convert_hf_to_gguf.py 402 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. from mistral_common.tokens.tokenizers.base import TokenizerVersion
  28. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD
  29. from mistral_common.tokens.tokenizers.tekken import Tekkenizer
  30. from mistral_common.tokens.tokenizers.sentencepiece import (
  31. SentencePieceTokenizer,
  32. )
  33. logger = logging.getLogger("hf-to-gguf")
  34. ###### MODEL DEFINITIONS ######
  35. class SentencePieceTokenTypes(IntEnum):
  36. NORMAL = 1
  37. UNKNOWN = 2
  38. CONTROL = 3
  39. USER_DEFINED = 4
  40. UNUSED = 5
  41. BYTE = 6
  42. class ModelType(IntEnum):
  43. TEXT = 1
  44. MMPROJ = 2
  45. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  46. class ModelBase:
  47. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  48. ModelType.TEXT: {},
  49. ModelType.MMPROJ: {},
  50. }
  51. dir_model: Path
  52. ftype: gguf.LlamaFileType
  53. fname_out: Path
  54. is_big_endian: bool
  55. endianess: gguf.GGUFEndian
  56. use_temp_file: bool
  57. lazy: bool
  58. part_names: list[str]
  59. is_safetensors: bool
  60. hparams: dict[str, Any]
  61. tensor_names: set[str] | None
  62. gguf_writer: gguf.GGUFWriter
  63. model_name: str | None
  64. metadata_override: Path | None
  65. dir_model_card: Path
  66. remote_hf_model_id: str | None
  67. # subclasses should define this!
  68. model_arch: gguf.MODEL_ARCH
  69. # subclasses should initialize this!
  70. block_count: int
  71. tensor_map: gguf.TensorNameMap
  72. # Mistral format specifics
  73. is_mistral_format: bool = False
  74. disable_mistral_community_chat_template: bool = False
  75. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  76. use_temp_file: bool = False, eager: bool = False,
  77. metadata_override: Path | None = None, model_name: str | None = None,
  78. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  79. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  80. disable_mistral_community_chat_template: bool = False):
  81. if type(self) is ModelBase or \
  82. type(self) is TextModel or \
  83. type(self) is MmprojModel:
  84. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  85. self.dir_model = dir_model
  86. self.ftype = ftype
  87. self.fname_out = fname_out
  88. self.is_big_endian = is_big_endian
  89. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  90. self.use_temp_file = use_temp_file
  91. self.lazy = not eager or (remote_hf_model_id is not None)
  92. self.remote_hf_model_id = remote_hf_model_id
  93. if remote_hf_model_id is not None:
  94. self.is_safetensors = True
  95. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  96. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  97. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  98. self.tensor_names = set(name for name in remote_tensors.keys())
  99. for name, remote_tensor in remote_tensors.items():
  100. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  101. self.get_tensors = get_remote_tensors
  102. else:
  103. prefix = "model" if not self.is_mistral_format else "consolidated"
  104. self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  105. self.is_safetensors = len(self.part_names) > 0
  106. if not self.is_safetensors:
  107. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  108. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  109. self.tensor_names = None
  110. self.metadata_override = metadata_override
  111. self.model_name = model_name
  112. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  113. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  114. if self.ftype == gguf.LlamaFileType.GUESSED:
  115. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  116. _, first_tensor = next(self.get_tensors())
  117. if first_tensor.dtype == torch.float16:
  118. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  119. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  120. else:
  121. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  122. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  123. # Configure GGUF Writer
  124. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  125. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  126. # Mistral specific
  127. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  128. @classmethod
  129. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  130. stem, suffix = path.stem, path.suffix
  131. new_name = f"{prefix}{stem}{suffix}"
  132. return path.with_name(new_name)
  133. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  134. key = next((k for k in keys if k in self.hparams), None)
  135. if key is not None:
  136. return self.hparams[key]
  137. if optional:
  138. return None
  139. raise KeyError(f"could not find any of: {keys}")
  140. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  141. tensor_names_from_parts: set[str] = set()
  142. if not self.is_mistral_format:
  143. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  144. index_name += ".index.json"
  145. index_file = self.dir_model / index_name
  146. if index_file.is_file():
  147. self.tensor_names = set()
  148. logger.info(f"gguf: loading model weight map from '{index_name}'")
  149. with open(index_file, "r", encoding="utf-8") as f:
  150. index: dict[str, Any] = json.load(f)
  151. weight_map = index.get("weight_map")
  152. if weight_map is None or not isinstance(weight_map, dict):
  153. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  154. self.tensor_names.update(weight_map.keys())
  155. else:
  156. self.tensor_names = tensor_names_from_parts
  157. weight_map = {}
  158. else:
  159. self.tensor_names = tensor_names_from_parts
  160. weight_map = {}
  161. for part_name in self.part_names:
  162. logger.info(f"gguf: loading model part '{part_name}'")
  163. ctx: ContextManager[Any]
  164. if self.is_safetensors:
  165. from safetensors import safe_open
  166. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  167. else:
  168. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  169. with ctx as model_part:
  170. tensor_names_from_parts.update(model_part.keys())
  171. for name in model_part.keys():
  172. if self.is_safetensors:
  173. if self.lazy:
  174. data = model_part.get_slice(name)
  175. data = LazyTorchTensor.from_safetensors_slice(data)
  176. else:
  177. data = model_part.get_tensor(name)
  178. else:
  179. data = model_part[name]
  180. if self.lazy:
  181. data = LazyTorchTensor.from_eager(data)
  182. yield name, data
  183. # verify tensor name presence and identify potentially missing files
  184. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  185. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  186. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  187. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  188. if len(extra) == 0 and len(missing_files) > 0:
  189. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  190. f"Missing tensors: {missing}")
  191. else:
  192. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  193. f"Missing tensors: {missing}\n"
  194. f"Extra tensors: {extra}")
  195. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  196. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  197. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  198. name: str = gguf.TENSOR_NAMES[key]
  199. if "{bid}" in name:
  200. assert bid is not None
  201. name = name.format(bid=bid)
  202. return name + suffix
  203. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  204. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  205. return False
  206. key_name: str = gguf.TENSOR_NAMES[key]
  207. if "{bid}" in key_name:
  208. if bid is None:
  209. return False
  210. key_name = key_name.format(bid=bid)
  211. else:
  212. if bid is not None:
  213. return False
  214. return name == (key_name + suffix)
  215. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  216. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  217. if new_name is None:
  218. raise ValueError(f"Can not map tensor {name!r}")
  219. return new_name
  220. def set_gguf_parameters(self):
  221. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  223. del bid # unused
  224. return [(self.map_tensor_name(name), data_torch)]
  225. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  226. del name, new_name, bid, n_dims # unused
  227. return False
  228. # some models need extra generated tensors (like rope_freqs)
  229. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  230. return ()
  231. def prepare_tensors(self):
  232. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  233. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  234. # we don't need these
  235. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  236. continue
  237. old_dtype = data_torch.dtype
  238. # convert any unsupported data types to float32
  239. if data_torch.dtype not in (torch.float16, torch.float32):
  240. data_torch = data_torch.to(torch.float32)
  241. # use the first number-like part of the tensor name as the block id
  242. bid = None
  243. for part in name.split("."):
  244. if part.isdecimal():
  245. bid = int(part)
  246. break
  247. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  248. # TODO: why do we squeeze here?
  249. # data = data_torch.squeeze().numpy()
  250. data = data_torch.numpy()
  251. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  252. if len(data.shape) == 0:
  253. data = data_torch.numpy()
  254. n_dims = len(data.shape)
  255. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  256. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  257. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  258. data_qtype = gguf.GGMLQuantizationType.F32
  259. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  260. # Some tensor types are always in float32
  261. if data_qtype is False and (
  262. any(
  263. self.match_model_tensor_name(new_name, key, bid)
  264. for key in (
  265. gguf.MODEL_TENSOR.FFN_GATE_INP,
  266. gguf.MODEL_TENSOR.POS_EMBD,
  267. gguf.MODEL_TENSOR.TOKEN_TYPES,
  268. gguf.MODEL_TENSOR.SSM_CONV1D,
  269. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  270. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  271. gguf.MODEL_TENSOR.TIME_MIX_W1,
  272. gguf.MODEL_TENSOR.TIME_MIX_W2,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  274. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  275. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  276. gguf.MODEL_TENSOR.POSNET_NORM1,
  277. gguf.MODEL_TENSOR.POSNET_NORM2,
  278. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  279. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  280. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  281. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  282. )
  283. )
  284. or not new_name.endswith(".weight")
  285. ):
  286. data_qtype = gguf.GGMLQuantizationType.F32
  287. if data_qtype is False and any(
  288. self.match_model_tensor_name(new_name, key, bid)
  289. for key in (
  290. gguf.MODEL_TENSOR.TOKEN_EMBD,
  291. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  292. gguf.MODEL_TENSOR.OUTPUT,
  293. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  294. gguf.MODEL_TENSOR.LAUREL_L,
  295. gguf.MODEL_TENSOR.LAUREL_R,
  296. )
  297. ):
  298. if self.ftype in (
  299. gguf.LlamaFileType.MOSTLY_TQ1_0,
  300. gguf.LlamaFileType.MOSTLY_TQ2_0,
  301. ):
  302. # TODO: use Q4_K and Q6_K
  303. data_qtype = gguf.GGMLQuantizationType.F16
  304. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  305. if isinstance(data_qtype, bool):
  306. if self.ftype == gguf.LlamaFileType.ALL_F32:
  307. data_qtype = gguf.GGMLQuantizationType.F32
  308. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  309. data_qtype = gguf.GGMLQuantizationType.F16
  310. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  311. data_qtype = gguf.GGMLQuantizationType.BF16
  312. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  313. data_qtype = gguf.GGMLQuantizationType.Q8_0
  314. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  315. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  316. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  317. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  318. else:
  319. raise ValueError(f"Unknown file type: {self.ftype.name}")
  320. try:
  321. data = gguf.quants.quantize(data, data_qtype)
  322. except gguf.QuantError as e:
  323. logger.warning("%s, %s", e, "falling back to F16")
  324. data_qtype = gguf.GGMLQuantizationType.F16
  325. data = gguf.quants.quantize(data, data_qtype)
  326. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  327. # reverse shape to make it similar to the internal ggml dimension order
  328. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  329. # n_dims is implicit in the shape
  330. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  331. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  332. def set_type(self):
  333. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  334. def prepare_metadata(self, vocab_only: bool):
  335. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  336. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  337. # If we are using HF model id, set the metadata name to the model id
  338. if self.remote_hf_model_id:
  339. self.metadata.name = self.remote_hf_model_id
  340. # Fallback to model directory name if metadata name is still missing
  341. if self.metadata.name is None:
  342. self.metadata.name = self.dir_model.name
  343. # Generate parameter weight class (useful for leader boards) if not yet determined
  344. if self.metadata.size_label is None and total_params > 0:
  345. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  346. self.set_type()
  347. logger.info("Set meta model")
  348. self.metadata.set_gguf_meta_model(self.gguf_writer)
  349. logger.info("Set model parameters")
  350. self.set_gguf_parameters()
  351. logger.info("Set model quantization version")
  352. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  353. def write_vocab(self):
  354. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  355. def write(self):
  356. self.prepare_tensors()
  357. self.prepare_metadata(vocab_only=False)
  358. self.gguf_writer.write_header_to_file(path=self.fname_out)
  359. self.gguf_writer.write_kv_data_to_file()
  360. self.gguf_writer.write_tensors_to_file(progress=True)
  361. self.gguf_writer.close()
  362. @staticmethod
  363. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  364. part_names: list[str] = []
  365. for filename in os.listdir(dir_model):
  366. if filename.startswith(prefix) and filename.endswith(suffix):
  367. part_names.append(filename)
  368. part_names.sort()
  369. return part_names
  370. @staticmethod
  371. def load_hparams(dir_model: Path, is_mistral_format: bool):
  372. if is_mistral_format:
  373. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  374. config = json.load(f)
  375. return config
  376. try:
  377. # for security reason, we don't allow loading remote code by default
  378. # if a model need remote code, we will fallback to config.json
  379. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  380. except Exception as e:
  381. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  382. logger.warning("Trying to load config.json instead")
  383. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  384. config = json.load(f)
  385. if "llm_config" in config:
  386. # rename for InternVL
  387. config["text_config"] = config["llm_config"]
  388. if "thinker_config" in config:
  389. # rename for Qwen2.5-Omni
  390. config["text_config"] = config["thinker_config"]["text_config"]
  391. return config
  392. @classmethod
  393. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  394. assert names
  395. def func(modelcls: AnyModel) -> AnyModel:
  396. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  397. for name in names:
  398. cls._model_classes[model_type][name] = modelcls
  399. return modelcls
  400. return func
  401. @classmethod
  402. def print_registered_models(cls):
  403. for model_type, model_classes in cls._model_classes.items():
  404. logger.error(f"{model_type.name} models:")
  405. for name in sorted(model_classes.keys()):
  406. logger.error(f" - {name}")
  407. @classmethod
  408. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  409. try:
  410. return cls._model_classes[model_type][arch]
  411. except KeyError:
  412. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  413. class TextModel(ModelBase):
  414. model_type = ModelType.TEXT
  415. hf_arch: str
  416. def __init__(self, *args, **kwargs):
  417. super().__init__(*args, **kwargs)
  418. if not self.is_mistral_format:
  419. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  420. else:
  421. self.hf_arch = ""
  422. if "text_config" in self.hparams:
  423. # move the text_config to the root level
  424. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  425. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  426. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  427. @classmethod
  428. def __init_subclass__(cls):
  429. # can't use an abstract property, because overriding it without type errors
  430. # would require using decorated functions instead of simply defining the property
  431. if "model_arch" not in cls.__dict__:
  432. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  433. def set_vocab(self):
  434. self._set_vocab_gpt2()
  435. def prepare_metadata(self, vocab_only: bool):
  436. super().prepare_metadata(vocab_only=vocab_only)
  437. total_params = self.gguf_writer.get_total_parameter_count()[0]
  438. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  439. output_type: str = self.ftype.name.partition("_")[2]
  440. # Filename Output
  441. if self.fname_out.is_dir():
  442. # Generate default filename based on model specification and available metadata
  443. if not vocab_only:
  444. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  445. else:
  446. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  447. # Use the default filename
  448. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  449. else:
  450. # Output path is a custom defined templated filename
  451. # Note: `not is_dir()` is used because `.is_file()` will not detect
  452. # file template strings as it doesn't actually exist as a file
  453. # Process templated file name with the output ftype, useful with the "auto" ftype
  454. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  455. logger.info("Set model tokenizer")
  456. self.set_vocab()
  457. def set_gguf_parameters(self):
  458. self.gguf_writer.add_block_count(self.block_count)
  459. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  460. self.gguf_writer.add_context_length(n_ctx)
  461. logger.info(f"gguf: context length = {n_ctx}")
  462. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  463. self.gguf_writer.add_embedding_length(n_embd)
  464. logger.info(f"gguf: embedding length = {n_embd}")
  465. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  466. self.gguf_writer.add_feed_forward_length(n_ff)
  467. logger.info(f"gguf: feed forward length = {n_ff}")
  468. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  469. self.gguf_writer.add_head_count(n_head)
  470. logger.info(f"gguf: head count = {n_head}")
  471. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  472. self.gguf_writer.add_head_count_kv(n_head_kv)
  473. logger.info(f"gguf: key-value head count = {n_head_kv}")
  474. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  475. self.gguf_writer.add_rope_freq_base(rope_theta)
  476. logger.info(f"gguf: rope theta = {rope_theta}")
  477. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  478. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  479. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  480. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  481. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  482. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  483. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  484. self.gguf_writer.add_expert_count(n_experts)
  485. logger.info(f"gguf: expert count = {n_experts}")
  486. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  487. self.gguf_writer.add_expert_used_count(n_experts_used)
  488. logger.info(f"gguf: experts used count = {n_experts_used}")
  489. if (head_dim := self.hparams.get("head_dim")) is not None:
  490. self.gguf_writer.add_key_length(head_dim)
  491. self.gguf_writer.add_value_length(head_dim)
  492. self.gguf_writer.add_file_type(self.ftype)
  493. logger.info(f"gguf: file type = {self.ftype}")
  494. def write_vocab(self):
  495. if len(self.gguf_writer.tensors) != 1:
  496. raise ValueError('Splitting the vocabulary is not supported')
  497. self.prepare_metadata(vocab_only=True)
  498. self.gguf_writer.write_header_to_file(path=self.fname_out)
  499. self.gguf_writer.write_kv_data_to_file()
  500. self.gguf_writer.close()
  501. def does_token_look_special(self, token: str | bytes) -> bool:
  502. if isinstance(token, (bytes, bytearray)):
  503. token_text = token.decode(encoding="utf-8")
  504. elif isinstance(token, memoryview):
  505. token_text = token.tobytes().decode(encoding="utf-8")
  506. else:
  507. token_text = token
  508. # Some models mark some added tokens which ought to be control tokens as not special.
  509. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  510. seems_special = token_text in (
  511. "<pad>", # deepseek-coder
  512. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  513. )
  514. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  515. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  516. # TODO: should these be marked as UNUSED instead? (maybe not)
  517. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  518. return seems_special
  519. # used for GPT-2 BPE and WordPiece vocabs
  520. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  521. tokens: list[str] = []
  522. toktypes: list[int] = []
  523. from transformers import AutoTokenizer
  524. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  525. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  526. assert max(tokenizer.vocab.values()) < vocab_size
  527. tokpre = self.get_vocab_base_pre(tokenizer)
  528. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  529. added_vocab = tokenizer.get_added_vocab()
  530. added_tokens_decoder = tokenizer.added_tokens_decoder
  531. for i in range(vocab_size):
  532. if i not in reverse_vocab:
  533. tokens.append(f"[PAD{i}]")
  534. toktypes.append(gguf.TokenType.UNUSED)
  535. else:
  536. token: str = reverse_vocab[i]
  537. if token in added_vocab:
  538. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  539. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  540. if not added_tokens_decoder[i].normalized:
  541. previous_token = token
  542. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  543. if previous_token != token:
  544. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  545. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  546. toktypes.append(gguf.TokenType.CONTROL)
  547. else:
  548. # NOTE: this was added for Gemma.
  549. # Encoding and decoding the tokens above isn't sufficient for this case.
  550. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  551. toktypes.append(gguf.TokenType.USER_DEFINED)
  552. else:
  553. toktypes.append(gguf.TokenType.NORMAL)
  554. tokens.append(token)
  555. return tokens, toktypes, tokpre
  556. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  557. # do not modify it manually!
  558. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  559. # Marker: Start get_vocab_base_pre
  560. def get_vocab_base_pre(self, tokenizer) -> str:
  561. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  562. # is specific for the BPE pre-tokenizer used by the model
  563. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  564. # use in llama.cpp to implement the same pre-tokenizer
  565. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  566. chktok = tokenizer.encode(chktxt)
  567. chkhsh = sha256(str(chktok).encode()).hexdigest()
  568. logger.debug(f"chktok: {chktok}")
  569. logger.debug(f"chkhsh: {chkhsh}")
  570. res = None
  571. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  572. # or pull the latest version of the model from Huggingface
  573. # don't edit the hashes manually!
  574. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  575. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  576. res = "chatglm-bpe"
  577. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  578. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  579. res = "chatglm-bpe"
  580. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  581. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  582. res = "glm4"
  583. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  584. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  585. res = "glm4"
  586. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  587. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  588. res = "minerva-7b"
  589. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  590. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  591. res = "hunyuan"
  592. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  593. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  594. res = "hunyuan-dense"
  595. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  596. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  597. res = "falcon-h1"
  598. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  599. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  600. res = "falcon-h1"
  601. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  602. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  603. res = "falcon-h1"
  604. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  605. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  606. res = "falcon-h1"
  607. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  608. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  609. res = "kimi-k2"
  610. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  611. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  612. res = "qwen2"
  613. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  614. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  615. res = "llama-bpe"
  616. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  617. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  618. res = "deepseek-llm"
  619. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  620. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  621. res = "deepseek-coder"
  622. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  623. # ref: https://huggingface.co/tiiuae/falcon-7b
  624. res = "falcon"
  625. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  626. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  627. res = "bert-bge"
  628. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  629. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  630. res = "falcon3"
  631. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  632. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  633. res = "bert-bge-large"
  634. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  635. # ref: https://huggingface.co/mosaicml/mpt-7b
  636. res = "mpt"
  637. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  638. # ref: https://huggingface.co/bigcode/starcoder2-3b
  639. res = "starcoder"
  640. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  641. # ref: https://huggingface.co/openai-community/gpt2
  642. res = "gpt-2"
  643. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  644. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  645. res = "stablelm2"
  646. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  647. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  648. res = "refact"
  649. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  650. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  651. res = "command-r"
  652. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  653. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  654. res = "qwen2"
  655. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  656. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  657. res = "olmo"
  658. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  659. # ref: https://huggingface.co/databricks/dbrx-base
  660. res = "dbrx"
  661. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  662. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  663. res = "jina-v1-en"
  664. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  665. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  666. res = "jina-v2-en"
  667. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  668. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  669. res = "jina-v2-es"
  670. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  671. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  672. res = "jina-v2-de"
  673. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  674. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  675. res = "smaug-bpe"
  676. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  677. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  678. res = "poro-chat"
  679. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  680. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  681. res = "jina-v2-code"
  682. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  683. # ref: https://huggingface.co/LumiOpen/Viking-7B
  684. res = "viking"
  685. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  686. # ref: https://huggingface.co/core42/jais-13b
  687. res = "jais"
  688. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  689. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  690. res = "codeshell"
  691. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  692. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  693. res = "tekken"
  694. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  695. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  696. res = "smollm"
  697. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  698. # ref: https://huggingface.co/bigscience/bloom
  699. res = "bloom"
  700. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  701. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  702. res = "gpt3-finnish"
  703. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  704. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  705. res = "exaone"
  706. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  707. # ref: https://huggingface.co/microsoft/phi-2
  708. res = "phi-2"
  709. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  710. # ref: https://huggingface.co/facebook/chameleon-7b
  711. res = "chameleon"
  712. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  713. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  714. res = "roberta-bpe"
  715. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  716. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  717. res = "gigachat"
  718. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  719. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  720. res = "megrez"
  721. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  722. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  723. res = "deepseek-v3"
  724. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  725. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  726. res = "deepseek-r1-qwen"
  727. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  728. # ref: https://huggingface.co/Xenova/gpt-4o
  729. res = "gpt-4o"
  730. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  731. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  732. res = "superbpe"
  733. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  734. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  735. res = "trillion"
  736. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  737. # ref: https://huggingface.co/inclusionAI/Ling-lite
  738. res = "bailingmoe"
  739. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  740. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  741. res = "llama4"
  742. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  743. # ref: https://huggingface.co/mistral-community/pixtral-12b
  744. res = "pixtral"
  745. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  746. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  747. res = "seed-coder"
  748. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  749. # ref: https://huggingface.co/skt/A.X-4.0
  750. res = "a.x-4.0"
  751. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  752. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  753. res = "midm-2.0"
  754. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  755. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  756. res = "lfm2"
  757. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  758. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  759. res = "exaone4"
  760. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  761. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  762. res = "mellum"
  763. if res is None:
  764. logger.warning("\n")
  765. logger.warning("**************************************************************************************")
  766. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  767. logger.warning("** There are 2 possible reasons for this:")
  768. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  769. logger.warning("** - the pre-tokenization config has changed upstream")
  770. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  771. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  772. logger.warning("**")
  773. logger.warning(f"** chkhsh: {chkhsh}")
  774. logger.warning("**************************************************************************************")
  775. logger.warning("\n")
  776. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  777. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  778. logger.debug(f"chkhsh: {chkhsh}")
  779. return res
  780. # Marker: End get_vocab_base_pre
  781. def _set_vocab_none(self) -> None:
  782. self.gguf_writer.add_tokenizer_model("none")
  783. def _set_vocab_gpt2(self) -> None:
  784. tokens, toktypes, tokpre = self.get_vocab_base()
  785. self.gguf_writer.add_tokenizer_model("gpt2")
  786. self.gguf_writer.add_tokenizer_pre(tokpre)
  787. self.gguf_writer.add_token_list(tokens)
  788. self.gguf_writer.add_token_types(toktypes)
  789. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  790. special_vocab.add_to_gguf(self.gguf_writer)
  791. def _set_vocab_qwen(self):
  792. dir_model = self.dir_model
  793. hparams = self.hparams
  794. tokens: list[str] = []
  795. toktypes: list[int] = []
  796. from transformers import AutoTokenizer
  797. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  798. vocab_size = hparams["vocab_size"]
  799. assert max(tokenizer.get_vocab().values()) < vocab_size
  800. tokpre = self.get_vocab_base_pre(tokenizer)
  801. merges = []
  802. vocab = {}
  803. mergeable_ranks = tokenizer.mergeable_ranks
  804. for token, rank in mergeable_ranks.items():
  805. vocab[QwenModel.token_bytes_to_string(token)] = rank
  806. if len(token) == 1:
  807. continue
  808. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  809. assert len(merged) == 2
  810. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  811. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  812. added_vocab = tokenizer.special_tokens
  813. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  814. for i in range(vocab_size):
  815. if i not in reverse_vocab:
  816. tokens.append(f"[PAD{i}]")
  817. toktypes.append(gguf.TokenType.UNUSED)
  818. elif reverse_vocab[i] in added_vocab:
  819. tokens.append(reverse_vocab[i])
  820. toktypes.append(gguf.TokenType.CONTROL)
  821. else:
  822. tokens.append(reverse_vocab[i])
  823. toktypes.append(gguf.TokenType.NORMAL)
  824. self.gguf_writer.add_tokenizer_model("gpt2")
  825. self.gguf_writer.add_tokenizer_pre(tokpre)
  826. self.gguf_writer.add_token_list(tokens)
  827. self.gguf_writer.add_token_types(toktypes)
  828. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  829. special_vocab.merges = merges
  830. # only add special tokens when they were not already loaded from config.json
  831. if len(special_vocab.special_token_ids) == 0:
  832. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  833. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  834. # this one is usually not in config.json anyway
  835. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  836. special_vocab.add_to_gguf(self.gguf_writer)
  837. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  838. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  839. self.gguf_writer.add_tokenizer_model("llama")
  840. self.gguf_writer.add_tokenizer_pre("default")
  841. self.gguf_writer.add_token_list(tokens)
  842. self.gguf_writer.add_token_scores(scores)
  843. self.gguf_writer.add_token_types(toktypes)
  844. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  845. special_vocab.add_to_gguf(self.gguf_writer)
  846. def _create_vocab_sentencepiece(self):
  847. from sentencepiece import SentencePieceProcessor
  848. tokenizer_path = self.dir_model / 'tokenizer.model'
  849. if not tokenizer_path.is_file():
  850. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  851. tokenizer = SentencePieceProcessor()
  852. tokenizer.LoadFromFile(str(tokenizer_path))
  853. vocab_size = self.find_hparam([
  854. "vocab_size_per_layer_input", # gemma3n
  855. "vocab_size",
  856. ], optional=True) or tokenizer.vocab_size()
  857. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  858. scores: list[float] = [-10000.0] * vocab_size
  859. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  860. for token_id in range(tokenizer.vocab_size()):
  861. if token_id >= vocab_size:
  862. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  863. break
  864. piece = tokenizer.IdToPiece(token_id)
  865. text = piece.encode("utf-8")
  866. score = tokenizer.GetScore(token_id)
  867. toktype = SentencePieceTokenTypes.NORMAL
  868. if tokenizer.IsUnknown(token_id):
  869. toktype = SentencePieceTokenTypes.UNKNOWN
  870. elif tokenizer.IsControl(token_id):
  871. toktype = SentencePieceTokenTypes.CONTROL
  872. elif tokenizer.IsUnused(token_id):
  873. toktype = SentencePieceTokenTypes.UNUSED
  874. elif tokenizer.IsByte(token_id):
  875. toktype = SentencePieceTokenTypes.BYTE
  876. tokens[token_id] = text
  877. scores[token_id] = score
  878. toktypes[token_id] = toktype
  879. added_tokens_file = self.dir_model / 'added_tokens.json'
  880. if added_tokens_file.is_file():
  881. with open(added_tokens_file, "r", encoding="utf-8") as f:
  882. added_tokens_json = json.load(f)
  883. for key in added_tokens_json:
  884. token_id = added_tokens_json[key]
  885. if token_id >= vocab_size:
  886. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  887. continue
  888. tokens[token_id] = key.encode("utf-8")
  889. scores[token_id] = -1000.0
  890. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  891. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  892. if tokenizer_config_file.is_file():
  893. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  894. tokenizer_config_json = json.load(f)
  895. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  896. for token_id, token_data in added_tokens_decoder.items():
  897. token_id = int(token_id)
  898. token: str = token_data["content"]
  899. if token_id >= vocab_size:
  900. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  901. continue
  902. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  903. if tokens[token_id] != token.encode("utf-8"):
  904. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  905. if token_data.get("special") or self.does_token_look_special(token):
  906. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  907. else:
  908. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  909. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  910. scores[token_id] = -1000.0
  911. tokens[token_id] = token.encode("utf-8")
  912. if vocab_size > len(tokens):
  913. pad_count = vocab_size - len(tokens)
  914. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  915. for i in range(1, pad_count + 1):
  916. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  917. scores.append(-1000.0)
  918. toktypes.append(SentencePieceTokenTypes.UNUSED)
  919. return tokens, scores, toktypes
  920. def _set_vocab_llama_hf(self):
  921. vocab = gguf.LlamaHfVocab(self.dir_model)
  922. tokens = []
  923. scores = []
  924. toktypes = []
  925. for text, score, toktype in vocab.all_tokens():
  926. tokens.append(text)
  927. scores.append(score)
  928. toktypes.append(toktype)
  929. assert len(tokens) == vocab.vocab_size
  930. self.gguf_writer.add_tokenizer_model("llama")
  931. self.gguf_writer.add_tokenizer_pre("default")
  932. self.gguf_writer.add_token_list(tokens)
  933. self.gguf_writer.add_token_scores(scores)
  934. self.gguf_writer.add_token_types(toktypes)
  935. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  936. special_vocab.add_to_gguf(self.gguf_writer)
  937. def _set_vocab_rwkv_world(self):
  938. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  939. vocab_size = self.hparams.get("vocab_size", 65536)
  940. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  941. toktypes: list[int] = [gguf.TokenType.CONTROL]
  942. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  943. lines = f.readlines()
  944. for line in lines:
  945. parts = line.split(' ')
  946. assert len(parts) >= 3
  947. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  948. token = token.encode("utf-8") if isinstance(token, str) else token
  949. assert isinstance(token, bytes)
  950. assert len(token) == token_len
  951. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  952. tokens.append(token_text.encode("utf-8"))
  953. toktypes.append(gguf.TokenType.NORMAL)
  954. remainder = vocab_size - len(tokens)
  955. assert remainder >= 0
  956. for i in range(len(tokens), vocab_size):
  957. tokens.append(f"[PAD{i}]".encode("utf-8"))
  958. toktypes.append(gguf.TokenType.UNUSED)
  959. self.gguf_writer.add_tokenizer_model("rwkv")
  960. self.gguf_writer.add_token_list(tokens)
  961. self.gguf_writer.add_token_types(toktypes)
  962. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  963. if special_vocab.chat_template is None:
  964. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  965. if template_path.is_file():
  966. with open(template_path, "r", encoding="utf-8") as f:
  967. template = f.read()
  968. else:
  969. template = "rwkv-world"
  970. special_vocab.chat_template = template
  971. # hack: Add '\n\n' as the EOT token to make it chat normally
  972. special_vocab._set_special_token("eot", 261)
  973. # hack: Override these as they have already been set (incorrectly)
  974. special_vocab.special_token_ids["bos"] = 0
  975. special_vocab.special_token_ids["eos"] = 0
  976. special_vocab.add_to_gguf(self.gguf_writer)
  977. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  978. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  979. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  980. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  981. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  982. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  983. assert field # tokenizer model
  984. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  985. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  986. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  987. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  988. assert field # token list
  989. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  990. if model_name == "llama-spm":
  991. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  992. assert field # token scores
  993. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  994. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  995. assert field # token types
  996. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  997. if model_name != "llama-spm":
  998. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  999. assert field # token merges
  1000. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1001. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1002. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1003. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1004. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1005. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1006. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1007. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1008. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1009. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1010. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1011. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1012. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1013. def _try_set_pooling_type(self) -> None:
  1014. # get pooling path
  1015. pooling_path = None
  1016. module_path = self.dir_model / "modules.json"
  1017. if module_path.is_file():
  1018. with open(module_path, encoding="utf-8") as f:
  1019. modules = json.load(f)
  1020. for mod in modules:
  1021. if mod["type"] == "sentence_transformers.models.Pooling":
  1022. pooling_path = mod["path"]
  1023. break
  1024. # get pooling type
  1025. if pooling_path is not None:
  1026. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1027. pooling = json.load(f)
  1028. if pooling["pooling_mode_mean_tokens"]:
  1029. pooling_type = gguf.PoolingType.MEAN
  1030. elif pooling["pooling_mode_cls_token"]:
  1031. pooling_type = gguf.PoolingType.CLS
  1032. elif pooling["pooling_mode_lasttoken"]:
  1033. pooling_type = gguf.PoolingType.LAST
  1034. else:
  1035. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1036. self.gguf_writer.add_pooling_type(pooling_type)
  1037. def _set_vocab_interns1(self):
  1038. tokens: list[str] = []
  1039. toktypes: list[int] = []
  1040. from transformers import AutoTokenizer
  1041. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1042. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1043. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1044. assert max(vocab.values()) < vocab_size
  1045. tokpre = self.get_vocab_base_pre(tokenizer)
  1046. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1047. added_vocab = tokenizer.get_added_vocab()
  1048. added_tokens_decoder = tokenizer.added_tokens_decoder
  1049. for i in range(vocab_size):
  1050. if i not in reverse_vocab:
  1051. tokens.append(f"[PAD{i}]")
  1052. toktypes.append(gguf.TokenType.UNUSED)
  1053. else:
  1054. token: str = reverse_vocab[i]
  1055. if token in added_vocab:
  1056. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1057. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1058. if not added_tokens_decoder[i].normalized:
  1059. previous_token = token
  1060. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1061. if previous_token != token:
  1062. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1063. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1064. toktypes.append(gguf.TokenType.CONTROL)
  1065. else:
  1066. toktypes.append(gguf.TokenType.USER_DEFINED)
  1067. else:
  1068. toktypes.append(gguf.TokenType.NORMAL)
  1069. tokens.append(token)
  1070. self.gguf_writer.add_tokenizer_model("gpt2")
  1071. self.gguf_writer.add_tokenizer_pre(tokpre)
  1072. self.gguf_writer.add_token_list(tokens)
  1073. self.gguf_writer.add_token_types(toktypes)
  1074. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1075. special_vocab._set_special_token("bos", 151643)
  1076. special_vocab.add_to_gguf(self.gguf_writer)
  1077. class MmprojModel(ModelBase):
  1078. model_type = ModelType.MMPROJ
  1079. model_arch = gguf.MODEL_ARCH.MMPROJ
  1080. preprocessor_config: dict[str, Any]
  1081. global_config: dict[str, Any]
  1082. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1083. has_vision_encoder: bool = True # by default
  1084. has_audio_encoder: bool = False
  1085. # for models having multiple encoders, we need to separate their hparams
  1086. hparams_vision: dict[str, Any] | None = None
  1087. hparams_audio: dict[str, Any] | None = None
  1088. def __init__(self, *args, **kwargs):
  1089. super().__init__(*args, **kwargs)
  1090. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1091. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1092. # get n_embd of the text model
  1093. if not self.is_mistral_format:
  1094. if "text_config" not in self.hparams:
  1095. self.hparams["text_config"] = {}
  1096. if "audio_config" not in self.hparams:
  1097. self.hparams["audio_config"] = {}
  1098. text_config = {**self.hparams, **self.hparams["text_config"]}
  1099. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1100. else:
  1101. text_config = {
  1102. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1103. }
  1104. self.n_embd_text = text_config.get("hidden_dim", 0)
  1105. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1106. # move vision config to the top level, while preserving the original hparams in global_config
  1107. import copy
  1108. self.global_config = copy.deepcopy(self.hparams)
  1109. self.hparams_vision = self.get_vision_config()
  1110. self.hparams_audio = self.get_audio_config()
  1111. if self.hparams_vision is None and self.hparams_audio is None:
  1112. raise ValueError("vision_config / audio_config not found in hparams")
  1113. # for compat with vision-only models
  1114. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1115. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1116. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1117. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1118. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1119. # load preprocessor config
  1120. if not self.is_mistral_format:
  1121. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1122. self.preprocessor_config = json.load(f)
  1123. def get_vision_config(self) -> dict[str, Any] | None:
  1124. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1125. return self.global_config.get(config_name)
  1126. def get_audio_config(self) -> dict[str, Any] | None:
  1127. return self.global_config.get("audio_config")
  1128. def set_type(self):
  1129. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1130. def set_gguf_parameters(self):
  1131. self.gguf_writer.add_file_type(self.ftype)
  1132. if self.has_vision_encoder:
  1133. self.gguf_writer.add_clip_has_vision_encoder(True)
  1134. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1135. # vision config
  1136. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1137. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1138. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1139. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1140. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1141. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1142. # preprocessor config
  1143. image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1144. image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1145. self.gguf_writer.add_vision_image_mean(image_mean)
  1146. self.gguf_writer.add_vision_image_std(image_std)
  1147. if self.has_audio_encoder:
  1148. self.gguf_writer.add_clip_has_audio_encoder(True)
  1149. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1150. # audio config
  1151. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1152. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1153. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1154. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1155. if not self.has_vision_encoder and not self.has_audio_encoder:
  1156. raise ValueError("MmprojModel must have either vision or audio encoder")
  1157. def write_vocab(self):
  1158. raise ValueError("MmprojModel does not support vocab writing")
  1159. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1160. assert self.hparams_vision is not None
  1161. return self._find_param(self.hparams_vision, keys, optional)
  1162. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1163. assert self.hparams_audio is not None
  1164. return self._find_param(self.hparams_audio, keys, optional)
  1165. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1166. key = next((k for k in keys if k in obj), None)
  1167. if key is not None:
  1168. return obj[key]
  1169. if optional:
  1170. return None
  1171. raise KeyError(f"could not find any of: {keys}")
  1172. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1173. del bid, name, n_dims # unused
  1174. if ".patch_embd.weight" in new_name:
  1175. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1176. return False
  1177. @ModelBase.register("GPTNeoXForCausalLM")
  1178. class GPTNeoXModel(TextModel):
  1179. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1180. def set_gguf_parameters(self):
  1181. block_count = self.hparams["num_hidden_layers"]
  1182. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1183. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1184. self.gguf_writer.add_block_count(block_count)
  1185. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1186. self.gguf_writer.add_rope_dimension_count(
  1187. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1188. )
  1189. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1190. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1191. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1193. del bid # unused
  1194. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1195. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1196. tensors: list[tuple[str, Tensor]] = []
  1197. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1198. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1199. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1200. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1201. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1202. data_torch = torch.cat(
  1203. (
  1204. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1205. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1206. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1207. ),
  1208. dim=0,
  1209. )
  1210. logger.info("re-format attention.linear_qkv.weight")
  1211. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1212. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1213. data_torch = torch.cat(
  1214. (
  1215. qkv_bias[:, 0, :].reshape((n_embed,)),
  1216. qkv_bias[:, 1, :].reshape((n_embed,)),
  1217. qkv_bias[:, 2, :].reshape((n_embed,)),
  1218. ),
  1219. dim=0,
  1220. )
  1221. logger.info("re-format attention.linear_qkv.bias")
  1222. tensors.append((self.map_tensor_name(name), data_torch))
  1223. return tensors
  1224. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1225. class BloomModel(TextModel):
  1226. model_arch = gguf.MODEL_ARCH.BLOOM
  1227. def set_gguf_parameters(self):
  1228. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1229. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1230. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1231. self.gguf_writer.add_embedding_length(n_embed)
  1232. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1233. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1234. self.gguf_writer.add_head_count(n_head)
  1235. self.gguf_writer.add_head_count_kv(n_head)
  1236. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1237. self.gguf_writer.add_file_type(self.ftype)
  1238. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1239. del bid # unused
  1240. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1241. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1242. name = re.sub(r'transformer\.', '', name)
  1243. tensors: list[tuple[str, Tensor]] = []
  1244. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1245. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1246. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1247. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1248. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1249. data_torch = torch.cat(
  1250. (
  1251. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1252. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1253. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1254. ),
  1255. dim=0,
  1256. )
  1257. logger.info("re-format attention.linear_qkv.weight")
  1258. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1259. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1260. data_torch = torch.cat(
  1261. (
  1262. qkv_bias[:, 0, :].reshape((n_embed,)),
  1263. qkv_bias[:, 1, :].reshape((n_embed,)),
  1264. qkv_bias[:, 2, :].reshape((n_embed,)),
  1265. ),
  1266. dim=0,
  1267. )
  1268. logger.info("re-format attention.linear_qkv.bias")
  1269. tensors.append((self.map_tensor_name(name), data_torch))
  1270. return tensors
  1271. @ModelBase.register("MPTForCausalLM")
  1272. class MPTModel(TextModel):
  1273. model_arch = gguf.MODEL_ARCH.MPT
  1274. def set_vocab(self):
  1275. try:
  1276. self._set_vocab_gpt2()
  1277. except Exception:
  1278. # Fallback for SEA-LION model
  1279. self._set_vocab_sentencepiece()
  1280. self.gguf_writer.add_add_bos_token(False)
  1281. self.gguf_writer.add_pad_token_id(3)
  1282. self.gguf_writer.add_eos_token_id(1)
  1283. self.gguf_writer.add_unk_token_id(0)
  1284. def set_gguf_parameters(self):
  1285. block_count = self.hparams["n_layers"]
  1286. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1287. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1288. self.gguf_writer.add_block_count(block_count)
  1289. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1290. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1291. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1292. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1293. self.gguf_writer.add_layer_norm_eps(1e-5)
  1294. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1295. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1296. if self.hparams["attn_config"]["alibi"]:
  1297. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1298. else:
  1299. self.gguf_writer.add_max_alibi_bias(0.0)
  1300. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1301. del bid # unused
  1302. if "scales" in name:
  1303. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1304. new_name = new_name.replace("scales", "act.scales")
  1305. else:
  1306. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1307. return [(new_name, data_torch)]
  1308. @ModelBase.register("OrionForCausalLM")
  1309. class OrionModel(TextModel):
  1310. model_arch = gguf.MODEL_ARCH.ORION
  1311. def set_vocab(self):
  1312. self._set_vocab_sentencepiece()
  1313. def set_gguf_parameters(self):
  1314. block_count = self.hparams["num_hidden_layers"]
  1315. head_count = self.hparams["num_attention_heads"]
  1316. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1317. ctx_length = 0
  1318. if "max_sequence_length" in self.hparams:
  1319. ctx_length = self.hparams["max_sequence_length"]
  1320. elif "max_position_embeddings" in self.hparams:
  1321. ctx_length = self.hparams["max_position_embeddings"]
  1322. elif "model_max_length" in self.hparams:
  1323. ctx_length = self.hparams["model_max_length"]
  1324. else:
  1325. raise ValueError("gguf: can not find ctx length parameter.")
  1326. self.gguf_writer.add_file_type(self.ftype)
  1327. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1328. self.gguf_writer.add_context_length(ctx_length)
  1329. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1330. self.gguf_writer.add_block_count(block_count)
  1331. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1332. self.gguf_writer.add_head_count(head_count)
  1333. self.gguf_writer.add_head_count_kv(head_count_kv)
  1334. # note: config provides rms norm but it is actually layer norm
  1335. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1336. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1337. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1338. class BaichuanModel(TextModel):
  1339. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1340. def set_vocab(self):
  1341. self._set_vocab_sentencepiece()
  1342. def set_gguf_parameters(self):
  1343. block_count = self.hparams["num_hidden_layers"]
  1344. head_count = self.hparams["num_attention_heads"]
  1345. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1346. ctx_length = 0
  1347. if "max_sequence_length" in self.hparams:
  1348. ctx_length = self.hparams["max_sequence_length"]
  1349. elif "max_position_embeddings" in self.hparams:
  1350. ctx_length = self.hparams["max_position_embeddings"]
  1351. elif "model_max_length" in self.hparams:
  1352. ctx_length = self.hparams["model_max_length"]
  1353. else:
  1354. raise ValueError("gguf: can not find ctx length parameter.")
  1355. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1356. self.gguf_writer.add_context_length(ctx_length)
  1357. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1358. self.gguf_writer.add_block_count(block_count)
  1359. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1360. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1361. self.gguf_writer.add_head_count(head_count)
  1362. self.gguf_writer.add_head_count_kv(head_count_kv)
  1363. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1364. self.gguf_writer.add_file_type(self.ftype)
  1365. rope_scaling = self.hparams.get("rope_scaling") or {}
  1366. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1367. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1368. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1370. head_count = self.hparams["num_attention_heads"]
  1371. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1372. tensors: list[tuple[str, Tensor]] = []
  1373. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1374. logger.info(f"Unpacking and permuting layer {bid}")
  1375. tensors = [
  1376. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1377. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1378. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1379. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1380. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1381. self._reverse_hf_part(data_torch, 2)),
  1382. ]
  1383. else:
  1384. tensors = [(self.map_tensor_name(name), data_torch)]
  1385. return tensors
  1386. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1387. if n_kv_head is not None and n_head != n_kv_head:
  1388. n_head //= n_kv_head
  1389. return (
  1390. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1391. .swapaxes(1, 2)
  1392. .reshape(weights.shape)
  1393. )
  1394. def _reverse_hf_permute_part(
  1395. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1396. ) -> Tensor:
  1397. r = weights.shape[0] // 3
  1398. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1399. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1400. r = weights.shape[0] // 3
  1401. return weights[r * n_part:r * n_part + r, ...]
  1402. @ModelBase.register("XverseForCausalLM")
  1403. class XverseModel(TextModel):
  1404. model_arch = gguf.MODEL_ARCH.XVERSE
  1405. def set_vocab(self):
  1406. assert (self.dir_model / "tokenizer.json").is_file()
  1407. dir_model = self.dir_model
  1408. hparams = self.hparams
  1409. tokens: list[bytes] = []
  1410. toktypes: list[int] = []
  1411. from transformers import AutoTokenizer
  1412. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1413. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1414. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1415. # because vocab_size is the count of items, and indexes start at 0.
  1416. max_vocab_index = max(tokenizer.get_vocab().values())
  1417. if max_vocab_index >= vocab_size:
  1418. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1419. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1420. added_vocab = tokenizer.get_added_vocab()
  1421. for token_id in range(vocab_size):
  1422. token_text = reverse_vocab[token_id].encode('utf-8')
  1423. # replace "\x00" to string with length > 0
  1424. if token_text == b"\x00":
  1425. toktype = gguf.TokenType.BYTE # special
  1426. token_text = f"<{token_text}>".encode('utf-8')
  1427. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1428. toktype = gguf.TokenType.BYTE # special
  1429. elif reverse_vocab[token_id] in added_vocab:
  1430. if tokenizer.added_tokens_decoder[token_id].special:
  1431. toktype = gguf.TokenType.CONTROL
  1432. else:
  1433. toktype = gguf.TokenType.USER_DEFINED
  1434. else:
  1435. toktype = gguf.TokenType.NORMAL
  1436. tokens.append(token_text)
  1437. toktypes.append(toktype)
  1438. self.gguf_writer.add_tokenizer_model("llama")
  1439. self.gguf_writer.add_tokenizer_pre("default")
  1440. self.gguf_writer.add_token_list(tokens)
  1441. self.gguf_writer.add_token_types(toktypes)
  1442. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1443. special_vocab.add_to_gguf(self.gguf_writer)
  1444. def set_gguf_parameters(self):
  1445. block_count = self.hparams["num_hidden_layers"]
  1446. head_count = self.hparams["num_attention_heads"]
  1447. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1448. ctx_length = 0
  1449. if "max_sequence_length" in self.hparams:
  1450. ctx_length = self.hparams["max_sequence_length"]
  1451. elif "max_position_embeddings" in self.hparams:
  1452. ctx_length = self.hparams["max_position_embeddings"]
  1453. elif "model_max_length" in self.hparams:
  1454. ctx_length = self.hparams["model_max_length"]
  1455. else:
  1456. raise ValueError("gguf: can not find ctx length parameter.")
  1457. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1458. self.gguf_writer.add_context_length(ctx_length)
  1459. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1460. self.gguf_writer.add_block_count(block_count)
  1461. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1462. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1463. self.gguf_writer.add_head_count(head_count)
  1464. self.gguf_writer.add_head_count_kv(head_count_kv)
  1465. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1466. self.gguf_writer.add_file_type(self.ftype)
  1467. rope_scaling = self.hparams.get("rope_scaling") or {}
  1468. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1469. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1470. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1471. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1472. del bid # unused
  1473. head_count = self.hparams["num_attention_heads"]
  1474. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1475. # HF models permute some of the tensors, so we need to undo that
  1476. if name.endswith("q_proj.weight"):
  1477. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1478. if name.endswith("k_proj.weight"):
  1479. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1480. return [(self.map_tensor_name(name), data_torch)]
  1481. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1482. if n_kv_head is not None and n_head != n_kv_head:
  1483. n_head //= n_kv_head
  1484. return (
  1485. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1486. .swapaxes(1, 2)
  1487. .reshape(weights.shape)
  1488. )
  1489. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1490. class FalconModel(TextModel):
  1491. model_arch = gguf.MODEL_ARCH.FALCON
  1492. def set_gguf_parameters(self):
  1493. block_count = self.hparams.get("num_hidden_layers")
  1494. if block_count is None:
  1495. block_count = self.hparams["n_layer"] # old name
  1496. n_head = self.hparams.get("num_attention_heads")
  1497. if n_head is None:
  1498. n_head = self.hparams["n_head"] # old name
  1499. n_head_kv = self.hparams.get("num_kv_heads")
  1500. if n_head_kv is None:
  1501. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1502. self.gguf_writer.add_context_length(2048) # not in config.json
  1503. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1504. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1505. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1506. self.gguf_writer.add_block_count(block_count)
  1507. self.gguf_writer.add_head_count(n_head)
  1508. self.gguf_writer.add_head_count_kv(n_head_kv)
  1509. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1510. self.gguf_writer.add_file_type(self.ftype)
  1511. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1512. del bid # unused
  1513. # QKV tensor transform
  1514. # The original query_key_value tensor contains n_head_kv "kv groups",
  1515. # each consisting of n_head/n_head_kv query weights followed by one key
  1516. # and one value weight (shared by all query heads in the kv group).
  1517. # This layout makes it a big pain to work with in GGML.
  1518. # So we rearrange them here,, so that we have n_head query weights
  1519. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1520. # in contiguous fashion.
  1521. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1522. if "query_key_value" in name:
  1523. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1524. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1525. head_dim = self.hparams["hidden_size"] // n_head
  1526. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1527. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1528. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1529. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1530. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1531. return [(self.map_tensor_name(name), data_torch)]
  1532. @ModelBase.register("GPTBigCodeForCausalLM")
  1533. class StarCoderModel(TextModel):
  1534. model_arch = gguf.MODEL_ARCH.STARCODER
  1535. def set_gguf_parameters(self):
  1536. block_count = self.hparams["n_layer"]
  1537. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1538. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1539. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1540. self.gguf_writer.add_block_count(block_count)
  1541. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1542. self.gguf_writer.add_head_count_kv(1)
  1543. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1544. self.gguf_writer.add_file_type(self.ftype)
  1545. @ModelBase.register("GPTRefactForCausalLM")
  1546. class RefactModel(TextModel):
  1547. model_arch = gguf.MODEL_ARCH.REFACT
  1548. def set_vocab(self):
  1549. super().set_vocab()
  1550. # TODO: how to determine special FIM tokens automatically?
  1551. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1552. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1553. special_vocab._set_special_token("prefix", 1)
  1554. special_vocab._set_special_token("suffix", 3)
  1555. special_vocab._set_special_token("middle", 2)
  1556. special_vocab.chat_template = None # do not add it twice
  1557. special_vocab.add_to_gguf(self.gguf_writer)
  1558. def set_gguf_parameters(self):
  1559. hidden_dim = self.hparams["n_embd"]
  1560. inner_dim = 4 * hidden_dim
  1561. hidden_dim = int(2 * inner_dim / 3)
  1562. multiple_of = 256
  1563. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1564. block_count = self.hparams["n_layer"]
  1565. # refact uses Alibi. So this is from config.json which might be used by training.
  1566. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1567. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1568. self.gguf_writer.add_feed_forward_length(ff_dim)
  1569. self.gguf_writer.add_block_count(block_count)
  1570. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1571. self.gguf_writer.add_head_count_kv(1)
  1572. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1573. self.gguf_writer.add_file_type(self.ftype)
  1574. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1575. hidden_dim = self.hparams["n_embd"]
  1576. inner_dim = 4 * hidden_dim
  1577. hidden_dim = int(2 * inner_dim / 3)
  1578. multiple_of = 256
  1579. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1580. n_head = self.hparams["n_head"]
  1581. n_head_kv = 1
  1582. head_dim = self.hparams["n_embd"] // n_head
  1583. tensors: list[tuple[str, Tensor]] = []
  1584. if bid is not None:
  1585. if name == f"transformer.h.{bid}.attn.kv.weight":
  1586. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1587. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1588. elif name == f"transformer.h.{bid}.attn.q.weight":
  1589. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1590. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1591. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1592. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1593. if len(tensors) == 0:
  1594. tensors.append((self.map_tensor_name(name), data_torch))
  1595. return tensors
  1596. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1597. class StableLMModel(TextModel):
  1598. model_arch = gguf.MODEL_ARCH.STABLELM
  1599. def set_vocab(self):
  1600. if (self.dir_model / "tokenizer.json").is_file():
  1601. self._set_vocab_gpt2()
  1602. else:
  1603. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1604. self._set_vocab_qwen()
  1605. def set_gguf_parameters(self):
  1606. hparams = self.hparams
  1607. block_count = hparams["num_hidden_layers"]
  1608. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1609. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1610. self.gguf_writer.add_block_count(block_count)
  1611. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1612. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1613. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1614. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1615. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1616. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1617. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1618. self.gguf_writer.add_file_type(self.ftype)
  1619. _q_norms: list[dict[str, Tensor]] | None = None
  1620. _k_norms: list[dict[str, Tensor]] | None = None
  1621. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1622. n_head = self.hparams["num_attention_heads"]
  1623. n_kv_head = self.hparams["num_key_value_heads"]
  1624. if name.find("q_layernorm.norms") != -1:
  1625. assert bid is not None
  1626. if self._q_norms is None:
  1627. self._q_norms = [{} for _ in range(self.block_count)]
  1628. self._q_norms[bid][name] = data_torch
  1629. if len(self._q_norms[bid]) >= n_head:
  1630. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1631. else:
  1632. return []
  1633. if name.find("k_layernorm.norms") != -1:
  1634. assert bid is not None
  1635. if self._k_norms is None:
  1636. self._k_norms = [{} for _ in range(self.block_count)]
  1637. self._k_norms[bid][name] = data_torch
  1638. if len(self._k_norms[bid]) >= n_kv_head:
  1639. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1640. else:
  1641. return []
  1642. return [(self.map_tensor_name(name), data_torch)]
  1643. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1644. datas: list[Tensor] = []
  1645. # extract the norms in order
  1646. for xid in range(n_head):
  1647. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1648. datas.append(norms[ename])
  1649. del norms[ename]
  1650. data_torch = torch.stack(datas, dim=0)
  1651. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1652. new_name = self.map_tensor_name(merged_name)
  1653. return [(new_name, data_torch)]
  1654. def prepare_tensors(self):
  1655. super().prepare_tensors()
  1656. if self._q_norms is not None or self._k_norms is not None:
  1657. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1658. norms = (
  1659. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1660. ) + (
  1661. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1662. )
  1663. if len(norms) > 0:
  1664. raise ValueError(f"Unprocessed norms: {norms}")
  1665. @ModelBase.register(
  1666. "LLaMAForCausalLM",
  1667. "LlamaForCausalLM",
  1668. "MistralForCausalLM",
  1669. "MixtralForCausalLM",
  1670. "VLlama3ForCausalLM",
  1671. "LlavaForConditionalGeneration",
  1672. "VoxtralForConditionalGeneration",
  1673. "LlamaModel")
  1674. class LlamaModel(TextModel):
  1675. model_arch = gguf.MODEL_ARCH.LLAMA
  1676. undo_permute = True
  1677. def __init__(self, *args, **kwargs):
  1678. super().__init__(*args, **kwargs)
  1679. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1680. if self.hf_arch == "VLlama3ForCausalLM":
  1681. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1682. def _set_vocab_mistral(self):
  1683. vocab = MistralVocab(self.dir_model)
  1684. logger.info(
  1685. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1686. )
  1687. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1688. tokens = []
  1689. scores = []
  1690. toktypes = []
  1691. for text, score, toktype in vocab.all_tokens():
  1692. tokens.append(text)
  1693. scores.append(score)
  1694. toktypes.append(toktype)
  1695. assert len(tokens) == vocab.vocab_size, (
  1696. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1697. )
  1698. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1699. self.gguf_writer.add_tokenizer_pre("tekken")
  1700. self.gguf_writer.add_token_merges(
  1701. vocab.extract_vocab_merges_from_model()
  1702. )
  1703. logger.info(
  1704. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1705. )
  1706. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1707. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1708. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1709. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1710. self.gguf_writer.add_token_list(tokens)
  1711. self.gguf_writer.add_token_scores(scores)
  1712. self.gguf_writer.add_token_types(toktypes)
  1713. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1714. self.gguf_writer.add_add_bos_token(True)
  1715. self.gguf_writer.add_add_eos_token(False)
  1716. template_dir = Path(__file__).parent / "models/templates/"
  1717. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1718. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1719. if self.is_mistral_format:
  1720. logger.info(
  1721. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1722. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1723. )
  1724. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1725. self.gguf_writer.add_chat_template(template)
  1726. else:
  1727. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1728. def set_vocab(self):
  1729. if self.is_mistral_format:
  1730. return self._set_vocab_mistral()
  1731. path_tekken_json = self.dir_model / "tekken.json"
  1732. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1733. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1734. self._set_vocab_mistral()
  1735. try:
  1736. self._set_vocab_sentencepiece()
  1737. except FileNotFoundError:
  1738. try:
  1739. self._set_vocab_llama_hf()
  1740. except (FileNotFoundError, TypeError):
  1741. # Llama 3
  1742. self._set_vocab_gpt2()
  1743. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1744. if self.hparams.get("vocab_size", 32000) == 32016:
  1745. special_vocab = gguf.SpecialVocab(
  1746. self.dir_model, load_merges=False,
  1747. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1748. )
  1749. special_vocab._set_special_token("prefix", 32007)
  1750. special_vocab._set_special_token("suffix", 32008)
  1751. special_vocab._set_special_token("middle", 32009)
  1752. special_vocab._set_special_token("eot", 32010)
  1753. special_vocab.add_to_gguf(self.gguf_writer)
  1754. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1755. if tokenizer_config_file.is_file():
  1756. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1757. tokenizer_config_json = json.load(f)
  1758. if "add_prefix_space" in tokenizer_config_json:
  1759. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1760. # Apply to granite small models only
  1761. if self.hparams.get("vocab_size", 32000) == 49152:
  1762. self.gguf_writer.add_add_bos_token(False)
  1763. def set_gguf_parameters(self):
  1764. super().set_gguf_parameters()
  1765. hparams = self.hparams
  1766. if not self.is_mistral_format:
  1767. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1768. if (rope_dim := hparams.get("head_dim")) is None:
  1769. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1770. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1771. rope_scaling = self.hparams.get("rope_scaling") or {}
  1772. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1773. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1774. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1775. @staticmethod
  1776. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1777. if n_head_kv is not None and n_head != n_head_kv:
  1778. n_head = n_head_kv
  1779. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1780. .swapaxes(1, 2)
  1781. .reshape(weights.shape))
  1782. _experts: list[dict[str, Tensor]] | None = None
  1783. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1784. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1785. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1786. vision_prefixes = [
  1787. "vision_encoder.",
  1788. "vision_language_adapter.",
  1789. "patch_merger.",
  1790. "pre_mm_projector_norm",
  1791. ]
  1792. is_multimodal_tensor = "vision_tower" in name \
  1793. or "vision_model" in name \
  1794. or "audio_tower" in name \
  1795. or "model.connector" in name \
  1796. or "multi_modal_projector" in name \
  1797. or any(
  1798. name.startswith(prefix)
  1799. for prefix in vision_prefixes
  1800. )
  1801. if is_multimodal_tensor:
  1802. return [] # skip vision tensors
  1803. elif self.hf_arch == "LlamaModel":
  1804. name = "model." + name
  1805. elif name.startswith("model.text_model"):
  1806. name = name.replace("text_model.", "") # for SmolVLM
  1807. elif name.startswith("language_model."):
  1808. name = name.replace("language_model.", "") # for the rest
  1809. if self.undo_permute:
  1810. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1811. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1812. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1813. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1814. # process the experts separately
  1815. if name.find("block_sparse_moe.experts") != -1:
  1816. n_experts = self.hparams["num_local_experts"]
  1817. assert bid is not None
  1818. if self._experts is None:
  1819. self._experts = [{} for _ in range(self.block_count)]
  1820. self._experts[bid][name] = data_torch
  1821. if len(self._experts[bid]) >= n_experts * 3:
  1822. tensors: list[tuple[str, Tensor]] = []
  1823. # merge the experts into a single 3d tensor
  1824. for wid in ["w1", "w2", "w3"]:
  1825. datas: list[Tensor] = []
  1826. for xid in range(n_experts):
  1827. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1828. datas.append(self._experts[bid][ename])
  1829. del self._experts[bid][ename]
  1830. data_torch = torch.stack(datas, dim=0)
  1831. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1832. new_name = self.map_tensor_name(merged_name)
  1833. tensors.append((new_name, data_torch))
  1834. return tensors
  1835. else:
  1836. return []
  1837. return [(self.map_tensor_name(name), data_torch)]
  1838. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1839. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1840. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1841. base = self.hparams.get("rope_theta", 10000.0)
  1842. if (dim := self.hparams.get("head_dim")) is None:
  1843. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1844. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1845. factor = rope_scaling.get("factor", 8.0)
  1846. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1847. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1848. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1849. low_freq_wavelen = old_context_len / low_freq_factor
  1850. high_freq_wavelen = old_context_len / high_freq_factor
  1851. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1852. rope_factors = []
  1853. for freq in freqs:
  1854. wavelen = 2 * math.pi / freq
  1855. if wavelen < high_freq_wavelen:
  1856. rope_factors.append(1)
  1857. elif wavelen > low_freq_wavelen:
  1858. rope_factors.append(factor)
  1859. else:
  1860. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1861. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1862. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1863. def prepare_tensors(self):
  1864. super().prepare_tensors()
  1865. if self._experts is not None:
  1866. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1867. experts = [k for d in self._experts for k in d.keys()]
  1868. if len(experts) > 0:
  1869. raise ValueError(f"Unprocessed experts: {experts}")
  1870. @ModelBase.register("ArceeForCausalLM")
  1871. class ArceeModel(LlamaModel):
  1872. model_arch = gguf.MODEL_ARCH.ARCEE
  1873. def set_gguf_parameters(self):
  1874. super().set_gguf_parameters()
  1875. self._try_set_pooling_type()
  1876. rope_scaling = self.hparams.get("rope_scaling") or {}
  1877. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1878. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1879. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1880. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1881. @ModelBase.register(
  1882. "LlavaForConditionalGeneration", # pixtral
  1883. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1884. )
  1885. class LlavaVisionModel(MmprojModel):
  1886. img_break_tok_id = -1
  1887. def __init__(self, *args, **kwargs):
  1888. super().__init__(*args, **kwargs)
  1889. if self.hparams.get("model_type") == "pixtral":
  1890. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1891. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1892. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1893. elif self.is_mistral_format:
  1894. # hparams is already vision config here so norm_eps is only defined in global_config.
  1895. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  1896. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  1897. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  1898. else:
  1899. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1900. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1901. def get_token_id(self, token: str) -> int:
  1902. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1903. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1904. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1905. for id_, token_data in added_tokens_decoder.items():
  1906. if token_data["content"] == token:
  1907. return int(id_)
  1908. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1909. def set_gguf_parameters(self):
  1910. super().set_gguf_parameters()
  1911. hparams = self.hparams
  1912. if hparams.get("model_type") == "pixtral":
  1913. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1914. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1915. # hidden_act
  1916. if hparams["hidden_act"] == "silu":
  1917. self.gguf_writer.add_vision_use_silu(True)
  1918. elif hparams["hidden_act"] == "gelu":
  1919. self.gguf_writer.add_vision_use_gelu(True)
  1920. else:
  1921. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1922. # spatial_merge_size
  1923. if "spatial_merge_size" in self.global_config:
  1924. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1925. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1926. del bid # unused
  1927. n_head = (
  1928. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  1929. )
  1930. n_kv_head = n_head
  1931. valid_prefixes = (
  1932. "multi_modal_projector.",
  1933. "vision_tower.",
  1934. "vision_encoder.",
  1935. "vision_language_adapter.",
  1936. "patch_merger.",
  1937. "pre_mm_projector_norm",
  1938. )
  1939. if any(name.startswith(prefix) for prefix in valid_prefixes):
  1940. # process vision tensors
  1941. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  1942. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1943. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  1944. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1945. return [(self.map_tensor_name(name), data_torch)]
  1946. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  1947. if self.img_break_tok_id > 0 and embed_key in name:
  1948. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1949. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1950. img_break_embd = data_torch[self.img_break_tok_id]
  1951. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1952. return [(self.map_tensor_name(name), img_break_embd)]
  1953. return [] # skip other tensors
  1954. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1955. class SmolVLMModel(MmprojModel):
  1956. def __init__(self, *args, **kwargs):
  1957. super().__init__(*args, **kwargs)
  1958. if self.hparams["model_type"] == "smolvlm_vision":
  1959. # fix for SmolVLM2, missing some keys in config.json
  1960. # default values are taken from transformers code
  1961. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1962. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1963. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1964. def set_gguf_parameters(self):
  1965. super().set_gguf_parameters()
  1966. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1967. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1968. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1969. self.gguf_writer.add_vision_use_gelu(True)
  1970. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1971. if ".embeddings." in name:
  1972. return gguf.GGMLQuantizationType.F32
  1973. return super().tensor_force_quant(name, new_name, bid, n_dims)
  1974. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1975. del bid # unused
  1976. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1977. if is_vision_tensor:
  1978. return [(self.map_tensor_name(name), data_torch)]
  1979. return [] # skip other tensors
  1980. @ModelBase.register("Llama4ForConditionalGeneration")
  1981. class Llama4Model(LlamaModel):
  1982. model_arch = gguf.MODEL_ARCH.LLAMA4
  1983. undo_permute = False
  1984. def __init__(self, *args, **kwargs):
  1985. super().__init__(*args, **kwargs)
  1986. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1987. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1988. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1989. def set_vocab(self):
  1990. self._set_vocab_gpt2()
  1991. def set_gguf_parameters(self):
  1992. super().set_gguf_parameters()
  1993. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1994. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1995. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1996. if name.startswith("language_model."):
  1997. name = name.replace("language_model.", "")
  1998. # split the gate_up into gate and up
  1999. if "gate_up_proj" in name:
  2000. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2001. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2002. dim_half = data_torch.shape[-1] // 2
  2003. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2004. return [
  2005. (self.map_tensor_name(name_gate), gate_proj_weight),
  2006. (self.map_tensor_name(name_up), up_proj_weight)
  2007. ]
  2008. if name.endswith("down_proj"):
  2009. name += ".weight"
  2010. data_torch = data_torch.transpose(-1, -2)
  2011. if "multi_modal_projector" in name or "vision_model" in name:
  2012. return []
  2013. return super().modify_tensors(data_torch, name, bid)
  2014. @ModelBase.register("Llama4ForConditionalGeneration")
  2015. class Llama4VisionModel(MmprojModel):
  2016. def set_gguf_parameters(self):
  2017. super().set_gguf_parameters()
  2018. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2019. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2020. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2021. assert self.hparams["hidden_act"] == "gelu"
  2022. self.gguf_writer.add_vision_use_gelu(True)
  2023. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2024. del bid # unused
  2025. if "multi_modal_projector" in name or "vision_model" in name:
  2026. # process vision tensors
  2027. if "positional_embedding_vlm" in name and ".weight" not in name:
  2028. name += ".weight"
  2029. if "multi_modal_projector.linear_1" in name:
  2030. # despite the name with number postfix, this is a single fully connected layer
  2031. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2032. return [(self.map_tensor_name(name), data_torch)]
  2033. return []
  2034. @ModelBase.register("Mistral3ForConditionalGeneration")
  2035. class Mistral3Model(LlamaModel):
  2036. model_arch = gguf.MODEL_ARCH.LLAMA
  2037. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2038. name = name.replace("language_model.", "")
  2039. if "multi_modal_projector" in name or "vision_tower" in name:
  2040. return []
  2041. return super().modify_tensors(data_torch, name, bid)
  2042. @ModelBase.register("DeciLMForCausalLM")
  2043. class DeciModel(TextModel):
  2044. model_arch = gguf.MODEL_ARCH.DECI
  2045. @staticmethod
  2046. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2047. # DeciLM-specific code
  2048. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2049. return DeciModel._find_multiple(intermediate_size, 256)
  2050. @staticmethod
  2051. def _find_multiple(n: int, k: int) -> int:
  2052. # DeciLM-specific code
  2053. if n % k == 0:
  2054. return n
  2055. return n + k - (n % k)
  2056. def __init__(self, *args, **kwargs):
  2057. super().__init__(*args, **kwargs)
  2058. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2059. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2060. assert self.block_count == len(_block_configs)
  2061. self._num_kv_heads = list()
  2062. self._num_heads = list()
  2063. _ffn_multipliers = list()
  2064. # ***linear attention layer***
  2065. # if n_heads_in_group is None and replace_with_linear is True
  2066. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2067. # ***attention-free layer***
  2068. # if n_heads_in_group is None and replace_with_linear is False
  2069. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2070. # ***normal attention-layer***
  2071. # if n_heads_in_group is not None, then
  2072. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2073. # _num_heads[il] is num_attention_head
  2074. # ***dummy layer*** for nemotron 253B
  2075. # if n_heads_in_group is None and ffn_mult is None
  2076. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2077. for il in range(len(_block_configs)):
  2078. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2079. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2080. self._num_kv_heads.append(0)
  2081. self._num_heads.append(self.hparams["num_attention_heads"])
  2082. else:
  2083. self._num_kv_heads.append(0)
  2084. self._num_heads.append(0)
  2085. else:
  2086. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2087. self._num_heads.append(self.hparams["num_attention_heads"])
  2088. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2089. _ffn_multipliers.append(0.0)
  2090. else:
  2091. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2092. assert self.block_count == len(self._num_kv_heads)
  2093. assert self.block_count == len(self._num_heads)
  2094. assert self.block_count == len(_ffn_multipliers)
  2095. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2096. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2097. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2098. self._ffn_dims: list[int] = [
  2099. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2100. for multiplier in _ffn_multipliers
  2101. ]
  2102. def set_vocab(self):
  2103. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2104. # eos_token from '|eot_id|' to '|end_of_text|'
  2105. if self.hparams.get("vocab_size", 128256) == 128256:
  2106. tokens, toktypes, tokpre = self.get_vocab_base()
  2107. self.gguf_writer.add_tokenizer_model("gpt2")
  2108. self.gguf_writer.add_tokenizer_pre(tokpre)
  2109. self.gguf_writer.add_token_list(tokens)
  2110. self.gguf_writer.add_token_types(toktypes)
  2111. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2112. special_vocab.add_to_gguf(self.gguf_writer)
  2113. else:
  2114. # DeciLM-7B
  2115. self._set_vocab_llama_hf()
  2116. def set_gguf_parameters(self):
  2117. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2118. assert self.block_count == len(self._num_kv_heads)
  2119. assert self.block_count == len(self._num_heads)
  2120. assert self.block_count == len(self._ffn_dims)
  2121. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2122. self.gguf_writer.add_rope_freq_base(rope_theta)
  2123. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2124. self.gguf_writer.add_head_count(self._num_heads)
  2125. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2126. self.gguf_writer.add_block_count(self.block_count)
  2127. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2128. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2129. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2130. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2131. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2132. self.gguf_writer.add_file_type(self.ftype)
  2133. else: # DeciLM-7B
  2134. super().set_gguf_parameters()
  2135. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2136. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2137. assert self.block_count == len(self._num_kv_heads)
  2138. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2139. hparams = self.hparams
  2140. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2141. if (rope_dim := hparams.get("head_dim")) is None:
  2142. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2143. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2144. rope_scaling = self.hparams.get("rope_scaling") or {}
  2145. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2146. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2147. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2148. @staticmethod
  2149. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2150. if n_head_kv is not None and n_head != n_head_kv:
  2151. n_head = n_head_kv
  2152. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2153. .swapaxes(1, 2)
  2154. .reshape(weights.shape))
  2155. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2156. n_head = self.hparams["num_attention_heads"]
  2157. if bid is not None:
  2158. if "num_key_value_heads_per_layer" in self.hparams:
  2159. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2160. elif "block_configs" in self.hparams:
  2161. n_kv_head = self._num_kv_heads[bid]
  2162. n_head = self._num_heads[bid]
  2163. else:
  2164. n_kv_head = self.hparams.get("num_key_value_heads")
  2165. else:
  2166. n_kv_head = self.hparams.get("num_key_value_heads")
  2167. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2168. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2169. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2170. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2171. return [(self.map_tensor_name(name), data_torch)]
  2172. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2173. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2174. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2175. base = self.hparams.get("rope_theta", 10000.0)
  2176. if (dim := self.hparams.get("head_dim")) is None:
  2177. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2178. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2179. factor = rope_scaling.get("factor", 8.0)
  2180. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2181. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2182. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2183. low_freq_wavelen = old_context_len / low_freq_factor
  2184. high_freq_wavelen = old_context_len / high_freq_factor
  2185. assert low_freq_wavelen != high_freq_wavelen
  2186. rope_factors = []
  2187. for freq in freqs:
  2188. wavelen = 2 * math.pi / freq
  2189. if wavelen < high_freq_wavelen:
  2190. rope_factors.append(1)
  2191. elif wavelen > low_freq_wavelen:
  2192. rope_factors.append(factor)
  2193. else:
  2194. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2195. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2196. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2197. def prepare_tensors(self):
  2198. super().prepare_tensors()
  2199. @ModelBase.register("BitnetForCausalLM")
  2200. class BitnetModel(TextModel):
  2201. model_arch = gguf.MODEL_ARCH.BITNET
  2202. def set_vocab(self):
  2203. self._set_vocab_sentencepiece()
  2204. def set_gguf_parameters(self):
  2205. super().set_gguf_parameters()
  2206. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2207. self.gguf_writer.add_rope_scaling_factor(1.0)
  2208. def weight_quant(self, weight: Tensor) -> Tensor:
  2209. dtype = weight.dtype
  2210. weight = weight.float()
  2211. scale = weight.abs().mean().clamp(min=1e-5)
  2212. iscale = 1 / scale
  2213. # TODO: multiply by the scale directly instead of inverting it twice
  2214. # (this is also unnecessarily doubly inverted upstream)
  2215. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2216. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2217. return result.type(dtype)
  2218. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2219. new_name = self.map_tensor_name(name)
  2220. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2221. gguf.MODEL_TENSOR.ATTN_Q,
  2222. gguf.MODEL_TENSOR.ATTN_K,
  2223. gguf.MODEL_TENSOR.ATTN_V,
  2224. gguf.MODEL_TENSOR.ATTN_OUT,
  2225. gguf.MODEL_TENSOR.FFN_UP,
  2226. gguf.MODEL_TENSOR.FFN_DOWN,
  2227. gguf.MODEL_TENSOR.FFN_GATE,
  2228. ]):
  2229. # transform weight into 1/0/-1 (in fp32)
  2230. data_torch = self.weight_quant(data_torch)
  2231. yield (new_name, data_torch)
  2232. @ModelBase.register("GrokForCausalLM")
  2233. class GrokModel(TextModel):
  2234. model_arch = gguf.MODEL_ARCH.GROK
  2235. def set_vocab(self):
  2236. self._set_vocab_sentencepiece()
  2237. def __init__(self, *args, **kwargs):
  2238. super().__init__(*args, **kwargs)
  2239. def set_gguf_parameters(self):
  2240. super().set_gguf_parameters()
  2241. _experts: list[dict[str, Tensor]] | None = None
  2242. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2243. # process the experts separately
  2244. if name.find(".moe.") != -1:
  2245. n_experts = self.hparams["num_local_experts"]
  2246. assert bid is not None
  2247. if self._experts is None:
  2248. self._experts = [{} for _ in range(self.block_count)]
  2249. self._experts[bid][name] = data_torch
  2250. if len(self._experts[bid]) >= n_experts * 3:
  2251. tensors: list[tuple[str, Tensor]] = []
  2252. # merge the experts into a single 3d tensor
  2253. for wid in ["linear", "linear_1", "linear_v"]:
  2254. datas: list[Tensor] = []
  2255. for xid in range(n_experts):
  2256. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2257. datas.append(self._experts[bid][ename])
  2258. del self._experts[bid][ename]
  2259. data_torch = torch.stack(datas, dim=0)
  2260. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2261. new_name = self.map_tensor_name(merged_name)
  2262. tensors.append((new_name, data_torch))
  2263. return tensors
  2264. else:
  2265. return []
  2266. return [(self.map_tensor_name(name), data_torch)]
  2267. @ModelBase.register("DbrxForCausalLM")
  2268. class DbrxModel(TextModel):
  2269. model_arch = gguf.MODEL_ARCH.DBRX
  2270. def set_gguf_parameters(self):
  2271. ffn_config = self.hparams["ffn_config"]
  2272. attn_config = self.hparams["attn_config"]
  2273. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2274. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2275. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2276. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2277. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2278. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2279. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2280. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2281. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2282. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2283. self.gguf_writer.add_layer_norm_eps(1e-5)
  2284. self.gguf_writer.add_file_type(self.ftype)
  2285. logger.info(f"gguf: file type = {self.ftype}")
  2286. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2287. del bid # unused
  2288. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2289. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2290. n_embd = self.hparams["d_model"]
  2291. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2292. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2293. # But llama.cpp moe graph works differently
  2294. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2295. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2296. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2297. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2298. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2299. experts = False
  2300. for exp_tensor_name in exp_tensor_names.keys():
  2301. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2302. experts = True
  2303. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2304. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2305. data_torch = data_torch.permute(*permute_tensor)
  2306. break
  2307. # map tensor names
  2308. # In MoE models the ffn tensors are typically most of the model weights,
  2309. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2310. # Every other model has the weight names ending in .weight,
  2311. # let's assume that is the convention which is not the case for dbrx:
  2312. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2313. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2314. return [(new_name, data_torch)]
  2315. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2316. del name, new_name, bid # unused
  2317. return n_dims > 1
  2318. @ModelBase.register("MiniCPMForCausalLM")
  2319. class MiniCPMModel(TextModel):
  2320. model_arch = gguf.MODEL_ARCH.MINICPM
  2321. def set_gguf_parameters(self):
  2322. super().set_gguf_parameters()
  2323. embedding_scale = float(self.hparams["scale_emb"])
  2324. self.gguf_writer.add_embedding_scale(embedding_scale)
  2325. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2326. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2327. self.gguf_writer.add_residual_scale(residual_scale)
  2328. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2329. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2330. self.gguf_writer.add_logit_scale(logit_scale)
  2331. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2332. rope_scaling = self.hparams.get("rope_scaling") or {}
  2333. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2334. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2335. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2336. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2337. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2338. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2339. if rope_scaling is not None:
  2340. long_factors = rope_scaling.get('long_factor', None)
  2341. short_factors = rope_scaling.get('short_factor', None)
  2342. if long_factors is None or short_factors is None:
  2343. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2344. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2345. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2346. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2347. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2348. def set_vocab(self):
  2349. self._set_vocab_sentencepiece()
  2350. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2351. del bid # unused
  2352. n_head = self.hparams["num_attention_heads"]
  2353. n_kv_head = self.hparams.get("num_key_value_heads")
  2354. # HF models permute some of the tensors, so we need to undo that
  2355. if name.endswith(("q_proj.weight")):
  2356. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2357. if name.endswith(("k_proj.weight")):
  2358. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2359. return [(self.map_tensor_name(name), data_torch)]
  2360. @ModelBase.register("MiniCPM3ForCausalLM")
  2361. class MiniCPM3Model(TextModel):
  2362. model_arch = gguf.MODEL_ARCH.MINICPM3
  2363. def set_gguf_parameters(self):
  2364. hparams = self.hparams
  2365. self.gguf_writer.add_file_type(self.ftype)
  2366. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2367. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2368. self.gguf_writer.add_block_count(self.block_count)
  2369. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2370. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2371. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2372. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2373. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2374. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2375. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2376. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2377. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2378. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2379. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2380. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2381. if rope_scaling is not None:
  2382. rope_dims = self.hparams["qk_rope_head_dim"]
  2383. long_factors = rope_scaling.get('long_factor', None)
  2384. short_factors = rope_scaling.get('short_factor', None)
  2385. if long_factors is None or short_factors is None:
  2386. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2387. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2388. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2389. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2390. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2391. def set_vocab(self):
  2392. self._set_vocab_sentencepiece()
  2393. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2394. if n_kv_head is not None and n_head != n_kv_head:
  2395. n_head //= n_kv_head
  2396. return (
  2397. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2398. .swapaxes(1, 2)
  2399. .reshape(weights.shape)
  2400. )
  2401. @ModelBase.register("QWenLMHeadModel")
  2402. class QwenModel(TextModel):
  2403. model_arch = gguf.MODEL_ARCH.QWEN
  2404. @staticmethod
  2405. def token_bytes_to_string(b):
  2406. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2407. byte_encoder = bytes_to_unicode()
  2408. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2409. @staticmethod
  2410. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2411. parts = [bytes([b]) for b in token]
  2412. while True:
  2413. min_idx = None
  2414. min_rank = None
  2415. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2416. rank = mergeable_ranks.get(pair[0] + pair[1])
  2417. if rank is not None and (min_rank is None or rank < min_rank):
  2418. min_idx = i
  2419. min_rank = rank
  2420. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2421. break
  2422. assert min_idx is not None
  2423. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2424. return parts
  2425. def set_vocab(self):
  2426. self._set_vocab_qwen()
  2427. def set_gguf_parameters(self):
  2428. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2429. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2430. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2431. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2432. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2433. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2434. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2435. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2436. self.gguf_writer.add_file_type(self.ftype)
  2437. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2438. class Qwen2Model(TextModel):
  2439. model_arch = gguf.MODEL_ARCH.QWEN2
  2440. def set_vocab(self):
  2441. try:
  2442. self._set_vocab_sentencepiece()
  2443. except FileNotFoundError:
  2444. self._set_vocab_gpt2()
  2445. def set_gguf_parameters(self):
  2446. super().set_gguf_parameters()
  2447. self._try_set_pooling_type()
  2448. rope_scaling = self.hparams.get("rope_scaling") or {}
  2449. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2450. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2451. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2452. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2453. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2454. if self.hf_arch == "Qwen2Model":
  2455. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2456. if "language_model." in name:
  2457. name = name.replace("language_model.", "") # for InternVL
  2458. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2459. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2460. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2461. # skip vision and audio tensors
  2462. return []
  2463. yield from super().modify_tensors(data_torch, name, bid)
  2464. @ModelBase.register("DreamModel")
  2465. class DreamModel(TextModel):
  2466. model_arch = gguf.MODEL_ARCH.DREAM
  2467. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2468. tokens: list[str] = []
  2469. toktypes: list[int] = []
  2470. from transformers import AutoTokenizer
  2471. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2472. vocab_dict = tokenizer.get_vocab()
  2473. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2474. assert max(vocab_dict.values()) < vocab_size
  2475. tokpre = self.get_vocab_base_pre(tokenizer)
  2476. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2477. added_vocab = tokenizer.get_added_vocab()
  2478. for i in range(vocab_size):
  2479. if i not in reverse_vocab:
  2480. tokens.append(f"[PAD{i}]")
  2481. toktypes.append(gguf.TokenType.UNUSED)
  2482. elif reverse_vocab[i] in added_vocab:
  2483. tokens.append(reverse_vocab[i])
  2484. # Check if it's a special token - treat special tokens as CONTROL tokens
  2485. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2486. if tokenizer.added_tokens_decoder[i].special:
  2487. toktypes.append(gguf.TokenType.CONTROL)
  2488. else:
  2489. toktypes.append(gguf.TokenType.USER_DEFINED)
  2490. else:
  2491. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2492. toktypes.append(gguf.TokenType.CONTROL)
  2493. else:
  2494. tokens.append(reverse_vocab[i])
  2495. toktypes.append(gguf.TokenType.NORMAL)
  2496. return tokens, toktypes, tokpre
  2497. def set_vocab(self):
  2498. try:
  2499. self._set_vocab_sentencepiece()
  2500. except FileNotFoundError:
  2501. self._set_vocab_gpt2()
  2502. def set_gguf_parameters(self):
  2503. super().set_gguf_parameters()
  2504. self._try_set_pooling_type()
  2505. # Dream models use non-causal attention for diffusion
  2506. self.gguf_writer.add_causal_attention(False)
  2507. # Handle RoPE scaling similar to Qwen2
  2508. rope_scaling = self.hparams.get("rope_scaling") or {}
  2509. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2510. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2511. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2512. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2513. # Add Dream-specific parameters
  2514. mask_token_id = self.hparams.get("mask_token_id")
  2515. if mask_token_id is not None:
  2516. self.gguf_writer.add_mask_token_id(mask_token_id)
  2517. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2518. # Dream model tensors should be mapped directly since it's the base model
  2519. yield from super().modify_tensors(data_torch, name, bid)
  2520. @ModelBase.register("LLaDAModelLM")
  2521. class LLaDAModel(TextModel):
  2522. model_arch = gguf.MODEL_ARCH.LLADA
  2523. undo_permute = True
  2524. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2525. tokens: list[str] = []
  2526. toktypes: list[int] = []
  2527. from transformers import AutoTokenizer
  2528. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2529. vocab_dict = tokenizer.get_vocab()
  2530. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2531. assert max(vocab_dict.values()) < vocab_size
  2532. tokpre = self.get_vocab_base_pre(tokenizer)
  2533. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2534. added_vocab = tokenizer.get_added_vocab()
  2535. for i in range(vocab_size):
  2536. if i not in reverse_vocab:
  2537. tokens.append(f"[PAD{i}]")
  2538. toktypes.append(gguf.TokenType.UNUSED)
  2539. elif reverse_vocab[i] in added_vocab:
  2540. tokens.append(reverse_vocab[i])
  2541. # Check if it's a special token - treat special tokens as CONTROL tokens
  2542. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2543. if tokenizer.added_tokens_decoder[i].special:
  2544. toktypes.append(gguf.TokenType.CONTROL)
  2545. else:
  2546. toktypes.append(gguf.TokenType.USER_DEFINED)
  2547. else:
  2548. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2549. toktypes.append(gguf.TokenType.CONTROL)
  2550. else:
  2551. tokens.append(reverse_vocab[i])
  2552. toktypes.append(gguf.TokenType.NORMAL)
  2553. return tokens, toktypes, tokpre
  2554. def set_vocab(self):
  2555. self._set_vocab_gpt2()
  2556. # LLaDA specific parameters
  2557. self.gguf_writer.add_add_bos_token(True)
  2558. def set_gguf_parameters(self):
  2559. super().set_gguf_parameters()
  2560. self._try_set_pooling_type()
  2561. # Add parameters similar to LlamaModel
  2562. hparams = self.hparams
  2563. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2564. if (rope_dim := hparams.get("head_dim")) is None:
  2565. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2566. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2567. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2568. # Set context length for LLaDA
  2569. context_length = self.hparams.get("max_sequence_length", 4096)
  2570. self.gguf_writer.add_context_length(context_length)
  2571. # Set embedding length (dimension size)
  2572. embedding_length = self.hparams.get("d_model", 4096)
  2573. self.gguf_writer.add_embedding_length(embedding_length)
  2574. # Set feed forward length (MLP hidden size)
  2575. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2576. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2577. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2578. self.gguf_writer.add_causal_attention(False)
  2579. # LLaDA models don't shift their logits
  2580. self.gguf_writer.add_diffusion_shift_logits(False)
  2581. @staticmethod
  2582. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2583. if n_head_kv is not None and n_head != n_head_kv:
  2584. n_head = n_head_kv
  2585. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2586. .swapaxes(1, 2)
  2587. .reshape(weights.shape))
  2588. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2589. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2590. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2591. if self.undo_permute:
  2592. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2593. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2594. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2595. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2596. # LLaDA model tensors should be mapped directly since it's the base model
  2597. yield from super().modify_tensors(data_torch, name, bid)
  2598. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2599. class Ernie4_5Model(TextModel):
  2600. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2601. def set_vocab(self):
  2602. self._set_vocab_sentencepiece()
  2603. def set_gguf_parameters(self):
  2604. super().set_gguf_parameters()
  2605. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2606. num_heads = self.hparams["num_attention_heads"]
  2607. num_kv_heads = self.hparams["num_key_value_heads"]
  2608. if (head_dim := self.hparams.get("head_dim")) is None:
  2609. head_dim = self.hparams["hidden_size"] // num_heads
  2610. if "ernie." in name:
  2611. name = name.replace("ernie.", "model.")
  2612. # split the qkv weights
  2613. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2614. if "qkv_proj" in name:
  2615. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2616. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2617. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2618. total_q_dim = num_heads * head_dim
  2619. total_k_dim = num_kv_heads * head_dim
  2620. total_v_dim = num_kv_heads * head_dim
  2621. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2622. return [
  2623. (self.map_tensor_name(name_q), q_proj_weight),
  2624. (self.map_tensor_name(name_k), k_proj_weight),
  2625. (self.map_tensor_name(name_v), v_proj_weight)
  2626. ]
  2627. # split the up_gate_proj into gate and up
  2628. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2629. if "up_gate_proj" in name:
  2630. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2631. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2632. dim_half = data_torch.shape[0] // 2
  2633. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2634. return [
  2635. (self.map_tensor_name(name_gate), gate_proj_weight),
  2636. (self.map_tensor_name(name_up), up_proj_weight)
  2637. ]
  2638. return [(self.map_tensor_name(name), data_torch)]
  2639. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2640. class Ernie4_5MoeModel(Ernie4_5Model):
  2641. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2642. _experts: list[dict[str, Tensor]] | None = None
  2643. def __init__(self, *args, **kwargs):
  2644. super().__init__(*args, **kwargs)
  2645. self._experts = [{} for _ in range(self.block_count)]
  2646. def set_gguf_parameters(self):
  2647. super().set_gguf_parameters()
  2648. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2649. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2650. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2651. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2652. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2653. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2654. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2655. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2656. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2657. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2658. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2659. # Modify correction bias name as in DeepseekV2
  2660. if name.endswith("e_score_correction_bias"):
  2661. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2662. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2663. match = re.match(r"model.mtp_block.(\d+)", name)
  2664. if match:
  2665. return []
  2666. # skip all other MTP tensors for now
  2667. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2668. if match:
  2669. return []
  2670. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2671. if match:
  2672. return []
  2673. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2674. if match:
  2675. return []
  2676. # process the experts separately
  2677. if name.find("mlp.experts") != -1:
  2678. n_experts = self.hparams["moe_num_experts"]
  2679. assert bid is not None
  2680. if self._experts is None:
  2681. self._experts = [{} for _ in range(self.block_count)]
  2682. self._experts[bid][name] = data_torch
  2683. if len(self._experts[bid]) >= n_experts * 3:
  2684. tensors: list[tuple[str, Tensor]] = []
  2685. # merge the experts into a single 3d tensor
  2686. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2687. datas: list[Tensor] = []
  2688. for xid in range(n_experts):
  2689. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2690. datas.append(self._experts[bid][ename_to_retrieve])
  2691. del self._experts[bid][ename_to_retrieve]
  2692. data_torch = torch.stack(datas, dim=0)
  2693. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2694. new_name = self.map_tensor_name(merged_name)
  2695. tensors.append((new_name, data_torch))
  2696. return tensors
  2697. else:
  2698. return []
  2699. return [(self.map_tensor_name(name), data_torch)]
  2700. def prepare_tensors(self):
  2701. super().prepare_tensors()
  2702. if self._experts is not None:
  2703. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2704. experts = [k for d in self._experts for k in d.keys()]
  2705. if len(experts) > 0:
  2706. raise ValueError(f"Unprocessed experts: {experts}")
  2707. @ModelBase.register(
  2708. "Qwen2VLModel",
  2709. "Qwen2VLForConditionalGeneration",
  2710. "Qwen2_5_VLForConditionalGeneration",
  2711. "Qwen2_5OmniModel",
  2712. )
  2713. class Qwen2VLModel(TextModel):
  2714. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2715. def set_gguf_parameters(self):
  2716. super().set_gguf_parameters()
  2717. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2718. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2719. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2720. def set_vocab(self):
  2721. try:
  2722. self._set_vocab_sentencepiece()
  2723. except FileNotFoundError:
  2724. self._set_vocab_gpt2()
  2725. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2726. del bid # unused
  2727. if name.startswith("thinker."):
  2728. name = name.replace("thinker.", "")
  2729. if name.startswith("visual") or name.startswith("audio") or \
  2730. name.startswith("talker") or name.startswith("token2wav"):
  2731. # skip multimodal tensors
  2732. return []
  2733. return [(self.map_tensor_name(name), data_torch)]
  2734. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2735. class Qwen2VLVisionModel(MmprojModel):
  2736. def __init__(self, *args, **kwargs):
  2737. super().__init__(*args, **kwargs)
  2738. assert self.hparams_vision is not None
  2739. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2740. # rename config.json values
  2741. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2742. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2743. if "embed_dim" in self.hparams_vision: # qwen2vl
  2744. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2745. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2746. def set_gguf_parameters(self):
  2747. super().set_gguf_parameters()
  2748. assert self.hparams_vision is not None
  2749. hparams = self.hparams_vision
  2750. model_type = self.global_config['model_type']
  2751. if model_type == 'qwen2_vl':
  2752. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2753. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2754. if model_type == 'qwen2_5_omni':
  2755. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2756. else:
  2757. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2758. self.gguf_writer.add_vision_use_silu(True)
  2759. # find n_wa_pattern (window attention pattern)
  2760. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2761. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2762. n_wa_pattern = fullatt_block_indexes[0] + 1
  2763. # validate n_wa_pattern
  2764. for i in range(1, len(fullatt_block_indexes)):
  2765. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2766. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2767. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2768. else:
  2769. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2770. # default values below are taken from HF tranformers code
  2771. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2772. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2773. if ".position_embd." in new_name:
  2774. return gguf.GGMLQuantizationType.F32
  2775. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2776. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2777. del bid # unused
  2778. if name.startswith("visual."):
  2779. # process visual tensors
  2780. # split QKV tensors if needed
  2781. if ".qkv." in name:
  2782. if data_torch.ndim == 2: # weight
  2783. c3, _ = data_torch.shape
  2784. else: # bias
  2785. c3 = data_torch.shape[0]
  2786. assert c3 % 3 == 0
  2787. c = c3 // 3
  2788. wq = data_torch[:c]
  2789. wk = data_torch[c: c * 2]
  2790. wv = data_torch[c * 2:]
  2791. return [
  2792. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2793. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2794. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2795. ]
  2796. elif 'patch_embed.proj.weight' in name:
  2797. # split Conv3D into Conv2Ds
  2798. c1, c2, kt, kh, kw = data_torch.shape
  2799. del c1, c2, kh, kw # unused
  2800. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2801. return [
  2802. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2803. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2804. ]
  2805. else:
  2806. return [(self.map_tensor_name(name), data_torch)]
  2807. return [] # skip other tensors
  2808. @ModelBase.register("Qwen2_5OmniModel")
  2809. class Qwen25OmniModel(Qwen2VLVisionModel):
  2810. has_vision_encoder = True
  2811. has_audio_encoder = True
  2812. def __init__(self, *args, **kwargs):
  2813. super().__init__(*args, **kwargs)
  2814. assert self.hparams_audio is not None
  2815. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2816. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2817. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2818. def set_gguf_parameters(self):
  2819. super().set_gguf_parameters()
  2820. assert self.hparams_audio is not None
  2821. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2822. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2823. def get_vision_config(self) -> dict[str, Any] | None:
  2824. return self.global_config["thinker_config"].get("vision_config")
  2825. def get_audio_config(self) -> dict[str, Any] | None:
  2826. return self.global_config["thinker_config"].get("audio_config")
  2827. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2828. # SinusoidsPositionEmbedding
  2829. assert self.hparams_audio is not None
  2830. max_timescale = 10000
  2831. length = 1500
  2832. channels = self.hparams_audio["hidden_size"]
  2833. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2834. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2835. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2836. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2837. yield ("audio_tower.embed_positions.weight", pos_embd)
  2838. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2839. if ".conv" in name and ".weight" in name:
  2840. return gguf.GGMLQuantizationType.F16
  2841. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2843. if name.startswith("thinker."):
  2844. name = name.replace("thinker.", "")
  2845. if name.startswith("audio_tower"):
  2846. # process audio tensors
  2847. if "conv1.bias" in name or "conv2.bias" in name:
  2848. # transpose conv1 and conv2 bias
  2849. data_torch = data_torch.unsqueeze(-1)
  2850. if "audio_bos_eos_token" in name:
  2851. # this tensor is left unused in transformers code
  2852. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2853. return []
  2854. return [(self.map_tensor_name(name), data_torch)]
  2855. return super().modify_tensors(data_torch, name, bid)
  2856. @ModelBase.register("InternVisionModel")
  2857. class InternVisionModel(MmprojModel):
  2858. def set_gguf_parameters(self):
  2859. assert self.hparams_vision is not None
  2860. if isinstance(self.hparams_vision['image_size'], list):
  2861. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  2862. if isinstance(self.hparams_vision['patch_size'], list):
  2863. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  2864. super().set_gguf_parameters()
  2865. hparams = self.hparams
  2866. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2867. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2868. # hidden_act
  2869. if hparams["hidden_act"] == "silu":
  2870. self.gguf_writer.add_vision_use_silu(True)
  2871. elif hparams["hidden_act"] == "gelu":
  2872. self.gguf_writer.add_vision_use_gelu(True)
  2873. else:
  2874. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2875. # downsample_ratio
  2876. downsample_ratio = self.global_config.get("downsample_ratio")
  2877. assert downsample_ratio is not None
  2878. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2879. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2880. if ".position_embd." in new_name:
  2881. return gguf.GGMLQuantizationType.F32
  2882. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2883. def _mapping_interns1_name(self, name):
  2884. names_map = {
  2885. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  2886. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  2887. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  2888. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  2889. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  2890. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  2891. }
  2892. if name in names_map:
  2893. name = names_map[name]
  2894. return name
  2895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2896. del bid # unused
  2897. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  2898. # deal with intern-s1 special case
  2899. name = self._mapping_interns1_name(name)
  2900. if any([name.startswith(prefix) for prefix in vision_prefix]):
  2901. # process visual tensors
  2902. # correct name
  2903. if name.startswith("vision_model"):
  2904. name = "vision_tower." + name
  2905. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2906. name += ".weight"
  2907. # split QKV tensors if needed
  2908. if ".qkv." in name:
  2909. if data_torch.ndim == 2: # weight
  2910. c3, _ = data_torch.shape
  2911. else: # bias
  2912. c3 = data_torch.shape[0]
  2913. assert c3 % 3 == 0
  2914. c = c3 // 3
  2915. wq = data_torch[:c]
  2916. wk = data_torch[c: c * 2]
  2917. wv = data_torch[c * 2:]
  2918. return [
  2919. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2920. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2921. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2922. ]
  2923. return [(self.map_tensor_name(name), data_torch)]
  2924. return [] # skip other tensors
  2925. @ModelBase.register("WavTokenizerDec")
  2926. class WavTokenizerDecModel(TextModel):
  2927. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2928. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2929. del bid # unused
  2930. if \
  2931. name.endswith("codebook.cluster_size") or \
  2932. name.endswith("codebook.embed_avg") or \
  2933. name.endswith("codebook.inited"):
  2934. logger.debug(f"Skipping {name!r}")
  2935. return []
  2936. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2937. return [(self.map_tensor_name(name), data_torch)]
  2938. def set_vocab(self):
  2939. self._set_vocab_none()
  2940. def set_gguf_parameters(self):
  2941. super().set_gguf_parameters()
  2942. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2943. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2944. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2945. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2946. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2947. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2948. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2949. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2950. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2951. self.gguf_writer.add_causal_attention(False)
  2952. @ModelBase.register("Qwen2MoeForCausalLM")
  2953. class Qwen2MoeModel(TextModel):
  2954. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2955. def set_gguf_parameters(self):
  2956. super().set_gguf_parameters()
  2957. if (n_experts := self.hparams.get("num_experts")) is not None:
  2958. self.gguf_writer.add_expert_count(n_experts)
  2959. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2960. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2961. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2962. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2963. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2964. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2965. # YaRN is not enabled by default
  2966. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2967. rope_scaling = self.hparams.get("rope_scaling") or {}
  2968. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2969. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2970. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2971. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2972. _experts: list[dict[str, Tensor]] | None = None
  2973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2974. # process the experts separately
  2975. name = name.replace("language_model.", "") # InternVL
  2976. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2977. # skip visual tensors
  2978. return []
  2979. if name.find("experts") != -1:
  2980. n_experts = self.hparams["num_experts"]
  2981. assert bid is not None
  2982. if self._experts is None:
  2983. self._experts = [{} for _ in range(self.block_count)]
  2984. self._experts[bid][name] = data_torch
  2985. if len(self._experts[bid]) >= n_experts * 3:
  2986. tensors: list[tuple[str, Tensor]] = []
  2987. # merge the experts into a single 3d tensor
  2988. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2989. datas: list[Tensor] = []
  2990. for xid in range(n_experts):
  2991. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2992. datas.append(self._experts[bid][ename])
  2993. del self._experts[bid][ename]
  2994. data_torch = torch.stack(datas, dim=0)
  2995. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2996. new_name = self.map_tensor_name(merged_name)
  2997. tensors.append((new_name, data_torch))
  2998. return tensors
  2999. else:
  3000. return []
  3001. return [(self.map_tensor_name(name), data_torch)]
  3002. def prepare_tensors(self):
  3003. super().prepare_tensors()
  3004. if self._experts is not None:
  3005. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3006. experts = [k for d in self._experts for k in d.keys()]
  3007. if len(experts) > 0:
  3008. raise ValueError(f"Unprocessed experts: {experts}")
  3009. @ModelBase.register("Qwen3ForCausalLM")
  3010. class Qwen3Model(Qwen2Model):
  3011. model_arch = gguf.MODEL_ARCH.QWEN3
  3012. def __init__(self, *args, **kwargs):
  3013. super().__init__(*args, **kwargs)
  3014. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3015. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3016. def set_vocab(self):
  3017. # deal with intern-s1-mini
  3018. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3019. self._set_vocab_interns1()
  3020. return
  3021. super().set_vocab()
  3022. @ModelBase.register("Qwen3MoeForCausalLM")
  3023. class Qwen3MoeModel(Qwen2MoeModel):
  3024. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3025. def __init__(self, *args, **kwargs):
  3026. super().__init__(*args, **kwargs)
  3027. hparams = ModelBase.load_hparams(self.dir_model, False)
  3028. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3029. def set_vocab(self):
  3030. # deal with intern-s1
  3031. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3032. self._set_vocab_interns1()
  3033. return
  3034. super().set_vocab()
  3035. @ModelBase.register("GPT2LMHeadModel")
  3036. class GPT2Model(TextModel):
  3037. model_arch = gguf.MODEL_ARCH.GPT2
  3038. def set_gguf_parameters(self):
  3039. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3040. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3041. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3042. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3043. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3044. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3045. self.gguf_writer.add_file_type(self.ftype)
  3046. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3047. del bid # unused
  3048. tensors: list[tuple[str, Tensor]] = []
  3049. # we don't need these
  3050. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3051. return tensors
  3052. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3053. data_torch = data_torch.transpose(1, 0)
  3054. new_name = self.map_tensor_name(name)
  3055. tensors.append((new_name, data_torch))
  3056. return tensors
  3057. @ModelBase.register("PhiForCausalLM")
  3058. class Phi2Model(TextModel):
  3059. model_arch = gguf.MODEL_ARCH.PHI2
  3060. def set_gguf_parameters(self):
  3061. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3062. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3063. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3064. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3065. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3066. self.gguf_writer.add_embedding_length(n_embd)
  3067. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3068. self.gguf_writer.add_block_count(block_count)
  3069. self.gguf_writer.add_head_count(n_head)
  3070. self.gguf_writer.add_head_count_kv(n_head)
  3071. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3072. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3073. self.gguf_writer.add_file_type(self.ftype)
  3074. self.gguf_writer.add_add_bos_token(False)
  3075. @ModelBase.register("Phi3ForCausalLM")
  3076. class Phi3MiniModel(TextModel):
  3077. model_arch = gguf.MODEL_ARCH.PHI3
  3078. def set_vocab(self):
  3079. # Phi-4 model uses GPT2Tokenizer
  3080. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3081. if tokenizer_config_file.is_file():
  3082. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3083. tokenizer_config_json = json.load(f)
  3084. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3085. if tokenizer_class == 'GPT2Tokenizer':
  3086. return self._set_vocab_gpt2()
  3087. from sentencepiece import SentencePieceProcessor
  3088. tokenizer_path = self.dir_model / 'tokenizer.model'
  3089. if not tokenizer_path.is_file():
  3090. raise ValueError(f'Error: Missing {tokenizer_path}')
  3091. tokenizer = SentencePieceProcessor()
  3092. tokenizer.LoadFromFile(str(tokenizer_path))
  3093. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3094. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3095. scores: list[float] = [-10000.0] * vocab_size
  3096. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3097. for token_id in range(tokenizer.vocab_size()):
  3098. piece = tokenizer.IdToPiece(token_id)
  3099. text = piece.encode("utf-8")
  3100. score = tokenizer.GetScore(token_id)
  3101. toktype = SentencePieceTokenTypes.NORMAL
  3102. if tokenizer.IsUnknown(token_id):
  3103. toktype = SentencePieceTokenTypes.UNKNOWN
  3104. elif tokenizer.IsControl(token_id):
  3105. toktype = SentencePieceTokenTypes.CONTROL
  3106. elif tokenizer.IsUnused(token_id):
  3107. toktype = SentencePieceTokenTypes.UNUSED
  3108. elif tokenizer.IsByte(token_id):
  3109. toktype = SentencePieceTokenTypes.BYTE
  3110. tokens[token_id] = text
  3111. scores[token_id] = score
  3112. toktypes[token_id] = toktype
  3113. added_tokens_file = self.dir_model / 'added_tokens.json'
  3114. if added_tokens_file.is_file():
  3115. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3116. added_tokens_json = json.load(f)
  3117. for key in added_tokens_json:
  3118. token_id = added_tokens_json[key]
  3119. if token_id >= vocab_size:
  3120. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3121. continue
  3122. tokens[token_id] = key.encode("utf-8")
  3123. scores[token_id] = -1000.0
  3124. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3125. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3126. if tokenizer_config_file.is_file():
  3127. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3128. tokenizer_config_json = json.load(f)
  3129. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3130. for token_id, foken_data in added_tokens_decoder.items():
  3131. token_id = int(token_id)
  3132. token = foken_data["content"].encode("utf-8")
  3133. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3134. if tokens[token_id] != token:
  3135. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3136. tokens[token_id] = token
  3137. scores[token_id] = -1000.0
  3138. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3139. if foken_data.get("special"):
  3140. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3141. tokenizer_file = self.dir_model / 'tokenizer.json'
  3142. if tokenizer_file.is_file():
  3143. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3144. tokenizer_json = json.load(f)
  3145. added_tokens = tokenizer_json.get("added_tokens", [])
  3146. for foken_data in added_tokens:
  3147. token_id = int(foken_data["id"])
  3148. token = foken_data["content"].encode("utf-8")
  3149. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3150. if tokens[token_id] != token:
  3151. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3152. tokens[token_id] = token
  3153. scores[token_id] = -1000.0
  3154. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3155. if foken_data.get("special"):
  3156. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3157. self.gguf_writer.add_tokenizer_model("llama")
  3158. self.gguf_writer.add_tokenizer_pre("default")
  3159. self.gguf_writer.add_token_list(tokens)
  3160. self.gguf_writer.add_token_scores(scores)
  3161. self.gguf_writer.add_token_types(toktypes)
  3162. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3163. special_vocab.add_to_gguf(self.gguf_writer)
  3164. def set_gguf_parameters(self):
  3165. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3166. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3167. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3168. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3169. rms_eps = self.find_hparam(["rms_norm_eps"])
  3170. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3171. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3172. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3173. rope_dims = int(rot_pct * n_embd) // n_head
  3174. self.gguf_writer.add_context_length(max_pos_embds)
  3175. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3176. self.gguf_writer.add_embedding_length(n_embd)
  3177. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3178. self.gguf_writer.add_block_count(block_count)
  3179. self.gguf_writer.add_head_count(n_head)
  3180. self.gguf_writer.add_head_count_kv(n_head_kv)
  3181. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3182. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3183. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3184. self.gguf_writer.add_file_type(self.ftype)
  3185. sliding_window = self.hparams.get("sliding_window")
  3186. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3187. if sliding_window is None:
  3188. sliding_window = 0
  3189. self.gguf_writer.add_sliding_window(sliding_window)
  3190. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3191. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3192. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3193. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3194. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3195. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3196. rope_dims = int(rot_pct * n_embd) // n_head
  3197. # write rope scaling for long context (128k) model
  3198. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3199. if rope_scaling is None:
  3200. return
  3201. scale = max_pos_embds / orig_max_pos_embds
  3202. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3203. if len(rope_scaling_type) == 0:
  3204. raise KeyError('Missing the required key rope_scaling.type')
  3205. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3206. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3207. elif rope_scaling_type == 'yarn':
  3208. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3209. else:
  3210. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3211. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3212. long_factors = rope_scaling.get('long_factor', None)
  3213. short_factors = rope_scaling.get('short_factor', None)
  3214. if long_factors is None or short_factors is None:
  3215. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3216. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3217. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3218. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3219. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3220. @ModelBase.register("PhiMoEForCausalLM")
  3221. class PhiMoeModel(Phi3MiniModel):
  3222. model_arch = gguf.MODEL_ARCH.PHIMOE
  3223. _experts: list[dict[str, Tensor]] | None = None
  3224. def set_gguf_parameters(self):
  3225. super().set_gguf_parameters()
  3226. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3227. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3228. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3229. # process the experts separately
  3230. if name.find("block_sparse_moe.experts") != -1:
  3231. n_experts = self.hparams["num_local_experts"]
  3232. assert bid is not None
  3233. if self._experts is None:
  3234. self._experts = [{} for _ in range(self.block_count)]
  3235. self._experts[bid][name] = data_torch
  3236. if len(self._experts[bid]) >= n_experts * 3:
  3237. tensors: list[tuple[str, Tensor]] = []
  3238. # merge the experts into a single 3d tensor
  3239. for w_name in ["w1", "w2", "w3"]:
  3240. datas: list[Tensor] = []
  3241. for xid in range(n_experts):
  3242. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3243. datas.append(self._experts[bid][ename])
  3244. del self._experts[bid][ename]
  3245. data_torch = torch.stack(datas, dim=0)
  3246. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3247. new_name = self.map_tensor_name(merged_name)
  3248. tensors.append((new_name, data_torch))
  3249. return tensors
  3250. else:
  3251. return []
  3252. return [(self.map_tensor_name(name), data_torch)]
  3253. def prepare_tensors(self):
  3254. super().prepare_tensors()
  3255. if self._experts is not None:
  3256. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3257. experts = [k for d in self._experts for k in d.keys()]
  3258. if len(experts) > 0:
  3259. raise ValueError(f"Unprocessed experts: {experts}")
  3260. @ModelBase.register("PlamoForCausalLM")
  3261. class PlamoModel(TextModel):
  3262. model_arch = gguf.MODEL_ARCH.PLAMO
  3263. def set_vocab(self):
  3264. self._set_vocab_sentencepiece()
  3265. def set_gguf_parameters(self):
  3266. hparams = self.hparams
  3267. block_count = hparams["num_hidden_layers"]
  3268. self.gguf_writer.add_context_length(4096) # not in config.json
  3269. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3270. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3271. self.gguf_writer.add_block_count(block_count)
  3272. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3273. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3274. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3275. self.gguf_writer.add_file_type(self.ftype)
  3276. def shuffle_attn_q_weight(self, data_torch):
  3277. assert data_torch.size() == (5120, 5120)
  3278. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3279. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3280. data_torch = torch.reshape(data_torch, (5120, 5120))
  3281. return data_torch
  3282. def shuffle_attn_output_weight(self, data_torch):
  3283. assert data_torch.size() == (5120, 5120)
  3284. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3285. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3286. data_torch = torch.reshape(data_torch, (5120, 5120))
  3287. return data_torch
  3288. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3289. del bid # unused
  3290. new_name = self.map_tensor_name(name)
  3291. # shuffle for broadcasting of gqa in ggml_mul_mat
  3292. if new_name.endswith("attn_q.weight"):
  3293. data_torch = self.shuffle_attn_q_weight(data_torch)
  3294. elif new_name.endswith("attn_output.weight"):
  3295. data_torch = self.shuffle_attn_output_weight(data_torch)
  3296. return [(new_name, data_torch)]
  3297. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3298. class Plamo2Model(TextModel):
  3299. model_arch = gguf.MODEL_ARCH.PLAMO2
  3300. def set_vocab(self):
  3301. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3302. # We need to handle this specially
  3303. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3304. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3305. if not tokenizer_jsonl_path.is_file():
  3306. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3307. # Load tokenizer config
  3308. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3309. tokenizer_config = json.load(f)
  3310. # Load tokens from JSONL file (actually a list format)
  3311. tokens = []
  3312. scores = []
  3313. toktypes = []
  3314. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3315. for line_num, line in enumerate(f):
  3316. if line.strip():
  3317. token_data = json.loads(line)
  3318. # Format: [token, score, type, ?, ?, ?, ?]
  3319. token = token_data[0].encode("utf-8")
  3320. score = float(token_data[1])
  3321. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3322. tokens.append(token)
  3323. scores.append(score)
  3324. # Map token type strings to GGUF token types
  3325. if token_type_str == "UNKNOWN":
  3326. toktypes.append(gguf.TokenType.UNKNOWN)
  3327. elif token_type_str == "CONTROL":
  3328. toktypes.append(gguf.TokenType.CONTROL)
  3329. elif token_type_str == "BYTE":
  3330. toktypes.append(gguf.TokenType.BYTE)
  3331. else:
  3332. # Check for PLaMo-2 special tokens
  3333. token_str = token_data[0]
  3334. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3335. toktypes.append(gguf.TokenType.CONTROL)
  3336. else:
  3337. toktypes.append(gguf.TokenType.NORMAL)
  3338. vocab_size = self.hparams["vocab_size"]
  3339. if vocab_size > len(tokens):
  3340. pad_count = vocab_size - len(tokens)
  3341. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3342. for i in range(1, pad_count + 1):
  3343. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3344. scores.append(-1000.0)
  3345. toktypes.append(gguf.TokenType.UNUSED)
  3346. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3347. self.gguf_writer.add_tokenizer_model("plamo2")
  3348. self.gguf_writer.add_tokenizer_pre("default")
  3349. self.gguf_writer.add_token_list(tokens)
  3350. self.gguf_writer.add_token_scores(scores)
  3351. self.gguf_writer.add_token_types(toktypes)
  3352. # Add special tokens from config
  3353. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3354. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3355. self.gguf_writer.add_bos_token_id(token_id)
  3356. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3357. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3358. self.gguf_writer.add_eos_token_id(token_id)
  3359. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3360. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3361. self.gguf_writer.add_pad_token_id(token_id)
  3362. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3363. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3364. self.gguf_writer.add_sep_token_id(token_id)
  3365. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3366. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3367. self.gguf_writer.add_unk_token_id(token_id)
  3368. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3369. self.gguf_writer.add_eot_token_id(4)
  3370. self.gguf_writer.add_add_space_prefix(False)
  3371. def set_gguf_parameters(self):
  3372. hparams = self.hparams
  3373. block_count = hparams["num_hidden_layers"]
  3374. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3375. # Which layers are Mamba layers
  3376. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3377. # This logic matches modeling_plamo.py's is_mamba function
  3378. mamba_step = hparams.get("mamba_step", 2)
  3379. mamba_enabled = hparams.get("mamba_enabled", True)
  3380. mamba_layers = []
  3381. if mamba_enabled:
  3382. for i in range(block_count):
  3383. if block_count <= (mamba_step // 2):
  3384. # use attention in last layer
  3385. is_mamba = (i != block_count - 1)
  3386. else:
  3387. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3388. if is_mamba:
  3389. mamba_layers.append(0)
  3390. else:
  3391. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3392. if mamba_layers:
  3393. self.gguf_writer.add_head_count_kv(mamba_layers)
  3394. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3395. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3396. self.gguf_writer.add_block_count(block_count)
  3397. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3398. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3399. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3400. # Mamba parameters
  3401. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3402. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3403. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3404. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3405. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3406. self.gguf_writer.add_ssm_group_count(0)
  3407. # MLP feed forward parameters (for attention layers)
  3408. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3409. self.gguf_writer.add_file_type(self.ftype)
  3410. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3411. del bid # unused
  3412. if name.endswith(".A_log"):
  3413. data_torch = -torch.exp(data_torch)
  3414. elif name.endswith(".dt_bias"):
  3415. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3416. elif name.endswith(".dt_norm_weight"):
  3417. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3418. elif name.endswith(".B_norm_weight"):
  3419. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3420. elif name.endswith(".C_norm_weight"):
  3421. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3422. elif name.endswith(".k_weight"):
  3423. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3424. elif name.endswith(".q_weight"):
  3425. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3426. elif name.endswith(".conv1d.weight"):
  3427. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3428. assert data_torch.ndim == 2
  3429. elif name.endswith(".pre_mixer_norm.weight"):
  3430. data_torch += 1.0
  3431. elif name.endswith(".post_mixer_norm.weight"):
  3432. data_torch += 1.0 / 5
  3433. elif name.endswith(".pre_mlp_norm.weight"):
  3434. data_torch += 1.0
  3435. elif name.endswith(".post_mlp_norm.weight"):
  3436. data_torch += 1.0 / (5**1.5)
  3437. elif name.endswith(".norm.weight"):
  3438. data_torch += 1.0
  3439. new_name = self.map_tensor_name(name)
  3440. return [(new_name, data_torch)]
  3441. @ModelBase.register("CodeShellForCausalLM")
  3442. class CodeShellModel(TextModel):
  3443. model_arch = gguf.MODEL_ARCH.CODESHELL
  3444. def set_gguf_parameters(self):
  3445. block_count = self.hparams["n_layer"]
  3446. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3447. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3448. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3449. self.gguf_writer.add_block_count(block_count)
  3450. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3451. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3452. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3453. self.gguf_writer.add_file_type(self.ftype)
  3454. self.gguf_writer.add_rope_freq_base(10000.0)
  3455. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3456. self.gguf_writer.add_rope_scaling_factor(1.0)
  3457. _has_tok_embd = False
  3458. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3459. del bid # unused
  3460. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3461. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3462. new_name = self.map_tensor_name(name)
  3463. # assuming token_embd.weight is seen before output.weight
  3464. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3465. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3466. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3467. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3468. self.tensor_names.remove("transformer.wte.weight")
  3469. elif new_name == tok_embd_name:
  3470. self._has_tok_embd = True
  3471. return [(new_name, data_torch)]
  3472. @ModelBase.register("InternLM2ForCausalLM")
  3473. class InternLM2Model(TextModel):
  3474. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3475. def set_vocab(self):
  3476. # (TODO): Is there a better way?
  3477. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3478. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3479. # recognized as an empty string in C++.
  3480. from sentencepiece import SentencePieceProcessor
  3481. from sentencepiece import sentencepiece_model_pb2 as model
  3482. tokenizer_path = self.dir_model / 'tokenizer.model'
  3483. tokens: list[bytes] = []
  3484. scores: list[float] = []
  3485. toktypes: list[int] = []
  3486. if not tokenizer_path.is_file():
  3487. logger.error(f'Error: Missing {tokenizer_path}')
  3488. sys.exit(1)
  3489. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3490. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3491. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3492. tokenizer = SentencePieceProcessor()
  3493. tokenizer.LoadFromFile(str(tokenizer_path))
  3494. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3495. for token_id in range(vocab_size):
  3496. piece = tokenizer.IdToPiece(token_id)
  3497. text = piece.encode("utf-8")
  3498. score = tokenizer.GetScore(token_id)
  3499. if text == b"\x00":
  3500. # (TODO): fixme
  3501. # Hack here and replace the \x00 characters.
  3502. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3503. text = "🐉".encode("utf-8")
  3504. toktype = SentencePieceTokenTypes.NORMAL
  3505. if tokenizer.IsUnknown(token_id):
  3506. toktype = SentencePieceTokenTypes.UNKNOWN
  3507. elif tokenizer.IsControl(token_id):
  3508. toktype = SentencePieceTokenTypes.CONTROL
  3509. elif tokenizer.IsUnused(token_id):
  3510. toktype = SentencePieceTokenTypes.UNUSED
  3511. elif tokenizer.IsByte(token_id):
  3512. toktype = SentencePieceTokenTypes.BYTE
  3513. # take care of ununsed raw token
  3514. if piece.startswith('[UNUSED'):
  3515. toktype = SentencePieceTokenTypes.UNUSED
  3516. tokens.append(text)
  3517. scores.append(score)
  3518. toktypes.append(toktype)
  3519. added_tokens_file = self.dir_model / 'added_tokens.json'
  3520. if added_tokens_file.is_file():
  3521. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3522. added_tokens_json = json.load(f)
  3523. for key in added_tokens_json:
  3524. tokens.append(key.encode("utf-8"))
  3525. scores.append(-1000.0)
  3526. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3527. chat_eos_token = '<|im_end|>'
  3528. chat_eos_token_id = None
  3529. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3530. if tokenizer_config_file.is_file():
  3531. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3532. tokenizer_config_json = json.load(f)
  3533. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3534. for token_id, foken_data in added_tokens_decoder.items():
  3535. token_id = int(token_id)
  3536. token = foken_data["content"]
  3537. if token == chat_eos_token:
  3538. chat_eos_token_id = token_id
  3539. token = token.encode("utf-8")
  3540. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3541. if tokens[token_id] != token:
  3542. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3543. tokens[token_id] = token
  3544. scores[token_id] = -1000.0
  3545. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3546. if foken_data.get("special"):
  3547. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3548. tokenizer_file = self.dir_model / 'tokenizer.json'
  3549. if tokenizer_file.is_file():
  3550. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3551. tokenizer_json = json.load(f)
  3552. added_tokens = tokenizer_json.get("added_tokens", [])
  3553. for foken_data in added_tokens:
  3554. token_id = int(foken_data["id"])
  3555. token = foken_data["content"]
  3556. if token == chat_eos_token:
  3557. chat_eos_token_id = token_id
  3558. token = token.encode("utf-8")
  3559. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3560. if tokens[token_id] != token:
  3561. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3562. tokens[token_id] = token
  3563. scores[token_id] = -1000.0
  3564. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3565. if foken_data.get("special"):
  3566. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3567. self.gguf_writer.add_tokenizer_model("llama")
  3568. self.gguf_writer.add_tokenizer_pre("default")
  3569. self.gguf_writer.add_token_list(tokens)
  3570. self.gguf_writer.add_token_scores(scores)
  3571. self.gguf_writer.add_token_types(toktypes)
  3572. self.gguf_writer.add_add_space_prefix(add_prefix)
  3573. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3574. old_eos = special_vocab.special_token_ids["eos"]
  3575. if chat_eos_token_id is not None:
  3576. # For the chat model, we replace the eos with '<|im_end|>'.
  3577. # TODO: this is a hack, should be fixed
  3578. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3579. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3580. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3581. " in chat mode so that the conversation can end normally.")
  3582. special_vocab.add_to_gguf(self.gguf_writer)
  3583. def set_gguf_parameters(self):
  3584. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3585. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3586. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3587. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3588. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3589. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3590. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3591. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3592. self.gguf_writer.add_file_type(self.ftype)
  3593. rope_scaling = self.hparams.get("rope_scaling") or {}
  3594. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3595. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3596. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3597. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3598. num_heads = self.hparams["num_attention_heads"]
  3599. num_kv_heads = self.hparams["num_key_value_heads"]
  3600. n_embd = self.hparams["hidden_size"]
  3601. q_per_kv = num_heads // num_kv_heads
  3602. head_dim = n_embd // num_heads
  3603. num_groups = num_heads // q_per_kv
  3604. name = name.replace("language_model.", "") # InternVL
  3605. if name.startswith("mlp") or name.startswith("vision_model"):
  3606. # skip visual tensors
  3607. return []
  3608. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3609. qkv = data_torch
  3610. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3611. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3612. # The model weights of q and k equire additional reshape.
  3613. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3614. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3615. v = v.reshape((-1, v.shape[-1]))
  3616. return [
  3617. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3618. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3619. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3620. ]
  3621. else:
  3622. return [(self.map_tensor_name(name), data_torch)]
  3623. @ModelBase.register("InternLM3ForCausalLM")
  3624. class InternLM3Model(TextModel):
  3625. model_arch = gguf.MODEL_ARCH.LLAMA
  3626. def set_vocab(self):
  3627. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3628. self.gguf_writer.add_tokenizer_model("llama")
  3629. self.gguf_writer.add_tokenizer_pre("default")
  3630. self.gguf_writer.add_token_list(tokens)
  3631. self.gguf_writer.add_token_scores(scores)
  3632. self.gguf_writer.add_token_types(toktypes)
  3633. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3634. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3635. if tokenizer_config_file.is_file():
  3636. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3637. tokenizer_config_json = json.load(f)
  3638. if "add_prefix_space" in tokenizer_config_json:
  3639. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3640. if "added_tokens_decoder" in tokenizer_config_json:
  3641. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3642. if token_data.get("special"):
  3643. token_id = int(token_id)
  3644. token = token_data["content"]
  3645. special_vocab._set_special_token(token, token_id)
  3646. # update eos token
  3647. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3648. special_vocab.special_token_ids["eos"] = token_id
  3649. special_vocab.add_to_gguf(self.gguf_writer)
  3650. def set_gguf_parameters(self):
  3651. super().set_gguf_parameters()
  3652. hparams = self.hparams
  3653. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3654. if (rope_dim := hparams.get("head_dim")) is None:
  3655. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3656. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3657. rope_scaling = self.hparams.get("rope_scaling") or {}
  3658. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3659. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3660. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3661. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3662. n_head = self.hparams["num_attention_heads"]
  3663. n_kv_head = self.hparams.get("num_key_value_heads")
  3664. name = name.replace("language_model.", "") # InternVL
  3665. if name.startswith("mlp") or name.startswith("vision_model"):
  3666. # skip visual tensors
  3667. return []
  3668. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3669. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3670. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3671. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3672. return [(self.map_tensor_name(name), data_torch)]
  3673. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3674. class BertModel(TextModel):
  3675. model_arch = gguf.MODEL_ARCH.BERT
  3676. def __init__(self, *args, **kwargs):
  3677. super().__init__(*args, **kwargs)
  3678. self.vocab_size = None
  3679. if cls_out_labels := self.hparams.get("id2label"):
  3680. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3681. # Remove dummy labels added by AutoConfig
  3682. cls_out_labels = None
  3683. self.cls_out_labels = cls_out_labels
  3684. def set_gguf_parameters(self):
  3685. super().set_gguf_parameters()
  3686. self.gguf_writer.add_causal_attention(False)
  3687. self._try_set_pooling_type()
  3688. if self.cls_out_labels:
  3689. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3690. def set_vocab(self):
  3691. tokens, toktypes, tokpre = self.get_vocab_base()
  3692. self.vocab_size = len(tokens)
  3693. # we need this to validate the size of the token_type embeddings
  3694. # though currently we are passing all zeros to the token_type embeddings
  3695. # "Sequence A" or "Sequence B"
  3696. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3697. # convert to phantom space vocab
  3698. def phantom(tok):
  3699. if tok.startswith("[") and tok.endswith("]"):
  3700. return tok
  3701. if tok.startswith("##"):
  3702. return tok[2:]
  3703. return "\u2581" + tok
  3704. tokens = list(map(phantom, tokens))
  3705. # add vocab to gguf
  3706. self.gguf_writer.add_tokenizer_model("bert")
  3707. self.gguf_writer.add_tokenizer_pre(tokpre)
  3708. self.gguf_writer.add_token_list(tokens)
  3709. self.gguf_writer.add_token_types(toktypes)
  3710. # handle special tokens
  3711. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3712. special_vocab.add_to_gguf(self.gguf_writer)
  3713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3714. del bid # unused
  3715. if name.startswith("bert."):
  3716. name = name[5:]
  3717. if name.endswith(".gamma"):
  3718. name = name[:-6] + ".weight"
  3719. if name.endswith(".beta"):
  3720. name = name[:-5] + ".bias"
  3721. # we are only using BERT for embeddings so we don't need the pooling layer
  3722. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3723. return [] # we don't need these
  3724. if name.startswith("cls.predictions"):
  3725. return []
  3726. if name.startswith("cls.seq_relationship"):
  3727. return []
  3728. if self.cls_out_labels:
  3729. # For BertForSequenceClassification (direct projection layer)
  3730. if name == "classifier.weight":
  3731. name = "classifier.out_proj.weight"
  3732. if name == "classifier.bias":
  3733. name = "classifier.out_proj.bias"
  3734. return [(self.map_tensor_name(name), data_torch)]
  3735. def _xlmroberta_tokenizer_init(self) -> None:
  3736. # we need the pad_token_id to know how to chop down position_embd matrix
  3737. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3738. self._position_offset = 1 + pad_token_id
  3739. if "max_position_embeddings" in self.hparams:
  3740. self.hparams["max_position_embeddings"] -= self._position_offset
  3741. else:
  3742. self._position_offset = None
  3743. def _xlmroberta_set_vocab(self) -> None:
  3744. # to avoid TypeError: Descriptors cannot be created directly
  3745. # exception when importing sentencepiece_model_pb2
  3746. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3747. from sentencepiece import SentencePieceProcessor
  3748. from sentencepiece import sentencepiece_model_pb2 as model
  3749. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3750. tokenizer_json = {}
  3751. tokenizer_config_json = {}
  3752. if not tokenizer_path.is_file():
  3753. tokenizer_path = self.dir_model / 'tokenizer.json'
  3754. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3755. if not tokenizer_path.is_file():
  3756. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3757. from base64 import b64decode
  3758. from transformers import AutoTokenizer
  3759. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3760. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3761. tokenizer_json = json.load(fp)
  3762. if tokenizer_config_path.is_file():
  3763. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3764. tokenizer_config_json = json.load(fp)
  3765. add_prefix = tokenizer.add_prefix_space
  3766. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3767. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3768. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3769. else:
  3770. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3771. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3772. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3773. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3774. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3775. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3776. tokenizer = SentencePieceProcessor()
  3777. tokenizer.LoadFromFile(str(tokenizer_path))
  3778. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3779. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3780. scores: list[float] = [-10000.0] * vocab_size
  3781. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3782. if isinstance(tokenizer, SentencePieceProcessor):
  3783. for token_id in range(tokenizer.vocab_size()):
  3784. piece = tokenizer.IdToPiece(token_id)
  3785. text = piece.encode("utf-8")
  3786. score = tokenizer.GetScore(token_id)
  3787. toktype = SentencePieceTokenTypes.NORMAL
  3788. if tokenizer.IsUnknown(token_id):
  3789. toktype = SentencePieceTokenTypes.UNKNOWN
  3790. elif tokenizer.IsControl(token_id):
  3791. toktype = SentencePieceTokenTypes.CONTROL
  3792. elif tokenizer.IsUnused(token_id):
  3793. toktype = SentencePieceTokenTypes.UNUSED
  3794. elif tokenizer.IsByte(token_id):
  3795. toktype = SentencePieceTokenTypes.BYTE
  3796. tokens[token_id] = text
  3797. scores[token_id] = score
  3798. toktypes[token_id] = toktype
  3799. else:
  3800. added_vocab = tokenizer.get_added_vocab()
  3801. unk_token = tokenizer_config_json.get("unk_token")
  3802. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3803. for token_id in range(tokenizer.vocab_size):
  3804. piece = tokenizer._convert_id_to_token(token_id)
  3805. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3806. text = piece.encode("utf-8")
  3807. score = tokenizer_json["model"]["vocab"][token_id][1]
  3808. toktype = SentencePieceTokenTypes.NORMAL
  3809. if token_id == unk_token_id:
  3810. toktype = SentencePieceTokenTypes.UNKNOWN
  3811. elif token_id in tokenizer.all_special_ids:
  3812. toktype = SentencePieceTokenTypes.CONTROL
  3813. elif token_id in added_vocab.values():
  3814. toktype = SentencePieceTokenTypes.USER_DEFINED
  3815. # No reliable way to detect this, but jina doesn't have any
  3816. # elif tokenizer.IsByte(token_id):
  3817. # toktype = SentencePieceTokenTypes.BYTE
  3818. tokens[token_id] = text
  3819. scores[token_id] = score
  3820. toktypes[token_id] = toktype
  3821. if isinstance(tokenizer, SentencePieceProcessor):
  3822. # realign tokens (see HF tokenizer code)
  3823. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3824. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3825. toktypes = [
  3826. SentencePieceTokenTypes.CONTROL,
  3827. SentencePieceTokenTypes.CONTROL,
  3828. SentencePieceTokenTypes.CONTROL,
  3829. SentencePieceTokenTypes.UNKNOWN,
  3830. ] + toktypes[3:-1]
  3831. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3832. # Add mask token missing from sentencepiece.bpe.model
  3833. tokens[250001] = b'<mask>'
  3834. scores[250001] = 0.0
  3835. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3836. self.gguf_writer.add_tokenizer_model("t5")
  3837. self.gguf_writer.add_tokenizer_pre("default")
  3838. self.gguf_writer.add_token_list(tokens)
  3839. self.gguf_writer.add_token_scores(scores)
  3840. self.gguf_writer.add_token_types(toktypes)
  3841. self.gguf_writer.add_add_space_prefix(add_prefix)
  3842. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3843. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3844. if precompiled_charsmap:
  3845. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3846. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3847. special_vocab.add_to_gguf(self.gguf_writer)
  3848. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3849. class DistilBertModel(BertModel):
  3850. model_arch = gguf.MODEL_ARCH.BERT
  3851. def set_gguf_parameters(self):
  3852. self.gguf_writer.add_layer_norm_eps(1e-12)
  3853. logger.info("gguf: layer norm epsilon = 1e-12")
  3854. super().set_gguf_parameters()
  3855. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3856. if name.startswith("distilbert."):
  3857. name = name[11:]
  3858. # These layers act as MLM head, so we don't need them
  3859. if name.startswith("vocab_"):
  3860. return []
  3861. return super().modify_tensors(data_torch, name, bid)
  3862. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3863. class RobertaModel(BertModel):
  3864. model_arch = gguf.MODEL_ARCH.BERT
  3865. def __init__(self, *args, **kwargs):
  3866. super().__init__(*args, **kwargs)
  3867. # we need the pad_token_id to know how to chop down position_embd matrix
  3868. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3869. self._position_offset = 1 + pad_token_id
  3870. if "max_position_embeddings" in self.hparams:
  3871. self.hparams["max_position_embeddings"] -= self._position_offset
  3872. else:
  3873. self._position_offset = None
  3874. def set_vocab(self):
  3875. """Support BPE tokenizers for roberta models"""
  3876. bpe_tok_path = self.dir_model / "tokenizer.json"
  3877. if bpe_tok_path.exists():
  3878. self._set_vocab_gpt2()
  3879. # we need this to validate the size of the token_type embeddings
  3880. # though currently we are passing all zeros to the token_type embeddings
  3881. # "Sequence A" or "Sequence B"
  3882. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3883. else:
  3884. return super().set_vocab()
  3885. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3886. # if name starts with "roberta.", remove the prefix
  3887. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3888. if name.startswith("roberta."):
  3889. name = name[8:]
  3890. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3891. if name == "embeddings.position_embeddings.weight":
  3892. if self._position_offset is not None:
  3893. data_torch = data_torch[self._position_offset:,:]
  3894. return super().modify_tensors(data_torch, name, bid)
  3895. @ModelBase.register("NomicBertModel")
  3896. class NomicBertModel(BertModel):
  3897. model_arch = gguf.MODEL_ARCH.BERT
  3898. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3899. hparams = kwargs.pop("hparams", None)
  3900. if hparams is None:
  3901. hparams = ModelBase.load_hparams(dir_model, False)
  3902. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3903. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3904. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3905. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3906. if self._tokenizer_is_xlmroberta:
  3907. self._xlmroberta_tokenizer_init()
  3908. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3909. if npos == 8192 and mtp == 2048:
  3910. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3911. elif npos == 2048 and mtp == 2048:
  3912. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3913. else:
  3914. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3915. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3916. # this doesn't do anything in the HF version
  3917. assert self.hparams["causal"] is False
  3918. # no bias tensors unless MoE
  3919. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3920. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3921. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3922. # norm at end of layer
  3923. assert self.hparams["prenorm"] is False
  3924. # standard RoPE
  3925. assert self.hparams["rotary_emb_fraction"] == 1.0
  3926. assert self.hparams["rotary_emb_interleaved"] is False
  3927. assert self.hparams["rotary_emb_scale_base"] is None
  3928. def set_vocab(self) -> None:
  3929. if self._tokenizer_is_xlmroberta:
  3930. return self._xlmroberta_set_vocab()
  3931. return super().set_vocab()
  3932. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3933. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3934. if "mlp.experts.bias" in name:
  3935. return [] # Explicitly return an empty list.
  3936. if "mlp.experts.mlp.w1" in name:
  3937. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3938. name += ".weight"
  3939. if "mlp.experts.mlp.w2" in name:
  3940. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3941. data_torch = data_torch.transpose(1, 2)
  3942. name += ".weight"
  3943. return [(self.map_tensor_name(name), data_torch)]
  3944. def set_gguf_parameters(self):
  3945. super().set_gguf_parameters()
  3946. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3947. if self.is_moe:
  3948. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3949. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3950. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3951. def _is_tokenizer_xlmroberta(self) -> bool:
  3952. with open(self.dir_model / "tokenizer.json") as f:
  3953. tokenizer_json = json.load(f)
  3954. toktyp = tokenizer_json["model"]["type"]
  3955. if toktyp == "Unigram":
  3956. return True
  3957. if toktyp == "WordPiece":
  3958. return False
  3959. raise ValueError(f"unknown tokenizer: {toktyp}")
  3960. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3961. class NeoBert(BertModel):
  3962. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3963. def set_gguf_parameters(self):
  3964. super().set_gguf_parameters()
  3965. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3966. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3967. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3968. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3969. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3970. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3971. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3972. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3973. def modify_tensors(self, data_torch, name, bid):
  3974. if name.startswith("decoder."):
  3975. return []
  3976. if name.startswith("model."):
  3977. name = name[6:]
  3978. return super().modify_tensors(data_torch, name, bid)
  3979. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3980. class XLMRobertaModel(BertModel):
  3981. model_arch = gguf.MODEL_ARCH.BERT
  3982. def __init__(self, *args, **kwargs):
  3983. super().__init__(*args, **kwargs)
  3984. self._xlmroberta_tokenizer_init()
  3985. def set_vocab(self):
  3986. self._xlmroberta_set_vocab()
  3987. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3988. # if name starts with "roberta.", remove the prefix
  3989. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3990. if name.startswith("roberta."):
  3991. name = name[8:]
  3992. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3993. if name == "embeddings.position_embeddings.weight":
  3994. if self._position_offset is not None:
  3995. data_torch = data_torch[self._position_offset:,:]
  3996. return super().modify_tensors(data_torch, name, bid)
  3997. @ModelBase.register("GemmaForCausalLM")
  3998. class GemmaModel(TextModel):
  3999. model_arch = gguf.MODEL_ARCH.GEMMA
  4000. def set_vocab(self):
  4001. self._set_vocab_sentencepiece()
  4002. # TODO: these special tokens should be exported only for the CodeGemma family
  4003. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4004. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4005. special_vocab._set_special_token("prefix", 67)
  4006. special_vocab._set_special_token("suffix", 69)
  4007. special_vocab._set_special_token("middle", 68)
  4008. special_vocab._set_special_token("fsep", 70)
  4009. special_vocab._set_special_token("eot", 107)
  4010. special_vocab.chat_template = None # do not add it twice
  4011. special_vocab.add_to_gguf(self.gguf_writer)
  4012. self.gguf_writer.add_add_space_prefix(False)
  4013. def set_gguf_parameters(self):
  4014. hparams = self.hparams
  4015. block_count = hparams["num_hidden_layers"]
  4016. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4017. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4018. self.gguf_writer.add_block_count(block_count)
  4019. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4020. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4021. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4022. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4023. self.gguf_writer.add_key_length(hparams["head_dim"])
  4024. self.gguf_writer.add_value_length(hparams["head_dim"])
  4025. self.gguf_writer.add_file_type(self.ftype)
  4026. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4027. del bid # unused
  4028. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4029. # To prevent errors, skip loading lm_head.weight.
  4030. if name == "lm_head.weight":
  4031. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4032. return []
  4033. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4034. if name.endswith("norm.weight"):
  4035. data_torch = data_torch + 1
  4036. return [(self.map_tensor_name(name), data_torch)]
  4037. @ModelBase.register("Gemma2ForCausalLM")
  4038. class Gemma2Model(TextModel):
  4039. model_arch = gguf.MODEL_ARCH.GEMMA2
  4040. def set_vocab(self):
  4041. self._set_vocab_sentencepiece()
  4042. self.gguf_writer.add_add_space_prefix(False)
  4043. def set_gguf_parameters(self):
  4044. hparams = self.hparams
  4045. block_count = hparams["num_hidden_layers"]
  4046. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4047. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4048. self.gguf_writer.add_block_count(block_count)
  4049. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4050. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4051. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4052. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4053. self.gguf_writer.add_key_length(hparams["head_dim"])
  4054. self.gguf_writer.add_value_length(hparams["head_dim"])
  4055. self.gguf_writer.add_file_type(self.ftype)
  4056. self.gguf_writer.add_attn_logit_softcapping(
  4057. self.hparams["attn_logit_softcapping"]
  4058. )
  4059. self.gguf_writer.add_final_logit_softcapping(
  4060. self.hparams["final_logit_softcapping"]
  4061. )
  4062. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4063. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4064. del bid # unused
  4065. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4066. # To prevent errors, skip loading lm_head.weight.
  4067. if name == "lm_head.weight":
  4068. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4069. return []
  4070. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4071. if name.endswith("norm.weight"):
  4072. data_torch = data_torch + 1
  4073. return [(self.map_tensor_name(name), data_torch)]
  4074. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4075. class Gemma3Model(TextModel):
  4076. model_arch = gguf.MODEL_ARCH.GEMMA3
  4077. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4078. def set_vocab(self):
  4079. self._set_vocab_sentencepiece()
  4080. self.gguf_writer.add_add_space_prefix(False)
  4081. def set_gguf_parameters(self):
  4082. hparams = self.hparams
  4083. block_count = hparams["num_hidden_layers"]
  4084. # some default values are not specified in the hparams
  4085. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4086. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4087. self.gguf_writer.add_block_count(block_count)
  4088. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4089. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4090. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4091. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4092. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4093. self.gguf_writer.add_file_type(self.ftype)
  4094. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4095. # attn_logit_softcapping is removed in Gemma3
  4096. assert hparams.get("attn_logit_softcapping") is None
  4097. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4098. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4099. if hparams.get("rope_scaling") is not None:
  4100. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4101. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4102. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4103. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4104. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4105. del bid # unused
  4106. if "language_model." in name:
  4107. name = name.replace("language_model.", "")
  4108. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4109. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4110. return [] # skip vision tensors
  4111. # remove OOV (out-of-vocabulary) rows in token_embd
  4112. if "embed_tokens.weight" in name:
  4113. vocab = self._create_vocab_sentencepiece()
  4114. tokens = vocab[0]
  4115. data_torch = data_torch[:len(tokens)]
  4116. # ref code in Gemma3RMSNorm
  4117. # output = output * (1.0 + self.weight.float())
  4118. # note: this is not the case on gemma3n
  4119. if name.endswith("norm.weight"):
  4120. data_torch = data_torch + self.norm_shift
  4121. return [(self.map_tensor_name(name), data_torch)]
  4122. @ModelBase.register("Gemma3ForConditionalGeneration")
  4123. class Gemma3VisionModel(MmprojModel):
  4124. def set_gguf_parameters(self):
  4125. super().set_gguf_parameters()
  4126. hparams = self.hparams
  4127. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4128. # default values below are taken from HF tranformers code
  4129. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4130. self.gguf_writer.add_vision_use_gelu(True)
  4131. # calculate proj_scale_factor (used by tinygemma3 test model)
  4132. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4133. n_per_side = int(image_seq_length ** 0.5)
  4134. image_size = self.hparams["image_size"]
  4135. patch_size = self.hparams["patch_size"]
  4136. proj_scale_factor = (image_size // patch_size) // n_per_side
  4137. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4138. # we only need to write this if it's not the default value
  4139. # in this case, we are converting a test model
  4140. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4141. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4142. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4143. if "input_projection" in name:
  4144. return gguf.GGMLQuantizationType.F16
  4145. if ".embeddings." in name:
  4146. return gguf.GGMLQuantizationType.F32
  4147. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4148. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4149. del bid # unused
  4150. if "vision_model.head." in name:
  4151. return [] # skip redundant tensors for tinygemma3
  4152. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4153. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4154. # process vision tensors
  4155. name = name.replace("_weight", ".weight")
  4156. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4157. # the other norm values are part of SigLIP model, and they are already correct
  4158. # ref code: Gemma3RMSNorm
  4159. if "soft_emb_norm.weight" in name:
  4160. logger.info(f"Correcting norm value for '{name}'")
  4161. data_torch = data_torch + 1
  4162. return [(self.map_tensor_name(name), data_torch)]
  4163. return [] # skip other tensors
  4164. @ModelBase.register("Gemma3nForConditionalGeneration")
  4165. class Gemma3NModel(Gemma3Model):
  4166. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4167. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4168. _altup_proj: list[Tensor] = []
  4169. _altup_unembd: list[Tensor] = []
  4170. def __init__(self, *args, **kwargs):
  4171. super().__init__(*args, **kwargs)
  4172. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4173. self._altup_proj = [
  4174. torch.Tensor(), # to be replaced
  4175. torch.Tensor(), # to be replaced
  4176. torch.Tensor(), # to be replaced
  4177. ]
  4178. self._altup_unembd = [
  4179. torch.Tensor(), # to be replaced
  4180. torch.Tensor(), # to be replaced
  4181. torch.Tensor(), # to be replaced
  4182. ]
  4183. def set_vocab(self):
  4184. super().set_vocab()
  4185. def set_gguf_parameters(self):
  4186. super().set_gguf_parameters()
  4187. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4188. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4189. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4190. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4191. activation_sparsity_scale = []
  4192. for s in self.hparams["activation_sparsity_pattern"]:
  4193. normal_dist = torch.distributions.normal.Normal(0, 1)
  4194. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4195. activation_sparsity_scale.append(std_multiplier.item())
  4196. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4197. sliding_window_pattern = []
  4198. for t in self.hparams["layer_types"]:
  4199. sliding_window_pattern.append(t == "sliding_attention")
  4200. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4201. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4202. has_all = all(m.numel() > 0 for m in matrices)
  4203. if not has_all:
  4204. return None
  4205. else:
  4206. return torch.stack(matrices, dim=0)
  4207. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4208. if name.endswith("_scale"):
  4209. name = name + ".weight"
  4210. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4211. if "language_model." not in name:
  4212. return [] # skip non-language model tensors
  4213. if "altup_unembed_projections" in name:
  4214. data_torch = data_torch.to(device="cpu")
  4215. if ".0." in name:
  4216. self._altup_unembd[0] = data_torch
  4217. elif ".1." in name:
  4218. self._altup_unembd[1] = data_torch
  4219. elif ".2." in name:
  4220. self._altup_unembd[2] = data_torch
  4221. else:
  4222. raise ValueError(f"Unknown name: {name}")
  4223. out = self._stack_matrices(self._altup_unembd)
  4224. if out is not None:
  4225. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4226. else:
  4227. return []
  4228. if "altup_projections" in name:
  4229. data_torch = data_torch.to(device="cpu")
  4230. if ".0." in name:
  4231. self._altup_proj[0] = data_torch
  4232. elif ".1." in name:
  4233. self._altup_proj[1] = data_torch
  4234. elif ".2." in name:
  4235. self._altup_proj[2] = data_torch
  4236. else:
  4237. raise ValueError(f"Unknown name: {name}")
  4238. out = self._stack_matrices(self._altup_proj)
  4239. if out is not None:
  4240. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4241. else:
  4242. return []
  4243. return super().modify_tensors(data_torch, name, bid)
  4244. @ModelBase.register("Starcoder2ForCausalLM")
  4245. class StarCoder2Model(TextModel):
  4246. model_arch = gguf.MODEL_ARCH.STARCODER2
  4247. @ModelBase.register("Rwkv6ForCausalLM")
  4248. class Rwkv6Model(TextModel):
  4249. model_arch = gguf.MODEL_ARCH.RWKV6
  4250. def set_vocab(self):
  4251. self._set_vocab_rwkv_world()
  4252. def set_gguf_parameters(self):
  4253. block_count = self.hparams["num_hidden_layers"]
  4254. head_size = self.hparams["head_size"]
  4255. hidden_size = self.hparams["hidden_size"]
  4256. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4257. rescale_every_n_layers = self.hparams["rescale_every"]
  4258. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4259. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4260. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4261. # RWKV isn't context limited
  4262. self.gguf_writer.add_context_length(1048576)
  4263. self.gguf_writer.add_embedding_length(hidden_size)
  4264. self.gguf_writer.add_block_count(block_count)
  4265. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4266. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4267. self.gguf_writer.add_wkv_head_size(head_size)
  4268. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4269. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4270. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4271. self.gguf_writer.add_file_type(self.ftype)
  4272. # required by llama.cpp, unused
  4273. self.gguf_writer.add_head_count(0)
  4274. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4275. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4276. new_name = self.map_tensor_name(name)
  4277. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4278. new_name += ".weight"
  4279. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4280. data_torch = data_torch.transpose(0, 1)
  4281. if new_name.endswith("time_mix_w2.weight"):
  4282. data_torch = data_torch.permute(0, 2, 1)
  4283. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4284. data_torch = data_torch.squeeze()
  4285. try:
  4286. rescale_every_n_layers = self.hparams["rescale_every"]
  4287. if rescale_every_n_layers > 0:
  4288. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4289. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4290. except KeyError:
  4291. pass
  4292. # concat time_mix_lerp weights to reduce some cpu overhead
  4293. # also reduces the number of tensors in the model
  4294. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4295. try:
  4296. self.lerp_weights[bid][new_name] = data_torch
  4297. except KeyError:
  4298. self.lerp_weights[bid] = {new_name: data_torch}
  4299. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4300. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4301. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4302. yield (new_name, data)
  4303. return
  4304. yield (new_name, data_torch)
  4305. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4306. class RWKV6Qwen2Model(Rwkv6Model):
  4307. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4308. def set_vocab(self):
  4309. try:
  4310. self._set_vocab_sentencepiece()
  4311. except FileNotFoundError:
  4312. self._set_vocab_gpt2()
  4313. def set_gguf_parameters(self):
  4314. block_count = self.hparams["num_hidden_layers"]
  4315. num_attention_heads = self.hparams["num_attention_heads"]
  4316. num_key_value_heads = self.hparams["num_key_value_heads"]
  4317. hidden_size = self.hparams["hidden_size"]
  4318. head_size = hidden_size // num_attention_heads
  4319. rms_norm_eps = self.hparams["rms_norm_eps"]
  4320. intermediate_size = self.hparams["intermediate_size"]
  4321. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4322. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4323. # RWKV isn't context limited
  4324. self.gguf_writer.add_context_length(1048576)
  4325. self.gguf_writer.add_embedding_length(hidden_size)
  4326. self.gguf_writer.add_block_count(block_count)
  4327. self.gguf_writer.add_wkv_head_size(head_size)
  4328. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4329. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4330. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4331. self.gguf_writer.add_file_type(self.ftype)
  4332. # special parameters for time_mixing in RWKV6QWEN2
  4333. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4334. self.gguf_writer.add_token_shift_count(1)
  4335. # RWKV6QWEN2 use grouped key/value like GQA
  4336. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4337. # required by llama.cpp, unused
  4338. self.gguf_writer.add_head_count(0)
  4339. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4340. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4341. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4342. data = data.view(5, -1, data.shape[-1])
  4343. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4344. # permute them here to avoid code changes
  4345. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4346. if "w2" in new_name:
  4347. data = data.view(5, -1, data.shape[-1])
  4348. yield (new_name, data)
  4349. continue
  4350. yield (new_name, data)
  4351. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4352. class Rwkv7Model(TextModel):
  4353. model_arch = gguf.MODEL_ARCH.RWKV7
  4354. def set_vocab(self):
  4355. self._set_vocab_rwkv_world()
  4356. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4357. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4358. def set_gguf_parameters(self):
  4359. block_count = self.hparams["num_hidden_layers"]
  4360. try:
  4361. head_size = self.hparams["head_size"]
  4362. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4363. except KeyError:
  4364. head_size = self.hparams["head_dim"]
  4365. layer_norm_eps = self.hparams["norm_eps"]
  4366. hidden_size = self.hparams["hidden_size"]
  4367. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4368. # ICLR: In-Context-Learning-Rate
  4369. try:
  4370. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4371. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4372. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4373. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4374. except KeyError:
  4375. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4376. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4377. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4378. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4379. # RWKV isn't context limited
  4380. self.gguf_writer.add_context_length(1048576)
  4381. self.gguf_writer.add_embedding_length(hidden_size)
  4382. self.gguf_writer.add_block_count(block_count)
  4383. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4384. self.gguf_writer.add_wkv_head_size(head_size)
  4385. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4386. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4387. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4388. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4389. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4390. self.gguf_writer.add_file_type(self.ftype)
  4391. # required by llama.cpp, unused
  4392. self.gguf_writer.add_head_count(0)
  4393. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4394. lora_needs_transpose: bool = True
  4395. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4396. # unify tensor names here to make life easier
  4397. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4398. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4399. name = name.replace("time_mixer.", "")
  4400. # lora layer names in fla-hub's impl
  4401. if "_lora.lora" in name:
  4402. self.lora_needs_transpose = False
  4403. name = name.replace("_lora.lora.0.weight", "1.weight")
  4404. name = name.replace("_lora.lora.2.weight", "2.weight")
  4405. name = name.replace("_lora.lora.2.bias", "0.weight")
  4406. name = name.replace("feed_forward_norm", "ln2")
  4407. name = name.replace("g_norm", "ln_x")
  4408. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4409. # some models have dummy v0/v1/v2 on first layer while others don't
  4410. # ignore them all since they are not used
  4411. return
  4412. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4413. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4414. if bid is not None and "attention.x_" in name:
  4415. if "attention.x_x" in name:
  4416. # already concatenated
  4417. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4418. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4419. yield (new_name, data)
  4420. else:
  4421. try:
  4422. self.lerp_weights[bid][name] = data_torch
  4423. except KeyError:
  4424. self.lerp_weights[bid] = {name: data_torch}
  4425. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4426. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4427. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4428. yield (new_name, data)
  4429. return
  4430. else:
  4431. data_torch = data_torch.squeeze()
  4432. new_name = self.map_tensor_name(name)
  4433. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4434. new_name += ".weight"
  4435. if self.lora_needs_transpose and any(
  4436. new_name.endswith(t) for t in [
  4437. "time_mix_w1.weight", "time_mix_w2.weight",
  4438. "time_mix_a1.weight", "time_mix_a2.weight",
  4439. "time_mix_v1.weight", "time_mix_v2.weight",
  4440. "time_mix_g1.weight", "time_mix_g2.weight",
  4441. ]
  4442. ):
  4443. data_torch = data_torch.transpose(0, 1)
  4444. if 'r_k' in new_name:
  4445. data_torch = data_torch.flatten()
  4446. if bid == 0 and "time_mix_a" in new_name:
  4447. # dummy v0/v1/v2 on first layer
  4448. # easist way to make llama happy
  4449. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4450. yield (new_name, data_torch)
  4451. @ModelBase.register("RwkvHybridForCausalLM")
  4452. class ARwkv7Model(Rwkv7Model):
  4453. model_arch = gguf.MODEL_ARCH.ARWKV7
  4454. def set_vocab(self):
  4455. try:
  4456. self._set_vocab_sentencepiece()
  4457. except FileNotFoundError:
  4458. self._set_vocab_gpt2()
  4459. def set_gguf_parameters(self):
  4460. block_count = self.hparams["num_hidden_layers"]
  4461. hidden_size = self.hparams["hidden_size"]
  4462. head_size = self.hparams["head_size"]
  4463. rms_norm_eps = self.hparams["rms_norm_eps"]
  4464. intermediate_size = self.hparams["intermediate_size"]
  4465. wkv_has_gate = self.hparams["wkv_has_gate"]
  4466. assert self.hparams["wkv_version"] == 7
  4467. # ICLR: In-Context-Learning-Rate
  4468. lora_rank_decay = 64
  4469. lora_rank_iclr = 64
  4470. lora_rank_value_residual_mix = 32
  4471. lora_rank_gate = 128 if wkv_has_gate else 0
  4472. # RWKV isn't context limited
  4473. self.gguf_writer.add_context_length(1048576)
  4474. self.gguf_writer.add_embedding_length(hidden_size)
  4475. self.gguf_writer.add_block_count(block_count)
  4476. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4477. self.gguf_writer.add_wkv_head_size(head_size)
  4478. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4479. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4480. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4481. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4482. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4483. self.gguf_writer.add_file_type(self.ftype)
  4484. self.gguf_writer.add_token_shift_count(1)
  4485. # required by llama.cpp, unused
  4486. self.gguf_writer.add_head_count(0)
  4487. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4488. class MambaModel(TextModel):
  4489. model_arch = gguf.MODEL_ARCH.MAMBA
  4490. def __init__(self, dir_model: Path, *args, **kwargs):
  4491. # Avoid using AutoConfig for hparams
  4492. hparams = kwargs.pop("hparams", None)
  4493. if hparams is None:
  4494. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4495. hparams = json.load(f)
  4496. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4497. def set_vocab(self):
  4498. vocab_size = self.hparams["vocab_size"]
  4499. # Round vocab size to next multiple of 8
  4500. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4501. # pad using ceiling division
  4502. # ref: https://stackoverflow.com/a/17511341/22827863
  4503. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4504. self.hparams["vocab_size"] = vocab_size
  4505. if (self.dir_model / "tokenizer.json").is_file():
  4506. self._set_vocab_gpt2()
  4507. elif (self.dir_model / "tokenizer.model").is_file():
  4508. self._set_vocab_sentencepiece()
  4509. else:
  4510. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4511. self._set_vocab_builtin("gpt-neox", vocab_size)
  4512. def set_gguf_parameters(self):
  4513. d_model = self.find_hparam(["hidden_size", "d_model"])
  4514. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4515. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4516. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4517. # ceiling division
  4518. # ref: https://stackoverflow.com/a/17511341/22827863
  4519. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4520. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4521. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4522. use_dt_b_c_norm = False
  4523. # For falconmamba we do apply RMS norm on B / DT and C layers
  4524. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4525. use_dt_b_c_norm = True
  4526. # Fail early for models which don't have a block expansion factor of 2
  4527. assert d_inner == 2 * d_model
  4528. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4529. self.gguf_writer.add_embedding_length(d_model)
  4530. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4531. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4532. self.gguf_writer.add_block_count(self.block_count)
  4533. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4534. self.gguf_writer.add_ssm_inner_size(d_inner)
  4535. self.gguf_writer.add_ssm_state_size(d_state)
  4536. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4537. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4538. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4539. self.gguf_writer.add_file_type(self.ftype)
  4540. _tok_embd = None
  4541. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4542. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4543. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4544. new_name = self.map_tensor_name(name)
  4545. if name.endswith(".A_log"):
  4546. logger.debug("A_log --> A ==> " + new_name)
  4547. data_torch = -torch.exp(data_torch)
  4548. # [4 1 8192 1] -> [4 8192 1 1]
  4549. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4550. data_torch = data_torch.squeeze()
  4551. # assuming token_embd.weight is seen before output.weight
  4552. if self._tok_embd is not None and new_name == output_name:
  4553. if torch.equal(self._tok_embd, data_torch):
  4554. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4555. return []
  4556. elif new_name == tok_embd_name:
  4557. self._tok_embd = data_torch
  4558. return [(new_name, data_torch)]
  4559. @ModelBase.register("Mamba2ForCausalLM")
  4560. class Mamba2Model(TextModel):
  4561. model_arch = gguf.MODEL_ARCH.MAMBA2
  4562. def __init__(self, dir_model: Path, *args, **kwargs):
  4563. # Avoid using AutoConfig for hparams
  4564. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4565. hparams = kwargs.pop("hparams", None)
  4566. if hparams is None:
  4567. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4568. hparams = json.load(f)
  4569. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4570. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4571. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4572. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4573. def set_vocab(self):
  4574. vocab_size = self.hparams["vocab_size"]
  4575. # Round vocab size to next multiple of 16
  4576. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4577. # pad using ceiling division
  4578. # ref: https://stackoverflow.com/a/17511341/22827863
  4579. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4580. self.hparams["vocab_size"] = vocab_size
  4581. if (self.dir_model / "tokenizer.model").is_file():
  4582. self._set_vocab_sentencepiece()
  4583. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4584. # mamba-codestral
  4585. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4586. elif (self.dir_model / "tokenizer.json").is_file():
  4587. self._set_vocab_gpt2()
  4588. else:
  4589. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4590. self._set_vocab_builtin("gpt-neox", vocab_size)
  4591. def set_gguf_parameters(self):
  4592. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4593. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4594. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4595. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4596. # Fail early for models which don't have a block expansion factor of 2
  4597. # TODO: does this really matter?
  4598. # skip the assertion for FalconH1 Model
  4599. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4600. assert self.d_inner == 2 * self.d_model
  4601. assert self.d_inner % head_dim == 0
  4602. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4603. self.gguf_writer.add_embedding_length(self.d_model)
  4604. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4605. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4606. self.gguf_writer.add_block_count(self.block_count)
  4607. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4608. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4609. self.gguf_writer.add_ssm_state_size(d_state)
  4610. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4611. self.gguf_writer.add_ssm_group_count(self.n_group)
  4612. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4613. self.gguf_writer.add_file_type(self.ftype)
  4614. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4615. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4616. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4617. name = name.removeprefix("model.")
  4618. if name.endswith(".dt_bias"):
  4619. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4620. new_name = self.map_tensor_name(name)
  4621. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4622. data_torch = data_torch.squeeze()
  4623. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4624. gguf.MODEL_TENSOR.SSM_A,
  4625. gguf.MODEL_TENSOR.SSM_D,
  4626. ]):
  4627. # unsqueeze A to use similar shape semantics as Mamba-1
  4628. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4629. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4630. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4631. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4632. if name.endswith(".A_log"):
  4633. logger.debug("A_log --> A ==> " + new_name)
  4634. data_torch = -torch.exp(data_torch)
  4635. yield (new_name, data_torch)
  4636. @ModelBase.register("JambaForCausalLM")
  4637. class JambaModel(TextModel):
  4638. model_arch = gguf.MODEL_ARCH.JAMBA
  4639. def get_vocab_base_pre(self, tokenizer) -> str:
  4640. del tokenizer # unused
  4641. return "gpt-2"
  4642. def set_vocab(self):
  4643. if (self.dir_model / "tokenizer.model").is_file():
  4644. # Using Jamba's tokenizer.json causes errors on model load
  4645. # (something about "byte not found in vocab"),
  4646. # but there's a working tokenizer.model
  4647. self._set_vocab_sentencepiece()
  4648. else:
  4649. # Some Jamba models only have a tokenizer.json, which works.
  4650. self._set_vocab_gpt2()
  4651. def set_gguf_parameters(self):
  4652. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4653. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4654. d_inner = self.hparams["mamba_expand"] * d_model
  4655. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4656. # ceiling division
  4657. # ref: https://stackoverflow.com/a/17511341/22827863
  4658. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4659. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4660. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4661. n_kv_head = self.hparams["num_key_value_heads"]
  4662. attn_offset = self.hparams["attn_layer_offset"]
  4663. attn_period = self.hparams["attn_layer_period"]
  4664. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4665. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4666. ]
  4667. self.gguf_writer.add_block_count(self.block_count)
  4668. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4669. self.gguf_writer.add_embedding_length(d_model)
  4670. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4671. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4672. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4673. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4674. self.gguf_writer.add_ssm_inner_size(d_inner)
  4675. self.gguf_writer.add_ssm_state_size(d_state)
  4676. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4677. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4678. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4679. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4680. self.gguf_writer.add_file_type(self.ftype)
  4681. _experts: list[dict[str, Tensor]] | None = None
  4682. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4683. # Mini-Jamba
  4684. name = name.replace(".moe.", ".feed_forward.")
  4685. if bid is not None:
  4686. moe_offset = self.hparams["expert_layer_offset"]
  4687. moe_period = self.hparams["expert_layer_period"]
  4688. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4689. name = name.replace(".experts.0.", ".")
  4690. # process the experts separately
  4691. if ".feed_forward.experts." in name:
  4692. n_experts = self.hparams["num_experts"]
  4693. assert bid is not None
  4694. if self._experts is None:
  4695. self._experts = [{} for _ in range(self.block_count)]
  4696. self._experts[bid][name] = data_torch
  4697. if len(self._experts[bid]) >= n_experts * 3:
  4698. # merge the experts into a single 3d tensor
  4699. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4700. datas: list[Tensor] = []
  4701. for xid in range(n_experts):
  4702. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4703. datas.append(self._experts[bid][ename])
  4704. del self._experts[bid][ename]
  4705. data_torch = torch.stack(datas, dim=0)
  4706. # using the same merged name as qwen2moe
  4707. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4708. new_name = self.map_tensor_name(merged_name)
  4709. yield new_name, data_torch
  4710. return
  4711. new_name = self.map_tensor_name(name)
  4712. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4713. data_torch = data_torch.squeeze()
  4714. if name.endswith(".A_log"):
  4715. logger.debug("A_log --> A ==> " + new_name)
  4716. data_torch = -torch.exp(data_torch)
  4717. yield (new_name, data_torch)
  4718. def prepare_tensors(self):
  4719. super().prepare_tensors()
  4720. if self._experts is not None:
  4721. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4722. experts = [k for d in self._experts for k in d.keys()]
  4723. if len(experts) > 0:
  4724. raise ValueError(f"Unprocessed experts: {experts}")
  4725. @ModelBase.register("CohereForCausalLM")
  4726. class CommandR2Model(TextModel):
  4727. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4728. def __init__(self, *args, **kwargs):
  4729. super().__init__(*args, **kwargs)
  4730. # max_position_embeddings = 8192 in config.json but model was actually
  4731. # trained on 128k context length
  4732. # aya-23 models don't have model_max_length specified
  4733. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4734. def set_gguf_parameters(self):
  4735. super().set_gguf_parameters()
  4736. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4737. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4738. @ModelBase.register("Cohere2ForCausalLM")
  4739. class Cohere2Model(TextModel):
  4740. model_arch = gguf.MODEL_ARCH.COHERE2
  4741. def set_gguf_parameters(self):
  4742. super().set_gguf_parameters()
  4743. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4744. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4745. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4746. rotary_pct = self.hparams["rotary_pct"]
  4747. hidden_size = self.hparams["hidden_size"]
  4748. num_attention_heads = self.hparams["num_attention_heads"]
  4749. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4750. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4751. @ModelBase.register("OlmoForCausalLM")
  4752. @ModelBase.register("OLMoForCausalLM")
  4753. class OlmoModel(TextModel):
  4754. model_arch = gguf.MODEL_ARCH.OLMO
  4755. def set_gguf_parameters(self):
  4756. super().set_gguf_parameters()
  4757. self.gguf_writer.add_layer_norm_eps(1e-5)
  4758. clip_qkv = self.hparams.get("clip_qkv")
  4759. if clip_qkv is not None:
  4760. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4761. # Same as super class, but permuting q_proj, k_proj
  4762. # Copied from: LlamaModel
  4763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4764. del bid # unused
  4765. n_head = self.hparams["num_attention_heads"]
  4766. n_kv_head = self.hparams.get("num_key_value_heads")
  4767. if name.endswith("q_proj.weight"):
  4768. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4769. if name.endswith("k_proj.weight"):
  4770. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4771. return [(self.map_tensor_name(name), data_torch)]
  4772. @ModelBase.register("SeedOssForCausalLM")
  4773. class SeedOssModel(TextModel):
  4774. model_arch = gguf.MODEL_ARCH.SEED_OSS
  4775. @ModelBase.register("Olmo2ForCausalLM")
  4776. class Olmo2Model(TextModel):
  4777. model_arch = gguf.MODEL_ARCH.OLMO2
  4778. @ModelBase.register("OlmoeForCausalLM")
  4779. class OlmoeModel(TextModel):
  4780. model_arch = gguf.MODEL_ARCH.OLMOE
  4781. def set_gguf_parameters(self):
  4782. super().set_gguf_parameters()
  4783. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4784. if (n_experts := self.hparams.get("num_experts")) is not None:
  4785. self.gguf_writer.add_expert_count(n_experts)
  4786. _experts: list[dict[str, Tensor]] | None = None
  4787. # Copied from: Qwen2MoeModel
  4788. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4789. # process the experts separately
  4790. if name.find("experts") != -1:
  4791. n_experts = self.hparams["num_experts"]
  4792. assert bid is not None
  4793. if self._experts is None:
  4794. self._experts = [{} for _ in range(self.block_count)]
  4795. self._experts[bid][name] = data_torch
  4796. if len(self._experts[bid]) >= n_experts * 3:
  4797. tensors: list[tuple[str, Tensor]] = []
  4798. # merge the experts into a single 3d tensor
  4799. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4800. datas: list[Tensor] = []
  4801. for xid in range(n_experts):
  4802. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4803. datas.append(self._experts[bid][ename])
  4804. del self._experts[bid][ename]
  4805. data_torch = torch.stack(datas, dim=0)
  4806. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4807. new_name = self.map_tensor_name(merged_name)
  4808. tensors.append((new_name, data_torch))
  4809. return tensors
  4810. else:
  4811. return []
  4812. return [(self.map_tensor_name(name), data_torch)]
  4813. # Copied from: Qwen2MoeModel
  4814. def prepare_tensors(self):
  4815. super().prepare_tensors()
  4816. if self._experts is not None:
  4817. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4818. experts = [k for d in self._experts for k in d.keys()]
  4819. if len(experts) > 0:
  4820. raise ValueError(f"Unprocessed experts: {experts}")
  4821. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4822. class JinaBertV2Model(BertModel):
  4823. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4824. def set_vocab(self):
  4825. tokenizer_class = 'BertTokenizer'
  4826. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4827. tokenizer_class = json.load(f)['tokenizer_class']
  4828. if tokenizer_class == 'BertTokenizer':
  4829. super().set_vocab()
  4830. elif tokenizer_class == 'RobertaTokenizer':
  4831. self._set_vocab_gpt2()
  4832. self.gguf_writer.add_token_type_count(2)
  4833. else:
  4834. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4835. @ModelBase.register("OpenELMForCausalLM")
  4836. class OpenELMModel(TextModel):
  4837. model_arch = gguf.MODEL_ARCH.OPENELM
  4838. @staticmethod
  4839. def _make_divisible(v: float | int, divisor: int) -> int:
  4840. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4841. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4842. # Make sure that round down does not go down by more than 10%.
  4843. if new_v < 0.9 * v:
  4844. new_v += divisor
  4845. return new_v
  4846. def __init__(self, *args, **kwargs):
  4847. super().__init__(*args, **kwargs)
  4848. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4849. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4850. self._n_embd: int = self.hparams["model_dim"]
  4851. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4852. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4853. self._ffn_dims: list[int] = [
  4854. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4855. for multiplier in ffn_multipliers
  4856. ]
  4857. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4858. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4859. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4860. def set_vocab(self):
  4861. try:
  4862. self._set_vocab_sentencepiece()
  4863. except FileNotFoundError:
  4864. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4865. def set_gguf_parameters(self):
  4866. n_embd = self._n_embd
  4867. head_dim = self.hparams["head_dim"]
  4868. rot_pct = 1.0
  4869. assert self.block_count == len(self._num_kv_heads)
  4870. assert self.block_count == len(self._num_query_heads)
  4871. assert self.block_count == len(self._ffn_dims)
  4872. self.gguf_writer.add_block_count(self.block_count)
  4873. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4874. self.gguf_writer.add_embedding_length(n_embd)
  4875. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4876. self.gguf_writer.add_head_count(self._num_query_heads)
  4877. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4878. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4879. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4880. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4881. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4882. self.gguf_writer.add_key_length(head_dim)
  4883. self.gguf_writer.add_value_length(head_dim)
  4884. self.gguf_writer.add_file_type(self.ftype)
  4885. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4886. if "n_layers" in keys:
  4887. return self.hparams["num_transformer_layers"]
  4888. return super().find_hparam(keys, optional)
  4889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4890. # split ff
  4891. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4892. ff_dim = self._ffn_dims[bid]
  4893. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4894. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4895. return
  4896. yield (self.map_tensor_name(name), data_torch)
  4897. @ModelBase.register("ArcticForCausalLM")
  4898. class ArcticModel(TextModel):
  4899. model_arch = gguf.MODEL_ARCH.ARCTIC
  4900. def set_vocab(self):
  4901. # The reason for using a custom implementation here is that the
  4902. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4903. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4904. from sentencepiece import SentencePieceProcessor
  4905. tokenizer_path = self.dir_model / 'tokenizer.model'
  4906. if not tokenizer_path.is_file():
  4907. logger.error(f'Error: Missing {tokenizer_path}')
  4908. sys.exit(1)
  4909. # Read the whole vocabulary from the tokenizer.model file
  4910. tokenizer = SentencePieceProcessor()
  4911. tokenizer.LoadFromFile(str(tokenizer_path))
  4912. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4913. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4914. scores: list[float] = [-10000.0] * vocab_size
  4915. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4916. for token_id in range(tokenizer.vocab_size()):
  4917. piece = tokenizer.IdToPiece(token_id)
  4918. text = piece.encode("utf-8")
  4919. score = tokenizer.GetScore(token_id)
  4920. toktype = SentencePieceTokenTypes.NORMAL
  4921. if tokenizer.IsUnknown(token_id):
  4922. toktype = SentencePieceTokenTypes.UNKNOWN
  4923. elif tokenizer.IsControl(token_id):
  4924. toktype = SentencePieceTokenTypes.CONTROL
  4925. elif tokenizer.IsUnused(token_id):
  4926. toktype = SentencePieceTokenTypes.UNUSED
  4927. elif tokenizer.IsByte(token_id):
  4928. toktype = SentencePieceTokenTypes.BYTE
  4929. tokens[token_id] = text
  4930. scores[token_id] = score
  4931. toktypes[token_id] = toktype
  4932. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4933. # of information about added/redefined tokens and modify them accordingly.
  4934. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4935. if tokenizer_config_file.is_file():
  4936. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4937. tokenizer_config_json = json.load(f)
  4938. if "added_tokens_decoder" in tokenizer_config_json:
  4939. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4940. for token_id, token_json in added_tokens_decoder.items():
  4941. token_id = int(token_id)
  4942. if token_id >= vocab_size:
  4943. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4944. continue
  4945. token_content = token_json["content"]
  4946. token_type = SentencePieceTokenTypes.USER_DEFINED
  4947. token_score = -10000.0
  4948. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4949. # Set the score to 0.0 as in the original tokenizer.model
  4950. if ("special" in token_json) and token_json["special"]:
  4951. if token_content == tokenizer_config_json["unk_token"]:
  4952. token_type = SentencePieceTokenTypes.UNKNOWN
  4953. else:
  4954. token_type = SentencePieceTokenTypes.CONTROL
  4955. token_score = 0.0
  4956. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4957. tokens[token_id] = token_content.encode("utf-8")
  4958. toktypes[token_id] = token_type
  4959. scores[token_id] = token_score
  4960. self.gguf_writer.add_tokenizer_model("llama")
  4961. self.gguf_writer.add_tokenizer_pre("default")
  4962. self.gguf_writer.add_token_list(tokens)
  4963. self.gguf_writer.add_token_scores(scores)
  4964. self.gguf_writer.add_token_types(toktypes)
  4965. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4966. special_vocab.add_to_gguf(self.gguf_writer)
  4967. def set_gguf_parameters(self):
  4968. super().set_gguf_parameters()
  4969. hparams = self.hparams
  4970. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4971. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4972. _experts: list[dict[str, Tensor]] | None = None
  4973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4974. n_head = self.hparams["num_attention_heads"]
  4975. n_kv_head = self.hparams.get("num_key_value_heads")
  4976. if name.endswith("q_proj.weight"):
  4977. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4978. if name.endswith("k_proj.weight"):
  4979. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4980. # process the experts separately
  4981. if name.find("block_sparse_moe.experts") != -1:
  4982. n_experts = self.hparams["num_local_experts"]
  4983. assert bid is not None
  4984. if self._experts is None:
  4985. self._experts = [{} for _ in range(self.block_count)]
  4986. self._experts[bid][name] = data_torch
  4987. if len(self._experts[bid]) >= n_experts * 3:
  4988. tensors: list[tuple[str, Tensor]] = []
  4989. # merge the experts into a single 3d tensor
  4990. for wid in ["w1", "w2", "w3"]:
  4991. datas: list[Tensor] = []
  4992. for xid in range(n_experts):
  4993. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4994. datas.append(self._experts[bid][ename])
  4995. del self._experts[bid][ename]
  4996. data_torch = torch.stack(datas, dim=0)
  4997. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4998. new_name = self.map_tensor_name(merged_name)
  4999. tensors.append((new_name, data_torch))
  5000. return tensors
  5001. else:
  5002. return []
  5003. return [(self.map_tensor_name(name), data_torch)]
  5004. def prepare_tensors(self):
  5005. super().prepare_tensors()
  5006. if self._experts is not None:
  5007. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5008. experts = [k for d in self._experts for k in d.keys()]
  5009. if len(experts) > 0:
  5010. raise ValueError(f"Unprocessed experts: {experts}")
  5011. @ModelBase.register("DeepseekForCausalLM")
  5012. class DeepseekModel(TextModel):
  5013. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5014. def set_vocab(self):
  5015. try:
  5016. self._set_vocab_sentencepiece()
  5017. except FileNotFoundError:
  5018. self._set_vocab_gpt2()
  5019. def set_gguf_parameters(self):
  5020. super().set_gguf_parameters()
  5021. hparams = self.hparams
  5022. if (rope_dim := hparams.get("head_dim")) is None:
  5023. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5024. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5025. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5026. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5027. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5028. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5029. self.gguf_writer.add_expert_weights_scale(1.0)
  5030. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5031. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5032. _experts: list[dict[str, Tensor]] | None = None
  5033. @staticmethod
  5034. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5035. if n_head_kv is not None and n_head != n_head_kv:
  5036. n_head = n_head_kv
  5037. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5038. .swapaxes(1, 2)
  5039. .reshape(weights.shape))
  5040. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5041. n_head = self.hparams["num_attention_heads"]
  5042. n_kv_head = self.hparams.get("num_key_value_heads")
  5043. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5044. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5045. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5046. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5047. # process the experts separately
  5048. if name.find("mlp.experts") != -1:
  5049. n_experts = self.hparams["n_routed_experts"]
  5050. assert bid is not None
  5051. if self._experts is None:
  5052. self._experts = [{} for _ in range(self.block_count)]
  5053. self._experts[bid][name] = data_torch
  5054. if len(self._experts[bid]) >= n_experts * 3:
  5055. tensors: list[tuple[str, Tensor]] = []
  5056. # merge the experts into a single 3d tensor
  5057. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5058. datas: list[Tensor] = []
  5059. for xid in range(n_experts):
  5060. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5061. datas.append(self._experts[bid][ename])
  5062. del self._experts[bid][ename]
  5063. data_torch = torch.stack(datas, dim=0)
  5064. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5065. new_name = self.map_tensor_name(merged_name)
  5066. tensors.append((new_name, data_torch))
  5067. return tensors
  5068. else:
  5069. return []
  5070. return [(self.map_tensor_name(name), data_torch)]
  5071. def prepare_tensors(self):
  5072. super().prepare_tensors()
  5073. if self._experts is not None:
  5074. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5075. experts = [k for d in self._experts for k in d.keys()]
  5076. if len(experts) > 0:
  5077. raise ValueError(f"Unprocessed experts: {experts}")
  5078. @ModelBase.register("DeepseekV2ForCausalLM")
  5079. @ModelBase.register("DeepseekV3ForCausalLM")
  5080. @ModelBase.register("KimiVLForConditionalGeneration")
  5081. class DeepseekV2Model(TextModel):
  5082. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5083. def set_vocab(self):
  5084. try:
  5085. self._set_vocab_gpt2()
  5086. return
  5087. except Exception:
  5088. pass
  5089. from transformers import AutoTokenizer
  5090. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5091. tokpre = self.get_vocab_base_pre(tokenizer)
  5092. if tokpre == "kimi-k2":
  5093. # Build merges list using the approach similar to HunYuanMoE
  5094. merges = []
  5095. vocab = {}
  5096. mergeable_ranks = tokenizer.model._mergeable_ranks
  5097. for token, rank in mergeable_ranks.items():
  5098. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5099. if len(token) == 1:
  5100. continue
  5101. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5102. if len(merged) == 2:
  5103. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5104. # Build token list
  5105. vocab_size = self.hparams["vocab_size"]
  5106. special_tokens = tokenizer.special_tokens
  5107. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5108. tokens: list[str] = []
  5109. toktypes: list[int] = []
  5110. for i in range(vocab_size):
  5111. if i not in reverse_vocab:
  5112. tokens.append(f"[PAD{i}]")
  5113. toktypes.append(gguf.TokenType.UNUSED)
  5114. else:
  5115. token = reverse_vocab[i]
  5116. tokens.append(token)
  5117. if i in special_tokens.values():
  5118. toktypes.append(gguf.TokenType.CONTROL)
  5119. else:
  5120. toktypes.append(gguf.TokenType.NORMAL)
  5121. self.gguf_writer.add_tokenizer_model("gpt2")
  5122. self.gguf_writer.add_tokenizer_pre(tokpre)
  5123. self.gguf_writer.add_token_list(tokens)
  5124. self.gguf_writer.add_token_types(toktypes)
  5125. self.gguf_writer.add_token_merges(merges)
  5126. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5127. special_vocab.add_to_gguf(self.gguf_writer)
  5128. else:
  5129. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5130. def set_gguf_parameters(self):
  5131. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5132. self.hparams["num_key_value_heads"] = 1
  5133. super().set_gguf_parameters()
  5134. hparams = self.hparams
  5135. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5136. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5137. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5138. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5139. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5140. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5141. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5142. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5143. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5144. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5145. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5146. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5147. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5148. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5149. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5150. if hparams["scoring_func"] == "sigmoid":
  5151. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5152. elif hparams["scoring_func"] == "softmax":
  5153. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5154. else:
  5155. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5156. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5157. rope_scaling = self.hparams.get("rope_scaling") or {}
  5158. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5159. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5160. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5161. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5162. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5163. _experts: list[dict[str, Tensor]] | None = None
  5164. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5165. # skip vision tensors and remove "language_model." for Kimi-VL
  5166. if "vision_tower" in name or "multi_modal_projector" in name:
  5167. return []
  5168. if name.startswith("language_model."):
  5169. name = name.replace("language_model.", "")
  5170. # rename e_score_correction_bias tensors
  5171. if name.endswith("e_score_correction_bias"):
  5172. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5173. # skip Multi-Token Prediction (MTP) layers
  5174. block_count = self.hparams["num_hidden_layers"]
  5175. match = re.match(r"model.layers.(\d+)", name)
  5176. if match and int(match.group(1)) >= block_count:
  5177. return []
  5178. # process the experts separately
  5179. if name.find("mlp.experts") != -1:
  5180. n_experts = self.hparams["n_routed_experts"]
  5181. assert bid is not None
  5182. if self._experts is None:
  5183. self._experts = [{} for _ in range(self.block_count)]
  5184. self._experts[bid][name] = data_torch
  5185. if len(self._experts[bid]) >= n_experts * 3:
  5186. tensors: list[tuple[str, Tensor]] = []
  5187. # merge the experts into a single 3d tensor
  5188. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5189. datas: list[Tensor] = []
  5190. for xid in range(n_experts):
  5191. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5192. datas.append(self._experts[bid][ename])
  5193. del self._experts[bid][ename]
  5194. data_torch = torch.stack(datas, dim=0)
  5195. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5196. new_name = self.map_tensor_name(merged_name)
  5197. tensors.append((new_name, data_torch))
  5198. return tensors
  5199. else:
  5200. return []
  5201. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5202. if name.endswith("kv_b_proj.weight"):
  5203. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5204. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5205. n_head_kv = self.hparams["num_key_value_heads"]
  5206. v_head_dim = self.hparams["v_head_dim"]
  5207. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5208. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5209. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5210. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5211. k_b = k_b.transpose(1, 2)
  5212. return [
  5213. (self.map_tensor_name(name_kb), k_b),
  5214. (self.map_tensor_name(name_vb), v_b)
  5215. ]
  5216. return [(self.map_tensor_name(name), data_torch)]
  5217. def prepare_tensors(self):
  5218. super().prepare_tensors()
  5219. if self._experts is not None:
  5220. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5221. experts = [k for d in self._experts for k in d.keys()]
  5222. if len(experts) > 0:
  5223. raise ValueError(f"Unprocessed experts: {experts}")
  5224. @ModelBase.register("Dots1ForCausalLM")
  5225. class Dots1Model(Qwen2MoeModel):
  5226. model_arch = gguf.MODEL_ARCH.DOTS1
  5227. def __init__(self, *args, **kwargs):
  5228. super().__init__(*args, **kwargs)
  5229. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5230. def set_gguf_parameters(self):
  5231. super().set_gguf_parameters()
  5232. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5233. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5234. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5235. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5236. if self.hparams["scoring_func"] == "noaux_tc":
  5237. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5238. else:
  5239. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5240. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5241. if name.endswith("e_score_correction_bias"):
  5242. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5243. if "shared_experts" in name:
  5244. return [(self.map_tensor_name(name), data_torch)]
  5245. return super().modify_tensors(data_torch, name, bid)
  5246. @ModelBase.register("PLMForCausalLM")
  5247. class PLMModel(TextModel):
  5248. model_arch = gguf.MODEL_ARCH.PLM
  5249. def set_vocab(self):
  5250. self._set_vocab_gpt2()
  5251. def set_gguf_parameters(self):
  5252. super().set_gguf_parameters()
  5253. hparams = self.hparams
  5254. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5255. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5256. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5257. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5258. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5259. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5260. return [(self.map_tensor_name(name), data_torch)]
  5261. def prepare_tensors(self):
  5262. super().prepare_tensors()
  5263. @ModelBase.register("T5WithLMHeadModel")
  5264. @ModelBase.register("T5ForConditionalGeneration")
  5265. @ModelBase.register("MT5ForConditionalGeneration")
  5266. @ModelBase.register("UMT5ForConditionalGeneration")
  5267. class T5Model(TextModel):
  5268. model_arch = gguf.MODEL_ARCH.T5
  5269. def __init__(self, *args, **kwargs):
  5270. super().__init__(*args, **kwargs)
  5271. self.shared_token_embeddings_found = False
  5272. def set_vocab(self):
  5273. # to avoid TypeError: Descriptors cannot be created directly
  5274. # exception when importing sentencepiece_model_pb2
  5275. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5276. from sentencepiece import SentencePieceProcessor
  5277. from sentencepiece import sentencepiece_model_pb2 as model
  5278. tokenizer_path = self.dir_model / 'tokenizer.model'
  5279. # many older models use spiece.model tokenizer model filename
  5280. if not tokenizer_path.is_file():
  5281. tokenizer_path = self.dir_model / 'spiece.model'
  5282. if not tokenizer_path.is_file():
  5283. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5284. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5285. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5286. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5287. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5288. # assure the tokenizer model file name is correct
  5289. assert tokenizer_path.name == 'tokenizer.model'
  5290. return self._set_vocab_sentencepiece()
  5291. else:
  5292. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5293. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5294. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5295. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5296. tokenizer = SentencePieceProcessor()
  5297. tokenizer.LoadFromFile(str(tokenizer_path))
  5298. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5299. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5300. scores: list[float] = [-10000.0] * vocab_size
  5301. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5302. for token_id in range(tokenizer.vocab_size()):
  5303. piece = tokenizer.IdToPiece(token_id)
  5304. text = piece.encode("utf-8")
  5305. score = tokenizer.GetScore(token_id)
  5306. toktype = SentencePieceTokenTypes.NORMAL
  5307. if tokenizer.IsUnknown(token_id):
  5308. toktype = SentencePieceTokenTypes.UNKNOWN
  5309. elif tokenizer.IsControl(token_id):
  5310. toktype = SentencePieceTokenTypes.CONTROL
  5311. elif tokenizer.IsUnused(token_id):
  5312. toktype = SentencePieceTokenTypes.UNUSED
  5313. elif tokenizer.IsByte(token_id):
  5314. toktype = SentencePieceTokenTypes.BYTE
  5315. tokens[token_id] = text
  5316. scores[token_id] = score
  5317. toktypes[token_id] = toktype
  5318. added_tokens_file = self.dir_model / 'added_tokens.json'
  5319. if added_tokens_file.is_file():
  5320. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5321. added_tokens_json = json.load(f)
  5322. for key in added_tokens_json:
  5323. token_id = added_tokens_json[key]
  5324. if token_id >= vocab_size:
  5325. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5326. continue
  5327. tokens[token_id] = key.encode("utf-8")
  5328. scores[token_id] = -1000.0
  5329. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5330. if vocab_size > len(tokens):
  5331. pad_count = vocab_size - len(tokens)
  5332. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5333. for i in range(1, pad_count + 1):
  5334. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5335. scores.append(-1000.0)
  5336. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5337. self.gguf_writer.add_tokenizer_model("t5")
  5338. self.gguf_writer.add_tokenizer_pre("default")
  5339. self.gguf_writer.add_token_list(tokens)
  5340. self.gguf_writer.add_token_scores(scores)
  5341. self.gguf_writer.add_token_types(toktypes)
  5342. self.gguf_writer.add_add_space_prefix(add_prefix)
  5343. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5344. if precompiled_charsmap:
  5345. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5346. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5347. special_vocab.add_to_gguf(self.gguf_writer)
  5348. def set_gguf_parameters(self):
  5349. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5350. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5351. n_ctx = 512
  5352. self.gguf_writer.add_context_length(n_ctx)
  5353. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5354. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5355. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5356. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5357. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5358. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5359. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5360. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5361. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5362. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5363. self.gguf_writer.add_file_type(self.ftype)
  5364. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5365. del bid # unused
  5366. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5367. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5368. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5369. # and decoder and ignore the remaining ones.
  5370. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5371. if not self.shared_token_embeddings_found:
  5372. name = "shared.weight"
  5373. self.shared_token_embeddings_found = True
  5374. else:
  5375. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5376. return []
  5377. return [(self.map_tensor_name(name), data_torch)]
  5378. @ModelBase.register("T5EncoderModel")
  5379. class T5EncoderModel(TextModel):
  5380. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5381. def __init__(self, *args, **kwargs):
  5382. super().__init__(*args, **kwargs)
  5383. self.shared_token_embeddings_found = False
  5384. def set_vocab(self):
  5385. # to avoid TypeError: Descriptors cannot be created directly
  5386. # exception when importing sentencepiece_model_pb2
  5387. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5388. from sentencepiece import SentencePieceProcessor
  5389. from sentencepiece import sentencepiece_model_pb2 as model
  5390. tokenizer_path = self.dir_model / 'tokenizer.model'
  5391. # many older models use spiece.model tokenizer model filename
  5392. if not tokenizer_path.is_file():
  5393. tokenizer_path = self.dir_model / 'spiece.model'
  5394. if not tokenizer_path.is_file():
  5395. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5396. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5397. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5398. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5399. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5400. # assure the tokenizer model file name is correct
  5401. assert tokenizer_path.name == 'tokenizer.model'
  5402. return self._set_vocab_sentencepiece()
  5403. else:
  5404. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5405. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5406. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5407. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5408. tokenizer = SentencePieceProcessor()
  5409. tokenizer.LoadFromFile(str(tokenizer_path))
  5410. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5411. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5412. scores: list[float] = [-10000.0] * vocab_size
  5413. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5414. for token_id in range(tokenizer.vocab_size()):
  5415. piece = tokenizer.IdToPiece(token_id)
  5416. text = piece.encode("utf-8")
  5417. score = tokenizer.GetScore(token_id)
  5418. toktype = SentencePieceTokenTypes.NORMAL
  5419. if tokenizer.IsUnknown(token_id):
  5420. toktype = SentencePieceTokenTypes.UNKNOWN
  5421. elif tokenizer.IsControl(token_id):
  5422. toktype = SentencePieceTokenTypes.CONTROL
  5423. elif tokenizer.IsUnused(token_id):
  5424. toktype = SentencePieceTokenTypes.UNUSED
  5425. elif tokenizer.IsByte(token_id):
  5426. toktype = SentencePieceTokenTypes.BYTE
  5427. tokens[token_id] = text
  5428. scores[token_id] = score
  5429. toktypes[token_id] = toktype
  5430. added_tokens_file = self.dir_model / 'added_tokens.json'
  5431. if added_tokens_file.is_file():
  5432. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5433. added_tokens_json = json.load(f)
  5434. for key in added_tokens_json:
  5435. token_id = added_tokens_json[key]
  5436. if token_id >= vocab_size:
  5437. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5438. continue
  5439. tokens[token_id] = key.encode("utf-8")
  5440. scores[token_id] = -1000.0
  5441. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5442. if vocab_size > len(tokens):
  5443. pad_count = vocab_size - len(tokens)
  5444. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5445. for i in range(1, pad_count + 1):
  5446. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5447. scores.append(-1000.0)
  5448. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5449. self.gguf_writer.add_tokenizer_model("t5")
  5450. self.gguf_writer.add_tokenizer_pre("default")
  5451. self.gguf_writer.add_token_list(tokens)
  5452. self.gguf_writer.add_token_scores(scores)
  5453. self.gguf_writer.add_token_types(toktypes)
  5454. self.gguf_writer.add_add_space_prefix(add_prefix)
  5455. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5456. if precompiled_charsmap:
  5457. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5458. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5459. special_vocab.add_to_gguf(self.gguf_writer)
  5460. def set_gguf_parameters(self):
  5461. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5462. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5463. n_ctx = 512
  5464. self.gguf_writer.add_context_length(n_ctx)
  5465. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5466. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5467. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5468. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5469. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5470. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5471. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5472. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5473. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5474. self.gguf_writer.add_file_type(self.ftype)
  5475. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5476. del bid # unused
  5477. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5478. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5479. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5480. # and decoder and ignore the remaining ones.
  5481. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5482. if not self.shared_token_embeddings_found:
  5483. name = "shared.weight"
  5484. self.shared_token_embeddings_found = True
  5485. else:
  5486. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5487. return []
  5488. return [(self.map_tensor_name(name), data_torch)]
  5489. @ModelBase.register("JAISLMHeadModel")
  5490. class JaisModel(TextModel):
  5491. model_arch = gguf.MODEL_ARCH.JAIS
  5492. def __init__(self, *args, **kwargs):
  5493. super().__init__(*args, **kwargs)
  5494. # SwigLU activation
  5495. assert self.hparams["activation_function"] == "swiglu"
  5496. # ALiBi position embedding
  5497. assert self.hparams["position_embedding_type"] == "alibi"
  5498. # Embeddings scale
  5499. self.embeddings_scale = 1.0
  5500. if 'mup_embeddings_scale' in self.hparams:
  5501. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5502. elif 'embeddings_scale' in self.hparams:
  5503. self.embeddings_scale = self.hparams['embeddings_scale']
  5504. else:
  5505. assert False
  5506. self.width_scale = 1.0
  5507. if 'mup_output_alpha' in self.hparams:
  5508. assert 'mup_width_scale' in self.hparams
  5509. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5510. elif 'width_scale' in self.hparams:
  5511. self.width_scale = self.hparams['width_scale']
  5512. else:
  5513. assert False
  5514. self.max_alibi_bias = 8.0
  5515. def set_vocab(self):
  5516. self._set_vocab_gpt2()
  5517. def set_gguf_parameters(self):
  5518. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5519. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5520. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5521. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5522. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5523. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5524. self.gguf_writer.add_file_type(self.ftype)
  5525. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5526. del bid # unused
  5527. tensors: list[tuple[str, Tensor]] = []
  5528. # we don't need these
  5529. if name.endswith((".attn.bias")):
  5530. return tensors
  5531. if name.endswith(("relative_pe.slopes")):
  5532. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5533. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5534. # but Jais's PyTorch model simply precalculates the slope values and places them
  5535. # in relative_pes.slopes
  5536. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5537. first_val = float(data_torch[0].item())
  5538. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5539. return tensors
  5540. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5541. data_torch = data_torch.transpose(1, 0)
  5542. new_name = self.map_tensor_name(name)
  5543. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5544. tensors.append((new_name, data_torch * self.embeddings_scale))
  5545. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5546. tensors.append((new_name, data_torch * self.width_scale))
  5547. else:
  5548. tensors.append((new_name, data_torch))
  5549. return tensors
  5550. def prepare_tensors(self):
  5551. super().prepare_tensors()
  5552. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5553. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5554. class Glm4Model(TextModel):
  5555. model_arch = gguf.MODEL_ARCH.GLM4
  5556. def set_vocab(self):
  5557. from transformers import AutoTokenizer
  5558. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5559. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5560. tokens, toktypes, tokpre = self.get_vocab_base()
  5561. self.gguf_writer.add_tokenizer_model("gpt2")
  5562. self.gguf_writer.add_tokenizer_pre(tokpre)
  5563. self.gguf_writer.add_token_list(tokens)
  5564. self.gguf_writer.add_token_types(toktypes)
  5565. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5566. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5567. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5568. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5569. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5570. special_vocab.add_to_gguf(self.gguf_writer)
  5571. def set_gguf_parameters(self):
  5572. super().set_gguf_parameters()
  5573. if (rope_dim := self.hparams.get("head_dim")) is None:
  5574. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5575. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5576. rope_scaling = self.hparams.get("rope_scaling") or {}
  5577. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5578. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5579. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5580. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5581. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5582. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5583. return []
  5584. elif name.startswith("model.language_model."):
  5585. name = name.replace("language_model.", "") # for Glm4v
  5586. return super().modify_tensors(data_torch, name, bid)
  5587. @ModelBase.register("Glm4MoeForCausalLM")
  5588. class Glm4MoeModel(TextModel):
  5589. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5590. def __init__(self, *args, **kwargs):
  5591. super().__init__(*args, **kwargs)
  5592. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5593. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5594. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5595. def set_vocab(self):
  5596. from transformers import AutoTokenizer
  5597. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5598. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5599. tokens, toktypes, tokpre = self.get_vocab_base()
  5600. self.gguf_writer.add_tokenizer_model("gpt2")
  5601. self.gguf_writer.add_tokenizer_pre(tokpre)
  5602. self.gguf_writer.add_token_list(tokens)
  5603. self.gguf_writer.add_token_types(toktypes)
  5604. # Special tokens
  5605. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5606. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5607. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5608. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5609. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5610. # Patch broken chat template
  5611. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5612. special_vocab.chat_template = special_vocab.chat_template.replace(
  5613. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5614. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5615. special_vocab.add_to_gguf(self.gguf_writer)
  5616. def set_gguf_parameters(self):
  5617. super().set_gguf_parameters()
  5618. if (rope_dim := self.hparams.get("head_dim")) is None:
  5619. rope_dim = (
  5620. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5621. )
  5622. self.gguf_writer.add_rope_dimension_count(
  5623. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5624. )
  5625. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5626. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5627. self.gguf_writer.add_expert_count(n_routed_experts)
  5628. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5629. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5630. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5631. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5632. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5633. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5634. # Expert gating function (sigmoid for GLM4_MOE)
  5635. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5636. # Routed scaling factor
  5637. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5638. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5639. # Normalise topk probabilities
  5640. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5641. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5642. # NextN/MTP prediction layers
  5643. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5644. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5645. _experts: list[dict[str, Tensor]] | None = None
  5646. def modify_tensors(
  5647. self, data_torch: Tensor, name: str, bid: int | None
  5648. ) -> Iterable[tuple[str, Tensor]]:
  5649. if name.startswith("model.visual."): # ignore visual part
  5650. return []
  5651. elif name.startswith("model.language_model."):
  5652. name = name.replace("language_model.", "") # for multimodal variants
  5653. # Handle main token embedding (but not layer-specific NextN embeddings)
  5654. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5655. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5656. # Handle routed experts
  5657. if name.find("mlp.experts") != -1:
  5658. n_experts = self.hparams["n_routed_experts"]
  5659. assert bid is not None
  5660. if self._experts is None:
  5661. self._experts = [{} for _ in range(self.block_count)]
  5662. self._experts[bid][name] = data_torch
  5663. if len(self._experts[bid]) >= n_experts * 3:
  5664. tensors: list[tuple[str, Tensor]] = []
  5665. # merge the experts into a single 3d tensor
  5666. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5667. datas: list[Tensor] = []
  5668. for xid in range(n_experts):
  5669. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5670. datas.append(self._experts[bid][ename])
  5671. del self._experts[bid][ename]
  5672. data_torch = torch.stack(datas, dim=0)
  5673. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5674. new_name = self.map_tensor_name(merged_name)
  5675. tensors.append((new_name, data_torch))
  5676. return tensors
  5677. else:
  5678. return []
  5679. if name.endswith("e_score_correction_bias"):
  5680. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5681. new_name = self.map_tensor_name(name)
  5682. return [(new_name, data_torch)]
  5683. def prepare_tensors(self):
  5684. super().prepare_tensors()
  5685. if self._experts is not None:
  5686. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5687. experts = [k for d in self._experts for k in d.keys()]
  5688. if len(experts) > 0:
  5689. raise ValueError(f"Unprocessed experts: {experts}")
  5690. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5691. class ChatGLMModel(TextModel):
  5692. model_arch = gguf.MODEL_ARCH.CHATGLM
  5693. def set_vocab_chatglm3(self):
  5694. dir_model = self.dir_model
  5695. hparams = self.hparams
  5696. tokens: list[bytes] = []
  5697. toktypes: list[int] = []
  5698. scores: list[float] = []
  5699. from transformers import AutoTokenizer
  5700. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5701. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5702. assert max(tokenizer.get_vocab().values()) < vocab_size
  5703. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5704. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5705. for token_id in range(vocab_size):
  5706. piece = tokenizer._convert_id_to_token(token_id)
  5707. if token_id == 0:
  5708. piece = "<unk>"
  5709. elif token_id == 1:
  5710. piece = "<bos>"
  5711. elif token_id == 2:
  5712. piece = "<eos>"
  5713. text = piece.encode("utf-8")
  5714. score = 0.0
  5715. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5716. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5717. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5718. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5719. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5720. if piece in special_tokens:
  5721. toktype = SentencePieceTokenTypes.CONTROL
  5722. elif len(piece) == 0:
  5723. text = f"[PAD{token_id}]".encode("utf-8")
  5724. toktype = SentencePieceTokenTypes.UNUSED
  5725. else:
  5726. toktype = SentencePieceTokenTypes.USER_DEFINED
  5727. tokens.append(text)
  5728. scores.append(score)
  5729. toktypes.append(toktype)
  5730. continue
  5731. toktype = SentencePieceTokenTypes.NORMAL
  5732. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5733. toktype = SentencePieceTokenTypes.UNKNOWN
  5734. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5735. toktype = SentencePieceTokenTypes.CONTROL
  5736. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5737. toktype = SentencePieceTokenTypes.UNUSED
  5738. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5739. toktype = SentencePieceTokenTypes.BYTE
  5740. tokens.append(text)
  5741. scores.append(score)
  5742. toktypes.append(toktype)
  5743. self.gguf_writer.add_tokenizer_model("llama")
  5744. # glm3 needs prefix and suffix formatted as:
  5745. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5746. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5747. self.gguf_writer.add_token_list(tokens)
  5748. self.gguf_writer.add_token_scores(scores)
  5749. self.gguf_writer.add_token_types(toktypes)
  5750. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5751. special_vocab.add_to_gguf(self.gguf_writer)
  5752. @staticmethod
  5753. def token_bytes_to_string(b):
  5754. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5755. byte_encoder = bytes_to_unicode()
  5756. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5757. @staticmethod
  5758. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5759. parts = [bytes([b]) for b in token]
  5760. while True:
  5761. min_idx = None
  5762. min_rank = None
  5763. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5764. rank = mergeable_ranks.get(pair[0] + pair[1])
  5765. if rank is not None and (min_rank is None or rank < min_rank):
  5766. min_idx = i
  5767. min_rank = rank
  5768. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5769. break
  5770. assert min_idx is not None
  5771. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5772. return parts
  5773. def set_vocab(self):
  5774. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5775. self.set_vocab_chatglm3()
  5776. return
  5777. dir_model = self.dir_model
  5778. hparams = self.hparams
  5779. tokens: list[str] = []
  5780. toktypes: list[int] = []
  5781. from transformers import AutoTokenizer
  5782. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5783. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5784. assert max(tokenizer.get_vocab().values()) < vocab_size
  5785. tokens, toktypes, tokpre = self.get_vocab_base()
  5786. self.gguf_writer.add_tokenizer_model("gpt2")
  5787. self.gguf_writer.add_tokenizer_pre(tokpre)
  5788. self.gguf_writer.add_token_list(tokens)
  5789. self.gguf_writer.add_token_types(toktypes)
  5790. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5791. # only add special tokens when they were not already loaded from config.json
  5792. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5793. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5794. # this one is usually not in config.json anyway
  5795. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5796. special_vocab.add_to_gguf(self.gguf_writer)
  5797. def set_gguf_parameters(self):
  5798. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5799. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5800. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5801. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5802. self.gguf_writer.add_embedding_length(n_embed)
  5803. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5804. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5805. self.gguf_writer.add_head_count(n_head)
  5806. self.gguf_writer.add_head_count_kv(n_head_kv)
  5807. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5808. self.gguf_writer.add_file_type(self.ftype)
  5809. if "attention_dim" in self.hparams:
  5810. rope_dim = self.hparams["attention_dim"]
  5811. else:
  5812. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5813. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5814. self.gguf_writer.add_add_bos_token(False)
  5815. rope_freq = 10000
  5816. if "rope_ratio" in self.hparams:
  5817. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5818. self.gguf_writer.add_rope_freq_base(rope_freq)
  5819. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5820. del bid # unused
  5821. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5822. return []
  5823. name = name.removeprefix("transformer.")
  5824. return [(self.map_tensor_name(name), data_torch)]
  5825. @ModelBase.register("NemotronForCausalLM")
  5826. class NemotronModel(TextModel):
  5827. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5828. def set_vocab(self):
  5829. self._set_vocab_sentencepiece()
  5830. self.gguf_writer.add_pad_token_id(0)
  5831. self.gguf_writer.add_unk_token_id(1)
  5832. def set_gguf_parameters(self):
  5833. super().set_gguf_parameters()
  5834. hparams = self.hparams
  5835. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5836. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5837. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5838. # * Partial RoPE
  5839. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5840. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5841. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5842. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5843. # * RopeScaling for Nemotron
  5844. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5845. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5846. else:
  5847. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5848. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5849. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5850. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5851. # model.layers.{l}.input_layernorm.weight
  5852. # model.layers.{l}.post_attention_layernorm.weight
  5853. # model.norm.weight
  5854. if name.endswith("norm.weight"):
  5855. data_torch = data_torch + 1
  5856. return [(self.map_tensor_name(name), data_torch)]
  5857. @ModelBase.register("ExaoneForCausalLM")
  5858. class ExaoneModel(TextModel):
  5859. model_arch = gguf.MODEL_ARCH.EXAONE
  5860. def set_gguf_parameters(self):
  5861. hparams = self.hparams
  5862. assert (hparams["activation_function"] == "silu")
  5863. max_position_embeddings = hparams["max_position_embeddings"]
  5864. embed_dim = hparams["hidden_size"]
  5865. num_heads = hparams["num_attention_heads"]
  5866. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5867. layer_norm_eps = hparams["layer_norm_epsilon"]
  5868. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5869. num_layers = hparams["num_layers"]
  5870. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5871. # attention_dropout_rate = hparams["attention_dropout"]
  5872. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5873. # embed_dropout_rate = hparams["embed_dropout"]
  5874. self.gguf_writer.add_embedding_length(embed_dim)
  5875. self.gguf_writer.add_head_count(num_heads)
  5876. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5877. self.gguf_writer.add_context_length(max_position_embeddings)
  5878. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5879. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5880. self.gguf_writer.add_block_count(num_layers)
  5881. self.gguf_writer.add_file_type(self.ftype)
  5882. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5883. self.gguf_writer.add_rope_freq_base(rope_theta)
  5884. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5885. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5886. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5887. rope_scaling = self.hparams.get("rope_scaling") or {}
  5888. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5889. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5890. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5891. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5892. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5893. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5894. base = self.hparams.get("rope_theta", 10000.0)
  5895. if (dim := self.hparams.get("head_dim")) is None:
  5896. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5897. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5898. factor = rope_scaling.get("factor", 8.0)
  5899. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5900. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5901. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5902. low_freq_wavelen = old_context_len / low_freq_factor
  5903. high_freq_wavelen = old_context_len / high_freq_factor
  5904. assert low_freq_wavelen != high_freq_wavelen
  5905. rope_factors = []
  5906. for freq in freqs:
  5907. wavelen = 2 * math.pi / freq
  5908. if wavelen < high_freq_wavelen:
  5909. rope_factors.append(1)
  5910. elif wavelen > low_freq_wavelen:
  5911. rope_factors.append(factor)
  5912. else:
  5913. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5914. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5915. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5916. @ModelBase.register("Exaone4ForCausalLM")
  5917. class Exaone4Model(TextModel):
  5918. model_arch = gguf.MODEL_ARCH.EXAONE4
  5919. def set_vocab(self):
  5920. tokens, toktypes, tokpre = self.get_vocab_base()
  5921. self.gguf_writer.add_tokenizer_model("gpt2")
  5922. self.gguf_writer.add_tokenizer_pre(tokpre)
  5923. self.gguf_writer.add_token_list(tokens)
  5924. self.gguf_writer.add_token_types(toktypes)
  5925. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5926. special_vocab.add_to_gguf(self.gguf_writer)
  5927. def set_gguf_parameters(self):
  5928. super().set_gguf_parameters()
  5929. hparams = self.hparams
  5930. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5931. if hparams.get("sliding_window") is not None:
  5932. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  5933. if "layer_types" in hparams:
  5934. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  5935. elif "sliding_window_pattern" in hparams:
  5936. sliding_window_pattern = []
  5937. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  5938. for i in range(hparams["num_hidden_layers"]):
  5939. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  5940. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  5941. for i in range(hparams["num_hidden_layers"]):
  5942. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  5943. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  5944. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5945. rope_scaling = self.hparams.get("rope_scaling") or {}
  5946. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5947. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5948. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5949. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5950. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5951. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5952. base = self.hparams.get("rope_theta", 10_000.0)
  5953. if (dim := self.hparams.get("head_dim")) is None:
  5954. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5955. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5956. factor = rope_scaling.get("factor", 16.0)
  5957. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5958. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5959. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5960. low_freq_wavelen = old_context_len / low_freq_factor
  5961. high_freq_wavelen = old_context_len / high_freq_factor
  5962. rope_factors = []
  5963. for freq in freqs:
  5964. wavelen = 2 * math.pi / freq
  5965. if wavelen < high_freq_wavelen:
  5966. rope_factors.append(1)
  5967. elif wavelen > low_freq_wavelen:
  5968. rope_factors.append(factor)
  5969. else:
  5970. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5971. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5972. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5973. @ModelBase.register("GraniteForCausalLM")
  5974. class GraniteModel(LlamaModel):
  5975. """Conversion for IBM's GraniteForCausalLM"""
  5976. model_arch = gguf.MODEL_ARCH.GRANITE
  5977. def set_gguf_parameters(self):
  5978. """Granite uses standard llama parameters with the following differences:
  5979. - No head_dim support
  5980. - New multiplier params:
  5981. - attention_scale
  5982. - embedding_scale
  5983. - residual_scale
  5984. - logits_scaling
  5985. """
  5986. if head_dim := self.hparams.pop("head_dim", None):
  5987. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5988. super().set_gguf_parameters()
  5989. # NOTE: Convert _multiplier params to _scale params for naming
  5990. # consistency
  5991. if attention_scale := self.hparams.get("attention_multiplier"):
  5992. self.gguf_writer.add_attention_scale(attention_scale)
  5993. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5994. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5995. self.gguf_writer.add_embedding_scale(embedding_scale)
  5996. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5997. if residual_scale := self.hparams.get("residual_multiplier"):
  5998. self.gguf_writer.add_residual_scale(residual_scale)
  5999. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6000. if logits_scale := self.hparams.get("logits_scaling"):
  6001. self.gguf_writer.add_logit_scale(logits_scale)
  6002. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6003. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6004. class GraniteMoeModel(GraniteModel):
  6005. """Conversion for IBM's GraniteMoeForCausalLM"""
  6006. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6007. def set_gguf_parameters(self):
  6008. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6009. - shared_intermediate_size
  6010. """
  6011. super().set_gguf_parameters()
  6012. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6013. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6014. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6015. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6016. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6017. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6018. the hidden size that is then split during forward. To keep compatibility
  6019. with existing mixtral support, we pull them apart here.
  6020. """
  6021. if name.endswith("block_sparse_moe.input_linear.weight"):
  6022. ffn_dim = self.hparams["intermediate_size"]
  6023. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6024. gate, up = data_torch.split(ffn_dim, dim=-2)
  6025. return [
  6026. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6027. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6028. ]
  6029. has_experts = bool(self.hparams.get('num_local_experts'))
  6030. if name.endswith("shared_mlp.input_linear.weight"):
  6031. ffn_dim = self.hparams["shared_intermediate_size"]
  6032. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6033. gate, up = data_torch.split(ffn_dim, dim=-2)
  6034. if has_experts:
  6035. return [
  6036. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6037. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6038. ]
  6039. return [
  6040. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6041. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6042. ]
  6043. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6044. return [
  6045. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6046. ]
  6047. return super().modify_tensors(data_torch, name, bid)
  6048. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6049. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6050. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6051. layers and optionally uses MoE w/ a shared expert"""
  6052. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6053. undo_permute = True
  6054. def __init__(self, *args, **kwargs):
  6055. # Hybrid mamba models use a prefix for the mamba-specific params.
  6056. # TODO: Extend this if the prefix(es) need to be configurable
  6057. self.hparam_prefixes = ["mamba"]
  6058. super().__init__(*args, **kwargs)
  6059. # Lists of which layers use ssm vs attention
  6060. self._attn_layers = self.get_attn_layers()
  6061. self._ssm_layers = [
  6062. i for i in range(self.block_count)
  6063. if i not in self._attn_layers
  6064. ]
  6065. # n_group and d_inner are used during reshape_tensors for mamba2
  6066. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  6067. self.n_group = self.find_hparam(["n_groups"])
  6068. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  6069. def get_attn_layers(self):
  6070. # Explicit list of layer type names
  6071. if layer_types := self.hparams.get("layer_types"):
  6072. return [
  6073. i for i, typ in enumerate(layer_types)
  6074. if typ == "attention"
  6075. ]
  6076. # Layer types indicated by index or period
  6077. attn_layers = self.hparams.get("attn_layer_indices", [])
  6078. if not attn_layers:
  6079. attn_period = self.hparams.get("attn_layer_period")
  6080. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6081. attn_offset = self.hparams.get("attn_layer_offset")
  6082. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6083. attn_layers = [
  6084. i for i in range(self.block_count)
  6085. if i % attn_period == attn_offset
  6086. ]
  6087. return attn_layers
  6088. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6089. prefixed = []
  6090. for pfx in self.hparam_prefixes:
  6091. prefixed.extend(
  6092. "_".join([pfx, k])
  6093. for k in keys
  6094. )
  6095. keys = list(keys) + prefixed
  6096. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6097. def modify_tensors(
  6098. self, data_torch: Tensor, name: str, bid: int | None
  6099. ) -> Iterable[tuple[str, Tensor]]:
  6100. if (
  6101. name.endswith("block_sparse_moe.input_linear.weight")
  6102. or "shared_mlp" in name
  6103. ):
  6104. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6105. # Determine whether this is a mamba layer or an attention layer
  6106. if bid in self._ssm_layers:
  6107. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6108. elif bid in self._attn_layers:
  6109. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6110. return [(self.map_tensor_name(name), data_torch)]
  6111. def set_gguf_parameters(self):
  6112. """This method merges params from both parents and some that are
  6113. specific to this model. The result is some duplication of how the params
  6114. get set. The following warnings are expected during conversion:
  6115. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6116. WARNING:Duplicated key name 'granitehybrid.context_length'
  6117. """
  6118. GraniteMoeModel.set_gguf_parameters(self)
  6119. ## Mamba mixer params ##
  6120. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6121. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  6122. self.gguf_writer.add_ssm_group_count(self.n_group)
  6123. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6124. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6125. # in llama.cpp
  6126. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  6127. ## Attention params ##
  6128. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6129. head_count_kv_vec = [
  6130. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6131. ]
  6132. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6133. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6134. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6135. ## If Bamba, use rope, otherwise don't
  6136. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  6137. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6138. if not use_rope:
  6139. self.gguf_writer.add_context_length(2**20)
  6140. ## Validation ##
  6141. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6142. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6143. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6144. def set_vocab(self):
  6145. self.hparams["pad_vocab_size_multiple"] = 8
  6146. Mamba2Model.set_vocab(self)
  6147. @ModelBase.register("BailingMoeForCausalLM")
  6148. class BailingMoeModel(TextModel):
  6149. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6150. def set_vocab(self):
  6151. self._set_vocab_gpt2()
  6152. def set_gguf_parameters(self):
  6153. super().set_gguf_parameters()
  6154. hparams = self.hparams
  6155. if (rope_dim := hparams.get("head_dim")) is None:
  6156. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6157. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6158. rope_scaling = self.hparams.get("rope_scaling") or {}
  6159. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6160. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6161. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6162. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6163. else:
  6164. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6165. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6166. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6167. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6168. self.gguf_writer.add_expert_weights_scale(1.0)
  6169. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6170. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6171. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6172. _experts: list[dict[str, Tensor]] | None = None
  6173. @staticmethod
  6174. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6175. if n_head_kv is not None and n_head != n_head_kv:
  6176. n_head = n_head_kv
  6177. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6178. .swapaxes(1, 2)
  6179. .reshape(weights.shape))
  6180. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6181. n_head = self.hparams["num_attention_heads"]
  6182. n_kv_head = self.hparams.get("num_key_value_heads")
  6183. n_embd = self.hparams["hidden_size"]
  6184. if (head_dim := self.hparams.get("head_dim")) is None:
  6185. head_dim = n_embd // n_head
  6186. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6187. if name.endswith("attention.dense.weight"):
  6188. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6189. elif name.endswith("query_key_value.weight"):
  6190. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6191. return [
  6192. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6193. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6194. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6195. ]
  6196. elif name.find("mlp.experts") != -1:
  6197. n_experts = self.hparams["num_experts"]
  6198. assert bid is not None
  6199. tensors: list[tuple[str, Tensor]] = []
  6200. if self._experts is None:
  6201. self._experts = [{} for _ in range(self.block_count)]
  6202. self._experts[bid][name] = data_torch
  6203. if len(self._experts[bid]) >= n_experts * 3:
  6204. # merge the experts into a single 3d tensor
  6205. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6206. datas: list[Tensor] = []
  6207. for xid in range(n_experts):
  6208. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6209. datas.append(self._experts[bid][ename])
  6210. del self._experts[bid][ename]
  6211. data_torch = torch.stack(datas, dim=0)
  6212. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6213. new_name = self.map_tensor_name(merged_name)
  6214. tensors.append((new_name, data_torch))
  6215. return tensors
  6216. new_name = self.map_tensor_name(name)
  6217. if new_name == output_name and self.hparams.get("norm_head"):
  6218. data_torch = data_torch.float()
  6219. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6220. return [(new_name, data_torch)]
  6221. def prepare_tensors(self):
  6222. super().prepare_tensors()
  6223. if self._experts is not None:
  6224. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6225. experts = [k for d in self._experts for k in d.keys()]
  6226. if len(experts) > 0:
  6227. raise ValueError(f"Unprocessed experts: {experts}")
  6228. @ModelBase.register("ChameleonForConditionalGeneration")
  6229. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6230. class ChameleonModel(TextModel):
  6231. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6232. def set_gguf_parameters(self):
  6233. super().set_gguf_parameters()
  6234. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6235. def set_vocab(self):
  6236. self._set_vocab_gpt2()
  6237. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6238. # ignore image tokenizer for now
  6239. # TODO: remove this once image support is implemented for Chameleon
  6240. if name.startswith("model.vqmodel"):
  6241. return []
  6242. n_head = self.hparams["num_attention_heads"]
  6243. n_kv_head = self.hparams.get("num_key_value_heads")
  6244. hidden_dim = self.hparams.get("hidden_size")
  6245. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6246. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6247. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6248. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6249. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6250. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6251. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6252. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6253. return [(self.map_tensor_name(name), data_torch)]
  6254. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6255. @staticmethod
  6256. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6257. head_dim = hidden_dim // n_heads
  6258. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6259. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6260. return data_torch
  6261. @ModelBase.register("UltravoxModel")
  6262. class UltravoxModel(TextModel):
  6263. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6264. def __init__(self, *args, **kwargs):
  6265. super().__init__(*args, **kwargs)
  6266. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6267. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6268. class WhisperEncoderModel(MmprojModel):
  6269. has_vision_encoder = False # no vision encoder
  6270. has_audio_encoder = True
  6271. def __init__(self, *args, **kwargs):
  6272. super().__init__(*args, **kwargs)
  6273. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6274. self.hparams["hidden_size"] = self.hparams["d_model"]
  6275. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6276. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6277. def set_gguf_parameters(self):
  6278. super().set_gguf_parameters()
  6279. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6280. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6281. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6282. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6283. if ".conv" in name and ".weight" in name:
  6284. return gguf.GGMLQuantizationType.F16
  6285. return super().tensor_force_quant(name, new_name, bid, n_dims)
  6286. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6287. del bid # unused
  6288. if name.startswith("language_model."):
  6289. # skip language model tensors
  6290. return []
  6291. # prevent clash naming with vision tensors
  6292. if name.startswith("multi_modal_projector"):
  6293. name = "audio." + name
  6294. if "conv1.bias" in name or "conv2.bias" in name:
  6295. # transpose conv1 and conv2 bias
  6296. data_torch = data_torch.unsqueeze(-1)
  6297. return [(self.map_tensor_name(name), data_torch)]
  6298. @ModelBase.register("UltravoxModel")
  6299. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6300. has_vision_encoder = False # no vision encoder
  6301. has_audio_encoder = True
  6302. def set_gguf_parameters(self):
  6303. super().set_gguf_parameters()
  6304. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6305. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6306. @ModelBase.register("VoxtralForConditionalGeneration")
  6307. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6308. has_vision_encoder = False # no vision encoder
  6309. has_audio_encoder = True
  6310. def set_gguf_parameters(self):
  6311. super().set_gguf_parameters()
  6312. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6313. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6314. @ModelBase.register("FalconH1ForCausalLM")
  6315. class FalconH1Model(Mamba2Model):
  6316. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6317. def __init__(self, *args, **kwargs):
  6318. # Set the hparam prefixes for Falcon Mamba2
  6319. self.hparam_prefixes = ["mamba"]
  6320. # Initialize the base Mamba2Model
  6321. super().__init__(*args, **kwargs)
  6322. # Use Llama conversion for attention
  6323. self._transformer_model_class = LlamaModel
  6324. # n_group and d_inner are used during reshape_tensors for mamba2
  6325. self.n_group = self.find_hparam(["n_groups"])
  6326. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6327. self.d_head = self.find_hparam(["d_head"])
  6328. # Initialize any Falcon Mamba2 specific attributes
  6329. self.has_attention = True # Falcon Mamba2 has attention components
  6330. # Load Falcon-H1 multipliers from hyperparameters
  6331. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6332. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6333. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6334. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6335. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6336. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6337. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6338. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6339. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6340. prefixed = []
  6341. for pfx in self.hparam_prefixes:
  6342. prefixed.extend(
  6343. "_".join([pfx, k])
  6344. for k in keys
  6345. )
  6346. keys = list(keys) + prefixed
  6347. return super().find_hparam(keys, *args, **kwargs)
  6348. def set_vocab(self):
  6349. self._set_vocab_gpt2()
  6350. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6351. tensors = list(super().modify_tensors(data_torch, name, bid))
  6352. tensor = tensors[0][1]
  6353. if "down_proj" in name:
  6354. tensor = tensor * self.mlp_multipliers[1]
  6355. elif "gate_proj" in name:
  6356. tensor = tensor * self.mlp_multipliers[0]
  6357. elif "k_proj" in name:
  6358. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6359. elif "q_proj" in name:
  6360. tensor = tensor * self.attention_in_multiplier
  6361. elif "v_proj" in name:
  6362. tensor = tensor * self.attention_in_multiplier
  6363. elif "o_proj" in name:
  6364. tensor = tensor * self.attention_out_multiplier
  6365. elif "out_proj" in name:
  6366. tensor = tensor * self.ssm_out_multiplier
  6367. elif "in_proj" in name:
  6368. tensor = tensor * self.ssm_in_multiplier
  6369. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6370. intermediate_size = self.hparams["mamba_d_ssm"]
  6371. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6372. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6373. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6374. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6375. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6376. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6377. elif "lm_head" in name:
  6378. tensor = tensor * self.hparams["lm_head_multiplier"]
  6379. elif "embed_tokens" in name:
  6380. tensor = tensor * self.hparams["embedding_multiplier"]
  6381. elif "mamba.norm" in name:
  6382. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6383. tensors = [(tensors[0][0], tensor)]
  6384. return tensors
  6385. def set_gguf_parameters(self):
  6386. super().set_gguf_parameters()
  6387. ## General Params ##
  6388. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6389. # Override some Mamba2 defaults
  6390. self.gguf_writer.add_block_count(self.block_count)
  6391. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6392. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6393. ## Attention params ##
  6394. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6395. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6396. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6397. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6398. ## Validation ##
  6399. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6400. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6401. # Add any other Falcon Mamba2 specific configuration
  6402. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6403. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6404. class HunYuanMoEModel(TextModel):
  6405. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6406. def set_vocab(self):
  6407. from transformers import AutoTokenizer
  6408. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6409. # 1. Get the pre-tokenizer identifier hash
  6410. tokpre = self.get_vocab_base_pre(tokenizer)
  6411. # 2. Reverse-engineer the merges list from mergeable_ranks
  6412. merges = []
  6413. vocab = {}
  6414. mergeable_ranks = tokenizer.mergeable_ranks
  6415. for token, rank in mergeable_ranks.items():
  6416. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6417. if len(token) == 1:
  6418. continue
  6419. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6420. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6421. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6422. # 3. Generate the tokens and toktypes lists
  6423. vocab_size = self.hparams["vocab_size"]
  6424. assert tokenizer.vocab_size == vocab_size
  6425. special_tokens = tokenizer.special_tokens
  6426. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6427. tokens: list[str] = []
  6428. toktypes: list[int] = []
  6429. for i in range(vocab_size):
  6430. if i not in reverse_vocab:
  6431. tokens.append(f"[PAD{i}]")
  6432. toktypes.append(gguf.TokenType.UNUSED)
  6433. else:
  6434. token = reverse_vocab[i]
  6435. tokens.append(token)
  6436. if i in special_tokens.values():
  6437. toktypes.append(gguf.TokenType.CONTROL)
  6438. else:
  6439. toktypes.append(gguf.TokenType.NORMAL)
  6440. # 4. Write all vocab-related fields to the GGUF writer
  6441. self.gguf_writer.add_tokenizer_model("gpt2")
  6442. self.gguf_writer.add_tokenizer_pre(tokpre)
  6443. self.gguf_writer.add_token_list(tokens)
  6444. self.gguf_writer.add_token_types(toktypes)
  6445. self.gguf_writer.add_token_merges(merges)
  6446. # 5. Add special tokens and chat templates
  6447. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6448. special_vocab.add_to_gguf(self.gguf_writer)
  6449. # FIX for BOS token: Overwrite incorrect id read from config.json
  6450. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6451. def set_gguf_parameters(self):
  6452. super().set_gguf_parameters()
  6453. hparams = self.hparams
  6454. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6455. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6456. moe_intermediate_size = hparams["moe_intermediate_size"]
  6457. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6458. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6459. moe_topk = hparams["moe_topk"]
  6460. assert all(topk == moe_topk[0] for topk in moe_topk)
  6461. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6462. moe_shared_expert = hparams["num_shared_expert"]
  6463. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6464. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6465. # Rope
  6466. rope_scaling = hparams.get("rope_scaling", {})
  6467. if rope_scaling.get("type") == "dynamic":
  6468. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6469. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6470. alpha = rope_scaling.get("alpha", 1000)
  6471. base = hparams.get("rope_theta", 10000.0)
  6472. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6473. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6474. self.gguf_writer.add_rope_freq_base(scaled_base)
  6475. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6476. self.gguf_writer.add_rope_scaling_factor(1)
  6477. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6478. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6479. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6480. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6481. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6482. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6483. _experts: list[dict[str, Tensor]] | None = None
  6484. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6485. if name == "lm_head.weight":
  6486. if self.hparams.get("tie_word_embeddings", False):
  6487. logger.info("Skipping tied output layer 'lm_head.weight'")
  6488. return []
  6489. if name.find("mlp.experts") != -1:
  6490. n_experts = self.hparams["num_experts"]
  6491. assert bid is not None
  6492. if self._experts is None:
  6493. self._experts = [{} for _ in range(self.block_count)]
  6494. self._experts[bid][name] = data_torch
  6495. if len(self._experts[bid]) >= n_experts * 3:
  6496. # merge the experts into a single 3d tensor
  6497. tensors: list[tuple[str, Tensor]] = []
  6498. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6499. datas: list[Tensor] = []
  6500. for xid in range(n_experts):
  6501. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6502. datas.append(self._experts[bid][ename])
  6503. del self._experts[bid][ename]
  6504. data_torch = torch.stack(datas, dim=0)
  6505. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6506. new_name = self.map_tensor_name(merged_name)
  6507. tensors.append((new_name, data_torch))
  6508. return tensors
  6509. else:
  6510. return []
  6511. return [(self.map_tensor_name(name), data_torch)]
  6512. def prepare_tensors(self):
  6513. super().prepare_tensors()
  6514. if self._experts is not None:
  6515. experts = [k for d in self._experts for k in d.keys()]
  6516. if len(experts) > 0:
  6517. raise ValueError(f"Unprocessed experts: {experts}")
  6518. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6519. class HunYuanModel(TextModel):
  6520. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6521. def set_vocab(self):
  6522. if (self.dir_model / "tokenizer.json").is_file():
  6523. self._set_vocab_gpt2()
  6524. else:
  6525. from transformers import AutoTokenizer
  6526. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6527. # 1. Get the pre-tokenizer identifier hash
  6528. tokpre = self.get_vocab_base_pre(tokenizer)
  6529. # 2. Reverse-engineer the merges list from mergeable_ranks
  6530. merges = []
  6531. vocab = {}
  6532. mergeable_ranks = tokenizer.mergeable_ranks
  6533. for token, rank in mergeable_ranks.items():
  6534. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6535. if len(token) == 1:
  6536. continue
  6537. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6538. if len(merged) == 2:
  6539. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6540. # 3. Generate the tokens and toktypes lists
  6541. vocab_size = self.hparams["vocab_size"]
  6542. assert tokenizer.vocab_size == vocab_size
  6543. special_tokens = tokenizer.special_tokens
  6544. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6545. tokens: list[str] = []
  6546. toktypes: list[int] = []
  6547. for i in range(vocab_size):
  6548. if i not in reverse_vocab:
  6549. tokens.append(f"[PAD{i}]")
  6550. toktypes.append(gguf.TokenType.UNUSED)
  6551. else:
  6552. token = reverse_vocab[i]
  6553. tokens.append(token)
  6554. if i in special_tokens.values():
  6555. toktypes.append(gguf.TokenType.CONTROL)
  6556. else:
  6557. toktypes.append(gguf.TokenType.NORMAL)
  6558. # 4. Write all vocab-related fields to the GGUF writer
  6559. self.gguf_writer.add_tokenizer_model("gpt2")
  6560. self.gguf_writer.add_tokenizer_pre(tokpre)
  6561. self.gguf_writer.add_token_list(tokens)
  6562. self.gguf_writer.add_token_types(toktypes)
  6563. self.gguf_writer.add_token_merges(merges)
  6564. # 5. Add special tokens and chat templates
  6565. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6566. special_vocab.add_to_gguf(self.gguf_writer)
  6567. # FIX for BOS token: Overwrite incorrect id read from config.json
  6568. if self.hparams['hidden_size'] == 4096:
  6569. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6570. def set_gguf_parameters(self):
  6571. super().set_gguf_parameters()
  6572. hparams = self.hparams
  6573. # Rope
  6574. rope_scaling = hparams.get("rope_scaling", {})
  6575. if rope_scaling.get("type") == "dynamic":
  6576. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6577. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6578. alpha = rope_scaling.get("alpha", 50)
  6579. base = hparams.get("rope_theta", 10000.0)
  6580. dim = hparams["head_dim"]
  6581. scaled_base = base * (alpha ** (dim / (dim - 2)))
  6582. self.gguf_writer.add_rope_freq_base(scaled_base)
  6583. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6584. self.gguf_writer.add_rope_scaling_factor(1)
  6585. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6586. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6587. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6588. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6589. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6590. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6591. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6592. if name == "lm_head.weight":
  6593. if self.hparams.get("tie_word_embeddings", False):
  6594. logger.info("Skipping tied output layer 'lm_head.weight'")
  6595. return []
  6596. return [(self.map_tensor_name(name), data_torch)]
  6597. @ModelBase.register("SmolLM3ForCausalLM")
  6598. class SmolLM3Model(LlamaModel):
  6599. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6600. def set_vocab(self):
  6601. super().set_vocab()
  6602. # remove unsupported array slicing in chat template
  6603. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6604. from transformers import AutoTokenizer
  6605. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6606. if tokenizer.chat_template is not None:
  6607. chat_template = tokenizer.chat_template.replace("[:]", "")
  6608. self.gguf_writer.add_chat_template(chat_template)
  6609. @ModelBase.register("GptOssForCausalLM")
  6610. class GptOssModel(TextModel):
  6611. model_arch = gguf.MODEL_ARCH.GPT_OSS
  6612. def transform_nibble_layout(self, tensor):
  6613. assert tensor.dtype == torch.uint8
  6614. assert tensor.shape[-1] == 16
  6615. # swap nibbles
  6616. t_lo = tensor & 0x0F
  6617. t_hi = tensor & 0xF0
  6618. t_swapped = (t_lo << 4) | (t_hi >> 4)
  6619. tensor = t_swapped
  6620. # transform aaaa...bbbb... to abababab...
  6621. blk_a, blk_b = tensor.chunk(2, dim=-1)
  6622. # get a_
  6623. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  6624. blk_a1 = (blk_a << 4).view(-1, 1)
  6625. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  6626. # get _b
  6627. blk_b0 = (blk_b >> 4).view(-1, 1)
  6628. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  6629. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  6630. # swap once more
  6631. out = blk_a | blk_b
  6632. out_h = out & 0xF0
  6633. out_l = out & 0x0F
  6634. out = (out_h >> 4) | (out_l << 4)
  6635. return out
  6636. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  6637. assert blocks.dtype == torch.uint8
  6638. assert scales.dtype == torch.uint8
  6639. scales = scales.unsqueeze(-1)
  6640. assert len(blocks.shape) == 4
  6641. assert len(scales.shape) == 4
  6642. blocks = self.transform_nibble_layout(blocks)
  6643. new_data = torch.concat((scales, blocks), dim=-1)
  6644. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  6645. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  6646. # flatten last dim
  6647. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  6648. new_data = new_data.numpy()
  6649. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  6650. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6651. blocks0: Tensor = torch.zeros(1)
  6652. blocks1: Tensor = torch.zeros(1)
  6653. # we assume that tensors are loaded in the correct order
  6654. for name, data_torch in self.get_tensors():
  6655. if "mlp.experts.down_proj_blocks" in name:
  6656. blocks0 = data_torch
  6657. elif "mlp.experts.down_proj_scales" in name:
  6658. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  6659. self.repack_mxfp4(new_name, blocks0, data_torch)
  6660. elif "mlp.experts.gate_up_proj_blocks" in name:
  6661. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  6662. elif "mlp.experts.gate_up_proj_scales" in name:
  6663. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6664. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  6665. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  6666. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  6667. self.repack_mxfp4(new_name_up, blocks1, scales1)
  6668. return []
  6669. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6670. del bid # unused
  6671. if "sinks" in name:
  6672. name += ".weight"
  6673. # correct naming for down_proj
  6674. if "down_proj" in name:
  6675. if name.endswith("_bias"):
  6676. name = name.replace("down_proj_bias", "down_proj.bias")
  6677. elif "_blocks" not in name and "_scales" not in name:
  6678. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6679. name = name.replace("down_proj", "down_proj.weight")
  6680. data_torch = data_torch.transpose(-1, -2)
  6681. else:
  6682. # otherwise, it should already be repacked to ggml MXFP4 format
  6683. return []
  6684. # split the gate_up into gate and up
  6685. if "gate_up_proj" in name:
  6686. if name.endswith("_bias"):
  6687. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  6688. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  6689. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  6690. return [
  6691. (self.map_tensor_name(name_gate), gate_proj_bias),
  6692. (self.map_tensor_name(name_up), up_proj_bias)
  6693. ]
  6694. elif "_blocks" not in name and "_scales" not in name:
  6695. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6696. name_up = name.replace("gate_up_proj", "up_proj.weight")
  6697. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  6698. data_torch = data_torch.transpose(-1, -2)
  6699. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6700. return [
  6701. (self.map_tensor_name(name_gate), gate_proj_weight),
  6702. (self.map_tensor_name(name_up), up_proj_weight)
  6703. ]
  6704. else:
  6705. # otherwise, it should already be repacked to ggml MXFP4 format
  6706. return []
  6707. return [(self.map_tensor_name(name), data_torch)]
  6708. def set_vocab(self):
  6709. self._set_vocab_gpt2()
  6710. def set_gguf_parameters(self):
  6711. super().set_gguf_parameters()
  6712. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6713. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  6714. rope_scaling = self.hparams.get("rope_scaling") or {}
  6715. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  6716. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  6717. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6718. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6719. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  6720. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  6721. class LFM2Model(TextModel):
  6722. model_arch = gguf.MODEL_ARCH.LFM2
  6723. def _add_feed_forward_length(self):
  6724. ff_dim = self.hparams["block_ff_dim"]
  6725. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6726. ff_dim = self.hparams["block_ff_dim"]
  6727. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6728. multiple_of = self.hparams["block_multiple_of"]
  6729. if auto_adjust_ff_dim:
  6730. ff_dim = int(2 * ff_dim / 3)
  6731. # custom dim factor multiplier
  6732. if ffn_dim_multiplier is not None:
  6733. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6734. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6735. self.gguf_writer.add_feed_forward_length(ff_dim)
  6736. def set_gguf_parameters(self):
  6737. # set num_key_value_heads only for attention layers
  6738. self.hparams["num_key_value_heads"] = [
  6739. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6740. for layer_type in self.hparams["layer_types"]
  6741. ]
  6742. super().set_gguf_parameters()
  6743. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6744. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6745. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6746. self._add_feed_forward_length()
  6747. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6748. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  6749. if is_vision_tensor:
  6750. # skip vision tensors
  6751. return []
  6752. name = name.replace("language_model.", "")
  6753. # conv op requires 2d tensor
  6754. if 'conv.conv' in name:
  6755. data_torch = data_torch.squeeze(1)
  6756. return [(self.map_tensor_name(name), data_torch)]
  6757. @ModelBase.register("Lfm2VlForConditionalGeneration")
  6758. class LFM2VLModel(MmprojModel):
  6759. def __init__(self, *args, **kwargs):
  6760. super().__init__(*args, **kwargs)
  6761. assert self.hparams_vision is not None
  6762. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  6763. self.hparams_vision["image_size"] = 256
  6764. def set_gguf_parameters(self):
  6765. super().set_gguf_parameters()
  6766. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  6767. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  6768. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  6769. self.gguf_writer.add_vision_use_gelu(True)
  6770. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  6771. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  6772. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  6773. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6774. del bid # unused
  6775. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  6776. if is_vision_tensor:
  6777. # remove "model." prefix
  6778. name = name.replace("model.vision_tower.", "vision_tower.")
  6779. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  6780. if "patch_embedding.weight" in name:
  6781. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  6782. return [(self.map_tensor_name(name), data_torch)]
  6783. return [] # skip other tensors
  6784. @ModelBase.register("SmallThinkerForCausalLM")
  6785. class SmallThinkerModel(TextModel):
  6786. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6787. def set_gguf_parameters(self):
  6788. super().set_gguf_parameters()
  6789. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6790. self.gguf_writer.add_expert_count(n_experts)
  6791. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6792. self.gguf_writer.add_expert_used_count(n_experts_used)
  6793. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6794. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6795. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6796. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6797. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6798. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6799. else:
  6800. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6801. # YaRN is not enabled by default
  6802. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6803. rope_scaling = self.hparams.get("rope_scaling") or {}
  6804. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6805. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6806. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6807. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6808. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6809. if sliding_window_layout:
  6810. for i in sliding_window_layout:
  6811. if i != 0:
  6812. sliding_window = self.hparams.get("sliding_window_size")
  6813. if sliding_window:
  6814. self.gguf_writer.add_sliding_window(sliding_window)
  6815. break
  6816. _experts: list[dict[str, Tensor]] | None = None
  6817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6818. # process the experts separately
  6819. if name.find("experts") != -1:
  6820. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6821. assert bid is not None
  6822. if self._experts is None:
  6823. self._experts = [{} for _ in range(self.block_count)]
  6824. self._experts[bid][name] = data_torch
  6825. if len(self._experts[bid]) >= n_experts * 3:
  6826. tensors: list[tuple[str, Tensor]] = []
  6827. # merge the experts into a single 3d tensor
  6828. for w_name in ["down", "gate", "up"]:
  6829. datas: list[Tensor] = []
  6830. for xid in range(n_experts):
  6831. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6832. datas.append(self._experts[bid][ename])
  6833. del self._experts[bid][ename]
  6834. data_torch = torch.stack(datas, dim=0)
  6835. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6836. new_name = self.map_tensor_name(merged_name)
  6837. tensors.append((new_name, data_torch))
  6838. return tensors
  6839. else:
  6840. return []
  6841. return [(self.map_tensor_name(name), data_torch)]
  6842. def prepare_tensors(self):
  6843. super().prepare_tensors()
  6844. if self._experts is not None:
  6845. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6846. experts = [k for d in self._experts for k in d.keys()]
  6847. if len(experts) > 0:
  6848. raise ValueError(f"Unprocessed experts: {experts}")
  6849. class MistralModel(LlamaModel):
  6850. model_arch = gguf.MODEL_ARCH.LLAMA
  6851. model_name = "Mistral"
  6852. hf_arch = ""
  6853. is_mistral_format = True
  6854. undo_permute = False
  6855. @staticmethod
  6856. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  6857. assert TokenizerVersion is not None, "mistral_common is not installed"
  6858. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  6859. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  6860. )
  6861. if vocab.tokenizer.version == TokenizerVersion.v1:
  6862. return "mistral-v1"
  6863. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  6864. return "mistral-v3"
  6865. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  6866. return "mistral-v3-tekken"
  6867. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  6868. return "mistral-v7"
  6869. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  6870. return "mistral-v7-tekken"
  6871. elif vocab.tokenizer.version == TokenizerVersion.v11:
  6872. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  6873. elif vocab.tokenizer.version == TokenizerVersion.v13:
  6874. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  6875. else:
  6876. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  6877. if is_mistral_format:
  6878. err_message += (
  6879. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  6880. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  6881. )
  6882. raise ValueError(err_message)
  6883. template_path = templates_dir / template_file
  6884. if not template_path.exists():
  6885. raise FileNotFoundError(f"Template file not found: {template_path}")
  6886. with open(template_path, "r", encoding="utf-8") as f:
  6887. template = f.read()
  6888. return template
  6889. class PixtralModel(LlavaVisionModel):
  6890. model_name = "Pixtral"
  6891. hf_arch = ""
  6892. is_mistral_format = True
  6893. def set_gguf_parameters(self):
  6894. super().set_gguf_parameters()
  6895. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  6896. self.gguf_writer.add_vision_attention_layernorm_eps(
  6897. self.find_hparam(["norm_eps"])
  6898. )
  6899. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  6900. self.gguf_writer.add_vision_use_silu(True)
  6901. # spatial_merge_size
  6902. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  6903. self.gguf_writer.add_vision_spatial_merge_size(
  6904. self.find_vparam(["spatial_merge_size"])
  6905. )
  6906. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  6907. if name == "vision_language_adapter.w_in.weight":
  6908. return "mm.1.weight"
  6909. elif name == "vision_language_adapter.w_out.weight":
  6910. return "mm.2.weight"
  6911. return super().map_tensor_name(name, try_suffixes)
  6912. ###### CONVERSION LOGIC ######
  6913. # tree of lazy tensors
  6914. class LazyTorchTensor(gguf.LazyBase):
  6915. _tensor_type = torch.Tensor
  6916. # to keep the type-checker happy
  6917. dtype: torch.dtype
  6918. shape: torch.Size
  6919. # only used when converting a torch.Tensor to a np.ndarray
  6920. _dtype_map: dict[torch.dtype, type] = {
  6921. torch.float16: np.float16,
  6922. torch.float32: np.float32,
  6923. torch.uint8: np.uint8,
  6924. }
  6925. # used for safetensors slices
  6926. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6927. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6928. _dtype_str_map: dict[str, torch.dtype] = {
  6929. "F64": torch.float64,
  6930. "F32": torch.float32,
  6931. "BF16": torch.bfloat16,
  6932. "F16": torch.float16,
  6933. # "U64": torch.uint64,
  6934. "I64": torch.int64,
  6935. # "U32": torch.uint32,
  6936. "I32": torch.int32,
  6937. # "U16": torch.uint16,
  6938. "I16": torch.int16,
  6939. "U8": torch.uint8,
  6940. "I8": torch.int8,
  6941. "BOOL": torch.bool,
  6942. "F8_E4M3": torch.float8_e4m3fn,
  6943. "F8_E5M2": torch.float8_e5m2,
  6944. }
  6945. def numpy(self) -> gguf.LazyNumpyTensor:
  6946. dtype = self._dtype_map[self.dtype]
  6947. return gguf.LazyNumpyTensor(
  6948. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6949. args=(self,),
  6950. func=(lambda s: s.numpy())
  6951. )
  6952. @classmethod
  6953. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6954. return torch.empty(size=shape, dtype=dtype, device="meta")
  6955. @classmethod
  6956. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6957. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6958. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6959. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6960. return cast(torch.Tensor, lazy)
  6961. @classmethod
  6962. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6963. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6964. shape = remote_tensor.shape
  6965. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6966. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6967. return cast(torch.Tensor, lazy)
  6968. @classmethod
  6969. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6970. del types # unused
  6971. if kwargs is None:
  6972. kwargs = {}
  6973. if func is torch.Tensor.numpy:
  6974. return args[0].numpy()
  6975. return cls._wrap_fn(func)(*args, **kwargs)
  6976. def parse_args() -> argparse.Namespace:
  6977. parser = argparse.ArgumentParser(
  6978. description="Convert a huggingface model to a GGML compatible file")
  6979. parser.add_argument(
  6980. "--vocab-only", action="store_true",
  6981. help="extract only the vocab",
  6982. )
  6983. parser.add_argument(
  6984. "--outfile", type=Path,
  6985. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6986. )
  6987. parser.add_argument(
  6988. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6989. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6990. )
  6991. parser.add_argument(
  6992. "--bigendian", action="store_true",
  6993. help="model is executed on big endian machine",
  6994. )
  6995. parser.add_argument(
  6996. "model", type=str,
  6997. help="directory containing model file or huggingface repository ID (if --remote)",
  6998. nargs="?",
  6999. )
  7000. parser.add_argument(
  7001. "--use-temp-file", action="store_true",
  7002. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  7003. )
  7004. parser.add_argument(
  7005. "--no-lazy", action="store_true",
  7006. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  7007. )
  7008. parser.add_argument(
  7009. "--model-name", type=str, default=None,
  7010. help="name of the model",
  7011. )
  7012. parser.add_argument(
  7013. "--verbose", action="store_true",
  7014. help="increase output verbosity",
  7015. )
  7016. parser.add_argument(
  7017. "--split-max-tensors", type=int, default=0,
  7018. help="max tensors in each split",
  7019. )
  7020. parser.add_argument(
  7021. "--split-max-size", type=str, default="0",
  7022. help="max size per split N(M|G)",
  7023. )
  7024. parser.add_argument(
  7025. "--dry-run", action="store_true",
  7026. help="only print out a split plan and exit, without writing any new files",
  7027. )
  7028. parser.add_argument(
  7029. "--no-tensor-first-split", action="store_true",
  7030. help="do not add tensors to the first split (disabled by default)"
  7031. )
  7032. parser.add_argument(
  7033. "--metadata", type=Path,
  7034. help="Specify the path for an authorship metadata override file"
  7035. )
  7036. parser.add_argument(
  7037. "--print-supported-models", action="store_true",
  7038. help="Print the supported models"
  7039. )
  7040. parser.add_argument(
  7041. "--remote", action="store_true",
  7042. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7043. )
  7044. parser.add_argument(
  7045. "--mmproj", action="store_true",
  7046. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7047. )
  7048. parser.add_argument(
  7049. "--mistral-format", action="store_true",
  7050. help="Whether the model is stored following the Mistral format.",
  7051. )
  7052. parser.add_argument(
  7053. "--disable-mistral-community-chat-template", action="store_true",
  7054. help=(
  7055. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  7056. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  7057. )
  7058. )
  7059. args = parser.parse_args()
  7060. if not args.print_supported_models and args.model is None:
  7061. parser.error("the following arguments are required: model")
  7062. return args
  7063. def split_str_to_n_bytes(split_str: str) -> int:
  7064. if split_str.endswith("K"):
  7065. n = int(split_str[:-1]) * 1000
  7066. elif split_str.endswith("M"):
  7067. n = int(split_str[:-1]) * 1000 * 1000
  7068. elif split_str.endswith("G"):
  7069. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7070. elif split_str.isnumeric():
  7071. n = int(split_str)
  7072. else:
  7073. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7074. if n < 0:
  7075. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7076. return n
  7077. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7078. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7079. # maybe we should fallback to text model's arch in that case, since not many models have both
  7080. text_config = hparams.get("text_config", {})
  7081. vision_config = hparams.get("vision_config", {})
  7082. arch = None
  7083. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7084. arch = arches[0]
  7085. elif "ssm_cfg" in hparams:
  7086. # For non-hf Mamba and Mamba2 models
  7087. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7088. # if "architectures" is found in the sub-config, use that instead
  7089. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7090. arch = text_config["architectures"][0]
  7091. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7092. arch = vision_config["architectures"][0]
  7093. if arch is None:
  7094. raise ValueError("Failed to detect model architecture")
  7095. return arch
  7096. def main() -> None:
  7097. args = parse_args()
  7098. if args.print_supported_models:
  7099. logger.error("Supported models:")
  7100. ModelBase.print_registered_models()
  7101. sys.exit(0)
  7102. if args.verbose:
  7103. logging.basicConfig(level=logging.DEBUG)
  7104. else:
  7105. logging.basicConfig(level=logging.INFO)
  7106. if args.remote:
  7107. hf_repo_id = args.model
  7108. from huggingface_hub import snapshot_download
  7109. local_dir = snapshot_download(
  7110. repo_id=hf_repo_id,
  7111. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  7112. dir_model = Path(local_dir)
  7113. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  7114. else:
  7115. hf_repo_id = None
  7116. dir_model = Path(args.model)
  7117. if not dir_model.is_dir():
  7118. logger.error(f'Error: {dir_model} is not a directory')
  7119. sys.exit(1)
  7120. ftype_map: dict[str, gguf.LlamaFileType] = {
  7121. "f32": gguf.LlamaFileType.ALL_F32,
  7122. "f16": gguf.LlamaFileType.MOSTLY_F16,
  7123. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  7124. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  7125. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  7126. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  7127. "auto": gguf.LlamaFileType.GUESSED,
  7128. }
  7129. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  7130. if args.use_temp_file and is_split:
  7131. logger.error("Error: Cannot use temp file when splitting")
  7132. sys.exit(1)
  7133. if args.outfile is not None:
  7134. fname_out = args.outfile
  7135. elif hf_repo_id:
  7136. # if remote, use the model ID as the output file name
  7137. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  7138. else:
  7139. fname_out = dir_model
  7140. logger.info(f"Loading model: {dir_model.name}")
  7141. if args.mmproj:
  7142. if "mmproj" not in fname_out.name:
  7143. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  7144. is_mistral_format = args.mistral_format
  7145. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  7146. with torch.inference_mode():
  7147. output_type = ftype_map[args.outtype]
  7148. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  7149. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  7150. if not is_mistral_format:
  7151. model_architecture = get_model_architecture(hparams, model_type)
  7152. logger.info(f"Model architecture: {model_architecture}")
  7153. try:
  7154. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  7155. except NotImplementedError:
  7156. logger.error(f"Model {model_architecture} is not supported")
  7157. sys.exit(1)
  7158. elif args.mmproj:
  7159. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  7160. model_class = PixtralModel
  7161. else:
  7162. model_class = MistralModel
  7163. model_instance = model_class(dir_model, output_type, fname_out,
  7164. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  7165. eager=args.no_lazy,
  7166. metadata_override=args.metadata, model_name=args.model_name,
  7167. split_max_tensors=args.split_max_tensors,
  7168. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  7169. small_first_shard=args.no_tensor_first_split,
  7170. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template
  7171. )
  7172. if args.vocab_only:
  7173. logger.info("Exporting model vocab...")
  7174. model_instance.write_vocab()
  7175. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  7176. else:
  7177. logger.info("Exporting model...")
  7178. model_instance.write()
  7179. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7180. logger.info(f"Model successfully exported to {out_path}")
  7181. if __name__ == '__main__':
  7182. main()