| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653 |
- #include "common.h"
- #include "log.h"
- #include "llama.h"
- #include "mtmd.h"
- #include "mtmd-helper.h"
- #include "chat.h"
- #include "arg.h" // for common_remote_get_content; TODO: use download.h only
- #include "base64.hpp"
- #include "server-common.h"
- #include <random>
- #include <sstream>
- json format_error_response(const std::string & message, const enum error_type type) {
- std::string type_str;
- int code = 500;
- switch (type) {
- case ERROR_TYPE_INVALID_REQUEST:
- type_str = "invalid_request_error";
- code = 400;
- break;
- case ERROR_TYPE_AUTHENTICATION:
- type_str = "authentication_error";
- code = 401;
- break;
- case ERROR_TYPE_NOT_FOUND:
- type_str = "not_found_error";
- code = 404;
- break;
- case ERROR_TYPE_SERVER:
- type_str = "server_error";
- code = 500;
- break;
- case ERROR_TYPE_PERMISSION:
- type_str = "permission_error";
- code = 403;
- break;
- case ERROR_TYPE_NOT_SUPPORTED:
- type_str = "not_supported_error";
- code = 501;
- break;
- case ERROR_TYPE_UNAVAILABLE:
- type_str = "unavailable_error";
- code = 503;
- break;
- case ERROR_TYPE_EXCEED_CONTEXT_SIZE:
- type_str = "exceed_context_size_error";
- code = 400;
- break;
- }
- return json {
- {"code", code},
- {"message", message},
- {"type", type_str},
- };
- }
- //
- // random string / id
- //
- std::string random_string() {
- static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
- std::random_device rd;
- std::mt19937 generator(rd());
- std::string result(32, ' ');
- for (int i = 0; i < 32; ++i) {
- result[i] = str[generator() % str.size()];
- }
- return result;
- }
- std::string gen_chatcmplid() {
- return "chatcmpl-" + random_string();
- }
- std::string gen_tool_call_id() {
- return random_string();
- }
- //
- // lora utils
- //
- bool lora_all_alora(const std::vector<common_adapter_lora_info> & loras) {
- bool found_alora = false;
- for (const auto & lora : loras) {
- if (lora.scale != 0) {
- if (llama_adapter_get_alora_n_invocation_tokens(lora.ptr) == 0) {
- return false;
- }
- found_alora = true;
- }
- }
- return found_alora;
- }
- bool lora_should_clear_cache(
- const std::vector<common_adapter_lora_info> & current,
- const std::vector<common_adapter_lora_info> & next) {
- // This should always be called after determining that the two sets are
- // _not_ equal. This assert is therefore some slightly wasted work and
- // should be safe to remove as long as this method is called correctly.
- GGML_ASSERT(!are_lora_equal(current, next));
- return (
- !(lora_get_enabled_ids(current).empty() || lora_all_alora(current)) ||
- !lora_all_alora(next));
- }
- std::vector<common_adapter_lora_info> parse_lora_request(
- const std::vector<common_adapter_lora_info> & lora_base,
- const json & data) {
- std::vector<common_adapter_lora_info> lora(lora_base);
- int max_idx = lora.size();
- // clear existing value
- for (auto & entry : lora) {
- entry.scale = 0.0f;
- }
- // set value
- for (const auto & entry : data) {
- int id = json_value(entry, "id", -1);
- float scale = json_value(entry, "scale", 0.0f);
- if (0 <= id && id < max_idx) {
- lora[id].scale = scale;
- } else {
- throw std::runtime_error("invalid adapter id");
- }
- }
- return lora;
- }
- bool are_lora_equal(
- const std::vector<common_adapter_lora_info> & l1,
- const std::vector<common_adapter_lora_info> & l2) {
- if (l1.size() != l2.size()) {
- return false;
- }
- for (size_t i = 0; i < l1.size(); ++i) {
- // we don't check lora.path to reduce the time complexity
- if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) {
- return false;
- }
- }
- return true;
- }
- std::vector<size_t> lora_get_enabled_ids(const std::vector<common_adapter_lora_info> & loras) {
- std::vector<size_t> enabled_ids;
- for (size_t i = 0; i < loras.size(); ++i) {
- if (loras[i].scale > 0) {
- enabled_ids.push_back(i);
- }
- }
- return enabled_ids;
- }
- //
- // base64 utils (TODO: use the base64::decode from base64.hpp)
- //
- static const std::string base64_chars =
- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
- "abcdefghijklmnopqrstuvwxyz"
- "0123456789+/";
- static inline bool is_base64(uint8_t c) {
- return (isalnum(c) || (c == '+') || (c == '/'));
- }
- static inline raw_buffer base64_decode(const std::string & encoded_string) {
- int i = 0;
- int j = 0;
- int in_ = 0;
- int in_len = encoded_string.size();
- uint8_t char_array_4[4];
- uint8_t char_array_3[3];
- raw_buffer ret;
- while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
- char_array_4[i++] = encoded_string[in_]; in_++;
- if (i == 4) {
- for (i = 0; i < 4; i++) {
- char_array_4[i] = base64_chars.find(char_array_4[i]);
- }
- char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
- char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
- char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
- for (i = 0; (i < 3); i++) {
- ret.push_back(char_array_3[i]);
- }
- i = 0;
- }
- }
- if (i) {
- for (j = i; j < 4; j++) {
- char_array_4[j] = 0;
- }
- for (j = 0; j < 4; j++) {
- char_array_4[j] = base64_chars.find(char_array_4[j]);
- }
- char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
- char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
- char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
- for (j = 0; j < i - 1; j++) {
- ret.push_back(char_array_3[j]);
- }
- }
- return ret;
- }
- //
- // server_tokens implementation
- //
- server_tokens::server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd) : has_mtmd(has_mtmd) {
- for (size_t i = 0; i < mtmd_chunks.size(); ++i) {
- push_back(mtmd_chunks[i]);
- }
- }
- server_tokens::server_tokens(const llama_tokens & tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) {
- }
- llama_pos server_tokens::pos_next() const {
- if (!has_mtmd) {
- return tokens.size();
- }
- llama_pos res = tokens.size();
- for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ++it) {
- const auto & chunk = it->second;
- res += mtmd_input_chunk_get_n_pos(chunk.get()) - mtmd_input_chunk_get_n_tokens(chunk.get());
- }
- return res;
- }
- std::string server_tokens::str() const {
- std::ostringstream oss;
- oss << "tokens: ";
- for (size_t idx = 0; idx < tokens.size(); ++idx) {
- llama_token t = tokens[idx];
- oss << "idx:" << idx << " ";
- if (t == LLAMA_TOKEN_NULL) {
- oss << "<embd> ";
- } else {
- oss << t << " ";
- }
- }
- oss << "\n";
- oss << "image idx: ";
- for (const auto & it : map_idx_to_media) {
- oss << it.first << ", ";
- }
- return oss.str();
- }
- const mtmd::input_chunk_ptr & server_tokens::find_chunk(size_t idx) const {
- auto it = map_idx_to_media.find(idx);
- if (it != map_idx_to_media.end()) {
- return it->second;
- }
- throw std::runtime_error("Chunk not found");
- }
- void server_tokens::push_back(llama_token tok) {
- if (tok == LLAMA_TOKEN_NULL) {
- throw std::runtime_error("Invalid token");
- }
- tokens.emplace_back(tok);
- }
- void server_tokens::push_back(const mtmd_input_chunk * chunk) {
- auto type = mtmd_input_chunk_get_type(chunk);
- if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE || type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
- GGML_ASSERT(has_mtmd);
- const size_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk);
- size_t start_idx = tokens.size();
- for (size_t i = 0; i < n_tokens; ++i) {
- tokens.emplace_back(LLAMA_TOKEN_NULL);
- }
- mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
- map_idx_to_media[start_idx] = std::move(new_chunk);
- } else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
- size_t n_tokens;
- const auto * text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
- for (size_t i = 0; i < n_tokens; ++i) {
- push_back(text_tokens[i]);
- }
- } else {
- GGML_ABORT("Invalid chunk type");
- }
- }
- void server_tokens::push_back(server_tokens & tokens) {
- size_t start_idx = size();
- for (size_t i = 0; i < tokens.size(); i++) {
- push_back(tokens[i]);
- }
- if (tokens.has_mtmd) {
- // Assert if we are copying MTMD chunks to a server_tokens that does not have mtmd.
- // We could also just check, but this will prevent silently dropping MTMD data.
- GGML_ASSERT(has_mtmd);
- for (auto it = tokens.map_idx_to_media.begin(); it != tokens.map_idx_to_media.end(); ) {
- auto * chunk = tokens.map_idx_to_media[it->first].get();
- mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
- map_idx_to_media[start_idx + it->first] = std::move(new_chunk);
- }
- }
- }
- void server_tokens::insert(const llama_tokens & inp_tokens) {
- GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
- tokens.insert(tokens.end(), inp_tokens.begin(), inp_tokens.end());
- }
- const llama_tokens & server_tokens::get_text_tokens() const {
- GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
- return tokens;
- }
- void server_tokens::set_token(llama_pos pos, llama_token id) {
- GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
- tokens[pos] = id;
- }
- void server_tokens::keep_first(size_t n) {
- GGML_ASSERT(n <= tokens.size());
- if (has_mtmd) {
- if (n == tokens.size()) {
- return; // nothing to do
- }
- // we throw an error if we try to remove a token in the middle of an image
- // for ex. with input of 5 text tokens and 2 images:
- // [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
- // n 1 2 3 4 5 6 7 8 9 10
- // allowed to resize ^ ^
- // disallowed to resize ^ ^ ^
- if (n > 0) {
- // make sure we never remove tokens in the middle of an image
- // note that the case where we keep a full image at the end is allowed:
- // tokens[n - 1] == LLAMA_TOKEN_NULL && tokens[n] != LLAMA_TOKEN_NULL
- if (tokens[n - 1] == LLAMA_TOKEN_NULL && tokens[n] == LLAMA_TOKEN_NULL) {
- find_chunk(n - 1); // will throw an error if the token is not begin-of-chunk
- }
- }
- // remove all image chunks that are not used anymore
- for (auto it = map_idx_to_media.begin(); it != map_idx_to_media.end(); ) {
- size_t idx = it->first;
- if (idx >= n) {
- it = map_idx_to_media.erase(it);
- } else {
- ++it;
- }
- }
- }
- tokens.resize(n);
- }
- std::string server_tokens::detokenize(const llama_context * ctx, bool special) const {
- llama_tokens text_tokens;
- text_tokens.reserve(tokens.size());
- for (const auto & t : tokens) {
- if (t != LLAMA_TOKEN_NULL) {
- text_tokens.push_back(t);
- }
- }
- return common_detokenize(ctx, text_tokens, special);
- }
- size_t server_tokens::get_common_prefix(const server_tokens & b) const {
- const size_t max_idx = std::min(tokens.size(), b.tokens.size());
- if (!has_mtmd) {
- for (size_t i = 0; i < max_idx; ++i) {
- if (tokens[i] == b.tokens[i]) {
- continue;
- }
- return i;
- }
- return max_idx;
- }
- for (size_t i = 0; i < max_idx; ++i) {
- const llama_token ai = tokens[i];
- const llama_token bi = b.tokens[i];
- if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) {
- const auto & a_chunk = find_chunk(i);
- const auto & b_chunk = b.find_chunk(i);
- GGML_ASSERT(a_chunk && b_chunk);
- const std::string id_ai = mtmd_input_chunk_get_id(a_chunk.get());
- const std::string id_bi = mtmd_input_chunk_get_id(b_chunk.get());
- const size_t n_tok_a = mtmd_input_chunk_get_n_tokens(a_chunk.get());
- const size_t n_tok_b = mtmd_input_chunk_get_n_tokens(b_chunk.get());
- if (id_ai == id_bi && n_tok_a == n_tok_b) {
- GGML_ASSERT(n_tok_a > 0 && "Invalid media chunk"); // should never happen
- i += n_tok_a - 1; // will be +1 by the for loop
- continue;
- }
- return i;
- }
- if (ai == bi) {
- continue;
- }
- return i;
- }
- return max_idx; // all tokens are equal
- }
- bool server_tokens::validate(const struct llama_context * ctx) const {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const int32_t n_vocab = llama_vocab_n_tokens(vocab);
- for (size_t i = 0; i < tokens.size(); ++i) {
- const auto & t = tokens[i];
- if (t == LLAMA_TOKEN_NULL) {
- try {
- const auto & chunk = find_chunk(i);
- size_t n_tokens = mtmd_input_chunk_get_n_tokens(chunk.get());
- i += n_tokens - 1; // will be +1 by the for loop
- } catch (const std::exception & e) {
- return false;
- }
- } else if (t < 0 || t >= n_vocab) {
- return false;
- }
- }
- return true;
- }
- int32_t server_tokens::process_chunk(
- llama_context * ctx,
- mtmd_context * mctx,
- size_t idx,
- llama_pos pos,
- int32_t seq_id,
- size_t & n_tokens_out) const {
- const auto & chunk = find_chunk(idx);
- const char * name = mtmd_input_chunk_get_type(chunk.get()) == MTMD_INPUT_CHUNK_TYPE_IMAGE
- ? "image" : "audio";
- SRV_INF("processing %s...\n", name);
- int32_t n_batch = llama_n_batch(ctx);
- int64_t t0 = ggml_time_ms();
- llama_pos new_n_past; // unused for now
- int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx,
- chunk.get(),
- pos,
- seq_id,
- n_batch,
- true, // logits last
- &new_n_past);
- SRV_INF("%s processed in %" PRId64 " ms\n", name, ggml_time_ms() - t0);
- if (result != 0) {
- LOG_ERR("mtmd_helper_eval failed with status %d", result);
- n_tokens_out = 0;
- return result;
- }
- n_tokens_out = mtmd_input_chunk_get_n_tokens(chunk.get());
- return 0;
- }
- //
- // tokenizer and input processing utils
- //
- bool json_is_array_of_numbers(const json & data) {
- if (data.is_array()) {
- for (const auto & e : data) {
- if (!e.is_number_integer()) {
- return false;
- }
- }
- return true;
- }
- return false;
- }
- bool json_is_array_of_mixed_numbers_strings(const json & data) {
- bool seen_string = false;
- bool seen_number = false;
- if (data.is_array()) {
- for (const auto & e : data) {
- seen_string |= e.is_string();
- seen_number |= e.is_number_integer();
- if (seen_number && seen_string) {
- return true;
- }
- }
- }
- return false;
- }
- bool json_is_array_and_contains_numbers(const json & data) {
- if (data.is_array()) {
- for (const auto & e : data) {
- if (e.is_number_integer()) {
- return true;
- }
- }
- return false;
- }
- return false;
- }
- json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
- json result = json::object();
- for (const std::string & path : paths) {
- json current = js;
- const auto keys = string_split<std::string>(path, /*separator*/ '/');
- bool valid_path = true;
- for (const std::string & k : keys) {
- if (valid_path && current.is_object() && current.contains(k)) {
- current = current[k];
- } else {
- valid_path = false;
- }
- }
- if (valid_path) {
- result[path] = current;
- }
- }
- return result;
- }
- llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
- // If `add_bos` is true, we only add BOS, when json_prompt is a string,
- // or the first element of the json_prompt array is a string.
- llama_tokens prompt_tokens;
- if (json_prompt.is_array()) {
- bool first = true;
- for (const auto & p : json_prompt) {
- if (p.is_string()) {
- auto s = p.template get<std::string>();
- llama_tokens p;
- if (first) {
- p = common_tokenize(vocab, s, add_special, parse_special);
- first = false;
- } else {
- p = common_tokenize(vocab, s, false, parse_special);
- }
- prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
- } else {
- if (first) {
- first = false;
- }
- prompt_tokens.push_back(p.template get<llama_token>());
- }
- }
- } else {
- auto s = json_prompt.template get<std::string>();
- prompt_tokens = common_tokenize(vocab, s, add_special, parse_special);
- }
- return prompt_tokens;
- }
- size_t validate_utf8(const std::string& text) {
- size_t len = text.size();
- if (len == 0) return 0;
- // Check the last few bytes to see if a multi-byte character is cut off
- for (size_t i = 1; i <= 4 && i <= len; ++i) {
- unsigned char c = text[len - i];
- // Check for start of a multi-byte sequence from the end
- if ((c & 0xE0) == 0xC0) {
- // 2-byte character start: 110xxxxx
- // Needs at least 2 bytes
- if (i < 2) return len - i;
- } else if ((c & 0xF0) == 0xE0) {
- // 3-byte character start: 1110xxxx
- // Needs at least 3 bytes
- if (i < 3) return len - i;
- } else if ((c & 0xF8) == 0xF0) {
- // 4-byte character start: 11110xxx
- // Needs at least 4 bytes
- if (i < 4) return len - i;
- }
- }
- // If no cut-off multi-byte character is found, return full length
- return len;
- }
- // Computes FNV-1a hash of the data
- static std::string fnv_hash(const uint8_t * data, size_t len) {
- const uint64_t fnv_prime = 0x100000001b3ULL;
- uint64_t hash = 0xcbf29ce484222325ULL;
- for (size_t i = 0; i < len; ++i) {
- hash ^= data[i];
- hash *= fnv_prime;
- }
- return std::to_string(hash);
- }
- server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector<raw_buffer> files) {
- mtmd::bitmaps bitmaps;
- for (auto & file : files) {
- mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(mctx, file.data(), file.size()));
- if (!bmp.ptr) {
- throw std::runtime_error("Failed to load image or audio file");
- }
- // calculate bitmap hash (for KV caching)
- std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
- bmp.set_id(hash.c_str());
- bitmaps.entries.push_back(std::move(bmp));
- }
- // process prompt
- std::vector<server_tokens> inputs;
- // multimodal
- mtmd_input_text inp_txt = {
- prompt.c_str(),
- /* add_special */ true,
- /* parse_special */ true,
- };
- mtmd::input_chunks chunks(mtmd_input_chunks_init());
- auto bitmaps_c_ptr = bitmaps.c_ptr();
- int32_t tokenized = mtmd_tokenize(mctx,
- chunks.ptr.get(),
- &inp_txt,
- bitmaps_c_ptr.data(),
- bitmaps_c_ptr.size());
- if (tokenized != 0) {
- throw std::runtime_error("Failed to tokenize prompt");
- }
- auto result = server_tokens(chunks, true);
- return result;
- }
- /**
- * break the input "prompt" object into multiple prompt if needed, then tokenize them
- * use tokenize_input_prompts() if the input could be an array.
- * this supports these cases:
- * - "prompt": "string"
- * - "prompt": [12, 34, 56]
- * - "prompt": [12, 34, "string", 56, 78]
- * - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] }
- */
- static server_tokens tokenize_input_subprompt(const llama_vocab * vocab, mtmd_context * mctx, const json & json_prompt, bool add_special, bool parse_special) {
- constexpr char JSON_STRING_PROMPT_KEY[] = "prompt_string";
- constexpr char JSON_MTMD_DATA_KEY[] = "multimodal_data";
- const bool has_mtmd = mctx != nullptr;
- if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
- // string or mixed
- llama_tokens tmp = tokenize_mixed(vocab, json_prompt, add_special, parse_special);
- return server_tokens(tmp, false);
- } else if (json_is_array_of_numbers(json_prompt)) {
- // array of tokens
- llama_tokens tmp = json_prompt.get<llama_tokens>();
- return server_tokens(tmp, false);
- } else if (json_prompt.contains(JSON_STRING_PROMPT_KEY)) {
- // JSON object with prompt key.
- if (json_prompt.contains(JSON_MTMD_DATA_KEY)) {
- if (!has_mtmd)
- throw std::runtime_error("Multimodal data provided, but model does not support multimodal requests.");
- // JSON object with prompt and multimodal key.
- std::vector<raw_buffer> files;
- for (const auto & entry : json_prompt.at(JSON_MTMD_DATA_KEY)) {
- files.push_back(base64_decode(entry));
- }
- return process_mtmd_prompt(mctx, json_prompt.at(JSON_STRING_PROMPT_KEY), files);
- } else {
- // Not multimodal, but contains a subobject.
- llama_tokens tmp = tokenize_mixed(vocab, json_prompt.at(JSON_STRING_PROMPT_KEY), add_special, parse_special);
- return server_tokens(tmp, false);
- }
- } else {
- throw std::runtime_error("\"prompt\" elements must be a string, a list of tokens, a JSON object containing a prompt string, or a list of mixed strings & tokens.");
- }
- }
- std::vector<server_tokens> tokenize_input_prompts(const llama_vocab * vocab, mtmd_context * mctx, const json & json_prompt, bool add_special, bool parse_special) {
- std::vector<server_tokens> result;
- if (json_prompt.is_array() && !json_is_array_and_contains_numbers(json_prompt)) {
- result.reserve(json_prompt.size());
- for (const auto & p : json_prompt) {
- result.push_back(tokenize_input_subprompt(vocab, mctx, p,add_special, parse_special));
- }
- } else {
- result.push_back(tokenize_input_subprompt(vocab, mctx, json_prompt, add_special, parse_special));
- }
- if (result.empty()) {
- throw std::runtime_error("\"prompt\" must not be empty");
- }
- return result;
- }
- //
- // OAI utils
- //
- // used by /completions endpoint
- json oaicompat_completion_params_parse(const json & body) {
- json llama_params;
- if (!body.contains("prompt")) {
- throw std::runtime_error("\"prompt\" is required");
- }
- // Handle "stop" field
- if (body.contains("stop") && body.at("stop").is_string()) {
- llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
- } else {
- llama_params["stop"] = json_value(body, "stop", json::array());
- }
- // Handle "n" field
- int n_choices = json_value(body, "n", 1);
- if (n_choices != 1) {
- throw std::runtime_error("Only one completion choice is allowed");
- }
- // Handle "echo" field
- if (json_value(body, "echo", false)) {
- throw std::runtime_error("Only no echo is supported");
- }
- // Params supported by OAI but unsupported by llama.cpp
- static const std::vector<std::string> unsupported_params { "best_of", "suffix" };
- for (const auto & param : unsupported_params) {
- if (body.contains(param)) {
- throw std::runtime_error("Unsupported param: " + param);
- }
- }
- // Copy remaining properties to llama_params
- for (const auto & item : body.items()) {
- // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
- if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
- llama_params[item.key()] = item.value();
- }
- }
- return llama_params;
- }
- // used by /chat/completions endpoint
- json oaicompat_chat_params_parse(
- json & body, /* openai api json semantics */
- const oaicompat_parser_options & opt,
- std::vector<raw_buffer> & out_files)
- {
- json llama_params;
- auto tools = json_value(body, "tools", json());
- auto has_tools = tools.is_array() && !tools.empty();
- auto stream = json_value(body, "stream", false);
- auto tool_choice = json_value(body, "tool_choice", std::string("auto"));
- if (!opt.use_jinja) {
- if (has_tools) {
- throw std::runtime_error("tools param requires --jinja flag");
- }
- if (tool_choice != "auto") {
- throw std::runtime_error("tool_choice param requires --jinja flag");
- }
- }
- // Handle "stop" field
- if (body.contains("stop") && body.at("stop").is_string()) {
- llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
- } else {
- llama_params["stop"] = json_value(body, "stop", json::array());
- }
- auto json_schema = json_value(body, "json_schema", json());
- auto grammar = json_value(body, "grammar", std::string());
- if (!json_schema.is_null() && !grammar.empty()) {
- throw std::runtime_error("Cannot use both json_schema and grammar");
- }
- // Handle "response_format" field
- if (body.contains("response_format")) {
- json response_format = json_value(body, "response_format", json::object());
- std::string response_type = json_value(response_format, "type", std::string());
- if (response_type == "json_object") {
- json_schema = json_value(response_format, "schema", json::object());
- } else if (response_type == "json_schema") {
- auto schema_wrapper = json_value(response_format, "json_schema", json::object());
- json_schema = json_value(schema_wrapper, "schema", json::object());
- } else if (!response_type.empty() && response_type != "text") {
- throw std::invalid_argument("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
- }
- }
- // get input files
- if (!body.contains("messages")) {
- throw std::invalid_argument("'messages' is required");
- }
- json & messages = body.at("messages");
- if (!messages.is_array()) {
- throw std::invalid_argument("Expected 'messages' to be an array");
- }
- for (auto & msg : messages) {
- std::string role = json_value(msg, "role", std::string());
- if (role != "assistant" && !msg.contains("content")) {
- throw std::invalid_argument("All non-assistant messages must contain 'content'");
- }
- if (role == "assistant") {
- if (!msg.contains("content") && !msg.contains("tool_calls")) {
- throw std::invalid_argument("Assistant message must contain either 'content' or 'tool_calls'!");
- }
- if (!msg.contains("content")) {
- continue; // avoid errors with no content
- }
- }
- json & content = msg.at("content");
- if (content.is_string() || content.is_null()) {
- continue;
- }
- if (!content.is_array()) {
- throw std::invalid_argument("Expected 'content' to be a string or an array");
- }
- for (auto & p : content) {
- std::string type = json_value(p, "type", std::string());
- if (type == "image_url") {
- if (!opt.allow_image) {
- throw std::runtime_error("image input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
- }
- json image_url = json_value(p, "image_url", json::object());
- std::string url = json_value(image_url, "url", std::string());
- if (string_starts_with(url, "http")) {
- // download remote image
- // TODO @ngxson : maybe make these params configurable
- common_remote_params params;
- params.headers.push_back("User-Agent: llama.cpp/" + build_info);
- params.max_size = 1024 * 1024 * 10; // 10MB
- params.timeout = 10; // seconds
- SRV_INF("downloading image from '%s'\n", url.c_str());
- auto res = common_remote_get_content(url, params);
- if (200 <= res.first && res.first < 300) {
- SRV_INF("downloaded %ld bytes\n", res.second.size());
- raw_buffer data;
- data.insert(data.end(), res.second.begin(), res.second.end());
- out_files.push_back(data);
- } else {
- throw std::runtime_error("Failed to download image");
- }
- } else {
- // try to decode base64 image
- std::vector<std::string> parts = string_split<std::string>(url, /*separator*/ ',');
- if (parts.size() != 2) {
- throw std::invalid_argument("Invalid image_url.url value");
- } else if (!string_starts_with(parts[0], "data:image/")) {
- throw std::invalid_argument("Invalid image_url.url format: " + parts[0]);
- } else if (!string_ends_with(parts[0], "base64")) {
- throw std::invalid_argument("image_url.url must be base64 encoded");
- } else {
- auto base64_data = parts[1];
- auto decoded_data = base64_decode(base64_data);
- out_files.push_back(decoded_data);
- }
- }
- // replace this chunk with a marker
- p["type"] = "text";
- p["text"] = mtmd_default_marker();
- p.erase("image_url");
- } else if (type == "input_audio") {
- if (!opt.allow_audio) {
- throw std::runtime_error("audio input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
- }
- json input_audio = json_value(p, "input_audio", json::object());
- std::string data = json_value(input_audio, "data", std::string());
- std::string format = json_value(input_audio, "format", std::string());
- // while we also support flac, we don't allow it here so we matches the OAI spec
- if (format != "wav" && format != "mp3") {
- throw std::invalid_argument("input_audio.format must be either 'wav' or 'mp3'");
- }
- auto decoded_data = base64_decode(data); // expected to be base64 encoded
- out_files.push_back(decoded_data);
- // replace this chunk with a marker
- p["type"] = "text";
- p["text"] = mtmd_default_marker();
- p.erase("input_audio");
- } else if (type != "text") {
- throw std::invalid_argument("unsupported content[].type");
- }
- }
- }
- common_chat_templates_inputs inputs;
- inputs.messages = common_chat_msgs_parse_oaicompat(messages);
- inputs.tools = common_chat_tools_parse_oaicompat(tools);
- inputs.tool_choice = common_chat_tool_choice_parse_oaicompat(tool_choice);
- inputs.json_schema = json_schema.is_null() ? "" : json_schema.dump();
- inputs.grammar = grammar;
- inputs.use_jinja = opt.use_jinja;
- inputs.parallel_tool_calls = json_value(body, "parallel_tool_calls", false);
- inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
- inputs.reasoning_format = opt.reasoning_format;
- inputs.enable_thinking = opt.enable_thinking;
- if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
- if (body.contains("grammar")) {
- throw std::invalid_argument("Cannot use custom grammar constraints with tools.");
- }
- llama_params["parse_tool_calls"] = true;
- }
- // merge the template args provided from command line with the args provided in the user request
- auto chat_template_kwargs_object = json_value(body, "chat_template_kwargs", json::object());
- inputs.chat_template_kwargs = opt.chat_template_kwargs;
- for (const auto & item : chat_template_kwargs_object.items()) {
- inputs.chat_template_kwargs[item.key()] = item.value().dump();
- }
- // parse the "enable_thinking" kwarg to override the default value
- auto enable_thinking_kwarg = json_value(inputs.chat_template_kwargs, "enable_thinking", std::string(""));
- if (enable_thinking_kwarg == "true") {
- inputs.enable_thinking = true;
- } else if (enable_thinking_kwarg == "false") {
- inputs.enable_thinking = false;
- } else if (!enable_thinking_kwarg.empty() && enable_thinking_kwarg[0] == '"') {
- throw std::invalid_argument("invalid type for \"enable_thinking\" (expected boolean, got string)");
- }
- // if the assistant message appears at the end of list, we do not add end-of-turn token
- // for ex. this can be useful to modify the reasoning process in reasoning models
- bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant" && opt.prefill_assistant;
- common_chat_msg last_message;
- if (prefill_assistant_message) {
- last_message = inputs.messages.back();
- inputs.messages.pop_back();
- /* sanity check, max one assistant message at the end of the list */
- if (!inputs.messages.empty() && inputs.messages.back().role == "assistant"){
- throw std::invalid_argument("Cannot have 2 or more assistant messages at the end of the list.");
- }
- /* TODO: test this properly */
- inputs.reasoning_format = COMMON_REASONING_FORMAT_NONE;
- if ( inputs.enable_thinking ) {
- throw std::invalid_argument("Assistant response prefill is incompatible with enable_thinking.");
- }
- inputs.add_generation_prompt = true;
- }
- // Apply chat template to the list of messages
- auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);
- /* Append assistant prefilled message */
- if (prefill_assistant_message) {
- if (!last_message.content_parts.empty()) {
- for (auto & p : last_message.content_parts) {
- chat_params.prompt += p.text;
- }
- } else {
- chat_params.prompt += last_message.content;
- }
- }
- llama_params["chat_format"] = static_cast<int>(chat_params.format);
- llama_params["prompt"] = chat_params.prompt;
- if (!chat_params.grammar.empty()) {
- llama_params["grammar"] = chat_params.grammar;
- }
- llama_params["grammar_lazy"] = chat_params.grammar_lazy;
- auto grammar_triggers = json::array();
- for (const auto & trigger : chat_params.grammar_triggers) {
- server_grammar_trigger ct(trigger);
- grammar_triggers.push_back(ct.to_json());
- }
- llama_params["grammar_triggers"] = grammar_triggers;
- llama_params["preserved_tokens"] = chat_params.preserved_tokens;
- llama_params["thinking_forced_open"] = chat_params.thinking_forced_open;
- for (const auto & stop : chat_params.additional_stops) {
- llama_params["stop"].push_back(stop);
- }
- // Handle "n" field
- int n_choices = json_value(body, "n", 1);
- if (n_choices != 1) {
- throw std::invalid_argument("Only one completion choice is allowed");
- }
- // Handle "logprobs" field
- // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
- if (json_value(body, "logprobs", false)) {
- if (has_tools && stream) {
- throw std::invalid_argument("logprobs is not supported with tools + stream");
- }
- llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
- } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
- throw std::invalid_argument("top_logprobs requires logprobs to be set to true");
- }
- // Copy remaining properties to llama_params
- // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
- // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
- for (const auto & item : body.items()) {
- // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
- if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
- llama_params[item.key()] = item.value();
- }
- }
- return llama_params;
- }
- json convert_anthropic_to_oai(const json & body) {
- json oai_body;
- // Convert system prompt
- json oai_messages = json::array();
- auto system_param = json_value(body, "system", json());
- if (!system_param.is_null()) {
- std::string system_content;
- if (system_param.is_string()) {
- system_content = system_param.get<std::string>();
- } else if (system_param.is_array()) {
- for (const auto & block : system_param) {
- if (json_value(block, "type", std::string()) == "text") {
- system_content += json_value(block, "text", std::string());
- }
- }
- }
- oai_messages.push_back({
- {"role", "system"},
- {"content", system_content}
- });
- }
- // Convert messages
- if (!body.contains("messages")) {
- throw std::runtime_error("'messages' is required");
- }
- const json & messages = body.at("messages");
- if (messages.is_array()) {
- for (const auto & msg : messages) {
- std::string role = json_value(msg, "role", std::string());
- if (!msg.contains("content")) {
- if (role == "assistant") {
- continue;
- }
- oai_messages.push_back(msg);
- continue;
- }
- const json & content = msg.at("content");
- if (content.is_string()) {
- oai_messages.push_back(msg);
- continue;
- }
- if (!content.is_array()) {
- oai_messages.push_back(msg);
- continue;
- }
- json tool_calls = json::array();
- json converted_content = json::array();
- json tool_results = json::array();
- bool has_tool_calls = false;
- for (const auto & block : content) {
- std::string type = json_value(block, "type", std::string());
- if (type == "text") {
- converted_content.push_back(block);
- } else if (type == "image") {
- json source = json_value(block, "source", json::object());
- std::string source_type = json_value(source, "type", std::string());
- if (source_type == "base64") {
- std::string media_type = json_value(source, "media_type", std::string("image/jpeg"));
- std::string data = json_value(source, "data", std::string());
- std::ostringstream ss;
- ss << "data:" << media_type << ";base64," << data;
- converted_content.push_back({
- {"type", "image_url"},
- {"image_url", {
- {"url", ss.str()}
- }}
- });
- } else if (source_type == "url") {
- std::string url = json_value(source, "url", std::string());
- converted_content.push_back({
- {"type", "image_url"},
- {"image_url", {
- {"url", url}
- }}
- });
- }
- } else if (type == "tool_use") {
- tool_calls.push_back({
- {"id", json_value(block, "id", std::string())},
- {"type", "function"},
- {"function", {
- {"name", json_value(block, "name", std::string())},
- {"arguments", json_value(block, "input", json::object()).dump()}
- }}
- });
- has_tool_calls = true;
- } else if (type == "tool_result") {
- std::string tool_use_id = json_value(block, "tool_use_id", std::string());
- auto result_content = json_value(block, "content", json());
- std::string result_text;
- if (result_content.is_string()) {
- result_text = result_content.get<std::string>();
- } else if (result_content.is_array()) {
- for (const auto & c : result_content) {
- if (json_value(c, "type", std::string()) == "text") {
- result_text += json_value(c, "text", std::string());
- }
- }
- }
- tool_results.push_back({
- {"role", "tool"},
- {"tool_call_id", tool_use_id},
- {"content", result_text}
- });
- }
- }
- if (!converted_content.empty() || has_tool_calls) {
- json new_msg = {{"role", role}};
- if (!converted_content.empty()) {
- new_msg["content"] = converted_content;
- } else if (has_tool_calls) {
- new_msg["content"] = "";
- }
- if (!tool_calls.empty()) {
- new_msg["tool_calls"] = tool_calls;
- }
- oai_messages.push_back(new_msg);
- }
- for (const auto & tool_msg : tool_results) {
- oai_messages.push_back(tool_msg);
- }
- }
- }
- oai_body["messages"] = oai_messages;
- // Convert tools
- if (body.contains("tools")) {
- const json & tools = body.at("tools");
- if (tools.is_array()) {
- json oai_tools = json::array();
- for (const auto & tool : tools) {
- oai_tools.push_back({
- {"type", "function"},
- {"function", {
- {"name", json_value(tool, "name", std::string())},
- {"description", json_value(tool, "description", std::string())},
- {"parameters", tool.contains("input_schema") ? tool.at("input_schema") : json::object()}
- }}
- });
- }
- oai_body["tools"] = oai_tools;
- }
- }
- // Convert tool_choice
- if (body.contains("tool_choice")) {
- const json & tc = body.at("tool_choice");
- if (tc.is_object()) {
- std::string type = json_value(tc, "type", std::string());
- if (type == "auto") {
- oai_body["tool_choice"] = "auto";
- } else if (type == "any" || type == "tool") {
- oai_body["tool_choice"] = "required";
- }
- }
- }
- // Convert stop_sequences to stop
- if (body.contains("stop_sequences")) {
- oai_body["stop"] = body.at("stop_sequences");
- }
- // Handle max_tokens (required in Anthropic, but we're permissive)
- if (body.contains("max_tokens")) {
- oai_body["max_tokens"] = body.at("max_tokens");
- } else {
- oai_body["max_tokens"] = 4096;
- }
- // Pass through common params
- for (const auto & key : {"temperature", "top_p", "top_k", "stream"}) {
- if (body.contains(key)) {
- oai_body[key] = body.at(key);
- }
- }
- // Handle Anthropic-specific thinking param
- if (body.contains("thinking")) {
- json thinking = json_value(body, "thinking", json::object());
- std::string thinking_type = json_value(thinking, "type", std::string());
- if (thinking_type == "enabled") {
- int budget_tokens = json_value(thinking, "budget_tokens", 10000);
- oai_body["thinking_budget_tokens"] = budget_tokens;
- }
- }
- // Handle Anthropic-specific metadata param
- if (body.contains("metadata")) {
- json metadata = json_value(body, "metadata", json::object());
- std::string user_id = json_value(metadata, "user_id", std::string());
- if (!user_id.empty()) {
- oai_body["__metadata_user_id"] = user_id;
- }
- }
- return oai_body;
- }
- json format_embeddings_response_oaicompat(
- const json & request,
- const std::string & model_name,
- const json & embeddings,
- bool use_base64) {
- json data = json::array();
- int32_t n_tokens = 0;
- int i = 0;
- for (const auto & elem : embeddings) {
- json embedding_obj;
- if (use_base64) {
- const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
- const char* data_ptr = reinterpret_cast<const char*>(vec.data());
- size_t data_size = vec.size() * sizeof(float);
- embedding_obj = {
- {"embedding", base64::encode(data_ptr, data_size)},
- {"index", i++},
- {"object", "embedding"},
- {"encoding_format", "base64"}
- };
- } else {
- embedding_obj = {
- {"embedding", json_value(elem, "embedding", json::array())},
- {"index", i++},
- {"object", "embedding"}
- };
- }
- data.push_back(embedding_obj);
- n_tokens += json_value(elem, "tokens_evaluated", 0);
- }
- json res = json {
- {"model", json_value(request, "model", model_name)},
- {"object", "list"},
- {"usage", json {
- {"prompt_tokens", n_tokens},
- {"total_tokens", n_tokens}
- }},
- {"data", data}
- };
- return res;
- }
- json format_response_rerank(
- const json & request,
- const std::string & model_name,
- const json & ranks,
- bool is_tei_format,
- std::vector<std::string> & texts,
- int top_n) {
- int32_t n_tokens = 0;
- bool return_text = is_tei_format && json_value(request, "return_text", false);
- std::vector<json> elements; // Temporary vector to hold unsorted elements
- std::string score_label = is_tei_format ? "score" : "relevance_score";
- for (const auto & rank : ranks) {
- int index = json_value(rank, "index", 0);
- json elem = json{
- {"index", index},
- {score_label, json_value(rank, "score", 0.0)},
- };
- n_tokens += json_value(rank, "tokens_evaluated", 0);
- if (return_text) {
- elem["text"] = std::move(texts[index]);
- }
- elements.push_back(elem);
- }
- std::sort(elements.begin(), elements.end(), [score_label](const json& a, const json& b) {
- return json_value(a, score_label, 0.0) > json_value(b, score_label, 0.0);
- });
- elements.resize(std::min(top_n, (int)elements.size()));
- json results = elements;
- if (is_tei_format) return results;
- json res = json{
- {"model", json_value(request, "model", model_name)},
- {"object", "list"},
- {"usage", json{
- {"prompt_tokens", n_tokens},
- {"total_tokens", n_tokens}
- }},
- {"results", results}
- };
- return res;
- }
- //
- // other utils
- //
- std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
- std::vector<llama_token_data> cur;
- const auto * logits = llama_get_logits_ith(ctx, idx);
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const int n_vocab = llama_vocab_n_tokens(vocab);
- cur.resize(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
- }
- // sort tokens by logits
- std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) {
- return a.logit > b.logit;
- });
- // apply softmax
- float max_l = cur[0].logit;
- float cum_sum = 0.0f;
- for (size_t i = 0; i < cur.size(); ++i) {
- float p = expf(cur[i].logit - max_l);
- cur[i].p = p;
- cum_sum += p;
- }
- for (size_t i = 0; i < cur.size(); ++i) {
- cur[i].p /= cum_sum;
- }
- return cur;
- }
- std::string safe_json_to_str(const json & data) {
- return data.dump(-1, ' ', false, json::error_handler_t::replace);
- }
- // TODO: reuse llama_detokenize
- template <class Iter>
- static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
- std::string ret;
- for (; begin != end; ++begin) {
- ret += common_token_to_piece(ctx, *begin);
- }
- return ret;
- }
- std::string tokens_to_str(llama_context * ctx, const llama_tokens & tokens) {
- return tokens_to_str(ctx, tokens.begin(), tokens.end());
- }
- // format incomplete utf-8 multibyte character for output
- std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
- std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token);
- // if the size is 1 and first bit is 1, meaning it's a partial character
- // (size > 1 meaning it's already a known token)
- if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
- std::stringstream ss;
- ss << std::hex << (out[0] & 0xff);
- std::string res(ss.str());
- out = "byte: \\x" + res;
- }
- return out;
- }
- // format server-sent event (SSE), return the formatted string to send
- // note: if data is a json array, it will be sent as multiple events, one per item
- std::string format_oai_sse(const json & data) {
- std::ostringstream ss;
- auto send_single = [&ss](const json & data) {
- ss << "data: " <<
- safe_json_to_str(data) <<
- "\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
- };
- if (data.is_array()) {
- for (const auto & item : data) {
- send_single(item);
- }
- } else {
- send_single(data);
- }
- return ss.str();
- }
- std::string format_anthropic_sse(const json & data) {
- std::ostringstream ss;
- auto send_event = [&ss](const json & event_obj) {
- if (event_obj.contains("event") && event_obj.contains("data")) {
- ss << "event: " << event_obj.at("event").get<std::string>() << "\n";
- ss << "data: " << safe_json_to_str(event_obj.at("data")) << "\n\n";
- } else {
- ss << "data: " << safe_json_to_str(event_obj) << "\n\n";
- }
- };
- if (data.is_array()) {
- for (const auto & event : data) {
- send_event(event);
- }
- } else {
- send_event(data);
- }
- return ss.str();
- }
- bool is_valid_utf8(const std::string & str) {
- const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
- const unsigned char* end = bytes + str.length();
- while (bytes < end) {
- if (*bytes <= 0x7F) {
- // 1-byte sequence (0xxxxxxx)
- bytes++;
- } else if ((*bytes & 0xE0) == 0xC0) {
- // 2-byte sequence (110xxxxx 10xxxxxx)
- if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
- return false;
- bytes += 2;
- } else if ((*bytes & 0xF0) == 0xE0) {
- // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
- if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
- return false;
- bytes += 3;
- } else if ((*bytes & 0xF8) == 0xF0) {
- // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
- if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
- (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
- return false;
- bytes += 4;
- } else {
- // Invalid UTF-8 lead byte
- return false;
- }
- }
- return true;
- }
- llama_tokens format_prompt_infill(
- const llama_vocab * vocab,
- const json & input_prefix,
- const json & input_suffix,
- const json & input_extra,
- const int n_batch,
- const int n_predict,
- const int n_ctx,
- const bool spm_infill,
- const llama_tokens & tokens_prompt
- ) {
- // TODO: optimize this block by reducing memory allocations and movement
- // use FIM repo-level pattern:
- // ref: https://arxiv.org/pdf/2409.12186
- //
- // [FIM_REP]myproject
- // [FIM_SEP]filename0
- // extra chunk 0
- // [FIM_SEP]filename1
- // extra chunk 1
- // ...
- // [FIM_SEP]filename
- // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
- //
- llama_tokens extra_tokens;
- extra_tokens.reserve(n_ctx);
- auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false);
- auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false);
- if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) {
- // TODO: make project name an input
- static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false);
- extra_tokens.push_back(llama_vocab_fim_rep(vocab));
- extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
- }
- for (const auto & chunk : input_extra) {
- // { "text": string, "filename": string }
- const std::string text = json_value(chunk, "text", std::string());
- const std::string filename = json_value(chunk, "filename", std::string("tmp"));
- if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
- const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false);
- extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
- extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
- } else {
- // chunk separator in binary form to avoid confusing the AI
- static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
- static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false);
- extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
- }
- const auto chunk_tokens = common_tokenize(vocab, text, false, false);
- extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
- }
- if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
- // TODO: current filename
- static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false);
- extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
- extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
- }
- // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
- const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4));
- const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));
- SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));
- // fill the rest of the context with extra chunks
- const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());
- tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
- tokens_suffix.resize(n_suffix_take);
- tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab));
- tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
- tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab));
- auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
- auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
- if (llama_vocab_get_add_bos(vocab)) {
- embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
- }
- SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
- // put the extra context before the FIM prefix
- embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
- embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
- embd_inp.push_back(llama_vocab_fim_mid(vocab));
- return embd_inp;
- }
- server_tokens format_prompt_rerank(
- const struct llama_model * model,
- const struct llama_vocab * vocab,
- mtmd_context * mctx,
- const std::string & query,
- const std::string & doc) {
- server_tokens result = {};
- const char * rerank_prompt = llama_model_chat_template(model, "rerank");
- if (rerank_prompt != nullptr) {
- std::string prompt = rerank_prompt;
- string_replace_all(prompt, "{query}" , query);
- string_replace_all(prompt, "{document}", doc );
- server_tokens tokens = tokenize_input_subprompt(vocab, mctx, prompt, false, true);
- result.push_back(tokens);
- } else {
- // Get EOS token - use SEP token as fallback if EOS is not available
- server_tokens query_tokens = tokenize_input_subprompt(vocab, mctx, query, false, false);
- server_tokens doc_tokens = tokenize_input_subprompt(vocab, mctx, doc, false, false);
- llama_token eos_token = llama_vocab_eos(vocab);
- if (eos_token == LLAMA_TOKEN_NULL) {
- eos_token = llama_vocab_sep(vocab);
- }
- if (llama_vocab_get_add_bos(vocab)) {
- result.push_back(llama_vocab_bos(vocab));
- }
- result.push_back(query_tokens);
- if (llama_vocab_get_add_eos(vocab)) {
- result.push_back(eos_token);
- }
- if (llama_vocab_get_add_sep(vocab)) {
- result.push_back(llama_vocab_sep(vocab));
- }
- result.push_back(doc_tokens);
- if (llama_vocab_get_add_eos(vocab)) {
- result.push_back(eos_token);
- }
- }
- return result;
- }
|