ggml.c 409 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #elif defined(GGML_USE_CLBLAST)
  129. #include "ggml-opencl.h"
  130. #endif
  131. #undef MIN
  132. #undef MAX
  133. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  134. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  135. // floating point type used to accumulate sums
  136. typedef double ggml_float;
  137. // 16-bit float
  138. // on Arm, we use __fp16
  139. // on x86, we use uint16_t
  140. #ifdef __ARM_NEON
  141. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  142. //
  143. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  144. //
  145. #include <arm_neon.h>
  146. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  148. #define GGML_FP16_TO_FP32(x) ((float) (x))
  149. #define GGML_FP32_TO_FP16(x) (x)
  150. #else
  151. #ifdef __wasm_simd128__
  152. #include <wasm_simd128.h>
  153. #else
  154. #ifdef __POWER9_VECTOR__
  155. #include <altivec.h>
  156. #undef bool
  157. #define bool _Bool
  158. #else
  159. #include <immintrin.h>
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  285. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  286. #endif
  287. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  288. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  289. // This is also true for POWER9.
  290. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  291. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  292. uint16_t s;
  293. memcpy(&s, &f, sizeof(uint16_t));
  294. return table_f32_f16[s];
  295. }
  296. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  297. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  298. #endif
  299. // note: do not use these inside ggml.c
  300. // these are meant to be used via the ggml.h API
  301. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  302. return (float) GGML_FP16_TO_FP32(x);
  303. }
  304. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  305. return GGML_FP32_TO_FP16(x);
  306. }
  307. //
  308. // timing
  309. //
  310. #if defined(_MSC_VER) || defined(__MINGW32__)
  311. static int64_t timer_freq;
  312. void ggml_time_init(void) {
  313. LARGE_INTEGER frequency;
  314. QueryPerformanceFrequency(&frequency);
  315. timer_freq = frequency.QuadPart;
  316. }
  317. int64_t ggml_time_ms(void) {
  318. LARGE_INTEGER t;
  319. QueryPerformanceCounter(&t);
  320. return (t.QuadPart * 1000) / timer_freq;
  321. }
  322. int64_t ggml_time_us(void) {
  323. LARGE_INTEGER t;
  324. QueryPerformanceCounter(&t);
  325. return (t.QuadPart * 1000000) / timer_freq;
  326. }
  327. #else
  328. void ggml_time_init(void) {}
  329. int64_t ggml_time_ms(void) {
  330. struct timespec ts;
  331. clock_gettime(CLOCK_MONOTONIC, &ts);
  332. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  333. }
  334. int64_t ggml_time_us(void) {
  335. struct timespec ts;
  336. clock_gettime(CLOCK_MONOTONIC, &ts);
  337. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  338. }
  339. #endif
  340. int64_t ggml_cycles(void) {
  341. return clock();
  342. }
  343. int64_t ggml_cycles_per_ms(void) {
  344. return CLOCKS_PER_SEC/1000;
  345. }
  346. #ifdef GGML_PERF
  347. #define ggml_perf_time_ms() ggml_time_ms()
  348. #define ggml_perf_time_us() ggml_time_us()
  349. #define ggml_perf_cycles() ggml_cycles()
  350. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  351. #else
  352. #define ggml_perf_time_ms() 0
  353. #define ggml_perf_time_us() 0
  354. #define ggml_perf_cycles() 0
  355. #define ggml_perf_cycles_per_ms() 0
  356. #endif
  357. //
  358. // cache line
  359. //
  360. #if defined(__cpp_lib_hardware_interference_size)
  361. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  362. #else
  363. #if defined(__POWER9_VECTOR__)
  364. #define CACHE_LINE_SIZE 128
  365. #else
  366. #define CACHE_LINE_SIZE 64
  367. #endif
  368. #endif
  369. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  370. //
  371. // quantization
  372. //
  373. #if __AVX__ || __AVX2__ || __AVX512F__
  374. // Unpack 16 4-bit fields into 16 bytes
  375. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  376. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  377. {
  378. // Load 8 bytes from memory
  379. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  380. // Expand bytes into uint16_t values
  381. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  382. // Unpack values into individual bytes
  383. const __m128i lowMask = _mm_set1_epi8( 0xF );
  384. __m128i high = _mm_andnot_si128( lowMask, bytes );
  385. __m128i low = _mm_and_si128( lowMask, bytes );
  386. high = _mm_slli_epi16( high, 4 );
  387. bytes = _mm_or_si128( low, high );
  388. return bytes;
  389. }
  390. // horizontally add 8 floats
  391. static inline float hsum_float_8(const __m256 x) {
  392. __m128 res = _mm256_extractf128_ps(x, 1);
  393. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  394. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  395. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  396. return _mm_cvtss_f32(res);
  397. }
  398. // horizontally add 8 int32_t
  399. static inline int hsum_i32_8(const __m256i a) {
  400. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  401. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  402. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  403. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  404. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  405. }
  406. // horizontally add 4 int32_t
  407. static inline int hsum_i32_4(const __m128i a) {
  408. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  409. const __m128i sum64 = _mm_add_epi32(hi64, a);
  410. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  411. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  412. }
  413. #if __AVX2__ || __AVX512F__
  414. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  415. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  416. uint32_t x32;
  417. memcpy(&x32, x, sizeof(uint32_t));
  418. const __m256i shuf_mask = _mm256_set_epi64x(
  419. 0x0303030303030303, 0x0202020202020202,
  420. 0x0101010101010101, 0x0000000000000000);
  421. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  422. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  423. bytes = _mm256_or_si256(bytes, bit_mask);
  424. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  425. }
  426. // Unpack 32 4-bit fields into 32 bytes
  427. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  428. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  429. {
  430. // Load 16 bytes from memory
  431. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  432. // Expand bytes into uint16_t values
  433. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  434. // Unpack values into individual bytes
  435. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  436. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  437. __m256i low = _mm256_and_si256( lowMask, bytes );
  438. high = _mm256_slli_epi16( high, 4 );
  439. bytes = _mm256_or_si256( low, high );
  440. return bytes;
  441. }
  442. // add int16_t pairwise and return as float vector
  443. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  444. const __m256i ones = _mm256_set1_epi16(1);
  445. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  446. return _mm256_cvtepi32_ps(summed_pairs);
  447. }
  448. // multiply int8_t, add results pairwise twice and return as float vector
  449. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  450. // Get absolute values of x vectors
  451. const __m256i ax = _mm256_sign_epi8(x, x);
  452. // Sign the values of the y vectors
  453. const __m256i sy = _mm256_sign_epi8(y, x);
  454. #if __AVXVNNI__
  455. const __m256i zero = _mm256_setzero_si256();
  456. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  457. return _mm256_cvtepi32_ps(summed_pairs);
  458. #else
  459. // Perform multiplication and create 16-bit values
  460. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  461. return sum_i16_pairs_float(dot);
  462. #endif
  463. }
  464. static inline __m128i packNibbles( __m256i bytes )
  465. {
  466. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  467. #if __AVX512F__
  468. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  469. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  470. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  471. #else
  472. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  473. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  474. __m256i low = _mm256_and_si256( lowByte, bytes );
  475. high = _mm256_srli_epi16( high, 4 );
  476. bytes = _mm256_or_si256( low, high );
  477. // Compress uint16_t lanes into bytes
  478. __m128i r0 = _mm256_castsi256_si128( bytes );
  479. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  480. return _mm_packus_epi16( r0, r1 );
  481. #endif
  482. }
  483. #else
  484. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  485. {
  486. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  487. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  488. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  489. __m128i low = _mm_and_si128( lowByte, bytes1 );
  490. high = _mm_srli_epi16( high, 4 );
  491. bytes1 = _mm_or_si128( low, high );
  492. high = _mm_andnot_si128( lowByte, bytes2 );
  493. low = _mm_and_si128( lowByte, bytes2 );
  494. high = _mm_srli_epi16( high, 4 );
  495. bytes2 = _mm_or_si128( low, high );
  496. return _mm_packus_epi16( bytes1, bytes2);
  497. }
  498. #endif
  499. #endif // __AVX__ || __AVX2__ || __AVX512F__
  500. #if __ARM_NEON
  501. #if !defined(__aarch64__)
  502. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  503. return
  504. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  505. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  506. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  507. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  508. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  509. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  510. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  511. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  512. }
  513. inline static int16_t vaddvq_s8(int8x16_t v) {
  514. return
  515. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  516. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  517. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  518. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  519. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  520. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  521. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  522. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  523. }
  524. inline static int32_t vaddvq_s16(int16x8_t v) {
  525. return
  526. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  527. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  528. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  529. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  530. }
  531. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  532. return
  533. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  534. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  535. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  536. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  537. }
  538. inline static int32_t vaddvq_s32(int32x4_t v) {
  539. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  540. }
  541. inline static float vaddvq_f32(float32x4_t v) {
  542. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  543. }
  544. float vminvq_f32(float32x4_t v) {
  545. return
  546. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  547. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  548. }
  549. float vmaxvq_f32(float32x4_t v) {
  550. return
  551. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  552. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  553. }
  554. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  555. return vget_low_s8(vcombine_s8(a, b));
  556. }
  557. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  558. return vget_high_s8(vcombine_s8(a, b));
  559. }
  560. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  561. return vget_low_u8(vcombine_u8(a, b));
  562. }
  563. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  564. return vget_high_u8(vcombine_u8(a, b));
  565. }
  566. int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) {
  567. return vcombine_s8(vget_low_s8(a), vget_low_s8(b));
  568. }
  569. int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) {
  570. return vcombine_s8(vget_high_s8(a), vget_high_s8(b));
  571. }
  572. uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) {
  573. return vcombine_u8(vget_low_u8(a), vget_low_u8(b));
  574. }
  575. uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) {
  576. return vcombine_u8(vget_high_u8(a), vget_high_u8(b));
  577. }
  578. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  579. int32x4_t res;
  580. res[0] = roundf(vgetq_lane_f32(v, 0));
  581. res[1] = roundf(vgetq_lane_f32(v, 1));
  582. res[2] = roundf(vgetq_lane_f32(v, 2));
  583. res[3] = roundf(vgetq_lane_f32(v, 3));
  584. return res;
  585. }
  586. #endif
  587. #endif
  588. #define QK4_0 32
  589. typedef struct {
  590. float d; // delta
  591. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  592. } block_q4_0;
  593. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  594. #define QK4_1 32
  595. typedef struct {
  596. float d; // delta
  597. float m; // min
  598. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  599. } block_q4_1;
  600. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  601. #define QK4_2 16
  602. typedef struct {
  603. ggml_fp16_t d; // delta
  604. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  605. } block_q4_2;
  606. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  607. #define QK5_0 32
  608. typedef struct {
  609. ggml_fp16_t d; // delta
  610. uint8_t qh[4]; // 5-th bit of quants
  611. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  612. } block_q5_0;
  613. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  614. #define QK5_1 32
  615. typedef struct {
  616. ggml_fp16_t d; // delta
  617. ggml_fp16_t m; // min
  618. uint8_t qh[4]; // 5-th bit of quants
  619. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  620. } block_q5_1;
  621. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  622. #define QK8_0 32
  623. typedef struct {
  624. float d; // delta
  625. int8_t qs[QK8_0]; // quants
  626. } block_q8_0;
  627. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  628. #define QK8_1 32
  629. typedef struct {
  630. float d; // delta
  631. float s0; // d * sum(qs[i]) low
  632. float s1; // d * sum(qs[i]) high
  633. int8_t qs[QK8_1]; // quants
  634. } block_q8_1;
  635. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  636. // reference implementation for deterministic creation of model files
  637. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  638. assert(k % QK4_0 == 0);
  639. const int nb = k / QK4_0;
  640. uint8_t pp[QK4_0/2];
  641. for (int i = 0; i < nb; i++) {
  642. float amax = 0.0f; // absolute max
  643. float max = 0.0f;
  644. for (int l = 0; l < QK4_0; l++) {
  645. const float v = x[i*QK4_0 + l];
  646. if (amax < fabsf(v)) {
  647. amax = fabsf(v);
  648. max = v;
  649. }
  650. }
  651. const float d = max / -8;
  652. const float id = d ? 1.0f/d : 0.0f;
  653. y[i].d = d;
  654. for (int l = 0; l < QK4_0; l += 2) {
  655. const float v0 = x[i*QK4_0 + l + 0]*id;
  656. const float v1 = x[i*QK4_0 + l + 1]*id;
  657. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  658. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  659. assert(vi0 < 16);
  660. assert(vi1 < 16);
  661. pp[l/2] = vi0 | (vi1 << 4);
  662. }
  663. memcpy(y[i].qs, pp, sizeof(pp));
  664. }
  665. }
  666. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  667. assert(k % QK4_0 == 0);
  668. const int nb = k / QK4_0;
  669. block_q4_0 * restrict y = vy;
  670. #if defined(__POWER9_VECTOR__)
  671. const vector float v85 = vec_splats(8.5f);
  672. const vector signed int v15 = vec_splats(15);
  673. for (int i = 0; i < nb; i++) {
  674. float max = 0.0f;
  675. float min = 0.0f;
  676. vector float srcv [8];
  677. vector float maxv[8];
  678. vector float minv[8];
  679. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  680. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  681. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  682. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  683. maxv[0] = vec_max(maxv[0], maxv[2]);
  684. maxv[4] = vec_max(maxv[4], maxv[6]);
  685. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  686. maxv[0] = vec_max(maxv[0], maxv[4]);
  687. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  688. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  689. minv[0] = vec_min(minv[0], minv[2]);
  690. minv[4] = vec_min(minv[4], minv[6]);
  691. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  692. minv[0] = vec_min(minv[0], minv[4]);
  693. max = MAX(
  694. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  695. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  696. min = MIN(
  697. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  698. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  699. const float magnitude = max >= fabsf(min) ? max : min;
  700. const float d = magnitude / -8;
  701. const float id = d ? 1.0/d : 0.0;
  702. y[i].d = d;
  703. const vector float vid = vec_splats(id);
  704. uint8_t * restrict pb = y[i].qs;
  705. for (int l = 0; l < 8; l++) {
  706. const vector float vf = vec_madd(srcv[l], vid, v85);
  707. const vector signed int vi = vec_signed(vf);
  708. const vector signed int vc = vec_min(vi, v15);
  709. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  710. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  711. }
  712. }
  713. #elif __ARM_NEON
  714. for (int i = 0; i < nb; i++) {
  715. float32x4_t srcv [8];
  716. float32x4_t maxv[8];
  717. float32x4_t minv[8];
  718. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  719. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  720. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  721. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  722. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  723. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  724. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  725. const float max = vmaxvq_f32(maxv[0]);
  726. const float min = vminvq_f32(minv[0]);
  727. const float magnitude = max >= fabsf(min) ? max : min;
  728. const float d = magnitude / -8;
  729. const float id = d ? 1.0f/d : 0.0f;
  730. y[i].d = d;
  731. for (int l = 0; l < 8; l++) {
  732. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  733. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  734. const int32x4_t vi = vcvtq_s32_f32(vf);
  735. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  736. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  737. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  738. }
  739. }
  740. #elif defined(__AVX2__)
  741. for (int i = 0; i < nb; i++) {
  742. // Load elements into 4 AVX vectors
  743. __m256 v0 = _mm256_loadu_ps( x );
  744. __m256 v1 = _mm256_loadu_ps( x + 8 );
  745. __m256 v2 = _mm256_loadu_ps( x + 16 );
  746. __m256 v3 = _mm256_loadu_ps( x + 24 );
  747. x += 32;
  748. // Compute max for the block
  749. __m256 max = _mm256_max_ps( v0, v1 );
  750. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  751. max = _mm256_max_ps( max, maxTmp );
  752. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  753. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  754. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  755. const float maxScalar = _mm_cvtss_f32( max4 );
  756. // Compute min for the block
  757. __m256 min = _mm256_min_ps( v0, v1 );
  758. __m256 minTmp = _mm256_min_ps( v2, v3 );
  759. min = _mm256_min_ps( min, minTmp );
  760. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  761. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  762. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  763. const float minScalar = _mm_cvtss_f32( min4 );
  764. // Quantize these floats
  765. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  766. const float d = magnitude / -8.0f;
  767. y[i].d = d;
  768. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  769. const __m256 mul = _mm256_set1_ps( id );
  770. // Apply the multiplier
  771. v0 = _mm256_mul_ps( v0, mul );
  772. v1 = _mm256_mul_ps( v1, mul );
  773. v2 = _mm256_mul_ps( v2, mul );
  774. v3 = _mm256_mul_ps( v3, mul );
  775. // Round to nearest integer
  776. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  777. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  778. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  779. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  780. // Convert floats to integers
  781. __m256i i0 = _mm256_cvtps_epi32( v0 );
  782. __m256i i1 = _mm256_cvtps_epi32( v1 );
  783. __m256i i2 = _mm256_cvtps_epi32( v2 );
  784. __m256i i3 = _mm256_cvtps_epi32( v3 );
  785. // Convert int32 to int16
  786. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  787. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  788. // Convert int16 to int8
  789. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  790. // We got our precious signed bytes, but the order is now wrong
  791. // These AVX2 pack instructions process 16-byte pieces independently
  792. // The following instruction is fixing the order
  793. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  794. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  795. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  796. const __m256i off = _mm256_set1_epi8( 8 );
  797. i0 = _mm256_add_epi8( i0, off );
  798. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  799. i0 = _mm256_min_epi8( i0, maxNibble );
  800. // Compress the vector into 4 bit/value, and store
  801. __m128i res = packNibbles( i0 );
  802. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  803. }
  804. #elif defined(__AVX__)
  805. for (int i = 0; i < nb; i++) {
  806. // Load elements into 4 AVX vectors
  807. __m256 v0 = _mm256_loadu_ps( x );
  808. __m256 v1 = _mm256_loadu_ps( x + 8 );
  809. __m256 v2 = _mm256_loadu_ps( x + 16 );
  810. __m256 v3 = _mm256_loadu_ps( x + 24 );
  811. x += 32;
  812. // Compute max for the block
  813. __m256 max = _mm256_max_ps( v0, v1 );
  814. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  815. max = _mm256_max_ps( max, maxTmp );
  816. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  817. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  818. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  819. const float maxScalar = _mm_cvtss_f32( max4 );
  820. // Compute min for the block
  821. __m256 min = _mm256_min_ps( v0, v1 );
  822. __m256 minTmp = _mm256_min_ps( v2, v3 );
  823. min = _mm256_min_ps( min, minTmp );
  824. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  825. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  826. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  827. const float minScalar = _mm_cvtss_f32( min4 );
  828. // Quantize these floats
  829. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  830. const float d = magnitude / -8.0f;
  831. y[i].d = d;
  832. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  833. const __m256 mul = _mm256_set1_ps( id );
  834. // Apply the multiplier
  835. v0 = _mm256_mul_ps( v0, mul );
  836. v1 = _mm256_mul_ps( v1, mul );
  837. v2 = _mm256_mul_ps( v2, mul );
  838. v3 = _mm256_mul_ps( v3, mul );
  839. // Round to nearest integer
  840. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  841. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  842. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  843. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  844. // Convert floats to integers
  845. __m256i i0 = _mm256_cvtps_epi32( v0 );
  846. __m256i i1 = _mm256_cvtps_epi32( v1 );
  847. __m256i i2 = _mm256_cvtps_epi32( v2 );
  848. __m256i i3 = _mm256_cvtps_epi32( v3 );
  849. // Since we don't have in AVX some necessary functions,
  850. // we split the registers in half and call AVX2 analogs from SSE
  851. __m128i ni0 = _mm256_castsi256_si128( i0 );
  852. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  853. __m128i ni2 = _mm256_castsi256_si128( i1 );
  854. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  855. __m128i ni4 = _mm256_castsi256_si128( i2 );
  856. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  857. __m128i ni6 = _mm256_castsi256_si128( i3 );
  858. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  859. // Convert int32 to int16
  860. ni0 = _mm_packs_epi32( ni0, ni1 );
  861. ni2 = _mm_packs_epi32( ni2, ni3 );
  862. ni4 = _mm_packs_epi32( ni4, ni5 );
  863. ni6 = _mm_packs_epi32( ni6, ni7 );
  864. // Convert int16 to int8
  865. ni0 = _mm_packs_epi16( ni0, ni2 );
  866. ni4 = _mm_packs_epi16( ni4, ni6 );
  867. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  868. const __m128i off = _mm_set1_epi8( 8 );
  869. ni0 = _mm_add_epi8( ni0, off );
  870. ni4 = _mm_add_epi8( ni4, off );
  871. const __m128i maxNibble = _mm_set1_epi8( 15 );
  872. ni0 = _mm_min_epi8( ni0, maxNibble );
  873. ni4 = _mm_min_epi8( ni4, maxNibble );
  874. // Compress the vector into 4 bit/value, and store
  875. __m128i res = packNibbles( ni0, ni4 );
  876. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  877. }
  878. #elif defined(__wasm_simd128__)
  879. for (int i = 0; i < nb; i++) {
  880. float max = 0.0f;
  881. float min = 0.0f;
  882. v128_t srcv [8];
  883. v128_t maxv[8];
  884. v128_t minv[8];
  885. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  886. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  887. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  888. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  889. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  890. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  891. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  892. max = MAX(
  893. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  894. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  895. min = MIN(
  896. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  897. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  898. const float magnitude = max >= fabsf(min) ? max : min;
  899. const float d = magnitude / -8;
  900. const float id = d ? 1.0/d : 0.0;
  901. y[i].d = d;
  902. for (int l = 0; l < 8; l++) {
  903. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  904. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  905. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  906. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  907. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  908. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  909. }
  910. }
  911. #else
  912. // scalar
  913. quantize_row_q4_0_reference(x, y, k);
  914. #endif
  915. }
  916. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  917. assert(k % QK4_1 == 0);
  918. const int nb = k / QK4_1;
  919. block_q4_1 * restrict y = vy;
  920. uint8_t pp[QK4_1/2];
  921. for (int i = 0; i < nb; i++) {
  922. float min = FLT_MAX;
  923. float max = -FLT_MAX;
  924. for (int l = 0; l < QK4_1; l++) {
  925. const float v = x[i*QK4_1 + l];
  926. if (v < min) min = v;
  927. if (v > max) max = v;
  928. }
  929. const float d = (max - min) / ((1 << 4) - 1);
  930. const float id = d ? 1.0f/d : 0.0f;
  931. y[i].d = d;
  932. y[i].m = min;
  933. for (int l = 0; l < QK4_1; l += 2) {
  934. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  935. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  936. const uint8_t vi0 = roundf(v0);
  937. const uint8_t vi1 = roundf(v1);
  938. assert(vi0 < 16);
  939. assert(vi1 < 16);
  940. pp[l/2] = vi0 | (vi1 << 4);
  941. }
  942. memcpy(y[i].qs, pp, sizeof(pp));
  943. }
  944. }
  945. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  946. assert(k % QK4_1 == 0);
  947. const int nb = k / QK4_1;
  948. block_q4_1 * restrict y = vy;
  949. #if defined(__AVX2__)
  950. for (int i = 0; i < nb; i++) {
  951. // Load elements into 4 AVX vectors
  952. __m256 v0 = _mm256_loadu_ps( x );
  953. __m256 v1 = _mm256_loadu_ps( x + 8 );
  954. __m256 v2 = _mm256_loadu_ps( x + 16 );
  955. __m256 v3 = _mm256_loadu_ps( x + 24 );
  956. x += 32;
  957. // Compute max for the block
  958. __m256 vmax;
  959. vmax = _mm256_max_ps( v0, v1 );
  960. vmax = _mm256_max_ps( vmax, v2 );
  961. vmax = _mm256_max_ps( vmax, v3 );
  962. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  963. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  964. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  965. const float maxScalar = _mm_cvtss_f32( max4 );
  966. // Compute min for the block
  967. __m256 vmin;
  968. vmin = _mm256_min_ps( v0, v1 );
  969. vmin = _mm256_min_ps( vmin, v2 );
  970. vmin = _mm256_min_ps( vmin, v3 );
  971. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  972. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  973. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  974. const float minScalar = _mm_cvtss_f32( min4 );
  975. // Quantize these floats
  976. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  977. const float id = d ? 1.0f/d : 0.0f;
  978. y[i].m = minScalar;
  979. y[i].d = d;
  980. // x = (x-min)*id
  981. const __m256 mul = _mm256_set1_ps( id );
  982. const __m256 off = _mm256_set1_ps( minScalar );
  983. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  984. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  985. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  986. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  987. // Round to nearest integer
  988. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  989. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  990. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  991. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  992. // Convert floats to integers
  993. __m256i i0 = _mm256_cvtps_epi32( v0 );
  994. __m256i i1 = _mm256_cvtps_epi32( v1 );
  995. __m256i i2 = _mm256_cvtps_epi32( v2 );
  996. __m256i i3 = _mm256_cvtps_epi32( v3 );
  997. // Convert int32 to int16
  998. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  999. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1000. // Convert int16 to int8
  1001. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1002. // We got our precious signed bytes, but the order is now wrong
  1003. // These AVX2 pack instructions process 16-byte pieces independently
  1004. // The following instruction is fixing the order
  1005. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1006. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1007. // Compress the vector into 4 bit/value, and store
  1008. __m128i res = packNibbles( i0 );
  1009. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  1010. }
  1011. #elif __ARM_NEON
  1012. for (int i = 0; i < nb; i++) {
  1013. float32x4_t srcv[8];
  1014. float32x4_t minv[8];
  1015. float32x4_t maxv[8];
  1016. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1017. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1018. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1019. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1020. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1021. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1022. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1023. const float min = vminvq_f32(minv[0]);
  1024. const float max = vmaxvq_f32(maxv[0]);
  1025. const float d = (max - min) / ((1 << 4) - 1);
  1026. const float id = d ? 1.0f/d : 0.0f;
  1027. y[i].d = d;
  1028. y[i].m = min;
  1029. const float32x4_t minv0 = vdupq_n_f32(min);
  1030. for (int l = 0; l < 8; l++) {
  1031. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1032. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1033. const int32x4_t vi = vcvtq_s32_f32(vf);
  1034. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1035. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1036. }
  1037. }
  1038. #else
  1039. // scalar
  1040. quantize_row_q4_1_reference(x, vy, k);
  1041. #endif
  1042. }
  1043. // reference implementation for deterministic creation of model files
  1044. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1045. assert(k % QK4_2 == 0);
  1046. const int nb = k / QK4_2;
  1047. for (int i = 0; i < nb; i++) {
  1048. float amax = 0.0f; // absolute max
  1049. float max = 0.0f;
  1050. for (int l = 0; l < QK4_2; l++) {
  1051. const float v = x[i*QK4_2 + l];
  1052. if (amax < fabsf(v)) {
  1053. amax = fabsf(v);
  1054. max = v;
  1055. }
  1056. }
  1057. const float d = max / -8;
  1058. const float id = d ? 1.0f/d : 0.0f;
  1059. y[i].d = GGML_FP32_TO_FP16(d);
  1060. for (int l = 0; l < QK4_2; l += 2) {
  1061. const float v0 = x[i*QK4_2 + l + 0]*id;
  1062. const float v1 = x[i*QK4_2 + l + 1]*id;
  1063. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1064. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1065. assert(vi0 < 16);
  1066. assert(vi1 < 16);
  1067. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1068. }
  1069. }
  1070. }
  1071. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1072. assert(k % QK4_2 == 0);
  1073. block_q4_2 * restrict y = vy;
  1074. quantize_row_q4_2_reference(x, y, k);
  1075. }
  1076. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1077. assert(k % QK5_0 == 0);
  1078. const int nb = k / QK5_0;
  1079. for (int i = 0; i < nb; i++) {
  1080. float amax = 0.0f; // absolute max
  1081. float max = 0.0f;
  1082. for (int l = 0; l < QK5_0; l++) {
  1083. const float v = x[i*QK5_0 + l];
  1084. if (amax < fabsf(v)) {
  1085. amax = fabsf(v);
  1086. max = v;
  1087. }
  1088. }
  1089. const float d = max / -16;
  1090. const float id = d ? 1.0f/d : 0.0f;
  1091. y[i].d = GGML_FP32_TO_FP16(d);
  1092. uint32_t qh = 0;
  1093. for (int l = 0; l < QK5_0; l += 2) {
  1094. const float v0 = x[i*QK5_0 + l + 0]*id;
  1095. const float v1 = x[i*QK5_0 + l + 1]*id;
  1096. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1097. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1098. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1099. // get the 5-th bit and store it in qh at the right position
  1100. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1101. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1102. }
  1103. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1104. }
  1105. }
  1106. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1107. assert(k % QK5_0 == 0);
  1108. block_q5_0 * restrict y = vy;
  1109. quantize_row_q5_0_reference(x, y, k);
  1110. }
  1111. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1112. assert(k % QK5_1 == 0);
  1113. const int nb = k / QK5_1;
  1114. for (int i = 0; i < nb; i++) {
  1115. float min = FLT_MAX;
  1116. float max = -FLT_MAX;
  1117. for (int l = 0; l < QK5_1; l++) {
  1118. const float v = x[i*QK5_1 + l];
  1119. if (v < min) min = v;
  1120. if (v > max) max = v;
  1121. }
  1122. const float d = (max - min) / ((1 << 5) - 1);
  1123. const float id = d ? 1.0f/d : 0.0f;
  1124. y[i].d = GGML_FP32_TO_FP16(d);
  1125. y[i].m = GGML_FP32_TO_FP16(min);
  1126. uint32_t qh = 0;
  1127. for (int l = 0; l < QK5_1; l += 2) {
  1128. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1129. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1130. const uint32_t vi0 = (int) (v0 + 0.5f);
  1131. const uint32_t vi1 = (int) (v1 + 0.5f);
  1132. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1133. // get the 5-th bit and store it in qh at the right position
  1134. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1135. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1136. }
  1137. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1138. }
  1139. }
  1140. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1141. assert(k % QK5_1 == 0);
  1142. block_q5_1 * restrict y = vy;
  1143. quantize_row_q5_1_reference(x, y, k);
  1144. }
  1145. // reference implementation for deterministic creation of model files
  1146. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1147. assert(k % QK8_0 == 0);
  1148. const int nb = k / QK8_0;
  1149. for (int i = 0; i < nb; i++) {
  1150. float amax = 0.0f; // absolute max
  1151. for (int l = 0; l < QK8_0; l++) {
  1152. const float v = x[i*QK8_0 + l];
  1153. amax = MAX(amax, fabsf(v));
  1154. }
  1155. const float d = amax / ((1 << 7) - 1);
  1156. const float id = d ? 1.0f/d : 0.0f;
  1157. y[i].d = d;
  1158. for (int l = 0; l < QK8_0; ++l) {
  1159. const float v0 = x[i*QK8_0 + l]*id;
  1160. y[i].qs[l] = roundf(v0);
  1161. }
  1162. }
  1163. }
  1164. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1165. assert(k % QK8_0 == 0);
  1166. block_q8_0 * restrict y = vy;
  1167. quantize_row_q8_0_reference(x, y, k);
  1168. }
  1169. // reference implementation for deterministic creation of model files
  1170. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1171. assert(k % QK8_1 == 0);
  1172. const int nb = k / QK8_1;
  1173. for (int i = 0; i < nb; i++) {
  1174. float amax = 0.0f; // absolute max
  1175. for (int l = 0; l < QK8_1; l++) {
  1176. const float v = x[i*QK8_1 + l];
  1177. amax = MAX(amax, fabsf(v));
  1178. }
  1179. const float d = amax / ((1 << 7) - 1);
  1180. const float id = d ? 1.0f/d : 0.0f;
  1181. y[i].d = d;
  1182. int sum0 = 0;
  1183. int sum1 = 0;
  1184. for (int l = 0; l < QK8_1/2; ++l) {
  1185. const float v0 = x[i*QK8_1 + l]*id;
  1186. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1187. y[i].qs[ l] = roundf(v0);
  1188. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1189. sum0 += y[i].qs[ l];
  1190. sum1 += y[i].qs[QK8_1/2 + l];
  1191. }
  1192. y[i].s0 = d * sum0;
  1193. y[i].s1 = d * sum1;
  1194. }
  1195. }
  1196. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1197. assert(k % QK8_1 == 0);
  1198. const int nb = k / QK8_1;
  1199. block_q8_1 * restrict y = vy;
  1200. #if defined(__ARM_NEON)
  1201. for (int i = 0; i < nb; i++) {
  1202. float32x4_t srcv [8];
  1203. float32x4_t asrcv[8];
  1204. float32x4_t amaxv[8];
  1205. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1206. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1207. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1208. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1209. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1210. const float amax = vmaxvq_f32(amaxv[0]);
  1211. const float d = amax / ((1 << 7) - 1);
  1212. const float id = d ? 1.0f/d : 0.0f;
  1213. y[i].d = d;
  1214. int32x4_t accv0 = vdupq_n_s32(0);
  1215. int32x4_t accv1 = vdupq_n_s32(0);
  1216. // low half
  1217. for (int l = 0; l < 4; l++) {
  1218. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1219. const int32x4_t vi = vcvtnq_s32_f32(v);
  1220. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1221. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1222. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1223. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1224. accv0 = vaddq_s32(accv0, vi);
  1225. }
  1226. // high half
  1227. for (int l = 4; l < 8; l++) {
  1228. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1229. const int32x4_t vi = vcvtnq_s32_f32(v);
  1230. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1231. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1232. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1233. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1234. accv1 = vaddq_s32(accv1, vi);
  1235. }
  1236. const int32_t sum0 = vaddvq_s32(accv0);
  1237. const int32_t sum1 = vaddvq_s32(accv1);
  1238. y[i].s0 = d * sum0;
  1239. y[i].s1 = d * sum1;
  1240. }
  1241. #elif defined(__AVX2__) || defined(__AVX__)
  1242. for (int i = 0; i < nb; i++) {
  1243. // Load elements into 4 AVX vectors
  1244. __m256 v0 = _mm256_loadu_ps( x );
  1245. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1246. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1247. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1248. x += 32;
  1249. // Compute max(abs(e)) for the block
  1250. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1251. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1252. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1253. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1254. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1255. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1256. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1257. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1258. const float maxScalar = _mm_cvtss_f32( max4 );
  1259. // Quantize these floats
  1260. const float d = maxScalar / 127.f;
  1261. y[i].d = d;
  1262. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1263. const __m256 mul = _mm256_set1_ps( id );
  1264. // Apply the multiplier
  1265. v0 = _mm256_mul_ps( v0, mul );
  1266. v1 = _mm256_mul_ps( v1, mul );
  1267. v2 = _mm256_mul_ps( v2, mul );
  1268. v3 = _mm256_mul_ps( v3, mul );
  1269. // Round to nearest integer
  1270. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1271. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1272. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1273. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1274. // Convert floats to integers
  1275. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1276. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1277. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1278. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1279. #if defined(__AVX2__)
  1280. // Compute the sum of the quants and set y[i].s
  1281. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1282. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1283. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1284. // Convert int32 to int16
  1285. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1286. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1287. // Convert int16 to int8
  1288. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1289. // We got our precious signed bytes, but the order is now wrong
  1290. // These AVX2 pack instructions process 16-byte pieces independently
  1291. // The following instruction is fixing the order
  1292. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1293. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1294. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1295. #else
  1296. // Since we don't have in AVX some necessary functions,
  1297. // we split the registers in half and call AVX2 analogs from SSE
  1298. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1299. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1300. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1301. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1302. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1303. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1304. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1305. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1306. // Compute the sum of the quants and set y[i].s
  1307. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1308. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1309. y[i].s0 = d * hsum_i32_4(s0);
  1310. y[i].s1 = d * hsum_i32_4(s1);
  1311. // Convert int32 to int16
  1312. ni0 = _mm_packs_epi32( ni0, ni1 );
  1313. ni2 = _mm_packs_epi32( ni2, ni3 );
  1314. ni4 = _mm_packs_epi32( ni4, ni5 );
  1315. ni6 = _mm_packs_epi32( ni6, ni7 );
  1316. // Convert int16 to int8
  1317. ni0 = _mm_packs_epi16( ni0, ni2 );
  1318. ni4 = _mm_packs_epi16( ni4, ni6 );
  1319. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1320. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1321. #endif
  1322. }
  1323. #else
  1324. // scalar
  1325. quantize_row_q8_1_reference(x, y, k);
  1326. #endif
  1327. }
  1328. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1329. assert(k % QK4_0 == 0);
  1330. const int nb = k / QK4_0;
  1331. const block_q4_0 * restrict x = vx;
  1332. #if defined(__AVX2__)
  1333. for (int i = 0; i < nb; i++) {
  1334. // scale factor
  1335. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1336. const uint8_t * restrict pp = x[i].qs;
  1337. for (int l = 0; l < QK4_0; l += 32) {
  1338. // Load 32x4-bit integers into 32x8-bit integers
  1339. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1340. // Subtract 8 from the integers
  1341. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1342. // Convert to 16-bit int
  1343. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1344. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1345. // Convert to 32-bit int -> float 32
  1346. const __m256 vf[4] = {
  1347. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1348. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1349. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1350. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1351. };
  1352. // Scale and store
  1353. for (int j = 0; j < 4; j++) {
  1354. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1355. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1356. }
  1357. }
  1358. }
  1359. #elif defined(__ARM_NEON)
  1360. for (int i = 0; i < nb; i++) {
  1361. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1362. const uint8_t * restrict pp = x[i].qs;
  1363. for (int l = 0; l < QK4_0; l += 16) {
  1364. // Load 16x4-bit integers into 8x8-bit integers
  1365. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1366. // Expand 4-bit qs to 8-bit bytes
  1367. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1368. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1369. // Convert to signed 8-bit integers
  1370. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1371. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1372. // Subtract 8 from each byte
  1373. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1374. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1375. // Interleave and combine
  1376. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1377. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1378. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1379. // convert to 2x int16x8_t
  1380. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1381. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1382. // convert to 4x float32x4_t
  1383. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1384. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1385. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1386. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1387. // Multiply by d
  1388. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1389. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1390. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1391. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1392. // Store
  1393. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1394. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1395. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1396. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1397. }
  1398. }
  1399. #else
  1400. // scalar
  1401. for (int i = 0; i < nb; i++) {
  1402. const float d = x[i].d;
  1403. const uint8_t * restrict pp = x[i].qs;
  1404. for (int l = 0; l < QK4_0; l += 2) {
  1405. const uint8_t vi = pp[l/2];
  1406. const int8_t vi0 = vi & 0x0F;
  1407. const int8_t vi1 = vi >> 4;
  1408. const float v0 = (vi0 - 8)*d;
  1409. const float v1 = (vi1 - 8)*d;
  1410. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1411. y[i*QK4_0 + l + 0] = v0;
  1412. y[i*QK4_0 + l + 1] = v1;
  1413. assert(!isnan(y[i*QK4_0 + l + 0]));
  1414. assert(!isnan(y[i*QK4_0 + l + 1]));
  1415. }
  1416. }
  1417. #endif
  1418. }
  1419. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1420. assert(k % QK4_1 == 0);
  1421. const int nb = k / QK4_1;
  1422. const block_q4_1 * restrict x = vx;
  1423. #if defined(__AVX2__)
  1424. for (int i = 0; i < nb; i++) {
  1425. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1426. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1427. const uint8_t * restrict pp = x[i].qs;
  1428. for (int l = 0; l < QK4_1; l += 32) {
  1429. // Load 32x4-bit integers into 32x8-bit integers
  1430. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1431. // Convert to 16-bit int
  1432. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1433. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1434. // Convert to 32-bit int -> float 32
  1435. const __m256 vf[4] = {
  1436. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1437. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1438. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1439. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1440. };
  1441. // Scale, add m and store
  1442. for (int j = 0; j < 4; j++) {
  1443. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1444. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1445. }
  1446. }
  1447. }
  1448. #elif defined(__ARM_NEON)
  1449. for (int i = 0; i < nb; i++) {
  1450. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1451. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1452. const uint8_t * restrict pp = x[i].qs;
  1453. for (int l = 0; l < QK4_1; l += 16) {
  1454. // Load 16x4-bit integers into 8x8-bit integers
  1455. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1456. // Expand 4-bit qs to 8-bit bytes
  1457. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1458. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1459. // Interleave and combine
  1460. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1461. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1462. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1463. // convert to 2x uint16x8_t
  1464. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1465. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1466. // convert to 4x float32x4_t
  1467. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1468. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1469. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1470. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1471. // multiply by d and add m
  1472. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1473. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1474. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1475. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1476. // Store
  1477. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1478. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1479. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1480. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1481. }
  1482. }
  1483. #else
  1484. for (int i = 0; i < nb; i++) {
  1485. const float d = x[i].d;
  1486. const float m = x[i].m;
  1487. const uint8_t * restrict pp = x[i].qs;
  1488. for (int l = 0; l < QK4_1; l += 2) {
  1489. const uint8_t vi = pp[l/2];
  1490. const int8_t vi0 = vi & 0x0F;
  1491. const int8_t vi1 = vi >> 4;
  1492. const float v0 = vi0*d + m;
  1493. const float v1 = vi1*d + m;
  1494. y[i*QK4_1 + l + 0] = v0;
  1495. y[i*QK4_1 + l + 1] = v1;
  1496. assert(!isnan(y[i*QK4_1 + l + 0]));
  1497. assert(!isnan(y[i*QK4_1 + l + 1]));
  1498. }
  1499. }
  1500. #endif
  1501. }
  1502. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1503. assert(k % QK4_2 == 0);
  1504. const int nb = k / QK4_2;
  1505. const block_q4_2 * restrict x = vx;
  1506. for (int i = 0; i < nb; i++) {
  1507. const float d = GGML_FP16_TO_FP32(x[i].d);
  1508. const uint8_t * restrict pp = x[i].qs;
  1509. for (int l = 0; l < QK4_2; l += 2) {
  1510. const uint8_t vi = pp[l/2];
  1511. const int8_t vi0 = vi & 0x0F;
  1512. const int8_t vi1 = vi >> 4;
  1513. const float v0 = (vi0 - 8)*d;
  1514. const float v1 = (vi1 - 8)*d;
  1515. y[i*QK4_2 + l + 0] = v0;
  1516. y[i*QK4_2 + l + 1] = v1;
  1517. assert(!isnan(y[i*QK4_2 + l + 0]));
  1518. assert(!isnan(y[i*QK4_2 + l + 1]));
  1519. }
  1520. }
  1521. }
  1522. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1523. assert(k % QK5_0 == 0);
  1524. const int nb = k / QK5_0;
  1525. const block_q5_0 * restrict x = vx;
  1526. for (int i = 0; i < nb; i++) {
  1527. const float d = GGML_FP16_TO_FP32(x[i].d);
  1528. const uint8_t * restrict pp = x[i].qs;
  1529. uint32_t qh;
  1530. memcpy(&qh, x[i].qh, sizeof(qh));
  1531. for (int l = 0; l < QK5_0; l += 2) {
  1532. const uint8_t vi = pp[l/2];
  1533. // extract the 5-th bit from qh
  1534. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1535. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1536. const int8_t vi0 = (vi & 0x0F) | vh0;
  1537. const int8_t vi1 = (vi >> 4) | vh1;
  1538. const float v0 = (vi0 - 16)*d;
  1539. const float v1 = (vi1 - 16)*d;
  1540. y[i*QK5_0 + l + 0] = v0;
  1541. y[i*QK5_0 + l + 1] = v1;
  1542. assert(!isnan(y[i*QK5_0 + l + 0]));
  1543. assert(!isnan(y[i*QK5_0 + l + 1]));
  1544. }
  1545. }
  1546. }
  1547. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1548. assert(k % QK5_1 == 0);
  1549. const int nb = k / QK5_1;
  1550. const block_q5_1 * restrict x = vx;
  1551. for (int i = 0; i < nb; i++) {
  1552. const float d = GGML_FP16_TO_FP32(x[i].d);
  1553. const float m = GGML_FP16_TO_FP32(x[i].m);
  1554. const uint8_t * restrict pp = x[i].qs;
  1555. uint32_t qh;
  1556. memcpy(&qh, x[i].qh, sizeof(qh));
  1557. for (int l = 0; l < QK5_1; l += 2) {
  1558. const uint8_t vi = pp[l/2];
  1559. // extract the 5-th bit from qh
  1560. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  1561. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  1562. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1563. const uint8_t vi1 = (vi >> 4) | vh1;
  1564. const float v0 = vi0*d + m;
  1565. const float v1 = vi1*d + m;
  1566. y[i*QK5_1 + l + 0] = v0;
  1567. y[i*QK5_1 + l + 1] = v1;
  1568. assert(!isnan(y[i*QK5_1 + l + 0]));
  1569. assert(!isnan(y[i*QK5_1 + l + 1]));
  1570. }
  1571. }
  1572. }
  1573. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1574. assert(k % QK8_0 == 0);
  1575. const int nb = k / QK8_0;
  1576. const block_q8_0 * restrict x = vx;
  1577. for (int i = 0; i < nb; i++) {
  1578. const float d = x[i].d;
  1579. const int8_t * restrict pp = x[i].qs;
  1580. for (int l = 0; l < QK8_0; ++l) {
  1581. y[i*QK8_0 + l] = pp[l]*d;
  1582. }
  1583. }
  1584. }
  1585. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1586. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1587. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1588. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1589. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1590. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1591. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1592. [GGML_TYPE_Q4_0] = {
  1593. .dequantize_row_q = dequantize_row_q4_0,
  1594. .quantize_row_q = quantize_row_q4_0,
  1595. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1596. .quantize_row_q_dot = quantize_row_q8_0,
  1597. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1598. .vec_dot_type = GGML_TYPE_Q8_0,
  1599. },
  1600. [GGML_TYPE_Q4_1] = {
  1601. .dequantize_row_q = dequantize_row_q4_1,
  1602. .quantize_row_q = quantize_row_q4_1,
  1603. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1604. .quantize_row_q_dot = quantize_row_q8_1,
  1605. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1606. .vec_dot_type = GGML_TYPE_Q8_1,
  1607. },
  1608. [GGML_TYPE_Q4_2] = {
  1609. .dequantize_row_q = dequantize_row_q4_2,
  1610. .quantize_row_q = quantize_row_q4_2,
  1611. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1612. .quantize_row_q_dot = quantize_row_q8_0,
  1613. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1614. .vec_dot_type = GGML_TYPE_Q8_0,
  1615. },
  1616. [GGML_TYPE_Q5_0] = {
  1617. .dequantize_row_q = dequantize_row_q5_0,
  1618. .quantize_row_q = quantize_row_q5_0,
  1619. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1620. .quantize_row_q_dot = quantize_row_q8_0,
  1621. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1622. .vec_dot_type = GGML_TYPE_Q8_0,
  1623. },
  1624. [GGML_TYPE_Q5_1] = {
  1625. .dequantize_row_q = dequantize_row_q5_1,
  1626. .quantize_row_q = quantize_row_q5_1,
  1627. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1628. .quantize_row_q_dot = quantize_row_q8_1,
  1629. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1630. .vec_dot_type = GGML_TYPE_Q8_1,
  1631. },
  1632. [GGML_TYPE_Q8_0] = {
  1633. .dequantize_row_q = dequantize_row_q8_0,
  1634. .quantize_row_q = quantize_row_q8_0,
  1635. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1636. .quantize_row_q_dot = quantize_row_q8_0,
  1637. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1638. .vec_dot_type = GGML_TYPE_Q8_0,
  1639. },
  1640. [GGML_TYPE_Q8_1] = {
  1641. .dequantize_row_q = NULL, // TODO
  1642. .quantize_row_q = quantize_row_q8_1,
  1643. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1644. .quantize_row_q_dot = quantize_row_q8_1,
  1645. .vec_dot_q = NULL, // TODO
  1646. .vec_dot_type = GGML_TYPE_Q8_1,
  1647. },
  1648. };
  1649. // For internal test use
  1650. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1651. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1652. return quantize_fns[i];
  1653. }
  1654. //
  1655. // simd mappings
  1656. //
  1657. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1658. // we then implement the fundamental computation operations below using only these macros
  1659. // adding support for new architectures requires to define the corresponding SIMD macros
  1660. //
  1661. // GGML_F32_STEP / GGML_F16_STEP
  1662. // number of elements to process in a single step
  1663. //
  1664. // GGML_F32_EPR / GGML_F16_EPR
  1665. // number of elements to fit in a single register
  1666. //
  1667. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1668. #define GGML_SIMD
  1669. // F32 NEON
  1670. #define GGML_F32_STEP 16
  1671. #define GGML_F32_EPR 4
  1672. #define GGML_F32x4 float32x4_t
  1673. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1674. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1675. #define GGML_F32x4_LOAD vld1q_f32
  1676. #define GGML_F32x4_STORE vst1q_f32
  1677. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1678. #define GGML_F32x4_ADD vaddq_f32
  1679. #define GGML_F32x4_MUL vmulq_f32
  1680. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1681. #define GGML_F32x4_REDUCE(res, x) \
  1682. { \
  1683. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1684. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1685. } \
  1686. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1687. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1688. } \
  1689. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1690. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1691. } \
  1692. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1693. }
  1694. #define GGML_F32_VEC GGML_F32x4
  1695. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1696. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1697. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1698. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1699. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1700. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1701. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1702. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1703. // F16 NEON
  1704. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1705. #define GGML_F16_STEP 32
  1706. #define GGML_F16_EPR 8
  1707. #define GGML_F16x8 float16x8_t
  1708. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1709. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1710. #define GGML_F16x8_LOAD vld1q_f16
  1711. #define GGML_F16x8_STORE vst1q_f16
  1712. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1713. #define GGML_F16x8_ADD vaddq_f16
  1714. #define GGML_F16x8_MUL vmulq_f16
  1715. #define GGML_F16x8_REDUCE(res, x) \
  1716. { \
  1717. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1718. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1719. } \
  1720. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1721. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1722. } \
  1723. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1724. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1725. } \
  1726. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1727. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1728. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1729. }
  1730. #define GGML_F16_VEC GGML_F16x8
  1731. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1732. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1733. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1734. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1735. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1736. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1737. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1738. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1739. #else
  1740. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1741. // and take advantage of the vcvt_ functions to convert to/from FP16
  1742. #define GGML_F16_STEP 16
  1743. #define GGML_F16_EPR 4
  1744. #define GGML_F32Cx4 float32x4_t
  1745. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1746. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1747. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1748. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1749. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1750. #define GGML_F32Cx4_ADD vaddq_f32
  1751. #define GGML_F32Cx4_MUL vmulq_f32
  1752. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1753. #define GGML_F16_VEC GGML_F32Cx4
  1754. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1755. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1756. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1757. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1758. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1759. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1760. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1761. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1762. #endif
  1763. #elif defined(__AVX__)
  1764. #define GGML_SIMD
  1765. // F32 AVX
  1766. #define GGML_F32_STEP 32
  1767. #define GGML_F32_EPR 8
  1768. #define GGML_F32x8 __m256
  1769. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1770. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1771. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1772. #define GGML_F32x8_STORE _mm256_storeu_ps
  1773. #if defined(__FMA__)
  1774. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1775. #else
  1776. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1777. #endif
  1778. #define GGML_F32x8_ADD _mm256_add_ps
  1779. #define GGML_F32x8_MUL _mm256_mul_ps
  1780. #define GGML_F32x8_REDUCE(res, x) \
  1781. { \
  1782. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1783. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1784. } \
  1785. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1786. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1787. } \
  1788. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1789. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1790. } \
  1791. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1792. _mm256_extractf128_ps(x[0], 1)); \
  1793. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1794. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1795. }
  1796. // TODO: is this optimal ?
  1797. #define GGML_F32_VEC GGML_F32x8
  1798. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1799. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1800. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1801. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1802. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1803. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1804. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1805. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1806. // F16 AVX
  1807. #define GGML_F16_STEP 32
  1808. #define GGML_F16_EPR 8
  1809. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1810. #define GGML_F32Cx8 __m256
  1811. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1812. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1813. #if defined(__F16C__)
  1814. // the _mm256_cvt intrinsics require F16C
  1815. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1816. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1817. #else
  1818. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1819. float tmp[8];
  1820. for (int i = 0; i < 8; i++)
  1821. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1822. return _mm256_loadu_ps(tmp);
  1823. }
  1824. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1825. float arr[8];
  1826. _mm256_storeu_ps(arr, y);
  1827. for (int i = 0; i < 8; i++)
  1828. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1829. }
  1830. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1831. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1832. #endif
  1833. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1834. #define GGML_F32Cx8_ADD _mm256_add_ps
  1835. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1836. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1837. #define GGML_F16_VEC GGML_F32Cx8
  1838. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1839. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1840. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1841. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1842. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1843. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1844. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1845. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1846. #elif defined(__POWER9_VECTOR__)
  1847. #define GGML_SIMD
  1848. // F32 POWER9
  1849. #define GGML_F32_STEP 32
  1850. #define GGML_F32_EPR 4
  1851. #define GGML_F32x4 vector float
  1852. #define GGML_F32x4_ZERO 0.0f
  1853. #define GGML_F32x4_SET1 vec_splats
  1854. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1855. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1856. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1857. #define GGML_F32x4_ADD vec_add
  1858. #define GGML_F32x4_MUL vec_mul
  1859. #define GGML_F32x4_REDUCE(res, x) \
  1860. { \
  1861. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1862. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1863. } \
  1864. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1865. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1866. } \
  1867. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1868. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1869. } \
  1870. res = vec_extract(x[0], 0) + \
  1871. vec_extract(x[0], 1) + \
  1872. vec_extract(x[0], 2) + \
  1873. vec_extract(x[0], 3); \
  1874. }
  1875. #define GGML_F32_VEC GGML_F32x4
  1876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1884. // F16 POWER9
  1885. #define GGML_F16_STEP GGML_F32_STEP
  1886. #define GGML_F16_EPR GGML_F32_EPR
  1887. #define GGML_F16_VEC GGML_F32x4
  1888. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1889. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1890. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1891. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1892. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1893. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1894. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1895. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1896. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1897. #define GGML_F16_VEC_STORE(p, r, i) \
  1898. if (i & 0x1) \
  1899. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1900. r[i - GGML_ENDIAN_BYTE(0)]), \
  1901. 0, p - GGML_F16_EPR)
  1902. #elif defined(__wasm_simd128__)
  1903. #define GGML_SIMD
  1904. // F32 WASM
  1905. #define GGML_F32_STEP 16
  1906. #define GGML_F32_EPR 4
  1907. #define GGML_F32x4 v128_t
  1908. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1909. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1910. #define GGML_F32x4_LOAD wasm_v128_load
  1911. #define GGML_F32x4_STORE wasm_v128_store
  1912. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1913. #define GGML_F32x4_ADD wasm_f32x4_add
  1914. #define GGML_F32x4_MUL wasm_f32x4_mul
  1915. #define GGML_F32x4_REDUCE(res, x) \
  1916. { \
  1917. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1918. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1919. } \
  1920. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1921. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1922. } \
  1923. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1924. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1925. } \
  1926. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1927. wasm_f32x4_extract_lane(x[0], 1) + \
  1928. wasm_f32x4_extract_lane(x[0], 2) + \
  1929. wasm_f32x4_extract_lane(x[0], 3); \
  1930. }
  1931. #define GGML_F32_VEC GGML_F32x4
  1932. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1933. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1934. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1935. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1936. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1937. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1938. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1939. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1940. // F16 WASM
  1941. #define GGML_F16_STEP 16
  1942. #define GGML_F16_EPR 4
  1943. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1944. float tmp[4];
  1945. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1946. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1947. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1948. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1949. return wasm_v128_load(tmp);
  1950. }
  1951. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1952. float tmp[4];
  1953. wasm_v128_store(tmp, x);
  1954. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1955. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1956. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1957. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1958. }
  1959. #define GGML_F16x4 v128_t
  1960. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1961. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1962. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1963. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1964. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1965. #define GGML_F16x4_ADD wasm_f32x4_add
  1966. #define GGML_F16x4_MUL wasm_f32x4_mul
  1967. #define GGML_F16x4_REDUCE(res, x) \
  1968. { \
  1969. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1970. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1971. } \
  1972. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1973. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1974. } \
  1975. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1976. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1977. } \
  1978. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1979. wasm_f32x4_extract_lane(x[0], 1) + \
  1980. wasm_f32x4_extract_lane(x[0], 2) + \
  1981. wasm_f32x4_extract_lane(x[0], 3); \
  1982. }
  1983. #define GGML_F16_VEC GGML_F16x4
  1984. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1985. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1986. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1987. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1988. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1989. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1990. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1991. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1992. #elif defined(__SSE3__)
  1993. #define GGML_SIMD
  1994. // F32 SSE
  1995. #define GGML_F32_STEP 32
  1996. #define GGML_F32_EPR 4
  1997. #define GGML_F32x4 __m128
  1998. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1999. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2000. #define GGML_F32x4_LOAD _mm_loadu_ps
  2001. #define GGML_F32x4_STORE _mm_storeu_ps
  2002. #if defined(__FMA__)
  2003. // TODO: Does this work?
  2004. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2005. #else
  2006. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2007. #endif
  2008. #define GGML_F32x4_ADD _mm_add_ps
  2009. #define GGML_F32x4_MUL _mm_mul_ps
  2010. #define GGML_F32x4_REDUCE(res, x) \
  2011. { \
  2012. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2013. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2014. } \
  2015. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2016. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2017. } \
  2018. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2019. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2020. } \
  2021. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2022. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2023. }
  2024. // TODO: is this optimal ?
  2025. #define GGML_F32_VEC GGML_F32x4
  2026. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2027. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2028. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2029. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2030. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2031. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2032. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2033. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2034. // F16 SSE
  2035. #define GGML_F16_STEP 32
  2036. #define GGML_F16_EPR 4
  2037. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2038. float tmp[4];
  2039. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2040. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2041. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2042. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2043. return _mm_loadu_ps(tmp);
  2044. }
  2045. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2046. float arr[4];
  2047. _mm_storeu_ps(arr, y);
  2048. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2049. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2050. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2051. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2052. }
  2053. #define GGML_F32Cx4 __m128
  2054. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2055. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2056. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2057. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2058. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2059. #define GGML_F32Cx4_ADD _mm_add_ps
  2060. #define GGML_F32Cx4_MUL _mm_mul_ps
  2061. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2062. #define GGML_F16_VEC GGML_F32Cx4
  2063. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2064. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2065. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2067. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2068. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2069. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2070. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2071. #endif
  2072. // GGML_F32_ARR / GGML_F16_ARR
  2073. // number of registers to use per step
  2074. #ifdef GGML_SIMD
  2075. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2076. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2077. #endif
  2078. //
  2079. // fundamental operations
  2080. //
  2081. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2082. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2083. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2084. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2085. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2086. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2087. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2088. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2089. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2090. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2091. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2092. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2093. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2094. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2095. #ifdef GGML_SIMD
  2096. float sumf = 0.0f;
  2097. const int np = (n & ~(GGML_F32_STEP - 1));
  2098. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2099. GGML_F32_VEC ax[GGML_F32_ARR];
  2100. GGML_F32_VEC ay[GGML_F32_ARR];
  2101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2102. for (int j = 0; j < GGML_F32_ARR; j++) {
  2103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2105. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2106. }
  2107. }
  2108. // reduce sum0..sum3 to sum0
  2109. GGML_F32_VEC_REDUCE(sumf, sum);
  2110. // leftovers
  2111. for (int i = np; i < n; ++i) {
  2112. sumf += x[i]*y[i];
  2113. }
  2114. #else
  2115. // scalar
  2116. ggml_float sumf = 0.0;
  2117. for (int i = 0; i < n; ++i) {
  2118. sumf += (ggml_float)(x[i]*y[i]);
  2119. }
  2120. #endif
  2121. *s = sumf;
  2122. }
  2123. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2124. ggml_float sumf = 0.0;
  2125. #if defined(GGML_SIMD)
  2126. const int np = (n & ~(GGML_F16_STEP - 1));
  2127. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2128. GGML_F16_VEC ax[GGML_F16_ARR];
  2129. GGML_F16_VEC ay[GGML_F16_ARR];
  2130. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2131. for (int j = 0; j < GGML_F16_ARR; j++) {
  2132. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2133. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2134. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2135. }
  2136. }
  2137. // reduce sum0..sum3 to sum0
  2138. GGML_F16_VEC_REDUCE(sumf, sum);
  2139. // leftovers
  2140. for (int i = np; i < n; ++i) {
  2141. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2142. }
  2143. #else
  2144. for (int i = 0; i < n; ++i) {
  2145. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2146. }
  2147. #endif
  2148. *s = sumf;
  2149. }
  2150. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2151. const int nb = n / QK8_0;
  2152. assert(n % QK8_0 == 0);
  2153. assert(nb % 2 == 0);
  2154. const block_q4_0 * restrict x = vx;
  2155. const block_q8_0 * restrict y = vy;
  2156. #if defined(__ARM_NEON)
  2157. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2158. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2159. for (int i = 0; i < nb; i += 2) {
  2160. const block_q4_0 * restrict x0 = &x[i + 0];
  2161. const block_q4_0 * restrict x1 = &x[i + 1];
  2162. const block_q8_0 * restrict y0 = &y[i + 0];
  2163. const block_q8_0 * restrict y1 = &y[i + 1];
  2164. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2165. const int8x16_t s8b = vdupq_n_s8(0x8);
  2166. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2167. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2168. // 4-bit -> 8-bit
  2169. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2170. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2171. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2172. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2173. // sub 8
  2174. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2175. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2176. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2177. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2178. // interleave
  2179. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2180. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2181. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2182. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2183. // load y
  2184. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2185. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2186. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2187. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2188. #if defined(__ARM_FEATURE_DOTPROD)
  2189. // dot product into int32x4_t
  2190. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2191. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2192. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2193. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2194. #else
  2195. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2196. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2197. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2198. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2199. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2200. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2201. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2202. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2203. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2204. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2205. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2206. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2207. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2208. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2209. #endif
  2210. }
  2211. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2212. #elif defined(__AVX2__)
  2213. // Initialize accumulator with zeros
  2214. __m256 acc = _mm256_setzero_ps();
  2215. // Main loop
  2216. for (int i = 0; i < nb; ++i) {
  2217. /* Compute combined scale for the block */
  2218. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2219. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2220. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2221. const __m256i off = _mm256_set1_epi8( 8 );
  2222. bx = _mm256_sub_epi8( bx, off );
  2223. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2224. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2225. /* Multiply q with scale and accumulate */
  2226. acc = _mm256_fmadd_ps( d, q, acc );
  2227. }
  2228. *s = hsum_float_8(acc);
  2229. #elif defined(__AVX__)
  2230. // Initialize accumulator with zeros
  2231. __m256 acc = _mm256_setzero_ps();
  2232. // Main loop
  2233. for (int i = 0; i < nb; ++i) {
  2234. // Compute combined scale for the block
  2235. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2236. __m128i i32[2];
  2237. for (int j = 0; j < 2; ++j) {
  2238. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2239. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2240. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2241. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2242. const __m128i off = _mm_set1_epi8( 8 );
  2243. bx = _mm_sub_epi8( bx, off );
  2244. // Get absolute values of x vectors
  2245. const __m128i ax = _mm_sign_epi8(bx, bx);
  2246. // Sign the values of the y vectors
  2247. const __m128i sy = _mm_sign_epi8(by, bx);
  2248. // Perform multiplication and create 16-bit values
  2249. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2250. const __m128i ones = _mm_set1_epi16(1);
  2251. i32[j] = _mm_madd_epi16(ones, dot);
  2252. }
  2253. // Convert int32_t to float
  2254. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2255. // Apply the scale, and accumulate
  2256. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2257. }
  2258. *s = hsum_float_8(acc);
  2259. #else
  2260. // scalar
  2261. float sumf = 0.0;
  2262. for (int i = 0; i < nb; i++) {
  2263. const float d0 = x[i].d;
  2264. const float d1 = y[i].d;
  2265. const uint8_t * restrict p0 = x[i].qs;
  2266. const int8_t * restrict p1 = y[i].qs;
  2267. int sumi = 0;
  2268. for (int j = 0; j < QK8_0/2; j++) {
  2269. const uint8_t v0 = p0[j];
  2270. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2271. const int i1 = (int8_t) (v0 >> 4) - 8;
  2272. const int i2 = p1[2*j + 0];
  2273. const int i3 = p1[2*j + 1];
  2274. sumi += i0*i2 + i1*i3;
  2275. }
  2276. sumf += d0*d1*sumi;
  2277. }
  2278. *s = sumf;
  2279. #endif
  2280. }
  2281. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2282. const int nb = n / QK8_1;
  2283. assert(n % QK8_1 == 0);
  2284. assert(nb % 2 == 0);
  2285. const block_q4_1 * restrict x = vx;
  2286. const block_q8_1 * restrict y = vy;
  2287. // TODO: add AVX / WASM SIMD / etc
  2288. #if defined(__ARM_NEON)
  2289. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2290. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2291. float summs = 0;
  2292. for (int i = 0; i < nb; i += 2) {
  2293. const block_q4_1 * restrict x0 = &x[i + 0];
  2294. const block_q4_1 * restrict x1 = &x[i + 1];
  2295. const block_q8_1 * restrict y0 = &y[i + 0];
  2296. const block_q8_1 * restrict y1 = &y[i + 1];
  2297. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2298. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2299. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2300. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2301. // 4-bit -> 8-bit
  2302. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2303. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2304. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2305. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2306. // interleave
  2307. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2308. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2309. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2310. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2311. // load y
  2312. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2313. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2314. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2315. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2316. #if defined(__ARM_FEATURE_DOTPROD)
  2317. // dot product into int32x4_t
  2318. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2319. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2320. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2321. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2322. #else
  2323. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2324. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2325. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2326. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2327. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2328. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2329. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2330. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2331. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2332. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2333. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2334. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2335. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2336. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2337. #endif
  2338. }
  2339. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2340. #elif defined(__AVX2__)
  2341. // Initialize accumulator with zeros
  2342. __m256 acc = _mm256_setzero_ps();
  2343. float summs = 0;
  2344. // Main loop
  2345. for (int i = 0; i < nb; ++i) {
  2346. const float * d0 = &x[i].d;
  2347. const float * d1 = &y[i].d;
  2348. summs += x[i].m * (y[i].s0 + y[i].s1);
  2349. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2350. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2351. // Compute combined scales
  2352. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2353. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2354. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2355. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2356. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2357. // Accumulate d0*d1*x*y
  2358. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2359. }
  2360. *s = hsum_float_8(acc) + summs;
  2361. #else
  2362. // scalar
  2363. float sumf = 0.0;
  2364. for (int i = 0; i < nb; i++) {
  2365. const float d0 = x[i].d;
  2366. const float m0 = x[i].m;
  2367. const float d1 = y[i].d;
  2368. const uint8_t * restrict p0 = x[i].qs;
  2369. const int8_t * restrict p1 = y[i].qs;
  2370. // TODO: this is very slow ..
  2371. for (int j = 0; j < QK8_1/2; j++) {
  2372. const uint8_t v0 = p0[j];
  2373. const float f0 = d0*(v0 & 0x0F) + m0;
  2374. const float f1 = d0*(v0 >> 4) + m0;
  2375. const float f2 = d1*p1[2*j + 0];
  2376. const float f3 = d1*p1[2*j + 1];
  2377. sumf += f0*f2 + f1*f3;
  2378. }
  2379. }
  2380. *s = sumf;
  2381. #endif
  2382. }
  2383. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2384. const int nb = n / QK8_0;
  2385. assert(n % QK8_0 == 0);
  2386. assert(nb % 2 == 0);
  2387. assert(QK8_0 == 2*QK4_2);
  2388. const block_q4_2 * restrict x = vx;
  2389. const block_q8_0 * restrict y = vy;
  2390. #if defined(__ARM_NEON)
  2391. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2392. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2393. for (int i = 0; i < nb; i += 2) {
  2394. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2395. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2396. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2397. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2398. const block_q8_0 * restrict y0 = &y[i + 0];
  2399. const block_q8_0 * restrict y1 = &y[i + 1];
  2400. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2401. const int8x16_t s8b = vdupq_n_s8(0x8);
  2402. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2403. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2404. // 4-bit -> 8-bit
  2405. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2406. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2407. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2408. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2409. // sub 8
  2410. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2411. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2412. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2413. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2414. // interleave
  2415. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2416. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2417. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2418. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2419. // load y
  2420. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2421. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2422. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2423. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2424. #if defined(__ARM_FEATURE_DOTPROD)
  2425. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2426. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2427. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2428. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2429. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2430. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2431. #else
  2432. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2433. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2434. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2435. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2436. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2437. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2438. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2439. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2440. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2441. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2442. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2443. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2444. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2445. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2446. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2447. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2448. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2449. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2450. #endif
  2451. }
  2452. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2453. #elif defined(__AVX2__)
  2454. // Initialize accumulator with zeros
  2455. __m256 acc = _mm256_setzero_ps();
  2456. // Main loop
  2457. for (int i = 0; i < nb; i++) {
  2458. /* Compute combined scale for the block */
  2459. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2460. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2461. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2462. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2463. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2464. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2465. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2466. const __m256i off = _mm256_set1_epi8(8);
  2467. bx = _mm256_sub_epi8(bx, off);
  2468. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2469. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2470. /* Multiply q with scale and accumulate */
  2471. acc = _mm256_fmadd_ps(d, q, acc);
  2472. }
  2473. *s = hsum_float_8(acc);
  2474. #else
  2475. // scalar
  2476. float sumf = 0.0;
  2477. for (int i = 0; i < nb; i++) {
  2478. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2479. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2480. const int8_t * restrict y0 = y[i].qs;
  2481. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2482. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2483. int sumi_0 = 0;
  2484. int sumi_1 = 0;
  2485. for (int j = 0; j < QK8_0/4; j++) {
  2486. const uint8_t v0 = x0[j];
  2487. const uint8_t v1 = x1[j];
  2488. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2489. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2490. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2491. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2492. const int i2_0 = y0[2*j + 0];
  2493. const int i3_0 = y0[2*j + 1];
  2494. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2495. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2496. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2497. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2498. }
  2499. sumf += (d0 * y[i].d) * sumi_0;
  2500. sumf += (d1 * y[i].d) * sumi_1;
  2501. }
  2502. *s = sumf;
  2503. #endif
  2504. }
  2505. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2506. const int nb = n / QK8_0;
  2507. assert(n % QK8_0 == 0);
  2508. assert(nb % 2 == 0);
  2509. assert(QK8_0 == QK5_0);
  2510. const block_q5_0 * restrict x = vx;
  2511. const block_q8_0 * restrict y = vy;
  2512. #if defined(__ARM_NEON)
  2513. float32x4_t sumv = vdupq_n_f32(0.0f);
  2514. uint64_t tmp[4];
  2515. for (int i = 0; i < nb; ++i) {
  2516. const block_q5_0 * restrict x0 = &x[i];
  2517. const block_q8_0 * restrict y0 = &y[i];
  2518. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2519. const int8x16_t s16b = vdupq_n_s8(0x10);
  2520. // extract the 5th bit
  2521. uint32_t qh;
  2522. memcpy(&qh, x0->qh, sizeof(qh));
  2523. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2524. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2525. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2526. tmp[3] = table_b2b_u[(qh >> 24) ];
  2527. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2528. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2529. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2530. // 4-bit -> 8-bit
  2531. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2532. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2533. // interleave
  2534. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2535. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2536. // add high bit and sub 16
  2537. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2538. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2539. // load y
  2540. const int8x16_t v1l = vld1q_s8(y0->qs);
  2541. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2542. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2543. #if defined(__ARM_FEATURE_DOTPROD)
  2544. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2545. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2546. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2547. #else
  2548. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2549. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2550. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2551. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2552. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2553. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2554. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2555. #endif
  2556. }
  2557. *s = vaddvq_f32(sumv);
  2558. #elif defined(__AVX2__)
  2559. // Initialize accumulator with zeros
  2560. __m256 acc = _mm256_setzero_ps();
  2561. // Main loop
  2562. for (int i = 0; i < nb; i++) {
  2563. /* Compute combined scale for the block */
  2564. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2565. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2566. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2567. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2568. bx = _mm256_or_si256(bx, bxhi);
  2569. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2570. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2571. /* Multiply q with scale and accumulate */
  2572. acc = _mm256_fmadd_ps(d, q, acc);
  2573. }
  2574. *s = hsum_float_8(acc);
  2575. #else
  2576. // scalar
  2577. float sumf = 0.0;
  2578. for (int i = 0; i < nb; i++) {
  2579. const uint8_t * restrict x0 = x[i].qs;
  2580. const int8_t * restrict y0 = y[i].qs;
  2581. uint32_t qh;
  2582. memcpy(&qh, x[i].qh, sizeof(qh));
  2583. const float d = GGML_FP16_TO_FP32(x[i].d);
  2584. int sxy = 0;
  2585. for (int j = 0; j < QK8_0/2; j++) {
  2586. const uint8_t v0 = x0[j];
  2587. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2588. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2589. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2590. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2591. const int y0_0 = y0[2*j + 0];
  2592. const int y1_0 = y0[2*j + 1];
  2593. sxy += x0_0*y0_0 + x1_0*y1_0;
  2594. }
  2595. sumf += (d*sxy)*y[i].d;
  2596. }
  2597. *s = sumf;
  2598. #endif
  2599. }
  2600. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2601. const int nb = n / QK8_1;
  2602. assert(n % QK8_1 == 0);
  2603. assert(nb % 2 == 0);
  2604. assert(QK8_1 == QK5_1);
  2605. const block_q5_1 * restrict x = vx;
  2606. const block_q8_1 * restrict y = vy;
  2607. #if defined(__ARM_NEON)
  2608. float32x4_t sumv = vdupq_n_f32(0.0f);
  2609. float summs = 0.0f;
  2610. uint64_t tmp[4];
  2611. for (int i = 0; i < nb; ++i) {
  2612. const block_q5_1 * restrict x0 = &x[i];
  2613. const block_q8_1 * restrict y0 = &y[i];
  2614. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2615. // extract the 5th bit
  2616. uint32_t qh;
  2617. memcpy(&qh, x0->qh, sizeof(qh));
  2618. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2619. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2620. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2621. tmp[3] = table_b2b_u[(qh >> 24) ];
  2622. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2623. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2624. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2625. // 4-bit -> 8-bit
  2626. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2627. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2628. // interleave
  2629. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2630. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2631. // add
  2632. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2633. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2634. // load y
  2635. const int8x16_t v1l = vld1q_s8(y0->qs);
  2636. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2637. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2638. #if defined(__ARM_FEATURE_DOTPROD)
  2639. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2640. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2641. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2642. #else
  2643. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2644. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2645. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2646. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2647. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2648. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2649. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2650. #endif
  2651. }
  2652. *s = vaddvq_f32(sumv) + summs;
  2653. #elif defined(__AVX2__)
  2654. // Initialize accumulator with zeros
  2655. __m256 acc = _mm256_setzero_ps();
  2656. float summs = 0.0f;
  2657. // Main loop
  2658. for (int i = 0; i < nb; i++) {
  2659. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2660. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2661. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2662. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2663. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2664. bx = _mm256_or_si256(bx, bxhi);
  2665. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2666. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2667. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2668. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2669. }
  2670. *s = hsum_float_8(acc) + summs;
  2671. #else
  2672. float sumf = 0.0;
  2673. for (int i = 0; i < nb; i++) {
  2674. const uint8_t * restrict x0 = x[i].qs;
  2675. const int8_t * restrict y0 = y[i].qs;
  2676. uint32_t qh;
  2677. memcpy(&qh, x[i].qh, sizeof(qh));
  2678. const float d = GGML_FP16_TO_FP32(x[i].d);
  2679. const float m = GGML_FP16_TO_FP32(x[i].m);
  2680. int sxy = 0;
  2681. for (int j = 0; j < QK8_1/2; j++) {
  2682. const uint8_t v0 = x0[j];
  2683. const int x0_0h = ((qh & (1 << (2*j + 0))) >> (2*j + 0)) << 4;
  2684. const int x1_0h = ((qh & (1 << (2*j + 1))) >> (2*j + 1)) << 4;
  2685. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2686. const int x1_0 = (v0 >> 4) | x1_0h;
  2687. const int y0_0 = y0[2*j + 0];
  2688. const int y1_0 = y0[2*j + 1];
  2689. sxy += x0_0*y0_0 + x1_0*y1_0;
  2690. }
  2691. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2692. }
  2693. *s = sumf;
  2694. #endif
  2695. }
  2696. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2697. const int nb = n / QK8_0;
  2698. assert(n % QK8_0 == 0);
  2699. assert(nb % 2 == 0);
  2700. assert(QK8_0 == QK8_0);
  2701. const block_q8_0 * restrict x = vx;
  2702. const block_q8_0 * restrict y = vy;
  2703. #if defined(__ARM_NEON)
  2704. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2705. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2706. for (int i = 0; i < nb; i += 2) {
  2707. const block_q8_0 * restrict x0 = &x[i + 0];
  2708. const block_q8_0 * restrict x1 = &x[i + 1];
  2709. const block_q8_0 * restrict y0 = &y[i + 0];
  2710. const block_q8_0 * restrict y1 = &y[i + 1];
  2711. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2712. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2713. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2714. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2715. // load y
  2716. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2717. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2718. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2719. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2720. #if defined(__ARM_FEATURE_DOTPROD)
  2721. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2722. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2723. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2724. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2725. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2726. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2727. #else
  2728. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2729. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2730. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2731. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2732. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2733. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2734. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2735. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2736. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2737. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2738. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2739. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2740. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2741. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2742. #endif
  2743. }
  2744. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2745. #elif defined(__AVX2__)
  2746. // Initialize accumulator with zeros
  2747. __m256 acc = _mm256_setzero_ps();
  2748. // Main loop
  2749. for (int i = 0; i < nb; ++i) {
  2750. // Compute combined scale for the block
  2751. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2752. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2753. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2754. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2755. // Multiply q with scale and accumulate
  2756. acc = _mm256_fmadd_ps( d, q, acc );
  2757. }
  2758. *s = hsum_float_8(acc);
  2759. #else
  2760. // scalar
  2761. float sumf = 0.0;
  2762. for (int i = 0; i < nb; i++) {
  2763. const int8_t * restrict x0 = x[i].qs;
  2764. const int8_t * restrict y0 = y[i].qs;
  2765. int sumi = 0;
  2766. for (int j = 0; j < QK8_0; j++) {
  2767. const int v0 = x0[j];
  2768. const int v1 = y0[j];
  2769. sumi += v0*v1;
  2770. }
  2771. sumf += (x[i].d*y[i].d)*sumi;
  2772. }
  2773. *s = sumf;
  2774. #endif
  2775. }
  2776. // compute GGML_VEC_DOT_UNROLL dot products at once
  2777. // xs - x row stride in bytes
  2778. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2779. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2780. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2781. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2782. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2783. }
  2784. #if defined(GGML_SIMD)
  2785. const int np = (n & ~(GGML_F16_STEP - 1));
  2786. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2787. GGML_F16_VEC ax[GGML_F16_ARR];
  2788. GGML_F16_VEC ay[GGML_F16_ARR];
  2789. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2790. for (int j = 0; j < GGML_F16_ARR; j++) {
  2791. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2792. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2793. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2794. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2795. }
  2796. }
  2797. }
  2798. // reduce sum0..sum3 to sum0
  2799. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2800. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2801. }
  2802. // leftovers
  2803. for (int i = np; i < n; ++i) {
  2804. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2805. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2806. }
  2807. }
  2808. #else
  2809. for (int i = 0; i < n; ++i) {
  2810. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2811. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2812. }
  2813. }
  2814. #endif
  2815. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2816. s[i] = sumf[i];
  2817. }
  2818. }
  2819. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2820. #if defined(GGML_SIMD)
  2821. const int np = (n & ~(GGML_F32_STEP - 1));
  2822. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2823. GGML_F32_VEC ax[GGML_F32_ARR];
  2824. GGML_F32_VEC ay[GGML_F32_ARR];
  2825. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2826. for (int j = 0; j < GGML_F32_ARR; j++) {
  2827. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2828. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2829. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2830. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2831. }
  2832. }
  2833. // leftovers
  2834. for (int i = np; i < n; ++i) {
  2835. y[i] += x[i]*v;
  2836. }
  2837. #else
  2838. // scalar
  2839. for (int i = 0; i < n; ++i) {
  2840. y[i] += x[i]*v;
  2841. }
  2842. #endif
  2843. }
  2844. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2845. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2846. #if defined(GGML_SIMD)
  2847. const int np = (n & ~(GGML_F32_STEP - 1));
  2848. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2849. GGML_F32_VEC ay[GGML_F32_ARR];
  2850. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2851. for (int j = 0; j < GGML_F32_ARR; j++) {
  2852. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2853. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2854. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2855. }
  2856. }
  2857. // leftovers
  2858. for (int i = np; i < n; ++i) {
  2859. y[i] *= v;
  2860. }
  2861. #else
  2862. // scalar
  2863. for (int i = 0; i < n; ++i) {
  2864. y[i] *= v;
  2865. }
  2866. #endif
  2867. }
  2868. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2869. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2870. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2871. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2872. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2873. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2874. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2875. static const float GELU_COEF_A = 0.044715f;
  2876. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2877. inline static float ggml_gelu_f32(float x) {
  2878. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2879. }
  2880. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2881. const uint16_t * i16 = (const uint16_t *) x;
  2882. for (int i = 0; i < n; ++i) {
  2883. y[i] = table_gelu_f16[i16[i]];
  2884. }
  2885. }
  2886. #ifdef GGML_GELU_FP16
  2887. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2888. uint16_t t;
  2889. for (int i = 0; i < n; ++i) {
  2890. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2891. memcpy(&t, &fp16, sizeof(uint16_t));
  2892. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2893. }
  2894. }
  2895. #else
  2896. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2897. for (int i = 0; i < n; ++i) {
  2898. y[i] = ggml_gelu_f32(x[i]);
  2899. }
  2900. }
  2901. #endif
  2902. // Sigmoid Linear Unit (SiLU) function
  2903. inline static float ggml_silu_f32(float x) {
  2904. return x/(1.0f + expf(-x));
  2905. }
  2906. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2907. const uint16_t * i16 = (const uint16_t *) x;
  2908. for (int i = 0; i < n; ++i) {
  2909. y[i] = table_silu_f16[i16[i]];
  2910. }
  2911. }
  2912. #ifdef GGML_SILU_FP16
  2913. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2914. uint16_t t;
  2915. for (int i = 0; i < n; ++i) {
  2916. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2917. memcpy(&t, &fp16, sizeof(uint16_t));
  2918. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2919. }
  2920. }
  2921. #else
  2922. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2923. for (int i = 0; i < n; ++i) {
  2924. y[i] = ggml_silu_f32(x[i]);
  2925. }
  2926. }
  2927. #endif
  2928. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2929. #ifndef GGML_USE_ACCELERATE
  2930. ggml_float sum = 0.0;
  2931. for (int i = 0; i < n; ++i) {
  2932. sum += (ggml_float)x[i];
  2933. }
  2934. *s = sum;
  2935. #else
  2936. vDSP_sve(x, 1, s, n);
  2937. #endif
  2938. }
  2939. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2940. ggml_float sum = 0.0;
  2941. for (int i = 0; i < n; ++i) {
  2942. sum += (ggml_float)x[i];
  2943. }
  2944. *s = sum;
  2945. }
  2946. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2947. #ifndef GGML_USE_ACCELERATE
  2948. float max = -INFINITY;
  2949. for (int i = 0; i < n; ++i) {
  2950. max = MAX(max, x[i]);
  2951. }
  2952. *s = max;
  2953. #else
  2954. vDSP_maxv(x, 1, s, n);
  2955. #endif
  2956. }
  2957. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2958. ggml_vec_norm_f32(n, s, x);
  2959. *s = 1.f/(*s);
  2960. }
  2961. //
  2962. // logging
  2963. //
  2964. #if (GGML_DEBUG >= 1)
  2965. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2966. #else
  2967. #define GGML_PRINT_DEBUG(...)
  2968. #endif
  2969. #if (GGML_DEBUG >= 5)
  2970. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2971. #else
  2972. #define GGML_PRINT_DEBUG_5(...)
  2973. #endif
  2974. #if (GGML_DEBUG >= 10)
  2975. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2976. #else
  2977. #define GGML_PRINT_DEBUG_10(...)
  2978. #endif
  2979. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2980. //
  2981. // data types
  2982. //
  2983. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2984. [GGML_TYPE_F32] = 1,
  2985. [GGML_TYPE_F16] = 1,
  2986. [GGML_TYPE_Q4_0] = QK4_0,
  2987. [GGML_TYPE_Q4_1] = QK4_1,
  2988. [GGML_TYPE_Q4_2] = QK4_2,
  2989. [GGML_TYPE_Q5_0] = QK5_0,
  2990. [GGML_TYPE_Q5_1] = QK5_1,
  2991. [GGML_TYPE_Q8_0] = QK8_0,
  2992. [GGML_TYPE_Q8_1] = QK8_1,
  2993. [GGML_TYPE_I8] = 1,
  2994. [GGML_TYPE_I16] = 1,
  2995. [GGML_TYPE_I32] = 1,
  2996. };
  2997. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2998. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2999. [GGML_TYPE_F32] = sizeof(float),
  3000. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3001. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3002. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3003. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3004. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3005. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3006. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3007. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3008. [GGML_TYPE_I8] = sizeof(int8_t),
  3009. [GGML_TYPE_I16] = sizeof(int16_t),
  3010. [GGML_TYPE_I32] = sizeof(int32_t),
  3011. };
  3012. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3013. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3014. [GGML_TYPE_F32] = "f32",
  3015. [GGML_TYPE_F16] = "f16",
  3016. [GGML_TYPE_Q4_0] = "q4_0",
  3017. [GGML_TYPE_Q4_1] = "q4_1",
  3018. [GGML_TYPE_Q4_2] = "q4_2",
  3019. [GGML_TYPE_Q5_0] = "q5_0",
  3020. [GGML_TYPE_Q5_1] = "q5_1",
  3021. [GGML_TYPE_Q8_0] = "q8_0",
  3022. [GGML_TYPE_Q8_1] = "q8_1",
  3023. [GGML_TYPE_I8] = "i8",
  3024. [GGML_TYPE_I16] = "i16",
  3025. [GGML_TYPE_I32] = "i32",
  3026. };
  3027. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3028. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3029. [GGML_TYPE_F32] = false,
  3030. [GGML_TYPE_F16] = false,
  3031. [GGML_TYPE_Q4_0] = true,
  3032. [GGML_TYPE_Q4_1] = true,
  3033. [GGML_TYPE_Q4_2] = true,
  3034. [GGML_TYPE_Q5_0] = true,
  3035. [GGML_TYPE_Q5_1] = true,
  3036. [GGML_TYPE_Q8_0] = true,
  3037. [GGML_TYPE_Q8_1] = true,
  3038. [GGML_TYPE_I8] = false,
  3039. [GGML_TYPE_I16] = false,
  3040. [GGML_TYPE_I32] = false,
  3041. };
  3042. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3043. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3044. "NONE",
  3045. "DUP",
  3046. "ADD",
  3047. "SUB",
  3048. "MUL",
  3049. "DIV",
  3050. "SQR",
  3051. "SQRT",
  3052. "SUM",
  3053. "MEAN",
  3054. "REPEAT",
  3055. "ABS",
  3056. "SGN",
  3057. "NEG",
  3058. "STEP",
  3059. "RELU",
  3060. "GELU",
  3061. "SILU",
  3062. "NORM",
  3063. "RMS_NORM",
  3064. "MUL_MAT",
  3065. "SCALE",
  3066. "CPY",
  3067. "CONT",
  3068. "RESHAPE",
  3069. "VIEW",
  3070. "PERMUTE",
  3071. "TRANSPOSE",
  3072. "GET_ROWS",
  3073. "DIAG_MASK_INF",
  3074. "SOFT_MAX",
  3075. "ROPE",
  3076. "CONV_1D_1S",
  3077. "CONV_1D_2S",
  3078. "FLASH_ATTN",
  3079. "FLASH_FF",
  3080. "MAP_UNARY",
  3081. "MAP_BINARY",
  3082. };
  3083. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3084. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3085. "none",
  3086. "x",
  3087. "x+y",
  3088. "x-y",
  3089. "x*y",
  3090. "x/y",
  3091. "x^2",
  3092. "√x",
  3093. "Σx",
  3094. "Σx/n",
  3095. "repeat(x)",
  3096. "abs(x)",
  3097. "sgn(x)",
  3098. "-x",
  3099. "step(x)",
  3100. "relu(x)",
  3101. "gelu(x)",
  3102. "silu(x)",
  3103. "norm(x)",
  3104. "rms_norm(x)",
  3105. "X*Y",
  3106. "x*v",
  3107. "x-\\>y",
  3108. "cont(x)",
  3109. "reshape(x)",
  3110. "view(x)",
  3111. "permute(x)",
  3112. "transpose(x)",
  3113. "get_rows(x)",
  3114. "diag_mask_inf(x)",
  3115. "soft_max(x)",
  3116. "rope(x)",
  3117. "conv_1d_1s(x)",
  3118. "conv_1d_2s(x)",
  3119. "flash_attn(x)",
  3120. "flash_ff(x)",
  3121. "f(x)",
  3122. "f(x,y)",
  3123. };
  3124. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3125. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3126. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3127. //
  3128. // ggml context
  3129. //
  3130. struct ggml_context {
  3131. size_t mem_size;
  3132. void * mem_buffer;
  3133. bool mem_buffer_owned;
  3134. bool no_alloc;
  3135. int n_objects;
  3136. struct ggml_object * objects_begin;
  3137. struct ggml_object * objects_end;
  3138. struct ggml_scratch scratch;
  3139. struct ggml_scratch scratch_save;
  3140. };
  3141. struct ggml_context_container {
  3142. bool used;
  3143. struct ggml_context context;
  3144. };
  3145. //
  3146. // compute types
  3147. //
  3148. enum ggml_task_type {
  3149. GGML_TASK_INIT = 0,
  3150. GGML_TASK_COMPUTE,
  3151. GGML_TASK_FINALIZE,
  3152. };
  3153. struct ggml_compute_params {
  3154. enum ggml_task_type type;
  3155. int ith, nth;
  3156. // work buffer for all threads
  3157. size_t wsize;
  3158. void * wdata;
  3159. };
  3160. //
  3161. // ggml state
  3162. //
  3163. struct ggml_state {
  3164. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3165. };
  3166. // global state
  3167. static struct ggml_state g_state;
  3168. static atomic_int g_state_barrier = 0;
  3169. // barrier via spin lock
  3170. inline static void ggml_critical_section_start(void) {
  3171. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3172. while (processing > 0) {
  3173. // wait for other threads to finish
  3174. atomic_fetch_sub(&g_state_barrier, 1);
  3175. sched_yield(); // TODO: reconsider this
  3176. processing = atomic_fetch_add(&g_state_barrier, 1);
  3177. }
  3178. }
  3179. // TODO: make this somehow automatically executed
  3180. // some sort of "sentry" mechanism
  3181. inline static void ggml_critical_section_end(void) {
  3182. atomic_fetch_sub(&g_state_barrier, 1);
  3183. }
  3184. ////////////////////////////////////////////////////////////////////////////////
  3185. void ggml_print_object(const struct ggml_object * obj) {
  3186. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3187. obj->offs, obj->size, (const void *) obj->next);
  3188. }
  3189. void ggml_print_objects(const struct ggml_context * ctx) {
  3190. struct ggml_object * obj = ctx->objects_begin;
  3191. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3192. while (obj != NULL) {
  3193. ggml_print_object(obj);
  3194. obj = obj->next;
  3195. }
  3196. GGML_PRINT("%s: --- end ---\n", __func__);
  3197. }
  3198. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3199. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3200. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3201. }
  3202. int ggml_nrows(const struct ggml_tensor * tensor) {
  3203. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3204. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3205. }
  3206. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3207. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3208. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3209. }
  3210. int ggml_blck_size(enum ggml_type type) {
  3211. return GGML_BLCK_SIZE[type];
  3212. }
  3213. size_t ggml_type_size(enum ggml_type type) {
  3214. return GGML_TYPE_SIZE[type];
  3215. }
  3216. float ggml_type_sizef(enum ggml_type type) {
  3217. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3218. }
  3219. const char * ggml_type_name(enum ggml_type type) {
  3220. return GGML_TYPE_NAME[type];
  3221. }
  3222. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3223. return GGML_TYPE_SIZE[tensor->type];
  3224. }
  3225. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3226. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3227. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3228. }
  3229. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3231. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3232. }
  3233. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3234. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3235. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3236. }
  3237. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3238. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3239. return
  3240. (t0->ne[0] == t1->ne[0]) &&
  3241. (t0->ne[2] == t1->ne[2]) &&
  3242. (t0->ne[3] == t1->ne[3]);
  3243. }
  3244. bool ggml_is_quantized(enum ggml_type type) {
  3245. return GGML_IS_QUANTIZED[type];
  3246. }
  3247. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3248. return tensor->nb[0] > tensor->nb[1];
  3249. }
  3250. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3251. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3252. return
  3253. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3254. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3255. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3256. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3257. }
  3258. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3259. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3260. return
  3261. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3262. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3263. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3264. }
  3265. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3266. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3267. return
  3268. (t0->ne[0] == t1->ne[0] ) &&
  3269. (t0->ne[1] == t1->ne[1] ) &&
  3270. (t0->ne[2] == t1->ne[2] ) &&
  3271. (t0->ne[3] == t1->ne[3] );
  3272. }
  3273. // check if t1 can be represented as a repeatition of t0
  3274. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3275. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3276. return
  3277. (t1->ne[0]%t0->ne[0] == 0) &&
  3278. (t1->ne[1]%t0->ne[1] == 0) &&
  3279. (t1->ne[2]%t0->ne[2] == 0) &&
  3280. (t1->ne[3]%t0->ne[3] == 0);
  3281. }
  3282. static inline int ggml_up32(int n) {
  3283. return (n + 31) & ~31;
  3284. }
  3285. static inline int ggml_up64(int n) {
  3286. return (n + 63) & ~63;
  3287. }
  3288. static inline int ggml_up(int n, int m) {
  3289. // assert m is a power of 2
  3290. GGML_ASSERT((m & (m - 1)) == 0);
  3291. return (n + m - 1) & ~(m - 1);
  3292. }
  3293. // assert that pointer is aligned to GGML_MEM_ALIGN
  3294. #define ggml_assert_aligned(ptr) \
  3295. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3296. ////////////////////////////////////////////////////////////////////////////////
  3297. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3298. // make this function thread safe
  3299. ggml_critical_section_start();
  3300. static bool is_first_call = true;
  3301. if (is_first_call) {
  3302. // initialize time system (required on Windows)
  3303. ggml_time_init();
  3304. // initialize GELU, SILU and EXP F32 tables
  3305. {
  3306. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3307. ggml_fp16_t ii;
  3308. for (int i = 0; i < (1 << 16); ++i) {
  3309. uint16_t ui = i;
  3310. memcpy(&ii, &ui, sizeof(ii));
  3311. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3312. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3313. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3314. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3315. }
  3316. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3317. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3318. }
  3319. // initialize g_state
  3320. {
  3321. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3322. g_state = (struct ggml_state) {
  3323. /*.contexts =*/ { { 0 } },
  3324. };
  3325. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3326. g_state.contexts[i].used = false;
  3327. }
  3328. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3329. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3330. }
  3331. // initialize cuBLAS
  3332. #if defined(GGML_USE_CUBLAS)
  3333. ggml_init_cublas();
  3334. #elif defined(GGML_USE_CLBLAST)
  3335. ggml_cl_init();
  3336. #endif
  3337. is_first_call = false;
  3338. }
  3339. // find non-used context in g_state
  3340. struct ggml_context * ctx = NULL;
  3341. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3342. if (!g_state.contexts[i].used) {
  3343. g_state.contexts[i].used = true;
  3344. ctx = &g_state.contexts[i].context;
  3345. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3346. break;
  3347. }
  3348. }
  3349. if (ctx == NULL) {
  3350. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3351. ggml_critical_section_end();
  3352. return NULL;
  3353. }
  3354. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3355. *ctx = (struct ggml_context) {
  3356. /*.mem_size =*/ mem_size,
  3357. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3358. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3359. /*.no_alloc =*/ params.no_alloc,
  3360. /*.n_objects =*/ 0,
  3361. /*.objects_begin =*/ NULL,
  3362. /*.objects_end =*/ NULL,
  3363. /*.scratch =*/ { 0, 0, NULL, },
  3364. /*.scratch_save =*/ { 0, 0, NULL, },
  3365. };
  3366. GGML_ASSERT(ctx->mem_buffer != NULL);
  3367. ggml_assert_aligned(ctx->mem_buffer);
  3368. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3369. ggml_critical_section_end();
  3370. return ctx;
  3371. }
  3372. void ggml_free(struct ggml_context * ctx) {
  3373. // make this function thread safe
  3374. ggml_critical_section_start();
  3375. bool found = false;
  3376. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3377. if (&g_state.contexts[i].context == ctx) {
  3378. g_state.contexts[i].used = false;
  3379. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3380. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3381. if (ctx->mem_buffer_owned) {
  3382. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3383. }
  3384. found = true;
  3385. break;
  3386. }
  3387. }
  3388. if (!found) {
  3389. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3390. }
  3391. ggml_critical_section_end();
  3392. }
  3393. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3394. return ctx->objects_end->offs + ctx->objects_end->size;
  3395. }
  3396. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3397. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3398. ctx->scratch = scratch;
  3399. return result;
  3400. }
  3401. ////////////////////////////////////////////////////////////////////////////////
  3402. struct ggml_tensor * ggml_new_tensor_impl(
  3403. struct ggml_context * ctx,
  3404. enum ggml_type type,
  3405. int n_dims,
  3406. const int64_t* ne,
  3407. void* data) {
  3408. // always insert objects at the end of the context's memory pool
  3409. struct ggml_object * obj_cur = ctx->objects_end;
  3410. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3411. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3412. const size_t cur_end = cur_offs + cur_size;
  3413. size_t size_needed = 0;
  3414. if (data == NULL && !ctx->no_alloc) {
  3415. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3416. for (int i = 1; i < n_dims; i++) {
  3417. size_needed *= ne[i];
  3418. }
  3419. // align to GGML_MEM_ALIGN
  3420. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3421. }
  3422. char * const mem_buffer = ctx->mem_buffer;
  3423. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3424. if (ctx->scratch.data == NULL || data != NULL) {
  3425. size_needed += sizeof(struct ggml_tensor);
  3426. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3427. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3428. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3429. assert(false);
  3430. return NULL;
  3431. }
  3432. *obj_new = (struct ggml_object) {
  3433. .offs = cur_end + GGML_OBJECT_SIZE,
  3434. .size = size_needed,
  3435. .next = NULL,
  3436. };
  3437. } else {
  3438. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3439. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3440. assert(false);
  3441. return NULL;
  3442. }
  3443. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3444. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3445. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3446. assert(false);
  3447. return NULL;
  3448. }
  3449. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3450. *obj_new = (struct ggml_object) {
  3451. .offs = cur_end + GGML_OBJECT_SIZE,
  3452. .size = sizeof(struct ggml_tensor),
  3453. .next = NULL,
  3454. };
  3455. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3456. ctx->scratch.offs += size_needed;
  3457. }
  3458. if (obj_cur != NULL) {
  3459. obj_cur->next = obj_new;
  3460. } else {
  3461. // this is the first object in this context
  3462. ctx->objects_begin = obj_new;
  3463. }
  3464. ctx->objects_end = obj_new;
  3465. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3466. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3467. ggml_assert_aligned(result);
  3468. *result = (struct ggml_tensor) {
  3469. /*.type =*/ type,
  3470. /*.n_dims =*/ n_dims,
  3471. /*.ne =*/ { 1, 1, 1, 1 },
  3472. /*.nb =*/ { 0, 0, 0, 0 },
  3473. /*.op =*/ GGML_OP_NONE,
  3474. /*.is_param =*/ false,
  3475. /*.grad =*/ NULL,
  3476. /*.src0 =*/ NULL,
  3477. /*.src1 =*/ NULL,
  3478. /*.opt =*/ { NULL },
  3479. /*.n_tasks =*/ 0,
  3480. /*.perf_runs =*/ 0,
  3481. /*.perf_cycles =*/ 0,
  3482. /*.perf_time_us =*/ 0,
  3483. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3484. /*.pad =*/ { 0 },
  3485. };
  3486. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3487. //ggml_assert_aligned(result->data);
  3488. for (int i = 0; i < n_dims; i++) {
  3489. result->ne[i] = ne[i];
  3490. }
  3491. result->nb[0] = GGML_TYPE_SIZE[type];
  3492. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3493. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3494. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3495. }
  3496. ctx->n_objects++;
  3497. return result;
  3498. }
  3499. struct ggml_tensor * ggml_new_tensor(
  3500. struct ggml_context * ctx,
  3501. enum ggml_type type,
  3502. int n_dims,
  3503. const int64_t * ne) {
  3504. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3505. }
  3506. struct ggml_tensor * ggml_new_tensor_1d(
  3507. struct ggml_context * ctx,
  3508. enum ggml_type type,
  3509. int64_t ne0) {
  3510. return ggml_new_tensor(ctx, type, 1, &ne0);
  3511. }
  3512. struct ggml_tensor * ggml_new_tensor_2d(
  3513. struct ggml_context * ctx,
  3514. enum ggml_type type,
  3515. int64_t ne0,
  3516. int64_t ne1) {
  3517. const int64_t ne[2] = { ne0, ne1 };
  3518. return ggml_new_tensor(ctx, type, 2, ne);
  3519. }
  3520. struct ggml_tensor * ggml_new_tensor_3d(
  3521. struct ggml_context * ctx,
  3522. enum ggml_type type,
  3523. int64_t ne0,
  3524. int64_t ne1,
  3525. int64_t ne2) {
  3526. const int64_t ne[3] = { ne0, ne1, ne2 };
  3527. return ggml_new_tensor(ctx, type, 3, ne);
  3528. }
  3529. struct ggml_tensor * ggml_new_tensor_4d(
  3530. struct ggml_context * ctx,
  3531. enum ggml_type type,
  3532. int64_t ne0,
  3533. int64_t ne1,
  3534. int64_t ne2,
  3535. int64_t ne3) {
  3536. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3537. return ggml_new_tensor(ctx, type, 4, ne);
  3538. }
  3539. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3540. ctx->scratch_save = ctx->scratch;
  3541. ctx->scratch.data = NULL;
  3542. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3543. ctx->scratch = ctx->scratch_save;
  3544. ggml_set_i32(result, value);
  3545. return result;
  3546. }
  3547. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3548. ctx->scratch_save = ctx->scratch;
  3549. ctx->scratch.data = NULL;
  3550. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3551. ctx->scratch = ctx->scratch_save;
  3552. ggml_set_f32(result, value);
  3553. return result;
  3554. }
  3555. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3556. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3557. }
  3558. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3559. memset(tensor->data, 0, ggml_nbytes(tensor));
  3560. return tensor;
  3561. }
  3562. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3563. const int n = ggml_nrows(tensor);
  3564. const int nc = tensor->ne[0];
  3565. const size_t n1 = tensor->nb[1];
  3566. char * const data = tensor->data;
  3567. switch (tensor->type) {
  3568. case GGML_TYPE_I8:
  3569. {
  3570. assert(tensor->nb[0] == sizeof(int8_t));
  3571. for (int i = 0; i < n; i++) {
  3572. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3573. }
  3574. } break;
  3575. case GGML_TYPE_I16:
  3576. {
  3577. assert(tensor->nb[0] == sizeof(int16_t));
  3578. for (int i = 0; i < n; i++) {
  3579. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3580. }
  3581. } break;
  3582. case GGML_TYPE_I32:
  3583. {
  3584. assert(tensor->nb[0] == sizeof(int32_t));
  3585. for (int i = 0; i < n; i++) {
  3586. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3587. }
  3588. } break;
  3589. case GGML_TYPE_F16:
  3590. {
  3591. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3592. for (int i = 0; i < n; i++) {
  3593. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3594. }
  3595. } break;
  3596. case GGML_TYPE_F32:
  3597. {
  3598. assert(tensor->nb[0] == sizeof(float));
  3599. for (int i = 0; i < n; i++) {
  3600. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3601. }
  3602. } break;
  3603. default:
  3604. {
  3605. GGML_ASSERT(false);
  3606. } break;
  3607. }
  3608. return tensor;
  3609. }
  3610. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3611. const int n = ggml_nrows(tensor);
  3612. const int nc = tensor->ne[0];
  3613. const size_t n1 = tensor->nb[1];
  3614. char * const data = tensor->data;
  3615. switch (tensor->type) {
  3616. case GGML_TYPE_I8:
  3617. {
  3618. assert(tensor->nb[0] == sizeof(int8_t));
  3619. for (int i = 0; i < n; i++) {
  3620. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3621. }
  3622. } break;
  3623. case GGML_TYPE_I16:
  3624. {
  3625. assert(tensor->nb[0] == sizeof(int16_t));
  3626. for (int i = 0; i < n; i++) {
  3627. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3628. }
  3629. } break;
  3630. case GGML_TYPE_I32:
  3631. {
  3632. assert(tensor->nb[0] == sizeof(int32_t));
  3633. for (int i = 0; i < n; i++) {
  3634. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3635. }
  3636. } break;
  3637. case GGML_TYPE_F16:
  3638. {
  3639. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3640. for (int i = 0; i < n; i++) {
  3641. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3642. }
  3643. } break;
  3644. case GGML_TYPE_F32:
  3645. {
  3646. assert(tensor->nb[0] == sizeof(float));
  3647. for (int i = 0; i < n; i++) {
  3648. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3649. }
  3650. } break;
  3651. default:
  3652. {
  3653. GGML_ASSERT(false);
  3654. } break;
  3655. }
  3656. return tensor;
  3657. }
  3658. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3659. switch (tensor->type) {
  3660. case GGML_TYPE_I8:
  3661. {
  3662. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3663. return ((int8_t *)(tensor->data))[i];
  3664. } break;
  3665. case GGML_TYPE_I16:
  3666. {
  3667. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3668. return ((int16_t *)(tensor->data))[i];
  3669. } break;
  3670. case GGML_TYPE_I32:
  3671. {
  3672. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3673. return ((int32_t *)(tensor->data))[i];
  3674. } break;
  3675. case GGML_TYPE_F16:
  3676. {
  3677. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3678. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3679. } break;
  3680. case GGML_TYPE_F32:
  3681. {
  3682. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3683. return ((float *)(tensor->data))[i];
  3684. } break;
  3685. default:
  3686. {
  3687. GGML_ASSERT(false);
  3688. } break;
  3689. }
  3690. return 0.0f;
  3691. }
  3692. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3693. switch (tensor->type) {
  3694. case GGML_TYPE_I8:
  3695. {
  3696. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3697. ((int8_t *)(tensor->data))[i] = value;
  3698. } break;
  3699. case GGML_TYPE_I16:
  3700. {
  3701. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3702. ((int16_t *)(tensor->data))[i] = value;
  3703. } break;
  3704. case GGML_TYPE_I32:
  3705. {
  3706. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3707. ((int32_t *)(tensor->data))[i] = value;
  3708. } break;
  3709. case GGML_TYPE_F16:
  3710. {
  3711. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3712. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3713. } break;
  3714. case GGML_TYPE_F32:
  3715. {
  3716. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3717. ((float *)(tensor->data))[i] = value;
  3718. } break;
  3719. default:
  3720. {
  3721. GGML_ASSERT(false);
  3722. } break;
  3723. }
  3724. }
  3725. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3726. switch (tensor->type) {
  3727. case GGML_TYPE_I8:
  3728. {
  3729. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3730. return ((int8_t *)(tensor->data))[i];
  3731. } break;
  3732. case GGML_TYPE_I16:
  3733. {
  3734. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3735. return ((int16_t *)(tensor->data))[i];
  3736. } break;
  3737. case GGML_TYPE_I32:
  3738. {
  3739. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3740. return ((int32_t *)(tensor->data))[i];
  3741. } break;
  3742. case GGML_TYPE_F16:
  3743. {
  3744. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3745. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3746. } break;
  3747. case GGML_TYPE_F32:
  3748. {
  3749. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3750. return ((float *)(tensor->data))[i];
  3751. } break;
  3752. default:
  3753. {
  3754. GGML_ASSERT(false);
  3755. } break;
  3756. }
  3757. return 0.0f;
  3758. }
  3759. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3760. switch (tensor->type) {
  3761. case GGML_TYPE_I8:
  3762. {
  3763. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3764. ((int8_t *)(tensor->data))[i] = value;
  3765. } break;
  3766. case GGML_TYPE_I16:
  3767. {
  3768. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3769. ((int16_t *)(tensor->data))[i] = value;
  3770. } break;
  3771. case GGML_TYPE_I32:
  3772. {
  3773. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3774. ((int32_t *)(tensor->data))[i] = value;
  3775. } break;
  3776. case GGML_TYPE_F16:
  3777. {
  3778. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3779. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3780. } break;
  3781. case GGML_TYPE_F32:
  3782. {
  3783. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3784. ((float *)(tensor->data))[i] = value;
  3785. } break;
  3786. default:
  3787. {
  3788. GGML_ASSERT(false);
  3789. } break;
  3790. }
  3791. }
  3792. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3793. return tensor->data;
  3794. }
  3795. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3796. assert(tensor->type == GGML_TYPE_F32);
  3797. return (float *)(tensor->data);
  3798. }
  3799. struct ggml_tensor * ggml_view_tensor(
  3800. struct ggml_context * ctx,
  3801. const struct ggml_tensor * src) {
  3802. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3803. result->nb[0] = src->nb[0];
  3804. result->nb[1] = src->nb[1];
  3805. result->nb[2] = src->nb[2];
  3806. result->nb[3] = src->nb[3];
  3807. return result;
  3808. }
  3809. ////////////////////////////////////////////////////////////////////////////////
  3810. // ggml_dup
  3811. struct ggml_tensor * ggml_dup_impl(
  3812. struct ggml_context * ctx,
  3813. struct ggml_tensor * a,
  3814. bool inplace) {
  3815. bool is_node = false;
  3816. if (!inplace && (a->grad)) {
  3817. is_node = true;
  3818. }
  3819. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3820. result->op = GGML_OP_DUP;
  3821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3822. result->src0 = a;
  3823. result->src1 = NULL;
  3824. return result;
  3825. }
  3826. struct ggml_tensor * ggml_dup(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a) {
  3829. return ggml_dup_impl(ctx, a, false);
  3830. }
  3831. struct ggml_tensor * ggml_dup_inplace(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a) {
  3834. return ggml_dup_impl(ctx, a, true);
  3835. }
  3836. // ggml_add
  3837. struct ggml_tensor * ggml_add_impl(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a,
  3840. struct ggml_tensor * b,
  3841. bool inplace) {
  3842. GGML_ASSERT(ggml_are_same_shape(a, b));
  3843. bool is_node = false;
  3844. if (!inplace && (a->grad || b->grad)) {
  3845. is_node = true;
  3846. }
  3847. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3848. result->op = GGML_OP_ADD;
  3849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3850. result->src0 = a;
  3851. result->src1 = b;
  3852. return result;
  3853. }
  3854. struct ggml_tensor * ggml_add(
  3855. struct ggml_context * ctx,
  3856. struct ggml_tensor * a,
  3857. struct ggml_tensor * b) {
  3858. return ggml_add_impl(ctx, a, b, false);
  3859. }
  3860. struct ggml_tensor * ggml_add_inplace(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. struct ggml_tensor * b) {
  3864. return ggml_add_impl(ctx, a, b, true);
  3865. }
  3866. // ggml_sub
  3867. struct ggml_tensor * ggml_sub_impl(
  3868. struct ggml_context * ctx,
  3869. struct ggml_tensor * a,
  3870. struct ggml_tensor * b,
  3871. bool inplace) {
  3872. GGML_ASSERT(ggml_are_same_shape(a, b));
  3873. bool is_node = false;
  3874. if (!inplace && (a->grad || b->grad)) {
  3875. is_node = true;
  3876. }
  3877. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3878. result->op = GGML_OP_SUB;
  3879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3880. result->src0 = a;
  3881. result->src1 = b;
  3882. return result;
  3883. }
  3884. struct ggml_tensor * ggml_sub(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a,
  3887. struct ggml_tensor * b) {
  3888. return ggml_sub_impl(ctx, a, b, false);
  3889. }
  3890. struct ggml_tensor * ggml_sub_inplace(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a,
  3893. struct ggml_tensor * b) {
  3894. return ggml_sub_impl(ctx, a, b, true);
  3895. }
  3896. // ggml_mul
  3897. struct ggml_tensor * ggml_mul_impl(
  3898. struct ggml_context * ctx,
  3899. struct ggml_tensor * a,
  3900. struct ggml_tensor * b,
  3901. bool inplace) {
  3902. GGML_ASSERT(ggml_are_same_shape(a, b));
  3903. bool is_node = false;
  3904. if (!inplace && (a->grad || b->grad)) {
  3905. is_node = true;
  3906. }
  3907. if (inplace) {
  3908. GGML_ASSERT(is_node == false);
  3909. }
  3910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3911. result->op = GGML_OP_MUL;
  3912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3913. result->src0 = a;
  3914. result->src1 = b;
  3915. return result;
  3916. }
  3917. struct ggml_tensor * ggml_mul(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. struct ggml_tensor * b) {
  3921. return ggml_mul_impl(ctx, a, b, false);
  3922. }
  3923. struct ggml_tensor * ggml_mul_inplace(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. struct ggml_tensor * b) {
  3927. return ggml_mul_impl(ctx, a, b, true);
  3928. }
  3929. // ggml_div
  3930. struct ggml_tensor * ggml_div_impl(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a,
  3933. struct ggml_tensor * b,
  3934. bool inplace) {
  3935. GGML_ASSERT(ggml_are_same_shape(a, b));
  3936. bool is_node = false;
  3937. if (!inplace && (a->grad || b->grad)) {
  3938. is_node = true;
  3939. }
  3940. if (inplace) {
  3941. GGML_ASSERT(is_node == false);
  3942. }
  3943. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3944. result->op = GGML_OP_DIV;
  3945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3946. result->src0 = a;
  3947. result->src1 = b;
  3948. return result;
  3949. }
  3950. struct ggml_tensor * ggml_div(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. struct ggml_tensor * b) {
  3954. return ggml_div_impl(ctx, a, b, false);
  3955. }
  3956. struct ggml_tensor * ggml_div_inplace(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a,
  3959. struct ggml_tensor * b) {
  3960. return ggml_div_impl(ctx, a, b, true);
  3961. }
  3962. // ggml_sqr
  3963. struct ggml_tensor * ggml_sqr_impl(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a,
  3966. bool inplace) {
  3967. bool is_node = false;
  3968. if (!inplace && (a->grad)) {
  3969. is_node = true;
  3970. }
  3971. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3972. result->op = GGML_OP_SQR;
  3973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3974. result->src0 = a;
  3975. result->src1 = NULL;
  3976. return result;
  3977. }
  3978. struct ggml_tensor * ggml_sqr(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a) {
  3981. return ggml_sqr_impl(ctx, a, false);
  3982. }
  3983. struct ggml_tensor * ggml_sqr_inplace(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a) {
  3986. return ggml_sqr_impl(ctx, a, true);
  3987. }
  3988. // ggml_sqrt
  3989. struct ggml_tensor * ggml_sqrt_impl(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. bool inplace) {
  3993. bool is_node = false;
  3994. if (!inplace && (a->grad)) {
  3995. is_node = true;
  3996. }
  3997. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3998. result->op = GGML_OP_SQRT;
  3999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4000. result->src0 = a;
  4001. result->src1 = NULL;
  4002. return result;
  4003. }
  4004. struct ggml_tensor * ggml_sqrt(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a) {
  4007. return ggml_sqrt_impl(ctx, a, false);
  4008. }
  4009. struct ggml_tensor * ggml_sqrt_inplace(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a) {
  4012. return ggml_sqrt_impl(ctx, a, true);
  4013. }
  4014. // ggml_sum
  4015. struct ggml_tensor * ggml_sum(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a) {
  4018. bool is_node = false;
  4019. if (a->grad) {
  4020. is_node = true;
  4021. }
  4022. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4023. result->op = GGML_OP_SUM;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src0 = a;
  4026. result->src1 = NULL;
  4027. return result;
  4028. }
  4029. // ggml_mean
  4030. struct ggml_tensor * ggml_mean(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a) {
  4033. bool is_node = false;
  4034. if (a->grad) {
  4035. GGML_ASSERT(false); // TODO: implement
  4036. is_node = true;
  4037. }
  4038. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4039. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4040. result->op = GGML_OP_MEAN;
  4041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4042. result->src0 = a;
  4043. result->src1 = NULL;
  4044. return result;
  4045. }
  4046. // ggml_repeat
  4047. struct ggml_tensor * ggml_repeat(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. struct ggml_tensor * b) {
  4051. GGML_ASSERT(ggml_can_repeat(a, b));
  4052. bool is_node = false;
  4053. if (a->grad) {
  4054. is_node = true;
  4055. }
  4056. if (ggml_are_same_shape(a, b) && !is_node) {
  4057. return a;
  4058. }
  4059. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4060. result->op = GGML_OP_REPEAT;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src0 = a;
  4063. result->src1 = b;
  4064. return result;
  4065. }
  4066. // ggml_abs
  4067. struct ggml_tensor * ggml_abs_impl(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a,
  4070. bool inplace) {
  4071. bool is_node = false;
  4072. if (!inplace && (a->grad)) {
  4073. is_node = true;
  4074. }
  4075. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4076. result->op = GGML_OP_ABS;
  4077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4078. result->src0 = a;
  4079. result->src1 = NULL;
  4080. return result;
  4081. }
  4082. struct ggml_tensor * ggml_abs(
  4083. struct ggml_context * ctx,
  4084. struct ggml_tensor * a) {
  4085. return ggml_abs_impl(ctx, a, false);
  4086. }
  4087. struct ggml_tensor * ggml_abs_inplace(
  4088. struct ggml_context * ctx,
  4089. struct ggml_tensor * a) {
  4090. return ggml_abs_impl(ctx, a, true);
  4091. }
  4092. // ggml_sgn
  4093. struct ggml_tensor * ggml_sgn_impl(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. bool inplace) {
  4097. bool is_node = false;
  4098. if (!inplace && (a->grad)) {
  4099. is_node = true;
  4100. }
  4101. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4102. result->op = GGML_OP_SGN;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src0 = a;
  4105. result->src1 = NULL;
  4106. return result;
  4107. }
  4108. struct ggml_tensor * ggml_sgn(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a) {
  4111. return ggml_sgn_impl(ctx, a, false);
  4112. }
  4113. struct ggml_tensor * ggml_sgn_inplace(
  4114. struct ggml_context * ctx,
  4115. struct ggml_tensor * a) {
  4116. return ggml_sgn_impl(ctx, a, true);
  4117. }
  4118. // ggml_neg
  4119. struct ggml_tensor * ggml_neg_impl(
  4120. struct ggml_context * ctx,
  4121. struct ggml_tensor * a,
  4122. bool inplace) {
  4123. bool is_node = false;
  4124. if (!inplace && (a->grad)) {
  4125. is_node = true;
  4126. }
  4127. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4128. result->op = GGML_OP_NEG;
  4129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4130. result->src0 = a;
  4131. result->src1 = NULL;
  4132. return result;
  4133. }
  4134. struct ggml_tensor * ggml_neg(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a) {
  4137. return ggml_neg_impl(ctx, a, false);
  4138. }
  4139. struct ggml_tensor * ggml_neg_inplace(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a) {
  4142. return ggml_neg_impl(ctx, a, true);
  4143. }
  4144. // ggml_step
  4145. struct ggml_tensor * ggml_step_impl(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. bool inplace) {
  4149. bool is_node = false;
  4150. if (!inplace && (a->grad)) {
  4151. is_node = true;
  4152. }
  4153. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4154. result->op = GGML_OP_STEP;
  4155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4156. result->src0 = a;
  4157. result->src1 = NULL;
  4158. return result;
  4159. }
  4160. struct ggml_tensor * ggml_step(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a) {
  4163. return ggml_step_impl(ctx, a, false);
  4164. }
  4165. struct ggml_tensor * ggml_step_inplace(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a) {
  4168. return ggml_step_impl(ctx, a, true);
  4169. }
  4170. // ggml_relu
  4171. struct ggml_tensor * ggml_relu_impl(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. bool inplace) {
  4175. bool is_node = false;
  4176. if (!inplace && (a->grad)) {
  4177. is_node = true;
  4178. }
  4179. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4180. result->op = GGML_OP_RELU;
  4181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4182. result->src0 = a;
  4183. result->src1 = NULL;
  4184. return result;
  4185. }
  4186. struct ggml_tensor * ggml_relu(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a) {
  4189. return ggml_relu_impl(ctx, a, false);
  4190. }
  4191. struct ggml_tensor * ggml_relu_inplace(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a) {
  4194. return ggml_relu_impl(ctx, a, true);
  4195. }
  4196. // ggml_gelu
  4197. struct ggml_tensor * ggml_gelu_impl(
  4198. struct ggml_context * ctx,
  4199. struct ggml_tensor * a,
  4200. bool inplace) {
  4201. bool is_node = false;
  4202. if (!inplace && (a->grad)) {
  4203. is_node = true;
  4204. }
  4205. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4206. result->op = GGML_OP_GELU;
  4207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4208. result->src0 = a;
  4209. result->src1 = NULL;
  4210. return result;
  4211. }
  4212. struct ggml_tensor * ggml_gelu(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_gelu_impl(ctx, a, false);
  4216. }
  4217. struct ggml_tensor * ggml_gelu_inplace(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a) {
  4220. return ggml_gelu_impl(ctx, a, true);
  4221. }
  4222. // ggml_silu
  4223. struct ggml_tensor * ggml_silu_impl(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. bool inplace) {
  4227. bool is_node = false;
  4228. if (!inplace && (a->grad)) {
  4229. is_node = true;
  4230. }
  4231. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4232. result->op = GGML_OP_SILU;
  4233. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4234. result->src0 = a;
  4235. result->src1 = NULL;
  4236. return result;
  4237. }
  4238. struct ggml_tensor * ggml_silu(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. return ggml_silu_impl(ctx, a, false);
  4242. }
  4243. struct ggml_tensor * ggml_silu_inplace(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a) {
  4246. return ggml_silu_impl(ctx, a, true);
  4247. }
  4248. // ggml_norm
  4249. struct ggml_tensor * ggml_norm_impl(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a,
  4252. bool inplace) {
  4253. bool is_node = false;
  4254. if (!inplace && (a->grad)) {
  4255. GGML_ASSERT(false); // TODO: implement backward
  4256. is_node = true;
  4257. }
  4258. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4259. result->op = GGML_OP_NORM;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src0 = a;
  4262. result->src1 = NULL; // TODO: maybe store epsilon here?
  4263. return result;
  4264. }
  4265. struct ggml_tensor * ggml_norm(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a) {
  4268. return ggml_norm_impl(ctx, a, false);
  4269. }
  4270. struct ggml_tensor * ggml_norm_inplace(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a) {
  4273. return ggml_norm_impl(ctx, a, true);
  4274. }
  4275. struct ggml_tensor * ggml_rms_norm_impl(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a,
  4278. bool inplace) {
  4279. bool is_node = false;
  4280. if (!inplace && (a->grad)) {
  4281. GGML_ASSERT(false); // TODO: implement backward
  4282. is_node = true;
  4283. }
  4284. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4285. result->op = GGML_OP_RMS_NORM;
  4286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4287. result->src0 = a;
  4288. result->src1 = NULL; // TODO: maybe store epsilon here?
  4289. return result;
  4290. }
  4291. struct ggml_tensor * ggml_rms_norm(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a) {
  4294. return ggml_rms_norm_impl(ctx, a, false);
  4295. }
  4296. struct ggml_tensor * ggml_rms_norm_inplace(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a) {
  4299. return ggml_rms_norm_impl(ctx, a, true);
  4300. }
  4301. // ggml_mul_mat
  4302. struct ggml_tensor * ggml_mul_mat(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a,
  4305. struct ggml_tensor * b) {
  4306. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4307. GGML_ASSERT(!ggml_is_transposed(a));
  4308. bool is_node = false;
  4309. if (a->grad || b->grad) {
  4310. is_node = true;
  4311. }
  4312. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4313. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4314. result->op = GGML_OP_MUL_MAT;
  4315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4316. result->src0 = a;
  4317. result->src1 = b;
  4318. return result;
  4319. }
  4320. // ggml_scale
  4321. struct ggml_tensor * ggml_scale_impl(
  4322. struct ggml_context * ctx,
  4323. struct ggml_tensor * a,
  4324. struct ggml_tensor * b,
  4325. bool inplace) {
  4326. GGML_ASSERT(ggml_is_scalar(b));
  4327. GGML_ASSERT(ggml_is_padded_1d(a));
  4328. bool is_node = false;
  4329. if (!inplace && (a->grad || b->grad)) {
  4330. GGML_ASSERT(false); // TODO: implement backward
  4331. is_node = true;
  4332. }
  4333. // TODO: when implement backward, fix this:
  4334. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4335. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4336. result->op = GGML_OP_SCALE;
  4337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4338. result->src0 = a;
  4339. result->src1 = b;
  4340. return result;
  4341. }
  4342. struct ggml_tensor * ggml_scale(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. struct ggml_tensor * b) {
  4346. return ggml_scale_impl(ctx, a, b, false);
  4347. }
  4348. struct ggml_tensor * ggml_scale_inplace(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. struct ggml_tensor * b) {
  4352. return ggml_scale_impl(ctx, a, b, true);
  4353. }
  4354. // ggml_cpy
  4355. struct ggml_tensor * ggml_cpy_impl(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. struct ggml_tensor * b,
  4359. bool inplace) {
  4360. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4361. bool is_node = false;
  4362. if (!inplace && (a->grad || b->grad)) {
  4363. GGML_ASSERT(false); // TODO: implement backward
  4364. is_node = true;
  4365. }
  4366. // make a view of the destination
  4367. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4368. result->op = GGML_OP_CPY;
  4369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4370. result->src0 = a;
  4371. result->src1 = b;
  4372. return result;
  4373. }
  4374. struct ggml_tensor * ggml_cpy(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. struct ggml_tensor * b) {
  4378. return ggml_cpy_impl(ctx, a, b, false);
  4379. }
  4380. struct ggml_tensor * ggml_cpy_inplace(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a,
  4383. struct ggml_tensor * b) {
  4384. return ggml_cpy_impl(ctx, a, b, true);
  4385. }
  4386. // ggml_cont
  4387. struct ggml_tensor * ggml_cont_impl(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a,
  4390. bool inplace) {
  4391. bool is_node = false;
  4392. if (!inplace && a->grad) {
  4393. GGML_ASSERT(false); // TODO: implement backward
  4394. is_node = true;
  4395. }
  4396. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4397. result->op = GGML_OP_CONT;
  4398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4399. result->src0 = a;
  4400. result->src1 = NULL;
  4401. return result;
  4402. }
  4403. struct ggml_tensor * ggml_cont(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a) {
  4406. return ggml_cont_impl(ctx, a, false);
  4407. }
  4408. struct ggml_tensor * ggml_cont_inplace(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a) {
  4411. return ggml_cont_impl(ctx, a, true);
  4412. }
  4413. // ggml_reshape
  4414. struct ggml_tensor * ggml_reshape(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a,
  4417. struct ggml_tensor * b) {
  4418. GGML_ASSERT(ggml_is_contiguous(a));
  4419. GGML_ASSERT(ggml_is_contiguous(b));
  4420. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4421. bool is_node = false;
  4422. if (a->grad || b->grad) {
  4423. GGML_ASSERT(false); // TODO: implement backward
  4424. is_node = true;
  4425. }
  4426. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4427. result->op = GGML_OP_RESHAPE;
  4428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4429. result->src0 = a;
  4430. result->src1 = NULL;
  4431. return result;
  4432. }
  4433. struct ggml_tensor * ggml_reshape_2d(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. int64_t ne0,
  4437. int64_t ne1) {
  4438. GGML_ASSERT(ggml_is_contiguous(a));
  4439. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4440. bool is_node = false;
  4441. if (a->grad) {
  4442. GGML_ASSERT(false); // TODO: implement backward
  4443. is_node = true;
  4444. }
  4445. const int64_t ne[2] = { ne0, ne1 };
  4446. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4447. result->op = GGML_OP_RESHAPE;
  4448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4449. result->src0 = a;
  4450. result->src1 = NULL;
  4451. return result;
  4452. }
  4453. struct ggml_tensor * ggml_reshape_3d(
  4454. struct ggml_context * ctx,
  4455. struct ggml_tensor * a,
  4456. int64_t ne0,
  4457. int64_t ne1,
  4458. int64_t ne2) {
  4459. GGML_ASSERT(ggml_is_contiguous(a));
  4460. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4461. bool is_node = false;
  4462. if (a->grad) {
  4463. GGML_ASSERT(false); // TODO: implement backward
  4464. is_node = true;
  4465. }
  4466. const int64_t ne[3] = { ne0, ne1, ne2 };
  4467. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4468. result->op = GGML_OP_RESHAPE;
  4469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4470. result->src0 = a;
  4471. result->src1 = NULL;
  4472. return result;
  4473. }
  4474. // ggml_view_1d
  4475. struct ggml_tensor * ggml_view_1d(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. int64_t ne0,
  4479. size_t offset) {
  4480. if (a->grad) {
  4481. GGML_ASSERT(false); // gradient propagation is not supported
  4482. }
  4483. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4484. result->op = GGML_OP_VIEW;
  4485. result->grad = NULL;
  4486. result->src0 = a;
  4487. result->src1 = NULL; // TODO: maybe store the offset here?
  4488. return result;
  4489. }
  4490. // ggml_view_2d
  4491. struct ggml_tensor * ggml_view_2d(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. int64_t ne0,
  4495. int64_t ne1,
  4496. size_t nb1,
  4497. size_t offset) {
  4498. if (a->grad) {
  4499. GGML_ASSERT(false); // gradient propagation is not supported
  4500. }
  4501. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4502. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4503. result->nb[1] = nb1;
  4504. result->nb[2] = result->nb[1]*ne1;
  4505. result->nb[3] = result->nb[2];
  4506. result->op = GGML_OP_VIEW;
  4507. result->grad = NULL;
  4508. result->src0 = a;
  4509. result->src1 = NULL; // TODO: maybe store the offset here?
  4510. return result;
  4511. }
  4512. // ggml_view_3d
  4513. struct ggml_tensor * ggml_view_3d(
  4514. struct ggml_context * ctx,
  4515. struct ggml_tensor * a,
  4516. int64_t ne0,
  4517. int64_t ne1,
  4518. int64_t ne2,
  4519. size_t nb1,
  4520. size_t nb2,
  4521. size_t offset) {
  4522. if (a->grad) {
  4523. GGML_ASSERT(false); // gradient propagation is not supported
  4524. }
  4525. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4526. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4527. result->nb[1] = nb1;
  4528. result->nb[2] = nb2;
  4529. result->nb[3] = result->nb[2]*ne2;
  4530. result->op = GGML_OP_VIEW;
  4531. result->grad = NULL;
  4532. result->src0 = a;
  4533. result->src1 = NULL; // TODO: maybe store the offset here?
  4534. return result;
  4535. }
  4536. // ggml_permute
  4537. struct ggml_tensor * ggml_permute(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. int axis0,
  4541. int axis1,
  4542. int axis2,
  4543. int axis3) {
  4544. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4545. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4546. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4547. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4548. GGML_ASSERT(axis0 != axis1);
  4549. GGML_ASSERT(axis0 != axis2);
  4550. GGML_ASSERT(axis0 != axis3);
  4551. GGML_ASSERT(axis1 != axis2);
  4552. GGML_ASSERT(axis1 != axis3);
  4553. GGML_ASSERT(axis2 != axis3);
  4554. bool is_node = false;
  4555. if (a->grad) {
  4556. GGML_ASSERT(false); // TODO: implement backward
  4557. is_node = true;
  4558. }
  4559. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4560. int ne[GGML_MAX_DIMS];
  4561. int nb[GGML_MAX_DIMS];
  4562. ne[axis0] = a->ne[0];
  4563. ne[axis1] = a->ne[1];
  4564. ne[axis2] = a->ne[2];
  4565. ne[axis3] = a->ne[3];
  4566. nb[axis0] = a->nb[0];
  4567. nb[axis1] = a->nb[1];
  4568. nb[axis2] = a->nb[2];
  4569. nb[axis3] = a->nb[3];
  4570. result->ne[0] = ne[0];
  4571. result->ne[1] = ne[1];
  4572. result->ne[2] = ne[2];
  4573. result->ne[3] = ne[3];
  4574. result->nb[0] = nb[0];
  4575. result->nb[1] = nb[1];
  4576. result->nb[2] = nb[2];
  4577. result->nb[3] = nb[3];
  4578. result->op = GGML_OP_PERMUTE;
  4579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4580. result->src0 = a;
  4581. result->src1 = NULL; // TODO: maybe store the permutation here?
  4582. return result;
  4583. }
  4584. // ggml_transpose
  4585. struct ggml_tensor * ggml_transpose(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a) {
  4588. bool is_node = false;
  4589. if (a->grad) {
  4590. GGML_ASSERT(false); // TODO: implement backward
  4591. is_node = true;
  4592. }
  4593. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4594. result->ne[0] = a->ne[1];
  4595. result->ne[1] = a->ne[0];
  4596. result->nb[0] = a->nb[1];
  4597. result->nb[1] = a->nb[0];
  4598. result->op = GGML_OP_TRANSPOSE;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src0 = a;
  4601. result->src1 = NULL;
  4602. return result;
  4603. }
  4604. // ggml_get_rows
  4605. struct ggml_tensor * ggml_get_rows(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a,
  4608. struct ggml_tensor * b) {
  4609. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4610. bool is_node = false;
  4611. if (a->grad || b->grad) {
  4612. GGML_ASSERT(false); // TODO: implement backward
  4613. is_node = true;
  4614. }
  4615. // TODO: implement non F32 return
  4616. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4617. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4618. result->op = GGML_OP_GET_ROWS;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src0 = a;
  4621. result->src1 = b;
  4622. return result;
  4623. }
  4624. // ggml_diag_mask_inf
  4625. struct ggml_tensor * ggml_diag_mask_inf(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * a,
  4628. int n_past) {
  4629. bool is_node = false;
  4630. if (a->grad) {
  4631. GGML_ASSERT(false); // TODO: implement backward
  4632. is_node = true;
  4633. }
  4634. // TODO: when implement backward, fix this:
  4635. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4636. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4637. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4638. result->op = GGML_OP_DIAG_MASK_INF;
  4639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4640. result->src0 = a;
  4641. result->src1 = b;
  4642. return result;
  4643. }
  4644. // ggml_soft_max
  4645. struct ggml_tensor * ggml_soft_max(
  4646. struct ggml_context * ctx,
  4647. struct ggml_tensor * a) {
  4648. bool is_node = false;
  4649. if (a->grad) {
  4650. GGML_ASSERT(false); // TODO: implement backward
  4651. is_node = true;
  4652. }
  4653. // TODO: when implement backward, fix this:
  4654. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4655. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4656. result->op = GGML_OP_SOFT_MAX;
  4657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4658. result->src0 = a;
  4659. result->src1 = NULL;
  4660. return result;
  4661. }
  4662. // ggml_rope
  4663. struct ggml_tensor * ggml_rope(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a,
  4666. int n_past,
  4667. int n_dims,
  4668. int mode) {
  4669. GGML_ASSERT(n_past >= 0);
  4670. bool is_node = false;
  4671. if (a->grad) {
  4672. GGML_ASSERT(false); // TODO: implement backward
  4673. is_node = true;
  4674. }
  4675. // TODO: when implement backward, fix this:
  4676. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4677. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4678. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4679. ((int32_t *) b->data)[0] = n_past;
  4680. ((int32_t *) b->data)[1] = n_dims;
  4681. ((int32_t *) b->data)[2] = mode;
  4682. result->op = GGML_OP_ROPE;
  4683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4684. result->src0 = a;
  4685. result->src1 = b;
  4686. return result;
  4687. }
  4688. // ggml_alibi
  4689. struct ggml_tensor * ggml_alibi(
  4690. struct ggml_context * ctx,
  4691. struct ggml_tensor * a,
  4692. int n_past,
  4693. int n_head) {
  4694. GGML_ASSERT(n_past >= 0);
  4695. bool is_node = false;
  4696. if (a->grad) {
  4697. GGML_ASSERT(false); // TODO: implement backward
  4698. is_node = true;
  4699. }
  4700. // TODO: when implement backward, fix this:
  4701. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4702. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4703. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4704. ((int32_t *) b->data)[0] = n_past;
  4705. ((int32_t *) b->data)[1] = n_head;
  4706. result->op = GGML_OP_ALIBI;
  4707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4708. result->src0 = a;
  4709. result->src1 = b;
  4710. return result;
  4711. }
  4712. // ggml_conv_1d_1s
  4713. struct ggml_tensor * ggml_conv_1d_1s(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. struct ggml_tensor * b) {
  4717. GGML_ASSERT(ggml_is_matrix(b));
  4718. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4719. GGML_ASSERT(a->ne[3] == 1);
  4720. bool is_node = false;
  4721. if (a->grad || b->grad) {
  4722. GGML_ASSERT(false); // TODO: implement backward
  4723. is_node = true;
  4724. }
  4725. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4726. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4727. result->op = GGML_OP_CONV_1D_1S;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src0 = a;
  4730. result->src1 = b;
  4731. return result;
  4732. }
  4733. // ggml_conv_1d_2s
  4734. struct ggml_tensor * ggml_conv_1d_2s(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a,
  4737. struct ggml_tensor * b) {
  4738. GGML_ASSERT(ggml_is_matrix(b));
  4739. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4740. GGML_ASSERT(a->ne[3] == 1);
  4741. bool is_node = false;
  4742. if (a->grad || b->grad) {
  4743. GGML_ASSERT(false); // TODO: implement backward
  4744. is_node = true;
  4745. }
  4746. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4747. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4748. result->op = GGML_OP_CONV_1D_2S;
  4749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4750. result->src0 = a;
  4751. result->src1 = b;
  4752. return result;
  4753. }
  4754. // ggml_flash_attn
  4755. struct ggml_tensor * ggml_flash_attn(
  4756. struct ggml_context * ctx,
  4757. struct ggml_tensor * q,
  4758. struct ggml_tensor * k,
  4759. struct ggml_tensor * v,
  4760. bool masked) {
  4761. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4762. // TODO: check if vT can be multiplied by (k*qT)
  4763. bool is_node = false;
  4764. if (q->grad || k->grad || v->grad) {
  4765. GGML_ASSERT(false); // TODO: implement backward
  4766. is_node = true;
  4767. }
  4768. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4769. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4770. result->op = GGML_OP_FLASH_ATTN;
  4771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4772. result->src0 = q;
  4773. result->src1 = k;
  4774. result->opt[0] = v;
  4775. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4776. return result;
  4777. }
  4778. // ggml_flash_ff
  4779. struct ggml_tensor * ggml_flash_ff(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a,
  4782. struct ggml_tensor * b0,
  4783. struct ggml_tensor * b1,
  4784. struct ggml_tensor * c0,
  4785. struct ggml_tensor * c1) {
  4786. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4787. // TODO: more checks
  4788. bool is_node = false;
  4789. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4790. GGML_ASSERT(false); // TODO: implement backward
  4791. is_node = true;
  4792. }
  4793. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4794. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4795. result->op = GGML_OP_FLASH_FF;
  4796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4797. result->src0 = a;
  4798. result->src1 = b0;
  4799. result->opt[0] = b1;
  4800. result->opt[1] = c0;
  4801. result->opt[2] = c1;
  4802. return result;
  4803. }
  4804. // ggml_map_unary
  4805. struct ggml_tensor * ggml_map_unary_impl_f32(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a,
  4808. const ggml_unary_op_f32_t fun,
  4809. bool inplace) {
  4810. bool is_node = false;
  4811. if (!inplace && a->grad) {
  4812. is_node = true;
  4813. }
  4814. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4815. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4816. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4817. result->op = GGML_OP_MAP_UNARY;
  4818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4819. result->src0 = a;
  4820. result->opt[0] = addr_tensor;
  4821. return result;
  4822. }
  4823. struct ggml_tensor * ggml_map_unary_f32(
  4824. struct ggml_context * ctx,
  4825. struct ggml_tensor * a,
  4826. const ggml_unary_op_f32_t fun) {
  4827. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4828. }
  4829. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a,
  4832. const ggml_unary_op_f32_t fun) {
  4833. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4834. }
  4835. // ggml_map_binary
  4836. struct ggml_tensor * ggml_map_binary_impl_f32(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. struct ggml_tensor * b,
  4840. const ggml_binary_op_f32_t fun,
  4841. bool inplace) {
  4842. GGML_ASSERT(ggml_are_same_shape(a, b));
  4843. bool is_node = false;
  4844. if (!inplace && (a->grad || b->grad)) {
  4845. is_node = true;
  4846. }
  4847. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4848. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4849. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4850. result->op = GGML_OP_MAP_BINARY;
  4851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4852. result->src0 = a;
  4853. result->src1 = b;
  4854. result->opt[0] = addr_tensor;
  4855. return result;
  4856. }
  4857. struct ggml_tensor * ggml_map_binary_f32(
  4858. struct ggml_context * ctx,
  4859. struct ggml_tensor * a,
  4860. struct ggml_tensor * b,
  4861. const ggml_binary_op_f32_t fun) {
  4862. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4863. }
  4864. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a,
  4867. struct ggml_tensor * b,
  4868. const ggml_binary_op_f32_t fun) {
  4869. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4870. }
  4871. ////////////////////////////////////////////////////////////////////////////////
  4872. void ggml_set_param(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * tensor) {
  4875. tensor->is_param = true;
  4876. GGML_ASSERT(tensor->grad == NULL);
  4877. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4878. }
  4879. // ggml_compute_forward_dup
  4880. static void ggml_compute_forward_dup_f16(
  4881. const struct ggml_compute_params * params,
  4882. const struct ggml_tensor * src0,
  4883. struct ggml_tensor * dst) {
  4884. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4886. return;
  4887. }
  4888. const int64_t ne00 = src0->ne[0];
  4889. const int64_t ne01 = src0->ne[1];
  4890. const int64_t ne02 = src0->ne[2];
  4891. const int64_t ne03 = src0->ne[3];
  4892. const int64_t ne0 = dst->ne[0];
  4893. const int64_t ne1 = dst->ne[1];
  4894. const int64_t ne2 = dst->ne[2];
  4895. const int64_t ne3 = dst->ne[3];
  4896. const size_t nb00 = src0->nb[0];
  4897. const size_t nb01 = src0->nb[1];
  4898. const size_t nb02 = src0->nb[2];
  4899. const size_t nb03 = src0->nb[3];
  4900. const size_t nb0 = dst->nb[0];
  4901. const size_t nb1 = dst->nb[1];
  4902. const size_t nb2 = dst->nb[2];
  4903. const size_t nb3 = dst->nb[3];
  4904. const int ith = params->ith; // thread index
  4905. const int nth = params->nth; // number of threads
  4906. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4907. // parallelize by elements
  4908. const int ne = ggml_nelements(dst);
  4909. const int dr = (ne + nth - 1) / nth;
  4910. const int ie0 = dr * ith;
  4911. const int ie1 = MIN(ie0 + dr, ne);
  4912. memcpy(
  4913. ((char *) dst->data + ie0*nb0),
  4914. ((char *) src0->data + ie0*nb00),
  4915. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4916. return;
  4917. }
  4918. // parallelize by rows
  4919. const int nr = ne01;
  4920. // number of rows per thread
  4921. const int dr = (nr + nth - 1) / nth;
  4922. // row range for this thread
  4923. const int ir0 = dr * ith;
  4924. const int ir1 = MIN(ir0 + dr, nr);
  4925. if (src0->type == dst->type &&
  4926. ne00 == ne0 &&
  4927. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4928. // copy by rows
  4929. const size_t rs = ne00*nb00;
  4930. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4931. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4932. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4933. memcpy(
  4934. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4935. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4936. rs);
  4937. }
  4938. }
  4939. }
  4940. return;
  4941. }
  4942. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4943. if (ggml_is_contiguous(dst)) {
  4944. if (nb00 == sizeof(ggml_fp16_t)) {
  4945. if (dst->type == GGML_TYPE_F16) {
  4946. size_t id = 0;
  4947. const size_t rs = ne00 * nb00;
  4948. char * dst_ptr = (char *) dst->data;
  4949. for (int i03 = 0; i03 < ne03; i03++) {
  4950. for (int i02 = 0; i02 < ne02; i02++) {
  4951. id += rs * ir0;
  4952. for (int i01 = ir0; i01 < ir1; i01++) {
  4953. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4954. memcpy(dst_ptr + id, src0_ptr, rs);
  4955. id += rs;
  4956. }
  4957. id += rs * (ne01 - ir1);
  4958. }
  4959. }
  4960. } else if (dst->type == GGML_TYPE_F32) {
  4961. size_t id = 0;
  4962. float * dst_ptr = (float *) dst->data;
  4963. for (int i03 = 0; i03 < ne03; i03++) {
  4964. for (int i02 = 0; i02 < ne02; i02++) {
  4965. id += ne00 * ir0;
  4966. for (int i01 = ir0; i01 < ir1; i01++) {
  4967. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4968. for (int i00 = 0; i00 < ne00; i00++) {
  4969. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4970. id++;
  4971. }
  4972. }
  4973. id += ne00 * (ne01 - ir1);
  4974. }
  4975. }
  4976. } else if (ggml_is_quantized(dst->type)) {
  4977. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4978. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4979. size_t id = 0;
  4980. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4981. char * dst_ptr = (char *) dst->data;
  4982. for (int i03 = 0; i03 < ne03; i03++) {
  4983. for (int i02 = 0; i02 < ne02; i02++) {
  4984. id += rs * ir0;
  4985. for (int i01 = ir0; i01 < ir1; i01++) {
  4986. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4987. for (int i00 = 0; i00 < ne00; i00++) {
  4988. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4989. }
  4990. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4991. id += rs;
  4992. }
  4993. id += rs * (ne01 - ir1);
  4994. }
  4995. }
  4996. } else {
  4997. GGML_ASSERT(false); // TODO: implement
  4998. }
  4999. } else {
  5000. //printf("%s: this is not optimal - fix me\n", __func__);
  5001. if (dst->type == GGML_TYPE_F32) {
  5002. size_t id = 0;
  5003. float * dst_ptr = (float *) dst->data;
  5004. for (int i03 = 0; i03 < ne03; i03++) {
  5005. for (int i02 = 0; i02 < ne02; i02++) {
  5006. id += ne00 * ir0;
  5007. for (int i01 = ir0; i01 < ir1; i01++) {
  5008. for (int i00 = 0; i00 < ne00; i00++) {
  5009. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5010. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5011. id++;
  5012. }
  5013. }
  5014. id += ne00 * (ne01 - ir1);
  5015. }
  5016. }
  5017. } else if (dst->type == GGML_TYPE_F16) {
  5018. size_t id = 0;
  5019. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5020. for (int i03 = 0; i03 < ne03; i03++) {
  5021. for (int i02 = 0; i02 < ne02; i02++) {
  5022. id += ne00 * ir0;
  5023. for (int i01 = ir0; i01 < ir1; i01++) {
  5024. for (int i00 = 0; i00 < ne00; i00++) {
  5025. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5026. dst_ptr[id] = *src0_ptr;
  5027. id++;
  5028. }
  5029. }
  5030. id += ne00 * (ne01 - ir1);
  5031. }
  5032. }
  5033. } else {
  5034. GGML_ASSERT(false); // TODO: implement
  5035. }
  5036. }
  5037. return;
  5038. }
  5039. // dst counters
  5040. int64_t i10 = 0;
  5041. int64_t i11 = 0;
  5042. int64_t i12 = 0;
  5043. int64_t i13 = 0;
  5044. if (dst->type == GGML_TYPE_F16) {
  5045. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5046. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5047. i10 += ne00 * ir0;
  5048. while (i10 >= ne0) {
  5049. i10 -= ne0;
  5050. if (++i11 == ne1) {
  5051. i11 = 0;
  5052. if (++i12 == ne2) {
  5053. i12 = 0;
  5054. if (++i13 == ne3) {
  5055. i13 = 0;
  5056. }
  5057. }
  5058. }
  5059. }
  5060. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5061. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5062. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5063. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5064. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5065. if (++i10 == ne00) {
  5066. i10 = 0;
  5067. if (++i11 == ne01) {
  5068. i11 = 0;
  5069. if (++i12 == ne02) {
  5070. i12 = 0;
  5071. if (++i13 == ne03) {
  5072. i13 = 0;
  5073. }
  5074. }
  5075. }
  5076. }
  5077. }
  5078. }
  5079. i10 += ne00 * (ne01 - ir1);
  5080. while (i10 >= ne0) {
  5081. i10 -= ne0;
  5082. if (++i11 == ne1) {
  5083. i11 = 0;
  5084. if (++i12 == ne2) {
  5085. i12 = 0;
  5086. if (++i13 == ne3) {
  5087. i13 = 0;
  5088. }
  5089. }
  5090. }
  5091. }
  5092. }
  5093. }
  5094. } else if (dst->type == GGML_TYPE_F32) {
  5095. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5096. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5097. i10 += ne00 * ir0;
  5098. while (i10 >= ne0) {
  5099. i10 -= ne0;
  5100. if (++i11 == ne1) {
  5101. i11 = 0;
  5102. if (++i12 == ne2) {
  5103. i12 = 0;
  5104. if (++i13 == ne3) {
  5105. i13 = 0;
  5106. }
  5107. }
  5108. }
  5109. }
  5110. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5111. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5112. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5113. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5114. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5115. if (++i10 == ne0) {
  5116. i10 = 0;
  5117. if (++i11 == ne1) {
  5118. i11 = 0;
  5119. if (++i12 == ne2) {
  5120. i12 = 0;
  5121. if (++i13 == ne3) {
  5122. i13 = 0;
  5123. }
  5124. }
  5125. }
  5126. }
  5127. }
  5128. }
  5129. i10 += ne00 * (ne01 - ir1);
  5130. while (i10 >= ne0) {
  5131. i10 -= ne0;
  5132. if (++i11 == ne1) {
  5133. i11 = 0;
  5134. if (++i12 == ne2) {
  5135. i12 = 0;
  5136. if (++i13 == ne3) {
  5137. i13 = 0;
  5138. }
  5139. }
  5140. }
  5141. }
  5142. }
  5143. }
  5144. } else {
  5145. GGML_ASSERT(false); // TODO: implement
  5146. }
  5147. }
  5148. static void ggml_compute_forward_dup_f32(
  5149. const struct ggml_compute_params * params,
  5150. const struct ggml_tensor * src0,
  5151. struct ggml_tensor * dst) {
  5152. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5153. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5154. return;
  5155. }
  5156. const int64_t ne00 = src0->ne[0];
  5157. const int64_t ne01 = src0->ne[1];
  5158. const int64_t ne02 = src0->ne[2];
  5159. const int64_t ne03 = src0->ne[3];
  5160. const int64_t ne0 = dst->ne[0];
  5161. const int64_t ne1 = dst->ne[1];
  5162. const int64_t ne2 = dst->ne[2];
  5163. const int64_t ne3 = dst->ne[3];
  5164. const size_t nb00 = src0->nb[0];
  5165. const size_t nb01 = src0->nb[1];
  5166. const size_t nb02 = src0->nb[2];
  5167. const size_t nb03 = src0->nb[3];
  5168. const size_t nb0 = dst->nb[0];
  5169. const size_t nb1 = dst->nb[1];
  5170. const size_t nb2 = dst->nb[2];
  5171. const size_t nb3 = dst->nb[3];
  5172. const int ith = params->ith; // thread index
  5173. const int nth = params->nth; // number of threads
  5174. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5175. // parallelize by elements
  5176. const int ne = ggml_nelements(dst);
  5177. const int dr = (ne + nth - 1) / nth;
  5178. const int ie0 = dr * ith;
  5179. const int ie1 = MIN(ie0 + dr, ne);
  5180. memcpy(
  5181. ((char *) dst->data + ie0*nb0),
  5182. ((char *) src0->data + ie0*nb00),
  5183. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5184. return;
  5185. }
  5186. // parallelize by rows
  5187. const int nr = ne01;
  5188. // number of rows per thread
  5189. const int dr = (nr + nth - 1) / nth;
  5190. // row range for this thread
  5191. const int ir0 = dr * ith;
  5192. const int ir1 = MIN(ir0 + dr, nr);
  5193. if (src0->type == dst->type &&
  5194. ne00 == ne0 &&
  5195. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5196. // copy by rows
  5197. const size_t rs = ne00*nb00;
  5198. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5199. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5200. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5201. memcpy(
  5202. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5203. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5204. rs);
  5205. }
  5206. }
  5207. }
  5208. return;
  5209. }
  5210. if (ggml_is_contiguous(dst)) {
  5211. // TODO: simplify
  5212. if (nb00 == sizeof(float)) {
  5213. if (dst->type == GGML_TYPE_F32) {
  5214. size_t id = 0;
  5215. const size_t rs = ne00 * nb00;
  5216. char * dst_ptr = (char *) dst->data;
  5217. for (int i03 = 0; i03 < ne03; i03++) {
  5218. for (int i02 = 0; i02 < ne02; i02++) {
  5219. id += rs * ir0;
  5220. for (int i01 = ir0; i01 < ir1; i01++) {
  5221. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5222. memcpy(dst_ptr + id, src0_ptr, rs);
  5223. id += rs;
  5224. }
  5225. id += rs * (ne01 - ir1);
  5226. }
  5227. }
  5228. } else if (dst->type == GGML_TYPE_F16) {
  5229. size_t id = 0;
  5230. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5231. for (int i03 = 0; i03 < ne03; i03++) {
  5232. for (int i02 = 0; i02 < ne02; i02++) {
  5233. id += ne00 * ir0;
  5234. for (int i01 = ir0; i01 < ir1; i01++) {
  5235. for (int i00 = 0; i00 < ne00; i00++) {
  5236. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5237. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5238. id++;
  5239. }
  5240. }
  5241. id += ne00 * (ne01 - ir1);
  5242. }
  5243. }
  5244. } else if (ggml_is_quantized(dst->type)) {
  5245. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5246. size_t id = 0;
  5247. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5248. char * dst_ptr = (char *) dst->data;
  5249. for (int i03 = 0; i03 < ne03; i03++) {
  5250. for (int i02 = 0; i02 < ne02; i02++) {
  5251. id += rs * ir0;
  5252. for (int i01 = ir0; i01 < ir1; i01++) {
  5253. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5254. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5255. id += rs;
  5256. }
  5257. id += rs * (ne01 - ir1);
  5258. }
  5259. }
  5260. } else {
  5261. GGML_ASSERT(false); // TODO: implement
  5262. }
  5263. } else {
  5264. //printf("%s: this is not optimal - fix me\n", __func__);
  5265. if (dst->type == GGML_TYPE_F32) {
  5266. size_t id = 0;
  5267. float * dst_ptr = (float *) dst->data;
  5268. for (int i03 = 0; i03 < ne03; i03++) {
  5269. for (int i02 = 0; i02 < ne02; i02++) {
  5270. id += ne00 * ir0;
  5271. for (int i01 = ir0; i01 < ir1; i01++) {
  5272. for (int i00 = 0; i00 < ne00; i00++) {
  5273. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5274. dst_ptr[id] = *src0_ptr;
  5275. id++;
  5276. }
  5277. }
  5278. id += ne00 * (ne01 - ir1);
  5279. }
  5280. }
  5281. } else if (dst->type == GGML_TYPE_F16) {
  5282. size_t id = 0;
  5283. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5284. for (int i03 = 0; i03 < ne03; i03++) {
  5285. for (int i02 = 0; i02 < ne02; i02++) {
  5286. id += ne00 * ir0;
  5287. for (int i01 = ir0; i01 < ir1; i01++) {
  5288. for (int i00 = 0; i00 < ne00; i00++) {
  5289. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5290. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5291. id++;
  5292. }
  5293. }
  5294. id += ne00 * (ne01 - ir1);
  5295. }
  5296. }
  5297. } else {
  5298. GGML_ASSERT(false); // TODO: implement
  5299. }
  5300. }
  5301. return;
  5302. }
  5303. // dst counters
  5304. int64_t i10 = 0;
  5305. int64_t i11 = 0;
  5306. int64_t i12 = 0;
  5307. int64_t i13 = 0;
  5308. if (dst->type == GGML_TYPE_F32) {
  5309. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5310. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5311. i10 += ne00 * ir0;
  5312. while (i10 >= ne0) {
  5313. i10 -= ne0;
  5314. if (++i11 == ne1) {
  5315. i11 = 0;
  5316. if (++i12 == ne2) {
  5317. i12 = 0;
  5318. if (++i13 == ne3) {
  5319. i13 = 0;
  5320. }
  5321. }
  5322. }
  5323. }
  5324. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5325. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5326. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5327. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5328. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5329. if (++i10 == ne0) {
  5330. i10 = 0;
  5331. if (++i11 == ne1) {
  5332. i11 = 0;
  5333. if (++i12 == ne2) {
  5334. i12 = 0;
  5335. if (++i13 == ne3) {
  5336. i13 = 0;
  5337. }
  5338. }
  5339. }
  5340. }
  5341. }
  5342. }
  5343. i10 += ne00 * (ne01 - ir1);
  5344. while (i10 >= ne0) {
  5345. i10 -= ne0;
  5346. if (++i11 == ne1) {
  5347. i11 = 0;
  5348. if (++i12 == ne2) {
  5349. i12 = 0;
  5350. if (++i13 == ne3) {
  5351. i13 = 0;
  5352. }
  5353. }
  5354. }
  5355. }
  5356. }
  5357. }
  5358. } else if (dst->type == GGML_TYPE_F16) {
  5359. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5360. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5361. i10 += ne00 * ir0;
  5362. while (i10 >= ne0) {
  5363. i10 -= ne0;
  5364. if (++i11 == ne1) {
  5365. i11 = 0;
  5366. if (++i12 == ne2) {
  5367. i12 = 0;
  5368. if (++i13 == ne3) {
  5369. i13 = 0;
  5370. }
  5371. }
  5372. }
  5373. }
  5374. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5375. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5376. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5377. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5378. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5379. if (++i10 == ne0) {
  5380. i10 = 0;
  5381. if (++i11 == ne1) {
  5382. i11 = 0;
  5383. if (++i12 == ne2) {
  5384. i12 = 0;
  5385. if (++i13 == ne3) {
  5386. i13 = 0;
  5387. }
  5388. }
  5389. }
  5390. }
  5391. }
  5392. }
  5393. i10 += ne00 * (ne01 - ir1);
  5394. while (i10 >= ne0) {
  5395. i10 -= ne0;
  5396. if (++i11 == ne1) {
  5397. i11 = 0;
  5398. if (++i12 == ne2) {
  5399. i12 = 0;
  5400. if (++i13 == ne3) {
  5401. i13 = 0;
  5402. }
  5403. }
  5404. }
  5405. }
  5406. }
  5407. }
  5408. } else {
  5409. GGML_ASSERT(false); // TODO: implement
  5410. }
  5411. }
  5412. static void ggml_compute_forward_dup(
  5413. const struct ggml_compute_params * params,
  5414. const struct ggml_tensor * src0,
  5415. struct ggml_tensor * dst) {
  5416. switch (src0->type) {
  5417. case GGML_TYPE_F16:
  5418. {
  5419. ggml_compute_forward_dup_f16(params, src0, dst);
  5420. } break;
  5421. case GGML_TYPE_F32:
  5422. {
  5423. ggml_compute_forward_dup_f32(params, src0, dst);
  5424. } break;
  5425. default:
  5426. {
  5427. GGML_ASSERT(false);
  5428. } break;
  5429. }
  5430. }
  5431. // ggml_compute_forward_add
  5432. static void ggml_compute_forward_add_f32(
  5433. const struct ggml_compute_params * params,
  5434. const struct ggml_tensor * src0,
  5435. const struct ggml_tensor * src1,
  5436. struct ggml_tensor * dst) {
  5437. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5439. return;
  5440. }
  5441. const int ith = params->ith;
  5442. const int nth = params->nth;
  5443. const int n = ggml_nrows(src0);
  5444. const int nc = src0->ne[0];
  5445. const size_t nb00 = src0->nb[0];
  5446. const size_t nb01 = src0->nb[1];
  5447. const size_t nb10 = src1->nb[0];
  5448. const size_t nb11 = src1->nb[1];
  5449. const size_t nb0 = dst->nb[0];
  5450. const size_t nb1 = dst->nb[1];
  5451. GGML_ASSERT( nb0 == sizeof(float));
  5452. GGML_ASSERT(nb00 == sizeof(float));
  5453. if (nb10 == sizeof(float)) {
  5454. for (int j = ith; j < n; j += nth) {
  5455. #ifdef GGML_USE_ACCELERATE
  5456. vDSP_vadd(
  5457. (float *) ((char *) src0->data + j*nb01), 1,
  5458. (float *) ((char *) src1->data + j*nb11), 1,
  5459. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5460. #else
  5461. ggml_vec_add_f32(nc,
  5462. (float *) ((char *) dst->data + j*nb1),
  5463. (float *) ((char *) src0->data + j*nb01),
  5464. (float *) ((char *) src1->data + j*nb11));
  5465. #endif
  5466. }
  5467. } else {
  5468. // src1 is not contiguous
  5469. for (int j = ith; j < n; j += nth) {
  5470. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5471. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5472. for (int i = 0; i < nc; i++) {
  5473. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5474. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5475. }
  5476. }
  5477. }
  5478. }
  5479. static void ggml_compute_forward_add_f16_f32(
  5480. const struct ggml_compute_params * params,
  5481. const struct ggml_tensor * src0,
  5482. const struct ggml_tensor * src1,
  5483. struct ggml_tensor * dst) {
  5484. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5485. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5486. return;
  5487. }
  5488. const int ith = params->ith;
  5489. const int nth = params->nth;
  5490. const int n = ggml_nrows(src0);
  5491. const int nc = src0->ne[0];
  5492. const size_t nb00 = src0->nb[0];
  5493. const size_t nb01 = src0->nb[1];
  5494. const size_t nb10 = src1->nb[0];
  5495. const size_t nb11 = src1->nb[1];
  5496. const size_t nb0 = dst->nb[0];
  5497. const size_t nb1 = dst->nb[1];
  5498. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5499. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5500. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5501. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5502. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5503. if (nb10 == sizeof(float)) {
  5504. for (int j = ith; j < n; j += nth) {
  5505. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5506. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5507. for (int i = 0; i < nc; i++) {
  5508. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5509. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5510. }
  5511. }
  5512. }
  5513. else {
  5514. // src1 is not contiguous
  5515. GGML_ASSERT(false);
  5516. }
  5517. }
  5518. static void ggml_compute_forward_add_f16_f16(
  5519. const struct ggml_compute_params * params,
  5520. const struct ggml_tensor * src0,
  5521. const struct ggml_tensor * src1,
  5522. struct ggml_tensor * dst) {
  5523. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5524. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5525. return;
  5526. }
  5527. const int ith = params->ith;
  5528. const int nth = params->nth;
  5529. const int n = ggml_nrows(src0);
  5530. const int nc = src0->ne[0];
  5531. const size_t nb00 = src0->nb[0];
  5532. const size_t nb01 = src0->nb[1];
  5533. const size_t nb10 = src1->nb[0];
  5534. const size_t nb11 = src1->nb[1];
  5535. const size_t nb0 = dst->nb[0];
  5536. const size_t nb1 = dst->nb[1];
  5537. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5538. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5539. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5540. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5541. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5542. if (nb10 == sizeof(ggml_fp16_t)) {
  5543. for (int j = ith; j < n; j += nth) {
  5544. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5545. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5546. for (int i = 0; i < nc; i++) {
  5547. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5548. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5549. }
  5550. }
  5551. }
  5552. else {
  5553. // src1 is not contiguous
  5554. GGML_ASSERT(false);
  5555. }
  5556. }
  5557. static void ggml_compute_forward_add_q_f32(
  5558. const struct ggml_compute_params * params,
  5559. const struct ggml_tensor * src0,
  5560. const struct ggml_tensor * src1,
  5561. struct ggml_tensor * dst) {
  5562. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5564. return;
  5565. }
  5566. const int64_t ne00 = src0->ne[0];
  5567. const int64_t ne01 = src0->ne[1];
  5568. const int64_t ne02 = src0->ne[2];
  5569. const int64_t ne03 = src0->ne[3];
  5570. //const int64_t ne10 = src1->ne[0];
  5571. //const int64_t ne11 = src1->ne[1];
  5572. const int64_t ne12 = src1->ne[2];
  5573. const int64_t ne13 = src1->ne[3];
  5574. //const int64_t ne0 = dst->ne[0];
  5575. //const int64_t ne1 = dst->ne[1];
  5576. const int64_t ne2 = dst->ne[2];
  5577. const int64_t ne3 = dst->ne[3];
  5578. const int nb00 = src0->nb[0];
  5579. const int nb01 = src0->nb[1];
  5580. const int nb02 = src0->nb[2];
  5581. const int nb03 = src0->nb[3];
  5582. const int nb10 = src1->nb[0];
  5583. const int nb11 = src1->nb[1];
  5584. const int nb12 = src1->nb[2];
  5585. const int nb13 = src1->nb[3];
  5586. const int nb0 = dst->nb[0];
  5587. const int nb1 = dst->nb[1];
  5588. const int nb2 = dst->nb[2];
  5589. const int nb3 = dst->nb[3];
  5590. const int ith = params->ith;
  5591. const int nth = params->nth;
  5592. GGML_ASSERT(ne02 == ne12);
  5593. GGML_ASSERT(ne03 == ne13);
  5594. GGML_ASSERT(ne2 == ne12);
  5595. GGML_ASSERT(ne3 == ne13);
  5596. const enum ggml_type type = src0->type;
  5597. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5598. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5599. // we don't support permuted src0 or src1
  5600. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5601. GGML_ASSERT(nb10 == sizeof(float));
  5602. // dst cannot be transposed or permuted
  5603. GGML_ASSERT(nb0 <= nb1);
  5604. GGML_ASSERT(nb1 <= nb2);
  5605. GGML_ASSERT(nb2 <= nb3);
  5606. GGML_ASSERT(ggml_is_quantized(src0->type));
  5607. GGML_ASSERT(dst->type == src0->type);
  5608. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5609. // total rows in src0
  5610. const int nr = ne01*ne02*ne03;
  5611. // rows per thread
  5612. const int dr = (nr + nth - 1)/nth;
  5613. // row range for this thread
  5614. const int ir0 = dr*ith;
  5615. const int ir1 = MIN(ir0 + dr, nr);
  5616. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5617. for (int ir = ir0; ir < ir1; ++ir) {
  5618. // src0 indices
  5619. const int i03 = ir/(ne02*ne01);
  5620. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5621. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5622. // src1 and dst are same shape as src0 => same indices
  5623. const int i13 = i03;
  5624. const int i12 = i02;
  5625. const int i11 = i01;
  5626. const int i3 = i03;
  5627. const int i2 = i02;
  5628. const int i1 = i01;
  5629. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5630. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5631. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5632. assert(ne00 % 32 == 0);
  5633. // unquantize row from src0 to temp buffer
  5634. dequantize_row_q(src0_row, wdata, ne00);
  5635. // add src1
  5636. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5637. // quantize row to dst
  5638. quantize_row_q(wdata, dst_row, ne00);
  5639. }
  5640. }
  5641. static void ggml_compute_forward_add(
  5642. const struct ggml_compute_params * params,
  5643. const struct ggml_tensor * src0,
  5644. const struct ggml_tensor * src1,
  5645. struct ggml_tensor * dst) {
  5646. switch (src0->type) {
  5647. case GGML_TYPE_F32:
  5648. {
  5649. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5650. } break;
  5651. case GGML_TYPE_F16:
  5652. {
  5653. if (src1->type == GGML_TYPE_F16) {
  5654. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5655. }
  5656. else if (src1->type == GGML_TYPE_F32) {
  5657. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5658. }
  5659. else {
  5660. GGML_ASSERT(false);
  5661. }
  5662. } break;
  5663. case GGML_TYPE_Q4_0:
  5664. case GGML_TYPE_Q4_1:
  5665. case GGML_TYPE_Q4_2:
  5666. case GGML_TYPE_Q5_0:
  5667. case GGML_TYPE_Q5_1:
  5668. case GGML_TYPE_Q8_0:
  5669. {
  5670. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5671. } break;
  5672. default:
  5673. {
  5674. GGML_ASSERT(false);
  5675. } break;
  5676. }
  5677. }
  5678. // ggml_compute_forward_sub
  5679. static void ggml_compute_forward_sub_f32(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. const struct ggml_tensor * src1,
  5683. struct ggml_tensor * dst) {
  5684. assert(params->ith == 0);
  5685. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5686. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5687. return;
  5688. }
  5689. const int n = ggml_nrows(src0);
  5690. const int nc = src0->ne[0];
  5691. assert( dst->nb[0] == sizeof(float));
  5692. assert(src0->nb[0] == sizeof(float));
  5693. assert(src1->nb[0] == sizeof(float));
  5694. for (int i = 0; i < n; i++) {
  5695. ggml_vec_sub_f32(nc,
  5696. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5697. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5698. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5699. }
  5700. }
  5701. static void ggml_compute_forward_sub(
  5702. const struct ggml_compute_params * params,
  5703. const struct ggml_tensor * src0,
  5704. const struct ggml_tensor * src1,
  5705. struct ggml_tensor * dst) {
  5706. switch (src0->type) {
  5707. case GGML_TYPE_F32:
  5708. {
  5709. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5710. } break;
  5711. default:
  5712. {
  5713. GGML_ASSERT(false);
  5714. } break;
  5715. }
  5716. }
  5717. // ggml_compute_forward_mul
  5718. static void ggml_compute_forward_mul_f32(
  5719. const struct ggml_compute_params * params,
  5720. const struct ggml_tensor * src0,
  5721. const struct ggml_tensor * src1,
  5722. struct ggml_tensor * dst) {
  5723. assert(params->ith == 0);
  5724. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5725. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5726. return;
  5727. }
  5728. const int n = ggml_nrows(src0);
  5729. const int nc = src0->ne[0];
  5730. assert( dst->nb[0] == sizeof(float));
  5731. assert(src0->nb[0] == sizeof(float));
  5732. assert(src1->nb[0] == sizeof(float));
  5733. for (int i = 0; i < n; i++) {
  5734. ggml_vec_mul_f32(nc,
  5735. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5736. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5737. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5738. }
  5739. }
  5740. static void ggml_compute_forward_mul(
  5741. const struct ggml_compute_params * params,
  5742. const struct ggml_tensor * src0,
  5743. const struct ggml_tensor * src1,
  5744. struct ggml_tensor * dst) {
  5745. switch (src0->type) {
  5746. case GGML_TYPE_F32:
  5747. {
  5748. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5749. } break;
  5750. default:
  5751. {
  5752. GGML_ASSERT(false);
  5753. } break;
  5754. }
  5755. }
  5756. // ggml_compute_forward_div
  5757. static void ggml_compute_forward_div_f32(
  5758. const struct ggml_compute_params * params,
  5759. const struct ggml_tensor * src0,
  5760. const struct ggml_tensor * src1,
  5761. struct ggml_tensor * dst) {
  5762. assert(params->ith == 0);
  5763. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5764. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5765. return;
  5766. }
  5767. const int n = ggml_nrows(src0);
  5768. const int nc = src0->ne[0];
  5769. assert( dst->nb[0] == sizeof(float));
  5770. assert(src0->nb[0] == sizeof(float));
  5771. assert(src1->nb[0] == sizeof(float));
  5772. for (int i = 0; i < n; i++) {
  5773. ggml_vec_div_f32(nc,
  5774. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5775. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5776. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5777. }
  5778. }
  5779. static void ggml_compute_forward_div(
  5780. const struct ggml_compute_params * params,
  5781. const struct ggml_tensor * src0,
  5782. const struct ggml_tensor * src1,
  5783. struct ggml_tensor * dst) {
  5784. switch (src0->type) {
  5785. case GGML_TYPE_F32:
  5786. {
  5787. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5788. } break;
  5789. default:
  5790. {
  5791. GGML_ASSERT(false);
  5792. } break;
  5793. }
  5794. }
  5795. // ggml_compute_forward_sqr
  5796. static void ggml_compute_forward_sqr_f32(
  5797. const struct ggml_compute_params * params,
  5798. const struct ggml_tensor * src0,
  5799. struct ggml_tensor * dst) {
  5800. assert(params->ith == 0);
  5801. assert(ggml_are_same_shape(src0, dst));
  5802. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5803. return;
  5804. }
  5805. const int n = ggml_nrows(src0);
  5806. const int nc = src0->ne[0];
  5807. assert( dst->nb[0] == sizeof(float));
  5808. assert(src0->nb[0] == sizeof(float));
  5809. for (int i = 0; i < n; i++) {
  5810. ggml_vec_sqr_f32(nc,
  5811. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5812. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5813. }
  5814. }
  5815. static void ggml_compute_forward_sqr(
  5816. const struct ggml_compute_params * params,
  5817. const struct ggml_tensor * src0,
  5818. struct ggml_tensor * dst) {
  5819. switch (src0->type) {
  5820. case GGML_TYPE_F32:
  5821. {
  5822. ggml_compute_forward_sqr_f32(params, src0, dst);
  5823. } break;
  5824. default:
  5825. {
  5826. GGML_ASSERT(false);
  5827. } break;
  5828. }
  5829. }
  5830. // ggml_compute_forward_sqrt
  5831. static void ggml_compute_forward_sqrt_f32(
  5832. const struct ggml_compute_params * params,
  5833. const struct ggml_tensor * src0,
  5834. struct ggml_tensor * dst) {
  5835. assert(params->ith == 0);
  5836. assert(ggml_are_same_shape(src0, dst));
  5837. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5838. return;
  5839. }
  5840. const int n = ggml_nrows(src0);
  5841. const int nc = src0->ne[0];
  5842. assert( dst->nb[0] == sizeof(float));
  5843. assert(src0->nb[0] == sizeof(float));
  5844. for (int i = 0; i < n; i++) {
  5845. ggml_vec_sqrt_f32(nc,
  5846. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5847. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5848. }
  5849. }
  5850. static void ggml_compute_forward_sqrt(
  5851. const struct ggml_compute_params * params,
  5852. const struct ggml_tensor * src0,
  5853. struct ggml_tensor * dst) {
  5854. switch (src0->type) {
  5855. case GGML_TYPE_F32:
  5856. {
  5857. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5858. } break;
  5859. default:
  5860. {
  5861. GGML_ASSERT(false);
  5862. } break;
  5863. }
  5864. }
  5865. // ggml_compute_forward_sum
  5866. static void ggml_compute_forward_sum_f32(
  5867. const struct ggml_compute_params * params,
  5868. const struct ggml_tensor * src0,
  5869. struct ggml_tensor * dst) {
  5870. assert(params->ith == 0);
  5871. assert(ggml_is_scalar(dst));
  5872. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5873. return;
  5874. }
  5875. assert(ggml_is_scalar(dst));
  5876. assert(src0->nb[0] == sizeof(float));
  5877. const int64_t ne00 = src0->ne[0];
  5878. const int64_t ne01 = src0->ne[1];
  5879. const int64_t ne02 = src0->ne[2];
  5880. const int64_t ne03 = src0->ne[3];
  5881. const size_t nb01 = src0->nb[1];
  5882. const size_t nb02 = src0->nb[2];
  5883. const size_t nb03 = src0->nb[3];
  5884. ggml_float sum = 0;
  5885. ggml_float row_sum = 0;
  5886. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5887. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5888. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5889. ggml_vec_sum_ggf(ne00,
  5890. &row_sum,
  5891. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5892. sum += row_sum;
  5893. }
  5894. }
  5895. }
  5896. ((float *) dst->data)[0] = sum;
  5897. }
  5898. static void ggml_compute_forward_sum(
  5899. const struct ggml_compute_params * params,
  5900. const struct ggml_tensor * src0,
  5901. struct ggml_tensor * dst) {
  5902. switch (src0->type) {
  5903. case GGML_TYPE_F32:
  5904. {
  5905. ggml_compute_forward_sum_f32(params, src0, dst);
  5906. } break;
  5907. default:
  5908. {
  5909. GGML_ASSERT(false);
  5910. } break;
  5911. }
  5912. }
  5913. // ggml_compute_forward_mean
  5914. static void ggml_compute_forward_mean_f32(
  5915. const struct ggml_compute_params * params,
  5916. const struct ggml_tensor * src0,
  5917. struct ggml_tensor * dst) {
  5918. assert(params->ith == 0);
  5919. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5920. return;
  5921. }
  5922. assert(src0->nb[0] == sizeof(float));
  5923. const int64_t ne00 = src0->ne[0];
  5924. const int64_t ne01 = src0->ne[1];
  5925. const int64_t ne02 = src0->ne[2];
  5926. const int64_t ne03 = src0->ne[3];
  5927. const size_t nb01 = src0->nb[1];
  5928. const size_t nb02 = src0->nb[2];
  5929. const size_t nb03 = src0->nb[3];
  5930. const int64_t ne0 = dst->ne[0];
  5931. const int64_t ne1 = dst->ne[1];
  5932. const int64_t ne2 = dst->ne[2];
  5933. const int64_t ne3 = dst->ne[3];
  5934. assert(ne0 == 1);
  5935. assert(ne1 == ne01);
  5936. assert(ne2 == ne02);
  5937. assert(ne3 == ne03);
  5938. UNUSED(ne0);
  5939. UNUSED(ne1);
  5940. UNUSED(ne2);
  5941. UNUSED(ne3);
  5942. const size_t nb1 = dst->nb[1];
  5943. const size_t nb2 = dst->nb[2];
  5944. const size_t nb3 = dst->nb[3];
  5945. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5946. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5947. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5948. ggml_vec_sum_f32(ne00,
  5949. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5950. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5951. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5952. }
  5953. }
  5954. }
  5955. }
  5956. static void ggml_compute_forward_mean(
  5957. const struct ggml_compute_params * params,
  5958. const struct ggml_tensor * src0,
  5959. struct ggml_tensor * dst) {
  5960. switch (src0->type) {
  5961. case GGML_TYPE_F32:
  5962. {
  5963. ggml_compute_forward_mean_f32(params, src0, dst);
  5964. } break;
  5965. default:
  5966. {
  5967. GGML_ASSERT(false);
  5968. } break;
  5969. }
  5970. }
  5971. // ggml_compute_forward_repeat
  5972. static void ggml_compute_forward_repeat_f32(
  5973. const struct ggml_compute_params * params,
  5974. const struct ggml_tensor * src0,
  5975. struct ggml_tensor * dst) {
  5976. assert(params->ith == 0);
  5977. assert(ggml_can_repeat(src0, dst));
  5978. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5979. return;
  5980. }
  5981. // TODO: implement support for rank > 2 tensors
  5982. assert(src0->ne[2] == 1);
  5983. assert(src0->ne[3] == 1);
  5984. assert( dst->ne[2] == 1);
  5985. assert( dst->ne[3] == 1);
  5986. const int nc = dst->ne[0];
  5987. const int nr = dst->ne[1];
  5988. const int nc0 = src0->ne[0];
  5989. const int nr0 = src0->ne[1];
  5990. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5991. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5992. // TODO: support for transposed / permuted tensors
  5993. assert( dst->nb[0] == sizeof(float));
  5994. assert(src0->nb[0] == sizeof(float));
  5995. // TODO: maybe this is not optimal?
  5996. for (int i = 0; i < nrr; i++) {
  5997. for (int j = 0; j < ncr; j++) {
  5998. for (int k = 0; k < nr0; k++) {
  5999. ggml_vec_cpy_f32(nc0,
  6000. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6001. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6002. }
  6003. }
  6004. }
  6005. }
  6006. static void ggml_compute_forward_repeat(
  6007. const struct ggml_compute_params * params,
  6008. const struct ggml_tensor * src0,
  6009. struct ggml_tensor * dst) {
  6010. switch (src0->type) {
  6011. case GGML_TYPE_F32:
  6012. {
  6013. ggml_compute_forward_repeat_f32(params, src0, dst);
  6014. } break;
  6015. default:
  6016. {
  6017. GGML_ASSERT(false);
  6018. } break;
  6019. }
  6020. }
  6021. // ggml_compute_forward_abs
  6022. static void ggml_compute_forward_abs_f32(
  6023. const struct ggml_compute_params * params,
  6024. const struct ggml_tensor * src0,
  6025. struct ggml_tensor * dst) {
  6026. assert(params->ith == 0);
  6027. assert(ggml_are_same_shape(src0, dst));
  6028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6029. return;
  6030. }
  6031. const int n = ggml_nrows(src0);
  6032. const int nc = src0->ne[0];
  6033. assert(dst->nb[0] == sizeof(float));
  6034. assert(src0->nb[0] == sizeof(float));
  6035. for (int i = 0; i < n; i++) {
  6036. ggml_vec_abs_f32(nc,
  6037. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6038. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6039. }
  6040. }
  6041. static void ggml_compute_forward_abs(
  6042. const struct ggml_compute_params * params,
  6043. const struct ggml_tensor * src0,
  6044. struct ggml_tensor * dst) {
  6045. switch (src0->type) {
  6046. case GGML_TYPE_F32:
  6047. {
  6048. ggml_compute_forward_abs_f32(params, src0, dst);
  6049. } break;
  6050. default:
  6051. {
  6052. GGML_ASSERT(false);
  6053. } break;
  6054. }
  6055. }
  6056. // ggml_compute_forward_sgn
  6057. static void ggml_compute_forward_sgn_f32(
  6058. const struct ggml_compute_params * params,
  6059. const struct ggml_tensor * src0,
  6060. struct ggml_tensor * dst) {
  6061. assert(params->ith == 0);
  6062. assert(ggml_are_same_shape(src0, dst));
  6063. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6064. return;
  6065. }
  6066. const int n = ggml_nrows(src0);
  6067. const int nc = src0->ne[0];
  6068. assert(dst->nb[0] == sizeof(float));
  6069. assert(src0->nb[0] == sizeof(float));
  6070. for (int i = 0; i < n; i++) {
  6071. ggml_vec_sgn_f32(nc,
  6072. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6073. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6074. }
  6075. }
  6076. static void ggml_compute_forward_sgn(
  6077. const struct ggml_compute_params * params,
  6078. const struct ggml_tensor * src0,
  6079. struct ggml_tensor * dst) {
  6080. switch (src0->type) {
  6081. case GGML_TYPE_F32:
  6082. {
  6083. ggml_compute_forward_sgn_f32(params, src0, dst);
  6084. } break;
  6085. default:
  6086. {
  6087. GGML_ASSERT(false);
  6088. } break;
  6089. }
  6090. }
  6091. // ggml_compute_forward_neg
  6092. static void ggml_compute_forward_neg_f32(
  6093. const struct ggml_compute_params * params,
  6094. const struct ggml_tensor * src0,
  6095. struct ggml_tensor * dst) {
  6096. assert(params->ith == 0);
  6097. assert(ggml_are_same_shape(src0, dst));
  6098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6099. return;
  6100. }
  6101. const int n = ggml_nrows(src0);
  6102. const int nc = src0->ne[0];
  6103. assert(dst->nb[0] == sizeof(float));
  6104. assert(src0->nb[0] == sizeof(float));
  6105. for (int i = 0; i < n; i++) {
  6106. ggml_vec_neg_f32(nc,
  6107. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6108. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6109. }
  6110. }
  6111. static void ggml_compute_forward_neg(
  6112. const struct ggml_compute_params * params,
  6113. const struct ggml_tensor * src0,
  6114. struct ggml_tensor * dst) {
  6115. switch (src0->type) {
  6116. case GGML_TYPE_F32:
  6117. {
  6118. ggml_compute_forward_neg_f32(params, src0, dst);
  6119. } break;
  6120. default:
  6121. {
  6122. GGML_ASSERT(false);
  6123. } break;
  6124. }
  6125. }
  6126. // ggml_compute_forward_step
  6127. static void ggml_compute_forward_step_f32(
  6128. const struct ggml_compute_params * params,
  6129. const struct ggml_tensor * src0,
  6130. struct ggml_tensor * dst) {
  6131. assert(params->ith == 0);
  6132. assert(ggml_are_same_shape(src0, dst));
  6133. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6134. return;
  6135. }
  6136. const int n = ggml_nrows(src0);
  6137. const int nc = src0->ne[0];
  6138. assert(dst->nb[0] == sizeof(float));
  6139. assert(src0->nb[0] == sizeof(float));
  6140. for (int i = 0; i < n; i++) {
  6141. ggml_vec_step_f32(nc,
  6142. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6143. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6144. }
  6145. }
  6146. static void ggml_compute_forward_step(
  6147. const struct ggml_compute_params * params,
  6148. const struct ggml_tensor * src0,
  6149. struct ggml_tensor * dst) {
  6150. switch (src0->type) {
  6151. case GGML_TYPE_F32:
  6152. {
  6153. ggml_compute_forward_step_f32(params, src0, dst);
  6154. } break;
  6155. default:
  6156. {
  6157. GGML_ASSERT(false);
  6158. } break;
  6159. }
  6160. }
  6161. // ggml_compute_forward_relu
  6162. static void ggml_compute_forward_relu_f32(
  6163. const struct ggml_compute_params * params,
  6164. const struct ggml_tensor * src0,
  6165. struct ggml_tensor * dst) {
  6166. assert(params->ith == 0);
  6167. assert(ggml_are_same_shape(src0, dst));
  6168. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6169. return;
  6170. }
  6171. const int n = ggml_nrows(src0);
  6172. const int nc = src0->ne[0];
  6173. assert(dst->nb[0] == sizeof(float));
  6174. assert(src0->nb[0] == sizeof(float));
  6175. for (int i = 0; i < n; i++) {
  6176. ggml_vec_relu_f32(nc,
  6177. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6178. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6179. }
  6180. }
  6181. static void ggml_compute_forward_relu(
  6182. const struct ggml_compute_params * params,
  6183. const struct ggml_tensor * src0,
  6184. struct ggml_tensor * dst) {
  6185. switch (src0->type) {
  6186. case GGML_TYPE_F32:
  6187. {
  6188. ggml_compute_forward_relu_f32(params, src0, dst);
  6189. } break;
  6190. default:
  6191. {
  6192. GGML_ASSERT(false);
  6193. } break;
  6194. }
  6195. }
  6196. // ggml_compute_forward_gelu
  6197. static void ggml_compute_forward_gelu_f32(
  6198. const struct ggml_compute_params * params,
  6199. const struct ggml_tensor * src0,
  6200. struct ggml_tensor * dst) {
  6201. GGML_ASSERT(ggml_is_contiguous(src0));
  6202. GGML_ASSERT(ggml_is_contiguous(dst));
  6203. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6204. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6205. return;
  6206. }
  6207. const int ith = params->ith;
  6208. const int nth = params->nth;
  6209. const int nc = src0->ne[0];
  6210. const int nr = ggml_nrows(src0);
  6211. // rows per thread
  6212. const int dr = (nr + nth - 1)/nth;
  6213. // row range for this thread
  6214. const int ir0 = dr*ith;
  6215. const int ir1 = MIN(ir0 + dr, nr);
  6216. for (int i1 = ir0; i1 < ir1; i1++) {
  6217. ggml_vec_gelu_f32(nc,
  6218. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6219. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6220. #ifndef NDEBUG
  6221. for (int k = 0; k < nc; k++) {
  6222. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6223. UNUSED(x);
  6224. assert(!isnan(x));
  6225. assert(!isinf(x));
  6226. }
  6227. #endif
  6228. }
  6229. }
  6230. static void ggml_compute_forward_gelu(
  6231. const struct ggml_compute_params * params,
  6232. const struct ggml_tensor * src0,
  6233. struct ggml_tensor * dst) {
  6234. switch (src0->type) {
  6235. case GGML_TYPE_F32:
  6236. {
  6237. ggml_compute_forward_gelu_f32(params, src0, dst);
  6238. } break;
  6239. default:
  6240. {
  6241. GGML_ASSERT(false);
  6242. } break;
  6243. }
  6244. //printf("XXXXXXXX gelu\n");
  6245. }
  6246. // ggml_compute_forward_silu
  6247. static void ggml_compute_forward_silu_f32(
  6248. const struct ggml_compute_params * params,
  6249. const struct ggml_tensor * src0,
  6250. struct ggml_tensor * dst) {
  6251. GGML_ASSERT(ggml_is_contiguous(src0));
  6252. GGML_ASSERT(ggml_is_contiguous(dst));
  6253. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6254. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6255. return;
  6256. }
  6257. const int ith = params->ith;
  6258. const int nth = params->nth;
  6259. const int nc = src0->ne[0];
  6260. const int nr = ggml_nrows(src0);
  6261. // rows per thread
  6262. const int dr = (nr + nth - 1)/nth;
  6263. // row range for this thread
  6264. const int ir0 = dr*ith;
  6265. const int ir1 = MIN(ir0 + dr, nr);
  6266. for (int i1 = ir0; i1 < ir1; i1++) {
  6267. ggml_vec_silu_f32(nc,
  6268. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6269. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6270. #ifndef NDEBUG
  6271. for (int k = 0; k < nc; k++) {
  6272. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6273. UNUSED(x);
  6274. assert(!isnan(x));
  6275. assert(!isinf(x));
  6276. }
  6277. #endif
  6278. }
  6279. }
  6280. static void ggml_compute_forward_silu(
  6281. const struct ggml_compute_params * params,
  6282. const struct ggml_tensor * src0,
  6283. struct ggml_tensor * dst) {
  6284. switch (src0->type) {
  6285. case GGML_TYPE_F32:
  6286. {
  6287. ggml_compute_forward_silu_f32(params, src0, dst);
  6288. } break;
  6289. default:
  6290. {
  6291. GGML_ASSERT(false);
  6292. } break;
  6293. }
  6294. }
  6295. // ggml_compute_forward_norm
  6296. static void ggml_compute_forward_norm_f32(
  6297. const struct ggml_compute_params * params,
  6298. const struct ggml_tensor * src0,
  6299. struct ggml_tensor * dst) {
  6300. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6301. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6302. return;
  6303. }
  6304. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6305. const int ith = params->ith;
  6306. const int nth = params->nth;
  6307. const int64_t ne00 = src0->ne[0];
  6308. const int64_t ne01 = src0->ne[1];
  6309. const int64_t ne02 = src0->ne[2];
  6310. const int64_t ne03 = src0->ne[3];
  6311. const size_t nb01 = src0->nb[1];
  6312. const size_t nb02 = src0->nb[2];
  6313. const size_t nb03 = src0->nb[3];
  6314. const size_t nb1 = dst->nb[1];
  6315. const size_t nb2 = dst->nb[2];
  6316. const size_t nb3 = dst->nb[3];
  6317. const float eps = 1e-5f; // TODO: make this a parameter
  6318. // TODO: optimize
  6319. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6320. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6321. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6322. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6323. ggml_float sum = 0.0;
  6324. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6325. sum += (ggml_float)x[i00];
  6326. }
  6327. float mean = sum/ne00;
  6328. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6329. ggml_float sum2 = 0.0;
  6330. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6331. float v = x[i00] - mean;
  6332. y[i00] = v;
  6333. sum2 += (ggml_float)(v*v);
  6334. }
  6335. float variance = sum2/ne00;
  6336. const float scale = 1.0f/sqrtf(variance + eps);
  6337. ggml_vec_scale_f32(ne00, y, scale);
  6338. }
  6339. }
  6340. }
  6341. }
  6342. static void ggml_compute_forward_norm(
  6343. const struct ggml_compute_params * params,
  6344. const struct ggml_tensor * src0,
  6345. struct ggml_tensor * dst) {
  6346. switch (src0->type) {
  6347. case GGML_TYPE_F32:
  6348. {
  6349. ggml_compute_forward_norm_f32(params, src0, dst);
  6350. } break;
  6351. default:
  6352. {
  6353. GGML_ASSERT(false);
  6354. } break;
  6355. }
  6356. }
  6357. static void ggml_compute_forward_rms_norm_f32(
  6358. const struct ggml_compute_params * params,
  6359. const struct ggml_tensor * src0,
  6360. struct ggml_tensor * dst) {
  6361. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6362. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6363. return;
  6364. }
  6365. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6366. const int ith = params->ith;
  6367. const int nth = params->nth;
  6368. const int64_t ne00 = src0->ne[0];
  6369. const int64_t ne01 = src0->ne[1];
  6370. const int64_t ne02 = src0->ne[2];
  6371. const int64_t ne03 = src0->ne[3];
  6372. const size_t nb01 = src0->nb[1];
  6373. const size_t nb02 = src0->nb[2];
  6374. const size_t nb03 = src0->nb[3];
  6375. const size_t nb1 = dst->nb[1];
  6376. const size_t nb2 = dst->nb[2];
  6377. const size_t nb3 = dst->nb[3];
  6378. const float eps = 1e-6f; // TODO: make this a parameter
  6379. // TODO: optimize
  6380. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6381. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6382. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6383. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6384. ggml_float sum = 0.0;
  6385. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6386. sum += (ggml_float)(x[i00] * x[i00]);
  6387. }
  6388. float mean = sum/ne00;
  6389. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6390. memcpy(y, x, ne00 * sizeof(float));
  6391. // for (int i00 = 0; i00 < ne00; i00++) {
  6392. // y[i00] = x[i00];
  6393. // }
  6394. const float scale = 1.0f/sqrtf(mean + eps);
  6395. ggml_vec_scale_f32(ne00, y, scale);
  6396. }
  6397. }
  6398. }
  6399. }
  6400. static void ggml_compute_forward_rms_norm(
  6401. const struct ggml_compute_params * params,
  6402. const struct ggml_tensor * src0,
  6403. struct ggml_tensor * dst) {
  6404. switch (src0->type) {
  6405. case GGML_TYPE_F32:
  6406. {
  6407. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6408. } break;
  6409. default:
  6410. {
  6411. GGML_ASSERT(false);
  6412. } break;
  6413. }
  6414. }
  6415. // ggml_compute_forward_mul_mat
  6416. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6417. // helper function to determine if it is better to use BLAS or not
  6418. // for large matrices, BLAS is faster
  6419. static bool ggml_compute_forward_mul_mat_use_blas(
  6420. const struct ggml_tensor * src0,
  6421. const struct ggml_tensor * src1,
  6422. struct ggml_tensor * dst) {
  6423. //const int64_t ne00 = src0->ne[0];
  6424. //const int64_t ne01 = src0->ne[1];
  6425. const int64_t ne10 = src1->ne[0];
  6426. const int64_t ne0 = dst->ne[0];
  6427. const int64_t ne1 = dst->ne[1];
  6428. // TODO: find the optimal values for these
  6429. if (
  6430. #if !defined(GGML_USE_CUBLAS)
  6431. ggml_is_contiguous(src0) &&
  6432. ggml_is_contiguous(src1) &&
  6433. #endif
  6434. ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6435. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6436. return true;
  6437. }
  6438. return false;
  6439. }
  6440. #endif
  6441. static void ggml_compute_forward_mul_mat_f32(
  6442. const struct ggml_compute_params * params,
  6443. const struct ggml_tensor * src0,
  6444. const struct ggml_tensor * src1,
  6445. struct ggml_tensor * dst) {
  6446. int64_t t0 = ggml_perf_time_us();
  6447. UNUSED(t0);
  6448. const int64_t ne00 = src0->ne[0];
  6449. const int64_t ne01 = src0->ne[1];
  6450. const int64_t ne02 = src0->ne[2];
  6451. const int64_t ne03 = src0->ne[3];
  6452. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6453. const int64_t ne10 = src1->ne[0];
  6454. #endif
  6455. const int64_t ne11 = src1->ne[1];
  6456. #ifndef NDEBUG
  6457. const int64_t ne12 = src1->ne[2];
  6458. const int64_t ne13 = src1->ne[3];
  6459. const int64_t ne0 = dst->ne[0];
  6460. const int64_t ne1 = dst->ne[1];
  6461. const int64_t ne2 = dst->ne[2];
  6462. const int64_t ne3 = dst->ne[3];
  6463. const int nb00 = src0->nb[0];
  6464. #endif
  6465. const int nb01 = src0->nb[1];
  6466. const int nb02 = src0->nb[2];
  6467. const int nb03 = src0->nb[3];
  6468. #ifndef NDEBUG
  6469. const int nb10 = src1->nb[0];
  6470. #endif
  6471. const int nb11 = src1->nb[1];
  6472. const int nb12 = src1->nb[2];
  6473. const int nb13 = src1->nb[3];
  6474. const int nb0 = dst->nb[0];
  6475. const int nb1 = dst->nb[1];
  6476. const int nb2 = dst->nb[2];
  6477. const int nb3 = dst->nb[3];
  6478. const int ith = params->ith;
  6479. const int nth = params->nth;
  6480. assert(ne02 == ne12);
  6481. assert(ne03 == ne13);
  6482. assert(ne2 == ne12);
  6483. assert(ne3 == ne13);
  6484. // we don't support permuted src0 or src1
  6485. assert(nb00 == sizeof(float));
  6486. assert(nb10 == sizeof(float));
  6487. // dst cannot be transposed or permuted
  6488. assert(nb0 == sizeof(float));
  6489. assert(nb0 <= nb1);
  6490. assert(nb1 <= nb2);
  6491. assert(nb2 <= nb3);
  6492. assert(ne0 == ne01);
  6493. assert(ne1 == ne11);
  6494. assert(ne2 == ne02);
  6495. assert(ne3 == ne03);
  6496. // nb01 >= nb00 - src0 is not transposed
  6497. // compute by src0 rows
  6498. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6499. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6500. if (params->ith != 0) {
  6501. return;
  6502. }
  6503. if (params->type == GGML_TASK_INIT) {
  6504. return;
  6505. }
  6506. if (params->type == GGML_TASK_FINALIZE) {
  6507. return;
  6508. }
  6509. #if defined(GGML_USE_CUBLAS)
  6510. const float alpha = 1.0f;
  6511. const float beta = 0.0f;
  6512. const int x_ne = ne01 * ne00;
  6513. const int y_ne = ne11 * ne10;
  6514. const int d_ne = ne11 * ne01;
  6515. size_t x_size, y_size, d_size;
  6516. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6517. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6518. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6519. #endif
  6520. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6521. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6522. #if !defined(GGML_USE_CUBLAS)
  6523. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6524. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6525. #endif
  6526. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6527. #if defined(GGML_USE_CUBLAS)
  6528. // copy data to device
  6529. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
  6530. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
  6531. // compute
  6532. CUBLAS_CHECK(
  6533. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6534. ne01, ne11, ne10,
  6535. &alpha, d_X, ne00,
  6536. d_Y, ne10,
  6537. &beta, d_D, ne01));
  6538. // copy data to host
  6539. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6540. #elif defined(GGML_USE_CLBLAST)
  6541. // zT = y * xT
  6542. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6543. ne11, ne01, ne10,
  6544. 1.0f, y, ne10,
  6545. x, ne10,
  6546. 0.0f, d, ne01,
  6547. GGML_TYPE_F32);
  6548. #else
  6549. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6550. ne11, ne01, ne10,
  6551. 1.0f, y, ne10,
  6552. x, ne00,
  6553. 0.0f, d, ne01);
  6554. #endif
  6555. }
  6556. }
  6557. #if defined(GGML_USE_CUBLAS)
  6558. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6559. ggml_cuda_pool_free(d_X, x_size);
  6560. ggml_cuda_pool_free(d_Y, y_size);
  6561. ggml_cuda_pool_free(d_D, d_size);
  6562. #endif
  6563. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6564. return;
  6565. }
  6566. #endif
  6567. if (params->type == GGML_TASK_INIT) {
  6568. return;
  6569. }
  6570. if (params->type == GGML_TASK_FINALIZE) {
  6571. return;
  6572. }
  6573. // parallelize by src0 rows using ggml_vec_dot_f32
  6574. // total rows in src0
  6575. const int nr = ne01*ne02*ne03;
  6576. // rows per thread
  6577. const int dr = (nr + nth - 1)/nth;
  6578. // row range for this thread
  6579. const int ir0 = dr*ith;
  6580. const int ir1 = MIN(ir0 + dr, nr);
  6581. for (int ir = ir0; ir < ir1; ++ir) {
  6582. // src0 indices
  6583. const int i03 = ir/(ne02*ne01);
  6584. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6585. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6586. for (int64_t ic = 0; ic < ne11; ++ic) {
  6587. // src1 indices
  6588. const int i13 = i03;
  6589. const int i12 = i02;
  6590. const int i11 = ic;
  6591. // dst indices
  6592. const int i0 = i01;
  6593. const int i1 = i11;
  6594. const int i2 = i02;
  6595. const int i3 = i03;
  6596. ggml_vec_dot_f32(ne00,
  6597. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6598. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6599. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6600. }
  6601. }
  6602. //int64_t t1 = ggml_perf_time_us();
  6603. //static int64_t acc = 0;
  6604. //acc += t1 - t0;
  6605. //if (t1 - t0 > 10) {
  6606. // printf("\n");
  6607. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6608. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6609. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6610. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6611. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6612. //}
  6613. }
  6614. static void ggml_compute_forward_mul_mat_f16_f32(
  6615. const struct ggml_compute_params * params,
  6616. const struct ggml_tensor * src0,
  6617. const struct ggml_tensor * src1,
  6618. struct ggml_tensor * dst) {
  6619. int64_t t0 = ggml_perf_time_us();
  6620. UNUSED(t0);
  6621. const int64_t ne00 = src0->ne[0];
  6622. const int64_t ne01 = src0->ne[1];
  6623. const int64_t ne02 = src0->ne[2];
  6624. const int64_t ne03 = src0->ne[3];
  6625. const int64_t ne10 = src1->ne[0];
  6626. const int64_t ne11 = src1->ne[1];
  6627. const int64_t ne12 = src1->ne[2];
  6628. const int64_t ne13 = src1->ne[3];
  6629. const int64_t ne0 = dst->ne[0];
  6630. const int64_t ne1 = dst->ne[1];
  6631. const int64_t ne2 = dst->ne[2];
  6632. const int64_t ne3 = dst->ne[3];
  6633. //const int64_t ne = ne0*ne1*ne2*ne3;
  6634. const int nb00 = src0->nb[0];
  6635. const int nb01 = src0->nb[1];
  6636. const int nb02 = src0->nb[2];
  6637. const int nb03 = src0->nb[3];
  6638. const int nb10 = src1->nb[0];
  6639. const int nb11 = src1->nb[1];
  6640. const int nb12 = src1->nb[2];
  6641. const int nb13 = src1->nb[3];
  6642. const int nb0 = dst->nb[0];
  6643. const int nb1 = dst->nb[1];
  6644. const int nb2 = dst->nb[2];
  6645. const int nb3 = dst->nb[3];
  6646. const int ith = params->ith;
  6647. const int nth = params->nth;
  6648. GGML_ASSERT(ne02 == ne12);
  6649. GGML_ASSERT(ne03 == ne13);
  6650. GGML_ASSERT(ne2 == ne12);
  6651. GGML_ASSERT(ne3 == ne13);
  6652. // TODO: we don't support permuted src0
  6653. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6654. // dst cannot be transposed or permuted
  6655. GGML_ASSERT(nb0 == sizeof(float));
  6656. GGML_ASSERT(nb0 <= nb1);
  6657. GGML_ASSERT(nb1 <= nb2);
  6658. GGML_ASSERT(nb2 <= nb3);
  6659. GGML_ASSERT(ne0 == ne01);
  6660. GGML_ASSERT(ne1 == ne11);
  6661. GGML_ASSERT(ne2 == ne02);
  6662. GGML_ASSERT(ne3 == ne03);
  6663. // nb01 >= nb00 - src0 is not transposed
  6664. // compute by src0 rows
  6665. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6666. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6667. GGML_ASSERT(nb10 == sizeof(float));
  6668. if (params->ith != 0) {
  6669. return;
  6670. }
  6671. if (params->type == GGML_TASK_INIT) {
  6672. return;
  6673. }
  6674. if (params->type == GGML_TASK_FINALIZE) {
  6675. return;
  6676. }
  6677. #if defined(GGML_USE_CUBLAS)
  6678. const float alpha = 1.0f;
  6679. const float beta = 0.0f;
  6680. const int x_ne = ne01 * ne00;
  6681. const int y_ne = ne11 * ne10;
  6682. const int d_ne = ne11 * ne01;
  6683. size_t x_size, y_size, d_size;
  6684. ggml_fp16_t * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6685. ggml_fp16_t * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6686. float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6687. #endif
  6688. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6689. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6690. #if defined(GGML_USE_CUBLAS)
  6691. // copy src0 while converting src1
  6692. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
  6693. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6694. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + (ne11 * ne10) * (i03 * ne02 + i02);
  6695. {
  6696. size_t id = 0;
  6697. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6698. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6699. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6700. }
  6701. }
  6702. assert(id*sizeof(ggml_fp16_t) <= params->wsize);
  6703. }
  6704. #else
  6705. float * const wdata = params->wdata;
  6706. {
  6707. size_t id = 0;
  6708. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6709. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6710. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6711. }
  6712. }
  6713. assert(id*sizeof(float) <= params->wsize);
  6714. }
  6715. #endif
  6716. #if defined(GGML_USE_CUBLAS)
  6717. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6718. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6719. // copy data to device
  6720. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6721. // compute
  6722. CUBLAS_CHECK(
  6723. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6724. ne01, ne11, ne10,
  6725. &alpha, d_X, CUDA_R_16F, ne00,
  6726. d_Y, CUDA_R_16F, ne10,
  6727. &beta, d_D, CUDA_R_32F, ne01,
  6728. CUBLAS_COMPUTE_32F,
  6729. CUBLAS_GEMM_DEFAULT));
  6730. // copy data to host
  6731. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6732. #elif defined(GGML_USE_CLBLAST)
  6733. const float * x = wdata;
  6734. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6735. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6736. // zT = y * xT
  6737. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6738. ne11, ne01, ne10,
  6739. 1.0f, y, ne10,
  6740. x, ne10,
  6741. 0.0f, d, ne01,
  6742. GGML_TYPE_F32);
  6743. #else
  6744. const float * x = wdata;
  6745. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6746. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6747. // zT = y * xT
  6748. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6749. ne11, ne01, ne10,
  6750. 1.0f, y, ne10,
  6751. x, ne00,
  6752. 0.0f, d, ne01);
  6753. #endif
  6754. }
  6755. }
  6756. #if defined(GGML_USE_CUBLAS)
  6757. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6758. ggml_cuda_pool_free(d_X, x_size);
  6759. ggml_cuda_pool_free(d_Y, y_size);
  6760. ggml_cuda_pool_free(d_D, d_size);
  6761. #endif
  6762. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6763. return;
  6764. }
  6765. #endif
  6766. if (params->type == GGML_TASK_INIT) {
  6767. ggml_fp16_t * const wdata = params->wdata;
  6768. size_t id = 0;
  6769. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6770. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6771. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6772. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6773. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6774. }
  6775. }
  6776. }
  6777. }
  6778. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6779. return;
  6780. }
  6781. if (params->type == GGML_TASK_FINALIZE) {
  6782. return;
  6783. }
  6784. // fp16 -> half the size, so divide by 2
  6785. // TODO: do not support transposed src1
  6786. assert(nb10/2 == sizeof(ggml_fp16_t));
  6787. // parallelize by src0 rows using ggml_vec_dot_f16
  6788. // total rows in src0
  6789. const int nr = ne01*ne02*ne03;
  6790. // rows per thread
  6791. const int dr = (nr + nth - 1)/nth;
  6792. // row range for this thread
  6793. const int ir0 = dr*ith;
  6794. const int ir1 = MIN(ir0 + dr, nr);
  6795. ggml_fp16_t * wdata = params->wdata;
  6796. for (int ir = ir0; ir < ir1; ++ir) {
  6797. // src0 indices
  6798. const int i03 = ir/(ne02*ne01);
  6799. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6800. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6801. const int i13 = i03;
  6802. const int i12 = i02;
  6803. const int i0 = i01;
  6804. const int i2 = i02;
  6805. const int i3 = i03;
  6806. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6807. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6808. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6809. for (int64_t ic = 0; ic < ne11; ++ic) {
  6810. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6811. }
  6812. }
  6813. //int64_t t1 = ggml_time_us();
  6814. //static int64_t acc = 0;
  6815. //acc += t1 - t0;
  6816. //if (t1 - t0 > 10) {
  6817. // printf("\n");
  6818. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6819. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6820. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6821. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6822. //}
  6823. }
  6824. static void ggml_compute_forward_mul_mat_q_f32(
  6825. const struct ggml_compute_params * params,
  6826. const struct ggml_tensor * src0,
  6827. const struct ggml_tensor * src1,
  6828. struct ggml_tensor * dst) {
  6829. int64_t t0 = ggml_perf_time_us();
  6830. UNUSED(t0);
  6831. const int64_t ne00 = src0->ne[0];
  6832. const int64_t ne01 = src0->ne[1];
  6833. const int64_t ne02 = src0->ne[2];
  6834. const int64_t ne03 = src0->ne[3];
  6835. const int64_t ne10 = src1->ne[0];
  6836. const int64_t ne11 = src1->ne[1];
  6837. const int64_t ne12 = src1->ne[2];
  6838. const int64_t ne13 = src1->ne[3];
  6839. const int64_t ne0 = dst->ne[0];
  6840. const int64_t ne1 = dst->ne[1];
  6841. const int64_t ne2 = dst->ne[2];
  6842. const int64_t ne3 = dst->ne[3];
  6843. const int nb00 = src0->nb[0];
  6844. const int nb01 = src0->nb[1];
  6845. const int nb02 = src0->nb[2];
  6846. const int nb03 = src0->nb[3];
  6847. const int nb10 = src1->nb[0];
  6848. const int nb11 = src1->nb[1];
  6849. const int nb12 = src1->nb[2];
  6850. const int nb13 = src1->nb[3];
  6851. const int nb0 = dst->nb[0];
  6852. const int nb1 = dst->nb[1];
  6853. const int nb2 = dst->nb[2];
  6854. const int nb3 = dst->nb[3];
  6855. const int ith = params->ith;
  6856. const int nth = params->nth;
  6857. GGML_ASSERT(ne02 == ne12);
  6858. GGML_ASSERT(ne03 == ne13);
  6859. GGML_ASSERT(ne2 == ne12);
  6860. GGML_ASSERT(ne3 == ne13);
  6861. const enum ggml_type type = src0->type;
  6862. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6863. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6864. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6865. // we don't support permuted src0 or src1
  6866. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6867. GGML_ASSERT(nb10 == sizeof(float));
  6868. // dst cannot be transposed or permuted
  6869. GGML_ASSERT(nb0 == sizeof(float));
  6870. GGML_ASSERT(nb0 <= nb1);
  6871. GGML_ASSERT(nb1 <= nb2);
  6872. GGML_ASSERT(nb2 <= nb3);
  6873. GGML_ASSERT(ne0 == ne01);
  6874. GGML_ASSERT(ne1 == ne11);
  6875. GGML_ASSERT(ne2 == ne02);
  6876. GGML_ASSERT(ne3 == ne03);
  6877. // nb01 >= nb00 - src0 is not transposed
  6878. // compute by src0 rows
  6879. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  6880. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6881. if (params->ith != 0) {
  6882. return;
  6883. }
  6884. if (params->type == GGML_TASK_INIT) {
  6885. return;
  6886. }
  6887. if (params->type == GGML_TASK_FINALIZE) {
  6888. return;
  6889. }
  6890. #if defined(GGML_USE_CUBLAS)
  6891. const float alpha = 1.0f;
  6892. const float beta = 0.0f;
  6893. const int x_ne = ne01 * ne00;
  6894. const int y_ne = ne11 * ne10;
  6895. const int d_ne = ne11 * ne01;
  6896. size_t x_size, y_size, d_size, q_size;
  6897. float * d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6898. float * d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6899. float * d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6900. void * d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6901. const dequantize_row_q_cuda_t dequantize_row_q_cuda = ggml_get_dequantize_row_q_cuda(type);
  6902. GGML_ASSERT(dequantize_row_q_cuda != NULL);
  6903. #else
  6904. float * const wdata = params->wdata;
  6905. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6906. #endif
  6907. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6908. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6909. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6910. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6911. #if defined(GGML_USE_CUBLAS)
  6912. // copy and dequantize on device
  6913. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream2));
  6914. dequantize_row_q_cuda(d_Q, d_X, x_ne, g_cudaStream2);
  6915. CUDA_CHECK(cudaGetLastError());
  6916. CUDA_CHECK(cudaEventRecord(g_cudaEvent, g_cudaStream2));
  6917. #elif defined(GGML_USE_CLBLAST)
  6918. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  6919. #else
  6920. {
  6921. size_t id = 0;
  6922. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6923. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6924. id += ne00;
  6925. }
  6926. assert(id*sizeof(float) <= params->wsize);
  6927. }
  6928. const float * x = wdata;
  6929. #endif
  6930. #if defined(GGML_USE_CUBLAS)
  6931. // copy data to device
  6932. CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
  6933. // wait for dequantization
  6934. CUDA_CHECK(cudaStreamWaitEvent(g_cudaStream, g_cudaEvent, 0));
  6935. // compute
  6936. CUBLAS_CHECK(
  6937. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6938. ne01, ne11, ne10,
  6939. &alpha, d_X, ne00,
  6940. d_Y, ne10,
  6941. &beta, d_D, ne01));
  6942. // copy data to host
  6943. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6944. #elif defined(GGML_USE_CLBLAST)
  6945. // zT = y * xT
  6946. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6947. ne11, ne01, ne10,
  6948. 1.0f, y, ne10,
  6949. x, ne10,
  6950. 0.0f, d, ne01,
  6951. type);
  6952. #else
  6953. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6954. ne11, ne01, ne10,
  6955. 1.0f, y, ne10,
  6956. x, ne00,
  6957. 0.0f, d, ne01);
  6958. #endif
  6959. }
  6960. }
  6961. #if defined(GGML_USE_CUBLAS)
  6962. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6963. ggml_cuda_pool_free(d_X, x_size);
  6964. ggml_cuda_pool_free(d_Y, y_size);
  6965. ggml_cuda_pool_free(d_D, d_size);
  6966. ggml_cuda_pool_free(d_Q, q_size);
  6967. #endif
  6968. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6969. return;
  6970. }
  6971. #endif
  6972. if (params->type == GGML_TASK_INIT) {
  6973. char * wdata = params->wdata;
  6974. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6975. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6976. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6977. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6978. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6979. wdata += row_size;
  6980. }
  6981. }
  6982. }
  6983. return;
  6984. }
  6985. if (params->type == GGML_TASK_FINALIZE) {
  6986. return;
  6987. }
  6988. // parallelize by src0 rows using ggml_vec_dot_q
  6989. // total rows in src0
  6990. const int nr = ne01*ne02*ne03;
  6991. // rows per thread
  6992. const int dr = (nr + nth - 1)/nth;
  6993. // row range for this thread
  6994. const int ir0 = dr*ith;
  6995. const int ir1 = MIN(ir0 + dr, nr);
  6996. void * wdata = params->wdata;
  6997. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  6998. for (int ir = ir0; ir < ir1; ++ir) {
  6999. // src0 indices
  7000. const int i03 = ir/(ne02*ne01);
  7001. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7002. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7003. const int i13 = i03;
  7004. const int i12 = i02;
  7005. const int i0 = i01;
  7006. const int i2 = i02;
  7007. const int i3 = i03;
  7008. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7009. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7010. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7011. assert(ne00 % 32 == 0);
  7012. for (int64_t ic = 0; ic < ne11; ++ic) {
  7013. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7014. }
  7015. }
  7016. //int64_t t1 = ggml_time_us();
  7017. //static int64_t acc = 0;
  7018. //acc += t1 - t0;
  7019. //if (t1 - t0 > 10) {
  7020. // printf("\n");
  7021. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7022. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7023. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7024. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7025. //}
  7026. }
  7027. static void ggml_compute_forward_mul_mat(
  7028. const struct ggml_compute_params * params,
  7029. const struct ggml_tensor * src0,
  7030. const struct ggml_tensor * src1,
  7031. struct ggml_tensor * dst) {
  7032. switch (src0->type) {
  7033. case GGML_TYPE_Q4_0:
  7034. case GGML_TYPE_Q4_1:
  7035. case GGML_TYPE_Q4_2:
  7036. case GGML_TYPE_Q5_0:
  7037. case GGML_TYPE_Q5_1:
  7038. case GGML_TYPE_Q8_0:
  7039. case GGML_TYPE_Q8_1:
  7040. {
  7041. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7042. } break;
  7043. case GGML_TYPE_F16:
  7044. {
  7045. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7046. } break;
  7047. case GGML_TYPE_F32:
  7048. {
  7049. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7050. } break;
  7051. default:
  7052. {
  7053. GGML_ASSERT(false);
  7054. } break;
  7055. }
  7056. }
  7057. // ggml_compute_forward_scale
  7058. static void ggml_compute_forward_scale_f32(
  7059. const struct ggml_compute_params * params,
  7060. const struct ggml_tensor * src0,
  7061. const struct ggml_tensor * src1,
  7062. struct ggml_tensor * dst) {
  7063. GGML_ASSERT(ggml_is_contiguous(src0));
  7064. GGML_ASSERT(ggml_is_contiguous(dst));
  7065. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7066. GGML_ASSERT(ggml_is_scalar(src1));
  7067. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7068. return;
  7069. }
  7070. // scale factor
  7071. const float v = *(float *) src1->data;
  7072. const int ith = params->ith;
  7073. const int nth = params->nth;
  7074. const int nc = src0->ne[0];
  7075. const int nr = ggml_nrows(src0);
  7076. // rows per thread
  7077. const int dr = (nr + nth - 1)/nth;
  7078. // row range for this thread
  7079. const int ir0 = dr*ith;
  7080. const int ir1 = MIN(ir0 + dr, nr);
  7081. for (int i1 = ir0; i1 < ir1; i1++) {
  7082. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7083. }
  7084. }
  7085. static void ggml_compute_forward_scale(
  7086. const struct ggml_compute_params * params,
  7087. const struct ggml_tensor * src0,
  7088. const struct ggml_tensor * src1,
  7089. struct ggml_tensor * dst) {
  7090. switch (src0->type) {
  7091. case GGML_TYPE_F32:
  7092. {
  7093. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7094. } break;
  7095. default:
  7096. {
  7097. GGML_ASSERT(false);
  7098. } break;
  7099. }
  7100. }
  7101. // ggml_compute_forward_cpy
  7102. static void ggml_compute_forward_cpy(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. struct ggml_tensor * dst) {
  7106. ggml_compute_forward_dup(params, src0, dst);
  7107. }
  7108. // ggml_compute_forward_cont
  7109. static void ggml_compute_forward_cont(
  7110. const struct ggml_compute_params * params,
  7111. const struct ggml_tensor * src0,
  7112. struct ggml_tensor * dst) {
  7113. ggml_compute_forward_dup(params, src0, dst);
  7114. }
  7115. // ggml_compute_forward_reshape
  7116. static void ggml_compute_forward_reshape(
  7117. const struct ggml_compute_params * params,
  7118. const struct ggml_tensor * src0,
  7119. struct ggml_tensor * dst) {
  7120. // NOP
  7121. UNUSED(params);
  7122. UNUSED(src0);
  7123. UNUSED(dst);
  7124. }
  7125. // ggml_compute_forward_view
  7126. static void ggml_compute_forward_view(
  7127. const struct ggml_compute_params * params,
  7128. const struct ggml_tensor * src0) {
  7129. // NOP
  7130. UNUSED(params);
  7131. UNUSED(src0);
  7132. }
  7133. // ggml_compute_forward_permute
  7134. static void ggml_compute_forward_permute(
  7135. const struct ggml_compute_params * params,
  7136. const struct ggml_tensor * src0) {
  7137. // NOP
  7138. UNUSED(params);
  7139. UNUSED(src0);
  7140. }
  7141. // ggml_compute_forward_transpose
  7142. static void ggml_compute_forward_transpose(
  7143. const struct ggml_compute_params * params,
  7144. const struct ggml_tensor * src0) {
  7145. // NOP
  7146. UNUSED(params);
  7147. UNUSED(src0);
  7148. }
  7149. // ggml_compute_forward_get_rows
  7150. static void ggml_compute_forward_get_rows_q(
  7151. const struct ggml_compute_params * params,
  7152. const struct ggml_tensor * src0,
  7153. const struct ggml_tensor * src1,
  7154. struct ggml_tensor * dst) {
  7155. assert(params->ith == 0);
  7156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7157. return;
  7158. }
  7159. const int nc = src0->ne[0];
  7160. const int nr = ggml_nelements(src1);
  7161. const enum ggml_type type = src0->type;
  7162. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7163. assert( dst->ne[0] == nc);
  7164. assert( dst->ne[1] == nr);
  7165. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7166. for (int i = 0; i < nr; ++i) {
  7167. const int r = ((int32_t *) src1->data)[i];
  7168. dequantize_row_q(
  7169. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7170. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7171. }
  7172. }
  7173. static void ggml_compute_forward_get_rows_f16(
  7174. const struct ggml_compute_params * params,
  7175. const struct ggml_tensor * src0,
  7176. const struct ggml_tensor * src1,
  7177. struct ggml_tensor * dst) {
  7178. assert(params->ith == 0);
  7179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7180. return;
  7181. }
  7182. const int nc = src0->ne[0];
  7183. const int nr = ggml_nelements(src1);
  7184. assert( dst->ne[0] == nc);
  7185. assert( dst->ne[1] == nr);
  7186. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7187. for (int i = 0; i < nr; ++i) {
  7188. const int r = ((int32_t *) src1->data)[i];
  7189. for (int j = 0; j < nc; ++j) {
  7190. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7191. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7192. }
  7193. }
  7194. }
  7195. static void ggml_compute_forward_get_rows_f32(
  7196. const struct ggml_compute_params * params,
  7197. const struct ggml_tensor * src0,
  7198. const struct ggml_tensor * src1,
  7199. struct ggml_tensor * dst) {
  7200. assert(params->ith == 0);
  7201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7202. return;
  7203. }
  7204. const int nc = src0->ne[0];
  7205. const int nr = ggml_nelements(src1);
  7206. assert( dst->ne[0] == nc);
  7207. assert( dst->ne[1] == nr);
  7208. assert(src0->nb[0] == sizeof(float));
  7209. for (int i = 0; i < nr; ++i) {
  7210. const int r = ((int32_t *) src1->data)[i];
  7211. ggml_vec_cpy_f32(nc,
  7212. (float *) ((char *) dst->data + i*dst->nb[1]),
  7213. (float *) ((char *) src0->data + r*src0->nb[1]));
  7214. }
  7215. }
  7216. static void ggml_compute_forward_get_rows(
  7217. const struct ggml_compute_params * params,
  7218. const struct ggml_tensor * src0,
  7219. const struct ggml_tensor * src1,
  7220. struct ggml_tensor * dst) {
  7221. switch (src0->type) {
  7222. case GGML_TYPE_Q4_0:
  7223. case GGML_TYPE_Q4_1:
  7224. case GGML_TYPE_Q4_2:
  7225. case GGML_TYPE_Q5_0:
  7226. case GGML_TYPE_Q5_1:
  7227. case GGML_TYPE_Q8_0:
  7228. case GGML_TYPE_Q8_1:
  7229. {
  7230. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7231. } break;
  7232. case GGML_TYPE_F16:
  7233. {
  7234. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7235. } break;
  7236. case GGML_TYPE_F32:
  7237. {
  7238. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7239. } break;
  7240. default:
  7241. {
  7242. GGML_ASSERT(false);
  7243. } break;
  7244. }
  7245. //static bool first = true;
  7246. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7247. //if (first) {
  7248. // first = false;
  7249. //} else {
  7250. // for (int k = 0; k < dst->ne[1]; ++k) {
  7251. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7252. // for (int i = 0; i < 16; ++i) {
  7253. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7254. // }
  7255. // printf("\n");
  7256. // }
  7257. // printf("\n");
  7258. // }
  7259. // printf("\n");
  7260. // exit(0);
  7261. //}
  7262. }
  7263. // ggml_compute_forward_diag_mask_inf
  7264. static void ggml_compute_forward_diag_mask_inf_f32(
  7265. const struct ggml_compute_params * params,
  7266. const struct ggml_tensor * src0,
  7267. const struct ggml_tensor * src1,
  7268. struct ggml_tensor * dst) {
  7269. assert(params->ith == 0);
  7270. assert(src1->type == GGML_TYPE_I32);
  7271. assert(ggml_nelements(src1) == 1);
  7272. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7273. return;
  7274. }
  7275. const int n_past = ((int32_t *) src1->data)[0];
  7276. // TODO: handle transposed/permuted matrices
  7277. const int n = ggml_nrows(src0);
  7278. const int nc = src0->ne[0];
  7279. const int nr = src0->ne[1];
  7280. const int nz = n/nr;
  7281. assert( dst->nb[0] == sizeof(float));
  7282. assert(src0->nb[0] == sizeof(float));
  7283. for (int k = 0; k < nz; k++) {
  7284. for (int j = 0; j < nr; j++) {
  7285. for (int i = n_past; i < nc; i++) {
  7286. if (i > n_past + j) {
  7287. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7288. }
  7289. }
  7290. }
  7291. }
  7292. }
  7293. static void ggml_compute_forward_diag_mask_inf(
  7294. const struct ggml_compute_params * params,
  7295. const struct ggml_tensor * src0,
  7296. const struct ggml_tensor * src1,
  7297. struct ggml_tensor * dst) {
  7298. switch (src0->type) {
  7299. case GGML_TYPE_F32:
  7300. {
  7301. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7302. } break;
  7303. default:
  7304. {
  7305. GGML_ASSERT(false);
  7306. } break;
  7307. }
  7308. }
  7309. // ggml_compute_forward_soft_max
  7310. static void ggml_compute_forward_soft_max_f32(
  7311. const struct ggml_compute_params * params,
  7312. const struct ggml_tensor * src0,
  7313. struct ggml_tensor * dst) {
  7314. GGML_ASSERT(ggml_is_contiguous(src0));
  7315. GGML_ASSERT(ggml_is_contiguous(dst));
  7316. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7318. return;
  7319. }
  7320. // TODO: handle transposed/permuted matrices
  7321. const int ith = params->ith;
  7322. const int nth = params->nth;
  7323. const int nc = src0->ne[0];
  7324. const int nr = ggml_nrows(src0);
  7325. // rows per thread
  7326. const int dr = (nr + nth - 1)/nth;
  7327. // row range for this thread
  7328. const int ir0 = dr*ith;
  7329. const int ir1 = MIN(ir0 + dr, nr);
  7330. for (int i1 = ir0; i1 < ir1; i1++) {
  7331. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7332. #ifndef NDEBUG
  7333. for (int i = 0; i < nc; ++i) {
  7334. //printf("p[%d] = %f\n", i, p[i]);
  7335. assert(!isnan(p[i]));
  7336. }
  7337. #endif
  7338. float max = -INFINITY;
  7339. ggml_vec_max_f32(nc, &max, p);
  7340. ggml_float sum = 0.0;
  7341. uint16_t scvt;
  7342. for (int i = 0; i < nc; i++) {
  7343. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7344. if (p[i] == -INFINITY) {
  7345. p[i] = 0.0f;
  7346. } else {
  7347. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7348. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7349. memcpy(&scvt, &s, sizeof(scvt));
  7350. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7351. sum += (ggml_float)val;
  7352. p[i] = val;
  7353. }
  7354. }
  7355. assert(sum > 0.0);
  7356. sum = 1.0/sum;
  7357. ggml_vec_scale_f32(nc, p, sum);
  7358. #ifndef NDEBUG
  7359. for (int i = 0; i < nc; ++i) {
  7360. assert(!isnan(p[i]));
  7361. assert(!isinf(p[i]));
  7362. }
  7363. #endif
  7364. }
  7365. }
  7366. static void ggml_compute_forward_soft_max(
  7367. const struct ggml_compute_params * params,
  7368. const struct ggml_tensor * src0,
  7369. struct ggml_tensor * dst) {
  7370. switch (src0->type) {
  7371. case GGML_TYPE_F32:
  7372. {
  7373. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7374. } break;
  7375. default:
  7376. {
  7377. GGML_ASSERT(false);
  7378. } break;
  7379. }
  7380. }
  7381. // ggml_compute_forward_alibi
  7382. static void ggml_compute_forward_alibi_f32(
  7383. const struct ggml_compute_params * params,
  7384. const struct ggml_tensor * src0,
  7385. const struct ggml_tensor * src1,
  7386. struct ggml_tensor * dst) {
  7387. assert(params->ith == 0);
  7388. assert(src1->type == GGML_TYPE_I32);
  7389. assert(ggml_nelements(src1) == 2);
  7390. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7391. return;
  7392. }
  7393. const int n_past = ((int32_t *) src1->data)[0];
  7394. const int n_head = ((int32_t *) src1->data)[1];
  7395. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7396. const int ne1 = src0->ne[1]; // seq_len_without_past
  7397. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7398. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7399. const int n = ggml_nrows(src0);
  7400. const int ne2_ne3 = n/ne1; // ne2*ne3
  7401. const int nb0 = src0->nb[0];
  7402. const int nb1 = src0->nb[1];
  7403. const int nb2 = src0->nb[2];
  7404. //const int nb3 = src0->nb[3];
  7405. assert(nb0 == sizeof(float));
  7406. assert(ne1 + n_past == ne0); (void) n_past;
  7407. // add alibi to src0 (KQ_scaled)
  7408. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7409. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7410. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7411. for (int i = 0; i < ne0; i++) {
  7412. for (int j = 0; j < ne1; j++) {
  7413. for (int k = 0; k < ne2_ne3; k++) {
  7414. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7415. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7416. // TODO: k*nb2 or k*nb3
  7417. float m_k;
  7418. if (k < n_heads_log2_floor) {
  7419. m_k = powf(m0, k + 1);
  7420. } else {
  7421. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7422. }
  7423. pdst[0] = (j+1) * m_k + src[0];
  7424. }
  7425. }
  7426. }
  7427. }
  7428. static void ggml_compute_forward_alibi_f16(
  7429. const struct ggml_compute_params * params,
  7430. const struct ggml_tensor * src0,
  7431. const struct ggml_tensor * src1,
  7432. struct ggml_tensor * dst) {
  7433. assert(params->ith == 0);
  7434. assert(src1->type == GGML_TYPE_I32);
  7435. assert(ggml_nelements(src1) == 2);
  7436. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7437. return;
  7438. }
  7439. const int n_past = ((int32_t *) src1->data)[0];
  7440. const int n_head = ((int32_t *) src1->data)[1];
  7441. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7442. const int ne1 = src0->ne[1]; // seq_len_without_past
  7443. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7444. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7445. const int n = ggml_nrows(src0);
  7446. const int ne2_ne3 = n/ne1; // ne2*ne3
  7447. const int nb0 = src0->nb[0];
  7448. const int nb1 = src0->nb[1];
  7449. const int nb2 = src0->nb[2];
  7450. //const int nb3 = src0->nb[3];
  7451. assert(nb0 == sizeof(ggml_fp16_t));
  7452. assert(ne1 + n_past == ne0); (void) n_past;
  7453. // add alibi to src0 (KQ_scaled)
  7454. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7455. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7456. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7457. for (int i = 0; i < ne0; i++) {
  7458. for (int j = 0; j < ne1; j++) {
  7459. for (int k = 0; k < ne2_ne3; k++) {
  7460. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7461. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7462. // TODO: k*nb2 or k*nb3
  7463. float m_k;
  7464. if (k < n_heads_log2_floor) {
  7465. m_k = powf(m0, k + 1);
  7466. } else {
  7467. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7468. }
  7469. // we return F32
  7470. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7471. }
  7472. }
  7473. }
  7474. }
  7475. static void ggml_compute_forward_alibi(
  7476. const struct ggml_compute_params * params,
  7477. const struct ggml_tensor * src0,
  7478. const struct ggml_tensor * src1,
  7479. struct ggml_tensor * dst) {
  7480. switch (src0->type) {
  7481. case GGML_TYPE_F16:
  7482. {
  7483. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7484. } break;
  7485. case GGML_TYPE_F32:
  7486. {
  7487. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7488. } break;
  7489. case GGML_TYPE_Q4_0:
  7490. case GGML_TYPE_Q4_1:
  7491. case GGML_TYPE_Q4_2:
  7492. case GGML_TYPE_Q5_0:
  7493. case GGML_TYPE_Q5_1:
  7494. case GGML_TYPE_Q8_0:
  7495. case GGML_TYPE_Q8_1:
  7496. case GGML_TYPE_I8:
  7497. case GGML_TYPE_I16:
  7498. case GGML_TYPE_I32:
  7499. case GGML_TYPE_COUNT:
  7500. {
  7501. GGML_ASSERT(false);
  7502. } break;
  7503. }
  7504. }
  7505. // ggml_compute_forward_rope
  7506. static void ggml_compute_forward_rope_f32(
  7507. const struct ggml_compute_params * params,
  7508. const struct ggml_tensor * src0,
  7509. const struct ggml_tensor * src1,
  7510. struct ggml_tensor * dst) {
  7511. assert(src1->type == GGML_TYPE_I32);
  7512. assert(ggml_nelements(src1) == 3);
  7513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7514. return;
  7515. }
  7516. const int n_past = ((int32_t *) src1->data)[0];
  7517. const int n_dims = ((int32_t *) src1->data)[1];
  7518. const int mode = ((int32_t *) src1->data)[2];
  7519. //const int64_t ne0 = src0->ne[0];
  7520. const int64_t ne1 = src0->ne[1];
  7521. const int64_t ne2 = src0->ne[2];
  7522. const int64_t ne3 = src0->ne[3];
  7523. const int nb0 = src0->nb[0];
  7524. const int nb1 = src0->nb[1];
  7525. const int nb2 = src0->nb[2];
  7526. const int nb3 = src0->nb[3];
  7527. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7528. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7529. assert(nb0 == sizeof(float));
  7530. const int ith = params->ith;
  7531. const int nth = params->nth;
  7532. const int nr = ggml_nrows(src0);
  7533. // rows per thread
  7534. const int dr = (nr + nth - 1)/nth;
  7535. // row range for this thread
  7536. const int ir0 = dr*ith;
  7537. const int ir1 = MIN(ir0 + dr, nr);
  7538. // row index used to determine which thread to use
  7539. int ir = 0;
  7540. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7541. const bool is_neox = mode & 2;
  7542. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7543. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7544. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7545. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7546. if (ir++ < ir0) continue;
  7547. if (ir > ir1) break;
  7548. float theta = (float)p;
  7549. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7550. const float cos_theta = cosf(theta);
  7551. const float sin_theta = sinf(theta);
  7552. theta *= theta_scale;
  7553. if (!is_neox) {
  7554. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7555. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7556. const float x0 = src[0];
  7557. const float x1 = src[1];
  7558. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7559. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7560. } else {
  7561. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7562. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7563. const float x0 = src[0];
  7564. const float x1 = src[n_dims/2];
  7565. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7566. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7567. }
  7568. }
  7569. }
  7570. }
  7571. }
  7572. }
  7573. static void ggml_compute_forward_rope_f16(
  7574. const struct ggml_compute_params * params,
  7575. const struct ggml_tensor * src0,
  7576. const struct ggml_tensor * src1,
  7577. struct ggml_tensor * dst) {
  7578. assert(src1->type == GGML_TYPE_I32);
  7579. assert(ggml_nelements(src1) == 3);
  7580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7581. return;
  7582. }
  7583. const int n_past = ((int32_t *) src1->data)[0];
  7584. const int n_dims = ((int32_t *) src1->data)[1];
  7585. const int mode = ((int32_t *) src1->data)[2];
  7586. //const int64_t ne0 = src0->ne[0];
  7587. const int64_t ne1 = src0->ne[1];
  7588. const int64_t ne2 = src0->ne[2];
  7589. const int64_t ne3 = src0->ne[3];
  7590. const int nb0 = src0->nb[0];
  7591. const int nb1 = src0->nb[1];
  7592. const int nb2 = src0->nb[2];
  7593. const int nb3 = src0->nb[3];
  7594. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7595. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7596. assert(nb0 == sizeof(ggml_fp16_t));
  7597. const int ith = params->ith;
  7598. const int nth = params->nth;
  7599. const int nr = ggml_nrows(src0);
  7600. // rows per thread
  7601. const int dr = (nr + nth - 1)/nth;
  7602. // row range for this thread
  7603. const int ir0 = dr*ith;
  7604. const int ir1 = MIN(ir0 + dr, nr);
  7605. // row index used to determine which thread to use
  7606. int ir = 0;
  7607. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7608. const bool is_neox = mode & 2;
  7609. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7610. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7611. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7612. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7613. if (ir++ < ir0) continue;
  7614. if (ir > ir1) break;
  7615. float theta = (float)p;
  7616. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7617. const float cos_theta = cosf(theta);
  7618. const float sin_theta = sinf(theta);
  7619. theta *= theta_scale;
  7620. if (!is_neox) {
  7621. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7622. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7623. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7624. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7625. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7626. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7627. } else {
  7628. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7629. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7630. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7631. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7632. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7633. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7634. }
  7635. }
  7636. }
  7637. }
  7638. }
  7639. }
  7640. static void ggml_compute_forward_rope(
  7641. const struct ggml_compute_params * params,
  7642. const struct ggml_tensor * src0,
  7643. const struct ggml_tensor * src1,
  7644. struct ggml_tensor * dst) {
  7645. switch (src0->type) {
  7646. case GGML_TYPE_F16:
  7647. {
  7648. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7649. } break;
  7650. case GGML_TYPE_F32:
  7651. {
  7652. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7653. } break;
  7654. default:
  7655. {
  7656. GGML_ASSERT(false);
  7657. } break;
  7658. }
  7659. }
  7660. // ggml_compute_forward_conv_1d_1s
  7661. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7662. const struct ggml_compute_params * params,
  7663. const struct ggml_tensor * src0,
  7664. const struct ggml_tensor * src1,
  7665. struct ggml_tensor * dst) {
  7666. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7667. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7668. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7669. int64_t t0 = ggml_perf_time_us();
  7670. UNUSED(t0);
  7671. const int64_t ne00 = src0->ne[0];
  7672. const int64_t ne01 = src0->ne[1];
  7673. const int64_t ne02 = src0->ne[2];
  7674. //const int64_t ne03 = src0->ne[3];
  7675. const int64_t ne10 = src1->ne[0];
  7676. const int64_t ne11 = src1->ne[1];
  7677. //const int64_t ne12 = src1->ne[2];
  7678. //const int64_t ne13 = src1->ne[3];
  7679. //const int64_t ne0 = dst->ne[0];
  7680. //const int64_t ne1 = dst->ne[1];
  7681. //const int64_t ne2 = dst->ne[2];
  7682. //const int64_t ne3 = dst->ne[3];
  7683. //const int64_t ne = ne0*ne1*ne2*ne3;
  7684. const int nb00 = src0->nb[0];
  7685. const int nb01 = src0->nb[1];
  7686. const int nb02 = src0->nb[2];
  7687. //const int nb03 = src0->nb[3];
  7688. const int nb10 = src1->nb[0];
  7689. const int nb11 = src1->nb[1];
  7690. //const int nb12 = src1->nb[2];
  7691. //const int nb13 = src1->nb[3];
  7692. //const int nb0 = dst->nb[0];
  7693. const int nb1 = dst->nb[1];
  7694. //const int nb2 = dst->nb[2];
  7695. //const int nb3 = dst->nb[3];
  7696. const int ith = params->ith;
  7697. const int nth = params->nth;
  7698. const int nk = ne00;
  7699. const int nh = nk/2;
  7700. const int ew0 = ggml_up32(ne01);
  7701. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7702. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7703. GGML_ASSERT(nb10 == sizeof(float));
  7704. if (params->type == GGML_TASK_INIT) {
  7705. // TODO: fix this memset (wsize is overestimated)
  7706. memset(params->wdata, 0, params->wsize);
  7707. // prepare kernel data (src0)
  7708. {
  7709. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7710. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7711. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7712. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7713. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7714. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7715. dst_data[i00*ew0 + i01] = src[i00];
  7716. }
  7717. }
  7718. }
  7719. }
  7720. // prepare source data (src1)
  7721. {
  7722. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7723. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7724. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7725. ggml_fp16_t * dst_data = wdata;
  7726. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7727. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7728. }
  7729. }
  7730. }
  7731. return;
  7732. }
  7733. if (params->type == GGML_TASK_FINALIZE) {
  7734. return;
  7735. }
  7736. // total rows in dst
  7737. const int nr = ne02;
  7738. // rows per thread
  7739. const int dr = (nr + nth - 1)/nth;
  7740. // row range for this thread
  7741. const int ir0 = dr*ith;
  7742. const int ir1 = MIN(ir0 + dr, nr);
  7743. for (int i1 = ir0; i1 < ir1; i1++) {
  7744. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7745. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7746. dst_data[i0] = 0;
  7747. for (int k = -nh; k <= nh; k++) {
  7748. float v = 0.0f;
  7749. ggml_vec_dot_f16(ew0, &v,
  7750. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7751. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7752. dst_data[i0] += v;
  7753. }
  7754. }
  7755. }
  7756. }
  7757. static void ggml_compute_forward_conv_1d_1s_f32(
  7758. const struct ggml_compute_params * params,
  7759. const struct ggml_tensor * src0,
  7760. const struct ggml_tensor * src1,
  7761. struct ggml_tensor * dst) {
  7762. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7763. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7764. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7765. int64_t t0 = ggml_perf_time_us();
  7766. UNUSED(t0);
  7767. const int64_t ne00 = src0->ne[0];
  7768. const int64_t ne01 = src0->ne[1];
  7769. const int64_t ne02 = src0->ne[2];
  7770. //const int64_t ne03 = src0->ne[3];
  7771. const int64_t ne10 = src1->ne[0];
  7772. const int64_t ne11 = src1->ne[1];
  7773. //const int64_t ne12 = src1->ne[2];
  7774. //const int64_t ne13 = src1->ne[3];
  7775. //const int64_t ne0 = dst->ne[0];
  7776. //const int64_t ne1 = dst->ne[1];
  7777. //const int64_t ne2 = dst->ne[2];
  7778. //const int64_t ne3 = dst->ne[3];
  7779. //const int64_t ne = ne0*ne1*ne2*ne3;
  7780. const int nb00 = src0->nb[0];
  7781. const int nb01 = src0->nb[1];
  7782. const int nb02 = src0->nb[2];
  7783. //const int nb03 = src0->nb[3];
  7784. const int nb10 = src1->nb[0];
  7785. const int nb11 = src1->nb[1];
  7786. //const int nb12 = src1->nb[2];
  7787. //const int nb13 = src1->nb[3];
  7788. //const int nb0 = dst->nb[0];
  7789. const int nb1 = dst->nb[1];
  7790. //const int nb2 = dst->nb[2];
  7791. //const int nb3 = dst->nb[3];
  7792. const int ith = params->ith;
  7793. const int nth = params->nth;
  7794. const int nk = ne00;
  7795. const int nh = nk/2;
  7796. const int ew0 = ggml_up32(ne01);
  7797. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7798. GGML_ASSERT(nb00 == sizeof(float));
  7799. GGML_ASSERT(nb10 == sizeof(float));
  7800. if (params->type == GGML_TASK_INIT) {
  7801. // TODO: fix this memset (wsize is overestimated)
  7802. memset(params->wdata, 0, params->wsize);
  7803. // prepare kernel data (src0)
  7804. {
  7805. float * const wdata = (float *) params->wdata + 0;
  7806. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7807. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7808. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7809. float * dst_data = wdata + i02*ew0*ne00;
  7810. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7811. dst_data[i00*ew0 + i01] = src[i00];
  7812. }
  7813. }
  7814. }
  7815. }
  7816. // prepare source data (src1)
  7817. {
  7818. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7819. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7820. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7821. float * dst_data = wdata;
  7822. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7823. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7824. }
  7825. }
  7826. }
  7827. return;
  7828. }
  7829. if (params->type == GGML_TASK_FINALIZE) {
  7830. return;
  7831. }
  7832. // total rows in dst
  7833. const int nr = ne02;
  7834. // rows per thread
  7835. const int dr = (nr + nth - 1)/nth;
  7836. // row range for this thread
  7837. const int ir0 = dr*ith;
  7838. const int ir1 = MIN(ir0 + dr, nr);
  7839. for (int i1 = ir0; i1 < ir1; i1++) {
  7840. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7841. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7842. dst_data[i0] = 0;
  7843. for (int k = -nh; k <= nh; k++) {
  7844. float v = 0.0f;
  7845. ggml_vec_dot_f32(ew0, &v,
  7846. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7847. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7848. dst_data[i0] += v;
  7849. }
  7850. }
  7851. }
  7852. }
  7853. static void ggml_compute_forward_conv_1d_1s(
  7854. const struct ggml_compute_params * params,
  7855. const struct ggml_tensor * src0,
  7856. const struct ggml_tensor * src1,
  7857. struct ggml_tensor * dst) {
  7858. switch (src0->type) {
  7859. case GGML_TYPE_F16:
  7860. {
  7861. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7862. } break;
  7863. case GGML_TYPE_F32:
  7864. {
  7865. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7866. } break;
  7867. default:
  7868. {
  7869. GGML_ASSERT(false);
  7870. } break;
  7871. }
  7872. }
  7873. // ggml_compute_forward_conv_1d_2s
  7874. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7875. const struct ggml_compute_params * params,
  7876. const struct ggml_tensor * src0,
  7877. const struct ggml_tensor * src1,
  7878. struct ggml_tensor * dst) {
  7879. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7880. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7881. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7882. int64_t t0 = ggml_perf_time_us();
  7883. UNUSED(t0);
  7884. const int64_t ne00 = src0->ne[0];
  7885. const int64_t ne01 = src0->ne[1];
  7886. const int64_t ne02 = src0->ne[2];
  7887. //const int64_t ne03 = src0->ne[3];
  7888. const int64_t ne10 = src1->ne[0];
  7889. const int64_t ne11 = src1->ne[1];
  7890. //const int64_t ne12 = src1->ne[2];
  7891. //const int64_t ne13 = src1->ne[3];
  7892. //const int64_t ne0 = dst->ne[0];
  7893. //const int64_t ne1 = dst->ne[1];
  7894. //const int64_t ne2 = dst->ne[2];
  7895. //const int64_t ne3 = dst->ne[3];
  7896. //const int64_t ne = ne0*ne1*ne2*ne3;
  7897. const int nb00 = src0->nb[0];
  7898. const int nb01 = src0->nb[1];
  7899. const int nb02 = src0->nb[2];
  7900. //const int nb03 = src0->nb[3];
  7901. const int nb10 = src1->nb[0];
  7902. const int nb11 = src1->nb[1];
  7903. //const int nb12 = src1->nb[2];
  7904. //const int nb13 = src1->nb[3];
  7905. //const int nb0 = dst->nb[0];
  7906. const int nb1 = dst->nb[1];
  7907. //const int nb2 = dst->nb[2];
  7908. //const int nb3 = dst->nb[3];
  7909. const int ith = params->ith;
  7910. const int nth = params->nth;
  7911. const int nk = ne00;
  7912. const int nh = nk/2;
  7913. const int ew0 = ggml_up32(ne01);
  7914. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7915. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7916. GGML_ASSERT(nb10 == sizeof(float));
  7917. if (params->type == GGML_TASK_INIT) {
  7918. // TODO: fix this memset (wsize is overestimated)
  7919. memset(params->wdata, 0, params->wsize);
  7920. // prepare kernel data (src0)
  7921. {
  7922. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7923. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7924. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7925. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7926. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7927. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7928. dst_data[i00*ew0 + i01] = src[i00];
  7929. }
  7930. }
  7931. }
  7932. }
  7933. // prepare source data (src1)
  7934. {
  7935. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7936. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7937. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7938. ggml_fp16_t * dst_data = wdata;
  7939. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7940. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7941. }
  7942. }
  7943. }
  7944. return;
  7945. }
  7946. if (params->type == GGML_TASK_FINALIZE) {
  7947. return;
  7948. }
  7949. // total rows in dst
  7950. const int nr = ne02;
  7951. // rows per thread
  7952. const int dr = (nr + nth - 1)/nth;
  7953. // row range for this thread
  7954. const int ir0 = dr*ith;
  7955. const int ir1 = MIN(ir0 + dr, nr);
  7956. for (int i1 = ir0; i1 < ir1; i1++) {
  7957. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7958. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7959. dst_data[i0/2] = 0;
  7960. for (int k = -nh; k <= nh; k++) {
  7961. float v = 0.0f;
  7962. ggml_vec_dot_f16(ew0, &v,
  7963. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7964. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7965. dst_data[i0/2] += v;
  7966. }
  7967. }
  7968. }
  7969. }
  7970. static void ggml_compute_forward_conv_1d_2s_f32(
  7971. const struct ggml_compute_params * params,
  7972. const struct ggml_tensor * src0,
  7973. const struct ggml_tensor * src1,
  7974. struct ggml_tensor * dst) {
  7975. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7976. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7977. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7978. int64_t t0 = ggml_perf_time_us();
  7979. UNUSED(t0);
  7980. const int64_t ne00 = src0->ne[0];
  7981. const int64_t ne01 = src0->ne[1];
  7982. const int64_t ne02 = src0->ne[2];
  7983. //const int64_t ne03 = src0->ne[3];
  7984. const int64_t ne10 = src1->ne[0];
  7985. const int64_t ne11 = src1->ne[1];
  7986. //const int64_t ne12 = src1->ne[2];
  7987. //const int64_t ne13 = src1->ne[3];
  7988. //const int64_t ne0 = dst->ne[0];
  7989. //const int64_t ne1 = dst->ne[1];
  7990. //const int64_t ne2 = dst->ne[2];
  7991. //const int64_t ne3 = dst->ne[3];
  7992. //const int64_t ne = ne0*ne1*ne2*ne3;
  7993. const int nb00 = src0->nb[0];
  7994. const int nb01 = src0->nb[1];
  7995. const int nb02 = src0->nb[2];
  7996. //const int nb03 = src0->nb[3];
  7997. const int nb10 = src1->nb[0];
  7998. const int nb11 = src1->nb[1];
  7999. //const int nb12 = src1->nb[2];
  8000. //const int nb13 = src1->nb[3];
  8001. //const int nb0 = dst->nb[0];
  8002. const int nb1 = dst->nb[1];
  8003. //const int nb2 = dst->nb[2];
  8004. //const int nb3 = dst->nb[3];
  8005. const int ith = params->ith;
  8006. const int nth = params->nth;
  8007. const int nk = ne00;
  8008. const int nh = nk/2;
  8009. const int ew0 = ggml_up32(ne01);
  8010. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8011. GGML_ASSERT(nb00 == sizeof(float));
  8012. GGML_ASSERT(nb10 == sizeof(float));
  8013. if (params->type == GGML_TASK_INIT) {
  8014. // TODO: fix this memset (wsize is overestimated)
  8015. memset(params->wdata, 0, params->wsize);
  8016. // prepare kernel data (src0)
  8017. {
  8018. float * const wdata = (float *) params->wdata + 0;
  8019. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8020. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8021. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8022. float * dst_data = wdata + i02*ew0*ne00;
  8023. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8024. dst_data[i00*ew0 + i01] = src[i00];
  8025. }
  8026. }
  8027. }
  8028. }
  8029. // prepare source data (src1)
  8030. {
  8031. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8032. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8033. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8034. float * dst_data = wdata;
  8035. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8036. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8037. }
  8038. }
  8039. }
  8040. return;
  8041. }
  8042. if (params->type == GGML_TASK_FINALIZE) {
  8043. return;
  8044. }
  8045. // total rows in dst
  8046. const int nr = ne02;
  8047. // rows per thread
  8048. const int dr = (nr + nth - 1)/nth;
  8049. // row range for this thread
  8050. const int ir0 = dr*ith;
  8051. const int ir1 = MIN(ir0 + dr, nr);
  8052. for (int i1 = ir0; i1 < ir1; i1++) {
  8053. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8054. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8055. dst_data[i0/2] = 0;
  8056. for (int k = -nh; k <= nh; k++) {
  8057. float v = 0.0f;
  8058. ggml_vec_dot_f32(ew0, &v,
  8059. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8060. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8061. dst_data[i0/2] += v;
  8062. }
  8063. }
  8064. }
  8065. }
  8066. static void ggml_compute_forward_conv_1d_2s(
  8067. const struct ggml_compute_params * params,
  8068. const struct ggml_tensor * src0,
  8069. const struct ggml_tensor * src1,
  8070. struct ggml_tensor * dst) {
  8071. switch (src0->type) {
  8072. case GGML_TYPE_F16:
  8073. {
  8074. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8075. } break;
  8076. case GGML_TYPE_F32:
  8077. {
  8078. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8079. } break;
  8080. default:
  8081. {
  8082. GGML_ASSERT(false);
  8083. } break;
  8084. }
  8085. }
  8086. // ggml_compute_forward_flash_attn
  8087. static void ggml_compute_forward_flash_attn_f32(
  8088. const struct ggml_compute_params * params,
  8089. const struct ggml_tensor * q,
  8090. const struct ggml_tensor * k,
  8091. const struct ggml_tensor * v,
  8092. const bool masked,
  8093. struct ggml_tensor * dst) {
  8094. int64_t t0 = ggml_perf_time_us();
  8095. UNUSED(t0);
  8096. const int64_t neq0 = q->ne[0];
  8097. const int64_t neq1 = q->ne[1];
  8098. const int64_t neq2 = q->ne[2];
  8099. const int64_t neq3 = q->ne[3];
  8100. const int64_t nek0 = k->ne[0];
  8101. const int64_t nek1 = k->ne[1];
  8102. //const int64_t nek2 = k->ne[2];
  8103. //const int64_t nek3 = k->ne[3];
  8104. //const int64_t nev0 = v->ne[0];
  8105. const int64_t nev1 = v->ne[1];
  8106. //const int64_t nev2 = v->ne[2];
  8107. //const int64_t nev3 = v->ne[3];
  8108. const int64_t ne0 = dst->ne[0];
  8109. const int64_t ne1 = dst->ne[1];
  8110. //const int64_t ne2 = dst->ne[2];
  8111. //const int64_t ne3 = dst->ne[3];
  8112. const int nbk0 = k->nb[0];
  8113. const int nbk1 = k->nb[1];
  8114. const int nbk2 = k->nb[2];
  8115. const int nbk3 = k->nb[3];
  8116. const int nbq0 = q->nb[0];
  8117. const int nbq1 = q->nb[1];
  8118. const int nbq2 = q->nb[2];
  8119. const int nbq3 = q->nb[3];
  8120. const int nbv0 = v->nb[0];
  8121. const int nbv1 = v->nb[1];
  8122. const int nbv2 = v->nb[2];
  8123. const int nbv3 = v->nb[3];
  8124. const int nb0 = dst->nb[0];
  8125. const int nb1 = dst->nb[1];
  8126. const int nb2 = dst->nb[2];
  8127. const int nb3 = dst->nb[3];
  8128. const int ith = params->ith;
  8129. const int nth = params->nth;
  8130. const int64_t D = neq0;
  8131. const int64_t N = neq1;
  8132. const int64_t P = nek1 - N;
  8133. const int64_t M = P + N;
  8134. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8135. GGML_ASSERT(ne0 == D);
  8136. GGML_ASSERT(ne1 == N);
  8137. GGML_ASSERT(P >= 0);
  8138. GGML_ASSERT(nbq0 == sizeof(float));
  8139. GGML_ASSERT(nbk0 == sizeof(float));
  8140. GGML_ASSERT(nbv0 == sizeof(float));
  8141. GGML_ASSERT(neq0 == D);
  8142. GGML_ASSERT(nek0 == D);
  8143. GGML_ASSERT(nev1 == D);
  8144. GGML_ASSERT(neq1 == N);
  8145. GGML_ASSERT(nek1 == N + P);
  8146. GGML_ASSERT(nev1 == D);
  8147. // dst cannot be transposed or permuted
  8148. GGML_ASSERT(nb0 == sizeof(float));
  8149. GGML_ASSERT(nb0 <= nb1);
  8150. GGML_ASSERT(nb1 <= nb2);
  8151. GGML_ASSERT(nb2 <= nb3);
  8152. if (params->type == GGML_TASK_INIT) {
  8153. return;
  8154. }
  8155. if (params->type == GGML_TASK_FINALIZE) {
  8156. return;
  8157. }
  8158. // parallelize by q rows using ggml_vec_dot_f32
  8159. // total rows in q
  8160. const int nr = neq1*neq2*neq3;
  8161. // rows per thread
  8162. const int dr = (nr + nth - 1)/nth;
  8163. // row range for this thread
  8164. const int ir0 = dr*ith;
  8165. const int ir1 = MIN(ir0 + dr, nr);
  8166. const float scale = 1.0f/sqrtf(D);
  8167. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8168. for (int ir = ir0; ir < ir1; ++ir) {
  8169. // q indices
  8170. const int iq3 = ir/(neq2*neq1);
  8171. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8172. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8173. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8174. for (int i = M; i < Mup; ++i) {
  8175. S[i] = -INFINITY;
  8176. }
  8177. for (int64_t ic = 0; ic < nek1; ++ic) {
  8178. // k indices
  8179. const int ik3 = iq3;
  8180. const int ik2 = iq2;
  8181. const int ik1 = ic;
  8182. // S indices
  8183. const int i1 = ik1;
  8184. ggml_vec_dot_f32(neq0,
  8185. S + i1,
  8186. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8187. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8188. }
  8189. // scale
  8190. ggml_vec_scale_f32(nek1, S, scale);
  8191. if (masked) {
  8192. for (int64_t i = P; i < M; i++) {
  8193. if (i > P + iq1) {
  8194. S[i] = -INFINITY;
  8195. }
  8196. }
  8197. }
  8198. // softmax
  8199. {
  8200. float max = -INFINITY;
  8201. ggml_vec_max_f32(M, &max, S);
  8202. ggml_float sum = 0.0;
  8203. {
  8204. #ifdef GGML_SOFT_MAX_ACCELERATE
  8205. max = -max;
  8206. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8207. vvexpf(S, S, &Mup);
  8208. ggml_vec_sum_f32(Mup, &sum, S);
  8209. #else
  8210. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8211. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8212. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8213. float * SS = S + i;
  8214. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8215. if (SS[j] == -INFINITY) {
  8216. SS[j] = 0.0f;
  8217. } else {
  8218. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8219. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8220. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8221. sump[j] += (ggml_float)val;
  8222. SS[j] = val;
  8223. }
  8224. }
  8225. }
  8226. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8227. sum += sump[i];
  8228. }
  8229. #endif
  8230. }
  8231. assert(sum > 0.0);
  8232. sum = 1.0/sum;
  8233. ggml_vec_scale_f32(M, S, sum);
  8234. #ifndef NDEBUG
  8235. for (int i = 0; i < M; ++i) {
  8236. assert(!isnan(S[i]));
  8237. assert(!isinf(S[i]));
  8238. }
  8239. #endif
  8240. }
  8241. for (int64_t ic = 0; ic < nev1; ++ic) {
  8242. // dst indices
  8243. const int i1 = iq1;
  8244. const int i2 = iq2;
  8245. const int i3 = iq3;
  8246. ggml_vec_dot_f32(nek1,
  8247. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8248. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8249. S);
  8250. }
  8251. }
  8252. }
  8253. static void ggml_compute_forward_flash_attn_f16(
  8254. const struct ggml_compute_params * params,
  8255. const struct ggml_tensor * q,
  8256. const struct ggml_tensor * k,
  8257. const struct ggml_tensor * v,
  8258. const bool masked,
  8259. struct ggml_tensor * dst) {
  8260. int64_t t0 = ggml_perf_time_us();
  8261. UNUSED(t0);
  8262. const int64_t neq0 = q->ne[0];
  8263. const int64_t neq1 = q->ne[1];
  8264. const int64_t neq2 = q->ne[2];
  8265. const int64_t neq3 = q->ne[3];
  8266. const int64_t nek0 = k->ne[0];
  8267. const int64_t nek1 = k->ne[1];
  8268. //const int64_t nek2 = k->ne[2];
  8269. //const int64_t nek3 = k->ne[3];
  8270. //const int64_t nev0 = v->ne[0];
  8271. const int64_t nev1 = v->ne[1];
  8272. //const int64_t nev2 = v->ne[2];
  8273. //const int64_t nev3 = v->ne[3];
  8274. const int64_t ne0 = dst->ne[0];
  8275. const int64_t ne1 = dst->ne[1];
  8276. //const int64_t ne2 = dst->ne[2];
  8277. //const int64_t ne3 = dst->ne[3];
  8278. const int nbk0 = k->nb[0];
  8279. const int nbk1 = k->nb[1];
  8280. const int nbk2 = k->nb[2];
  8281. const int nbk3 = k->nb[3];
  8282. const int nbq0 = q->nb[0];
  8283. const int nbq1 = q->nb[1];
  8284. const int nbq2 = q->nb[2];
  8285. const int nbq3 = q->nb[3];
  8286. const int nbv0 = v->nb[0];
  8287. const int nbv1 = v->nb[1];
  8288. const int nbv2 = v->nb[2];
  8289. const int nbv3 = v->nb[3];
  8290. const int nb0 = dst->nb[0];
  8291. const int nb1 = dst->nb[1];
  8292. const int nb2 = dst->nb[2];
  8293. const int nb3 = dst->nb[3];
  8294. const int ith = params->ith;
  8295. const int nth = params->nth;
  8296. const int64_t D = neq0;
  8297. const int64_t N = neq1;
  8298. const int64_t P = nek1 - N;
  8299. const int64_t M = P + N;
  8300. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8301. GGML_ASSERT(ne0 == D);
  8302. GGML_ASSERT(ne1 == N);
  8303. GGML_ASSERT(P >= 0);
  8304. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8305. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8306. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8307. GGML_ASSERT(neq0 == D);
  8308. GGML_ASSERT(nek0 == D);
  8309. GGML_ASSERT(nev1 == D);
  8310. GGML_ASSERT(neq1 == N);
  8311. GGML_ASSERT(nek1 == N + P);
  8312. GGML_ASSERT(nev1 == D);
  8313. // dst cannot be transposed or permuted
  8314. GGML_ASSERT(nb0 == sizeof(float));
  8315. GGML_ASSERT(nb0 <= nb1);
  8316. GGML_ASSERT(nb1 <= nb2);
  8317. GGML_ASSERT(nb2 <= nb3);
  8318. if (params->type == GGML_TASK_INIT) {
  8319. return;
  8320. }
  8321. if (params->type == GGML_TASK_FINALIZE) {
  8322. return;
  8323. }
  8324. // parallelize by q rows using ggml_vec_dot_f32
  8325. // total rows in q
  8326. const int nr = neq1*neq2*neq3;
  8327. // rows per thread
  8328. const int dr = (nr + nth - 1)/nth;
  8329. // row range for this thread
  8330. const int ir0 = dr*ith;
  8331. const int ir1 = MIN(ir0 + dr, nr);
  8332. const float scale = 1.0f/sqrtf(D);
  8333. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8334. for (int ir = ir0; ir < ir1; ++ir) {
  8335. // q indices
  8336. const int iq3 = ir/(neq2*neq1);
  8337. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8338. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8339. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8340. for (int i = M; i < Mup; ++i) {
  8341. S[i] = -INFINITY;
  8342. }
  8343. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8344. for (int64_t ic = 0; ic < nek1; ++ic) {
  8345. // k indices
  8346. const int ik3 = iq3;
  8347. const int ik2 = iq2;
  8348. const int ik1 = ic;
  8349. // S indices
  8350. const int i1 = ik1;
  8351. ggml_vec_dot_f16(neq0,
  8352. S + i1,
  8353. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8354. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8355. }
  8356. } else {
  8357. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8358. // k indices
  8359. const int ik3 = iq3;
  8360. const int ik2 = iq2;
  8361. const int ik1 = ic;
  8362. // S indices
  8363. const int i1 = ik1;
  8364. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8365. S + i1,
  8366. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8367. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8368. }
  8369. }
  8370. // scale
  8371. ggml_vec_scale_f32(nek1, S, scale);
  8372. if (masked) {
  8373. for (int64_t i = P; i < M; i++) {
  8374. if (i > P + iq1) {
  8375. S[i] = -INFINITY;
  8376. }
  8377. }
  8378. }
  8379. // softmax
  8380. {
  8381. float max = -INFINITY;
  8382. ggml_vec_max_f32(M, &max, S);
  8383. ggml_float sum = 0.0;
  8384. {
  8385. #ifdef GGML_SOFT_MAX_ACCELERATE
  8386. max = -max;
  8387. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8388. vvexpf(S, S, &Mup);
  8389. ggml_vec_sum_f32(Mup, &sum, S);
  8390. #else
  8391. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8392. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8393. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8394. float * SS = S + i;
  8395. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8396. if (SS[j] == -INFINITY) {
  8397. SS[j] = 0.0f;
  8398. } else {
  8399. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8400. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8401. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8402. sump[j] += (ggml_float)val;
  8403. SS[j] = val;
  8404. }
  8405. }
  8406. }
  8407. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8408. sum += sump[i];
  8409. }
  8410. #endif
  8411. }
  8412. assert(sum > 0.0);
  8413. sum = 1.0/sum;
  8414. ggml_vec_scale_f32(M, S, sum);
  8415. #ifndef NDEBUG
  8416. for (int i = 0; i < M; ++i) {
  8417. assert(!isnan(S[i]));
  8418. assert(!isinf(S[i]));
  8419. }
  8420. #endif
  8421. }
  8422. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8423. for (int64_t i = 0; i < M; i++) {
  8424. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8425. }
  8426. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8427. for (int64_t ic = 0; ic < nev1; ++ic) {
  8428. // dst indices
  8429. const int i1 = iq1;
  8430. const int i2 = iq2;
  8431. const int i3 = iq3;
  8432. ggml_vec_dot_f16(nek1,
  8433. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8434. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8435. S16);
  8436. }
  8437. } else {
  8438. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8439. // dst indices
  8440. const int i1 = iq1;
  8441. const int i2 = iq2;
  8442. const int i3 = iq3;
  8443. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8444. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8445. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8446. S16);
  8447. }
  8448. }
  8449. }
  8450. }
  8451. static void ggml_compute_forward_flash_attn(
  8452. const struct ggml_compute_params * params,
  8453. const struct ggml_tensor * q,
  8454. const struct ggml_tensor * k,
  8455. const struct ggml_tensor * v,
  8456. const bool masked,
  8457. struct ggml_tensor * dst) {
  8458. switch (q->type) {
  8459. case GGML_TYPE_F16:
  8460. {
  8461. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8462. } break;
  8463. case GGML_TYPE_F32:
  8464. {
  8465. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8466. } break;
  8467. default:
  8468. {
  8469. GGML_ASSERT(false);
  8470. } break;
  8471. }
  8472. }
  8473. // ggml_compute_forward_flash_ff
  8474. static void ggml_compute_forward_flash_ff_f16(
  8475. const struct ggml_compute_params * params,
  8476. const struct ggml_tensor * a, // F16
  8477. const struct ggml_tensor * b0, // F16 fc_w
  8478. const struct ggml_tensor * b1, // F32 fc_b
  8479. const struct ggml_tensor * c0, // F16 proj_w
  8480. const struct ggml_tensor * c1, // F32 proj_b
  8481. struct ggml_tensor * dst) {
  8482. int64_t t0 = ggml_perf_time_us();
  8483. UNUSED(t0);
  8484. const int64_t nea0 = a->ne[0];
  8485. const int64_t nea1 = a->ne[1];
  8486. const int64_t nea2 = a->ne[2];
  8487. const int64_t nea3 = a->ne[3];
  8488. const int64_t neb00 = b0->ne[0];
  8489. const int64_t neb01 = b0->ne[1];
  8490. //const int64_t neb02 = b0->ne[2];
  8491. //const int64_t neb03 = b0->ne[3];
  8492. const int64_t neb10 = b1->ne[0];
  8493. const int64_t neb11 = b1->ne[1];
  8494. //const int64_t neb12 = b1->ne[2];
  8495. //const int64_t neb13 = b1->ne[3];
  8496. const int64_t nec00 = c0->ne[0];
  8497. const int64_t nec01 = c0->ne[1];
  8498. //const int64_t nec02 = c0->ne[2];
  8499. //const int64_t nec03 = c0->ne[3];
  8500. const int64_t nec10 = c1->ne[0];
  8501. const int64_t nec11 = c1->ne[1];
  8502. //const int64_t nec12 = c1->ne[2];
  8503. //const int64_t nec13 = c1->ne[3];
  8504. const int64_t ne0 = dst->ne[0];
  8505. const int64_t ne1 = dst->ne[1];
  8506. const int64_t ne2 = dst->ne[2];
  8507. //const int64_t ne3 = dst->ne[3];
  8508. const int nba0 = a->nb[0];
  8509. const int nba1 = a->nb[1];
  8510. const int nba2 = a->nb[2];
  8511. const int nba3 = a->nb[3];
  8512. const int nbb00 = b0->nb[0];
  8513. const int nbb01 = b0->nb[1];
  8514. const int nbb02 = b0->nb[2];
  8515. const int nbb03 = b0->nb[3];
  8516. const int nbb10 = b1->nb[0];
  8517. //const int nbb11 = b1->nb[1];
  8518. //const int nbb12 = b1->nb[2];
  8519. //const int nbb13 = b1->nb[3];
  8520. const int nbc00 = c0->nb[0];
  8521. const int nbc01 = c0->nb[1];
  8522. const int nbc02 = c0->nb[2];
  8523. const int nbc03 = c0->nb[3];
  8524. const int nbc10 = c1->nb[0];
  8525. //const int nbc11 = c1->nb[1];
  8526. //const int nbc12 = c1->nb[2];
  8527. //const int nbc13 = c1->nb[3];
  8528. const int nb0 = dst->nb[0];
  8529. const int nb1 = dst->nb[1];
  8530. const int nb2 = dst->nb[2];
  8531. const int nb3 = dst->nb[3];
  8532. const int ith = params->ith;
  8533. const int nth = params->nth;
  8534. const int64_t D = nea0;
  8535. //const int64_t N = nea1;
  8536. const int64_t M = neb01;
  8537. GGML_ASSERT(ne0 == nea0);
  8538. GGML_ASSERT(ne1 == nea1);
  8539. GGML_ASSERT(ne2 == nea2);
  8540. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8541. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8542. GGML_ASSERT(nbb10 == sizeof(float));
  8543. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8544. GGML_ASSERT(nbc10 == sizeof(float));
  8545. GGML_ASSERT(neb00 == D);
  8546. GGML_ASSERT(neb01 == M);
  8547. GGML_ASSERT(neb10 == M);
  8548. GGML_ASSERT(neb11 == 1);
  8549. GGML_ASSERT(nec00 == M);
  8550. GGML_ASSERT(nec01 == D);
  8551. GGML_ASSERT(nec10 == D);
  8552. GGML_ASSERT(nec11 == 1);
  8553. // dst cannot be transposed or permuted
  8554. GGML_ASSERT(nb0 == sizeof(float));
  8555. GGML_ASSERT(nb0 <= nb1);
  8556. GGML_ASSERT(nb1 <= nb2);
  8557. GGML_ASSERT(nb2 <= nb3);
  8558. if (params->type == GGML_TASK_INIT) {
  8559. return;
  8560. }
  8561. if (params->type == GGML_TASK_FINALIZE) {
  8562. return;
  8563. }
  8564. // parallelize by a rows using ggml_vec_dot_f32
  8565. // total rows in a
  8566. const int nr = nea1*nea2*nea3;
  8567. // rows per thread
  8568. const int dr = (nr + nth - 1)/nth;
  8569. // row range for this thread
  8570. const int ir0 = dr*ith;
  8571. const int ir1 = MIN(ir0 + dr, nr);
  8572. for (int ir = ir0; ir < ir1; ++ir) {
  8573. // a indices
  8574. const int ia3 = ir/(nea2*nea1);
  8575. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8576. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8577. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8578. for (int64_t ic = 0; ic < neb01; ++ic) {
  8579. // b0 indices
  8580. const int ib03 = ia3;
  8581. const int ib02 = ia2;
  8582. const int ib01 = ic;
  8583. // S indices
  8584. const int i1 = ib01;
  8585. ggml_vec_dot_f16(nea0,
  8586. S + i1,
  8587. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8588. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8589. }
  8590. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8591. //ggml_vec_gelu_f32(neb01, S, S);
  8592. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8593. for (int64_t i = 0; i < M; i++) {
  8594. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8595. }
  8596. ggml_vec_gelu_f16(neb01, S16, S16);
  8597. {
  8598. // dst indices
  8599. const int i1 = ia1;
  8600. const int i2 = ia2;
  8601. const int i3 = ia3;
  8602. for (int64_t ic = 0; ic < nec01; ++ic) {
  8603. ggml_vec_dot_f16(neb01,
  8604. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8605. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8606. S16);
  8607. }
  8608. ggml_vec_add_f32(nec01,
  8609. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8610. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8611. (float *) c1->data);
  8612. }
  8613. }
  8614. }
  8615. static void ggml_compute_forward_flash_ff(
  8616. const struct ggml_compute_params * params,
  8617. const struct ggml_tensor * a,
  8618. const struct ggml_tensor * b0,
  8619. const struct ggml_tensor * b1,
  8620. const struct ggml_tensor * c0,
  8621. const struct ggml_tensor * c1,
  8622. struct ggml_tensor * dst) {
  8623. switch (b0->type) {
  8624. case GGML_TYPE_F16:
  8625. {
  8626. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8627. } break;
  8628. case GGML_TYPE_F32:
  8629. {
  8630. GGML_ASSERT(false); // TODO
  8631. } break;
  8632. default:
  8633. {
  8634. GGML_ASSERT(false);
  8635. } break;
  8636. }
  8637. }
  8638. // ggml_compute_forward_map_unary
  8639. static void ggml_compute_forward_map_unary_f32(
  8640. const struct ggml_compute_params * params,
  8641. const struct ggml_tensor * src0,
  8642. struct ggml_tensor * dst,
  8643. const ggml_unary_op_f32_t fun) {
  8644. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8645. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8646. return;
  8647. }
  8648. const int n = ggml_nrows(src0);
  8649. const int nc = src0->ne[0];
  8650. assert( dst->nb[0] == sizeof(float));
  8651. assert(src0->nb[0] == sizeof(float));
  8652. for (int i = 0; i < n; i++) {
  8653. fun(nc,
  8654. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8655. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8656. }
  8657. }
  8658. static void ggml_compute_forward_map_unary(
  8659. const struct ggml_compute_params * params,
  8660. const struct ggml_tensor * src0,
  8661. struct ggml_tensor * dst,
  8662. const ggml_unary_op_f32_t fun) {
  8663. switch (src0->type) {
  8664. case GGML_TYPE_F32:
  8665. {
  8666. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8667. } break;
  8668. default:
  8669. {
  8670. GGML_ASSERT(false);
  8671. } break;
  8672. }
  8673. }
  8674. // ggml_compute_forward_map_binary
  8675. static void ggml_compute_forward_map_binary_f32(
  8676. const struct ggml_compute_params * params,
  8677. const struct ggml_tensor * src0,
  8678. const struct ggml_tensor * src1,
  8679. struct ggml_tensor * dst,
  8680. const ggml_binary_op_f32_t fun) {
  8681. assert(params->ith == 0);
  8682. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8683. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8684. return;
  8685. }
  8686. const int n = ggml_nrows(src0);
  8687. const int nc = src0->ne[0];
  8688. assert( dst->nb[0] == sizeof(float));
  8689. assert(src0->nb[0] == sizeof(float));
  8690. assert(src1->nb[0] == sizeof(float));
  8691. for (int i = 0; i < n; i++) {
  8692. fun(nc,
  8693. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8694. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8695. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8696. }
  8697. }
  8698. static void ggml_compute_forward_map_binary(
  8699. const struct ggml_compute_params * params,
  8700. const struct ggml_tensor * src0,
  8701. const struct ggml_tensor * src1,
  8702. struct ggml_tensor * dst,
  8703. const ggml_binary_op_f32_t fun) {
  8704. switch (src0->type) {
  8705. case GGML_TYPE_F32:
  8706. {
  8707. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8708. } break;
  8709. default:
  8710. {
  8711. GGML_ASSERT(false);
  8712. } break;
  8713. }
  8714. }
  8715. /////////////////////////////////
  8716. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8717. GGML_ASSERT(params);
  8718. switch (tensor->op) {
  8719. case GGML_OP_DUP:
  8720. {
  8721. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8722. } break;
  8723. case GGML_OP_ADD:
  8724. {
  8725. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8726. } break;
  8727. case GGML_OP_SUB:
  8728. {
  8729. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8730. } break;
  8731. case GGML_OP_MUL:
  8732. {
  8733. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8734. } break;
  8735. case GGML_OP_DIV:
  8736. {
  8737. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8738. } break;
  8739. case GGML_OP_SQR:
  8740. {
  8741. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8742. } break;
  8743. case GGML_OP_SQRT:
  8744. {
  8745. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8746. } break;
  8747. case GGML_OP_SUM:
  8748. {
  8749. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8750. } break;
  8751. case GGML_OP_MEAN:
  8752. {
  8753. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8754. } break;
  8755. case GGML_OP_REPEAT:
  8756. {
  8757. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8758. } break;
  8759. case GGML_OP_ABS:
  8760. {
  8761. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8762. } break;
  8763. case GGML_OP_SGN:
  8764. {
  8765. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8766. } break;
  8767. case GGML_OP_NEG:
  8768. {
  8769. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8770. } break;
  8771. case GGML_OP_STEP:
  8772. {
  8773. ggml_compute_forward_step(params, tensor->src0, tensor);
  8774. } break;
  8775. case GGML_OP_RELU:
  8776. {
  8777. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8778. } break;
  8779. case GGML_OP_GELU:
  8780. {
  8781. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8782. } break;
  8783. case GGML_OP_SILU:
  8784. {
  8785. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8786. } break;
  8787. case GGML_OP_NORM:
  8788. {
  8789. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8790. } break;
  8791. case GGML_OP_RMS_NORM:
  8792. {
  8793. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8794. } break;
  8795. case GGML_OP_MUL_MAT:
  8796. {
  8797. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8798. } break;
  8799. case GGML_OP_SCALE:
  8800. {
  8801. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8802. } break;
  8803. case GGML_OP_CPY:
  8804. {
  8805. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8806. } break;
  8807. case GGML_OP_CONT:
  8808. {
  8809. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8810. } break;
  8811. case GGML_OP_RESHAPE:
  8812. {
  8813. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8814. } break;
  8815. case GGML_OP_VIEW:
  8816. {
  8817. ggml_compute_forward_view(params, tensor->src0);
  8818. } break;
  8819. case GGML_OP_PERMUTE:
  8820. {
  8821. ggml_compute_forward_permute(params, tensor->src0);
  8822. } break;
  8823. case GGML_OP_TRANSPOSE:
  8824. {
  8825. ggml_compute_forward_transpose(params, tensor->src0);
  8826. } break;
  8827. case GGML_OP_GET_ROWS:
  8828. {
  8829. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8830. } break;
  8831. case GGML_OP_DIAG_MASK_INF:
  8832. {
  8833. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8834. } break;
  8835. case GGML_OP_SOFT_MAX:
  8836. {
  8837. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8838. } break;
  8839. case GGML_OP_ROPE:
  8840. {
  8841. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8842. } break;
  8843. case GGML_OP_ALIBI:
  8844. {
  8845. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8846. } break;
  8847. case GGML_OP_CONV_1D_1S:
  8848. {
  8849. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8850. } break;
  8851. case GGML_OP_CONV_1D_2S:
  8852. {
  8853. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8854. } break;
  8855. case GGML_OP_FLASH_ATTN:
  8856. {
  8857. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8858. GGML_ASSERT(t == 0 || t == 1);
  8859. bool masked = t != 0;
  8860. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8861. } break;
  8862. case GGML_OP_FLASH_FF:
  8863. {
  8864. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8865. } break;
  8866. case GGML_OP_MAP_UNARY:
  8867. {
  8868. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8869. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8870. }
  8871. break;
  8872. case GGML_OP_MAP_BINARY:
  8873. {
  8874. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8875. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8876. }
  8877. break;
  8878. case GGML_OP_NONE:
  8879. {
  8880. // nop
  8881. } break;
  8882. case GGML_OP_COUNT:
  8883. {
  8884. GGML_ASSERT(false);
  8885. } break;
  8886. }
  8887. }
  8888. ////////////////////////////////////////////////////////////////////////////////
  8889. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8890. struct ggml_tensor * src0 = tensor->src0;
  8891. struct ggml_tensor * src1 = tensor->src1;
  8892. switch (tensor->op) {
  8893. case GGML_OP_DUP:
  8894. {
  8895. if (src0->grad) {
  8896. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8897. }
  8898. } break;
  8899. case GGML_OP_ADD:
  8900. {
  8901. if (src0->grad) {
  8902. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8903. }
  8904. if (src1->grad) {
  8905. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8906. }
  8907. } break;
  8908. case GGML_OP_SUB:
  8909. {
  8910. if (src0->grad) {
  8911. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8912. }
  8913. if (src1->grad) {
  8914. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8915. }
  8916. } break;
  8917. case GGML_OP_MUL:
  8918. {
  8919. if (src0->grad) {
  8920. src0->grad =
  8921. ggml_add_impl(ctx,
  8922. src0->grad,
  8923. ggml_mul(ctx, src1, tensor->grad),
  8924. inplace);
  8925. }
  8926. if (src1->grad) {
  8927. src1->grad =
  8928. ggml_add_impl(ctx,
  8929. src1->grad,
  8930. ggml_mul(ctx, src0, tensor->grad),
  8931. inplace);
  8932. }
  8933. } break;
  8934. case GGML_OP_DIV:
  8935. {
  8936. if (src0->grad) {
  8937. src0->grad =
  8938. ggml_add_impl(ctx,
  8939. src0->grad,
  8940. ggml_div(ctx, tensor->grad, src1),
  8941. inplace);
  8942. }
  8943. if (src1->grad) {
  8944. src1->grad =
  8945. ggml_sub_impl(ctx,
  8946. src1->grad,
  8947. ggml_mul(ctx,
  8948. tensor->grad,
  8949. ggml_div(ctx, tensor, src1)),
  8950. inplace);
  8951. }
  8952. } break;
  8953. case GGML_OP_SQR:
  8954. {
  8955. if (src0->grad) {
  8956. src0->grad =
  8957. ggml_add_impl(ctx,
  8958. src0->grad,
  8959. ggml_mul(ctx,
  8960. ggml_mul(ctx, src0, tensor->grad),
  8961. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8962. inplace);
  8963. }
  8964. } break;
  8965. case GGML_OP_SQRT:
  8966. {
  8967. if (src0->grad) {
  8968. src0->grad =
  8969. ggml_add_impl(ctx,
  8970. src0->grad,
  8971. ggml_div(ctx,
  8972. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8973. tensor),
  8974. inplace);
  8975. }
  8976. } break;
  8977. case GGML_OP_SUM:
  8978. {
  8979. if (src0->grad) {
  8980. src0->grad =
  8981. ggml_add_impl(ctx,
  8982. src0->grad,
  8983. ggml_repeat(ctx, tensor->grad, src0->grad),
  8984. inplace);
  8985. }
  8986. } break;
  8987. case GGML_OP_MEAN:
  8988. {
  8989. GGML_ASSERT(false); // TODO: implement
  8990. } break;
  8991. case GGML_OP_REPEAT:
  8992. {
  8993. if (src0->grad) {
  8994. src0->grad =
  8995. ggml_add_impl(ctx,
  8996. src0->grad,
  8997. ggml_sum(ctx, tensor->grad),
  8998. inplace);
  8999. }
  9000. } break;
  9001. case GGML_OP_ABS:
  9002. {
  9003. if (src0->grad) {
  9004. src0->grad =
  9005. ggml_add_impl(ctx,
  9006. src0->grad,
  9007. ggml_mul(ctx,
  9008. ggml_sgn(ctx, src0),
  9009. tensor->grad),
  9010. inplace);
  9011. }
  9012. } break;
  9013. case GGML_OP_SGN:
  9014. {
  9015. if (src0->grad) {
  9016. // noop
  9017. }
  9018. } break;
  9019. case GGML_OP_NEG:
  9020. {
  9021. if (src0->grad) {
  9022. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9023. }
  9024. } break;
  9025. case GGML_OP_STEP:
  9026. {
  9027. if (src0->grad) {
  9028. // noop
  9029. }
  9030. } break;
  9031. case GGML_OP_RELU:
  9032. {
  9033. if (src0->grad) {
  9034. src0->grad = ggml_sub_impl(ctx,
  9035. src0->grad,
  9036. ggml_mul(ctx,
  9037. ggml_step(ctx, src0),
  9038. tensor->grad),
  9039. inplace);
  9040. }
  9041. } break;
  9042. case GGML_OP_GELU:
  9043. {
  9044. GGML_ASSERT(false); // TODO: not implemented
  9045. } break;
  9046. case GGML_OP_ALIBI:
  9047. {
  9048. GGML_ASSERT(false); // TODO: not implemented
  9049. } break;
  9050. case GGML_OP_SILU:
  9051. {
  9052. GGML_ASSERT(false); // TODO: not implemented
  9053. } break;
  9054. case GGML_OP_NORM:
  9055. {
  9056. GGML_ASSERT(false); // TODO: not implemented
  9057. } break;
  9058. case GGML_OP_RMS_NORM:
  9059. {
  9060. GGML_ASSERT(false); // TODO: not implemented
  9061. } break;
  9062. case GGML_OP_MUL_MAT:
  9063. {
  9064. if (src0->grad) {
  9065. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9066. GGML_ASSERT(false);
  9067. }
  9068. if (src1->grad) {
  9069. src1->grad =
  9070. ggml_add_impl(ctx,
  9071. src1->grad,
  9072. ggml_mul_mat(ctx,
  9073. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9074. tensor->grad),
  9075. inplace);
  9076. }
  9077. } break;
  9078. case GGML_OP_SCALE:
  9079. {
  9080. GGML_ASSERT(false); // TODO: not implemented
  9081. } break;
  9082. case GGML_OP_CPY:
  9083. {
  9084. GGML_ASSERT(false); // TODO: not implemented
  9085. } break;
  9086. case GGML_OP_CONT:
  9087. {
  9088. GGML_ASSERT(false); // TODO: not implemented
  9089. } break;
  9090. case GGML_OP_RESHAPE:
  9091. {
  9092. GGML_ASSERT(false); // TODO: not implemented
  9093. } break;
  9094. case GGML_OP_VIEW:
  9095. {
  9096. GGML_ASSERT(false); // not supported
  9097. } break;
  9098. case GGML_OP_PERMUTE:
  9099. {
  9100. GGML_ASSERT(false); // TODO: not implemented
  9101. } break;
  9102. case GGML_OP_TRANSPOSE:
  9103. {
  9104. GGML_ASSERT(false); // TODO: not implemented
  9105. } break;
  9106. case GGML_OP_GET_ROWS:
  9107. {
  9108. GGML_ASSERT(false); // TODO: not implemented
  9109. } break;
  9110. case GGML_OP_DIAG_MASK_INF:
  9111. {
  9112. GGML_ASSERT(false); // TODO: not implemented
  9113. } break;
  9114. case GGML_OP_SOFT_MAX:
  9115. {
  9116. GGML_ASSERT(false); // TODO: not implemented
  9117. } break;
  9118. case GGML_OP_ROPE:
  9119. {
  9120. GGML_ASSERT(false); // TODO: not implemented
  9121. } break;
  9122. case GGML_OP_CONV_1D_1S:
  9123. {
  9124. GGML_ASSERT(false); // TODO: not implemented
  9125. } break;
  9126. case GGML_OP_CONV_1D_2S:
  9127. {
  9128. GGML_ASSERT(false); // TODO: not implemented
  9129. } break;
  9130. case GGML_OP_FLASH_ATTN:
  9131. {
  9132. GGML_ASSERT(false); // not supported
  9133. } break;
  9134. case GGML_OP_FLASH_FF:
  9135. {
  9136. GGML_ASSERT(false); // not supported
  9137. } break;
  9138. case GGML_OP_MAP_UNARY:
  9139. case GGML_OP_MAP_BINARY:
  9140. {
  9141. GGML_ASSERT(false); // not supported
  9142. } break;
  9143. case GGML_OP_NONE:
  9144. {
  9145. // nop
  9146. } break;
  9147. case GGML_OP_COUNT:
  9148. {
  9149. GGML_ASSERT(false);
  9150. } break;
  9151. }
  9152. }
  9153. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9154. if (node->grad == NULL) {
  9155. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9156. // it can also happen during forward pass, if the user performs computations with constants
  9157. if (node->op != GGML_OP_NONE) {
  9158. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9159. }
  9160. }
  9161. // check if already visited
  9162. for (int i = 0; i < cgraph->n_nodes; i++) {
  9163. if (cgraph->nodes[i] == node) {
  9164. return;
  9165. }
  9166. }
  9167. for (int i = 0; i < cgraph->n_leafs; i++) {
  9168. if (cgraph->leafs[i] == node) {
  9169. return;
  9170. }
  9171. }
  9172. if (node->src0) {
  9173. ggml_visit_parents(cgraph, node->src0);
  9174. }
  9175. if (node->src1) {
  9176. ggml_visit_parents(cgraph, node->src1);
  9177. }
  9178. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9179. if (node->opt[i]) {
  9180. ggml_visit_parents(cgraph, node->opt[i]);
  9181. }
  9182. }
  9183. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9184. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9185. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9186. cgraph->leafs[cgraph->n_leafs] = node;
  9187. cgraph->n_leafs++;
  9188. } else {
  9189. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9190. cgraph->nodes[cgraph->n_nodes] = node;
  9191. cgraph->grads[cgraph->n_nodes] = node->grad;
  9192. cgraph->n_nodes++;
  9193. }
  9194. }
  9195. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9196. if (!expand) {
  9197. cgraph->n_nodes = 0;
  9198. cgraph->n_leafs = 0;
  9199. }
  9200. const int n0 = cgraph->n_nodes;
  9201. UNUSED(n0);
  9202. ggml_visit_parents(cgraph, tensor);
  9203. const int n_new = cgraph->n_nodes - n0;
  9204. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9205. if (n_new > 0) {
  9206. // the last added node should always be starting point
  9207. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9208. }
  9209. }
  9210. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9211. ggml_build_forward_impl(cgraph, tensor, true);
  9212. }
  9213. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9214. struct ggml_cgraph result = {
  9215. /*.n_nodes =*/ 0,
  9216. /*.n_leafs =*/ 0,
  9217. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9218. /*.work_size =*/ 0,
  9219. /*.work =*/ NULL,
  9220. /*.nodes =*/ { NULL },
  9221. /*.grads =*/ { NULL },
  9222. /*.leafs =*/ { NULL },
  9223. /*.perf_runs =*/ 0,
  9224. /*.perf_cycles =*/ 0,
  9225. /*.perf_time_us =*/ 0,
  9226. };
  9227. ggml_build_forward_impl(&result, tensor, false);
  9228. return result;
  9229. }
  9230. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9231. struct ggml_cgraph result = *gf;
  9232. GGML_ASSERT(gf->n_nodes > 0);
  9233. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9234. if (keep) {
  9235. for (int i = 0; i < gf->n_nodes; i++) {
  9236. struct ggml_tensor * node = gf->nodes[i];
  9237. if (node->grad) {
  9238. node->grad = ggml_dup_tensor(ctx, node);
  9239. gf->grads[i] = node->grad;
  9240. }
  9241. }
  9242. }
  9243. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9244. struct ggml_tensor * node = gf->nodes[i];
  9245. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9246. if (node->grad) {
  9247. ggml_compute_backward(ctx, node, keep);
  9248. }
  9249. }
  9250. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9251. struct ggml_tensor * node = gf->nodes[i];
  9252. if (node->is_param) {
  9253. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9254. ggml_build_forward_impl(&result, node->grad, true);
  9255. }
  9256. }
  9257. return result;
  9258. }
  9259. //
  9260. // thread data
  9261. //
  9262. // synchronization is done via busy loops
  9263. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9264. //
  9265. #ifdef __APPLE__
  9266. //#include <os/lock.h>
  9267. //
  9268. //typedef os_unfair_lock ggml_lock_t;
  9269. //
  9270. //#define ggml_lock_init(x) UNUSED(x)
  9271. //#define ggml_lock_destroy(x) UNUSED(x)
  9272. //#define ggml_lock_lock os_unfair_lock_lock
  9273. //#define ggml_lock_unlock os_unfair_lock_unlock
  9274. //
  9275. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9276. typedef int ggml_lock_t;
  9277. #define ggml_lock_init(x) UNUSED(x)
  9278. #define ggml_lock_destroy(x) UNUSED(x)
  9279. #define ggml_lock_lock(x) UNUSED(x)
  9280. #define ggml_lock_unlock(x) UNUSED(x)
  9281. #define GGML_LOCK_INITIALIZER 0
  9282. typedef pthread_t ggml_thread_t;
  9283. #define ggml_thread_create pthread_create
  9284. #define ggml_thread_join pthread_join
  9285. #else
  9286. //typedef pthread_spinlock_t ggml_lock_t;
  9287. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9288. //#define ggml_lock_destroy pthread_spin_destroy
  9289. //#define ggml_lock_lock pthread_spin_lock
  9290. //#define ggml_lock_unlock pthread_spin_unlock
  9291. typedef int ggml_lock_t;
  9292. #define ggml_lock_init(x) UNUSED(x)
  9293. #define ggml_lock_destroy(x) UNUSED(x)
  9294. #define ggml_lock_lock(x) UNUSED(x)
  9295. #define ggml_lock_unlock(x) UNUSED(x)
  9296. #define GGML_LOCK_INITIALIZER 0
  9297. typedef pthread_t ggml_thread_t;
  9298. #define ggml_thread_create pthread_create
  9299. #define ggml_thread_join pthread_join
  9300. #endif
  9301. struct ggml_compute_state_shared {
  9302. ggml_lock_t spin;
  9303. int n_threads;
  9304. // synchronization primitives
  9305. atomic_int n_ready;
  9306. atomic_bool has_work;
  9307. atomic_bool stop; // stop all threads
  9308. };
  9309. struct ggml_compute_state {
  9310. ggml_thread_t thrd;
  9311. struct ggml_compute_params params;
  9312. struct ggml_tensor * node;
  9313. struct ggml_compute_state_shared * shared;
  9314. };
  9315. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9316. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9317. const int n_threads = state->shared->n_threads;
  9318. while (true) {
  9319. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9320. atomic_store(&state->shared->has_work, false);
  9321. } else {
  9322. while (atomic_load(&state->shared->has_work)) {
  9323. if (atomic_load(&state->shared->stop)) {
  9324. return 0;
  9325. }
  9326. ggml_lock_lock (&state->shared->spin);
  9327. ggml_lock_unlock(&state->shared->spin);
  9328. }
  9329. }
  9330. atomic_fetch_sub(&state->shared->n_ready, 1);
  9331. // wait for work
  9332. while (!atomic_load(&state->shared->has_work)) {
  9333. if (atomic_load(&state->shared->stop)) {
  9334. return 0;
  9335. }
  9336. ggml_lock_lock (&state->shared->spin);
  9337. ggml_lock_unlock(&state->shared->spin);
  9338. }
  9339. // check if we should stop
  9340. if (atomic_load(&state->shared->stop)) {
  9341. break;
  9342. }
  9343. if (state->node) {
  9344. if (state->params.ith < state->params.nth) {
  9345. ggml_compute_forward(&state->params, state->node);
  9346. }
  9347. state->node = NULL;
  9348. } else {
  9349. break;
  9350. }
  9351. }
  9352. return 0;
  9353. }
  9354. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9355. const int n_threads = cgraph->n_threads;
  9356. struct ggml_compute_state_shared state_shared = {
  9357. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9358. /*.n_threads =*/ n_threads,
  9359. /*.n_ready =*/ 0,
  9360. /*.has_work =*/ false,
  9361. /*.stop =*/ false,
  9362. };
  9363. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9364. // create thread pool
  9365. if (n_threads > 1) {
  9366. ggml_lock_init(&state_shared.spin);
  9367. atomic_store(&state_shared.has_work, true);
  9368. for (int j = 0; j < n_threads - 1; j++) {
  9369. workers[j] = (struct ggml_compute_state) {
  9370. .thrd = 0,
  9371. .params = {
  9372. .type = GGML_TASK_COMPUTE,
  9373. .ith = j + 1,
  9374. .nth = n_threads,
  9375. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9376. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9377. },
  9378. .node = NULL,
  9379. .shared = &state_shared,
  9380. };
  9381. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9382. GGML_ASSERT(rc == 0);
  9383. UNUSED(rc);
  9384. }
  9385. }
  9386. // initialize tasks + work buffer
  9387. {
  9388. size_t work_size = 0;
  9389. // thread scheduling for the different operations
  9390. for (int i = 0; i < cgraph->n_nodes; i++) {
  9391. struct ggml_tensor * node = cgraph->nodes[i];
  9392. switch (node->op) {
  9393. case GGML_OP_CPY:
  9394. case GGML_OP_DUP:
  9395. {
  9396. node->n_tasks = n_threads;
  9397. size_t cur = 0;
  9398. if (ggml_is_quantized(node->type)) {
  9399. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9400. }
  9401. work_size = MAX(work_size, cur);
  9402. } break;
  9403. case GGML_OP_ADD:
  9404. {
  9405. node->n_tasks = n_threads;
  9406. size_t cur = 0;
  9407. if (ggml_is_quantized(node->src0->type)) {
  9408. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9409. }
  9410. work_size = MAX(work_size, cur);
  9411. } break;
  9412. case GGML_OP_SUB:
  9413. case GGML_OP_MUL:
  9414. case GGML_OP_DIV:
  9415. case GGML_OP_SQR:
  9416. case GGML_OP_SQRT:
  9417. case GGML_OP_SUM:
  9418. case GGML_OP_MEAN:
  9419. case GGML_OP_REPEAT:
  9420. case GGML_OP_ABS:
  9421. case GGML_OP_SGN:
  9422. case GGML_OP_NEG:
  9423. case GGML_OP_STEP:
  9424. case GGML_OP_RELU:
  9425. {
  9426. node->n_tasks = 1;
  9427. } break;
  9428. case GGML_OP_GELU:
  9429. {
  9430. node->n_tasks = n_threads;
  9431. } break;
  9432. case GGML_OP_SILU:
  9433. {
  9434. node->n_tasks = n_threads;
  9435. } break;
  9436. case GGML_OP_NORM:
  9437. case GGML_OP_RMS_NORM:
  9438. {
  9439. node->n_tasks = n_threads;
  9440. } break;
  9441. case GGML_OP_MUL_MAT:
  9442. {
  9443. node->n_tasks = n_threads;
  9444. // TODO: use different scheduling for different matrix sizes
  9445. //const int nr0 = ggml_nrows(node->src0);
  9446. //const int nr1 = ggml_nrows(node->src1);
  9447. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9448. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9449. size_t cur = 0;
  9450. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9451. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9452. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9453. node->n_tasks = 1; // TODO: this actually is doing nothing
  9454. // the threads are still spinning
  9455. #if defined(GGML_USE_CUBLAS)
  9456. // with cuBLAS, we need memory for the full 3D / 4D data of src1
  9457. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9458. #else
  9459. // here we need memory just for single 2D matrix from src0
  9460. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9461. #endif
  9462. } else {
  9463. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9464. }
  9465. #else
  9466. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9467. #endif
  9468. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9469. cur = 0;
  9470. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9471. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9472. node->n_tasks = 1;
  9473. }
  9474. #endif
  9475. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9476. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  9477. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9478. node->n_tasks = 1;
  9479. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9480. } else
  9481. #endif
  9482. {
  9483. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9484. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9485. }
  9486. } else {
  9487. GGML_ASSERT(false);
  9488. }
  9489. work_size = MAX(work_size, cur);
  9490. } break;
  9491. case GGML_OP_SCALE:
  9492. {
  9493. node->n_tasks = n_threads;
  9494. } break;
  9495. case GGML_OP_CONT:
  9496. case GGML_OP_RESHAPE:
  9497. case GGML_OP_VIEW:
  9498. case GGML_OP_PERMUTE:
  9499. case GGML_OP_TRANSPOSE:
  9500. case GGML_OP_GET_ROWS:
  9501. case GGML_OP_DIAG_MASK_INF:
  9502. {
  9503. node->n_tasks = 1;
  9504. } break;
  9505. case GGML_OP_SOFT_MAX:
  9506. {
  9507. node->n_tasks = n_threads;
  9508. } break;
  9509. case GGML_OP_ROPE:
  9510. {
  9511. node->n_tasks = n_threads;
  9512. } break;
  9513. case GGML_OP_ALIBI:
  9514. {
  9515. node->n_tasks = 1; //TODO
  9516. } break;
  9517. case GGML_OP_CONV_1D_1S:
  9518. case GGML_OP_CONV_1D_2S:
  9519. {
  9520. node->n_tasks = n_threads;
  9521. GGML_ASSERT(node->src0->ne[3] == 1);
  9522. GGML_ASSERT(node->src1->ne[2] == 1);
  9523. GGML_ASSERT(node->src1->ne[3] == 1);
  9524. size_t cur = 0;
  9525. const int nk = node->src0->ne[0];
  9526. if (node->src0->type == GGML_TYPE_F16 &&
  9527. node->src1->type == GGML_TYPE_F32) {
  9528. cur = sizeof(ggml_fp16_t)*(
  9529. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9530. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9531. );
  9532. } else if (node->src0->type == GGML_TYPE_F32 &&
  9533. node->src1->type == GGML_TYPE_F32) {
  9534. cur = sizeof(float)*(
  9535. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9536. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9537. );
  9538. } else {
  9539. GGML_ASSERT(false);
  9540. }
  9541. work_size = MAX(work_size, cur);
  9542. } break;
  9543. case GGML_OP_FLASH_ATTN:
  9544. {
  9545. node->n_tasks = n_threads;
  9546. size_t cur = 0;
  9547. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9548. if (node->src1->type == GGML_TYPE_F32) {
  9549. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9550. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9551. }
  9552. if (node->src1->type == GGML_TYPE_F16) {
  9553. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9554. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9555. }
  9556. work_size = MAX(work_size, cur);
  9557. } break;
  9558. case GGML_OP_FLASH_FF:
  9559. {
  9560. node->n_tasks = n_threads;
  9561. size_t cur = 0;
  9562. if (node->src1->type == GGML_TYPE_F32) {
  9563. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9564. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9565. }
  9566. if (node->src1->type == GGML_TYPE_F16) {
  9567. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9568. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9569. }
  9570. work_size = MAX(work_size, cur);
  9571. } break;
  9572. case GGML_OP_MAP_UNARY:
  9573. case GGML_OP_MAP_BINARY:
  9574. {
  9575. node->n_tasks = 1;
  9576. } break;
  9577. case GGML_OP_NONE:
  9578. {
  9579. node->n_tasks = 1;
  9580. } break;
  9581. case GGML_OP_COUNT:
  9582. {
  9583. GGML_ASSERT(false);
  9584. } break;
  9585. }
  9586. }
  9587. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9588. GGML_ASSERT(false); // TODO: better handling
  9589. }
  9590. if (work_size > 0 && cgraph->work == NULL) {
  9591. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9592. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9593. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9594. }
  9595. }
  9596. const int64_t perf_start_cycles = ggml_perf_cycles();
  9597. const int64_t perf_start_time_us = ggml_perf_time_us();
  9598. for (int i = 0; i < cgraph->n_nodes; i++) {
  9599. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9600. struct ggml_tensor * node = cgraph->nodes[i];
  9601. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9602. //if (node->grad == NULL && node->perf_runs > 0) {
  9603. // continue;
  9604. //}
  9605. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9606. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9607. // INIT
  9608. struct ggml_compute_params params = {
  9609. /*.type =*/ GGML_TASK_INIT,
  9610. /*.ith =*/ 0,
  9611. /*.nth =*/ node->n_tasks,
  9612. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9613. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9614. };
  9615. ggml_compute_forward(&params, node);
  9616. // COMPUTE
  9617. if (node->n_tasks > 1) {
  9618. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9619. atomic_store(&state_shared.has_work, false);
  9620. }
  9621. while (atomic_load(&state_shared.has_work)) {
  9622. ggml_lock_lock (&state_shared.spin);
  9623. ggml_lock_unlock(&state_shared.spin);
  9624. }
  9625. // launch thread pool
  9626. for (int j = 0; j < n_threads - 1; j++) {
  9627. workers[j].params = (struct ggml_compute_params) {
  9628. .type = GGML_TASK_COMPUTE,
  9629. .ith = j + 1,
  9630. .nth = node->n_tasks,
  9631. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9632. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9633. };
  9634. workers[j].node = node;
  9635. }
  9636. atomic_fetch_sub(&state_shared.n_ready, 1);
  9637. while (atomic_load(&state_shared.n_ready) > 0) {
  9638. ggml_lock_lock (&state_shared.spin);
  9639. ggml_lock_unlock(&state_shared.spin);
  9640. }
  9641. atomic_store(&state_shared.has_work, true);
  9642. }
  9643. params.type = GGML_TASK_COMPUTE;
  9644. ggml_compute_forward(&params, node);
  9645. // wait for thread pool
  9646. if (node->n_tasks > 1) {
  9647. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9648. atomic_store(&state_shared.has_work, false);
  9649. }
  9650. while (atomic_load(&state_shared.has_work)) {
  9651. ggml_lock_lock (&state_shared.spin);
  9652. ggml_lock_unlock(&state_shared.spin);
  9653. }
  9654. atomic_fetch_sub(&state_shared.n_ready, 1);
  9655. while (atomic_load(&state_shared.n_ready) != 0) {
  9656. ggml_lock_lock (&state_shared.spin);
  9657. ggml_lock_unlock(&state_shared.spin);
  9658. }
  9659. }
  9660. // FINALIZE
  9661. if (node->n_tasks > 1) {
  9662. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9663. atomic_store(&state_shared.has_work, false);
  9664. }
  9665. while (atomic_load(&state_shared.has_work)) {
  9666. ggml_lock_lock (&state_shared.spin);
  9667. ggml_lock_unlock(&state_shared.spin);
  9668. }
  9669. // launch thread pool
  9670. for (int j = 0; j < n_threads - 1; j++) {
  9671. workers[j].params = (struct ggml_compute_params) {
  9672. .type = GGML_TASK_FINALIZE,
  9673. .ith = j + 1,
  9674. .nth = node->n_tasks,
  9675. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9676. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9677. };
  9678. workers[j].node = node;
  9679. }
  9680. atomic_fetch_sub(&state_shared.n_ready, 1);
  9681. while (atomic_load(&state_shared.n_ready) > 0) {
  9682. ggml_lock_lock (&state_shared.spin);
  9683. ggml_lock_unlock(&state_shared.spin);
  9684. }
  9685. atomic_store(&state_shared.has_work, true);
  9686. }
  9687. params.type = GGML_TASK_FINALIZE;
  9688. ggml_compute_forward(&params, node);
  9689. // wait for thread pool
  9690. if (node->n_tasks > 1) {
  9691. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9692. atomic_store(&state_shared.has_work, false);
  9693. }
  9694. while (atomic_load(&state_shared.has_work)) {
  9695. ggml_lock_lock (&state_shared.spin);
  9696. ggml_lock_unlock(&state_shared.spin);
  9697. }
  9698. atomic_fetch_sub(&state_shared.n_ready, 1);
  9699. while (atomic_load(&state_shared.n_ready) != 0) {
  9700. ggml_lock_lock (&state_shared.spin);
  9701. ggml_lock_unlock(&state_shared.spin);
  9702. }
  9703. }
  9704. // performance stats (node)
  9705. {
  9706. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9707. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9708. node->perf_runs++;
  9709. node->perf_cycles += perf_cycles_cur;
  9710. node->perf_time_us += perf_time_us_cur;
  9711. }
  9712. }
  9713. // join thread pool
  9714. if (n_threads > 1) {
  9715. atomic_store(&state_shared.stop, true);
  9716. atomic_store(&state_shared.has_work, true);
  9717. for (int j = 0; j < n_threads - 1; j++) {
  9718. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9719. GGML_ASSERT(rc == 0);
  9720. UNUSED(rc);
  9721. }
  9722. ggml_lock_destroy(&state_shared.spin);
  9723. }
  9724. // performance stats (graph)
  9725. {
  9726. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9727. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9728. cgraph->perf_runs++;
  9729. cgraph->perf_cycles += perf_cycles_cur;
  9730. cgraph->perf_time_us += perf_time_us_cur;
  9731. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9732. __func__, cgraph->perf_runs,
  9733. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9734. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9735. (double) perf_time_us_cur / 1000.0,
  9736. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9737. }
  9738. }
  9739. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9740. for (int i = 0; i < cgraph->n_nodes; i++) {
  9741. struct ggml_tensor * grad = cgraph->grads[i];
  9742. if (grad) {
  9743. ggml_set_zero(grad);
  9744. }
  9745. }
  9746. }
  9747. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9748. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9749. GGML_PRINT("=== GRAPH ===\n");
  9750. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9751. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9752. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9753. for (int i = 0; i < cgraph->n_nodes; i++) {
  9754. struct ggml_tensor * node = cgraph->nodes[i];
  9755. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9756. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9757. i,
  9758. node->ne[0], node->ne[1], node->ne[2],
  9759. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9760. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9761. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9762. (double) node->perf_time_us / 1000.0,
  9763. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9764. }
  9765. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9766. for (int i = 0; i < cgraph->n_leafs; i++) {
  9767. struct ggml_tensor * node = cgraph->leafs[i];
  9768. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9769. i,
  9770. node->ne[0], node->ne[1],
  9771. GGML_OP_LABEL[node->op]);
  9772. }
  9773. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9774. if (perf_total_per_op_us[i] == 0) {
  9775. continue;
  9776. }
  9777. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9778. }
  9779. GGML_PRINT("========================================\n");
  9780. }
  9781. // check if node is part of the graph
  9782. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9783. if (cgraph == NULL) {
  9784. return true;
  9785. }
  9786. for (int i = 0; i < cgraph->n_nodes; i++) {
  9787. if (cgraph->nodes[i] == node) {
  9788. return true;
  9789. }
  9790. }
  9791. return false;
  9792. }
  9793. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9794. for (int i = 0; i < cgraph->n_nodes; i++) {
  9795. struct ggml_tensor * parent = cgraph->nodes[i];
  9796. if (parent->grad == node) {
  9797. return parent;
  9798. }
  9799. }
  9800. return NULL;
  9801. }
  9802. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9803. char color[16];
  9804. FILE * fp = fopen(filename, "w");
  9805. GGML_ASSERT(fp);
  9806. fprintf(fp, "digraph G {\n");
  9807. fprintf(fp, " newrank = true;\n");
  9808. fprintf(fp, " rankdir = LR;\n");
  9809. for (int i = 0; i < gb->n_nodes; i++) {
  9810. struct ggml_tensor * node = gb->nodes[i];
  9811. if (ggml_graph_get_parent(gb, node) != NULL) {
  9812. continue;
  9813. }
  9814. if (node->is_param) {
  9815. snprintf(color, sizeof(color), "yellow");
  9816. } else if (node->grad) {
  9817. if (ggml_graph_find(gf, node)) {
  9818. snprintf(color, sizeof(color), "green");
  9819. } else {
  9820. snprintf(color, sizeof(color), "lightblue");
  9821. }
  9822. } else {
  9823. snprintf(color, sizeof(color), "white");
  9824. }
  9825. fprintf(fp, " \"%p\" [ \
  9826. style = filled; fillcolor = %s; shape = record; \
  9827. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9828. (void *) node, color,
  9829. i, node->ne[0], node->ne[1],
  9830. GGML_OP_SYMBOL[node->op]);
  9831. if (node->grad) {
  9832. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9833. } else {
  9834. fprintf(fp, "\"; ]\n");
  9835. }
  9836. }
  9837. for (int i = 0; i < gb->n_leafs; i++) {
  9838. struct ggml_tensor * node = gb->leafs[i];
  9839. snprintf(color, sizeof(color), "pink");
  9840. if (ggml_nelements(node) == 1) {
  9841. fprintf(fp, " \"%p\" [ \
  9842. style = filled; fillcolor = %s; shape = record; \
  9843. label=\"<x>%.1e\"; ]\n",
  9844. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9845. } else {
  9846. fprintf(fp, " \"%p\" [ \
  9847. style = filled; fillcolor = %s; shape = record; \
  9848. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9849. (void *) node, color,
  9850. i, node->ne[0], node->ne[1]);
  9851. }
  9852. }
  9853. for (int i = 0; i < gb->n_nodes; i++) {
  9854. struct ggml_tensor * node = gb->nodes[i];
  9855. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9856. if (node->src0) {
  9857. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9858. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9859. parent0 ? (void *) parent0 : (void *) node->src0,
  9860. parent0 ? "g" : "x",
  9861. parent ? (void *) parent : (void *) node,
  9862. parent ? "g" : "x",
  9863. parent ? "empty" : "vee",
  9864. parent ? "dashed" : "solid");
  9865. }
  9866. if (node->src1) {
  9867. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9868. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9869. parent1 ? (void *) parent1 : (void *) node->src1,
  9870. parent1 ? "g" : "x",
  9871. parent ? (void *) parent : (void *) node,
  9872. parent ? "g" : "x",
  9873. parent ? "empty" : "vee",
  9874. parent ? "dashed" : "solid");
  9875. }
  9876. }
  9877. for (int i = 0; i < gb->n_leafs; i++) {
  9878. struct ggml_tensor * node = gb->leafs[i];
  9879. if (node->src0) {
  9880. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9881. (void *) node->src0, "x",
  9882. (void *) node, "x");
  9883. }
  9884. if (node->src1) {
  9885. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9886. (void *) node->src1, "x",
  9887. (void *) node, "x");
  9888. }
  9889. }
  9890. fprintf(fp, "}\n");
  9891. fclose(fp);
  9892. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9893. }
  9894. ////////////////////////////////////////////////////////////////////////////////
  9895. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9896. int i = 0;
  9897. for (int p = 0; p < np; ++p) {
  9898. const int64_t ne = ggml_nelements(ps[p]) ;
  9899. // TODO: add function to set tensor from array
  9900. for (int64_t j = 0; j < ne; ++j) {
  9901. ggml_set_f32_1d(ps[p], j, x[i++]);
  9902. }
  9903. }
  9904. }
  9905. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9906. int i = 0;
  9907. for (int p = 0; p < np; ++p) {
  9908. const int64_t ne = ggml_nelements(ps[p]) ;
  9909. // TODO: add function to get all elements at once
  9910. for (int64_t j = 0; j < ne; ++j) {
  9911. x[i++] = ggml_get_f32_1d(ps[p], j);
  9912. }
  9913. }
  9914. }
  9915. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9916. int i = 0;
  9917. for (int p = 0; p < np; ++p) {
  9918. const int64_t ne = ggml_nelements(ps[p]) ;
  9919. // TODO: add function to get all elements at once
  9920. for (int64_t j = 0; j < ne; ++j) {
  9921. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9922. }
  9923. }
  9924. }
  9925. //
  9926. // ADAM
  9927. //
  9928. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9929. //
  9930. static enum ggml_opt_result ggml_opt_adam(
  9931. struct ggml_context * ctx,
  9932. struct ggml_opt_params params,
  9933. struct ggml_tensor * f,
  9934. struct ggml_cgraph * gf,
  9935. struct ggml_cgraph * gb) {
  9936. GGML_ASSERT(ggml_is_scalar(f));
  9937. gf->n_threads = params.n_threads;
  9938. gb->n_threads = params.n_threads;
  9939. // these will store the parameters we want to optimize
  9940. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9941. int np = 0;
  9942. int nx = 0;
  9943. for (int i = 0; i < gf->n_nodes; ++i) {
  9944. if (gf->nodes[i]->is_param) {
  9945. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9946. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9947. ps[np++] = gf->nodes[i];
  9948. nx += ggml_nelements(gf->nodes[i]);
  9949. }
  9950. }
  9951. // constants
  9952. const float alpha = params.adam.alpha;
  9953. const float beta1 = params.adam.beta1;
  9954. const float beta2 = params.adam.beta2;
  9955. const float eps = params.adam.eps;
  9956. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9957. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9958. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9959. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9960. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9961. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9962. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9963. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9964. // initialize
  9965. ggml_vec_set_f32(nx, m, 0.0f);
  9966. ggml_vec_set_f32(nx, v, 0.0f);
  9967. // update view
  9968. ggml_opt_get_params(np, ps, x);
  9969. // compute the function value
  9970. ggml_graph_reset (gf);
  9971. ggml_set_f32 (f->grad, 1.0f);
  9972. ggml_graph_compute(ctx, gb);
  9973. float fx_prev = ggml_get_f32_1d(f, 0);
  9974. if (pf) {
  9975. pf[0] = fx_prev;
  9976. }
  9977. int n_no_improvement = 0;
  9978. float fx_best = fx_prev;
  9979. // run the optimizer
  9980. for (int t = 0; t < params.adam.n_iter; ++t) {
  9981. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9982. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9983. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9984. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9985. for (int i = 0; i < np; ++i) {
  9986. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9987. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9988. }
  9989. const int64_t t_start_wall = ggml_time_us();
  9990. const int64_t t_start_cpu = ggml_cycles();
  9991. UNUSED(t_start_wall);
  9992. UNUSED(t_start_cpu);
  9993. {
  9994. // update the gradient
  9995. ggml_opt_get_grad(np, ps, g1);
  9996. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9997. ggml_vec_scale_f32(nx, m, beta1);
  9998. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9999. // g2 = g1^2
  10000. ggml_vec_sqr_f32 (nx, g2, g1);
  10001. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10002. ggml_vec_scale_f32(nx, v, beta2);
  10003. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10004. // m^hat = m_t / (1 - beta1^t)
  10005. // v^hat = v_t / (1 - beta2^t)
  10006. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10007. ggml_vec_cpy_f32 (nx, mh, m);
  10008. ggml_vec_cpy_f32 (nx, vh, v);
  10009. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10010. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10011. ggml_vec_sqrt_f32 (nx, vh, vh);
  10012. ggml_vec_acc1_f32 (nx, vh, eps);
  10013. ggml_vec_div_f32 (nx, mh, mh, vh);
  10014. ggml_vec_sub_f32 (nx, x, x, mh);
  10015. // update the parameters
  10016. ggml_opt_set_params(np, ps, x);
  10017. }
  10018. ggml_graph_reset (gf);
  10019. ggml_set_f32 (f->grad, 1.0f);
  10020. ggml_graph_compute(ctx, gb);
  10021. const float fx = ggml_get_f32_1d(f, 0);
  10022. // check convergence
  10023. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10024. GGML_PRINT_DEBUG("converged\n");
  10025. return GGML_OPT_OK;
  10026. }
  10027. // delta-based convergence test
  10028. if (pf != NULL) {
  10029. // need at least params.past iterations to start checking for convergence
  10030. if (params.past <= t) {
  10031. const float rate = (pf[t%params.past] - fx)/fx;
  10032. if (fabsf(rate) < params.delta) {
  10033. return GGML_OPT_OK;
  10034. }
  10035. }
  10036. pf[t%params.past] = fx;
  10037. }
  10038. // check for improvement
  10039. if (params.max_no_improvement > 0) {
  10040. if (fx_best > fx) {
  10041. fx_best = fx;
  10042. n_no_improvement = 0;
  10043. } else {
  10044. ++n_no_improvement;
  10045. if (n_no_improvement >= params.max_no_improvement) {
  10046. return GGML_OPT_OK;
  10047. }
  10048. }
  10049. }
  10050. fx_prev = fx;
  10051. {
  10052. const int64_t t_end_cpu = ggml_cycles();
  10053. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10054. UNUSED(t_end_cpu);
  10055. const int64_t t_end_wall = ggml_time_us();
  10056. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10057. UNUSED(t_end_wall);
  10058. }
  10059. }
  10060. return GGML_OPT_DID_NOT_CONVERGE;
  10061. }
  10062. //
  10063. // L-BFGS
  10064. //
  10065. // the L-BFGS implementation below is based on the following implementation:
  10066. //
  10067. // https://github.com/chokkan/liblbfgs
  10068. //
  10069. struct ggml_lbfgs_iteration_data {
  10070. float alpha;
  10071. float ys;
  10072. float * s;
  10073. float * y;
  10074. };
  10075. static enum ggml_opt_result linesearch_backtracking(
  10076. struct ggml_context * ctx,
  10077. const struct ggml_opt_params * params,
  10078. int nx,
  10079. float * x,
  10080. float * fx,
  10081. float * g,
  10082. float * d,
  10083. float * step,
  10084. const float * xp,
  10085. struct ggml_tensor * f,
  10086. struct ggml_cgraph * gf,
  10087. struct ggml_cgraph * gb,
  10088. const int np,
  10089. struct ggml_tensor * ps[]) {
  10090. int count = 0;
  10091. float width = 0.0f;
  10092. float dg = 0.0f;
  10093. float finit = 0.0f;
  10094. float dginit = 0.0f;
  10095. float dgtest = 0.0f;
  10096. const float dec = 0.5f;
  10097. const float inc = 2.1f;
  10098. if (*step <= 0.f) {
  10099. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10100. }
  10101. // compute the initial gradient in the search direction
  10102. ggml_vec_dot_f32(nx, &dginit, g, d);
  10103. // make sure that d points to a descent direction
  10104. if (0 < dginit) {
  10105. return GGML_LINESEARCH_FAIL;
  10106. }
  10107. // initialize local variables
  10108. finit = *fx;
  10109. dgtest = params->lbfgs.ftol*dginit;
  10110. while (true) {
  10111. ggml_vec_cpy_f32(nx, x, xp);
  10112. ggml_vec_mad_f32(nx, x, d, *step);
  10113. // evaluate the function and gradient values
  10114. {
  10115. ggml_opt_set_params(np, ps, x);
  10116. ggml_graph_reset (gf);
  10117. ggml_set_f32 (f->grad, 1.0f);
  10118. ggml_graph_compute(ctx, gb);
  10119. ggml_opt_get_grad(np, ps, g);
  10120. *fx = ggml_get_f32_1d(f, 0);
  10121. }
  10122. ++count;
  10123. if (*fx > finit + (*step)*dgtest) {
  10124. width = dec;
  10125. } else {
  10126. // Armijo condition is satisfied
  10127. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10128. return count;
  10129. }
  10130. ggml_vec_dot_f32(nx, &dg, g, d);
  10131. // check the Wolfe condition
  10132. if (dg < params->lbfgs.wolfe * dginit) {
  10133. width = inc;
  10134. } else {
  10135. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10136. // regular Wolfe conditions
  10137. return count;
  10138. }
  10139. if(dg > -params->lbfgs.wolfe*dginit) {
  10140. width = dec;
  10141. } else {
  10142. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10143. return count;
  10144. }
  10145. return count;
  10146. }
  10147. }
  10148. if (*step < params->lbfgs.min_step) {
  10149. return GGML_LINESEARCH_MINIMUM_STEP;
  10150. }
  10151. if (*step > params->lbfgs.max_step) {
  10152. return GGML_LINESEARCH_MAXIMUM_STEP;
  10153. }
  10154. if (params->lbfgs.max_linesearch <= count) {
  10155. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10156. }
  10157. (*step) *= width;
  10158. }
  10159. return GGML_LINESEARCH_FAIL;
  10160. }
  10161. static enum ggml_opt_result ggml_opt_lbfgs(
  10162. struct ggml_context * ctx,
  10163. struct ggml_opt_params params,
  10164. struct ggml_tensor * f,
  10165. struct ggml_cgraph * gf,
  10166. struct ggml_cgraph * gb) {
  10167. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10168. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10169. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10170. return GGML_OPT_INVALID_WOLFE;
  10171. }
  10172. }
  10173. gf->n_threads = params.n_threads;
  10174. gb->n_threads = params.n_threads;
  10175. const int m = params.lbfgs.m;
  10176. // these will store the parameters we want to optimize
  10177. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10178. int np = 0;
  10179. int nx = 0;
  10180. for (int i = 0; i < gf->n_nodes; ++i) {
  10181. if (gf->nodes[i]->is_param) {
  10182. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10183. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10184. ps[np++] = gf->nodes[i];
  10185. nx += ggml_nelements(gf->nodes[i]);
  10186. }
  10187. }
  10188. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10189. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10190. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10191. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10192. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10193. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10194. float fx = 0.0f; // cost function value
  10195. float xnorm = 0.0f; // ||x||
  10196. float gnorm = 0.0f; // ||g||
  10197. float step = 0.0f;
  10198. // initialize x from the graph nodes
  10199. ggml_opt_get_params(np, ps, x);
  10200. // the L-BFGS memory
  10201. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10202. for (int i = 0; i < m; ++i) {
  10203. lm[i].alpha = 0.0f;
  10204. lm[i].ys = 0.0f;
  10205. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10206. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10207. }
  10208. // evaluate the function value and its gradient
  10209. {
  10210. ggml_opt_set_params(np, ps, x);
  10211. ggml_graph_reset (gf);
  10212. ggml_set_f32 (f->grad, 1.0f);
  10213. ggml_graph_compute(ctx, gb);
  10214. ggml_opt_get_grad(np, ps, g);
  10215. fx = ggml_get_f32_1d(f, 0);
  10216. }
  10217. if (pf) {
  10218. pf[0] = fx;
  10219. }
  10220. float fx_best = fx;
  10221. // search direction = -gradient
  10222. ggml_vec_neg_f32(nx, d, g);
  10223. // ||x||, ||g||
  10224. ggml_vec_norm_f32(nx, &xnorm, x);
  10225. ggml_vec_norm_f32(nx, &gnorm, g);
  10226. if (xnorm < 1.0f) {
  10227. xnorm = 1.0f;
  10228. }
  10229. // already optimized
  10230. if (gnorm/xnorm <= params.lbfgs.eps) {
  10231. return GGML_OPT_OK;
  10232. }
  10233. // initial step
  10234. ggml_vec_norm_inv_f32(nx, &step, d);
  10235. int j = 0;
  10236. int k = 1;
  10237. int ls = 0;
  10238. int end = 0;
  10239. int bound = 0;
  10240. int n_no_improvement = 0;
  10241. float ys = 0.0f;
  10242. float yy = 0.0f;
  10243. float beta = 0.0f;
  10244. while (true) {
  10245. // store the current position and gradient vectors
  10246. ggml_vec_cpy_f32(nx, xp, x);
  10247. ggml_vec_cpy_f32(nx, gp, g);
  10248. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10249. if (ls < 0) {
  10250. // linesearch failed - go back to the previous point and return
  10251. ggml_vec_cpy_f32(nx, x, xp);
  10252. ggml_vec_cpy_f32(nx, g, gp);
  10253. return ls;
  10254. }
  10255. ggml_vec_norm_f32(nx, &xnorm, x);
  10256. ggml_vec_norm_f32(nx, &gnorm, g);
  10257. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10258. if (xnorm < 1.0f) {
  10259. xnorm = 1.0f;
  10260. }
  10261. if (gnorm/xnorm <= params.lbfgs.eps) {
  10262. // converged
  10263. return GGML_OPT_OK;
  10264. }
  10265. // delta-based convergence test
  10266. if (pf != NULL) {
  10267. // need at least params.past iterations to start checking for convergence
  10268. if (params.past <= k) {
  10269. const float rate = (pf[k%params.past] - fx)/fx;
  10270. if (fabsf(rate) < params.delta) {
  10271. return GGML_OPT_OK;
  10272. }
  10273. }
  10274. pf[k%params.past] = fx;
  10275. }
  10276. // check for improvement
  10277. if (params.max_no_improvement > 0) {
  10278. if (fx < fx_best) {
  10279. fx_best = fx;
  10280. n_no_improvement = 0;
  10281. } else {
  10282. n_no_improvement++;
  10283. if (n_no_improvement >= params.max_no_improvement) {
  10284. return GGML_OPT_OK;
  10285. }
  10286. }
  10287. }
  10288. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10289. // reached the maximum number of iterations
  10290. return GGML_OPT_DID_NOT_CONVERGE;
  10291. }
  10292. // update vectors s and y:
  10293. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10294. // y_{k+1} = g_{k+1} - g_{k}.
  10295. //
  10296. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10297. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10298. // compute scalars ys and yy:
  10299. // ys = y^t \cdot s -> 1 / \rho.
  10300. // yy = y^t \cdot y.
  10301. //
  10302. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10303. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10304. lm[end].ys = ys;
  10305. // find new search direction
  10306. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10307. bound = (m <= k) ? m : k;
  10308. k++;
  10309. end = (end + 1)%m;
  10310. // initialize search direction with -g
  10311. ggml_vec_neg_f32(nx, d, g);
  10312. j = end;
  10313. for (int i = 0; i < bound; ++i) {
  10314. j = (j + m - 1) % m;
  10315. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10316. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10317. lm[j].alpha /= lm[j].ys;
  10318. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10319. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10320. }
  10321. ggml_vec_scale_f32(nx, d, ys/yy);
  10322. for (int i = 0; i < bound; ++i) {
  10323. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10324. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10325. beta /= lm[j].ys;
  10326. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10327. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10328. j = (j + 1)%m;
  10329. }
  10330. step = 1.0;
  10331. }
  10332. return GGML_OPT_DID_NOT_CONVERGE;
  10333. }
  10334. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10335. struct ggml_opt_params result;
  10336. switch (type) {
  10337. case GGML_OPT_ADAM:
  10338. {
  10339. result = (struct ggml_opt_params) {
  10340. .type = GGML_OPT_ADAM,
  10341. .n_threads = 1,
  10342. .past = 0,
  10343. .delta = 1e-5f,
  10344. .max_no_improvement = 100,
  10345. .print_forward_graph = true,
  10346. .print_backward_graph = true,
  10347. .adam = {
  10348. .n_iter = 10000,
  10349. .alpha = 0.001f,
  10350. .beta1 = 0.9f,
  10351. .beta2 = 0.999f,
  10352. .eps = 1e-8f,
  10353. .eps_f = 1e-5f,
  10354. .eps_g = 1e-3f,
  10355. },
  10356. };
  10357. } break;
  10358. case GGML_OPT_LBFGS:
  10359. {
  10360. result = (struct ggml_opt_params) {
  10361. .type = GGML_OPT_LBFGS,
  10362. .n_threads = 1,
  10363. .past = 0,
  10364. .delta = 1e-5f,
  10365. .max_no_improvement = 0,
  10366. .print_forward_graph = true,
  10367. .print_backward_graph = true,
  10368. .lbfgs = {
  10369. .m = 6,
  10370. .n_iter = 100,
  10371. .max_linesearch = 20,
  10372. .eps = 1e-5f,
  10373. .ftol = 1e-4f,
  10374. .wolfe = 0.9f,
  10375. .min_step = 1e-20f,
  10376. .max_step = 1e+20f,
  10377. .linesearch = GGML_LINESEARCH_DEFAULT,
  10378. },
  10379. };
  10380. } break;
  10381. }
  10382. return result;
  10383. }
  10384. enum ggml_opt_result ggml_opt(
  10385. struct ggml_context * ctx,
  10386. struct ggml_opt_params params,
  10387. struct ggml_tensor * f) {
  10388. bool free_ctx = false;
  10389. if (ctx == NULL) {
  10390. struct ggml_init_params params_ctx = {
  10391. .mem_size = 16*1024*1024,
  10392. .mem_buffer = NULL,
  10393. .no_alloc = false,
  10394. };
  10395. ctx = ggml_init(params_ctx);
  10396. if (ctx == NULL) {
  10397. return GGML_OPT_NO_CONTEXT;
  10398. }
  10399. free_ctx = true;
  10400. }
  10401. enum ggml_opt_result result = GGML_OPT_OK;
  10402. // build forward + backward compute graphs
  10403. struct ggml_cgraph gf = ggml_build_forward (f);
  10404. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10405. switch (params.type) {
  10406. case GGML_OPT_ADAM:
  10407. {
  10408. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10409. } break;
  10410. case GGML_OPT_LBFGS:
  10411. {
  10412. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10413. } break;
  10414. }
  10415. if (params.print_forward_graph) {
  10416. ggml_graph_print (&gf);
  10417. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10418. }
  10419. if (params.print_backward_graph) {
  10420. ggml_graph_print (&gb);
  10421. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10422. }
  10423. if (free_ctx) {
  10424. ggml_free(ctx);
  10425. }
  10426. return result;
  10427. }
  10428. ////////////////////////////////////////////////////////////////////////////////
  10429. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10430. assert(k % QK4_0 == 0);
  10431. const int nb = k / QK4_0;
  10432. for (int j = 0; j < n; j += k) {
  10433. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10434. quantize_row_q4_0_reference(src + j, y, k);
  10435. for (int i = 0; i < nb; i++) {
  10436. for (int l = 0; l < QK4_0; l += 2) {
  10437. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10438. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10439. hist[vi0]++;
  10440. hist[vi1]++;
  10441. }
  10442. }
  10443. }
  10444. return (n/QK4_0*sizeof(block_q4_0));
  10445. }
  10446. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10447. assert(k % QK4_1 == 0);
  10448. const int nb = k / QK4_1;
  10449. for (int j = 0; j < n; j += k) {
  10450. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10451. quantize_row_q4_1_reference(src + j, y, k);
  10452. for (int i = 0; i < nb; i++) {
  10453. for (int l = 0; l < QK4_1; l += 2) {
  10454. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10455. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10456. hist[vi0]++;
  10457. hist[vi1]++;
  10458. }
  10459. }
  10460. }
  10461. return (n/QK4_1*sizeof(block_q4_1));
  10462. }
  10463. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10464. assert(k % QK4_2 == 0);
  10465. const int nb = k / QK4_2;
  10466. for (int j = 0; j < n; j += k) {
  10467. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10468. quantize_row_q4_2_reference(src + j, y, k);
  10469. for (int i = 0; i < nb; i++) {
  10470. for (int l = 0; l < QK4_2; l += 2) {
  10471. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10472. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10473. hist[vi0]++;
  10474. hist[vi1]++;
  10475. }
  10476. }
  10477. }
  10478. return (n/QK4_2*sizeof(block_q4_2));
  10479. }
  10480. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10481. assert(k % QK5_0 == 0);
  10482. const int nb = k / QK5_0;
  10483. for (int j = 0; j < n; j += k) {
  10484. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10485. quantize_row_q5_0_reference(src + j, y, k);
  10486. for (int i = 0; i < nb; i++) {
  10487. uint32_t qh;
  10488. memcpy(&qh, &y[i].qh, sizeof(qh));
  10489. for (int l = 0; l < QK5_0; l += 2) {
  10490. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10491. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10492. // cast to 16 bins
  10493. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10494. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10495. hist[vi0]++;
  10496. hist[vi1]++;
  10497. }
  10498. }
  10499. }
  10500. return (n/QK5_0*sizeof(block_q5_0));
  10501. }
  10502. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10503. assert(k % QK5_1 == 0);
  10504. const int nb = k / QK5_1;
  10505. for (int j = 0; j < n; j += k) {
  10506. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10507. quantize_row_q5_1_reference(src + j, y, k);
  10508. for (int i = 0; i < nb; i++) {
  10509. uint32_t qh;
  10510. memcpy(&qh, &y[i].qh, sizeof(qh));
  10511. for (int l = 0; l < QK5_1; l += 2) {
  10512. const uint8_t vh0 = ((qh & (1 << (l + 0))) >> (l + 0)) << 4;
  10513. const uint8_t vh1 = ((qh & (1 << (l + 1))) >> (l + 1)) << 4;
  10514. // cast to 16 bins
  10515. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10516. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10517. hist[vi0]++;
  10518. hist[vi1]++;
  10519. }
  10520. }
  10521. }
  10522. return (n/QK5_1*sizeof(block_q5_1));
  10523. }
  10524. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10525. assert(k % QK8_0 == 0);
  10526. const int nb = k / QK8_0;
  10527. for (int j = 0; j < n; j += k) {
  10528. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10529. quantize_row_q8_0_reference(src + j, y, k);
  10530. for (int i = 0; i < nb; i++) {
  10531. for (int l = 0; l < QK8_0; ++l) {
  10532. const int8_t vi = y[i].qs[l];
  10533. hist[vi/16 + 8]++;
  10534. }
  10535. }
  10536. }
  10537. return (n/QK8_0*sizeof(block_q8_0));
  10538. }
  10539. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10540. size_t result = 0;
  10541. switch (type) {
  10542. case GGML_TYPE_Q4_0:
  10543. {
  10544. GGML_ASSERT(start % QK4_0 == 0);
  10545. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10546. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10547. } break;
  10548. case GGML_TYPE_Q4_1:
  10549. {
  10550. GGML_ASSERT(start % QK4_1 == 0);
  10551. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10552. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10553. } break;
  10554. case GGML_TYPE_Q4_2:
  10555. {
  10556. GGML_ASSERT(start % QK4_2 == 0);
  10557. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10558. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10559. } break;
  10560. case GGML_TYPE_Q5_0:
  10561. {
  10562. GGML_ASSERT(start % QK5_0 == 0);
  10563. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10564. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10565. } break;
  10566. case GGML_TYPE_Q5_1:
  10567. {
  10568. GGML_ASSERT(start % QK5_1 == 0);
  10569. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10570. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10571. } break;
  10572. case GGML_TYPE_Q8_0:
  10573. {
  10574. GGML_ASSERT(start % QK8_0 == 0);
  10575. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10576. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10577. } break;
  10578. default:
  10579. assert(false);
  10580. }
  10581. return result;
  10582. }
  10583. ////////////////////////////////////////////////////////////////////////////////
  10584. int ggml_cpu_has_avx(void) {
  10585. #if defined(__AVX__)
  10586. return 1;
  10587. #else
  10588. return 0;
  10589. #endif
  10590. }
  10591. int ggml_cpu_has_avx2(void) {
  10592. #if defined(__AVX2__)
  10593. return 1;
  10594. #else
  10595. return 0;
  10596. #endif
  10597. }
  10598. int ggml_cpu_has_avx512(void) {
  10599. #if defined(__AVX512F__)
  10600. return 1;
  10601. #else
  10602. return 0;
  10603. #endif
  10604. }
  10605. int ggml_cpu_has_avx512_vbmi(void) {
  10606. #if defined(__AVX512VBMI__)
  10607. return 1;
  10608. #else
  10609. return 0;
  10610. #endif
  10611. }
  10612. int ggml_cpu_has_avx512_vnni(void) {
  10613. #if defined(__AVX512VNNI__)
  10614. return 1;
  10615. #else
  10616. return 0;
  10617. #endif
  10618. }
  10619. int ggml_cpu_has_fma(void) {
  10620. #if defined(__FMA__)
  10621. return 1;
  10622. #else
  10623. return 0;
  10624. #endif
  10625. }
  10626. int ggml_cpu_has_neon(void) {
  10627. #if defined(__ARM_NEON)
  10628. return 1;
  10629. #else
  10630. return 0;
  10631. #endif
  10632. }
  10633. int ggml_cpu_has_arm_fma(void) {
  10634. #if defined(__ARM_FEATURE_FMA)
  10635. return 1;
  10636. #else
  10637. return 0;
  10638. #endif
  10639. }
  10640. int ggml_cpu_has_f16c(void) {
  10641. #if defined(__F16C__)
  10642. return 1;
  10643. #else
  10644. return 0;
  10645. #endif
  10646. }
  10647. int ggml_cpu_has_fp16_va(void) {
  10648. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10649. return 1;
  10650. #else
  10651. return 0;
  10652. #endif
  10653. }
  10654. int ggml_cpu_has_wasm_simd(void) {
  10655. #if defined(__wasm_simd128__)
  10656. return 1;
  10657. #else
  10658. return 0;
  10659. #endif
  10660. }
  10661. int ggml_cpu_has_blas(void) {
  10662. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10663. return 1;
  10664. #else
  10665. return 0;
  10666. #endif
  10667. }
  10668. int ggml_cpu_has_cublas(void) {
  10669. #if defined(GGML_USE_CUBLAS)
  10670. return 1;
  10671. #else
  10672. return 0;
  10673. #endif
  10674. }
  10675. int ggml_cpu_has_clblast(void) {
  10676. #if defined(GGML_USE_CLBLAST)
  10677. return 1;
  10678. #else
  10679. return 0;
  10680. #endif
  10681. }
  10682. int ggml_cpu_has_gpublas(void) {
  10683. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10684. }
  10685. int ggml_cpu_has_sse3(void) {
  10686. #if defined(__SSE3__)
  10687. return 1;
  10688. #else
  10689. return 0;
  10690. #endif
  10691. }
  10692. int ggml_cpu_has_vsx(void) {
  10693. #if defined(__POWER9_VECTOR__)
  10694. return 1;
  10695. #else
  10696. return 0;
  10697. #endif
  10698. }
  10699. ////////////////////////////////////////////////////////////////////////////////