. static size_t ggml_hash(const void * p) {
  14413. return (size_t)p;
  14414. }
  14415. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14416. size_t h = ggml_hash(key) % hash_set.size;
  14417. // linear probing
  14418. size_t i = h;
  14419. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14420. i = (i + 1) % hash_set.size;
  14421. if (i == h) {
  14422. // visited all hash table entries -> not found
  14423. return GGML_HASHTABLE_FULL;
  14424. }
  14425. }
  14426. return i;
  14427. }
  14428. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14429. size_t i = ggml_hash_find(hash_set, key);
  14430. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14431. }
  14432. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14433. size_t i = ggml_hash_find(hash_set, key);
  14434. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14435. if (hash_set.keys[i] == key) {
  14436. return GGML_HASHTABLE_ALREADY_EXISTS;
  14437. }
  14438. // insert
  14439. GGML_ASSERT(hash_set.keys[i] == NULL);
  14440. hash_set.keys[i] = key;
  14441. return i;
  14442. }
  14443. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14444. size_t i = ggml_hash_find(hash_set, key);
  14445. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14446. hash_set.keys[i] = key;
  14447. return i;
  14448. }
  14449. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14450. size = ggml_hash_size(size);
  14451. struct ggml_hash_set result;
  14452. result.size = size;
  14453. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14454. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14455. return result;
  14456. }
  14457. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14458. GGML_FREE(hash_set.keys);
  14459. }
  14460. struct hash_map {
  14461. struct ggml_hash_set set;
  14462. struct ggml_tensor ** vals;
  14463. };
  14464. static struct hash_map * ggml_new_hash_map(size_t size) {
  14465. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14466. result->set = ggml_hash_set_new(size);
  14467. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14468. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14469. return result;
  14470. }
  14471. static void ggml_hash_map_free(struct hash_map * map) {
  14472. ggml_hash_set_free(map->set);
  14473. GGML_FREE(map->vals);
  14474. GGML_FREE(map);
  14475. }
  14476. // gradient checkpointing
  14477. static struct ggml_tensor * ggml_recompute_graph_node(
  14478. struct ggml_context * ctx,
  14479. struct ggml_cgraph * graph,
  14480. struct hash_map * replacements,
  14481. struct ggml_tensor * node) {
  14482. if (node == NULL) {
  14483. return NULL;
  14484. }
  14485. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14486. return node;
  14487. }
  14488. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14489. return node;
  14490. }
  14491. int count_children = 0;
  14492. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14493. if (node->src[k]) {
  14494. ++count_children;
  14495. }
  14496. }
  14497. if (count_children == 0) {
  14498. return node;
  14499. }
  14500. size_t i = ggml_hash_find(replacements->set, node);
  14501. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14502. if (replacements->set.keys[i] == node) {
  14503. return replacements->vals[i];
  14504. }
  14505. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14506. // insert clone into replacements
  14507. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14508. replacements->set.keys[i] = node;
  14509. replacements->vals[i] = clone;
  14510. clone->op = node->op;
  14511. clone->grad = node->grad;
  14512. clone->flags = node->flags;
  14513. clone->extra = node->extra;
  14514. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14515. clone->nb[k] = node->nb[k];
  14516. }
  14517. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14518. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14519. }
  14520. if (node->view_src != NULL) {
  14521. clone->data = (node->view_src->data == NULL)
  14522. ? NULL // view_src not yet allocated
  14523. : (char *) node->view_src->data // view_src already allocated
  14524. + node->view_offs;
  14525. clone->view_src = node->view_src;
  14526. clone->view_offs = node->view_offs;
  14527. }
  14528. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14529. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14530. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14531. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14532. return clone;
  14533. }
  14534. void ggml_build_backward_gradient_checkpointing(
  14535. struct ggml_context * ctx,
  14536. struct ggml_cgraph * gf,
  14537. struct ggml_cgraph * gb,
  14538. struct ggml_cgraph * gb_tmp,
  14539. struct ggml_tensor * * checkpoints,
  14540. int n_checkpoints) {
  14541. ggml_graph_cpy(gf, gb_tmp);
  14542. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14543. if (n_checkpoints <= 0) {
  14544. ggml_graph_cpy(gb_tmp, gb);
  14545. return;
  14546. }
  14547. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14548. // insert checkpoints in replacements
  14549. for (int i = 0; i < n_checkpoints; ++i) {
  14550. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14551. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14552. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14553. replacements->set.keys[k] = checkpoints[i];
  14554. replacements->vals[k] = checkpoints[i];
  14555. }
  14556. ggml_graph_cpy(gf, gb);
  14557. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14558. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14559. // by recomputing them from checkpoints
  14560. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14561. struct ggml_tensor * node = gb_tmp->nodes[i];
  14562. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14563. // insert new tensors recomputing src, reusing already made replacements,
  14564. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14565. // recurse for input tensors,
  14566. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14567. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14568. }
  14569. // insert rewritten backward node with replacements made into resulting backward graph gb
  14570. ggml_build_forward_expand(gb, node);
  14571. }
  14572. ggml_hash_map_free(replacements);
  14573. }
  14574. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14575. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14576. if (ggml_hash_contains(zero_table, a)) {
  14577. return b;
  14578. } else {
  14579. return ggml_add_impl(ctx, a, b, false);
  14580. }
  14581. }
  14582. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14583. if (ggml_hash_contains(zero_table, a)) {
  14584. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14585. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14586. } else {
  14587. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14588. }
  14589. }
  14590. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14591. if (ggml_hash_contains(zero_table, a)) {
  14592. return ggml_repeat(ctx, b, a);
  14593. } else {
  14594. return ggml_add1_impl(ctx, a, b, false);
  14595. }
  14596. }
  14597. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14598. if (ggml_hash_contains(zero_table, a)) {
  14599. return ggml_neg(ctx, b);
  14600. } else {
  14601. return ggml_sub_impl(ctx, a, b, false);
  14602. }
  14603. }
  14604. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14605. struct ggml_tensor * src0 = tensor->src[0];
  14606. struct ggml_tensor * src1 = tensor->src[1];
  14607. switch (tensor->op) {
  14608. case GGML_OP_DUP:
  14609. {
  14610. if (src0->grad) {
  14611. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14612. }
  14613. } break;
  14614. case GGML_OP_ADD:
  14615. {
  14616. if (src0->grad) {
  14617. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14618. }
  14619. if (src1->grad) {
  14620. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14621. }
  14622. } break;
  14623. case GGML_OP_ADD1:
  14624. {
  14625. if (src0->grad) {
  14626. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14627. }
  14628. if (src1->grad) {
  14629. src1->grad = ggml_add_or_set(ctx,
  14630. src1->grad,
  14631. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14632. zero_table);
  14633. }
  14634. } break;
  14635. case GGML_OP_ACC:
  14636. {
  14637. if (src0->grad) {
  14638. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14639. }
  14640. if (src1->grad) {
  14641. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14642. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14643. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14644. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14645. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14646. tensor->grad,
  14647. src1->grad->ne[0],
  14648. src1->grad->ne[1],
  14649. src1->grad->ne[2],
  14650. src1->grad->ne[3],
  14651. nb1, nb2, nb3, offset);
  14652. src1->grad =
  14653. ggml_add_or_set(ctx,
  14654. src1->grad,
  14655. ggml_reshape(ctx,
  14656. ggml_cont(ctx, tensor_grad_view),
  14657. src1->grad),
  14658. zero_table);
  14659. }
  14660. } break;
  14661. case GGML_OP_SUB:
  14662. {
  14663. if (src0->grad) {
  14664. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14665. }
  14666. if (src1->grad) {
  14667. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14668. }
  14669. } break;
  14670. case GGML_OP_MUL:
  14671. {
  14672. if (src0->grad) {
  14673. src0->grad =
  14674. ggml_add_or_set(ctx,
  14675. src0->grad,
  14676. ggml_mul(ctx, src1, tensor->grad),
  14677. zero_table);
  14678. }
  14679. if (src1->grad) {
  14680. src1->grad =
  14681. ggml_add_or_set(ctx,
  14682. src1->grad,
  14683. ggml_mul(ctx, src0, tensor->grad),
  14684. zero_table);
  14685. }
  14686. } break;
  14687. case GGML_OP_DIV:
  14688. {
  14689. if (src0->grad) {
  14690. src0->grad =
  14691. ggml_add_or_set(ctx,
  14692. src0->grad,
  14693. ggml_div(ctx, tensor->grad, src1),
  14694. zero_table);
  14695. }
  14696. if (src1->grad) {
  14697. src1->grad =
  14698. ggml_sub_or_set(ctx,
  14699. src1->grad,
  14700. ggml_mul(ctx,
  14701. tensor->grad,
  14702. ggml_div(ctx, tensor, src1)),
  14703. zero_table);
  14704. }
  14705. } break;
  14706. case GGML_OP_SQR:
  14707. {
  14708. if (src0->grad) {
  14709. src0->grad =
  14710. ggml_add_or_set(ctx,
  14711. src0->grad,
  14712. ggml_scale(ctx,
  14713. ggml_mul(ctx, src0, tensor->grad),
  14714. 2.0f),
  14715. zero_table);
  14716. }
  14717. } break;
  14718. case GGML_OP_SQRT:
  14719. {
  14720. if (src0->grad) {
  14721. src0->grad =
  14722. ggml_add_or_set(ctx,
  14723. src0->grad,
  14724. ggml_scale(ctx,
  14725. ggml_div(ctx,
  14726. tensor->grad,
  14727. tensor),
  14728. 0.5f),
  14729. zero_table);
  14730. }
  14731. } break;
  14732. case GGML_OP_LOG:
  14733. {
  14734. if (src0->grad) {
  14735. src0->grad =
  14736. ggml_add_or_set(ctx,
  14737. src0->grad,
  14738. ggml_div(ctx,
  14739. tensor->grad,
  14740. src0),
  14741. zero_table);
  14742. }
  14743. } break;
  14744. case GGML_OP_SUM:
  14745. {
  14746. if (src0->grad) {
  14747. src0->grad =
  14748. ggml_add1_or_set(ctx,
  14749. src0->grad,
  14750. tensor->grad,
  14751. zero_table);
  14752. }
  14753. } break;
  14754. case GGML_OP_SUM_ROWS:
  14755. {
  14756. if (src0->grad) {
  14757. src0->grad =
  14758. ggml_add_or_set(ctx,
  14759. src0->grad,
  14760. ggml_repeat(ctx,
  14761. tensor->grad,
  14762. src0->grad),
  14763. zero_table);
  14764. }
  14765. } break;
  14766. case GGML_OP_MEAN:
  14767. case GGML_OP_ARGMAX:
  14768. {
  14769. GGML_ASSERT(false); // TODO: implement
  14770. } break;
  14771. case GGML_OP_REPEAT:
  14772. {
  14773. // necessary for llama
  14774. if (src0->grad) {
  14775. src0->grad = ggml_add_or_set(ctx,
  14776. src0->grad,
  14777. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14778. zero_table);
  14779. }
  14780. } break;
  14781. case GGML_OP_REPEAT_BACK:
  14782. {
  14783. if (src0->grad) {
  14784. // TODO: test this
  14785. src0->grad = ggml_add_or_set(ctx,
  14786. src0->grad,
  14787. ggml_repeat(ctx, tensor->grad, src0->grad),
  14788. zero_table);
  14789. }
  14790. } break;
  14791. case GGML_OP_CONCAT:
  14792. {
  14793. GGML_ASSERT(false); // TODO: implement
  14794. } break;
  14795. case GGML_OP_SILU_BACK:
  14796. {
  14797. GGML_ASSERT(false); // TODO: not implemented
  14798. } break;
  14799. case GGML_OP_NORM:
  14800. {
  14801. GGML_ASSERT(false); // TODO: not implemented
  14802. } break;
  14803. case GGML_OP_RMS_NORM:
  14804. {
  14805. // necessary for llama
  14806. if (src0->grad) {
  14807. float eps;
  14808. memcpy(&eps, tensor->op_params, sizeof(float));
  14809. src0->grad = ggml_add_or_set(ctx,
  14810. src0->grad,
  14811. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14812. zero_table);
  14813. }
  14814. } break;
  14815. case GGML_OP_RMS_NORM_BACK:
  14816. {
  14817. GGML_ASSERT(false); // TODO: not implemented
  14818. } break;
  14819. case GGML_OP_GROUP_NORM:
  14820. {
  14821. GGML_ASSERT(false); // TODO: not implemented
  14822. } break;
  14823. case GGML_OP_MUL_MAT:
  14824. {
  14825. // https://cs231n.github.io/optimization-2/#staged
  14826. // # forward pass
  14827. // s0 = np.random.randn(5, 10)
  14828. // s1 = np.random.randn(10, 3)
  14829. // t = s0.dot(s1)
  14830. // # now suppose we had the gradient on t from above in the circuit
  14831. // dt = np.random.randn(*t.shape) # same shape as t
  14832. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14833. // ds1 = t.T.dot(dt)
  14834. // tensor.shape [m,p,qq,rr]
  14835. // src0.shape [n,m,q1,r1]
  14836. // src1.shape [n,p,qq,rr]
  14837. // necessary for llama
  14838. if (src0->grad) {
  14839. struct ggml_tensor * s1_tg =
  14840. ggml_out_prod(ctx, // [n,m,qq,rr]
  14841. src1, // [n,p,qq,rr]
  14842. tensor->grad); // [m,p,qq,rr]
  14843. const int64_t qq = s1_tg->ne[2];
  14844. const int64_t rr = s1_tg->ne[3];
  14845. const int64_t q1 = src0->ne[2];
  14846. const int64_t r1 = src0->ne[3];
  14847. const bool ne2_broadcasted = qq > q1;
  14848. const bool ne3_broadcasted = rr > r1;
  14849. if (ne2_broadcasted || ne3_broadcasted) {
  14850. // sum broadcast repetitions of s1_tg into shape of src0
  14851. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14852. }
  14853. src0->grad =
  14854. ggml_add_or_set(ctx,
  14855. src0->grad, // [n,m,q1,r1]
  14856. s1_tg, // [n,m,q1,r1]
  14857. zero_table);
  14858. }
  14859. if (src1->grad) {
  14860. src1->grad =
  14861. ggml_add_or_set(ctx,
  14862. src1->grad, // [n,p,qq,rr]
  14863. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14864. // ggml_cont(ctx, // [m,n,q1,r1]
  14865. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14866. // tensor->grad), // [m,p,qq,rr]
  14867. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14868. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14869. // // and then use ggml_out_prod
  14870. ggml_out_prod(ctx, // [n,p,qq,rr]
  14871. src0, // [n,m,q1,r1]
  14872. ggml_transpose(ctx, // [p,m,qq,rr]
  14873. tensor->grad)), // [m,p,qq,rr]
  14874. zero_table);
  14875. }
  14876. } break;
  14877. case GGML_OP_MUL_MAT_ID:
  14878. {
  14879. GGML_ASSERT(false); // TODO: not implemented
  14880. } break;
  14881. case GGML_OP_OUT_PROD:
  14882. {
  14883. GGML_ASSERT(false); // TODO: not implemented
  14884. } break;
  14885. case GGML_OP_SCALE:
  14886. {
  14887. // necessary for llama
  14888. if (src0->grad) {
  14889. float s;
  14890. memcpy(&s, tensor->op_params, sizeof(float));
  14891. src0->grad =
  14892. ggml_add_or_set(ctx,
  14893. src0->grad,
  14894. ggml_scale_impl(ctx, tensor->grad, s, false),
  14895. zero_table);
  14896. }
  14897. } break;
  14898. case GGML_OP_SET:
  14899. {
  14900. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14901. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14902. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14903. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14904. struct ggml_tensor * tensor_grad_view = NULL;
  14905. if (src0->grad || src1->grad) {
  14906. GGML_ASSERT(src0->type == tensor->type);
  14907. GGML_ASSERT(tensor->grad->type == tensor->type);
  14908. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14909. tensor_grad_view = ggml_view_4d(ctx,
  14910. tensor->grad,
  14911. src1->grad->ne[0],
  14912. src1->grad->ne[1],
  14913. src1->grad->ne[2],
  14914. src1->grad->ne[3],
  14915. nb1, nb2, nb3, offset);
  14916. }
  14917. if (src0->grad) {
  14918. src0->grad = ggml_add_or_set(ctx,
  14919. src0->grad,
  14920. ggml_acc_impl(ctx,
  14921. tensor->grad,
  14922. ggml_neg(ctx, tensor_grad_view),
  14923. nb1, nb2, nb3, offset, false),
  14924. zero_table);
  14925. }
  14926. if (src1->grad) {
  14927. src1->grad =
  14928. ggml_add_or_set(ctx,
  14929. src1->grad,
  14930. ggml_reshape(ctx,
  14931. ggml_cont(ctx, tensor_grad_view),
  14932. src1->grad),
  14933. zero_table);
  14934. }
  14935. } break;
  14936. case GGML_OP_CPY:
  14937. {
  14938. // necessary for llama
  14939. // cpy overwrites value of src1 by src0 and returns view(src1)
  14940. // the overwriting is mathematically equivalent to:
  14941. // tensor = src0 * 1 + src1 * 0
  14942. if (src0->grad) {
  14943. // dsrc0 = dtensor * 1
  14944. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14945. }
  14946. if (src1->grad) {
  14947. // dsrc1 = dtensor * 0 -> noop
  14948. }
  14949. } break;
  14950. case GGML_OP_CONT:
  14951. {
  14952. // same as cpy
  14953. if (src0->grad) {
  14954. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14955. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14956. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14957. }
  14958. } break;
  14959. case GGML_OP_RESHAPE:
  14960. {
  14961. // necessary for llama
  14962. if (src0->grad) {
  14963. src0->grad =
  14964. ggml_add_or_set(ctx, src0->grad,
  14965. ggml_reshape(ctx,
  14966. ggml_is_contiguous(tensor->grad)
  14967. ? tensor->grad
  14968. : ggml_cont(ctx, tensor->grad),
  14969. src0->grad),
  14970. zero_table);
  14971. }
  14972. } break;
  14973. case GGML_OP_VIEW:
  14974. {
  14975. // necessary for llama
  14976. if (src0->grad) {
  14977. size_t offset;
  14978. memcpy(&offset, tensor->op_params, sizeof(offset));
  14979. size_t nb1 = tensor->nb[1];
  14980. size_t nb2 = tensor->nb[2];
  14981. size_t nb3 = tensor->nb[3];
  14982. if (src0->type != src0->grad->type) {
  14983. // gradient is typically F32, but src0 could be other type
  14984. size_t ng = ggml_element_size(src0->grad);
  14985. size_t n0 = ggml_element_size(src0);
  14986. GGML_ASSERT(offset % n0 == 0);
  14987. GGML_ASSERT(nb1 % n0 == 0);
  14988. GGML_ASSERT(nb2 % n0 == 0);
  14989. GGML_ASSERT(nb3 % n0 == 0);
  14990. offset = (offset / n0) * ng;
  14991. nb1 = (nb1 / n0) * ng;
  14992. nb2 = (nb2 / n0) * ng;
  14993. nb3 = (nb3 / n0) * ng;
  14994. }
  14995. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14996. }
  14997. } break;
  14998. case GGML_OP_PERMUTE:
  14999. {
  15000. // necessary for llama
  15001. if (src0->grad) {
  15002. int32_t * axes = (int32_t *) tensor->op_params;
  15003. int axis0 = axes[0] & 0x3;
  15004. int axis1 = axes[1] & 0x3;
  15005. int axis2 = axes[2] & 0x3;
  15006. int axis3 = axes[3] & 0x3;
  15007. int axes_backward[4] = {0,0,0,0};
  15008. axes_backward[axis0] = 0;
  15009. axes_backward[axis1] = 1;
  15010. axes_backward[axis2] = 2;
  15011. axes_backward[axis3] = 3;
  15012. src0->grad =
  15013. ggml_add_or_set(ctx, src0->grad,
  15014. ggml_permute(ctx,
  15015. tensor->grad,
  15016. axes_backward[0],
  15017. axes_backward[1],
  15018. axes_backward[2],
  15019. axes_backward[3]),
  15020. zero_table);
  15021. }
  15022. } break;
  15023. case GGML_OP_TRANSPOSE:
  15024. {
  15025. // necessary for llama
  15026. if (src0->grad) {
  15027. src0->grad =
  15028. ggml_add_or_set(ctx, src0->grad,
  15029. ggml_transpose(ctx, tensor->grad),
  15030. zero_table);
  15031. }
  15032. } break;
  15033. case GGML_OP_GET_ROWS:
  15034. {
  15035. // necessary for llama (only for tokenizer)
  15036. if (src0->grad) {
  15037. src0->grad =
  15038. ggml_add_or_set(ctx, src0->grad,
  15039. // last ggml_get_rows_back argument src0->grad is only
  15040. // necessary to setup correct output shape
  15041. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15042. zero_table);
  15043. }
  15044. if (src1->grad) {
  15045. // noop
  15046. }
  15047. } break;
  15048. case GGML_OP_GET_ROWS_BACK:
  15049. {
  15050. GGML_ASSERT(false); // TODO: not implemented
  15051. } break;
  15052. case GGML_OP_DIAG:
  15053. {
  15054. GGML_ASSERT(false); // TODO: not implemented
  15055. } break;
  15056. case GGML_OP_DIAG_MASK_INF:
  15057. {
  15058. // necessary for llama
  15059. if (src0->grad) {
  15060. const int n_past = ((int32_t *) tensor->op_params)[0];
  15061. src0->grad =
  15062. ggml_add_or_set(ctx, src0->grad,
  15063. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15064. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15065. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15066. zero_table);
  15067. }
  15068. } break;
  15069. case GGML_OP_DIAG_MASK_ZERO:
  15070. {
  15071. // necessary for llama
  15072. if (src0->grad) {
  15073. const int n_past = ((int32_t *) tensor->op_params)[0];
  15074. src0->grad =
  15075. ggml_add_or_set(ctx, src0->grad,
  15076. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15077. zero_table);
  15078. }
  15079. } break;
  15080. case GGML_OP_SOFT_MAX:
  15081. {
  15082. // necessary for llama
  15083. if (src0->grad) {
  15084. src0->grad =
  15085. ggml_add_or_set(ctx, src0->grad,
  15086. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15087. zero_table);
  15088. }
  15089. } break;
  15090. case GGML_OP_SOFT_MAX_BACK:
  15091. {
  15092. GGML_ASSERT(false); // TODO: not implemented
  15093. } break;
  15094. case GGML_OP_ROPE:
  15095. {
  15096. // necessary for llama
  15097. if (src0->grad) {
  15098. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15099. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15100. const int mode = ((int32_t *) tensor->op_params)[2];
  15101. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15102. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15103. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15104. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15105. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15106. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15107. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15108. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15109. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15110. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15111. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15112. src0->grad = ggml_add_or_set(ctx,
  15113. src0->grad,
  15114. ggml_rope_back(ctx,
  15115. tensor->grad,
  15116. src1,
  15117. n_dims,
  15118. mode,
  15119. n_ctx,
  15120. n_orig_ctx,
  15121. freq_base,
  15122. freq_scale,
  15123. ext_factor,
  15124. attn_factor,
  15125. beta_fast,
  15126. beta_slow,
  15127. xpos_base,
  15128. xpos_down),
  15129. zero_table);
  15130. }
  15131. } break;
  15132. case GGML_OP_ROPE_BACK:
  15133. {
  15134. if (src0->grad) {
  15135. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15136. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15137. const int mode = ((int32_t *) tensor->op_params)[2];
  15138. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15139. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15140. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15141. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15142. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15143. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15144. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15145. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15146. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15147. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15148. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15149. src0->grad = ggml_add_or_set(ctx,
  15150. src0->grad,
  15151. ggml_rope_impl(ctx,
  15152. tensor->grad,
  15153. src1,
  15154. n_dims,
  15155. mode,
  15156. n_ctx,
  15157. n_orig_ctx,
  15158. freq_base,
  15159. freq_scale,
  15160. ext_factor,
  15161. attn_factor,
  15162. beta_fast,
  15163. beta_slow,
  15164. xpos_base,
  15165. xpos_down,
  15166. false),
  15167. zero_table);
  15168. }
  15169. } break;
  15170. case GGML_OP_CLAMP:
  15171. {
  15172. GGML_ASSERT(false); // TODO: not implemented
  15173. } break;
  15174. case GGML_OP_CONV_TRANSPOSE_1D:
  15175. {
  15176. GGML_ASSERT(false); // TODO: not implemented
  15177. } break;
  15178. case GGML_OP_IM2COL:
  15179. {
  15180. GGML_ASSERT(false); // TODO: not implemented
  15181. } break;
  15182. case GGML_OP_CONV_TRANSPOSE_2D:
  15183. {
  15184. GGML_ASSERT(false); // TODO: not implemented
  15185. } break;
  15186. case GGML_OP_POOL_1D:
  15187. {
  15188. GGML_ASSERT(false); // TODO: not implemented
  15189. } break;
  15190. case GGML_OP_POOL_2D:
  15191. {
  15192. GGML_ASSERT(false); // TODO: not implemented
  15193. } break;
  15194. case GGML_OP_UPSCALE:
  15195. {
  15196. GGML_ASSERT(false); // TODO: not implemented
  15197. } break;
  15198. case GGML_OP_PAD:
  15199. {
  15200. GGML_ASSERT(false); // TODO: not implemented
  15201. } break;
  15202. case GGML_OP_ARANGE:
  15203. {
  15204. GGML_ASSERT(false); // TODO: not implemented
  15205. } break;
  15206. case GGML_OP_TIMESTEP_EMBEDDING:
  15207. {
  15208. GGML_ASSERT(false); // TODO: not implemented
  15209. } break;
  15210. case GGML_OP_ARGSORT:
  15211. {
  15212. GGML_ASSERT(false); // TODO: not implemented
  15213. } break;
  15214. case GGML_OP_LEAKY_RELU:
  15215. {
  15216. GGML_ASSERT(false); // TODO: not implemented
  15217. } break;
  15218. case GGML_OP_FLASH_ATTN:
  15219. case GGML_OP_FLASH_ATTN_EXT:
  15220. {
  15221. struct ggml_tensor * flash_grad = NULL;
  15222. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15223. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15224. GGML_ASSERT(t == 0 || t == 1);
  15225. bool masked = t != 0;
  15226. flash_grad =
  15227. ggml_flash_attn_back(ctx,
  15228. src0,
  15229. src1,
  15230. tensor->src[2],
  15231. tensor->grad,
  15232. masked);
  15233. }
  15234. struct ggml_tensor * src2 = tensor->src[2];
  15235. const int64_t elem_q = ggml_nelements(src0);
  15236. const int64_t elem_k = ggml_nelements(src1);
  15237. const int64_t elem_v = ggml_nelements(src2);
  15238. enum ggml_type result_type = flash_grad->type;
  15239. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15240. const size_t tsize = ggml_type_size(result_type);
  15241. const size_t offs_q = 0;
  15242. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15243. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15244. if (src0->grad) {
  15245. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15246. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15247. src0->grad = ggml_add_or_set(ctx,
  15248. src0->grad,
  15249. grad_q,
  15250. zero_table);
  15251. }
  15252. if (src1->grad) {
  15253. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15254. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15255. src1->grad = ggml_add_or_set(ctx,
  15256. src1->grad,
  15257. grad_k,
  15258. zero_table);
  15259. }
  15260. if (src2->grad) {
  15261. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15262. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15263. src2->grad = ggml_add_or_set(ctx,
  15264. src2->grad,
  15265. grad_v,
  15266. zero_table);
  15267. }
  15268. } break;
  15269. case GGML_OP_FLASH_FF:
  15270. {
  15271. GGML_ASSERT(false); // not supported
  15272. } break;
  15273. case GGML_OP_FLASH_ATTN_BACK:
  15274. {
  15275. GGML_ASSERT(false); // not supported
  15276. } break;
  15277. case GGML_OP_SSM_CONV:
  15278. case GGML_OP_SSM_SCAN:
  15279. {
  15280. GGML_ASSERT(false); // TODO: not implemented
  15281. } break;
  15282. case GGML_OP_WIN_PART:
  15283. case GGML_OP_WIN_UNPART:
  15284. case GGML_OP_UNARY:
  15285. {
  15286. switch (ggml_get_unary_op(tensor)) {
  15287. case GGML_UNARY_OP_ABS:
  15288. {
  15289. if (src0->grad) {
  15290. src0->grad =
  15291. ggml_add_or_set(ctx,
  15292. src0->grad,
  15293. ggml_mul(ctx,
  15294. ggml_sgn(ctx, src0),
  15295. tensor->grad),
  15296. zero_table);
  15297. }
  15298. } break;
  15299. case GGML_UNARY_OP_SGN:
  15300. {
  15301. if (src0->grad) {
  15302. // noop
  15303. }
  15304. } break;
  15305. case GGML_UNARY_OP_NEG:
  15306. {
  15307. if (src0->grad) {
  15308. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15309. }
  15310. } break;
  15311. case GGML_UNARY_OP_STEP:
  15312. {
  15313. if (src0->grad) {
  15314. // noop
  15315. }
  15316. } break;
  15317. case GGML_UNARY_OP_TANH:
  15318. {
  15319. GGML_ASSERT(false); // TODO: not implemented
  15320. } break;
  15321. case GGML_UNARY_OP_ELU:
  15322. {
  15323. GGML_ASSERT(false); // TODO: not implemented
  15324. } break;
  15325. case GGML_UNARY_OP_RELU:
  15326. {
  15327. if (src0->grad) {
  15328. src0->grad = ggml_add_or_set(ctx,
  15329. src0->grad,
  15330. ggml_mul(ctx,
  15331. ggml_step(ctx, src0),
  15332. tensor->grad),
  15333. zero_table);
  15334. }
  15335. } break;
  15336. case GGML_UNARY_OP_SIGMOID:
  15337. {
  15338. GGML_ASSERT(false); // TODO: not implemented
  15339. } break;
  15340. case GGML_UNARY_OP_GELU:
  15341. {
  15342. GGML_ASSERT(false); // TODO: not implemented
  15343. } break;
  15344. case GGML_UNARY_OP_GELU_QUICK:
  15345. {
  15346. GGML_ASSERT(false); // TODO: not implemented
  15347. } break;
  15348. case GGML_UNARY_OP_SILU:
  15349. {
  15350. // necessary for llama
  15351. if (src0->grad) {
  15352. src0->grad = ggml_add_or_set(ctx,
  15353. src0->grad,
  15354. ggml_silu_back(ctx, src0, tensor->grad),
  15355. zero_table);
  15356. }
  15357. } break;
  15358. default:
  15359. GGML_ASSERT(false);
  15360. }
  15361. } break;
  15362. case GGML_OP_GET_REL_POS:
  15363. case GGML_OP_ADD_REL_POS:
  15364. case GGML_OP_MAP_UNARY:
  15365. case GGML_OP_MAP_BINARY:
  15366. case GGML_OP_MAP_CUSTOM1_F32:
  15367. case GGML_OP_MAP_CUSTOM2_F32:
  15368. case GGML_OP_MAP_CUSTOM3_F32:
  15369. case GGML_OP_MAP_CUSTOM1:
  15370. case GGML_OP_MAP_CUSTOM2:
  15371. case GGML_OP_MAP_CUSTOM3:
  15372. {
  15373. GGML_ASSERT(false); // not supported
  15374. } break;
  15375. case GGML_OP_CROSS_ENTROPY_LOSS:
  15376. {
  15377. if (src0->grad) {
  15378. src0->grad = ggml_add_or_set(ctx,
  15379. src0->grad,
  15380. ggml_cross_entropy_loss_back(ctx,
  15381. src0,
  15382. src1,
  15383. tensor->grad),
  15384. zero_table);
  15385. }
  15386. } break;
  15387. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15388. {
  15389. GGML_ASSERT(false); // not supported
  15390. } break;
  15391. case GGML_OP_NONE:
  15392. {
  15393. // nop
  15394. } break;
  15395. case GGML_OP_COUNT:
  15396. {
  15397. GGML_ASSERT(false);
  15398. } break;
  15399. }
  15400. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15401. if (tensor->src[i] && tensor->src[i]->grad) {
  15402. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15403. }
  15404. }
  15405. }
  15406. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15407. if (node->grad == NULL) {
  15408. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15409. // it can also happen during forward pass, if the user performs computations with constants
  15410. if (node->op != GGML_OP_NONE) {
  15411. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15412. }
  15413. }
  15414. // check if already visited
  15415. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15416. return;
  15417. }
  15418. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15419. const int k =
  15420. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15421. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15422. /* unknown order, just fall back to using i*/ i;
  15423. if (node->src[k]) {
  15424. ggml_visit_parents(cgraph, node->src[k]);
  15425. }
  15426. }
  15427. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15428. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15429. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15430. if (strlen(node->name) == 0) {
  15431. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15432. }
  15433. cgraph->leafs[cgraph->n_leafs] = node;
  15434. cgraph->n_leafs++;
  15435. } else {
  15436. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15437. if (strlen(node->name) == 0) {
  15438. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15439. }
  15440. cgraph->nodes[cgraph->n_nodes] = node;
  15441. if (cgraph->grads) {
  15442. cgraph->grads[cgraph->n_nodes] = node->grad;
  15443. }
  15444. cgraph->n_nodes++;
  15445. }
  15446. }
  15447. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15448. if (!expand) {
  15449. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15450. ggml_graph_clear(cgraph);
  15451. }
  15452. const int n0 = cgraph->n_nodes;
  15453. UNUSED(n0);
  15454. ggml_visit_parents(cgraph, tensor);
  15455. const int n_new = cgraph->n_nodes - n0;
  15456. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15457. if (n_new > 0) {
  15458. // the last added node should always be starting point
  15459. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15460. }
  15461. }
  15462. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15463. ggml_build_forward_impl(cgraph, tensor, true);
  15464. }
  15465. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15466. GGML_ASSERT(gf->n_nodes > 0);
  15467. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15468. if (keep) {
  15469. for (int i = 0; i < gf->n_nodes; i++) {
  15470. struct ggml_tensor * node = gf->nodes[i];
  15471. if (node->grad) {
  15472. node->grad = ggml_dup_tensor(ctx, node);
  15473. gf->grads[i] = node->grad;
  15474. }
  15475. }
  15476. }
  15477. // remember original gradients which start with zero values
  15478. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15479. for (int i = 0; i < gf->n_nodes; i++) {
  15480. if (gf->grads[i]) {
  15481. ggml_hash_insert(zero_table, gf->grads[i]);
  15482. }
  15483. }
  15484. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15485. struct ggml_tensor * node = gf->nodes[i];
  15486. // inplace operations to add gradients are not created by ggml_compute_backward
  15487. // use allocator to automatically make inplace operations
  15488. if (node->grad) {
  15489. ggml_compute_backward(ctx, node, zero_table);
  15490. }
  15491. }
  15492. for (int i = 0; i < gf->n_nodes; i++) {
  15493. struct ggml_tensor * node = gf->nodes[i];
  15494. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15495. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15496. ggml_build_forward_expand(gb, node->grad);
  15497. }
  15498. }
  15499. ggml_hash_set_free(zero_table);
  15500. }
  15501. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15502. size_t nbytes = sizeof(struct ggml_cgraph);
  15503. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15504. if (grads) {
  15505. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15506. }
  15507. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15508. return nbytes;
  15509. }
  15510. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15511. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15512. }
  15513. size_t ggml_graph_overhead(void) {
  15514. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15515. }
  15516. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15517. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15518. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15519. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15520. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15521. size_t hash_size = ggml_hash_size(size * 2);
  15522. struct ggml_tensor ** nodes_ptr = data_start;
  15523. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15524. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15525. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15526. // check that we allocated the correct amount of memory
  15527. assert(obj_size == (size_t) (
  15528. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15529. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15530. *cgraph = (struct ggml_cgraph) {
  15531. /*.size =*/ size,
  15532. /*.n_nodes =*/ 0,
  15533. /*.n_leafs =*/ 0,
  15534. /*.nodes =*/ nodes_ptr,
  15535. /*.grads =*/ grads_ptr,
  15536. /*.leafs =*/ leafs_ptr,
  15537. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15538. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15539. /*.perf_runs =*/ 0,
  15540. /*.perf_cycles =*/ 0,
  15541. /*.perf_time_us =*/ 0,
  15542. };
  15543. return cgraph;
  15544. }
  15545. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15546. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15547. }
  15548. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15549. struct ggml_cgraph cgraph = {
  15550. /*.size =*/ 0,
  15551. /*.n_nodes =*/ i1 - i0,
  15552. /*.n_leafs =*/ 0,
  15553. /*.nodes =*/ cgraph0->nodes + i0,
  15554. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15555. /*.leafs =*/ NULL,
  15556. /*.hash_table =*/ { 0, NULL },
  15557. /*.order =*/ cgraph0->order,
  15558. /*.perf_runs =*/ 0,
  15559. /*.perf_cycles =*/ 0,
  15560. /*.perf_time_us =*/ 0,
  15561. };
  15562. return cgraph;
  15563. }
  15564. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15565. GGML_ASSERT(dst->size >= src->n_leafs);
  15566. GGML_ASSERT(dst->size >= src->n_nodes);
  15567. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15568. dst->n_leafs = src->n_leafs;
  15569. dst->n_nodes = src->n_nodes;
  15570. dst->order = src->order;
  15571. for (int i = 0; i < src->n_leafs; ++i) {
  15572. dst->leafs[i] = src->leafs[i];
  15573. }
  15574. for (int i = 0; i < src->n_nodes; ++i) {
  15575. dst->nodes[i] = src->nodes[i];
  15576. }
  15577. if (src->grads) {
  15578. GGML_ASSERT(dst->grads != NULL);
  15579. for (int i = 0; i < src->n_nodes; ++i) {
  15580. dst->grads[i] = src->grads[i];
  15581. }
  15582. }
  15583. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15584. if (src->visited_hash_table.keys[i]) {
  15585. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15586. }
  15587. }
  15588. }
  15589. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15590. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15591. ggml_graph_cpy(cgraph, result);
  15592. return result;
  15593. }
  15594. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15595. GGML_ASSERT(cgraph->grads != NULL);
  15596. for (int i = 0; i < cgraph->n_nodes; i++) {
  15597. struct ggml_tensor * grad = cgraph->grads[i];
  15598. if (grad) {
  15599. ggml_set_zero(grad);
  15600. }
  15601. }
  15602. }
  15603. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15604. cgraph->n_leafs = 0;
  15605. cgraph->n_nodes = 0;
  15606. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15607. }
  15608. //
  15609. // thread data
  15610. //
  15611. // synchronization is done via busy loops
  15612. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15613. //
  15614. #ifdef __APPLE__
  15615. //#include <os/lock.h>
  15616. //
  15617. //typedef os_unfair_lock ggml_lock_t;
  15618. //
  15619. //#define ggml_lock_init(x) UNUSED(x)
  15620. //#define ggml_lock_destroy(x) UNUSED(x)
  15621. //#define ggml_lock_lock os_unfair_lock_lock
  15622. //#define ggml_lock_unlock os_unfair_lock_unlock
  15623. //
  15624. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15625. typedef int ggml_lock_t;
  15626. #define ggml_lock_init(x) UNUSED(x)
  15627. #define ggml_lock_destroy(x) UNUSED(x)
  15628. #define ggml_lock_lock(x) UNUSED(x)
  15629. #define ggml_lock_unlock(x) UNUSED(x)
  15630. #define GGML_LOCK_INITIALIZER 0
  15631. typedef pthread_t ggml_thread_t;
  15632. #define ggml_thread_create pthread_create
  15633. #define ggml_thread_join pthread_join
  15634. #else
  15635. //typedef pthread_spinlock_t ggml_lock_t;
  15636. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15637. //#define ggml_lock_destroy pthread_spin_destroy
  15638. //#define ggml_lock_lock pthread_spin_lock
  15639. //#define ggml_lock_unlock pthread_spin_unlock
  15640. typedef int ggml_lock_t;
  15641. #define ggml_lock_init(x) UNUSED(x)
  15642. #define ggml_lock_destroy(x) UNUSED(x)
  15643. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15644. #define ggml_lock_lock(x) _mm_pause()
  15645. #else
  15646. #define ggml_lock_lock(x) UNUSED(x)
  15647. #endif
  15648. #define ggml_lock_unlock(x) UNUSED(x)
  15649. #define GGML_LOCK_INITIALIZER 0
  15650. typedef pthread_t ggml_thread_t;
  15651. #define ggml_thread_create pthread_create
  15652. #define ggml_thread_join pthread_join
  15653. #endif
  15654. // Android's libc implementation "bionic" does not support setting affinity
  15655. #if defined(__gnu_linux__)
  15656. static void set_numa_thread_affinity(int thread_n) {
  15657. if (!ggml_is_numa()) {
  15658. return;
  15659. }
  15660. int node_num;
  15661. int rv;
  15662. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15663. switch(g_state.numa.numa_strategy) {
  15664. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15665. // run thread on node_num thread_n / (threads per node)
  15666. node_num = thread_n % g_state.numa.n_nodes;
  15667. break;
  15668. case GGML_NUMA_STRATEGY_ISOLATE:
  15669. // run thread on current_node
  15670. node_num = g_state.numa.current_node;
  15671. break;
  15672. case GGML_NUMA_STRATEGY_NUMACTL:
  15673. // use the cpuset that numactl gave us
  15674. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15675. if (rv) {
  15676. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15677. }
  15678. return;
  15679. default:
  15680. return;
  15681. }
  15682. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15683. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15684. CPU_ZERO_S(setsize, cpus);
  15685. for (size_t i = 0; i < node->n_cpus; ++i) {
  15686. CPU_SET_S(node->cpus[i], setsize, cpus);
  15687. }
  15688. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15689. if (rv) {
  15690. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15691. }
  15692. CPU_FREE(cpus);
  15693. }
  15694. static void clear_numa_thread_affinity(void) {
  15695. if (!ggml_is_numa()) {
  15696. return;
  15697. }
  15698. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15699. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15700. CPU_ZERO_S(setsize, cpus);
  15701. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15702. CPU_SET_S(i, setsize, cpus);
  15703. }
  15704. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15705. if (rv) {
  15706. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15707. }
  15708. CPU_FREE(cpus);
  15709. }
  15710. #else
  15711. // TODO: Windows etc.
  15712. // (the linux implementation may also work on BSD, someone should test)
  15713. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15714. static void clear_numa_thread_affinity(void) {}
  15715. #endif
  15716. struct ggml_compute_state_shared {
  15717. const struct ggml_cgraph * cgraph;
  15718. const struct ggml_cplan * cplan;
  15719. int64_t perf_node_start_cycles;
  15720. int64_t perf_node_start_time_us;
  15721. const int n_threads;
  15722. // synchronization primitives
  15723. atomic_int n_active; // num active threads
  15724. atomic_int node_n; // active graph node
  15725. atomic_int node_task; // active graph node task phase
  15726. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  15727. void * abort_callback_data;
  15728. };
  15729. struct ggml_compute_state {
  15730. ggml_thread_t thrd;
  15731. int ith;
  15732. struct ggml_compute_state_shared * shared;
  15733. enum ggml_status ec;
  15734. };
  15735. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15736. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15737. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15738. node->perf_runs++;
  15739. node->perf_cycles += cycles_cur;
  15740. node->perf_time_us += time_us_cur;
  15741. }
  15742. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15743. int n_tasks = 0;
  15744. if (ggml_is_empty(node)) {
  15745. // no need to multi-thread a no-op
  15746. n_tasks = 1;
  15747. return n_tasks;
  15748. }
  15749. switch (node->op) {
  15750. case GGML_OP_CPY:
  15751. case GGML_OP_DUP:
  15752. case GGML_OP_ADD:
  15753. case GGML_OP_ADD1:
  15754. case GGML_OP_ACC:
  15755. {
  15756. n_tasks = n_threads;
  15757. } break;
  15758. case GGML_OP_SUB:
  15759. case GGML_OP_SQR:
  15760. case GGML_OP_SQRT:
  15761. case GGML_OP_LOG:
  15762. case GGML_OP_SUM:
  15763. case GGML_OP_SUM_ROWS:
  15764. case GGML_OP_MEAN:
  15765. case GGML_OP_ARGMAX:
  15766. case GGML_OP_REPEAT:
  15767. case GGML_OP_REPEAT_BACK:
  15768. case GGML_OP_LEAKY_RELU:
  15769. {
  15770. n_tasks = 1;
  15771. } break;
  15772. case GGML_OP_UNARY:
  15773. switch (ggml_get_unary_op(node)) {
  15774. case GGML_UNARY_OP_ABS:
  15775. case GGML_UNARY_OP_SGN:
  15776. case GGML_UNARY_OP_NEG:
  15777. case GGML_UNARY_OP_STEP:
  15778. case GGML_UNARY_OP_TANH:
  15779. case GGML_UNARY_OP_ELU:
  15780. case GGML_UNARY_OP_RELU:
  15781. case GGML_UNARY_OP_SIGMOID:
  15782. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15783. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15784. {
  15785. n_tasks = 1;
  15786. } break;
  15787. case GGML_UNARY_OP_GELU:
  15788. case GGML_UNARY_OP_GELU_QUICK:
  15789. case GGML_UNARY_OP_SILU:
  15790. {
  15791. n_tasks = n_threads;
  15792. } break;
  15793. default:
  15794. GGML_ASSERT(false);
  15795. }
  15796. break;
  15797. case GGML_OP_SILU_BACK:
  15798. case GGML_OP_MUL:
  15799. case GGML_OP_DIV:
  15800. case GGML_OP_NORM:
  15801. case GGML_OP_RMS_NORM:
  15802. case GGML_OP_RMS_NORM_BACK:
  15803. case GGML_OP_GROUP_NORM:
  15804. case GGML_OP_CONCAT:
  15805. {
  15806. n_tasks = n_threads;
  15807. } break;
  15808. case GGML_OP_MUL_MAT:
  15809. {
  15810. n_tasks = n_threads;
  15811. // TODO: use different scheduling for different matrix sizes
  15812. //const int nr0 = ggml_nrows(node->src[0]);
  15813. //const int nr1 = ggml_nrows(node->src[1]);
  15814. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15815. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15816. } break;
  15817. case GGML_OP_MUL_MAT_ID:
  15818. {
  15819. n_tasks = n_threads;
  15820. } break;
  15821. case GGML_OP_OUT_PROD:
  15822. {
  15823. n_tasks = n_threads;
  15824. } break;
  15825. case GGML_OP_GET_ROWS:
  15826. {
  15827. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15828. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15829. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15830. } break;
  15831. case GGML_OP_SCALE:
  15832. case GGML_OP_SET:
  15833. case GGML_OP_CONT:
  15834. case GGML_OP_RESHAPE:
  15835. case GGML_OP_VIEW:
  15836. case GGML_OP_PERMUTE:
  15837. case GGML_OP_TRANSPOSE:
  15838. case GGML_OP_GET_ROWS_BACK:
  15839. case GGML_OP_DIAG:
  15840. {
  15841. n_tasks = 1;
  15842. } break;
  15843. case GGML_OP_DIAG_MASK_ZERO:
  15844. case GGML_OP_DIAG_MASK_INF:
  15845. case GGML_OP_SOFT_MAX_BACK:
  15846. case GGML_OP_ROPE:
  15847. case GGML_OP_ROPE_BACK:
  15848. case GGML_OP_ADD_REL_POS:
  15849. {
  15850. n_tasks = n_threads;
  15851. } break;
  15852. case GGML_OP_CLAMP:
  15853. {
  15854. n_tasks = 1; //TODO
  15855. } break;
  15856. case GGML_OP_SOFT_MAX:
  15857. {
  15858. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15859. } break;
  15860. case GGML_OP_CONV_TRANSPOSE_1D:
  15861. {
  15862. n_tasks = n_threads;
  15863. } break;
  15864. case GGML_OP_IM2COL:
  15865. {
  15866. n_tasks = n_threads;
  15867. } break;
  15868. case GGML_OP_CONV_TRANSPOSE_2D:
  15869. {
  15870. n_tasks = n_threads;
  15871. } break;
  15872. case GGML_OP_POOL_1D:
  15873. case GGML_OP_POOL_2D:
  15874. {
  15875. n_tasks = 1;
  15876. } break;
  15877. case GGML_OP_UPSCALE:
  15878. {
  15879. n_tasks = n_threads;
  15880. } break;
  15881. case GGML_OP_PAD:
  15882. {
  15883. n_tasks = n_threads;
  15884. } break;
  15885. case GGML_OP_ARANGE:
  15886. {
  15887. n_tasks = n_threads;
  15888. } break;
  15889. case GGML_OP_TIMESTEP_EMBEDDING:
  15890. {
  15891. n_tasks = n_threads;
  15892. } break;
  15893. case GGML_OP_ARGSORT:
  15894. {
  15895. n_tasks = n_threads;
  15896. } break;
  15897. case GGML_OP_FLASH_ATTN:
  15898. case GGML_OP_FLASH_ATTN_EXT:
  15899. {
  15900. n_tasks = n_threads;
  15901. } break;
  15902. case GGML_OP_FLASH_FF:
  15903. {
  15904. n_tasks = n_threads;
  15905. } break;
  15906. case GGML_OP_FLASH_ATTN_BACK:
  15907. {
  15908. n_tasks = n_threads;
  15909. } break;
  15910. case GGML_OP_SSM_CONV:
  15911. case GGML_OP_SSM_SCAN:
  15912. {
  15913. n_tasks = n_threads;
  15914. } break;
  15915. case GGML_OP_WIN_PART:
  15916. case GGML_OP_WIN_UNPART:
  15917. case GGML_OP_GET_REL_POS:
  15918. case GGML_OP_MAP_UNARY:
  15919. case GGML_OP_MAP_BINARY:
  15920. case GGML_OP_MAP_CUSTOM1_F32:
  15921. case GGML_OP_MAP_CUSTOM2_F32:
  15922. case GGML_OP_MAP_CUSTOM3_F32:
  15923. {
  15924. n_tasks = 1;
  15925. } break;
  15926. case GGML_OP_MAP_CUSTOM1:
  15927. {
  15928. struct ggml_map_custom1_op_params p;
  15929. memcpy(&p, node->op_params, sizeof(p));
  15930. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15931. n_tasks = n_threads;
  15932. } else {
  15933. n_tasks = MIN(p.n_tasks, n_threads);
  15934. }
  15935. } break;
  15936. case GGML_OP_MAP_CUSTOM2:
  15937. {
  15938. struct ggml_map_custom2_op_params p;
  15939. memcpy(&p, node->op_params, sizeof(p));
  15940. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15941. n_tasks = n_threads;
  15942. } else {
  15943. n_tasks = MIN(p.n_tasks, n_threads);
  15944. }
  15945. } break;
  15946. case GGML_OP_MAP_CUSTOM3:
  15947. {
  15948. struct ggml_map_custom3_op_params p;
  15949. memcpy(&p, node->op_params, sizeof(p));
  15950. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15951. n_tasks = n_threads;
  15952. } else {
  15953. n_tasks = MIN(p.n_tasks, n_threads);
  15954. }
  15955. } break;
  15956. case GGML_OP_CROSS_ENTROPY_LOSS:
  15957. {
  15958. n_tasks = n_threads;
  15959. } break;
  15960. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15961. {
  15962. n_tasks = n_threads;
  15963. } break;
  15964. case GGML_OP_NONE:
  15965. {
  15966. n_tasks = 1;
  15967. } break;
  15968. case GGML_OP_COUNT:
  15969. {
  15970. GGML_ASSERT(false);
  15971. } break;
  15972. default:
  15973. {
  15974. fprintf(stderr, "%s: op not implemented: ", __func__);
  15975. if (node->op < GGML_OP_COUNT) {
  15976. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15977. } else {
  15978. fprintf(stderr, "%d\n", node->op);
  15979. }
  15980. GGML_ASSERT(false);
  15981. } break;
  15982. }
  15983. assert(n_tasks > 0);
  15984. return n_tasks;
  15985. }
  15986. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15987. // wait for other threads to finish
  15988. const int last_node_n = * node_n;
  15989. while (true) {
  15990. if (do_yield) {
  15991. sched_yield();
  15992. }
  15993. * node_n = atomic_load(&state->shared->node_n);
  15994. if (* node_n != last_node_n) break;
  15995. }
  15996. }
  15997. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15998. // wait for other threads to finish
  15999. const int last_task_phase = * task_phase;
  16000. while (true) {
  16001. if (do_yield) {
  16002. sched_yield();
  16003. }
  16004. * task_phase = atomic_load(&state->shared->node_task);
  16005. if (* task_phase != last_task_phase) break;
  16006. }
  16007. }
  16008. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16009. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16010. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  16011. const struct ggml_cplan * cplan = state->shared->cplan;
  16012. const int n_threads = state->shared->n_threads;
  16013. set_numa_thread_affinity(state->ith);
  16014. int node_n = -1;
  16015. int task_phase = GGML_TASK_TYPE_FINALIZE;
  16016. while (true) {
  16017. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16018. state->shared->node_n += 1;
  16019. state->ec = GGML_STATUS_ABORTED;
  16020. return 0;
  16021. }
  16022. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16023. // all other threads are finished and spinning
  16024. // do finalize and init here so we don't have synchronize again
  16025. struct ggml_compute_params params = {
  16026. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  16027. /*.ith =*/ 0,
  16028. /*.nth =*/ 0,
  16029. /*.wsize =*/ cplan->work_size,
  16030. /*.wdata =*/ cplan->work_data,
  16031. };
  16032. if (node_n != -1) {
  16033. /* FINALIZE */
  16034. struct ggml_tensor * node = cgraph->nodes[node_n];
  16035. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16036. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16037. ggml_compute_forward(&params, node);
  16038. }
  16039. ggml_graph_compute_perf_stats_node(node, state->shared);
  16040. }
  16041. // distribute new work or execute it direct if 1T
  16042. while (++node_n < cgraph->n_nodes) {
  16043. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16044. struct ggml_tensor * node = cgraph->nodes[node_n];
  16045. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16046. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16047. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16048. params.nth = n_tasks;
  16049. if (n_tasks == 1) {
  16050. /* INIT */
  16051. if (GGML_OP_HAS_INIT[node->op]) {
  16052. params.type = GGML_TASK_TYPE_INIT;
  16053. ggml_compute_forward(&params, node);
  16054. }
  16055. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16056. // they do something more efficient than spinning (?)
  16057. params.type = GGML_TASK_TYPE_COMPUTE;
  16058. ggml_compute_forward(&params, node);
  16059. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16060. params.type = GGML_TASK_TYPE_FINALIZE;
  16061. ggml_compute_forward(&params, node);
  16062. }
  16063. ggml_graph_compute_perf_stats_node(node, state->shared);
  16064. } else {
  16065. break;
  16066. }
  16067. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16068. break;
  16069. }
  16070. }
  16071. task_phase = GGML_TASK_TYPE_INIT;
  16072. atomic_store(&state->shared->n_active, n_threads);
  16073. atomic_store(&state->shared->node_n, node_n);
  16074. atomic_store(&state->shared->node_task, task_phase);
  16075. } else {
  16076. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16077. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16078. }
  16079. // check if we should stop
  16080. if (node_n >= cgraph->n_nodes) break;
  16081. /* INIT & COMPUTE */
  16082. struct ggml_tensor * node = cgraph->nodes[node_n];
  16083. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16084. struct ggml_compute_params params = {
  16085. /*.type =*/ GGML_TASK_TYPE_INIT,
  16086. /*.ith =*/ state->ith,
  16087. /*.nth =*/ n_tasks,
  16088. /*.wsize =*/ cplan->work_size,
  16089. /*.wdata =*/ cplan->work_data,
  16090. };
  16091. if (state->ith < n_tasks) {
  16092. if (GGML_OP_HAS_INIT[node->op]) {
  16093. ggml_compute_forward(&params, node);
  16094. }
  16095. }
  16096. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16097. task_phase = GGML_TASK_TYPE_COMPUTE;
  16098. atomic_store(&state->shared->n_active, n_threads);
  16099. atomic_store(&state->shared->node_task, task_phase);
  16100. }
  16101. else {
  16102. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16103. // depending on the workload and the operating system.
  16104. // since it is not clear what is the best approach, it should potentially become user-configurable
  16105. // ref: https://github.com/ggerganov/ggml/issues/291
  16106. // UPD: adding the do_yield flag seems to resolve the issue universally
  16107. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16108. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16109. }
  16110. if (state->ith < n_tasks) {
  16111. params.type = GGML_TASK_TYPE_COMPUTE;
  16112. ggml_compute_forward(&params, node);
  16113. }
  16114. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16115. task_phase = GGML_TASK_TYPE_FINALIZE;
  16116. atomic_store(&state->shared->n_active, n_threads);
  16117. atomic_store(&state->shared->node_task, task_phase);
  16118. }
  16119. else {
  16120. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16121. }
  16122. }
  16123. return 0;
  16124. }
  16125. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16126. if (n_threads <= 0) {
  16127. n_threads = GGML_DEFAULT_N_THREADS;
  16128. }
  16129. size_t work_size = 0;
  16130. struct ggml_cplan cplan;
  16131. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16132. int max_tasks = 1;
  16133. // thread scheduling for the different operations + work buffer size estimation
  16134. for (int i = 0; i < cgraph->n_nodes; i++) {
  16135. struct ggml_tensor * node = cgraph->nodes[i];
  16136. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16137. max_tasks = MAX(max_tasks, n_tasks);
  16138. size_t cur = 0;
  16139. switch (node->op) {
  16140. case GGML_OP_CPY:
  16141. case GGML_OP_DUP:
  16142. {
  16143. if (ggml_is_quantized(node->type) ||
  16144. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16145. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16146. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16147. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16148. }
  16149. } break;
  16150. case GGML_OP_ADD:
  16151. case GGML_OP_ADD1:
  16152. {
  16153. if (ggml_is_quantized(node->src[0]->type)) {
  16154. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16155. }
  16156. } break;
  16157. case GGML_OP_ACC:
  16158. {
  16159. if (ggml_is_quantized(node->src[0]->type)) {
  16160. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16161. }
  16162. } break;
  16163. case GGML_OP_MUL_MAT:
  16164. {
  16165. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16166. #if defined(GGML_USE_CLBLAST)
  16167. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16168. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16169. } else
  16170. #endif
  16171. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16172. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16173. if (node->src[0]->type != GGML_TYPE_F32) {
  16174. // here we need memory for fully dequantized matrix from src0
  16175. // take into account that src0 can be broadcasted into src1[2,3]
  16176. cur = ggml_type_size(GGML_TYPE_F32)
  16177. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16178. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16179. }
  16180. } else
  16181. #endif
  16182. if (node->src[1]->type != vec_dot_type) {
  16183. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16184. }
  16185. } break;
  16186. case GGML_OP_MUL_MAT_ID:
  16187. {
  16188. cur = 0;
  16189. const struct ggml_tensor * src0 = node->src[0];
  16190. const struct ggml_tensor * src1 = node->src[1];
  16191. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16192. if (src1->type != vec_dot_type) {
  16193. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16194. }
  16195. const int n_as = src0->ne[2];
  16196. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16197. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16198. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16199. } break;
  16200. case GGML_OP_OUT_PROD:
  16201. {
  16202. if (ggml_is_quantized(node->src[0]->type)) {
  16203. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16204. }
  16205. } break;
  16206. case GGML_OP_SOFT_MAX:
  16207. case GGML_OP_ROPE:
  16208. {
  16209. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16210. } break;
  16211. case GGML_OP_CONV_TRANSPOSE_1D:
  16212. {
  16213. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16214. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16215. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16216. const int64_t ne00 = node->src[0]->ne[0]; // K
  16217. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16218. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16219. const int64_t ne10 = node->src[1]->ne[0]; // L
  16220. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16221. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16222. node->src[0]->type == GGML_TYPE_BF16) &&
  16223. node->src[1]->type == GGML_TYPE_F32) {
  16224. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16225. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16226. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16227. node->src[1]->type == GGML_TYPE_F32) {
  16228. cur += sizeof(float)*ne00*ne01*ne02;
  16229. cur += sizeof(float)*ne10*ne11;
  16230. } else {
  16231. GGML_ASSERT(false);
  16232. }
  16233. } break;
  16234. case GGML_OP_CONV_TRANSPOSE_2D:
  16235. {
  16236. const int64_t ne00 = node->src[0]->ne[0]; // W
  16237. const int64_t ne01 = node->src[0]->ne[1]; // H
  16238. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16239. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16240. const int64_t ne10 = node->src[1]->ne[0]; // W
  16241. const int64_t ne11 = node->src[1]->ne[1]; // H
  16242. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16243. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16244. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16245. } break;
  16246. case GGML_OP_FLASH_ATTN:
  16247. {
  16248. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16249. if (node->src[1]->type == GGML_TYPE_F32) {
  16250. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16251. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16252. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16253. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16254. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16255. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16256. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16257. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16258. }
  16259. } break;
  16260. case GGML_OP_FLASH_ATTN_EXT:
  16261. {
  16262. const int64_t ne00 = node->src[0]->ne[0]; // D
  16263. cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
  16264. } break;
  16265. case GGML_OP_FLASH_FF:
  16266. {
  16267. if (node->src[1]->type == GGML_TYPE_F32) {
  16268. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16269. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16270. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16271. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16272. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16273. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16274. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16275. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16276. }
  16277. } break;
  16278. case GGML_OP_FLASH_ATTN_BACK:
  16279. {
  16280. const int64_t D = node->src[0]->ne[0];
  16281. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16282. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16283. if (node->src[1]->type == GGML_TYPE_F32) {
  16284. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16285. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16286. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16287. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16288. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16289. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16290. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16291. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16292. }
  16293. } break;
  16294. case GGML_OP_CROSS_ENTROPY_LOSS:
  16295. {
  16296. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16297. } break;
  16298. case GGML_OP_COUNT:
  16299. {
  16300. GGML_ASSERT(false);
  16301. } break;
  16302. default:
  16303. break;
  16304. }
  16305. work_size = MAX(work_size, cur);
  16306. }
  16307. if (work_size > 0) {
  16308. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16309. }
  16310. cplan.n_threads = MIN(max_tasks, n_threads);
  16311. cplan.work_size = work_size;
  16312. cplan.work_data = NULL;
  16313. return cplan;
  16314. }
  16315. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16316. {
  16317. GGML_ASSERT(cplan);
  16318. GGML_ASSERT(cplan->n_threads > 0);
  16319. if (cplan->work_size > 0) {
  16320. GGML_ASSERT(cplan->work_data);
  16321. }
  16322. }
  16323. const int n_threads = cplan->n_threads;
  16324. struct ggml_compute_state_shared state_shared = {
  16325. /*.cgraph =*/ cgraph,
  16326. /*.cgraph_plan =*/ cplan,
  16327. /*.perf_node_start_cycles =*/ 0,
  16328. /*.perf_node_start_time_us =*/ 0,
  16329. /*.n_threads =*/ n_threads,
  16330. /*.n_active =*/ n_threads,
  16331. /*.node_n =*/ -1,
  16332. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16333. /*.abort_callback =*/ NULL,
  16334. /*.abort_callback_data =*/ NULL,
  16335. };
  16336. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16337. // create thread pool
  16338. if (n_threads > 1) {
  16339. for (int j = 1; j < n_threads; ++j) {
  16340. workers[j] = (struct ggml_compute_state) {
  16341. .thrd = 0,
  16342. .ith = j,
  16343. .shared = &state_shared,
  16344. .ec = GGML_STATUS_SUCCESS,
  16345. };
  16346. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16347. GGML_ASSERT(rc == 0);
  16348. UNUSED(rc);
  16349. }
  16350. }
  16351. workers[0].ith = 0;
  16352. workers[0].shared = &state_shared;
  16353. workers[0].ec = GGML_STATUS_SUCCESS;
  16354. const int64_t perf_start_cycles = ggml_perf_cycles();
  16355. const int64_t perf_start_time_us = ggml_perf_time_us();
  16356. // this is a work thread too
  16357. ggml_graph_compute_thread(&workers[0]);
  16358. enum ggml_status compute_status = workers[0].ec;
  16359. // don't leave affinity set on the main thread
  16360. clear_numa_thread_affinity();
  16361. // join or kill thread pool
  16362. if (n_threads > 1) {
  16363. for (int j = 1; j < n_threads; j++) {
  16364. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16365. GGML_ASSERT(rc == 0);
  16366. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16367. compute_status = workers[j].ec;
  16368. }
  16369. }
  16370. // performance stats (graph)
  16371. {
  16372. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16373. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16374. cgraph->perf_runs++;
  16375. cgraph->perf_cycles += perf_cycles_cur;
  16376. cgraph->perf_time_us += perf_time_us_cur;
  16377. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16378. __func__, cgraph->perf_runs,
  16379. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16380. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16381. (double) perf_time_us_cur / 1000.0,
  16382. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16383. }
  16384. return compute_status;
  16385. }
  16386. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16387. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16388. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16389. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16390. return ggml_graph_compute(cgraph, &cplan);
  16391. }
  16392. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16393. for (int i = 0; i < cgraph->n_leafs; i++) {
  16394. struct ggml_tensor * leaf = cgraph->leafs[i];
  16395. if (strcmp(leaf->name, name) == 0) {
  16396. return leaf;
  16397. }
  16398. }
  16399. for (int i = 0; i < cgraph->n_nodes; i++) {
  16400. struct ggml_tensor * node = cgraph->nodes[i];
  16401. if (strcmp(node->name, name) == 0) {
  16402. return node;
  16403. }
  16404. }
  16405. return NULL;
  16406. }
  16407. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16408. const int64_t * ne = tensor->ne;
  16409. const size_t * nb = tensor->nb;
  16410. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16411. ggml_type_name(tensor->type),
  16412. ggml_op_name (tensor->op),
  16413. ggml_n_dims(tensor),
  16414. ne[0], ne[1], ne[2], ne[3],
  16415. nb[0], nb[1], nb[2], nb[3],
  16416. tensor->data,
  16417. tensor->name);
  16418. }
  16419. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16420. const int64_t * ne = tensor->ne;
  16421. const size_t * nb = tensor->nb;
  16422. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16423. arg,
  16424. ggml_type_name(tensor->type),
  16425. ggml_op_name (tensor->op),
  16426. ggml_n_dims(tensor),
  16427. ne[0], ne[1], ne[2], ne[3],
  16428. nb[0], nb[1], nb[2], nb[3],
  16429. tensor->data,
  16430. tensor->name);
  16431. }
  16432. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16433. uint64_t size_eval = 0;
  16434. // compute size of intermediate results
  16435. // TODO: does not take into account scratch buffers !!!!
  16436. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16437. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16438. }
  16439. // print
  16440. {
  16441. FILE * fout = stdout;
  16442. fprintf(fout, "\n");
  16443. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16444. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16445. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16446. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16447. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16448. // header
  16449. fprintf(fout, "\n");
  16450. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16451. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16452. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16453. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16454. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16455. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16456. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16457. }
  16458. // header
  16459. fprintf(fout, "\n");
  16460. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16461. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16462. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16463. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16464. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16465. if (cgraph->nodes[i]->src[j]) {
  16466. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16467. }
  16468. }
  16469. fprintf(fout, "\n");
  16470. }
  16471. fprintf(fout, "\n");
  16472. }
  16473. // write binary data
  16474. {
  16475. FILE * fout = ggml_fopen(fname, "wb");
  16476. if (!fout) {
  16477. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16478. return;
  16479. }
  16480. // header
  16481. {
  16482. const uint32_t magic = GGML_FILE_MAGIC;
  16483. const uint32_t version = GGML_FILE_VERSION;
  16484. const uint32_t n_leafs = cgraph->n_leafs;
  16485. const uint32_t n_nodes = cgraph->n_nodes;
  16486. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16487. fwrite(&version, sizeof(uint32_t), 1, fout);
  16488. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16489. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16490. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16491. }
  16492. // leafs
  16493. {
  16494. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16495. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16496. const uint32_t type = tensor->type;
  16497. const uint32_t op = tensor->op;
  16498. fwrite(&type, sizeof(uint32_t), 1, fout);
  16499. fwrite(&op, sizeof(uint32_t), 1, fout);
  16500. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16501. const uint64_t ne = tensor->ne[j];
  16502. const uint64_t nb = tensor->nb[j];
  16503. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16504. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16505. }
  16506. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16507. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16508. // dump the data
  16509. // TODO: pad this to 32 byte boundary
  16510. {
  16511. const size_t size = ggml_nbytes(tensor);
  16512. fwrite(tensor->data, sizeof(char), size, fout);
  16513. }
  16514. }
  16515. }
  16516. // nodes
  16517. {
  16518. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16519. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16520. const uint32_t type = tensor->type;
  16521. const uint32_t op = tensor->op;
  16522. fwrite(&type, sizeof(uint32_t), 1, fout);
  16523. fwrite(&op, sizeof(uint32_t), 1, fout);
  16524. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16525. const uint64_t ne = tensor->ne[j];
  16526. const uint64_t nb = tensor->nb[j];
  16527. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16528. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16529. }
  16530. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16531. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16532. // output the op arguments
  16533. {
  16534. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16535. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16536. args[j] = tensor->src[j];
  16537. }
  16538. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16539. if (args[j]) {
  16540. int32_t idx = -1;
  16541. // check if leaf
  16542. {
  16543. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16544. if (args[j] == cgraph->leafs[k]) {
  16545. idx = k;
  16546. break;
  16547. }
  16548. }
  16549. }
  16550. // check if node
  16551. if (idx == -1) {
  16552. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16553. if (args[j] == cgraph->nodes[k]) {
  16554. idx = cgraph->n_leafs + k;
  16555. break;
  16556. }
  16557. }
  16558. }
  16559. if (idx == -1) {
  16560. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16561. fclose(fout);
  16562. return;
  16563. }
  16564. fwrite(&idx, sizeof(int32_t), 1, fout);
  16565. } else {
  16566. const int32_t nul = -1;
  16567. fwrite(&nul, sizeof(int32_t), 1, fout);
  16568. }
  16569. }
  16570. }
  16571. }
  16572. }
  16573. fclose(fout);
  16574. }
  16575. }
  16576. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16577. assert(*ctx_data == NULL);
  16578. assert(*ctx_eval == NULL);
  16579. struct ggml_cgraph * result = NULL;
  16580. struct ggml_tensor * data = NULL;
  16581. // read file into data
  16582. {
  16583. FILE * fin = ggml_fopen(fname, "rb");
  16584. if (!fin) {
  16585. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16586. return result;
  16587. }
  16588. size_t fsize = 0;
  16589. fseek(fin, 0, SEEK_END);
  16590. fsize = ftell(fin);
  16591. fseek(fin, 0, SEEK_SET);
  16592. // create the data context
  16593. {
  16594. const size_t overhead = 1*ggml_tensor_overhead();
  16595. struct ggml_init_params params = {
  16596. .mem_size = fsize + overhead,
  16597. .mem_buffer = NULL,
  16598. .no_alloc = false,
  16599. };
  16600. *ctx_data = ggml_init(params);
  16601. if (!*ctx_data) {
  16602. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16603. fclose(fin);
  16604. return result;
  16605. }
  16606. }
  16607. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16608. {
  16609. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16610. if (ret != fsize) {
  16611. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16612. fclose(fin);
  16613. return result;
  16614. }
  16615. }
  16616. fclose(fin);
  16617. }
  16618. // populate result
  16619. {
  16620. char * ptr = (char *) data->data;
  16621. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16622. if (magic != GGML_FILE_MAGIC) {
  16623. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16624. return result;
  16625. }
  16626. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16627. if (version != GGML_FILE_VERSION) {
  16628. fprintf(stderr, "%s: invalid version number\n", __func__);
  16629. return result;
  16630. }
  16631. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16632. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16633. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16634. const int graph_size = MAX(n_leafs, n_nodes);
  16635. // create the data context
  16636. {
  16637. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16638. struct ggml_init_params params = {
  16639. .mem_size = size_eval + overhead,
  16640. .mem_buffer = NULL,
  16641. .no_alloc = true,
  16642. };
  16643. *ctx_eval = ggml_init(params);
  16644. if (!*ctx_eval) {
  16645. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16646. return result;
  16647. }
  16648. }
  16649. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16650. result->n_leafs = n_leafs;
  16651. result->n_nodes = n_nodes;
  16652. // leafs
  16653. {
  16654. uint32_t type;
  16655. uint32_t op;
  16656. for (uint32_t i = 0; i < n_leafs; ++i) {
  16657. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16658. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16659. int64_t ne[GGML_MAX_DIMS];
  16660. size_t nb[GGML_MAX_DIMS];
  16661. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16662. uint64_t ne_cur;
  16663. uint64_t nb_cur;
  16664. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16665. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16666. ne[j] = ne_cur;
  16667. nb[j] = nb_cur;
  16668. }
  16669. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16670. tensor->op = (enum ggml_op) op;
  16671. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16672. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16673. tensor->data = (void *) ptr;
  16674. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16675. tensor->nb[j] = nb[j];
  16676. }
  16677. result->leafs[i] = tensor;
  16678. ptr += ggml_nbytes(tensor);
  16679. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16680. }
  16681. }
  16682. ggml_set_no_alloc(*ctx_eval, false);
  16683. // nodes
  16684. {
  16685. uint32_t type;
  16686. uint32_t op;
  16687. for (uint32_t i = 0; i < n_nodes; ++i) {
  16688. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16689. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16690. enum ggml_op eop = (enum ggml_op) op;
  16691. int64_t ne[GGML_MAX_DIMS];
  16692. size_t nb[GGML_MAX_DIMS];
  16693. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16694. uint64_t ne_cur;
  16695. uint64_t nb_cur;
  16696. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16697. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16698. ne[j] = ne_cur;
  16699. nb[j] = nb_cur;
  16700. }
  16701. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16702. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16703. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16704. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16705. // parse args
  16706. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16707. const int32_t arg_idx = ptr_arg_idx[j];
  16708. if (arg_idx == -1) {
  16709. continue;
  16710. }
  16711. if (arg_idx < result->n_leafs) {
  16712. args[j] = result->leafs[arg_idx];
  16713. } else {
  16714. args[j] = result->nodes[arg_idx - result->n_leafs];
  16715. }
  16716. }
  16717. // create the tensor
  16718. // "view" operations are handled differently
  16719. // TODO: handle inplace ops - currently a copy is always made
  16720. struct ggml_tensor * tensor = NULL;
  16721. switch (eop) {
  16722. // TODO: implement other view ops
  16723. case GGML_OP_RESHAPE:
  16724. {
  16725. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16726. } break;
  16727. case GGML_OP_VIEW:
  16728. {
  16729. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16730. size_t offs;
  16731. memcpy(&offs, ptr_op_params, sizeof(offs));
  16732. tensor->data = ((char *) tensor->data) + offs;
  16733. } break;
  16734. case GGML_OP_TRANSPOSE:
  16735. {
  16736. tensor = ggml_transpose(*ctx_eval, args[0]);
  16737. } break;
  16738. case GGML_OP_PERMUTE:
  16739. {
  16740. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16741. } break;
  16742. default:
  16743. {
  16744. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16745. tensor->op = eop;
  16746. } break;
  16747. }
  16748. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16749. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16750. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16751. tensor->nb[j] = nb[j];
  16752. }
  16753. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16754. tensor->src[j] = args[j];
  16755. }
  16756. result->nodes[i] = tensor;
  16757. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16758. }
  16759. }
  16760. }
  16761. return result;
  16762. }
  16763. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16764. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16765. GGML_PRINT("=== GRAPH ===\n");
  16766. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16767. for (int i = 0; i < cgraph->n_nodes; i++) {
  16768. struct ggml_tensor * node = cgraph->nodes[i];
  16769. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16770. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16771. i,
  16772. node->ne[0], node->ne[1], node->ne[2],
  16773. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16774. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16775. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16776. (double) node->perf_time_us / 1000.0,
  16777. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16778. }
  16779. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16780. for (int i = 0; i < cgraph->n_leafs; i++) {
  16781. struct ggml_tensor * node = cgraph->leafs[i];
  16782. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16783. i,
  16784. node->ne[0], node->ne[1],
  16785. ggml_op_name(node->op),
  16786. ggml_get_name(node));
  16787. }
  16788. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16789. if (perf_total_per_op_us[i] == 0) {
  16790. continue;
  16791. }
  16792. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16793. }
  16794. GGML_PRINT("========================================\n");
  16795. }
  16796. // check if node is part of the graph
  16797. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16798. if (cgraph == NULL) {
  16799. return true;
  16800. }
  16801. for (int i = 0; i < cgraph->n_nodes; i++) {
  16802. if (cgraph->nodes[i] == node) {
  16803. return true;
  16804. }
  16805. }
  16806. return false;
  16807. }
  16808. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16809. for (int i = 0; i < cgraph->n_nodes; i++) {
  16810. struct ggml_tensor * parent = cgraph->nodes[i];
  16811. if (parent->grad == node) {
  16812. return parent;
  16813. }
  16814. }
  16815. return NULL;
  16816. }
  16817. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16818. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16819. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16820. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16821. gparent0 ? (void *) gparent0 : (void *) parent,
  16822. gparent0 ? "g" : "x",
  16823. gparent ? (void *) gparent : (void *) node,
  16824. gparent ? "g" : "x",
  16825. gparent ? "empty" : "vee",
  16826. gparent ? "dashed" : "solid",
  16827. label);
  16828. }
  16829. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16830. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16831. (void *) parent, "x",
  16832. (void *) node, "x",
  16833. label);
  16834. }
  16835. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16836. char color[16];
  16837. FILE * fp = ggml_fopen(filename, "w");
  16838. GGML_ASSERT(fp);
  16839. fprintf(fp, "digraph G {\n");
  16840. fprintf(fp, " newrank = true;\n");
  16841. fprintf(fp, " rankdir = LR;\n");
  16842. for (int i = 0; i < gb->n_nodes; i++) {
  16843. struct ggml_tensor * node = gb->nodes[i];
  16844. if (ggml_graph_get_parent(gb, node) != NULL) {
  16845. continue;
  16846. }
  16847. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16848. snprintf(color, sizeof(color), "yellow");
  16849. } else if (node->grad) {
  16850. if (ggml_graph_find(gf, node)) {
  16851. snprintf(color, sizeof(color), "green");
  16852. } else {
  16853. snprintf(color, sizeof(color), "lightblue");
  16854. }
  16855. } else {
  16856. snprintf(color, sizeof(color), "white");
  16857. }
  16858. fprintf(fp, " \"%p\" [ "
  16859. "style = filled; fillcolor = %s; shape = record; "
  16860. "label=\"",
  16861. (void *) node, color);
  16862. if (strlen(node->name) > 0) {
  16863. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16864. } else {
  16865. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16866. }
  16867. if (ggml_is_matrix(node)) {
  16868. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16869. } else {
  16870. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16871. }
  16872. if (node->grad) {
  16873. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16874. } else {
  16875. fprintf(fp, "\"; ]\n");
  16876. }
  16877. }
  16878. for (int i = 0; i < gb->n_leafs; i++) {
  16879. struct ggml_tensor * node = gb->leafs[i];
  16880. snprintf(color, sizeof(color), "pink");
  16881. fprintf(fp, " \"%p\" [ "
  16882. "style = filled; fillcolor = %s; shape = record; "
  16883. "label=\"<x>",
  16884. (void *) node, color);
  16885. if (strlen(node->name) > 0) {
  16886. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16887. } else {
  16888. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16889. }
  16890. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16891. if (ggml_nelements(node) < 5) {
  16892. fprintf(fp, " | (");
  16893. for (int j = 0; j < ggml_nelements(node); j++) {
  16894. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16895. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16896. }
  16897. else if (node->type == GGML_TYPE_F32 ||
  16898. node->type == GGML_TYPE_F16 ||
  16899. node->type == GGML_TYPE_BF16) {
  16900. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16901. }
  16902. else {
  16903. fprintf(fp, "#");
  16904. }
  16905. if (j < ggml_nelements(node) - 1) {
  16906. fprintf(fp, ", ");
  16907. }
  16908. }
  16909. fprintf(fp, ")");
  16910. }
  16911. fprintf(fp, "\"; ]\n");
  16912. }
  16913. for (int i = 0; i < gb->n_nodes; i++) {
  16914. struct ggml_tensor * node = gb->nodes[i];
  16915. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16916. if (node->src[j]) {
  16917. char label[16];
  16918. snprintf(label, sizeof(label), "src %d", j);
  16919. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16920. }
  16921. }
  16922. }
  16923. for (int i = 0; i < gb->n_leafs; i++) {
  16924. struct ggml_tensor * node = gb->leafs[i];
  16925. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16926. if (node->src[j]) {
  16927. char label[16];
  16928. snprintf(label, sizeof(label), "src %d", j);
  16929. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16930. }
  16931. }
  16932. }
  16933. fprintf(fp, "}\n");
  16934. fclose(fp);
  16935. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16936. }
  16937. ////////////////////////////////////////////////////////////////////////////////
  16938. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16939. int i = 0;
  16940. for (int p = 0; p < np; ++p) {
  16941. const int64_t ne = ggml_nelements(ps[p]) ;
  16942. // TODO: add function to set tensor from array
  16943. for (int64_t j = 0; j < ne; ++j) {
  16944. ggml_set_f32_1d(ps[p], j, x[i++]);
  16945. }
  16946. }
  16947. }
  16948. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16949. int i = 0;
  16950. for (int p = 0; p < np; ++p) {
  16951. const int64_t ne = ggml_nelements(ps[p]) ;
  16952. // TODO: add function to get all elements at once
  16953. for (int64_t j = 0; j < ne; ++j) {
  16954. x[i++] = ggml_get_f32_1d(ps[p], j);
  16955. }
  16956. }
  16957. }
  16958. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16959. int64_t i = 0;
  16960. for (int p = 0; p < np; ++p) {
  16961. const int64_t ne = ggml_nelements(ps[p]) ;
  16962. // TODO: add function to get all elements at once
  16963. for (int64_t j = 0; j < ne; ++j) {
  16964. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16965. }
  16966. }
  16967. }
  16968. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16969. int64_t i = 0;
  16970. for (int p = 0; p < np; ++p) {
  16971. const int64_t ne = ggml_nelements(ps[p]) ;
  16972. // TODO: add function to get all elements at once
  16973. for (int64_t j = 0; j < ne; ++j) {
  16974. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16975. }
  16976. }
  16977. }
  16978. //
  16979. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16980. //
  16981. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16982. //
  16983. static enum ggml_opt_result ggml_opt_adam(
  16984. struct ggml_context * ctx,
  16985. struct ggml_opt_context * opt,
  16986. struct ggml_opt_params params,
  16987. struct ggml_tensor * f,
  16988. struct ggml_cgraph * gf,
  16989. struct ggml_cgraph * gb,
  16990. ggml_opt_callback callback,
  16991. void * callback_data) {
  16992. GGML_ASSERT(ggml_is_scalar(f));
  16993. // these will store the parameters we want to optimize
  16994. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16995. int np = 0;
  16996. int64_t nx = 0;
  16997. for (int i = 0; i < gf->n_nodes; ++i) {
  16998. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16999. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17000. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17001. ps[np++] = gf->nodes[i];
  17002. nx += ggml_nelements(gf->nodes[i]);
  17003. }
  17004. }
  17005. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17006. int iter = opt->iter;
  17007. ggml_opt_init(opt->ctx, opt, params, nx);
  17008. opt->iter = iter;
  17009. }
  17010. // constants
  17011. float sched = params.adam.sched;
  17012. const float alpha = params.adam.alpha;
  17013. const float decay = params.adam.decay * alpha;
  17014. const float beta1 = params.adam.beta1;
  17015. const float beta2 = params.adam.beta2;
  17016. const float eps = params.adam.eps;
  17017. const float gclip = params.adam.gclip;
  17018. const int decay_min_ndim = params.adam.decay_min_ndim;
  17019. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17020. const float accum_norm = 1.0f / (float) n_accum;
  17021. float * g = opt->adam.g->data; // gradients
  17022. float * m = opt->adam.m->data; // first moment
  17023. float * v = opt->adam.v->data; // second moment
  17024. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17025. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17026. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17027. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17028. bool cancel = false;
  17029. // compute the function value
  17030. float fx = 0;
  17031. ggml_set_zero(opt->adam.g);
  17032. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17033. if (callback) {
  17034. callback(callback_data, accum_step, &sched, &cancel);
  17035. if (cancel) {
  17036. return GGML_OPT_RESULT_CANCEL;
  17037. }
  17038. }
  17039. // ggml_graph_reset (gf);
  17040. ggml_set_f32 (f->grad, 1.0f);
  17041. ggml_graph_compute(gb, &cplan);
  17042. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17043. fx += ggml_get_f32_1d(f, 0);
  17044. }
  17045. fx *= accum_norm;
  17046. opt->adam.fx_prev = fx;
  17047. opt->adam.fx_best = opt->adam.fx_prev;
  17048. if (pf) {
  17049. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17050. }
  17051. opt->loss_before = opt->adam.fx_prev;
  17052. opt->loss_after = opt->adam.fx_prev;
  17053. // initialize
  17054. if (opt->just_initialized) {
  17055. opt->adam.n_no_improvement = 0;
  17056. opt->just_initialized = false;
  17057. }
  17058. float * fx_best = &opt->adam.fx_best;
  17059. float * fx_prev = &opt->adam.fx_prev;
  17060. int * n_no_improvement = &opt->adam.n_no_improvement;
  17061. int iter0 = opt->iter;
  17062. // run the optimizer
  17063. for (int t = 0; t < params.adam.n_iter; ++t) {
  17064. opt->iter = iter0 + t + 1;
  17065. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17066. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17067. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17068. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17069. for (int i = 0; i < np; ++i) {
  17070. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17071. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17072. }
  17073. const int64_t t_start_wall = ggml_time_us();
  17074. const int64_t t_start_cpu = ggml_cycles();
  17075. UNUSED(t_start_wall);
  17076. UNUSED(t_start_cpu);
  17077. {
  17078. float gnorm = 1.0f;
  17079. if (gclip > 0.0f) {
  17080. // gradient clipping
  17081. ggml_float sum = 0.0;
  17082. for (int64_t i = 0; i < nx; ++i) {
  17083. sum += (ggml_float)(g[i]*g[i]);
  17084. }
  17085. ggml_float norm = sqrt(sum);
  17086. if (norm > (ggml_float) gclip) {
  17087. gnorm = (float) ((ggml_float) gclip / norm);
  17088. }
  17089. }
  17090. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17091. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17092. int64_t i = 0;
  17093. for (int p = 0; p < np; ++p) {
  17094. const int64_t ne = ggml_nelements(ps[p]);
  17095. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17096. for (int64_t j = 0; j < ne; ++j) {
  17097. float x = ggml_get_f32_1d(ps[p], j);
  17098. float g_ = g[i]*gnorm;
  17099. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17100. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17101. float mh = m[i]*beta1h;
  17102. float vh = v[i]*beta2h;
  17103. vh = sqrtf(vh) + eps;
  17104. x = x*(1.0f - p_decay) - mh/vh;
  17105. ggml_set_f32_1d(ps[p], j, x);
  17106. ++i;
  17107. }
  17108. }
  17109. }
  17110. fx = 0;
  17111. ggml_set_zero(opt->adam.g);
  17112. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17113. if (callback) {
  17114. callback(callback_data, accum_step, &sched, &cancel);
  17115. if (cancel) {
  17116. return GGML_OPT_RESULT_CANCEL;;
  17117. }
  17118. }
  17119. // ggml_graph_reset (gf);
  17120. ggml_set_f32 (f->grad, 1.0f);
  17121. ggml_graph_compute(gb, &cplan);
  17122. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17123. fx += ggml_get_f32_1d(f, 0);
  17124. }
  17125. fx *= accum_norm;
  17126. opt->loss_after = fx;
  17127. // check convergence
  17128. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17129. GGML_PRINT_DEBUG("converged\n");
  17130. return GGML_OPT_RESULT_OK;
  17131. }
  17132. // delta-based convergence test
  17133. if (pf != NULL) {
  17134. // need at least params.past iterations to start checking for convergence
  17135. if (params.past <= iter0 + t) {
  17136. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17137. if (fabsf(rate) < params.delta) {
  17138. return GGML_OPT_RESULT_OK;
  17139. }
  17140. }
  17141. pf[(iter0 + t)%params.past] = fx;
  17142. }
  17143. // check for improvement
  17144. if (params.max_no_improvement > 0) {
  17145. if (fx_best[0] > fx) {
  17146. fx_best[0] = fx;
  17147. n_no_improvement[0] = 0;
  17148. } else {
  17149. ++n_no_improvement[0];
  17150. if (n_no_improvement[0] >= params.max_no_improvement) {
  17151. return GGML_OPT_RESULT_OK;
  17152. }
  17153. }
  17154. }
  17155. fx_prev[0] = fx;
  17156. {
  17157. const int64_t t_end_cpu = ggml_cycles();
  17158. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17159. UNUSED(t_end_cpu);
  17160. const int64_t t_end_wall = ggml_time_us();
  17161. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17162. UNUSED(t_end_wall);
  17163. }
  17164. }
  17165. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17166. }
  17167. //
  17168. // L-BFGS
  17169. //
  17170. // the L-BFGS implementation below is based on the following implementation:
  17171. //
  17172. // https://github.com/chokkan/liblbfgs
  17173. //
  17174. struct ggml_lbfgs_iteration_data {
  17175. float alpha;
  17176. float ys;
  17177. float * s;
  17178. float * y;
  17179. };
  17180. static enum ggml_opt_result linesearch_backtracking(
  17181. const struct ggml_opt_params * params,
  17182. int nx,
  17183. float * x,
  17184. float * fx,
  17185. float * g,
  17186. float * d,
  17187. float * step,
  17188. const float * xp,
  17189. struct ggml_tensor * f,
  17190. struct ggml_cgraph * gb,
  17191. struct ggml_cplan * cplan,
  17192. const int np,
  17193. struct ggml_tensor * ps[],
  17194. bool * cancel,
  17195. ggml_opt_callback callback,
  17196. void * callback_data) {
  17197. int count = 0;
  17198. float width = 0.0f;
  17199. float dg = 0.0f;
  17200. float finit = 0.0f;
  17201. float dginit = 0.0f;
  17202. float dgtest = 0.0f;
  17203. const float dec = 0.5f;
  17204. const float inc = 2.1f;
  17205. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17206. const float accum_norm = 1.0f / (float) n_accum;
  17207. if (*step <= 0.f) {
  17208. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17209. }
  17210. // compute the initial gradient in the search direction
  17211. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17212. // make sure that d points to a descent direction
  17213. if (0 < dginit) {
  17214. return GGML_LINESEARCH_FAIL;
  17215. }
  17216. // initialize local variables
  17217. finit = *fx;
  17218. dgtest = params->lbfgs.ftol*dginit;
  17219. while (true) {
  17220. ggml_vec_cpy_f32(nx, x, xp);
  17221. ggml_vec_mad_f32(nx, x, d, *step);
  17222. // evaluate the function and gradient values
  17223. {
  17224. ggml_opt_set_params(np, ps, x);
  17225. *fx = 0;
  17226. memset(g, 0, sizeof(float)*nx);
  17227. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17228. if (callback) {
  17229. // LBFG-S does not support learning rate -> ignore learning schedule
  17230. float sched = 0;
  17231. callback(callback_data, accum_step, &sched, cancel);
  17232. if (*cancel) {
  17233. return GGML_OPT_RESULT_CANCEL;
  17234. }
  17235. }
  17236. // ggml_graph_reset (gf);
  17237. ggml_set_f32 (f->grad, 1.0f);
  17238. ggml_graph_compute(gb, cplan);
  17239. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17240. *fx += ggml_get_f32_1d(f, 0);
  17241. }
  17242. *fx *= accum_norm;
  17243. }
  17244. ++count;
  17245. if (*fx > finit + (*step)*dgtest) {
  17246. width = dec;
  17247. } else {
  17248. // Armijo condition is satisfied
  17249. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17250. return count;
  17251. }
  17252. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17253. // check the Wolfe condition
  17254. if (dg < params->lbfgs.wolfe * dginit) {
  17255. width = inc;
  17256. } else {
  17257. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17258. // regular Wolfe conditions
  17259. return count;
  17260. }
  17261. if(dg > -params->lbfgs.wolfe*dginit) {
  17262. width = dec;
  17263. } else {
  17264. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17265. return count;
  17266. }
  17267. }
  17268. }
  17269. if (*step < params->lbfgs.min_step) {
  17270. return GGML_LINESEARCH_MINIMUM_STEP;
  17271. }
  17272. if (*step > params->lbfgs.max_step) {
  17273. return GGML_LINESEARCH_MAXIMUM_STEP;
  17274. }
  17275. if (params->lbfgs.max_linesearch <= count) {
  17276. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17277. }
  17278. (*step) *= width;
  17279. }
  17280. GGML_ASSERT(false && "line search failed");
  17281. return GGML_LINESEARCH_FAIL;
  17282. }
  17283. static enum ggml_opt_result ggml_opt_lbfgs(
  17284. struct ggml_context * ctx,
  17285. struct ggml_opt_context * opt,
  17286. struct ggml_opt_params params,
  17287. struct ggml_tensor * f,
  17288. struct ggml_cgraph * gf,
  17289. struct ggml_cgraph * gb,
  17290. ggml_opt_callback callback,
  17291. void * callback_data) {
  17292. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17293. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17294. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17295. return GGML_OPT_RESULT_INVALID_WOLFE;
  17296. }
  17297. }
  17298. const int m = params.lbfgs.m;
  17299. // these will store the parameters we want to optimize
  17300. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17301. int np = 0;
  17302. int nx = 0;
  17303. for (int i = 0; i < gf->n_nodes; ++i) {
  17304. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17305. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17306. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17307. ps[np++] = gf->nodes[i];
  17308. nx += ggml_nelements(gf->nodes[i]);
  17309. }
  17310. }
  17311. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17312. int iter = opt->iter;
  17313. ggml_opt_init(ctx, opt, params, nx);
  17314. opt->iter = iter;
  17315. }
  17316. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17317. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17318. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17319. float * x = opt->lbfgs.x->data; // current parameters
  17320. float * xp = opt->lbfgs.xp->data; // previous parameters
  17321. float * g = opt->lbfgs.g->data; // current gradient
  17322. float * gp = opt->lbfgs.gp->data; // previous gradient
  17323. float * d = opt->lbfgs.d->data; // search direction
  17324. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17325. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17326. const float accum_norm = 1.0f / (float) n_accum;
  17327. float fx = 0.0f; // cost function value
  17328. float xnorm = 0.0f; // ||x||
  17329. float gnorm = 0.0f; // ||g||
  17330. // initialize x from the graph nodes
  17331. ggml_opt_get_params(np, ps, x);
  17332. // the L-BFGS memory
  17333. float * lm_alpha = opt->lbfgs.lmal->data;
  17334. float * lm_ys = opt->lbfgs.lmys->data;
  17335. float * lm_s = opt->lbfgs.lms->data;
  17336. float * lm_y = opt->lbfgs.lmy->data;
  17337. bool cancel = false;
  17338. // evaluate the function value and its gradient
  17339. {
  17340. ggml_opt_set_params(np, ps, x);
  17341. fx = 0;
  17342. memset(g, 0, sizeof(float)*nx);
  17343. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17344. if (callback) {
  17345. // LBFG-S does not support learning rate -> ignore learning schedule
  17346. float sched = 0;
  17347. callback(callback_data, accum_step, &sched, &cancel);
  17348. if (cancel) {
  17349. return GGML_OPT_RESULT_CANCEL;
  17350. }
  17351. }
  17352. // ggml_graph_reset (gf);
  17353. ggml_set_f32 (f->grad, 1.0f);
  17354. ggml_graph_compute(gb, &cplan);
  17355. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17356. fx += ggml_get_f32_1d(f, 0);
  17357. }
  17358. fx *= accum_norm;
  17359. opt->loss_before = fx;
  17360. opt->loss_after = fx;
  17361. }
  17362. // search direction = -gradient
  17363. ggml_vec_neg_f32(nx, d, g);
  17364. // ||x||, ||g||
  17365. ggml_vec_norm_f32(nx, &xnorm, x);
  17366. ggml_vec_norm_f32(nx, &gnorm, g);
  17367. if (xnorm < 1.0f) {
  17368. xnorm = 1.0f;
  17369. }
  17370. // already optimized
  17371. if (gnorm/xnorm <= params.lbfgs.eps) {
  17372. return GGML_OPT_RESULT_OK;
  17373. }
  17374. if (opt->just_initialized) {
  17375. if (pf) {
  17376. pf[0] = fx;
  17377. }
  17378. opt->lbfgs.fx_best = fx;
  17379. // initial step
  17380. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17381. opt->lbfgs.j = 0;
  17382. opt->lbfgs.k = 1;
  17383. opt->lbfgs.end = 0;
  17384. opt->lbfgs.n_no_improvement = 0;
  17385. opt->just_initialized = false;
  17386. }
  17387. float * fx_best = &opt->lbfgs.fx_best;
  17388. float * step = &opt->lbfgs.step;
  17389. int * j = &opt->lbfgs.j;
  17390. int * k = &opt->lbfgs.k;
  17391. int * end = &opt->lbfgs.end;
  17392. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17393. int ls = 0;
  17394. int bound = 0;
  17395. float ys = 0.0f;
  17396. float yy = 0.0f;
  17397. float beta = 0.0f;
  17398. int it = 0;
  17399. while (true) {
  17400. // store the current position and gradient vectors
  17401. ggml_vec_cpy_f32(nx, xp, x);
  17402. ggml_vec_cpy_f32(nx, gp, g);
  17403. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17404. // to determine if the optimization should be cancelled
  17405. // this is a simple change, but not doing this atm, since I don't have a nice
  17406. // way to test and don't want to break something with so many changes lined up
  17407. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17408. if (cancel) {
  17409. return GGML_OPT_RESULT_CANCEL;
  17410. }
  17411. if (ls < 0) {
  17412. // linesearch failed - go back to the previous point and return
  17413. ggml_vec_cpy_f32(nx, x, xp);
  17414. ggml_vec_cpy_f32(nx, g, gp);
  17415. return ls;
  17416. }
  17417. opt->loss_after = fx;
  17418. ggml_vec_norm_f32(nx, &xnorm, x);
  17419. ggml_vec_norm_f32(nx, &gnorm, g);
  17420. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17421. if (xnorm < 1.0f) {
  17422. xnorm = 1.0f;
  17423. }
  17424. if (gnorm/xnorm <= params.lbfgs.eps) {
  17425. // converged
  17426. return GGML_OPT_RESULT_OK;
  17427. }
  17428. // delta-based convergence test
  17429. if (pf != NULL) {
  17430. // need at least params.past iterations to start checking for convergence
  17431. if (params.past <= k[0]) {
  17432. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17433. if (fabsf(rate) < params.delta) {
  17434. return GGML_OPT_RESULT_OK;
  17435. }
  17436. }
  17437. pf[k[0]%params.past] = fx;
  17438. }
  17439. // check for improvement
  17440. if (params.max_no_improvement > 0) {
  17441. if (fx < fx_best[0]) {
  17442. fx_best[0] = fx;
  17443. n_no_improvement[0] = 0;
  17444. } else {
  17445. n_no_improvement[0]++;
  17446. if (n_no_improvement[0] >= params.max_no_improvement) {
  17447. return GGML_OPT_RESULT_OK;
  17448. }
  17449. }
  17450. }
  17451. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17452. // reached the maximum number of iterations
  17453. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17454. }
  17455. // update vectors s and y:
  17456. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17457. // y_{k+1} = g_{k+1} - g_{k}.
  17458. //
  17459. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17460. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17461. // compute scalars ys and yy:
  17462. // ys = y^t \cdot s -> 1 / \rho.
  17463. // yy = y^t \cdot y.
  17464. //
  17465. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17466. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17467. lm_ys[end[0]] = ys;
  17468. // find new search direction
  17469. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17470. bound = (m <= k[0]) ? m : k[0];
  17471. k[0]++;
  17472. it++;
  17473. end[0] = (end[0] + 1)%m;
  17474. // initialize search direction with -g
  17475. ggml_vec_neg_f32(nx, d, g);
  17476. j[0] = end[0];
  17477. for (int i = 0; i < bound; ++i) {
  17478. j[0] = (j[0] + m - 1) % m;
  17479. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17480. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17481. lm_alpha[j[0]] /= lm_ys[j[0]];
  17482. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17483. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17484. }
  17485. ggml_vec_scale_f32(nx, d, ys/yy);
  17486. for (int i = 0; i < bound; ++i) {
  17487. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17488. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17489. beta /= lm_ys[j[0]];
  17490. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17491. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17492. j[0] = (j[0] + 1)%m;
  17493. }
  17494. step[0] = 1.0;
  17495. }
  17496. GGML_ASSERT(false && "lbfgs failed");
  17497. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17498. }
  17499. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17500. struct ggml_opt_params result;
  17501. switch (type) {
  17502. case GGML_OPT_TYPE_ADAM:
  17503. {
  17504. result = (struct ggml_opt_params) {
  17505. .type = GGML_OPT_TYPE_ADAM,
  17506. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17507. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17508. .past = 0,
  17509. .delta = 1e-5f,
  17510. .max_no_improvement = 100,
  17511. .print_forward_graph = true,
  17512. .print_backward_graph = true,
  17513. .n_gradient_accumulation = 1,
  17514. .adam = {
  17515. .n_iter = 10000,
  17516. .sched = 1.000f,
  17517. .decay = 0.0f,
  17518. .decay_min_ndim = 2,
  17519. .alpha = 0.001f,
  17520. .beta1 = 0.9f,
  17521. .beta2 = 0.999f,
  17522. .eps = 1e-8f,
  17523. .eps_f = 1e-5f,
  17524. .eps_g = 1e-3f,
  17525. .gclip = 0.0f,
  17526. },
  17527. };
  17528. } break;
  17529. case GGML_OPT_TYPE_LBFGS:
  17530. {
  17531. result = (struct ggml_opt_params) {
  17532. .type = GGML_OPT_TYPE_LBFGS,
  17533. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17534. .n_threads = 1,
  17535. .past = 0,
  17536. .delta = 1e-5f,
  17537. .max_no_improvement = 0,
  17538. .print_forward_graph = true,
  17539. .print_backward_graph = true,
  17540. .n_gradient_accumulation = 1,
  17541. .lbfgs = {
  17542. .m = 6,
  17543. .n_iter = 100,
  17544. .max_linesearch = 20,
  17545. .eps = 1e-5f,
  17546. .ftol = 1e-4f,
  17547. .wolfe = 0.9f,
  17548. .min_step = 1e-20f,
  17549. .max_step = 1e+20f,
  17550. .linesearch = GGML_LINESEARCH_DEFAULT,
  17551. },
  17552. };
  17553. } break;
  17554. }
  17555. return result;
  17556. }
  17557. GGML_API void ggml_opt_init(
  17558. struct ggml_context * ctx,
  17559. struct ggml_opt_context * opt,
  17560. struct ggml_opt_params params,
  17561. int64_t nx) {
  17562. opt->ctx = ctx;
  17563. opt->params = params;
  17564. opt->iter = 0;
  17565. opt->nx = nx;
  17566. opt->just_initialized = true;
  17567. if (opt->ctx == NULL) {
  17568. struct ggml_init_params ctx_opt_params;
  17569. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17570. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17571. if (opt->params.past > 0) {
  17572. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17573. }
  17574. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17575. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17576. if (opt->params.past > 0) {
  17577. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17578. }
  17579. }
  17580. ctx_opt_params.mem_buffer = NULL;
  17581. ctx_opt_params.no_alloc = false;
  17582. opt->ctx = ggml_init(ctx_opt_params);
  17583. }
  17584. switch (opt->params.type) {
  17585. case GGML_OPT_TYPE_ADAM:
  17586. {
  17587. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17588. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17589. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17590. opt->adam.pf = params.past > 0
  17591. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17592. : NULL;
  17593. ggml_set_zero(opt->adam.m);
  17594. ggml_set_zero(opt->adam.v);
  17595. if (opt->adam.pf) {
  17596. ggml_set_zero(opt->adam.pf);
  17597. }
  17598. } break;
  17599. case GGML_OPT_TYPE_LBFGS:
  17600. {
  17601. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17602. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17603. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17604. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17605. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17606. opt->lbfgs.pf = params.past > 0
  17607. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17608. : NULL;
  17609. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17610. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17611. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17612. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17613. ggml_set_zero(opt->lbfgs.x);
  17614. ggml_set_zero(opt->lbfgs.xp);
  17615. ggml_set_zero(opt->lbfgs.g);
  17616. ggml_set_zero(opt->lbfgs.gp);
  17617. ggml_set_zero(opt->lbfgs.d);
  17618. if (opt->lbfgs.pf) {
  17619. ggml_set_zero(opt->lbfgs.pf);
  17620. }
  17621. ggml_set_zero(opt->lbfgs.lmal);
  17622. ggml_set_zero(opt->lbfgs.lmys);
  17623. ggml_set_zero(opt->lbfgs.lms);
  17624. ggml_set_zero(opt->lbfgs.lmy);
  17625. } break;
  17626. }
  17627. }
  17628. enum ggml_opt_result ggml_opt(
  17629. struct ggml_context * ctx,
  17630. struct ggml_opt_params params,
  17631. struct ggml_tensor * f) {
  17632. bool free_ctx = false;
  17633. if (ctx == NULL) {
  17634. struct ggml_init_params params_ctx = {
  17635. .mem_size = 16*1024*1024,
  17636. .mem_buffer = NULL,
  17637. .no_alloc = false,
  17638. };
  17639. ctx = ggml_init(params_ctx);
  17640. if (ctx == NULL) {
  17641. return GGML_OPT_RESULT_NO_CONTEXT;
  17642. }
  17643. free_ctx = true;
  17644. }
  17645. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17646. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17647. ggml_opt_init(ctx, opt, params, 0);
  17648. result = ggml_opt_resume(ctx, opt, f);
  17649. if (free_ctx) {
  17650. ggml_free(ctx);
  17651. }
  17652. return result;
  17653. }
  17654. enum ggml_opt_result ggml_opt_resume(
  17655. struct ggml_context * ctx,
  17656. struct ggml_opt_context * opt,
  17657. struct ggml_tensor * f) {
  17658. // build forward + backward compute graphs
  17659. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17660. ggml_build_forward_expand(gf, f);
  17661. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17662. ggml_build_backward_expand(ctx, gf, gb, true);
  17663. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17664. }
  17665. enum ggml_opt_result ggml_opt_resume_g(
  17666. struct ggml_context * ctx,
  17667. struct ggml_opt_context * opt,
  17668. struct ggml_tensor * f,
  17669. struct ggml_cgraph * gf,
  17670. struct ggml_cgraph * gb,
  17671. ggml_opt_callback callback,
  17672. void * callback_data) {
  17673. // build forward + backward compute graphs
  17674. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17675. switch (opt->params.type) {
  17676. case GGML_OPT_TYPE_ADAM:
  17677. {
  17678. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17679. } break;
  17680. case GGML_OPT_TYPE_LBFGS:
  17681. {
  17682. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17683. } break;
  17684. }
  17685. if (opt->params.print_forward_graph) {
  17686. ggml_graph_print (gf);
  17687. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17688. }
  17689. if (opt->params.print_backward_graph) {
  17690. ggml_graph_print (gb);
  17691. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17692. }
  17693. return result;
  17694. }
  17695. ////////////////////////////////////////////////////////////////////////////////
  17696. void ggml_set_input(struct ggml_tensor * tensor) {
  17697. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17698. }
  17699. void ggml_set_output(struct ggml_tensor * tensor) {
  17700. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17701. }
  17702. ////////////////////////////////////////////////////////////////////////////////
  17703. void ggml_quantize_init(enum ggml_type type) {
  17704. ggml_critical_section_start();
  17705. switch (type) {
  17706. case GGML_TYPE_IQ2_XXS:
  17707. case GGML_TYPE_IQ2_XS:
  17708. case GGML_TYPE_IQ2_S:
  17709. case GGML_TYPE_IQ1_S:
  17710. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17711. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17712. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17713. default: // nothing
  17714. break;
  17715. }
  17716. ggml_critical_section_end();
  17717. }
  17718. void ggml_quantize_free(void) {
  17719. ggml_critical_section_start();
  17720. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17721. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17722. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17723. iq3xs_free_impl(256);
  17724. ggml_critical_section_end();
  17725. }
  17726. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17727. return
  17728. type == GGML_TYPE_IQ2_XXS ||
  17729. type == GGML_TYPE_IQ2_XS ||
  17730. type == GGML_TYPE_IQ1_S;// ||
  17731. //type == GGML_TYPE_IQ1_M;
  17732. }
  17733. size_t ggml_quantize_chunk(
  17734. enum ggml_type type,
  17735. const float * src,
  17736. void * dst,
  17737. int64_t start,
  17738. int64_t nrows,
  17739. int64_t n_per_row,
  17740. const float * imatrix) {
  17741. const int64_t n = (int64_t) nrows * n_per_row;
  17742. if (ggml_quantize_requires_imatrix(type)) {
  17743. GGML_ASSERT(imatrix != NULL);
  17744. }
  17745. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17746. GGML_ASSERT(start % n_per_row == 0);
  17747. ggml_quantize_init(type); // this is noop if already initialized
  17748. const size_t start_row = start / n_per_row;
  17749. const size_t row_size = ggml_row_size(type, n_per_row);
  17750. size_t result = 0;
  17751. switch (type) {
  17752. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17753. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17754. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17755. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17756. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17757. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17758. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17759. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17760. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17761. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17762. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17763. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17764. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17765. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17766. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17767. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17768. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17769. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17770. #if QK_K == 64
  17771. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17772. #else
  17773. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17774. #endif
  17775. case GGML_TYPE_F16:
  17776. {
  17777. size_t elemsize = sizeof(ggml_fp16_t);
  17778. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17779. result = n * elemsize;
  17780. } break;
  17781. case GGML_TYPE_BF16:
  17782. {
  17783. size_t elemsize = sizeof(ggml_bf16_t);
  17784. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17785. result = n * elemsize;
  17786. } break;
  17787. case GGML_TYPE_F32:
  17788. {
  17789. size_t elemsize = sizeof(float);
  17790. result = n * elemsize;
  17791. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17792. } break;
  17793. default:
  17794. assert(false);
  17795. }
  17796. GGML_ASSERT(result == nrows * row_size);
  17797. return result;
  17798. }
  17799. ////////////////////////////////////////////////////////////////////////////////
  17800. struct gguf_str {
  17801. uint64_t n; // GGUFv2
  17802. char * data;
  17803. };
  17804. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17805. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17806. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17807. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17808. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17809. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17810. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17811. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17812. [GGUF_TYPE_BOOL] = sizeof(bool),
  17813. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17814. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17815. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17816. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17817. [GGUF_TYPE_ARRAY] = 0, // undefined
  17818. };
  17819. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17820. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17821. [GGUF_TYPE_UINT8] = "u8",
  17822. [GGUF_TYPE_INT8] = "i8",
  17823. [GGUF_TYPE_UINT16] = "u16",
  17824. [GGUF_TYPE_INT16] = "i16",
  17825. [GGUF_TYPE_UINT32] = "u32",
  17826. [GGUF_TYPE_INT32] = "i32",
  17827. [GGUF_TYPE_FLOAT32] = "f32",
  17828. [GGUF_TYPE_BOOL] = "bool",
  17829. [GGUF_TYPE_STRING] = "str",
  17830. [GGUF_TYPE_ARRAY] = "arr",
  17831. [GGUF_TYPE_UINT64] = "u64",
  17832. [GGUF_TYPE_INT64] = "i64",
  17833. [GGUF_TYPE_FLOAT64] = "f64",
  17834. };
  17835. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17836. union gguf_value {
  17837. uint8_t uint8;
  17838. int8_t int8;
  17839. uint16_t uint16;
  17840. int16_t int16;
  17841. uint32_t uint32;
  17842. int32_t int32;
  17843. float float32;
  17844. uint64_t uint64;
  17845. int64_t int64;
  17846. double float64;
  17847. bool bool_;
  17848. struct gguf_str str;
  17849. struct {
  17850. enum gguf_type type;
  17851. uint64_t n; // GGUFv2
  17852. void * data;
  17853. } arr;
  17854. };
  17855. struct gguf_kv {
  17856. struct gguf_str key;
  17857. enum gguf_type type;
  17858. union gguf_value value;
  17859. };
  17860. struct gguf_header {
  17861. char magic[4];
  17862. uint32_t version;
  17863. uint64_t n_tensors; // GGUFv2
  17864. uint64_t n_kv; // GGUFv2
  17865. };
  17866. struct gguf_tensor_info {
  17867. struct gguf_str name;
  17868. uint32_t n_dims;
  17869. uint64_t ne[GGML_MAX_DIMS];
  17870. enum ggml_type type;
  17871. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17872. // for writing API
  17873. const void * data;
  17874. size_t size;
  17875. };
  17876. struct gguf_context {
  17877. struct gguf_header header;
  17878. struct gguf_kv * kv;
  17879. struct gguf_tensor_info * infos;
  17880. size_t alignment;
  17881. size_t offset; // offset of `data` from beginning of file
  17882. size_t size; // size of `data` in bytes
  17883. //uint8_t * padding;
  17884. void * data;
  17885. };
  17886. static size_t gguf_type_size(enum gguf_type type) {
  17887. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17888. return GGUF_TYPE_SIZE[type];
  17889. }
  17890. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17891. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17892. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17893. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17894. GGML_ASSERT(info->ne[i] > 0);
  17895. }
  17896. // prevent overflow for total number of elements
  17897. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17898. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17899. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17900. }
  17901. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17902. const size_t n = fread(dst, 1, size, file);
  17903. *offset += n;
  17904. return n == size;
  17905. }
  17906. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17907. p->n = 0;
  17908. p->data = NULL;
  17909. bool ok = true;
  17910. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17911. // early exit if string length is invalid, prevents from integer overflow
  17912. if (p->n == SIZE_MAX) {
  17913. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17914. return false;
  17915. }
  17916. p->data = GGML_CALLOC(p->n + 1, 1);
  17917. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17918. return ok;
  17919. }
  17920. static void gguf_free_kv(struct gguf_kv * kv) {
  17921. if (kv->key.data) {
  17922. GGML_FREE(kv->key.data);
  17923. }
  17924. if (kv->type == GGUF_TYPE_STRING) {
  17925. if (kv->value.str.data) {
  17926. GGML_FREE(kv->value.str.data);
  17927. }
  17928. }
  17929. if (kv->type == GGUF_TYPE_ARRAY) {
  17930. if (kv->value.arr.data) {
  17931. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17932. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17933. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17934. if (str->data) {
  17935. GGML_FREE(str->data);
  17936. }
  17937. }
  17938. }
  17939. GGML_FREE(kv->value.arr.data);
  17940. }
  17941. }
  17942. }
  17943. struct gguf_context * gguf_init_empty(void) {
  17944. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17945. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17946. ctx->header.version = GGUF_VERSION;
  17947. ctx->header.n_tensors = 0;
  17948. ctx->header.n_kv = 0;
  17949. ctx->kv = NULL;
  17950. ctx->infos = NULL;
  17951. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17952. ctx->offset = 0;
  17953. ctx->size = 0;
  17954. ctx->data = NULL;
  17955. return ctx;
  17956. }
  17957. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17958. FILE * file = ggml_fopen(fname, "rb");
  17959. if (!file) {
  17960. return NULL;
  17961. }
  17962. // offset from start of file
  17963. size_t offset = 0;
  17964. char magic[4];
  17965. // check the magic before making allocations
  17966. {
  17967. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17968. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17969. if (magic[i] != GGUF_MAGIC[i]) {
  17970. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17971. fclose(file);
  17972. return NULL;
  17973. }
  17974. }
  17975. }
  17976. bool ok = true;
  17977. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17978. // read the header
  17979. {
  17980. strncpy(ctx->header.magic, magic, 4);
  17981. ctx->kv = NULL;
  17982. ctx->infos = NULL;
  17983. ctx->data = NULL;
  17984. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17985. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17986. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17987. if (ctx->header.version == 1) {
  17988. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17989. fclose(file);
  17990. gguf_free(ctx);
  17991. return NULL;
  17992. }
  17993. // sanity-checks to prevent from integer/buffer overflows
  17994. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17995. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17996. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17997. if (!ok) {
  17998. fprintf(stderr, "%s: failed to read header\n", __func__);
  17999. fclose(file);
  18000. gguf_free(ctx);
  18001. return NULL;
  18002. }
  18003. }
  18004. // read the kv pairs
  18005. {
  18006. const uint64_t n_kv = ctx->header.n_kv;
  18007. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18008. ctx->header.n_kv = 0;
  18009. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18010. for (uint64_t i = 0; i < n_kv; ++i) {
  18011. struct gguf_kv * kv = &ctx->kv[i];
  18012. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18013. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18014. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18015. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18016. switch (kv->type) {
  18017. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18018. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18019. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18020. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18021. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18022. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18023. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18024. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18025. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18026. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18027. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18028. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18029. case GGUF_TYPE_ARRAY:
  18030. {
  18031. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18032. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18033. switch (kv->value.arr.type) {
  18034. case GGUF_TYPE_UINT8:
  18035. case GGUF_TYPE_INT8:
  18036. case GGUF_TYPE_UINT16:
  18037. case GGUF_TYPE_INT16:
  18038. case GGUF_TYPE_UINT32:
  18039. case GGUF_TYPE_INT32:
  18040. case GGUF_TYPE_FLOAT32:
  18041. case GGUF_TYPE_UINT64:
  18042. case GGUF_TYPE_INT64:
  18043. case GGUF_TYPE_FLOAT64:
  18044. case GGUF_TYPE_BOOL:
  18045. {
  18046. // prevent from integer overflow in the malloc below
  18047. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18048. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18049. fclose(file);
  18050. gguf_free(ctx);
  18051. return NULL;
  18052. }
  18053. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18054. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18055. } break;
  18056. case GGUF_TYPE_STRING:
  18057. {
  18058. // prevent from integer overflow in the malloc below
  18059. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18060. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18061. fclose(file);
  18062. gguf_free(ctx);
  18063. return NULL;
  18064. }
  18065. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18066. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18067. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18068. }
  18069. } break;
  18070. case GGUF_TYPE_ARRAY:
  18071. default: GGML_ASSERT(false && "invalid type"); break;
  18072. }
  18073. } break;
  18074. default: GGML_ASSERT(false && "invalid type");
  18075. }
  18076. if (!ok) {
  18077. break;
  18078. }
  18079. ctx->header.n_kv++;
  18080. }
  18081. if (!ok) {
  18082. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18083. fclose(file);
  18084. gguf_free(ctx);
  18085. return NULL;
  18086. }
  18087. }
  18088. // read the tensor infos
  18089. if (ctx->header.n_tensors > 0) {
  18090. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18091. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18092. struct gguf_tensor_info * info = &ctx->infos[i];
  18093. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18094. info->ne[j] = 1;
  18095. }
  18096. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18097. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18098. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18099. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18100. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18101. }
  18102. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18103. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18104. // TODO: return an error instead of crashing with GGML_ASSERT
  18105. gguf_tensor_info_sanitize(info);
  18106. // make sure there is no duplicated tensor names
  18107. for (uint64_t j = 0; j < i; ++j) {
  18108. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18109. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18110. ok = false;
  18111. }
  18112. }
  18113. if (!ok) {
  18114. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18115. fclose(file);
  18116. gguf_free(ctx);
  18117. return NULL;
  18118. }
  18119. }
  18120. }
  18121. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18122. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18123. if (alignment_idx != -1) {
  18124. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18125. }
  18126. // we require the data section to be aligned, so take into account any padding
  18127. {
  18128. const size_t offset_pad = offset % ctx->alignment;
  18129. if (offset_pad != 0) {
  18130. offset += ctx->alignment - offset_pad;
  18131. fseek(file, offset, SEEK_SET);
  18132. }
  18133. }
  18134. // store the current file offset - this is where the data section starts
  18135. ctx->offset = offset;
  18136. // compute the total size of the data section, taking into account the alignment
  18137. {
  18138. ctx->size = 0;
  18139. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18140. struct gguf_tensor_info * info = &ctx->infos[i];
  18141. const int64_t ne =
  18142. (int64_t) info->ne[0] *
  18143. (int64_t) info->ne[1] *
  18144. (int64_t) info->ne[2] *
  18145. (int64_t) info->ne[3];
  18146. if (ne % ggml_blck_size(info->type) != 0) {
  18147. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18148. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18149. fclose(file);
  18150. gguf_free(ctx);
  18151. return NULL;
  18152. }
  18153. const size_t size_cur = ggml_row_size(info->type, ne);
  18154. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18155. }
  18156. }
  18157. // load the tensor data only if requested
  18158. if (params.ctx != NULL) {
  18159. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18160. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18161. // the ggml_tensor structs to the appropriate locations in the binary blob
  18162. // compute the exact size needed for the new ggml_context
  18163. const size_t mem_size =
  18164. params.no_alloc ?
  18165. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18166. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18167. struct ggml_init_params pdata = {
  18168. .mem_size = mem_size,
  18169. .mem_buffer = NULL,
  18170. .no_alloc = params.no_alloc,
  18171. };
  18172. *params.ctx = ggml_init(pdata);
  18173. struct ggml_context * ctx_data = *params.ctx;
  18174. struct ggml_tensor * data = NULL;
  18175. if (!params.no_alloc) {
  18176. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18177. ok = ok && data != NULL;
  18178. // read the binary blob with the tensor data
  18179. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18180. if (!ok) {
  18181. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18182. fclose(file);
  18183. ggml_free(ctx_data);
  18184. gguf_free(ctx);
  18185. return NULL;
  18186. }
  18187. ctx->data = data->data;
  18188. }
  18189. ggml_set_no_alloc(ctx_data, true);
  18190. // create the tensors
  18191. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18192. const int64_t ne[GGML_MAX_DIMS] = {
  18193. ctx->infos[i].ne[0],
  18194. ctx->infos[i].ne[1],
  18195. ctx->infos[i].ne[2],
  18196. ctx->infos[i].ne[3],
  18197. };
  18198. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18199. ok = ok && cur != NULL;
  18200. if (!ok) {
  18201. break;
  18202. }
  18203. ggml_set_name(cur, ctx->infos[i].name.data);
  18204. // point the data member to the appropriate location in the binary blob using the tensor infos
  18205. if (!params.no_alloc) {
  18206. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18207. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18208. }
  18209. }
  18210. if (!ok) {
  18211. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18212. fclose(file);
  18213. ggml_free(ctx_data);
  18214. gguf_free(ctx);
  18215. return NULL;
  18216. }
  18217. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18218. }
  18219. fclose(file);
  18220. return ctx;
  18221. }
  18222. void gguf_free(struct gguf_context * ctx) {
  18223. if (ctx == NULL) {
  18224. return;
  18225. }
  18226. if (ctx->kv) {
  18227. // free string memory - not great..
  18228. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18229. gguf_free_kv(&ctx->kv[i]);
  18230. }
  18231. GGML_FREE(ctx->kv);
  18232. }
  18233. if (ctx->infos) {
  18234. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18235. struct gguf_tensor_info * info = &ctx->infos[i];
  18236. if (info->name.data) {
  18237. GGML_FREE(info->name.data);
  18238. }
  18239. }
  18240. GGML_FREE(ctx->infos);
  18241. }
  18242. GGML_FREE(ctx);
  18243. }
  18244. const char * gguf_type_name(enum gguf_type type) {
  18245. return GGUF_TYPE_NAME[type];
  18246. }
  18247. int gguf_get_version(const struct gguf_context * ctx) {
  18248. return ctx->header.version;
  18249. }
  18250. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18251. return ctx->alignment;
  18252. }
  18253. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18254. return ctx->offset;
  18255. }
  18256. void * gguf_get_data(const struct gguf_context * ctx) {
  18257. return ctx->data;
  18258. }
  18259. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18260. return ctx->header.n_kv;
  18261. }
  18262. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18263. // return -1 if key not found
  18264. int keyfound = -1;
  18265. const int n_kv = gguf_get_n_kv(ctx);
  18266. for (int i = 0; i < n_kv; ++i) {
  18267. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18268. keyfound = i;
  18269. break;
  18270. }
  18271. }
  18272. return keyfound;
  18273. }
  18274. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18275. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18276. return ctx->kv[key_id].key.data;
  18277. }
  18278. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18279. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18280. return ctx->kv[key_id].type;
  18281. }
  18282. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18283. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18284. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18285. return ctx->kv[key_id].value.arr.type;
  18286. }
  18287. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18288. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18289. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18290. return ctx->kv[key_id].value.arr.data;
  18291. }
  18292. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18293. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18294. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18295. struct gguf_kv * kv = &ctx->kv[key_id];
  18296. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18297. return str->data;
  18298. }
  18299. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18300. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18301. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18302. return ctx->kv[key_id].value.arr.n;
  18303. }
  18304. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18305. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18306. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18307. return ctx->kv[key_id].value.uint8;
  18308. }
  18309. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18310. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18311. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18312. return ctx->kv[key_id].value.int8;
  18313. }
  18314. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18315. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18316. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18317. return ctx->kv[key_id].value.uint16;
  18318. }
  18319. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18320. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18321. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18322. return ctx->kv[key_id].value.int16;
  18323. }
  18324. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18325. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18326. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18327. return ctx->kv[key_id].value.uint32;
  18328. }
  18329. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18330. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18331. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18332. return ctx->kv[key_id].value.int32;
  18333. }
  18334. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18335. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18336. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18337. return ctx->kv[key_id].value.float32;
  18338. }
  18339. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18340. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18341. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18342. return ctx->kv[key_id].value.uint64;
  18343. }
  18344. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18345. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18346. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18347. return ctx->kv[key_id].value.int64;
  18348. }
  18349. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18350. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18351. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18352. return ctx->kv[key_id].value.float64;
  18353. }
  18354. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18355. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18356. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18357. return ctx->kv[key_id].value.bool_;
  18358. }
  18359. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18360. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18361. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18362. return ctx->kv[key_id].value.str.data;
  18363. }
  18364. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18365. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18366. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18367. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18368. return &ctx->kv[key_id].value;
  18369. }
  18370. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18371. return ctx->header.n_tensors;
  18372. }
  18373. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18374. // return -1 if tensor not found
  18375. int tensorfound = -1;
  18376. const int n_tensors = gguf_get_n_tensors(ctx);
  18377. for (int i = 0; i < n_tensors; ++i) {
  18378. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18379. tensorfound = i;
  18380. break;
  18381. }
  18382. }
  18383. return tensorfound;
  18384. }
  18385. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18386. return ctx->infos[i].offset;
  18387. }
  18388. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18389. return ctx->infos[i].name.data;
  18390. }
  18391. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18392. return ctx->infos[i].type;
  18393. }
  18394. // returns the index
  18395. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18396. const int idx = gguf_find_key(ctx, key);
  18397. if (idx >= 0) {
  18398. return idx;
  18399. }
  18400. const int n_kv = gguf_get_n_kv(ctx);
  18401. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18402. ctx->kv[n_kv].key.n = strlen(key);
  18403. ctx->kv[n_kv].key.data = strdup(key);
  18404. ctx->header.n_kv++;
  18405. return n_kv;
  18406. }
  18407. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18408. const int idx = gguf_find_key(ctx, key);
  18409. if (idx >= 0) {
  18410. const int n_kv = gguf_get_n_kv(ctx);
  18411. gguf_free_kv(&ctx->kv[idx]);
  18412. for (int i = idx; i < n_kv-1; ++i) {
  18413. ctx->kv[i] = ctx->kv[i+1];
  18414. }
  18415. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18416. ctx->header.n_kv--;
  18417. }
  18418. }
  18419. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18420. const int idx = gguf_get_or_add_key(ctx, key);
  18421. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18422. ctx->kv[idx].value.uint8 = val;
  18423. }
  18424. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18425. const int idx = gguf_get_or_add_key(ctx, key);
  18426. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18427. ctx->kv[idx].value.int8 = val;
  18428. }
  18429. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18430. const int idx = gguf_get_or_add_key(ctx, key);
  18431. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18432. ctx->kv[idx].value.uint16 = val;
  18433. }
  18434. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18435. const int idx = gguf_get_or_add_key(ctx, key);
  18436. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18437. ctx->kv[idx].value.int16 = val;
  18438. }
  18439. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18440. const int idx = gguf_get_or_add_key(ctx, key);
  18441. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18442. ctx->kv[idx].value.uint32 = val;
  18443. }
  18444. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18445. const int idx = gguf_get_or_add_key(ctx, key);
  18446. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18447. ctx->kv[idx].value.int32 = val;
  18448. }
  18449. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18450. const int idx = gguf_get_or_add_key(ctx, key);
  18451. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18452. ctx->kv[idx].value.float32 = val;
  18453. }
  18454. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18455. const int idx = gguf_get_or_add_key(ctx, key);
  18456. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18457. ctx->kv[idx].value.uint64 = val;
  18458. }
  18459. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18460. const int idx = gguf_get_or_add_key(ctx, key);
  18461. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18462. ctx->kv[idx].value.int64 = val;
  18463. }
  18464. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18465. const int idx = gguf_get_or_add_key(ctx, key);
  18466. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18467. ctx->kv[idx].value.float64 = val;
  18468. }
  18469. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18470. const int idx = gguf_get_or_add_key(ctx, key);
  18471. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18472. ctx->kv[idx].value.bool_ = val;
  18473. }
  18474. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18475. const int idx = gguf_get_or_add_key(ctx, key);
  18476. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18477. ctx->kv[idx].value.str.n = strlen(val);
  18478. ctx->kv[idx].value.str.data = strdup(val);
  18479. }
  18480. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18481. const int idx = gguf_get_or_add_key(ctx, key);
  18482. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18483. ctx->kv[idx].value.arr.type = type;
  18484. ctx->kv[idx].value.arr.n = n;
  18485. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18486. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18487. }
  18488. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18489. const int idx = gguf_get_or_add_key(ctx, key);
  18490. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18491. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18492. ctx->kv[idx].value.arr.n = n;
  18493. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18494. for (int i = 0; i < n; i++) {
  18495. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18496. str->n = strlen(data[i]);
  18497. str->data = strdup(data[i]);
  18498. }
  18499. }
  18500. // set or add KV pairs from another context
  18501. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18502. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18503. switch (src->kv[i].type) {
  18504. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18505. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18506. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18507. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18508. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18509. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18510. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18511. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18512. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18513. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18514. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18515. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18516. case GGUF_TYPE_ARRAY:
  18517. {
  18518. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18519. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18520. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18521. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18522. }
  18523. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18524. GGML_FREE((void *)data);
  18525. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18526. GGML_ASSERT(false && "nested arrays not supported");
  18527. } else {
  18528. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18529. }
  18530. } break;
  18531. default: GGML_ASSERT(false && "invalid type"); break;
  18532. }
  18533. }
  18534. }
  18535. void gguf_add_tensor(
  18536. struct gguf_context * ctx,
  18537. const struct ggml_tensor * tensor) {
  18538. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18539. GGML_ASSERT(false && "duplicated tensor name");
  18540. }
  18541. const int idx = ctx->header.n_tensors;
  18542. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18543. ctx->infos[idx].name.n = strlen(tensor->name);
  18544. ctx->infos[idx].name.data = strdup(tensor->name);
  18545. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18546. ctx->infos[idx].ne[i] = 1;
  18547. }
  18548. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18549. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18550. ctx->infos[idx].ne[i] = tensor->ne[i];
  18551. }
  18552. ctx->infos[idx].type = tensor->type;
  18553. ctx->infos[idx].offset = 0;
  18554. ctx->infos[idx].data = tensor->data;
  18555. ctx->infos[idx].size = ggml_nbytes(tensor);
  18556. if (ctx->header.n_tensors > 0) {
  18557. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18558. }
  18559. ctx->header.n_tensors++;
  18560. }
  18561. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18562. const int idx = gguf_find_tensor(ctx, name);
  18563. if (idx < 0) {
  18564. GGML_ASSERT(false && "tensor not found");
  18565. }
  18566. ctx->infos[idx].type = type;
  18567. }
  18568. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18569. const int idx = gguf_find_tensor(ctx, name);
  18570. if (idx < 0) {
  18571. GGML_ASSERT(false && "tensor not found");
  18572. }
  18573. ctx->infos[idx].data = data;
  18574. ctx->infos[idx].size = size;
  18575. // update offsets
  18576. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18577. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18578. }
  18579. }
  18580. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18581. // fwrite(&val->n, sizeof(val->n), 1, file);
  18582. // fwrite(val->data, sizeof(char), val->n, file);
  18583. //}
  18584. //
  18585. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18586. // fwrite(val, sizeof(char), size, file);
  18587. //}
  18588. struct gguf_buf {
  18589. void * data;
  18590. size_t size;
  18591. size_t offset;
  18592. };
  18593. static struct gguf_buf gguf_buf_init(size_t size) {
  18594. struct gguf_buf buf = {
  18595. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18596. /*buf.size =*/ size,
  18597. /*buf.offset =*/ 0,
  18598. };
  18599. return buf;
  18600. }
  18601. static void gguf_buf_free(struct gguf_buf buf) {
  18602. if (buf.data) {
  18603. GGML_FREE(buf.data);
  18604. }
  18605. }
  18606. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18607. if (buf->offset + size > buf->size) {
  18608. buf->size = 1.5*(buf->offset + size);
  18609. if (buf->data) {
  18610. buf->data = realloc(buf->data, buf->size);
  18611. }
  18612. }
  18613. }
  18614. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18615. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18616. if (buf->data) {
  18617. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18618. }
  18619. buf->offset += sizeof(val->n);
  18620. if (buf->data) {
  18621. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18622. }
  18623. buf->offset += val->n;
  18624. }
  18625. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18626. gguf_buf_grow(buf, el_size);
  18627. if (buf->data) {
  18628. memcpy((char *) buf->data + buf->offset, val, el_size);
  18629. }
  18630. buf->offset += el_size;
  18631. }
  18632. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18633. // write header
  18634. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18635. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18636. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18637. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18638. // write key-value pairs
  18639. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18640. struct gguf_kv * kv = &ctx->kv[i];
  18641. gguf_bwrite_str(buf, &kv->key);
  18642. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18643. switch (kv->type) {
  18644. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18645. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18646. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18647. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18648. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18649. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18650. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18651. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18652. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18653. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18654. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18655. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18656. case GGUF_TYPE_ARRAY:
  18657. {
  18658. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18659. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18660. switch (kv->value.arr.type) {
  18661. case GGUF_TYPE_UINT8:
  18662. case GGUF_TYPE_INT8:
  18663. case GGUF_TYPE_UINT16:
  18664. case GGUF_TYPE_INT16:
  18665. case GGUF_TYPE_UINT32:
  18666. case GGUF_TYPE_INT32:
  18667. case GGUF_TYPE_FLOAT32:
  18668. case GGUF_TYPE_UINT64:
  18669. case GGUF_TYPE_INT64:
  18670. case GGUF_TYPE_FLOAT64:
  18671. case GGUF_TYPE_BOOL:
  18672. {
  18673. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18674. } break;
  18675. case GGUF_TYPE_STRING:
  18676. {
  18677. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18678. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18679. }
  18680. } break;
  18681. case GGUF_TYPE_ARRAY:
  18682. default: GGML_ASSERT(false && "invalid type"); break;
  18683. }
  18684. } break;
  18685. default: GGML_ASSERT(false && "invalid type");
  18686. }
  18687. }
  18688. // write tensor infos
  18689. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18690. struct gguf_tensor_info * info = &ctx->infos[i];
  18691. gguf_bwrite_str(buf, &info->name);
  18692. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18693. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18694. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18695. }
  18696. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18697. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18698. }
  18699. // we require the data section to be aligned, so take into account any padding
  18700. {
  18701. const size_t offset = buf->offset;
  18702. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18703. if (offset_pad != offset) {
  18704. uint8_t pad = 0;
  18705. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18706. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18707. }
  18708. }
  18709. }
  18710. if (only_meta) {
  18711. return;
  18712. }
  18713. size_t offset = 0;
  18714. // write tensor data
  18715. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18716. struct gguf_tensor_info * info = &ctx->infos[i];
  18717. const size_t size = info->size;
  18718. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18719. gguf_bwrite_el(buf, info->data, size);
  18720. if (size_pad != size) {
  18721. uint8_t pad = 0;
  18722. for (size_t j = 0; j < size_pad - size; ++j) {
  18723. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18724. }
  18725. }
  18726. GGML_ASSERT(offset == info->offset);
  18727. offset += size_pad;
  18728. }
  18729. }
  18730. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18731. FILE * file = ggml_fopen(fname, "wb");
  18732. if (!file) {
  18733. GGML_ASSERT(false && "failed to open file for writing");
  18734. }
  18735. struct gguf_buf buf = gguf_buf_init(16*1024);
  18736. gguf_write_to_buf(ctx, &buf, only_meta);
  18737. fwrite(buf.data, 1, buf.offset, file);
  18738. gguf_buf_free(buf);
  18739. fclose(file);
  18740. }
  18741. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18742. // no allocs - only compute size
  18743. struct gguf_buf buf = gguf_buf_init(0);
  18744. gguf_write_to_buf(ctx, &buf, true);
  18745. return buf.offset;
  18746. }
  18747. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18748. struct gguf_buf buf = gguf_buf_init(16*1024);
  18749. gguf_write_to_buf(ctx, &buf, true);
  18750. memcpy(data, buf.data, buf.offset);
  18751. gguf_buf_free(buf);
  18752. }
  18753. ////////////////////////////////////////////////////////////////////////////////
  18754. int ggml_cpu_has_avx(void) {
  18755. #if defined(__AVX__)
  18756. return 1;
  18757. #else
  18758. return 0;
  18759. #endif
  18760. }
  18761. int ggml_cpu_has_avx_vnni(void) {
  18762. #if defined(__AVXVNNI__)
  18763. return 1;
  18764. #else
  18765. return 0;
  18766. #endif
  18767. }
  18768. int ggml_cpu_has_avx2(void) {
  18769. #if defined(__AVX2__)
  18770. return 1;
  18771. #else
  18772. return 0;
  18773. #endif
  18774. }
  18775. int ggml_cpu_has_avx512(void) {
  18776. #if defined(__AVX512F__)
  18777. return 1;
  18778. #else
  18779. return 0;
  18780. #endif
  18781. }
  18782. int ggml_cpu_has_avx512_vbmi(void) {
  18783. #if defined(__AVX512VBMI__)
  18784. return 1;
  18785. #else
  18786. return 0;
  18787. #endif
  18788. }
  18789. int ggml_cpu_has_avx512_vnni(void) {
  18790. #if defined(__AVX512VNNI__)
  18791. return 1;
  18792. #else
  18793. return 0;
  18794. #endif
  18795. }
  18796. int ggml_cpu_has_fma(void) {
  18797. #if defined(__FMA__)
  18798. return 1;
  18799. #else
  18800. return 0;
  18801. #endif
  18802. }
  18803. int ggml_cpu_has_neon(void) {
  18804. #if defined(__ARM_NEON)
  18805. return 1;
  18806. #else
  18807. return 0;
  18808. #endif
  18809. }
  18810. int ggml_cpu_has_arm_fma(void) {
  18811. #if defined(__ARM_FEATURE_FMA)
  18812. return 1;
  18813. #else
  18814. return 0;
  18815. #endif
  18816. }
  18817. int ggml_cpu_has_metal(void) {
  18818. #if defined(GGML_USE_METAL)
  18819. return 1;
  18820. #else
  18821. return 0;
  18822. #endif
  18823. }
  18824. int ggml_cpu_has_f16c(void) {
  18825. #if defined(__F16C__)
  18826. return 1;
  18827. #else
  18828. return 0;
  18829. #endif
  18830. }
  18831. int ggml_cpu_has_fp16_va(void) {
  18832. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18833. return 1;
  18834. #else
  18835. return 0;
  18836. #endif
  18837. }
  18838. int ggml_cpu_has_wasm_simd(void) {
  18839. #if defined(__wasm_simd128__)
  18840. return 1;
  18841. #else
  18842. return 0;
  18843. #endif
  18844. }
  18845. int ggml_cpu_has_blas(void) {
  18846. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18847. return 1;
  18848. #else
  18849. return 0;
  18850. #endif
  18851. }
  18852. int ggml_cpu_has_cuda(void) {
  18853. #if defined(GGML_USE_CUDA)
  18854. return 1;
  18855. #else
  18856. return 0;
  18857. #endif
  18858. }
  18859. int ggml_cpu_has_clblast(void) {
  18860. #if defined(GGML_USE_CLBLAST)
  18861. return 1;
  18862. #else
  18863. return 0;
  18864. #endif
  18865. }
  18866. int ggml_cpu_has_vulkan(void) {
  18867. #if defined(GGML_USE_VULKAN)
  18868. return 1;
  18869. #else
  18870. return 0;
  18871. #endif
  18872. }
  18873. int ggml_cpu_has_kompute(void) {
  18874. #if defined(GGML_USE_KOMPUTE)
  18875. return 1;
  18876. #else
  18877. return 0;
  18878. #endif
  18879. }
  18880. int ggml_cpu_has_sycl(void) {
  18881. #if defined(GGML_USE_SYCL)
  18882. return 1;
  18883. #else
  18884. return 0;
  18885. #endif
  18886. }
  18887. int ggml_cpu_has_gpublas(void) {
  18888. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18889. ggml_cpu_has_sycl();
  18890. }
  18891. int ggml_cpu_has_sse3(void) {
  18892. #if defined(__SSE3__)
  18893. return 1;
  18894. #else
  18895. return 0;
  18896. #endif
  18897. }
  18898. int ggml_cpu_has_ssse3(void) {
  18899. #if defined(__SSSE3__)
  18900. return 1;
  18901. #else
  18902. return 0;
  18903. #endif
  18904. }
  18905. int ggml_cpu_has_vsx(void) {
  18906. #if defined(__POWER9_VECTOR__)
  18907. return 1;
  18908. #else
  18909. return 0;
  18910. #endif
  18911. }
  18912. int ggml_cpu_has_matmul_int8(void) {
  18913. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18914. return 1;
  18915. #else
  18916. return 0;
  18917. #endif
  18918. }
  18919. ////////////////////////////////////////////////////////////////////////////////