tensor_mapping.py 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. MODEL_TENSOR.DENSE_2_OUT: (
  72. "dense_2_out", # embeddinggemma
  73. ),
  74. MODEL_TENSOR.DENSE_3_OUT: (
  75. "dense_3_out", # embeddinggemma
  76. ),
  77. # Output norm
  78. MODEL_TENSOR.OUTPUT_NORM: (
  79. "gpt_neox.final_layer_norm", # gptneox
  80. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  81. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  82. "norm", # llama-pth
  83. "transformer.norm_f", # mpt dbrx
  84. "ln_f", # refact bloom qwen gpt2
  85. "language_model.encoder.final_layernorm", # persimmon
  86. "model.final_layernorm", # persimmon
  87. "lm_head.ln", # phi2
  88. "model.norm_f", # mamba-qbert
  89. "backbone.norm_f", # mamba
  90. "transformer.rms_norm", # Grok
  91. "encoder.final_layernorm", # chatglm
  92. "transformer.norm", # openelm
  93. "model.norm", # nemotron
  94. "rwkv.ln_out", # rwkv6
  95. "model.ln_out", # rwkv7
  96. "backbone.final_layer_norm", # wavtokenizer
  97. "model.norm", # llama4
  98. "model.transformer.ln_f", # llada
  99. "model.norm", # cogvlm
  100. ),
  101. # Rope frequencies
  102. MODEL_TENSOR.ROPE_FREQS: (
  103. "rope.freqs", # llama-pth
  104. "rotary_pos_emb.inv_freq", # chatglm
  105. ),
  106. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  107. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  108. MODEL_TENSOR.CONV1D: (
  109. "backbone.embed", # roberta
  110. ),
  111. }
  112. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  113. # Attention norm
  114. MODEL_TENSOR.ATTN_NORM: (
  115. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  116. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  117. "transformer.blocks.{bid}.norm_1", # mpt
  118. "transformer.h.{bid}.input_layernorm", # falcon7b
  119. "h.{bid}.input_layernorm", # bloom
  120. "transformer.h.{bid}.ln_mlp", # falcon40b
  121. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  122. "layers.{bid}.attention_norm", # llama-pth
  123. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  124. "model.layers.{bid}.ln1", # yi
  125. "h.{bid}.ln_1", # gpt2
  126. "transformer.h.{bid}.ln", # phi2
  127. "model.layers.layers.{bid}.norm", # plamo
  128. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  129. "model.layers.{bid}.attention_norm", # internlm2
  130. "model.layers.{bid}.norm", # mamba-qbert
  131. "backbone.layers.{bid}.norm", # mamba
  132. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  133. "model.layers.{bid}.pre_attn_norm", # grok-2
  134. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  135. "encoder.layers.{bid}.input_layernorm", # chatglm
  136. "transformer.layers.{bid}.attn_norm", # openelm
  137. "rwkv.blocks.{bid}.ln1", # rwkv6
  138. "model.layers.{bid}.ln1", # rwkv7
  139. "model.layers.{bid}.input_layernorm", # llama4
  140. "layers.{bid}.input_layernorm", # embeddinggemma
  141. "transformer_encoder.{bid}.attention_norm", # neobert
  142. "model.layers.{bid}.operator_norm", # lfm2
  143. "model.transformer.blocks.{bid}.attn_norm", # llada
  144. "layers.{bid}.input_layernorm", # qwen3-embedding
  145. "model.layers.{bid}.attention_layernorm" # apertus
  146. ),
  147. # Attention norm 2
  148. MODEL_TENSOR.ATTN_NORM_2: (
  149. "transformer.h.{bid}.ln_attn", # falcon40b
  150. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  151. "rwkv.blocks.{bid}.ln2", # rwkv6
  152. "model.layers.{bid}.ln2", # rwkv7
  153. "model.layers.{bid}.post_attention_layernorm", # cogvlm
  154. ),
  155. # Attention query-key-value
  156. MODEL_TENSOR.ATTN_QKV: (
  157. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  158. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  159. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  160. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  161. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  162. "h.{bid}.self_attention.query_key_value", # bloom
  163. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  164. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  165. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  166. "h.{bid}.attn.c_attn", # gpt2
  167. "transformer.h.{bid}.mixer.Wqkv", # phi2
  168. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  169. "encoder.layers.{bid}.mixer.Wqkv", # jina
  170. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  171. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  172. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  173. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  174. "transformer_encoder.{bid}.qkv", # neobert
  175. "model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
  176. ),
  177. # Attention query
  178. MODEL_TENSOR.ATTN_Q: (
  179. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  180. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  181. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  182. "layers.{bid}.attention.wq", # llama-pth
  183. "encoder.layer.{bid}.attention.self.query", # bert
  184. "transformer.layer.{bid}.attention.q_lin", # distillbert
  185. "transformer.h.{bid}.attn.q_proj", # gpt-j
  186. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  187. "model.layers.{bid}.attention.wq", # internlm2
  188. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  189. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  190. "model.layers.{bid}.self_attn.q_proj", # llama4
  191. "model.transformer.blocks.{bid}.q_proj", # llada
  192. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  193. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  194. ),
  195. # Attention key
  196. MODEL_TENSOR.ATTN_K: (
  197. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  198. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  199. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  200. "layers.{bid}.attention.wk", # llama-pth
  201. "encoder.layer.{bid}.attention.self.key", # bert
  202. "transformer.layer.{bid}.attention.k_lin", # distillbert
  203. "transformer.h.{bid}.attn.k_proj", # gpt-j
  204. "transformer.h.{bid}.attn.k", # refact
  205. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  206. "model.layers.{bid}.attention.wk", # internlm2
  207. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  208. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  209. "model.layers.{bid}.self_attn.k_proj", # llama4
  210. "model.transformer.blocks.{bid}.k_proj", # llada
  211. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  212. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  213. ),
  214. # Attention value
  215. MODEL_TENSOR.ATTN_V: (
  216. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  217. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  218. "layers.{bid}.attention.wv", # llama-pth
  219. "encoder.layer.{bid}.attention.self.value", # bert
  220. "transformer.layer.{bid}.attention.v_lin", # distillbert
  221. "transformer.h.{bid}.attn.v_proj", # gpt-j
  222. "transformer.h.{bid}.attn.v", # refact
  223. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  224. "model.layers.{bid}.attention.wv", # internlm2
  225. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  226. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  227. "model.layers.{bid}.self_attn.v_proj", # llama4
  228. "model.transformer.blocks.{bid}.v_proj", # llada
  229. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  230. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  231. ),
  232. # Attention output
  233. MODEL_TENSOR.ATTN_OUT: (
  234. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  235. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  236. "transformer.blocks.{bid}.attn.out_proj", # mpt
  237. "transformer.h.{bid}.self_attention.dense", # falcon
  238. "h.{bid}.self_attention.dense", # bloom
  239. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  240. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  241. "model.layers.{bid}.self_attn.out_proj", # lfm2
  242. "model.layers.{bid}.self_attn.linear_attn", # deci
  243. "layers.{bid}.attention.wo", # llama-pth
  244. "encoder.layer.{bid}.attention.output.dense", # bert
  245. "transformer.layer.{bid}.attention.out_lin", # distillbert
  246. "transformer.h.{bid}.attn.out_proj", # gpt-j
  247. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  248. "model.layers.{bid}.self_attn.dense", # persimmon
  249. "model.layers.{bid}.attention.dense", # bailingmoe2
  250. "h.{bid}.attn.c_proj", # gpt2
  251. "transformer.h.{bid}.mixer.out_proj", # phi2
  252. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  253. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  254. "model.layers.{bid}.attention.wo", # internlm2
  255. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  256. "encoder.layers.{bid}.mixer.out_proj", # jina
  257. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  258. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  259. "encoder.layers.{bid}.self_attention.dense", # chatglm
  260. "transformer.layers.{bid}.attn.out_proj", # openelm
  261. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  262. "model.layers.{bid}.self_attn.o_proj", # llama4
  263. "transformer_encoder.{bid}.wo", # neobert
  264. "model.transformer.blocks.{bid}.attn_out", # llada
  265. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  266. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  267. "model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
  268. ),
  269. # Attention output norm
  270. MODEL_TENSOR.ATTN_OUT_NORM: (
  271. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  272. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  273. "encoder.layers.{bid}.norm1", # nomic-bert
  274. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  275. "model.layers.{bid}.post_attn_norm", # grok-2
  276. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  277. ),
  278. MODEL_TENSOR.ATTN_POST_NORM: (
  279. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  280. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  281. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  282. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  283. ),
  284. # Rotary embeddings
  285. MODEL_TENSOR.ATTN_ROT_EMBD: (
  286. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  287. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  288. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  289. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  290. ),
  291. MODEL_TENSOR.ATTN_SINKS: (
  292. "model.layers.{bid}.self_attn.sinks", # openai-moe
  293. ),
  294. # Feed-forward norm
  295. MODEL_TENSOR.FFN_NORM: (
  296. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  297. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  298. "h.{bid}.post_attention_layernorm", # bloom
  299. "transformer.blocks.{bid}.norm_2", # mpt
  300. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  301. "layers.{bid}.ffn_norm", # llama-pth
  302. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  303. "model.layers.{bid}.ln2", # yi
  304. "h.{bid}.ln_2", # gpt2
  305. "model.layers.{bid}.ffn_norm", # internlm2
  306. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  307. "model.layers.{bid}.pre_moe_norm", # grok-2
  308. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  309. "transformer.layers.{bid}.ffn_norm", # openelm
  310. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  311. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  312. "model.layers.{bid}.post_attention_layernorm", # llama4
  313. "transformer_encoder.{bid}.ffn_norm", # neobert
  314. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  315. "model.transformer.blocks.{bid}.ff_norm", # llada
  316. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  317. "model.layers.{bid}.feedforward_layernorm", # apertus
  318. ),
  319. # Post feed-forward norm
  320. MODEL_TENSOR.FFN_PRE_NORM: (
  321. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  322. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  323. "model.layers.{bid}.pre_ff_layernorm.weight",
  324. ),
  325. # Post feed-forward norm
  326. MODEL_TENSOR.FFN_POST_NORM: (
  327. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  328. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  329. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  330. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  331. "model.layers.{bid}.feed_forward.up_proj",
  332. "model.layers.{bid}.post_moe_norm", # grok-2
  333. ),
  334. MODEL_TENSOR.FFN_GATE_INP: (
  335. "layers.{bid}.feed_forward.gate", # mixtral
  336. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  337. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  338. "transformer.decoder_layer.{bid}.router", # Grok
  339. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  340. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  341. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  342. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  343. "model.layers.{bid}.mlp.router", # openai-moe
  344. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  345. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  346. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  347. ),
  348. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  349. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  350. ),
  351. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  352. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  353. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  354. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  355. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  356. "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
  357. ),
  358. # Feed-forward up
  359. MODEL_TENSOR.FFN_UP: (
  360. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  361. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  362. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  363. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  364. "h.{bid}.mlp.dense_h_to_4h", # bloom
  365. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  366. "layers.{bid}.mlp.up_proj", # embeddinggemma
  367. "layers.{bid}.feed_forward.w3", # llama-pth
  368. "encoder.layer.{bid}.intermediate.dense", # bert
  369. "transformer.layer.{bid}.ffn.lin1", # distillbert
  370. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  371. "transformer.h.{bid}.mlp.linear_3", # refact
  372. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  373. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  374. "transformer.h.{bid}.mlp.w1", # qwen
  375. "h.{bid}.mlp.c_fc", # gpt2
  376. "transformer.h.{bid}.mlp.fc1", # phi2
  377. "model.layers.{bid}.mlp.fc1", # phi2
  378. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  379. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  380. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  381. "model.layers.{bid}.feed_forward.w3", # internlm2
  382. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  383. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  384. "model.layers.{bid}.mlp.c_fc", # starcoder2
  385. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  386. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  387. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  388. "model.layers.{bid}.residual_mlp.w3", # arctic
  389. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  390. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  391. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  392. "transformer_encoder.{bid}.ffn.w12", # neobert
  393. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  394. "model.transformer.blocks.{bid}.up_proj", # llada
  395. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  396. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  397. "model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
  398. ),
  399. MODEL_TENSOR.FFN_UP_EXP: (
  400. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  401. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  402. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  403. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  404. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  405. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  406. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  407. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  408. ),
  409. MODEL_TENSOR.FFN_UP_SHEXP: (
  410. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  411. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  412. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  413. "model.layers.{bid}.feed_forward.down_proj",
  414. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  415. ),
  416. MODEL_TENSOR.FFN_UP_CHEXP: (
  417. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  418. ),
  419. # AWQ-activation gate
  420. MODEL_TENSOR.FFN_ACT: (
  421. "transformer.blocks.{bid}.ffn.act", # mpt
  422. ),
  423. # Feed-forward gate
  424. MODEL_TENSOR.FFN_GATE: (
  425. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  426. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  427. "layers.{bid}.feed_forward.w1", # llama-pth
  428. "transformer.h.{bid}.mlp.w2", # qwen
  429. "transformer.h.{bid}.mlp.c_fc2", # jais
  430. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  431. "model.layers.{bid}.feed_forward.w1", # internlm2
  432. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  433. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  434. "transformer.h.{bid}.mlp.linear_1", # refact
  435. "model.layers.{bid}.residual_mlp.w1", # arctic
  436. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  437. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  438. "model.transformer.blocks.{bid}.ff_proj", # llada
  439. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  440. "model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
  441. ),
  442. MODEL_TENSOR.FFN_GATE_EXP: (
  443. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  444. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  445. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  446. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  447. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  448. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  449. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  450. ),
  451. MODEL_TENSOR.FFN_GATE_SHEXP: (
  452. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  453. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  454. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  455. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  456. ),
  457. MODEL_TENSOR.FFN_GATE_CHEXP: (
  458. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  459. ),
  460. # Feed-forward down
  461. MODEL_TENSOR.FFN_DOWN: (
  462. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  463. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  464. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  465. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  466. "h.{bid}.mlp.dense_4h_to_h", # bloom
  467. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  468. "layers.{bid}.mlp.down_proj", # embeddinggemma
  469. "layers.{bid}.feed_forward.w2", # llama-pth
  470. "encoder.layer.{bid}.output.dense", # bert
  471. "transformer.layer.{bid}.ffn.lin2", # distillbert
  472. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  473. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  474. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  475. "h.{bid}.mlp.c_proj", # gpt2
  476. "transformer.h.{bid}.mlp.fc2", # phi2
  477. "model.layers.{bid}.mlp.fc2", # phi2
  478. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  479. "model.layers.{bid}.feed_forward.w2", # internlm2
  480. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  481. "model.layers.{bid}.mlp.c_proj", # starcoder2
  482. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  483. "transformer.layers.{bid}.ffn.proj_2", # openelm
  484. "model.layers.{bid}.residual_mlp.w2", # arctic
  485. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  486. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  487. "model.layers.h.{bid}.mlp.c_proj", # exaone
  488. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  489. "transformer_encoder.{bid}.ffn.w3", # neobert
  490. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  491. "model.transformer.blocks.{bid}.ff_out", # llada
  492. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  493. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  494. "model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
  495. ),
  496. MODEL_TENSOR.FFN_DOWN_EXP: (
  497. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  498. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  499. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  500. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  501. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  502. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  503. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  504. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  505. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  506. ),
  507. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  508. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  509. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  510. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  511. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  512. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  513. ),
  514. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  515. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  516. ),
  517. MODEL_TENSOR.ATTN_Q_NORM: (
  518. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  519. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  520. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  521. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  522. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  523. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  524. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  525. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  526. "transformer.layers.{bid}.attn.q_norm", # openelm
  527. "model.layers.layers.{bid}.mixer.q", # plamo2
  528. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  529. "model.layers.{bid}.attention.query_layernorm", # apertus
  530. ),
  531. MODEL_TENSOR.ATTN_K_NORM: (
  532. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  533. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  534. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  535. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  536. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  537. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  538. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  539. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  540. "transformer.layers.{bid}.attn.k_norm", # openelm
  541. "model.layers.layers.{bid}.mixer.k", # plamo2
  542. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  543. "model.layers.{bid}.attention.key_layernorm", # apertus
  544. ),
  545. MODEL_TENSOR.ROPE_FREQS: (
  546. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  547. ),
  548. MODEL_TENSOR.LAYER_OUT_NORM: (
  549. "encoder.layer.{bid}.output.LayerNorm", # bert
  550. "transformer.layer.{bid}.output_layer_norm", # distillbert
  551. "encoder.layers.{bid}.norm2", # nomic-bert
  552. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  553. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  554. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  555. "model.layers.{bid}.final_layernorm", # bailingmoe2
  556. ),
  557. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  558. "model.embed_tokens_per_layer", # gemma3n
  559. ),
  560. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  561. "model.per_layer_model_projection", # gemma3n
  562. ),
  563. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  564. "model.per_layer_projection_norm", # gemma3n
  565. ),
  566. MODEL_TENSOR.ALTUP_PROJ: (
  567. "model.altup_projections", # gemma3n
  568. ),
  569. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  570. "model.altup_unembed_projections", # gemma3n
  571. ),
  572. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  573. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  574. ),
  575. MODEL_TENSOR.PER_LAYER_PROJ: (
  576. "model.layers.{bid}.per_layer_projection", # gemma3n
  577. ),
  578. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  579. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  580. ),
  581. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  582. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  583. ),
  584. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  585. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  586. ),
  587. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  588. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  589. ),
  590. MODEL_TENSOR.ALTUP_ROUTER: (
  591. "model.layers.{bid}.altup.modality_router", # gemma3n
  592. ),
  593. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  594. "model.layers.{bid}.altup.router_norm", # gemma3n
  595. ),
  596. MODEL_TENSOR.LAUREL_L: (
  597. "model.layers.{bid}.laurel.linear_left", # gemma3n
  598. ),
  599. MODEL_TENSOR.LAUREL_R: (
  600. "model.layers.{bid}.laurel.linear_right", # gemma3n
  601. ),
  602. MODEL_TENSOR.LAUREL_POST_NORM: (
  603. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  604. ),
  605. MODEL_TENSOR.SSM_IN: (
  606. "model.layers.{bid}.in_proj", # mamba-hf
  607. "backbone.layers.{bid}.mixer.in_proj", # mamba
  608. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  609. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  610. ),
  611. MODEL_TENSOR.SSM_CONV1D: (
  612. "model.layers.{bid}.conv1d", # mamba-hf
  613. "backbone.layers.{bid}.mixer.conv1d", # mamba
  614. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  615. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  616. ),
  617. MODEL_TENSOR.SSM_X: (
  618. "model.layers.{bid}.x_proj", # mamba-hf
  619. "backbone.layers.{bid}.mixer.x_proj", # mamba
  620. "model.layers.{bid}.mamba.x_proj", # jamba
  621. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  622. ),
  623. MODEL_TENSOR.SSM_DT: (
  624. "model.layers.{bid}.dt_proj", # mamba-hf
  625. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  626. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  627. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  628. ),
  629. MODEL_TENSOR.SSM_DT_NORM: (
  630. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  631. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  632. ),
  633. MODEL_TENSOR.SSM_A: (
  634. "model.layers.{bid}.A_log", # mamba-hf
  635. "backbone.layers.{bid}.mixer.A_log", # mamba
  636. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  637. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  638. ),
  639. MODEL_TENSOR.SSM_B_NORM: (
  640. "model.layers.{bid}.mamba.b_layernorm", # jamba
  641. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  642. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  643. ),
  644. MODEL_TENSOR.SSM_C_NORM: (
  645. "model.layers.{bid}.mamba.c_layernorm", # jamba
  646. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  647. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  648. ),
  649. MODEL_TENSOR.SSM_D: (
  650. "model.layers.{bid}.D", # mamba-hf
  651. "backbone.layers.{bid}.mixer.D", # mamba
  652. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  653. "model.layers.layers.{bid}.mixer.D", # plamo2
  654. ),
  655. MODEL_TENSOR.SSM_NORM: (
  656. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  657. "backbone.layers.{bid}.mixer.norm", # mamba2
  658. ),
  659. MODEL_TENSOR.SSM_OUT: (
  660. "model.layers.{bid}.out_proj", # mamba-hf
  661. "backbone.layers.{bid}.mixer.out_proj", # mamba
  662. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  663. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  664. ),
  665. MODEL_TENSOR.TIME_MIX_W0: (
  666. "model.layers.{bid}.attention.w0", # rwkv7
  667. ),
  668. MODEL_TENSOR.TIME_MIX_W1: (
  669. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  670. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  671. "model.layers.{bid}.attention.w1", # rwkv7
  672. ),
  673. MODEL_TENSOR.TIME_MIX_W2: (
  674. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  675. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  676. "model.layers.{bid}.attention.w2", # rwkv7
  677. ),
  678. MODEL_TENSOR.TIME_MIX_A0: (
  679. "model.layers.{bid}.attention.a0", # rwkv7
  680. ),
  681. MODEL_TENSOR.TIME_MIX_A1: (
  682. "model.layers.{bid}.attention.a1", # rwkv7
  683. ),
  684. MODEL_TENSOR.TIME_MIX_A2: (
  685. "model.layers.{bid}.attention.a2", # rwkv7
  686. ),
  687. MODEL_TENSOR.TIME_MIX_V0: (
  688. "model.layers.{bid}.attention.v0", # rwkv7
  689. ),
  690. MODEL_TENSOR.TIME_MIX_V1: (
  691. "model.layers.{bid}.attention.v1", # rwkv7
  692. ),
  693. MODEL_TENSOR.TIME_MIX_V2: (
  694. "model.layers.{bid}.attention.v2", # rwkv7
  695. ),
  696. MODEL_TENSOR.TIME_MIX_G1: (
  697. "model.layers.{bid}.attention.g1", # rwkv7
  698. ),
  699. MODEL_TENSOR.TIME_MIX_G2: (
  700. "model.layers.{bid}.attention.g2", # rwkv7
  701. ),
  702. MODEL_TENSOR.TIME_MIX_K_K: (
  703. "model.layers.{bid}.attention.k_k", # rwkv7
  704. ),
  705. MODEL_TENSOR.TIME_MIX_K_A: (
  706. "model.layers.{bid}.attention.k_a", # rwkv7
  707. ),
  708. MODEL_TENSOR.TIME_MIX_R_K: (
  709. "model.layers.{bid}.attention.r_k", # rwkv7
  710. ),
  711. MODEL_TENSOR.TIME_MIX_LERP_X: (
  712. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  713. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  714. ),
  715. MODEL_TENSOR.TIME_MIX_LERP_K: (
  716. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  717. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  718. ),
  719. MODEL_TENSOR.TIME_MIX_LERP_V: (
  720. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  721. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  722. ),
  723. MODEL_TENSOR.TIME_MIX_LERP_R: (
  724. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  725. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  726. ),
  727. MODEL_TENSOR.TIME_MIX_LERP_G: (
  728. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  729. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  730. ),
  731. MODEL_TENSOR.TIME_MIX_LERP_W: (
  732. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  733. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  734. ),
  735. MODEL_TENSOR.TIME_MIX_FIRST: (
  736. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  737. ),
  738. MODEL_TENSOR.TIME_MIX_DECAY: (
  739. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  740. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  741. ),
  742. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  743. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  744. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  745. ),
  746. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  747. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  748. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  749. ),
  750. MODEL_TENSOR.TIME_MIX_KEY: (
  751. "rwkv.blocks.{bid}.attention.key", # rwkv6
  752. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  753. "model.layers.{bid}.attention.key", # rwkv7
  754. "model.layers.{bid}.attention.k_proj", # rwkv7
  755. ),
  756. MODEL_TENSOR.TIME_MIX_VALUE: (
  757. "rwkv.blocks.{bid}.attention.value", # rwkv6
  758. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  759. "model.layers.{bid}.attention.value", # rwkv7
  760. "model.layers.{bid}.attention.v_proj", # rwkv7
  761. ),
  762. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  763. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  764. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  765. "model.layers.{bid}.attention.receptance", # rwkv7
  766. "model.layers.{bid}.attention.r_proj", # rwkv7
  767. ),
  768. MODEL_TENSOR.TIME_MIX_GATE: (
  769. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  770. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  771. ),
  772. MODEL_TENSOR.TIME_MIX_LN: (
  773. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  774. "model.layers.{bid}.attention.ln_x" # rwkv7
  775. ),
  776. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  777. "rwkv.blocks.{bid}.attention.output", # rwkv6
  778. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  779. "model.layers.{bid}.attention.output", # rwkv7
  780. "model.layers.{bid}.attention.o_proj", # rwkv7
  781. ),
  782. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  783. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  784. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  785. ),
  786. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  787. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  788. ),
  789. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  790. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  791. "model.layers.{bid}.feed_forward.key", # rwkv7
  792. ),
  793. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  794. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  795. ),
  796. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  797. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  798. "model.layers.{bid}.feed_forward.value", # rwkv7
  799. ),
  800. MODEL_TENSOR.ATTN_Q_A: (
  801. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  802. ),
  803. MODEL_TENSOR.ATTN_Q_B: (
  804. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  805. ),
  806. MODEL_TENSOR.ATTN_KV_A_MQA: (
  807. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  808. ),
  809. MODEL_TENSOR.ATTN_KV_B: (
  810. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  811. ),
  812. MODEL_TENSOR.ATTN_K_B: (
  813. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  814. ),
  815. MODEL_TENSOR.ATTN_V_B: (
  816. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  817. ),
  818. MODEL_TENSOR.ATTN_Q_A_NORM: (
  819. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  820. ),
  821. MODEL_TENSOR.ATTN_KV_A_NORM: (
  822. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  823. ),
  824. MODEL_TENSOR.ATTN_SUB_NORM: (
  825. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  826. ),
  827. MODEL_TENSOR.FFN_SUB_NORM: (
  828. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  829. ),
  830. MODEL_TENSOR.DEC_ATTN_NORM: (
  831. "decoder.block.{bid}.layer.0.layer_norm", # t5
  832. ),
  833. MODEL_TENSOR.DEC_ATTN_Q: (
  834. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  835. ),
  836. MODEL_TENSOR.DEC_ATTN_K: (
  837. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  838. ),
  839. MODEL_TENSOR.DEC_ATTN_V: (
  840. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  841. ),
  842. MODEL_TENSOR.DEC_ATTN_OUT: (
  843. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  844. ),
  845. MODEL_TENSOR.DEC_ATTN_REL_B: (
  846. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  847. ),
  848. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  849. "decoder.block.{bid}.layer.1.layer_norm", # t5
  850. ),
  851. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  852. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  853. ),
  854. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  855. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  856. ),
  857. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  858. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  859. ),
  860. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  861. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  862. ),
  863. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  864. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  865. ),
  866. MODEL_TENSOR.DEC_FFN_NORM: (
  867. "decoder.block.{bid}.layer.2.layer_norm", # t5
  868. ),
  869. MODEL_TENSOR.DEC_FFN_GATE: (
  870. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  871. ),
  872. MODEL_TENSOR.DEC_FFN_UP: (
  873. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  874. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  875. ),
  876. MODEL_TENSOR.DEC_FFN_DOWN: (
  877. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  878. ),
  879. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  880. "decoder.final_layer_norm", # t5
  881. ),
  882. MODEL_TENSOR.ENC_ATTN_NORM: (
  883. "encoder.block.{bid}.layer.0.layer_norm", # t5
  884. ),
  885. MODEL_TENSOR.ENC_ATTN_Q: (
  886. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  887. ),
  888. MODEL_TENSOR.ENC_ATTN_K: (
  889. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  890. ),
  891. MODEL_TENSOR.ENC_ATTN_V: (
  892. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  893. ),
  894. MODEL_TENSOR.ENC_ATTN_OUT: (
  895. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  896. ),
  897. MODEL_TENSOR.ENC_ATTN_REL_B: (
  898. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  899. ),
  900. MODEL_TENSOR.ENC_FFN_NORM: (
  901. "encoder.block.{bid}.layer.1.layer_norm", # t5
  902. ),
  903. MODEL_TENSOR.ENC_FFN_GATE: (
  904. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  905. ),
  906. MODEL_TENSOR.ENC_FFN_UP: (
  907. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  908. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  909. ),
  910. MODEL_TENSOR.ENC_FFN_DOWN: (
  911. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  912. ),
  913. MODEL_TENSOR.VISEXP_UP: (
  914. "model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
  915. ),
  916. MODEL_TENSOR.VISEXP_GATE: (
  917. "model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
  918. ),
  919. MODEL_TENSOR.VISEXP_DOWN: (
  920. "model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
  921. ),
  922. MODEL_TENSOR.VISEXP_ATTN_OUT: (
  923. "model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
  924. ),
  925. MODEL_TENSOR.VISEXP_ATTN_QKV: (
  926. "model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
  927. ),
  928. ############################################################################
  929. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  930. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  931. "encoder.final_layer_norm", # t5
  932. "layer_norm", # neobert
  933. ),
  934. MODEL_TENSOR.CLS: (
  935. "classifier", # jina
  936. "classifier.dense", # roberta
  937. "pre_classifier", # distillbert
  938. "dense", # neobert
  939. ),
  940. MODEL_TENSOR.CLS_OUT: (
  941. "classifier.out_proj", # roberta
  942. ),
  943. #############################################################################
  944. MODEL_TENSOR.CONVNEXT_DW: (
  945. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  946. ),
  947. MODEL_TENSOR.CONVNEXT_NORM: (
  948. "backbone.convnext.{bid}.norm", # wavtokenizer
  949. ),
  950. MODEL_TENSOR.CONVNEXT_PW1: (
  951. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  952. ),
  953. MODEL_TENSOR.CONVNEXT_PW2: (
  954. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  955. ),
  956. MODEL_TENSOR.CONVNEXT_GAMMA: (
  957. "backbone.convnext.{bid}.gamma", # wavtokenizer
  958. ),
  959. MODEL_TENSOR.POSNET_CONV1: (
  960. "backbone.posnet.{bid}.conv1", # wavtokenizer
  961. ),
  962. MODEL_TENSOR.POSNET_CONV2: (
  963. "backbone.posnet.{bid}.conv2", # wavtokenizer
  964. ),
  965. MODEL_TENSOR.POSNET_NORM: (
  966. "backbone.posnet.{bid}.norm", # wavtokenizer
  967. ),
  968. MODEL_TENSOR.POSNET_NORM1: (
  969. "backbone.posnet.{bid}.norm1", # wavtokenizer
  970. ),
  971. MODEL_TENSOR.POSNET_NORM2: (
  972. "backbone.posnet.{bid}.norm2", # wavtokenizer
  973. ),
  974. MODEL_TENSOR.POSNET_ATTN_NORM: (
  975. "backbone.posnet.{bid}.norm", # wavtokenizer
  976. ),
  977. MODEL_TENSOR.POSNET_ATTN_Q: (
  978. "backbone.posnet.{bid}.q", # wavtokenizer
  979. ),
  980. MODEL_TENSOR.POSNET_ATTN_K: (
  981. "backbone.posnet.{bid}.k", # wavtokenizer
  982. ),
  983. MODEL_TENSOR.POSNET_ATTN_V: (
  984. "backbone.posnet.{bid}.v", # wavtokenizer
  985. ),
  986. MODEL_TENSOR.POSNET_ATTN_OUT: (
  987. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  988. ),
  989. MODEL_TENSOR.SHORTCONV_CONV: (
  990. "model.layers.{bid}.conv.conv",
  991. ),
  992. MODEL_TENSOR.SHORTCONV_INPROJ: (
  993. "model.layers.{bid}.conv.in_proj",
  994. ),
  995. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  996. "model.layers.{bid}.conv.out_proj",
  997. ),
  998. #############################################################################
  999. ## Vision encoder
  1000. MODEL_TENSOR.V_MMPROJ: (
  1001. "multi_modal_projector.linear_{bid}",
  1002. "visual.merger.mlp.{bid}", # qwen2vl
  1003. ),
  1004. MODEL_TENSOR.V_MMPROJ_FC: (
  1005. "model.connector.modality_projection.proj", # SmolVLM
  1006. "model.vision.linear_proj.linear_proj", # cogvlm
  1007. ),
  1008. MODEL_TENSOR.V_MMPROJ_MLP: (
  1009. "model.mm_projector.mlp.mlp.{bid}",
  1010. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  1011. "mlp1.{bid}", # InternVL
  1012. "model.aligner.fc1.hidden_layers.{bid}", # Janus Pro
  1013. ),
  1014. MODEL_TENSOR.V_MMPROJ_PEG: (
  1015. "model.mm_projector.peg.peg.{bid}",
  1016. ),
  1017. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  1018. "vision_tower.vision_model.embeddings.class_embedding",
  1019. "model.vision_tower.embeddings.cls_token", # Intern-S1
  1020. "vision_model.class_embedding", # llama 4
  1021. "model.vision.patch_embedding.cls_embedding", # cogvlm
  1022. ),
  1023. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  1024. "vision_tower.vision_model.embeddings.patch_embedding",
  1025. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1026. "vpm.embeddings.patch_embedding",
  1027. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1028. "vision_tower.patch_conv", # pixtral-hf
  1029. "vision_encoder.patch_conv", # pixtral
  1030. "vision_model.patch_embedding.linear", # llama 4
  1031. "visual.patch_embed.proj", # qwen2vl
  1032. "vision_tower.patch_embed.proj", # kimi-vl
  1033. "model.vision.patch_embedding.proj", # cogvlm
  1034. ),
  1035. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1036. "vision_tower.vision_model.embeddings.position_embedding",
  1037. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1038. "vpm.embeddings.position_embedding",
  1039. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1040. "vision_model.positional_embedding_vlm", # llama 4
  1041. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1042. "visual.pos_embed", # qwen3vl
  1043. "model.vision.patch_embedding.position_embedding", # cogvlm
  1044. ),
  1045. MODEL_TENSOR.V_ENC_ATTN_QKV: (
  1046. "visual.blocks.{bid}.attn.qkv", # qwen3vl
  1047. "model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
  1048. ),
  1049. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1050. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1051. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1052. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1053. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1054. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1055. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1056. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1057. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1058. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1059. ),
  1060. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1061. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1062. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1063. ),
  1064. MODEL_TENSOR.V_ENC_ATTN_K: (
  1065. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1066. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1067. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1068. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1069. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1070. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1071. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1072. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1073. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1074. ),
  1075. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1076. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1077. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1078. ),
  1079. MODEL_TENSOR.V_ENC_ATTN_V: (
  1080. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1081. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1082. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1083. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1084. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1085. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1086. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1087. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1088. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1089. ),
  1090. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1091. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1092. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1093. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1094. "vpm.encoder.layers.{bid}.layer_norm1",
  1095. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1096. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1097. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1098. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1099. "visual.blocks.{bid}.norm1", # qwen2vl
  1100. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1101. "model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
  1102. ),
  1103. MODEL_TENSOR.V_ENC_ATTN_O: (
  1104. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1105. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1106. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1107. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1108. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1109. "model.vision_model.encoder.layers.{bid}.self_attn.projection_layer", # Janus Pro
  1110. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1111. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1112. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1113. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1114. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1115. "model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
  1116. ),
  1117. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1118. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1119. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1120. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1121. "vpm.encoder.layers.{bid}.layer_norm2",
  1122. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1123. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1124. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1125. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1126. "visual.blocks.{bid}.norm2", # qwen2vl
  1127. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1128. "model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
  1129. ),
  1130. MODEL_TENSOR.V_ENC_FFN_UP: (
  1131. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1132. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1133. "vpm.encoder.layers.{bid}.mlp.fc1",
  1134. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1135. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1136. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1137. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1138. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1139. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1140. "visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
  1141. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1142. "model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
  1143. ),
  1144. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1145. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1146. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1147. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1148. ),
  1149. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1150. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1151. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1152. "vpm.encoder.layers.{bid}.mlp.fc2",
  1153. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1154. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1155. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1156. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1157. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1158. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1159. "visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
  1160. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1161. "model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
  1162. ),
  1163. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1164. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1165. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1166. ),
  1167. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1168. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1169. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1170. ),
  1171. MODEL_TENSOR.V_PRE_NORM: (
  1172. "vision_tower.vision_model.pre_layrnorm",
  1173. "vision_tower.ln_pre", # pixtral-hf
  1174. "vision_encoder.ln_pre", # pixtral
  1175. "vision_model.layernorm_pre", # llama4
  1176. ),
  1177. MODEL_TENSOR.V_POST_NORM: (
  1178. "vision_tower.vision_model.post_layernorm",
  1179. "model.vision_model.post_layernorm", # SmolVLM
  1180. "vision_model.layernorm_post", # llama4
  1181. "visual.merger.ln_q", # qwen2vl
  1182. "vision_tower.encoder.final_layernorm", # kimi-vl
  1183. ),
  1184. MODEL_TENSOR.V_MM_INP_PROJ: (
  1185. "multi_modal_projector.mm_input_projection",
  1186. ),
  1187. MODEL_TENSOR.V_MM_INP_NORM: (
  1188. "multi_modal_projector.norm",
  1189. "multi_modal_projector.layer_norm",
  1190. "multi_modal_projector.pre_norm",
  1191. "pre_mm_projector_norm",
  1192. "model.vision.linear_proj.norm1", # cogvlm
  1193. ),
  1194. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1195. "multi_modal_projector.mm_soft_emb_norm",
  1196. ),
  1197. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1198. "resampler.pos_embed_k",
  1199. ),
  1200. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1201. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1202. ),
  1203. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1204. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1205. ),
  1206. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1207. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1208. ),
  1209. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1210. "resampler.attn.out_proj",
  1211. ),
  1212. MODEL_TENSOR.V_RESMPL_KV: (
  1213. "resampler.kv_proj",
  1214. ),
  1215. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1216. "resampler.ln_post",
  1217. ),
  1218. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1219. "resampler.ln_kv",
  1220. ),
  1221. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1222. "resampler.ln_q",
  1223. ),
  1224. MODEL_TENSOR.V_RESMPL_PROJ: (
  1225. "resampler.proj",
  1226. ),
  1227. MODEL_TENSOR.V_RESMPL_QUERY: (
  1228. "resampler.query",
  1229. ),
  1230. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1231. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1232. ),
  1233. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1234. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1235. "patch_merger.merging_layer", # mistral
  1236. ),
  1237. MODEL_TENSOR.V_DS_NORM: (
  1238. "model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
  1239. ),
  1240. MODEL_TENSOR.V_DS_FC1: (
  1241. "model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
  1242. ),
  1243. MODEL_TENSOR.V_DS_FC2: (
  1244. "model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
  1245. ),
  1246. MODEL_TENSOR.V_MM_POST_FC_NORM: (
  1247. "model.vision.linear_proj.norm1", # cogvlm
  1248. ),
  1249. MODEL_TENSOR.V_MM_UP: (
  1250. "model.vision.linear_proj.dense_h_to_4h", # cogvlm
  1251. ),
  1252. MODEL_TENSOR.V_MM_DOWN: (
  1253. "model.vision.linear_proj.dense_4h_to_h", # cogvlm
  1254. ),
  1255. MODEL_TENSOR.V_MM_GATE: (
  1256. "model.vision.linear_proj.gate_proj", # cogvlm
  1257. ),
  1258. MODEL_TENSOR.V_TOK_BOI: (
  1259. "model.vision.boi", # cogvlm
  1260. ),
  1261. MODEL_TENSOR.V_TOK_EOI: (
  1262. "model.vision.eoi", # cogvlm
  1263. ),
  1264. # audio (mtmd)
  1265. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1266. "audio_tower.embed_positions", # ultravox
  1267. ),
  1268. MODEL_TENSOR.A_ENC_CONV1D: (
  1269. "audio_tower.conv{bid}", # ultravox
  1270. ),
  1271. MODEL_TENSOR.A_PRE_NORM: (),
  1272. MODEL_TENSOR.A_POST_NORM: (
  1273. "audio_tower.layer_norm", # ultravox
  1274. "audio_tower.ln_post", # qwen2omni
  1275. ),
  1276. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1277. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1278. ),
  1279. MODEL_TENSOR.A_ENC_ATTN_K: (
  1280. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1281. ),
  1282. MODEL_TENSOR.A_ENC_ATTN_V: (
  1283. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1284. ),
  1285. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1286. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1287. ),
  1288. MODEL_TENSOR.A_ENC_OUTPUT: (
  1289. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1290. ),
  1291. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1292. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1293. ),
  1294. MODEL_TENSOR.A_ENC_FFN_UP: (
  1295. "audio_tower.layers.{bid}.fc1", # ultravox
  1296. ),
  1297. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1298. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1299. "audio_tower.layers.{bid}.fc2", # ultravox
  1300. ),
  1301. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1302. # this prefix is added in the conversion code in modify_tensors()
  1303. MODEL_TENSOR.A_MMPROJ: (
  1304. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1305. ),
  1306. MODEL_TENSOR.A_MMPROJ_FC: (
  1307. "audio.multi_modal_projector.linear", # qwen2audio
  1308. "audio_tower.proj", # qwen2omni
  1309. ),
  1310. MODEL_TENSOR.A_MM_NORM_PRE: (
  1311. "audio.multi_modal_projector.ln_pre", # ultravox
  1312. ),
  1313. MODEL_TENSOR.A_MM_NORM_MID: (
  1314. "audio.multi_modal_projector.ln_mid", # ultravox
  1315. ),
  1316. # NextN/MTP tensors for GLM4_MOE
  1317. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1318. "model.layers.{bid}.eh_proj",
  1319. ),
  1320. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1321. "model.layers.{bid}.embed_tokens",
  1322. ),
  1323. MODEL_TENSOR.NEXTN_ENORM: (
  1324. "model.layers.{bid}.enorm",
  1325. ),
  1326. MODEL_TENSOR.NEXTN_HNORM: (
  1327. "model.layers.{bid}.hnorm",
  1328. ),
  1329. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1330. "model.layers.{bid}.shared_head.head",
  1331. ),
  1332. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1333. "model.layers.{bid}.shared_head.norm",
  1334. ),
  1335. }
  1336. # architecture-specific block mappings
  1337. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1338. MODEL_ARCH.ARCTIC: {
  1339. MODEL_TENSOR.FFN_NORM: (
  1340. "model.layers.{bid}.residual_layernorm",
  1341. ),
  1342. MODEL_TENSOR.FFN_NORM_EXP: (
  1343. "model.layers.{bid}.post_attention_layernorm",
  1344. ),
  1345. },
  1346. }
  1347. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1348. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1349. self.mapping = {}
  1350. for tensor, keys in self.mappings_cfg.items():
  1351. if tensor not in MODEL_TENSORS[arch]:
  1352. continue
  1353. tensor_name = TENSOR_NAMES[tensor]
  1354. self.mapping[tensor_name] = (tensor, tensor_name)
  1355. for key in keys:
  1356. self.mapping[key] = (tensor, tensor_name)
  1357. if arch in self.arch_block_mappings_cfg:
  1358. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1359. for bid in range(n_blocks):
  1360. for tensor, keys in self.block_mappings_cfg.items():
  1361. if tensor not in MODEL_TENSORS[arch]:
  1362. continue
  1363. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1364. self.mapping[tensor_name] = (tensor, tensor_name)
  1365. for key in keys:
  1366. key = key.format(bid = bid)
  1367. self.mapping[key] = (tensor, tensor_name)
  1368. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1369. result = self.mapping.get(key)
  1370. if result is not None:
  1371. return result
  1372. for suffix in try_suffixes:
  1373. if key.endswith(suffix):
  1374. result = self.mapping.get(key[:-len(suffix)])
  1375. if result is not None:
  1376. return result[0], result[1] + suffix
  1377. return None
  1378. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1379. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1380. if result is None:
  1381. return None
  1382. return result[1]
  1383. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1384. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1385. if result is None:
  1386. return None
  1387. return result[0]
  1388. def __getitem__(self, key: str) -> str:
  1389. try:
  1390. return self.mapping[key][1]
  1391. except KeyError:
  1392. raise KeyError(key)
  1393. def __contains__(self, key: str) -> bool:
  1394. return key in self.mapping
  1395. def __repr__(self) -> str:
  1396. return repr(self.mapping)
  1397. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1398. return TensorNameMap(arch, n_blocks)