| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885 |
- # coding=utf-8
- # Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ PyTorch Siglip model. """
- # Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
- import os
- import math
- import warnings
- import numpy as np
- import torch
- import torch.nn.functional as F
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn.init import _calculate_fan_in_and_fan_out
- from transformers.activations import ACT2FN
- from transformers.modeling_utils import PreTrainedModel
- from transformers.configuration_utils import PretrainedConfig
- from transformers.utils import (
- logging,
- )
- from transformers.utils import logging
- logger = logging.get_logger(__name__)
- class SiglipVisionConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
- Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
- [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
- documentation from [`PretrainedConfig`] for more information.
- Args:
- hidden_size (`int`, *optional*, defaults to 768):
- Dimensionality of the encoder layers and the pooler layer.
- intermediate_size (`int`, *optional*, defaults to 3072):
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
- num_hidden_layers (`int`, *optional*, defaults to 12):
- Number of hidden layers in the Transformer encoder.
- num_attention_heads (`int`, *optional*, defaults to 12):
- Number of attention heads for each attention layer in the Transformer encoder.
- num_channels (`int`, *optional*, defaults to 3):
- Number of channels in the input images.
- image_size (`int`, *optional*, defaults to 224):
- The size (resolution) of each image.
- patch_size (`int`, *optional*, defaults to 16):
- The size (resolution) of each patch.
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
- `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
- layer_norm_eps (`float`, *optional*, defaults to 1e-06):
- The epsilon used by the layer normalization layers.
- attention_dropout (`float`, *optional*, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- Example:
- ```python
- >>> from transformers import SiglipVisionConfig, SiglipVisionModel
- >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
- >>> configuration = SiglipVisionConfig()
- >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
- >>> model = SiglipVisionModel(configuration)
- >>> # Accessing the model configuration
- >>> configuration = model.config
- ```"""
- model_type = "siglip_vision_model"
- def __init__(
- self,
- hidden_size=768,
- intermediate_size=3072,
- num_hidden_layers=12,
- num_attention_heads=12,
- num_channels=3,
- image_size=224,
- patch_size=16,
- hidden_act="gelu_pytorch_tanh",
- layer_norm_eps=1e-6,
- attention_dropout=0.0,
- **kwargs,
- ):
- super().__init__(**kwargs)
- self.hidden_size = hidden_size
- self.intermediate_size = intermediate_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.num_channels = num_channels
- self.patch_size = patch_size
- self.image_size = image_size
- self.attention_dropout = attention_dropout
- self.layer_norm_eps = layer_norm_eps
- self.hidden_act = hidden_act
- _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
- SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
- "google/siglip-base-patch16-224",
- # See all SigLIP models at https://huggingface.co/models?filter=siglip
- ]
- # Copied from transformers.models.llama.modeling_llama._get_unpad_data
- def _get_unpad_data(attention_mask):
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
- max_seqlen_in_batch = seqlens_in_batch.max().item()
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
- return (
- indices,
- cu_seqlens,
- max_seqlen_in_batch,
- )
- def _trunc_normal_(tensor, mean, std, a, b):
- # Cut & paste from PyTorch official master until it's in a few official releases - RW
- # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
- def norm_cdf(x):
- # Computes standard normal cumulative distribution function
- return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
- if (mean < a - 2 * std) or (mean > b + 2 * std):
- warnings.warn(
- "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
- "The distribution of values may be incorrect.",
- stacklevel=2,
- )
- # Values are generated by using a truncated uniform distribution and
- # then using the inverse CDF for the normal distribution.
- # Get upper and lower cdf values
- l = norm_cdf((a - mean) / std)
- u = norm_cdf((b - mean) / std)
- # Uniformly fill tensor with values from [l, u], then translate to
- # [2l-1, 2u-1].
- tensor.uniform_(2 * l - 1, 2 * u - 1)
- # Use inverse cdf transform for normal distribution to get truncated
- # standard normal
- if tensor.dtype in [torch.float16, torch.bfloat16]:
- # The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
- og_dtype = tensor.dtype
- tensor = tensor.to(torch.float32)
- tensor.erfinv_()
- tensor = tensor.to(og_dtype)
- else:
- tensor.erfinv_()
- # Transform to proper mean, std
- tensor.mul_(std * math.sqrt(2.0))
- tensor.add_(mean)
- # Clamp to ensure it's in the proper range
- if tensor.dtype == torch.float16:
- # The `clamp_` op is not (yet?) defined in float16+cpu
- tensor = tensor.to(torch.float32)
- tensor.clamp_(min=a, max=b)
- tensor = tensor.to(torch.float16)
- else:
- tensor.clamp_(min=a, max=b)
- def trunc_normal_tf_(
- tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
- ):
- """Fills the input Tensor with values drawn from a truncated
- normal distribution. The values are effectively drawn from the
- normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
- with values outside :math:`[a, b]` redrawn until they are within
- the bounds. The method used for generating the random values works
- best when :math:`a \\leq \text{mean} \\leq b`.
- NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
- bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
- and the result is subsquently scaled and shifted by the mean and std args.
- Args:
- tensor: an n-dimensional `torch.Tensor`
- mean: the mean of the normal distribution
- std: the standard deviation of the normal distribution
- a: the minimum cutoff value
- b: the maximum cutoff value
- """
- with torch.no_grad():
- _trunc_normal_(tensor, 0, 1.0, a, b)
- tensor.mul_(std).add_(mean)
- def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
- fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
- denom = fan_in
- if mode == "fan_in":
- denom = fan_in
- elif mode == "fan_out":
- denom = fan_out
- elif mode == "fan_avg":
- denom = (fan_in + fan_out) / 2
- variance = scale / denom
- if distribution == "truncated_normal":
- # constant is stddev of standard normal truncated to (-2, 2)
- trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
- elif distribution == "normal":
- with torch.no_grad():
- tensor.normal_(std=math.sqrt(variance))
- elif distribution == "uniform":
- bound = math.sqrt(3 * variance)
- with torch.no_grad():
- tensor.uniform_(-bound, bound)
- else:
- raise ValueError(f"invalid distribution {distribution}")
- def lecun_normal_(tensor):
- variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
- def default_flax_embed_init(tensor):
- variance_scaling_(tensor, mode="fan_in", distribution="normal")
- class SiglipVisionEmbeddings(nn.Module):
- def __init__(self, config: SiglipVisionConfig):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.image_size = config.image_size
- self.patch_size = config.patch_size
- self.patch_embedding = nn.Conv2d(
- in_channels=config.num_channels,
- out_channels=self.embed_dim,
- kernel_size=self.patch_size,
- stride=self.patch_size,
- padding="valid",
- )
- self.num_patches_per_side = self.image_size // self.patch_size
- self.num_patches = self.num_patches_per_side**2
- self.num_positions = self.num_patches
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
- class SiglipAttention(nn.Module):
- """Multi-headed attention from 'Attention Is All You Need' paper"""
- # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.embed_dim = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.head_dim = self.embed_dim // self.num_heads
- if self.head_dim * self.num_heads != self.embed_dim:
- raise ValueError(
- f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
- f" {self.num_heads})."
- )
- self.scale = self.head_dim**-0.5
- self.dropout = config.attention_dropout
- self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
- self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
- self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
- self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
- # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
- class SiglipMLP(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.config = config
- self.activation_fn = ACT2FN[config.hidden_act]
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
- # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
- class SiglipEncoderLayer(nn.Module):
- def __init__(self, config: SiglipVisionConfig):
- super().__init__()
- self.embed_dim = config.hidden_size
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
- self.self_attn = (
- SiglipAttention(config)
- )
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
- self.mlp = SiglipMLP(config)
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
- class SiglipPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
- config_class = SiglipVisionConfig
- base_model_prefix = "siglip"
- supports_gradient_checkpointing = True
- def _init_weights(self, module):
- """Initialize the weights"""
- if isinstance(module, SiglipVisionEmbeddings):
- width = self.config.hidden_size
- nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
- elif isinstance(module, nn.Embedding):
- default_flax_embed_init(module.weight)
- elif isinstance(module, SiglipAttention):
- nn.init.normal_(module.q_proj.weight)
- nn.init.normal_(module.k_proj.weight)
- nn.init.normal_(module.v_proj.weight)
- nn.init.normal_(module.out_proj.weight)
- nn.init.zeros_(module.q_proj.bias)
- nn.init.zeros_(module.k_proj.bias)
- nn.init.zeros_(module.v_proj.bias)
- nn.init.zeros_(module.out_proj.bias)
- elif isinstance(module, SiglipMLP):
- nn.init.normal_(module.fc1.weight)
- nn.init.normal_(module.fc2.weight)
- nn.init.normal_(module.fc1.bias, std=1e-6)
- nn.init.normal_(module.fc2.bias, std=1e-6)
- elif isinstance(module, (nn.Linear, nn.Conv2d)):
- lecun_normal_(module.weight)
- if module.bias is not None:
- nn.init.zeros_(module.bias)
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- SIGLIP_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
- SIGLIP_VISION_INPUTS_DOCSTRING = r"""
- Args:
- pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
- Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
- [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
- # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
- class SiglipEncoder(nn.Module):
- """
- Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
- [`SiglipEncoderLayer`].
- Args:
- config: SiglipConfig
- """
- def __init__(self, config: SiglipVisionConfig):
- super().__init__()
- self.config = config
- self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
- self.gradient_checkpointing = False
- class SiglipVisionTransformer(SiglipPreTrainedModel):
- config_class = SiglipVisionConfig
- main_input_name = "pixel_values"
- _supports_flash_attn_2 = True
- def __init__(self, config: SiglipVisionConfig):
- super().__init__(config)
- self.config = config
- embed_dim = config.hidden_size
- self.embeddings = SiglipVisionEmbeddings(config)
- self.encoder = SiglipEncoder(config)
- self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
- self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
- # Initialize weights and apply final processing
- self.post_init()
- def get_input_embeddings(self) -> nn.Module:
- return self.embeddings.patch_embedding
- import argparse
- import json
- import re
- import numpy as np
- from gguf import *
- from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
- TEXT = "clip.text"
- VISION = "clip.vision"
- def add_key_str(raw_key: str, arch: str) -> str:
- return raw_key.format(arch=arch)
- def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool:
- if name in (
- "logit_scale",
- "text_model.embeddings.position_ids",
- "vision_model.embeddings.position_ids",
- ):
- return True
- if has_minicpmv and name in ["visual_projection.weight"]:
- return True
- if name.startswith("v") and not has_vision:
- return True
- if name.startswith("t") and not has_text:
- return True
- return False
- def get_tensor_name(name: str) -> str:
- if "projection" in name:
- return name
- if "mm_projector" in name:
- name = name.replace("model.mm_projector", "mm")
- name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
- name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
- return name
- return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
- def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a significant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = (
- list(range(ord("!"), ord("~") + 1))
- + list(range(ord("¡"), ord("¬") + 1))
- + list(range(ord("®"), ord("ÿ") + 1))
- )
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8 + n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- ap = argparse.ArgumentParser()
- ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
- ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
- ap.add_argument("--text-only", action="store_true", required=False,
- help="Save a text-only model. It can't be used to encode images")
- ap.add_argument("--vision-only", action="store_true", required=False,
- help="Save a vision-only model. It can't be used to encode texts")
- ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
- help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
- ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
- help="The clip model is from openclip (for ViT-SO400M type))")
- ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.")
- ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
- ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
- # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
- # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
- default_image_mean = [0.5, 0.5, 0.5]
- default_image_std = [0.5, 0.5, 0.5]
- ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
- ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
- ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4; MiniCPM-V 4.0 use 5; MiniCPM-o-4.0 use 6', default=2)
- # with proper
- args = ap.parse_args()
- if args.text_only and args.vision_only:
- print("--text-only and --image-only arguments cannot be specified at the same time.")
- exit(1)
- if args.use_f32:
- print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
- # output in the same directory as the model if output_dir is None
- dir_model = args.model_dir
- # Read config.json to get actual model configuration
- config_path = os.path.join(dir_model, "config.json")
- model_config = {}
- if os.path.isfile(config_path):
- with open(config_path, "r", encoding="utf-8") as f:
- model_config = json.load(f)
- print(f"Loaded config from {config_path}")
- else:
- print(f"Warning: config.json not found at {config_path}")
- # If minicpmv_projector is not specified but the default path exists, use the default path
- if args.minicpmv_projector is None:
- default_projector_path = os.path.join(dir_model, "minicpmv.projector")
- if os.path.isfile(default_projector_path):
- args.minicpmv_projector = default_projector_path
- print(f"Found default projector file: {default_projector_path}")
- # If output_dir is not specified, use model_dir as the default value
- if args.output_dir is None:
- args.output_dir = dir_model
- if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
- vocab = None
- tokens = None
- else:
- with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
- vocab = json.load(f)
- tokens = [key for key in vocab]
- # possible data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- #
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- ftype = 1
- if args.use_f32:
- ftype = 0
- # if args.clip_model_is_vision or args.clip_model_is_openclip:
- # model = CLIPVisionModel.from_pretrained(dir_model)
- # processor = None
- # else:
- # model = CLIPModel.from_pretrained(dir_model)
- # processor = CLIPProcessor.from_pretrained(dir_model)
- minicpmv_version = args.minicpmv_version
- # Use actual config values instead of hardcoded ones
- if model_config:
- # For the projector/resampler, use the main model's hidden_size
- emb_dim = model_config.get("hidden_size", 1536)
- # For the vision model, use vision_config values
- vision_config_dict = model_config.get("vision_config", {})
- default_vision_config = {
- "hidden_size": vision_config_dict.get("hidden_size", 1152),
- "image_size": vision_config_dict.get("image_size", 980),
- "intermediate_size": vision_config_dict.get("intermediate_size", 4304),
- "model_type": vision_config_dict.get("model_type", "siglip"),
- "num_attention_heads": vision_config_dict.get("num_attention_heads", 16),
- "num_hidden_layers": vision_config_dict.get("num_hidden_layers", 27),
- "patch_size": vision_config_dict.get("patch_size", 14),
- }
- # Use vision model's num_hidden_layers for block_count
- block_count = vision_config_dict.get("num_hidden_layers", 27)
- print(f"Using config values: emb_dim={emb_dim}, block_count={block_count}")
- print(f"Vision config: {default_vision_config}")
- else:
- # Fallback to original hardcoded logic if config.json not found
- emb_dim = 4096
- block_count = 26
- if minicpmv_version == 1:
- emb_dim = 2304
- block_count = 26
- elif minicpmv_version == 2:
- emb_dim = 4096
- block_count = 27
- elif minicpmv_version == 3:
- emb_dim = 3584
- block_count = 27
- elif minicpmv_version == 4:
- emb_dim = 3584
- block_count = 27
- elif minicpmv_version == 5:
- emb_dim = 2560
- block_count = 27
- elif minicpmv_version == 6:
- emb_dim = 4096
- block_count = 27
- default_vision_config = {
- "hidden_size": 1152,
- "image_size": 980,
- "intermediate_size": 4304,
- "model_type": "idefics2",
- "num_attention_heads": 16,
- "num_hidden_layers": 27,
- "patch_size": 14,
- }
- vision_config = Idefics2VisionConfig(**default_vision_config)
- model = Idefics2VisionTransformer(vision_config)
- if minicpmv_version == 3 or (model_config and model_config.get("vision_config", {}).get("model_type") == "siglip"):
- vision_config = SiglipVisionConfig(**default_vision_config)
- model = SiglipVisionTransformer(vision_config)
- elif minicpmv_version == 4:
- vision_config = SiglipVisionConfig(**default_vision_config)
- model = SiglipVisionTransformer(vision_config)
- elif minicpmv_version == 5:
- default_vision_config["model_type"] = "siglip_vision_model"
- vision_config = SiglipVisionConfig(**default_vision_config)
- model = SiglipVisionTransformer(vision_config)
- elif minicpmv_version == 6:
- default_vision_config["model_type"] = "siglip_vision_model"
- vision_config = SiglipVisionConfig(**default_vision_config)
- model = SiglipVisionTransformer(vision_config)
- processor = None
- # if model.attn_pool is not None:
- # model.attn_pool = torch.nn.Identity()
- # model.blocks = model.blocks[:-1]
- model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip")))
- fname_middle = None
- has_text_encoder = True
- has_vision_encoder = True
- has_minicpmv_projector = False
- if args.text_only:
- fname_middle = "text-"
- has_vision_encoder = False
- elif args.minicpmv_projector is not None:
- fname_middle = "mmproj-"
- has_text_encoder = False
- has_minicpmv_projector = True
- elif args.vision_only:
- fname_middle = "vision-"
- has_text_encoder = False
- else:
- fname_middle = ""
- output_dir = args.output_dir
- os.makedirs(output_dir, exist_ok=True)
- output_prefix = os.path.basename(output_dir).replace("ggml_", "")
- fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
- fout = GGUFWriter(path=fname_out, arch="clip")
- fout.add_bool("clip.has_text_encoder", has_text_encoder)
- fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
- fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector)
- fout.add_file_type(ftype)
- if args.text_only:
- fout.add_description("text-only CLIP model")
- elif args.vision_only and not has_minicpmv_projector:
- fout.add_description("vision-only CLIP model")
- elif has_minicpmv_projector:
- fout.add_description("image encoder for MiniCPM-V")
- # add projector type
- fout.add_string("clip.projector_type", "resampler")
- fout.add_int32("clip.minicpmv_version", minicpmv_version)
- else:
- fout.add_description("two-tower CLIP model")
- if has_vision_encoder:
- # vision_model hparams - use actual config values
- vision_image_size = model_config.get("image_size", 448) if model_config else 448
- vision_patch_size = default_vision_config.get("patch_size", 14)
- vision_hidden_size = default_vision_config.get("hidden_size", 1152)
- vision_intermediate_size = default_vision_config.get("intermediate_size", 4304)
- vision_attention_heads = default_vision_config.get("num_attention_heads", 16)
- fout.add_uint32("clip.vision.image_size", vision_image_size)
- fout.add_uint32("clip.vision.patch_size", vision_patch_size)
- fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), vision_hidden_size)
- fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), vision_intermediate_size)
- fout.add_uint32("clip.vision.projection_dim", 0)
- fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), vision_attention_heads)
- fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
- fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
- # Add MiniCPM-V specific parameters
- query_num = model_config.get("query_num", 0) if model_config else 0
- resampler_emb_dim = model_config.get("hidden_size", 0) if model_config else 0
- fout.add_uint32("clip.minicpmv_query_num", query_num)
- if processor is not None:
- image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
- image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
- else:
- image_mean = args.image_mean if args.image_mean is not None else default_image_mean
- image_std = args.image_std if args.image_std is not None else default_image_std
- fout.add_array("clip.vision.image_mean", image_mean)
- fout.add_array("clip.vision.image_std", image_std)
- use_gelu = True
- fout.add_bool("clip.use_gelu", use_gelu)
- def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
- """
- embed_dim: output dimension for each position
- pos: a list of positions to be encoded: size (M,)
- out: (M, D)
- """
- assert embed_dim % 2 == 0
- omega = np.arange(embed_dim // 2, dtype=np.float32)
- omega /= embed_dim / 2.
- omega = 1. / 10000 ** omega # (D/2,)
- pos = pos.reshape(-1) # (M,)
- out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
- emb_sin = np.sin(out) # (M, D/2)
- emb_cos = np.cos(out) # (M, D/2)
- emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
- return emb
- def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
- assert embed_dim % 2 == 0
- # use half of dimensions to encode grid_h
- emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
- emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
- emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
- return emb
- # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
- def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
- """
- grid_size: int of the grid height and width
- return:
- pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
- """
- if isinstance(grid_size, int):
- grid_h_size, grid_w_size = grid_size, grid_size
- else:
- grid_h_size, grid_w_size = grid_size[0], grid_size[1]
- grid_h = np.arange(grid_h_size, dtype=np.float32)
- grid_w = np.arange(grid_w_size, dtype=np.float32)
- grid = np.meshgrid(grid_w, grid_h) # here w goes first
- grid = np.stack(grid, axis=0)
- grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
- pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
- if cls_token:
- pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
- return pos_embed
- def _replace_name_resampler(s, v):
- if re.match("resampler.pos_embed", s):
- return {
- s: v,
- re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))),
- }
- if re.match("resampler.proj", s):
- return {
- re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))),
- re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
- }
- if re.match("resampler.attn.in_proj_.*", s):
- return {
- re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0],
- re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1],
- re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2],
- }
- return {s: v}
- if has_minicpmv_projector:
- projector = torch.load(args.minicpmv_projector)
- new_state_dict = {}
- for k, v in projector.items():
- kvs = _replace_name_resampler(k, v)
- for nk, nv in kvs.items():
- new_state_dict[nk] = nv
- projector = new_state_dict
- ftype_cur = 0
- for name, data in projector.items():
- name = get_tensor_name(name)
- data = data.squeeze().numpy()
- n_dims = len(data.shape)
- if ftype == 1:
- if name[-7:] == ".weight" and n_dims == 2:
- print(" Converting to float16")
- data = data.astype(np.float16)
- ftype_cur = 1
- else:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- else:
- if data.dtype != np.float32:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- fout.add_tensor(name, data)
- print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
- print("Projector tensors added\n")
- def _replace_name(s, v):
- s = "vision_model." + s
- if re.match("vision_model.embeddings.position_embedding", s):
- v = v.unsqueeze(0)
- return {s: v}
- return {s: v}
- state_dict = model.state_dict()
- new_state_dict = {}
- for k, v in state_dict.items():
- kvs = _replace_name(k, v)
- for nk, nv in kvs.items():
- new_state_dict[nk] = nv
- state_dict = new_state_dict
- for name, data in state_dict.items():
- if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector):
- # we don't need this
- print(f"skipping parameter: {name}")
- continue
- name = get_tensor_name(name)
- data = data.squeeze().numpy()
- n_dims = len(data.shape)
- # ftype == 0 -> float32, ftype == 1 -> float16
- ftype_cur = 0
- if n_dims == 4:
- print(f"tensor {name} is always saved in f16")
- data = data.astype(np.float16)
- ftype_cur = 1
- elif ftype == 1:
- if name[-7:] == ".weight" and n_dims == 2:
- print(" Converting to float16")
- data = data.astype(np.float16)
- ftype_cur = 1
- else:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- else:
- if data.dtype != np.float32:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
- fout.add_tensor(name, data)
- fout.write_header_to_file()
- fout.write_kv_data_to_file()
- fout.write_tensors_to_file()
- fout.close()
- print("Done. Output file: " + fname_out)
|