ggml-opencl.cpp 386 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061
  1. #define CL_TARGET_OPENCL_VERSION GGML_OPENCL_TARGET_VERSION
  2. #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
  3. // suppress warnings in CL headers for GCC and Clang
  4. #pragma GCC diagnostic ignored "-Woverlength-strings"
  5. #ifdef __clang__
  6. #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
  7. #endif
  8. #include "ggml-opencl.h"
  9. #include "ggml-backend.h"
  10. #include "ggml-impl.h"
  11. #include "ggml-backend-impl.h"
  12. #include "ggml.h"
  13. #include <CL/cl.h>
  14. #include <inttypes.h>
  15. #include <string.h>
  16. #include <cstddef>
  17. #include <cstdint>
  18. #include <fstream>
  19. #include <vector>
  20. #include <string>
  21. #include <cmath>
  22. #include <map>
  23. #include <memory>
  24. #include <charconv>
  25. #include <mutex>
  26. #undef MIN
  27. #undef MAX
  28. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  29. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  30. #define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
  31. #define UNUSED(x) (void)(x)
  32. #define CL_CHECK(err) \
  33. do { \
  34. cl_int err_ = (err); \
  35. if (err_ != CL_SUCCESS) { \
  36. GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
  37. #err, err_, __FILE__, __LINE__); \
  38. GGML_ASSERT(0); \
  39. } \
  40. } while (0)
  41. //------------------------------------------------------------------------------
  42. // OpenCL
  43. //------------------------------------------------------------------------------
  44. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
  45. enum GPU_FAMILY {
  46. ADRENO,
  47. INTEL,
  48. UNKNOWN,
  49. };
  50. enum ADRENO_GPU_GEN {
  51. ADRENO_UNKNOWN,
  52. A7X,
  53. A8X,
  54. X1E,
  55. };
  56. enum ADRENO_CL_COMPILER_TYPE {
  57. E031,
  58. DX,
  59. };
  60. struct ggml_cl_version {
  61. cl_uint major = 0;
  62. cl_uint minor = 0;
  63. };
  64. struct ggml_cl_compiler_version {
  65. ADRENO_CL_COMPILER_TYPE type;
  66. int major = -1;
  67. int minor = -1;
  68. int patch = -1;
  69. bool same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  70. return major == x && minor == y && patch == z && type == t;
  71. }
  72. bool newer_than(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  73. return major*10000 + minor*100 + patch > x*10000 + y*100 + z && type == t;
  74. }
  75. bool newer_than_or_same(ADRENO_CL_COMPILER_TYPE t, int x, int y, int z) const {
  76. return same(t, x, y, z) || newer_than(t, x, y, z);
  77. }
  78. };
  79. static size_t align_to(size_t value, size_t to_alignment) {
  80. GGML_ASSERT(to_alignment && "Invalid alignment (must be non-zero)");
  81. GGML_ASSERT((to_alignment & (to_alignment - 1)) == 0 && "to_alignment must be power-of-two");
  82. return ((value + to_alignment - 1) / to_alignment) * to_alignment;
  83. }
  84. // Parses a version string of form "XX.YY ". On an error returns ggml_cl_version with all zeroes.
  85. static ggml_cl_version parse_cl_version(std::string_view str) {
  86. size_t major_str_begin = 0;
  87. size_t major_str_end = str.find(".", major_str_begin);
  88. if (major_str_end == std::string::npos) {
  89. return {};
  90. }
  91. size_t minor_str_begin = major_str_end + 1;
  92. size_t minor_str_end = str.find(" ", minor_str_begin);
  93. if (minor_str_end == std::string::npos) {
  94. return {};
  95. }
  96. cl_uint version_major;
  97. if (std::from_chars(str.data() + major_str_begin, str.data() + major_str_end, version_major).ec != std::errc{}) {
  98. return {};
  99. }
  100. cl_uint version_minor;
  101. if (std::from_chars(str.data() + minor_str_begin, str.data() + minor_str_end, version_minor).ec != std::errc{}) {
  102. return {};
  103. }
  104. return { version_major, version_minor };
  105. }
  106. // Returns OpenCL platform's version. On an error returns ggml_cl_version with all zeroes.
  107. static ggml_cl_version get_opencl_platform_version(cl_platform_id platform) {
  108. size_t param_size;
  109. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, 0, nullptr, &param_size));
  110. std::unique_ptr<char[]> param_storage(new char[param_size]);
  111. CL_CHECK(clGetPlatformInfo(platform, CL_PLATFORM_VERSION, param_size, param_storage.get(), nullptr));
  112. auto param_value = std::string_view(param_storage.get(), param_size);
  113. const std::string version_prefix = "OpenCL "; // Suffix: "XX.YY <platform-specific-info>"
  114. if (param_value.find(version_prefix) != 0) {
  115. return {};
  116. }
  117. param_value.remove_prefix(version_prefix.length());
  118. return parse_cl_version(param_value);
  119. }
  120. // Return a version to use in OpenCL C compilation. On an error returns ggml_cl_version with all zeroes.
  121. static ggml_cl_version get_opencl_c_version(ggml_cl_version platform_version, cl_device_id device) {
  122. size_t param_size;
  123. #if CL_TARGET_OPENCL_VERSION >= 300
  124. if (platform_version.major >= 3) {
  125. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, 0, nullptr, &param_size));
  126. if (!param_size) {
  127. return {};
  128. }
  129. std::unique_ptr<cl_name_version[]> versions(new cl_name_version[param_size]);
  130. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_ALL_VERSIONS, param_size, versions.get(), nullptr));
  131. unsigned versions_count = param_size / sizeof(cl_name_version);
  132. cl_version version_max = 0;
  133. for (unsigned i = 0; i < versions_count; i++) {
  134. version_max = std::max<cl_version>(versions[i].version, version_max);
  135. }
  136. return { CL_VERSION_MAJOR(version_max), CL_VERSION_MINOR(version_max) };
  137. }
  138. #else
  139. GGML_UNUSED(platform_version);
  140. #endif // CL_TARGET_OPENCL_VERSION >= 300
  141. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, 0, nullptr, &param_size));
  142. if (!param_size) {
  143. return {};
  144. }
  145. std::unique_ptr<char[]> param_storage(new char[param_size]);
  146. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_OPENCL_C_VERSION, param_size, param_storage.get(), nullptr));
  147. auto param_value = std::string_view(param_storage.get(), param_size);
  148. const std::string version_prefix = "OpenCL C "; // Suffix: "XX.YY <platform-specific-info>"
  149. if (param_value.find(version_prefix) != 0) {
  150. return {};
  151. }
  152. param_value.remove_prefix(version_prefix.length());
  153. return parse_cl_version(param_value);
  154. }
  155. static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
  156. if (strstr(device_name, "730") ||
  157. strstr(device_name, "740") ||
  158. strstr(device_name, "750")) {
  159. return ADRENO_GPU_GEN::A7X;
  160. }
  161. if (strstr(device_name, "830")) {
  162. return ADRENO_GPU_GEN::A8X;
  163. }
  164. if (strstr(device_name, "X1")) {
  165. return ADRENO_GPU_GEN::X1E;
  166. }
  167. return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
  168. }
  169. static ggml_cl_compiler_version get_adreno_cl_compiler_version(const char *driver_version) {
  170. std::string driver_ver_str(driver_version);
  171. ADRENO_CL_COMPILER_TYPE type = ADRENO_CL_COMPILER_TYPE::E031;
  172. size_t compiler_ver_pos = driver_ver_str.find("E031");
  173. size_t compiler_ver_len = 13;
  174. size_t compiler_major_offset = 5;
  175. size_t compiler_minor_offset = 8;
  176. size_t compiler_patch_offset = 11;
  177. if (compiler_ver_pos == std::string::npos) {
  178. compiler_ver_pos = driver_ver_str.find("DX");
  179. if (compiler_ver_pos == std::string::npos) {
  180. return {};
  181. }
  182. type = ADRENO_CL_COMPILER_TYPE::DX;
  183. compiler_ver_len = 11;
  184. compiler_major_offset = 3;
  185. }
  186. std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
  187. int major = std::atoi(compiler_ver_str.substr(compiler_major_offset, 2).c_str());
  188. int minor = std::atoi(compiler_ver_str.substr(compiler_minor_offset, 2).c_str());
  189. int patch = std::atoi(compiler_ver_str.substr(compiler_patch_offset, 2).c_str());
  190. return { type, major, minor, patch };
  191. }
  192. // Profiling
  193. struct ProfilingInfo {
  194. std::string op_name;
  195. std::string kernel_name;
  196. cl_kernel kernel;
  197. cl_event evt;
  198. cl_ulong cmd_queued;
  199. cl_ulong cmd_submit;
  200. cl_ulong cmd_start;
  201. cl_ulong cmd_end;
  202. cl_ulong overhead_start;
  203. cl_ulong overhead_end;
  204. // For the times below, see spec for clGetEventProfilingInfo
  205. // The time kernel spent in cmd queue - SUBMIT - QUEUED
  206. cl_ulong cmd_queued_duration_ns;
  207. // The time kernel spent for submission - START - SUBMIT
  208. cl_ulong cmd_submit_duration_ns;
  209. // Kernel execution time in nanoseconds - END - START
  210. cl_ulong cmd_duration_ns;
  211. // The time for the kernel to complete - COMPLETE - END
  212. cl_ulong cmd_complete_duration_ns;
  213. // Total time to finish the kernel - COMPELTE - QUEUED
  214. cl_ulong cmd_total_duration_ns;
  215. // Global and local work sizes.
  216. size_t global_size[3];
  217. size_t local_size[3];
  218. // Op output size.
  219. size_t output_size[4];
  220. };
  221. static void populateProfilingInfo(
  222. ProfilingInfo& info, cl_event evt, cl_kernel kernel, cl_uint work_dim,
  223. size_t global_size[3], size_t local_size[3],
  224. const ggml_tensor * tensor) {
  225. info.op_name = tensor->name;
  226. info.kernel = kernel;
  227. info.evt = evt;
  228. // 0 means not specified, e.g., 2D workgroup, or NULL for driver to choose
  229. info.local_size[0] = 0;
  230. info.local_size[1] = 0;
  231. info.local_size[2] = 0;
  232. info.global_size[0] = 0;
  233. info.global_size[1] = 0;
  234. info.global_size[2] = 0;
  235. if (local_size) {
  236. for (cl_uint i = 0; i < work_dim; ++i) {
  237. info.local_size[i] = local_size[i];
  238. }
  239. }
  240. for (cl_uint i = 0; i < work_dim; ++i) {
  241. info.global_size[i] = global_size[i];
  242. }
  243. info.output_size[0] = tensor->ne[0];
  244. info.output_size[1] = tensor->ne[1];
  245. info.output_size[2] = tensor->ne[2];
  246. info.output_size[3] = tensor->ne[3];
  247. }
  248. struct ggml_backend_opencl_context;
  249. // backend device context
  250. struct ggml_backend_opencl_device_context {
  251. cl_platform_id platform;
  252. std::string platform_name;
  253. cl_device_id device;
  254. std::string device_name;
  255. cl_device_type device_type;
  256. std::string device_version;
  257. // Initialized by ggml_cl2_init().
  258. ggml_backend_opencl_context * backend_ctx = nullptr;
  259. // Initialized by ggml_backend_opencl_device_get_buffer_type()
  260. ggml_backend_buffer_type buffer_type;
  261. cl_context context = nullptr;
  262. };
  263. // backend context
  264. struct ggml_backend_opencl_context {
  265. int ref_count;
  266. cl_device_id device;
  267. std::string device_name;
  268. std::string driver_version;
  269. GPU_FAMILY gpu_family;
  270. ADRENO_GPU_GEN adreno_gen;
  271. cl_int alignment;
  272. size_t max_alloc_size;
  273. size_t max_workgroup_size;
  274. bool fp16_support;
  275. bool has_vector_subgroup_broadcast;
  276. bool disable_fusion;
  277. ggml_cl_compiler_version adreno_cl_compiler_version;
  278. int adreno_wave_size;
  279. cl_bool non_uniform_workgroups;
  280. cl_context context;
  281. cl_command_queue queue;
  282. cl_program program_add;
  283. cl_program program_add_id;
  284. cl_program program_clamp;
  285. cl_program program_cpy;
  286. cl_program program_cvt;
  287. cl_program program_diag_mask_inf;
  288. cl_program program_gelu;
  289. cl_program program_gemv_noshuffle_general;
  290. cl_program program_gemv_noshuffle;
  291. cl_program program_get_rows;
  292. cl_program program_set_rows;
  293. cl_program program_glu;
  294. cl_program program_im2col_f16;
  295. cl_program program_im2col_f32;
  296. cl_program program_mul_mat_Ab_Bi_8x4;
  297. cl_program program_mul_mv_q4_0_f32;
  298. cl_program program_mul_mv_q4_0_f32_v;
  299. cl_program program_mul_mv_q4_0_f32_8x_flat;
  300. cl_program program_mul_mv_q4_0_f32_1d_8x_flat;
  301. cl_program program_mul_mv_q4_0_f32_1d_16x_flat;
  302. cl_program program_mul_mv_q6_K;
  303. cl_program program_mul_mv_q8_0_f32, program_mul_mv_q8_0_f32_flat;
  304. cl_program program_mul_mv_mxfp4_f32;
  305. cl_program program_mul_mv_mxfp4_f32_flat;
  306. cl_program program_mul_mv_f16_f16;
  307. cl_program program_mul_mv_f16_f32_1row;
  308. cl_program program_mul_mv_f16_f32_l4;
  309. cl_program program_mul_mv_f16_f32;
  310. cl_program program_mul_mv_f32_f32;
  311. cl_program program_mul;
  312. cl_program program_mul_mat_f16_f32_tiled;
  313. cl_program program_div;
  314. cl_program program_sub;
  315. cl_program program_norm;
  316. cl_program program_relu;
  317. cl_program program_rms_norm;
  318. cl_program program_group_norm;
  319. cl_program program_rope;
  320. cl_program program_scale;
  321. cl_program program_silu;
  322. cl_program program_sigmoid;
  323. cl_program program_softmax_f32;
  324. cl_program program_softmax_f16;
  325. cl_program program_softmax_4_f32;
  326. cl_program program_softmax_4_f16;
  327. cl_program program_argsort_f32_i32;
  328. cl_program program_sum_rows_f32;
  329. cl_program program_repeat;
  330. cl_program program_pad;
  331. cl_program program_tanh;
  332. cl_program program_upscale;
  333. cl_program program_concat;
  334. cl_program program_conv_2d_f16;
  335. cl_program program_conv_2d_f32;
  336. cl_program program_conv_2d_f16_f32;
  337. cl_program program_tsembd;
  338. cl_program program_gemv_moe_mxfp4_f32, program_gemm_moe_mxfp4_f32;
  339. cl_program program_mul_mv_id_q4_0_f32_8x_flat;
  340. cl_program program_mul_mv_id_q8_0_f32, program_mul_mv_id_q8_0_f32_flat;
  341. cl_program program_mul_mv_id_mxfp4_f32;
  342. cl_program program_mul_mv_id_mxfp4_f32_flat;
  343. cl_program program_mul_mm_f32_f32_l4_lm;
  344. cl_program program_mul_mm_f16_f32_l4_lm;
  345. cl_program program_mul_mm_q8_0_f32_l4_lm;
  346. cl_kernel kernel_add, kernel_add_row, kernel_add_f16, kernel_add_row_f16;
  347. cl_kernel kernel_mul, kernel_mul_row, kernel_mul_f16, kernel_mul_row_f16;
  348. cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
  349. cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
  350. cl_kernel kernel_add_id;
  351. cl_kernel kernel_scale;
  352. cl_kernel kernel_silu, kernel_silu_4;
  353. cl_kernel kernel_gelu, kernel_gelu_4;
  354. cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
  355. cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
  356. cl_kernel kernel_relu;
  357. cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
  358. cl_kernel kernel_clamp;
  359. cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
  360. kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
  361. cl_kernel kernel_norm, kernel_norm_mul_add;
  362. cl_kernel kernel_rms_norm, kernel_rms_norm_mul;
  363. cl_kernel kernel_group_norm, kernel_group_norm_mul_add;
  364. cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
  365. cl_kernel kernel_soft_max, kernel_soft_max_4;
  366. cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
  367. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16;
  368. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f16_q1;
  369. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32;
  370. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_q1;
  371. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16;
  372. std::map<std::pair<int, int>, cl_kernel> kernels_flash_attn_f32_f16_q1;
  373. std::map<std::pair<int, int>, int> kernels_flash_attn_bm;
  374. std::map<std::pair<int, int>, int> kernels_flash_attn_bn;
  375. cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
  376. cl_kernel kernel_set_rows_f32_i64, kernel_set_rows_f32_i32, kernel_set_rows_f16_i64, kernel_set_rows_f16_i32;
  377. cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
  378. cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
  379. cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
  380. cl_kernel kernel_mul_mat_f32_f32;
  381. cl_kernel kernel_mul_mat_f16_f16;
  382. cl_kernel kernel_mul_mat_f16_f32_1row;
  383. cl_kernel kernel_mul_mat_f16_f32;
  384. cl_kernel kernel_mul_mat_f16_f32_l4;
  385. cl_kernel kernel_mul_mat_f16_f32_tiled;
  386. cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
  387. cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0;
  388. cl_kernel kernel_convert_block_mxfp4, kernel_convert_block_mxfp4_trans, kernel_restore_block_mxfp4, kernel_restore_block_mxfp4_trans;
  389. cl_kernel kernel_convert_block_q8_0, kernel_restore_block_q8_0;
  390. cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
  391. cl_kernel kernel_convert_block_q4_0_noshuffle;
  392. cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
  393. cl_kernel kernel_mul_mv_q6_K_f32;
  394. cl_kernel kernel_mul_mv_mxfp4_f32, kernel_mul_mv_mxfp4_f32_flat;
  395. cl_kernel kernel_mul_mv_q8_0_f32, kernel_mul_mv_q8_0_f32_flat;
  396. cl_kernel kernel_im2col_f32, kernel_im2col_f16;
  397. cl_kernel kernel_argsort_f32_i32;
  398. cl_kernel kernel_sum_rows_f32;
  399. cl_kernel kernel_repeat;
  400. cl_kernel kernel_pad;
  401. cl_kernel kernel_tanh_f32_nd;
  402. cl_kernel kernel_tanh_f16_nd;
  403. cl_kernel kernel_upscale;
  404. cl_kernel kernel_upscale_bilinear;
  405. cl_kernel kernel_concat_f32_contiguous;
  406. cl_kernel kernel_concat_f32_non_contiguous;
  407. cl_kernel kernel_conv_2d_f16;
  408. cl_kernel kernel_conv_2d_f32;
  409. cl_kernel kernel_conv_2d_f16_f32;
  410. cl_kernel kernel_timestep_embedding;
  411. cl_kernel kernel_gemv_moe_mxfp4_f32, kernel_gemm_moe_mxfp4_f32;
  412. cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
  413. cl_kernel kernel_mul_mv_id_q8_0_f32, kernel_mul_mv_id_q8_0_f32_flat;
  414. cl_kernel kernel_mul_mv_id_mxfp4_f32;
  415. cl_kernel kernel_mul_mv_id_mxfp4_f32_flat;
  416. cl_kernel kernel_mul_mm_f32_f32_l4_lm;
  417. cl_kernel kernel_mul_mm_f16_f32_l4_lm;
  418. cl_kernel kernel_mul_mm_q8_0_f32_l4_lm;
  419. std::vector<ProfilingInfo> profiling_info;
  420. void write_profiling_info() {
  421. FILE * fperf = fopen("cl_profiling.csv", "w");
  422. if (!fperf) {
  423. GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
  424. return;
  425. }
  426. // Populate profiling info
  427. for (ProfilingInfo & info : profiling_info) {
  428. cl_ulong cmd_queued;
  429. cl_ulong cmd_submit;
  430. cl_ulong cmd_start;
  431. cl_ulong cmd_end;
  432. cl_ulong cmd_complete;
  433. CL_CHECK(clWaitForEvents(1, &info.evt));
  434. CL_CHECK(clGetEventProfilingInfo(
  435. info.evt, CL_PROFILING_COMMAND_QUEUED, sizeof(cl_ulong), &cmd_queued, NULL));
  436. CL_CHECK(clGetEventProfilingInfo(
  437. info.evt, CL_PROFILING_COMMAND_SUBMIT, sizeof(cl_ulong), &cmd_submit, NULL));
  438. CL_CHECK(clGetEventProfilingInfo(
  439. info.evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &cmd_start, NULL));
  440. CL_CHECK(clGetEventProfilingInfo(
  441. info.evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &cmd_end, NULL));
  442. CL_CHECK(clGetEventProfilingInfo(
  443. info.evt, CL_PROFILING_COMMAND_COMPLETE, sizeof(cl_ulong), &cmd_complete, NULL));
  444. CL_CHECK(clReleaseEvent(info.evt));
  445. char kernel_name[512];
  446. CL_CHECK(clGetKernelInfo(info.kernel, CL_KERNEL_FUNCTION_NAME,
  447. sizeof(kernel_name), kernel_name, NULL));
  448. info.kernel_name = kernel_name;
  449. info.cmd_queued = cmd_queued;
  450. info.cmd_submit = cmd_submit;
  451. info.cmd_start = cmd_start;
  452. info.cmd_end = cmd_end;
  453. info.cmd_queued_duration_ns = cmd_submit - cmd_queued;
  454. info.cmd_submit_duration_ns = cmd_start - cmd_submit;
  455. info.cmd_duration_ns = cmd_end - cmd_start;
  456. info.cmd_complete_duration_ns = cmd_complete - cmd_end;
  457. info.cmd_total_duration_ns = cmd_complete - cmd_queued;
  458. }
  459. // Dump a csv
  460. fprintf(fperf, "op name, kernel name, exec duration (ms), global size, local size, output size\n");
  461. for (const ProfilingInfo & info : profiling_info) {
  462. fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
  463. info.op_name.c_str(), info.kernel_name.c_str(),
  464. info.cmd_duration_ns/1.e6f,
  465. info.global_size[0], info.global_size[1], info.global_size[2],
  466. info.local_size[0], info.local_size[1], info.local_size[2],
  467. info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
  468. }
  469. fclose(fperf);
  470. // Dump a simple chrome trace
  471. FILE* ftrace = fopen("cl_trace.json", "w");
  472. if (!ftrace) {
  473. GGML_LOG_ERROR("Failed to open cl_trace.json\n");
  474. return;
  475. }
  476. fprintf(ftrace, "[\n");
  477. for (const ProfilingInfo & info : profiling_info) {
  478. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
  479. info.kernel_name.c_str(), info.cmd_queued/1000);
  480. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Host\"},\n",
  481. info.kernel_name.c_str(), info.cmd_submit/1000);
  482. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"B\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
  483. info.kernel_name.c_str(), info.cmd_start/1000);
  484. fprintf(ftrace, "{\"name\": \"%s\", \"cat\": \"OpenCL\", \"ph\": \"E\", \"ts\": %" PRIu64 ", \"pid\": \"\", \"tid\": \"Device\"},\n",
  485. info.kernel_name.c_str(), info.cmd_end/1000);
  486. }
  487. fclose(ftrace);
  488. }
  489. size_t get_kernel_workgroup_size(cl_kernel kernel) const {
  490. size_t workgroup_size = 0;
  491. size_t ret_size = 0;
  492. CL_CHECK(
  493. clGetKernelWorkGroupInfo(kernel, device, CL_KERNEL_WORK_GROUP_SIZE,
  494. sizeof(size_t), &workgroup_size, &ret_size));
  495. GGML_ASSERT(sizeof(size_t) == ret_size);
  496. return workgroup_size;
  497. }
  498. void enqueue_ndrange_kernel(cl_kernel kernel, cl_uint work_dim, size_t *global_work_size, size_t *local_work_size, const ggml_tensor * tensor) {
  499. #ifdef GGML_OPENCL_PROFILING
  500. cl_event evt;
  501. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  502. profiling_info.emplace_back();
  503. populateProfilingInfo(profiling_info.back(), evt, kernel, work_dim, global_work_size, local_work_size, tensor);
  504. #else
  505. GGML_UNUSED(tensor);
  506. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  507. #endif
  508. }
  509. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  510. // Transpose kernels
  511. cl_program program_transpose;
  512. cl_kernel kernel_transpose_32;
  513. cl_kernel kernel_transpose_32_16;
  514. cl_kernel kernel_transpose_16;
  515. cl_kernel kernel_transpose_16_4x1;
  516. cl_mem A_s_d_max; // max scale buffer size for transpose
  517. cl_mem A_q_d_max; // max weight buffer size for transpose
  518. cl_mem B_d_max; // max activation buffer size for transpose
  519. // Gemm and Gemv related programs, kernels, etc
  520. cl_program program_CL_gemm;
  521. cl_program program_CL_gemv_general;
  522. cl_program program_CL_gemv_4096_1_11008;
  523. cl_program program_CL_gemv_4096_1_4096;
  524. cl_program program_CL_gemv_11008_1_4096;
  525. cl_program program_CL_gemv_32000_1_4096;
  526. cl_kernel CL_mul_mat_Ab_Bi_8x4;
  527. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  528. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  529. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  530. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  531. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  532. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  533. void free() {
  534. ref_count--;
  535. if (ref_count == 0) {
  536. #ifdef GGML_OPENCL_PROFILING
  537. write_profiling_info();
  538. profiling_info.clear();
  539. #endif
  540. }
  541. }
  542. };
  543. // All registered devices with a default device in the front.
  544. static std::vector<ggml_backend_device> g_ggml_backend_opencl_devices;
  545. inline std::string read_file(const std::string &path) {
  546. std::ifstream ifs(path);
  547. if (!ifs) {
  548. return "";
  549. }
  550. std::string text;
  551. ifs.seekg(0, std::ios::end);
  552. text.resize(ifs.tellg());
  553. ifs.seekg(0, std::ios::beg);
  554. ifs.read(&text[0], text.size());
  555. return text;
  556. }
  557. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
  558. cl_program p;
  559. char *program_log;
  560. size_t program_size;
  561. size_t log_size;
  562. int err;
  563. program_size = strlen(program_buffer);
  564. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  565. if(err < 0) {
  566. GGML_LOG_ERROR("OpenCL error creating program");
  567. exit(1);
  568. }
  569. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  570. if(err < 0) {
  571. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  572. program_log = (char*) malloc(log_size + 1);
  573. program_log[log_size] = '\0';
  574. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  575. GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  576. free(program_log);
  577. exit(1);
  578. }
  579. return p;
  580. }
  581. static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_version opencl_c_version) {
  582. cl_int err;
  583. // compiler options for general kernels
  584. auto opencl_c_std =
  585. std::string("CL") + std::to_string(opencl_c_version.major) + "." + std::to_string(opencl_c_version.minor);
  586. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  587. " -cl-mad-enable -cl-unsafe-math-optimizations"
  588. " -cl-finite-math-only -cl-fast-relaxed-math";
  589. GGML_LOG_INFO("ggml_opencl: loading OpenCL kernels");
  590. // add
  591. {
  592. #ifdef GGML_OPENCL_EMBED_KERNELS
  593. const std::string kernel_src {
  594. #include "add.cl.h"
  595. };
  596. #else
  597. const std::string kernel_src = read_file("add.cl");
  598. #endif
  599. backend_ctx->program_add =
  600. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  601. CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program_add, "kernel_add", &err), err));
  602. CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program_add, "kernel_add_row", &err), err));
  603. CL_CHECK((backend_ctx->kernel_add_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_f16", &err), err));
  604. CL_CHECK((backend_ctx->kernel_add_row_f16 = clCreateKernel(backend_ctx->program_add, "kernel_add_row_f16", &err), err));
  605. GGML_LOG_CONT(".");
  606. }
  607. // add_id
  608. {
  609. #ifdef GGML_OPENCL_EMBED_KERNELS
  610. const std::string kernel_src {
  611. #include "add_id.cl.h"
  612. };
  613. #else
  614. const std::string kernel_src = read_file("add_id.cl");
  615. #endif
  616. backend_ctx->program_add_id =
  617. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  618. CL_CHECK((backend_ctx->kernel_add_id = clCreateKernel(backend_ctx->program_add_id, "kernel_add_id", &err), err));
  619. GGML_LOG_CONT(".");
  620. }
  621. // clamp
  622. {
  623. #ifdef GGML_OPENCL_EMBED_KERNELS
  624. const std::string kernel_src {
  625. #include "clamp.cl.h"
  626. };
  627. #else
  628. const std::string kernel_src = read_file("clamp.cl");
  629. #endif
  630. backend_ctx->program_clamp =
  631. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  632. CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program_clamp, "kernel_clamp", &err), err));
  633. GGML_LOG_CONT(".");
  634. }
  635. // cpy
  636. {
  637. #ifdef GGML_OPENCL_EMBED_KERNELS
  638. const std::string kernel_src {
  639. #include "cpy.cl.h"
  640. };
  641. #else
  642. const std::string kernel_src = read_file("cpy.cl");
  643. #endif
  644. backend_ctx->program_cpy =
  645. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  646. CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f16", &err), err));
  647. CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f16_f32", &err), err));
  648. CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f16", &err), err));
  649. CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program_cpy, "kernel_cpy_f32_f32", &err), err));
  650. GGML_LOG_CONT(".");
  651. }
  652. // cvt
  653. {
  654. #ifdef GGML_OPENCL_EMBED_KERNELS
  655. const std::string kernel_src {
  656. #include "cvt.cl.h"
  657. };
  658. #else
  659. const std::string kernel_src = read_file("cvt.cl");
  660. #endif
  661. backend_ctx->program_cvt =
  662. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  663. CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0_noshuffle", &err), err));
  664. CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q4_0", &err), err));
  665. CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q4_0", &err), err));
  666. CL_CHECK((backend_ctx->kernel_convert_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4", &err), err));
  667. CL_CHECK((backend_ctx->kernel_convert_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_mxfp4_trans", &err), err));
  668. CL_CHECK((backend_ctx->kernel_restore_block_mxfp4_trans = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4_trans", &err), err));
  669. CL_CHECK((backend_ctx->kernel_restore_block_mxfp4 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_mxfp4", &err), err));
  670. CL_CHECK((backend_ctx->kernel_convert_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_convert_block_q8_0", &err), err));
  671. CL_CHECK((backend_ctx->kernel_restore_block_q8_0 = clCreateKernel(backend_ctx->program_cvt, "kernel_restore_block_q8_0", &err), err));
  672. GGML_LOG_CONT(".");
  673. }
  674. // diag_mask_inf
  675. {
  676. #ifdef GGML_OPENCL_EMBED_KERNELS
  677. const std::string kernel_src {
  678. #include "diag_mask_inf.cl.h"
  679. };
  680. #else
  681. const std::string kernel_src = read_file("diag_mask_inf.cl");
  682. #endif
  683. backend_ctx->program_diag_mask_inf =
  684. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  685. CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf_8", &err), err));
  686. CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program_diag_mask_inf, "kernel_diag_mask_inf", &err), err));
  687. GGML_LOG_CONT(".");
  688. }
  689. // gelu
  690. {
  691. #ifdef GGML_OPENCL_EMBED_KERNELS
  692. const std::string kernel_src {
  693. #include "gelu.cl.h"
  694. };
  695. #else
  696. const std::string kernel_src = read_file("gelu.cl");
  697. #endif
  698. backend_ctx->program_gelu =
  699. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  700. CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu", &err), err));
  701. CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_4", &err), err));
  702. CL_CHECK((backend_ctx->kernel_gelu_erf = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf", &err), err));
  703. CL_CHECK((backend_ctx->kernel_gelu_erf_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_erf_4", &err), err));
  704. CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick", &err), err));
  705. CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program_gelu, "kernel_gelu_quick_4", &err), err));
  706. GGML_LOG_CONT(".");
  707. }
  708. // glu
  709. {
  710. #ifdef GGML_OPENCL_EMBED_KERNELS
  711. const std::string kernel_src {
  712. #include "glu.cl.h"
  713. };
  714. #else
  715. const std::string kernel_src = read_file("glu.cl");
  716. #endif
  717. backend_ctx->program_glu =
  718. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  719. CL_CHECK((backend_ctx->kernel_geglu = clCreateKernel(backend_ctx->program_glu, "kernel_geglu", &err), err));
  720. CL_CHECK((backend_ctx->kernel_reglu = clCreateKernel(backend_ctx->program_glu, "kernel_reglu", &err), err));
  721. CL_CHECK((backend_ctx->kernel_swiglu = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu", &err), err));
  722. CL_CHECK((backend_ctx->kernel_swiglu_oai = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_oai", &err), err));
  723. CL_CHECK((backend_ctx->kernel_geglu_erf = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf", &err), err));
  724. CL_CHECK((backend_ctx->kernel_geglu_quick = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick", &err), err));
  725. CL_CHECK((backend_ctx->kernel_geglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_f16", &err), err));
  726. CL_CHECK((backend_ctx->kernel_reglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_reglu_f16", &err), err));
  727. CL_CHECK((backend_ctx->kernel_swiglu_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_swiglu_f16", &err), err));
  728. CL_CHECK((backend_ctx->kernel_geglu_erf_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_erf_f16", &err), err));
  729. CL_CHECK((backend_ctx->kernel_geglu_quick_f16 = clCreateKernel(backend_ctx->program_glu, "kernel_geglu_quick_f16", &err), err));
  730. GGML_LOG_CONT(".");
  731. }
  732. // get_rows
  733. {
  734. #ifdef GGML_OPENCL_EMBED_KERNELS
  735. const std::string kernel_src {
  736. #include "get_rows.cl.h"
  737. };
  738. #else
  739. const std::string kernel_src = read_file("get_rows.cl");
  740. #endif
  741. backend_ctx->program_get_rows =
  742. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  743. CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f32", &err), err));
  744. CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_f16", &err), err));
  745. CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program_get_rows, "kernel_get_rows_q4_0", &err), err));
  746. GGML_LOG_CONT(".");
  747. }
  748. // im2col_f32
  749. {
  750. #ifdef GGML_OPENCL_EMBED_KERNELS
  751. const std::string kernel_src {
  752. #include "im2col_f32.cl.h"
  753. };
  754. #else
  755. const std::string kernel_src = read_file("im2col_f32.cl");
  756. #endif
  757. backend_ctx->program_im2col_f32 =
  758. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  759. CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col_f32, "kernel_im2col_f32", &err), err));
  760. GGML_LOG_CONT(".");
  761. }
  762. // im2col_f16
  763. {
  764. #ifdef GGML_OPENCL_EMBED_KERNELS
  765. const std::string kernel_src {
  766. #include "im2col_f16.cl.h"
  767. };
  768. #else
  769. const std::string kernel_src = read_file("im2col_f16.cl");
  770. #endif
  771. backend_ctx->program_im2col_f16 =
  772. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  773. CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col_f16, "kernel_im2col_f16", &err), err));
  774. GGML_LOG_CONT(".");
  775. }
  776. // mul_mv_q4_0_f32
  777. {
  778. #ifdef GGML_OPENCL_EMBED_KERNELS
  779. const std::string kernel_src {
  780. #include "mul_mv_q4_0_f32.cl.h"
  781. };
  782. #else
  783. const std::string kernel_src = read_file("mul_mv_q4_0_f32.cl");
  784. #endif
  785. backend_ctx->program_mul_mv_q4_0_f32 =
  786. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  787. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32, "kernel_mul_mat_q4_0_f32", &err), err));
  788. GGML_LOG_CONT(".");
  789. }
  790. // mul_mv_q4_0_f32_v
  791. {
  792. #ifdef GGML_OPENCL_EMBED_KERNELS
  793. const std::string kernel_src {
  794. #include "mul_mv_q4_0_f32_v.cl.h"
  795. };
  796. #else
  797. const std::string kernel_src = read_file("mul_mv_q4_0_f32_v.cl");
  798. #endif
  799. backend_ctx->program_mul_mv_q4_0_f32_v =
  800. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  801. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_v, "kernel_mul_mat_q4_0_f32_v", &err), err));
  802. GGML_LOG_CONT(".");
  803. }
  804. // mul_mv_q4_0_f32_8x_flat
  805. {
  806. #ifdef GGML_OPENCL_EMBED_KERNELS
  807. const std::string kernel_src {
  808. #include "mul_mv_q4_0_f32_8x_flat.cl.h"
  809. };
  810. #else
  811. const std::string kernel_src = read_file("mul_mv_q4_0_f32_8x_flat.cl");
  812. #endif
  813. backend_ctx->program_mul_mv_q4_0_f32_8x_flat =
  814. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  815. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_8x_flat, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
  816. GGML_LOG_CONT(".");
  817. }
  818. // mul_mv_q4_0_f32_1d_8x_flat
  819. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  820. // those compiler versions since it is anyway not used for Adreno.
  821. if (backend_ctx->gpu_family != ADRENO ||
  822. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  823. backend_ctx->adreno_cl_compiler_version.type == DX) {
  824. #ifdef GGML_OPENCL_EMBED_KERNELS
  825. const std::string kernel_src {
  826. #include "mul_mv_q4_0_f32_1d_8x_flat.cl.h"
  827. };
  828. #else
  829. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_8x_flat.cl");
  830. #endif
  831. backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat =
  832. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  833. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_8x_flat, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
  834. GGML_LOG_CONT(".");
  835. }
  836. // mul_mv_q4_0_f32_1d_16x_flat
  837. // This kernel does not compiler on Adreno cl compiler 38.01. Skip it for
  838. // those compiler versions since it is anyway not used for Adreno.
  839. if (backend_ctx->gpu_family != ADRENO ||
  840. backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) ||
  841. backend_ctx->adreno_cl_compiler_version.type == DX) {
  842. #ifdef GGML_OPENCL_EMBED_KERNELS
  843. const std::string kernel_src {
  844. #include "mul_mv_q4_0_f32_1d_16x_flat.cl.h"
  845. };
  846. #else
  847. const std::string kernel_src = read_file("mul_mv_q4_0_f32_1d_16x_flat.cl");
  848. #endif
  849. backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat =
  850. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  851. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_mul_mv_q4_0_f32_1d_16x_flat, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
  852. GGML_LOG_CONT(".");
  853. }
  854. // mul_mv_q6_k
  855. {
  856. #ifdef GGML_OPENCL_EMBED_KERNELS
  857. const std::string kernel_src {
  858. #include "mul_mv_q6_k.cl.h"
  859. };
  860. #else
  861. const std::string kernel_src = read_file("mul_mv_q6_k.cl");
  862. #endif
  863. backend_ctx->program_mul_mv_q6_K =
  864. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  865. CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_mul_mv_q6_K, "kernel_mul_mv_q6_K_f32", &err), err));
  866. GGML_LOG_CONT(".");
  867. }
  868. // mul_mv_q8_0_f32
  869. {
  870. #ifdef GGML_OPENCL_EMBED_KERNELS
  871. const std::string kernel_src {
  872. #include "mul_mv_q8_0_f32.cl.h"
  873. };
  874. #else
  875. const std::string kernel_src = read_file("mul_mv_q8_0_f32.cl");
  876. #endif
  877. backend_ctx->program_mul_mv_q8_0_f32 =
  878. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  879. CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32, "kernel_mul_mv_q8_0_f32", &err), err));
  880. GGML_LOG_CONT(".");
  881. }
  882. // mul_mv_q8_0_f32_flat
  883. {
  884. #ifdef GGML_OPENCL_EMBED_KERNELS
  885. const std::string kernel_src {
  886. #include "mul_mv_q8_0_f32_flat.cl.h"
  887. };
  888. #else
  889. const std::string kernel_src = read_file("mul_mv_q8_0_f32_flat.cl");
  890. #endif
  891. backend_ctx->program_mul_mv_q8_0_f32_flat =
  892. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  893. CL_CHECK((backend_ctx->kernel_mul_mv_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_q8_0_f32_flat, "kernel_mul_mv_q8_0_f32_flat", &err), err));
  894. GGML_LOG_CONT(".");
  895. }
  896. // mul_mv_mxfp4_f32
  897. {
  898. #ifdef GGML_OPENCL_EMBED_KERNELS
  899. const std::string kernel_src {
  900. #include "mul_mv_mxfp4_f32.cl.h"
  901. };
  902. #else
  903. const std::string kernel_src = read_file("mul_mv_mxfp4_f32.cl");
  904. #endif
  905. backend_ctx->program_mul_mv_mxfp4_f32 =
  906. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  907. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32, "kernel_mul_mv_mxfp4_f32", &err), err));
  908. GGML_LOG_CONT(".");
  909. }
  910. // mul_mv_mxfp4_f32_flat
  911. {
  912. #ifdef GGML_OPENCL_EMBED_KERNELS
  913. const std::string kernel_src {
  914. #include "mul_mv_mxfp4_f32_flat.cl.h"
  915. };
  916. #else
  917. const std::string kernel_src = read_file("mul_mv_mxfp4_f32_flat.cl");
  918. #endif
  919. backend_ctx->program_mul_mv_mxfp4_f32_flat =
  920. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  921. CL_CHECK((backend_ctx->kernel_mul_mv_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_mxfp4_f32_flat, "kernel_mul_mv_mxfp4_f32_flat", &err), err));
  922. GGML_LOG_CONT(".");
  923. }
  924. // mul_mv_f16_f16
  925. {
  926. #ifdef GGML_OPENCL_EMBED_KERNELS
  927. const std::string kernel_src {
  928. #include "mul_mv_f16_f16.cl.h"
  929. };
  930. #else
  931. const std::string kernel_src = read_file("mul_mv_f16_f16.cl");
  932. #endif
  933. backend_ctx->program_mul_mv_f16_f16 =
  934. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  935. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program_mul_mv_f16_f16, "kernel_mul_mat_f16_f16", &err), err));
  936. GGML_LOG_CONT(".");
  937. }
  938. // mul_mv_f16_f32_1row
  939. {
  940. #ifdef GGML_OPENCL_EMBED_KERNELS
  941. const std::string kernel_src {
  942. #include "mul_mv_f16_f32_1row.cl.h"
  943. };
  944. #else
  945. const std::string kernel_src = read_file("mul_mv_f16_f32_1row.cl");
  946. #endif
  947. backend_ctx->program_mul_mv_f16_f32_1row =
  948. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  949. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_1row, "kernel_mul_mat_f16_f32_1row", &err), err));
  950. GGML_LOG_CONT(".");
  951. }
  952. // mul_mv_f16_f32_l4
  953. {
  954. #ifdef GGML_OPENCL_EMBED_KERNELS
  955. const std::string kernel_src {
  956. #include "mul_mv_f16_f32_l4.cl.h"
  957. };
  958. #else
  959. const std::string kernel_src = read_file("mul_mv_f16_f32_l4.cl");
  960. #endif
  961. backend_ctx->program_mul_mv_f16_f32_l4 =
  962. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  963. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32_l4, "kernel_mul_mat_f16_f32_l4", &err), err));
  964. GGML_LOG_CONT(".");
  965. }
  966. // mul_mv_f16_f32
  967. {
  968. #ifdef GGML_OPENCL_EMBED_KERNELS
  969. const std::string kernel_src {
  970. #include "mul_mv_f16_f32.cl.h"
  971. };
  972. #else
  973. const std::string kernel_src = read_file("mul_mv_f16_f32.cl");
  974. #endif
  975. backend_ctx->program_mul_mv_f16_f32 =
  976. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  977. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program_mul_mv_f16_f32, "kernel_mul_mat_f16_f32", &err), err));
  978. GGML_LOG_CONT(".");
  979. }
  980. // mul_mv_f32_f32
  981. {
  982. #ifdef GGML_OPENCL_EMBED_KERNELS
  983. const std::string kernel_src {
  984. #include "mul_mv_f32_f32.cl.h"
  985. };
  986. #else
  987. const std::string kernel_src = read_file("mul_mv_f32_f32.cl");
  988. #endif
  989. backend_ctx->program_mul_mv_f32_f32 =
  990. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  991. CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program_mul_mv_f32_f32, "kernel_mul_mat_f32_f32", &err), err));
  992. GGML_LOG_CONT(".");
  993. }
  994. // mul_mat_f16_f32_tiled
  995. {
  996. #ifdef GGML_OPENCL_EMBED_KERNELS
  997. const std::string kernel_src {
  998. #include "mul_mat_f16_f32.cl.h"
  999. };
  1000. #else
  1001. const std::string kernel_src = read_file("mul_mat_f16_f32.cl");
  1002. #endif
  1003. backend_ctx->program_mul_mat_f16_f32_tiled =
  1004. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1005. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_tiled = clCreateKernel(backend_ctx->program_mul_mat_f16_f32_tiled, "mul_mat_f16_f32", &err), err));
  1006. GGML_LOG_CONT(".");
  1007. }
  1008. // mul_mm_f32_f32_l4_lm
  1009. {
  1010. #ifdef GGML_OPENCL_EMBED_KERNELS
  1011. const std::string kernel_src {
  1012. #include "mul_mm_f32_f32_l4_lm.cl.h"
  1013. };
  1014. #else
  1015. const std::string kernel_src = read_file("mul_mm_f32_f32_l4_lm.cl");
  1016. #endif
  1017. backend_ctx->program_mul_mm_f32_f32_l4_lm =
  1018. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1019. CL_CHECK((backend_ctx->kernel_mul_mm_f32_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f32_f32_l4_lm, "kernel_mul_mm_f32_f32_l4_lm", &err), err));
  1020. GGML_LOG_CONT(".");
  1021. }
  1022. // mul_mm_f16_f32_l4_lm
  1023. {
  1024. #ifdef GGML_OPENCL_EMBED_KERNELS
  1025. const std::string kernel_src {
  1026. #include "mul_mm_f16_f32_l4_lm.cl.h"
  1027. };
  1028. #else
  1029. const std::string kernel_src = read_file("mul_mm_f16_f32_l4_lm.cl");
  1030. #endif
  1031. backend_ctx->program_mul_mm_f16_f32_l4_lm =
  1032. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1033. CL_CHECK((backend_ctx->kernel_mul_mm_f16_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_f16_f32_l4_lm, "kernel_mul_mm_f16_f32_l4_lm", &err), err));
  1034. GGML_LOG_CONT(".");
  1035. }
  1036. // mul_mm_q8_0_f32_l4_lm
  1037. {
  1038. #ifdef GGML_OPENCL_EMBED_KERNELS
  1039. const std::string kernel_src {
  1040. #include "mul_mm_q8_0_f32_l4_lm.cl.h"
  1041. };
  1042. #else
  1043. const std::string kernel_src = read_file("mul_mm_q8_0_f32_l4_lm.cl");
  1044. #endif
  1045. backend_ctx->program_mul_mm_q8_0_f32_l4_lm =
  1046. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1047. CL_CHECK((backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm = clCreateKernel(backend_ctx->program_mul_mm_q8_0_f32_l4_lm, "kernel_mul_mm_q8_0_f32_l4_lm", &err), err));
  1048. GGML_LOG_CONT(".");
  1049. }
  1050. // mul
  1051. {
  1052. #ifdef GGML_OPENCL_EMBED_KERNELS
  1053. const std::string kernel_src {
  1054. #include "mul.cl.h"
  1055. };
  1056. #else
  1057. const std::string kernel_src = read_file("mul.cl");
  1058. #endif
  1059. backend_ctx->program_mul =
  1060. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1061. CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program_mul, "kernel_mul", &err), err));
  1062. CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row", &err), err));
  1063. CL_CHECK((backend_ctx->kernel_mul_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_f16", &err), err));
  1064. CL_CHECK((backend_ctx->kernel_mul_row_f16 = clCreateKernel(backend_ctx->program_mul, "kernel_mul_row_f16", &err), err));
  1065. GGML_LOG_CONT(".");
  1066. }
  1067. // norm
  1068. {
  1069. #ifdef GGML_OPENCL_EMBED_KERNELS
  1070. const std::string kernel_src {
  1071. #include "norm.cl.h"
  1072. };
  1073. #else
  1074. const std::string kernel_src = read_file("norm.cl");
  1075. #endif
  1076. backend_ctx->program_norm =
  1077. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1078. CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program_norm, "kernel_norm", &err), err));
  1079. CL_CHECK((backend_ctx->kernel_norm_mul_add = clCreateKernel(backend_ctx->program_norm, "kernel_norm_mul_add", &err), err));
  1080. GGML_LOG_CONT(".");
  1081. }
  1082. // relu
  1083. {
  1084. #ifdef GGML_OPENCL_EMBED_KERNELS
  1085. const std::string kernel_src {
  1086. #include "relu.cl.h"
  1087. };
  1088. #else
  1089. const std::string kernel_src = read_file("relu.cl");
  1090. #endif
  1091. backend_ctx->program_relu =
  1092. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1093. CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program_relu, "kernel_relu", &err), err));
  1094. GGML_LOG_CONT(".");
  1095. }
  1096. // rms_norm
  1097. {
  1098. #ifdef GGML_OPENCL_EMBED_KERNELS
  1099. const std::string kernel_src {
  1100. #include "rms_norm.cl.h"
  1101. };
  1102. #else
  1103. const std::string kernel_src = read_file("rms_norm.cl");
  1104. #endif
  1105. backend_ctx->program_rms_norm =
  1106. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1107. CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm", &err), err));
  1108. CL_CHECK((backend_ctx->kernel_rms_norm_mul = clCreateKernel(backend_ctx->program_rms_norm, "kernel_rms_norm_mul", &err), err));
  1109. GGML_LOG_CONT(".");
  1110. }
  1111. // rope
  1112. {
  1113. #ifdef GGML_OPENCL_EMBED_KERNELS
  1114. const std::string kernel_src {
  1115. #include "rope.cl.h"
  1116. };
  1117. #else
  1118. const std::string kernel_src = read_file("rope.cl");
  1119. #endif
  1120. backend_ctx->program_rope =
  1121. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1122. CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f32", &err), err));
  1123. CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_norm_f16", &err), err));
  1124. CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f32", &err), err));
  1125. CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_neox_f16", &err), err));
  1126. CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f32", &err), err));
  1127. CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_multi_f16", &err), err));
  1128. CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f32", &err), err));
  1129. CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program_rope, "kernel_rope_vision_f16", &err), err));
  1130. GGML_LOG_CONT(".");
  1131. }
  1132. // scale
  1133. {
  1134. #ifdef GGML_OPENCL_EMBED_KERNELS
  1135. const std::string kernel_src {
  1136. #include "scale.cl.h"
  1137. };
  1138. #else
  1139. const std::string kernel_src = read_file("scale.cl");
  1140. #endif
  1141. backend_ctx->program_scale =
  1142. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1143. CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
  1144. GGML_LOG_CONT(".");
  1145. }
  1146. // silu
  1147. {
  1148. #ifdef GGML_OPENCL_EMBED_KERNELS
  1149. const std::string kernel_src {
  1150. #include "silu.cl.h"
  1151. };
  1152. #else
  1153. const std::string kernel_src = read_file("silu.cl");
  1154. #endif
  1155. backend_ctx->program_silu =
  1156. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1157. CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program_silu, "kernel_silu", &err), err));
  1158. CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program_silu, "kernel_silu_4", &err), err));
  1159. GGML_LOG_CONT(".");
  1160. }
  1161. // softmax_f32
  1162. {
  1163. #ifdef GGML_OPENCL_EMBED_KERNELS
  1164. const std::string kernel_src {
  1165. #include "softmax_f32.cl.h"
  1166. };
  1167. #else
  1168. const std::string kernel_src = read_file("softmax_f32.cl");
  1169. #endif
  1170. backend_ctx->program_softmax_f32 =
  1171. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1172. CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program_softmax_f32, "kernel_soft_max", &err), err));
  1173. GGML_LOG_CONT(".");
  1174. }
  1175. // softmax_f16
  1176. {
  1177. #ifdef GGML_OPENCL_EMBED_KERNELS
  1178. const std::string kernel_src {
  1179. #include "softmax_f16.cl.h"
  1180. };
  1181. #else
  1182. const std::string kernel_src = read_file("softmax_f16.cl");
  1183. #endif
  1184. backend_ctx->program_softmax_f16 =
  1185. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1186. CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program_softmax_f16, "kernel_soft_max_f16", &err), err));
  1187. GGML_LOG_CONT(".");
  1188. }
  1189. // softmax_4_f32
  1190. {
  1191. #ifdef GGML_OPENCL_EMBED_KERNELS
  1192. const std::string kernel_src {
  1193. #include "softmax_4_f32.cl.h"
  1194. };
  1195. #else
  1196. const std::string kernel_src = read_file("softmax_4_f32.cl");
  1197. #endif
  1198. backend_ctx->program_softmax_4_f32 =
  1199. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1200. CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program_softmax_4_f32, "kernel_soft_max_4", &err), err));
  1201. GGML_LOG_CONT(".");
  1202. }
  1203. // softmax_4_f16
  1204. {
  1205. #ifdef GGML_OPENCL_EMBED_KERNELS
  1206. const std::string kernel_src {
  1207. #include "softmax_4_f16.cl.h"
  1208. };
  1209. #else
  1210. const std::string kernel_src = read_file("softmax_4_f16.cl");
  1211. #endif
  1212. backend_ctx->program_softmax_4_f16 =
  1213. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1214. CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program_softmax_4_f16, "kernel_soft_max_4_f16", &err), err));
  1215. GGML_LOG_CONT(".");
  1216. }
  1217. // flash_attn
  1218. {
  1219. #ifdef GGML_OPENCL_EMBED_KERNELS
  1220. const std::string kernel_src_f16 {
  1221. #include "flash_attn_f16.cl.h"
  1222. };
  1223. const std::string kernel_src_f32 {
  1224. #include "flash_attn_f32.cl.h"
  1225. };
  1226. const std::string kernel_src_f32_f16 {
  1227. #include "flash_attn_f32_f16.cl.h"
  1228. };
  1229. #else
  1230. const std::string kernel_src_f16 = read_file("flash_attn_f16.cl");
  1231. const std::string kernel_src_f32 = read_file("flash_attn_f32.cl");
  1232. const std::string kernel_src_f32_f16 = read_file("flash_attn_f32_f16.cl");
  1233. #endif
  1234. if (!kernel_src_f16.empty() && !kernel_src_f32.empty() && !kernel_src_f32_f16.empty()) {
  1235. const struct { int dk; int dv; int bm; int bn; } fa_dims[] = {
  1236. { 40, 40, 32, 32}, { 64, 64, 64, 64}, { 80, 80, 64, 32}, { 96, 96, 64, 32},
  1237. {112, 112, 32, 32}, {128, 128, 32, 32}, {192, 128, 16, 16},
  1238. {192, 192, 16, 16}, {256, 256, 16, 16},
  1239. };
  1240. for (size_t i = 0; i < sizeof(fa_dims)/sizeof(fa_dims[0]); ++i) {
  1241. const int dk = fa_dims[i].dk;
  1242. const int dv = fa_dims[i].dv;
  1243. const int bm = fa_dims[i].bm;
  1244. const int bn = fa_dims[i].bn;
  1245. std::string OPTS = compile_opts +
  1246. " -D DK=" + std::to_string(dk) +
  1247. " -D DV=" + std::to_string(dv) +
  1248. " -D BLOCK_M=" + std::to_string(bm) +
  1249. " -D BLOCK_N=" + std::to_string(bn);
  1250. cl_program prog_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16.c_str(), OPTS);
  1251. cl_kernel k_f16, k_f16_q1;
  1252. CL_CHECK((k_f16 = clCreateKernel(prog_f16, "flash_attn_f16", &err), err));
  1253. CL_CHECK((k_f16_q1 = clCreateKernel(prog_f16, "flash_attn_f16_q1", &err), err));
  1254. backend_ctx->kernels_flash_attn_f16[{dk, dv}] = k_f16;
  1255. backend_ctx->kernels_flash_attn_f16_q1[{dk, dv}] = k_f16_q1;
  1256. CL_CHECK(clReleaseProgram(prog_f16));
  1257. cl_program prog_f32 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32.c_str(), OPTS);
  1258. cl_kernel k_f32, k_f32_q1;
  1259. CL_CHECK((k_f32 = clCreateKernel(prog_f32, "flash_attn_f32", &err), err));
  1260. CL_CHECK((k_f32_q1 = clCreateKernel(prog_f32, "flash_attn_f32_q1", &err), err));
  1261. backend_ctx->kernels_flash_attn_f32[{dk, dv}] = k_f32;
  1262. backend_ctx->kernels_flash_attn_f32_q1[{dk, dv}] = k_f32_q1;
  1263. CL_CHECK(clReleaseProgram(prog_f32));
  1264. cl_program prog_f32_f16 = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f32_f16.c_str(), OPTS);
  1265. cl_kernel k_f32_f16, k_f32_f16_q1;
  1266. CL_CHECK((k_f32_f16 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16", &err), err));
  1267. CL_CHECK((k_f32_f16_q1 = clCreateKernel(prog_f32_f16, "flash_attn_f32_f16_q1", &err), err));
  1268. backend_ctx->kernels_flash_attn_f32_f16[{dk, dv}] = k_f32_f16;
  1269. backend_ctx->kernels_flash_attn_f32_f16_q1[{dk, dv}] = k_f32_f16_q1;
  1270. CL_CHECK(clReleaseProgram(prog_f32_f16));
  1271. backend_ctx->kernels_flash_attn_bm[{dk, dv}] = bm;
  1272. backend_ctx->kernels_flash_attn_bn[{dk, dv}] = bn;
  1273. }
  1274. GGML_LOG_CONT(".");
  1275. }
  1276. }
  1277. // argsort
  1278. {
  1279. #ifdef GGML_OPENCL_EMBED_KERNELS
  1280. const std::string kernel_src {
  1281. #include "argsort.cl.h"
  1282. };
  1283. #else
  1284. const std::string kernel_src = read_file("argsort.cl");
  1285. #endif
  1286. backend_ctx->program_argsort_f32_i32 =
  1287. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1288. CL_CHECK((backend_ctx->kernel_argsort_f32_i32 = clCreateKernel(backend_ctx->program_argsort_f32_i32, "kernel_argsort_f32_i32", &err), err));
  1289. GGML_LOG_CONT(".");
  1290. }
  1291. // div
  1292. {
  1293. #ifdef GGML_OPENCL_EMBED_KERNELS
  1294. const std::string kernel_src {
  1295. #include "div.cl.h"
  1296. };
  1297. #else
  1298. const std::string kernel_src = read_file("div.cl");
  1299. #endif
  1300. std::string compile_opts = std::string("-cl-std=") + opencl_c_std +
  1301. " -cl-mad-enable -cl-finite-math-only ";
  1302. backend_ctx->program_div =
  1303. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1304. CL_CHECK((backend_ctx->kernel_div = clCreateKernel(backend_ctx->program_div, "kernel_div", &err), err));
  1305. CL_CHECK((backend_ctx->kernel_div_row = clCreateKernel(backend_ctx->program_div, "kernel_div_row", &err), err));
  1306. CL_CHECK((backend_ctx->kernel_div_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_f16", &err), err));
  1307. CL_CHECK((backend_ctx->kernel_div_row_f16 = clCreateKernel(backend_ctx->program_div, "kernel_div_row_f16", &err), err));
  1308. GGML_LOG_CONT(".");
  1309. }
  1310. // sub
  1311. {
  1312. #ifdef GGML_OPENCL_EMBED_KERNELS
  1313. const std::string kernel_src {
  1314. #include "sub.cl.h"
  1315. };
  1316. #else
  1317. const std::string kernel_src = read_file("sub.cl");
  1318. #endif
  1319. backend_ctx->program_sub =
  1320. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1321. CL_CHECK((backend_ctx->kernel_sub = clCreateKernel(backend_ctx->program_sub, "kernel_sub", &err), err));
  1322. CL_CHECK((backend_ctx->kernel_sub_row = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row", &err), err));
  1323. CL_CHECK((backend_ctx->kernel_sub_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_f16", &err), err));
  1324. CL_CHECK((backend_ctx->kernel_sub_row_f16 = clCreateKernel(backend_ctx->program_sub, "kernel_sub_row_f16", &err), err));
  1325. GGML_LOG_CONT(".");
  1326. }
  1327. // sum_rows
  1328. {
  1329. #ifdef GGML_OPENCL_EMBED_KERNELS
  1330. const std::string kernel_src {
  1331. #include "sum_rows.cl.h"
  1332. };
  1333. #else
  1334. const std::string kernel_src = read_file("sum_rows.cl");
  1335. #endif
  1336. backend_ctx->program_sum_rows_f32 =
  1337. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1338. CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
  1339. GGML_LOG_CONT(".");
  1340. }
  1341. // sigmoid
  1342. {
  1343. #ifdef GGML_OPENCL_EMBED_KERNELS
  1344. const std::string kernel_src {
  1345. #include "sigmoid.cl.h"
  1346. };
  1347. #else
  1348. const std::string kernel_src = read_file("sigmoid.cl");
  1349. #endif
  1350. backend_ctx->program_sigmoid =
  1351. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1352. CL_CHECK((backend_ctx->kernel_sigmoid_f32 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f32", &err), err));
  1353. CL_CHECK((backend_ctx->kernel_sigmoid_f16 = clCreateKernel(backend_ctx->program_sigmoid, "kernel_sigmoid_f16", &err), err));
  1354. GGML_LOG_CONT(".");
  1355. }
  1356. // group_norm
  1357. {
  1358. #ifdef GGML_OPENCL_EMBED_KERNELS
  1359. const std::string kernel_src {
  1360. #include "group_norm.cl.h"
  1361. };
  1362. #else
  1363. const std::string kernel_src = read_file("group_norm.cl");
  1364. #endif
  1365. backend_ctx->program_group_norm =
  1366. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1367. CL_CHECK((backend_ctx->kernel_group_norm = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm", &err), err));
  1368. CL_CHECK((backend_ctx->kernel_group_norm_mul_add = clCreateKernel(backend_ctx->program_group_norm, "kernel_group_norm_mul_add", &err), err));
  1369. GGML_LOG_CONT(".");
  1370. }
  1371. // repeat
  1372. {
  1373. #ifdef GGML_OPENCL_EMBED_KERNELS
  1374. const std::string kernel_src {
  1375. #include "repeat.cl.h"
  1376. };
  1377. #else
  1378. const std::string kernel_src = read_file("repeat.cl");
  1379. #endif
  1380. if (!kernel_src.empty()) {
  1381. backend_ctx->program_repeat =
  1382. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1383. CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
  1384. GGML_LOG_CONT(".");
  1385. } else {
  1386. GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
  1387. backend_ctx->program_repeat = nullptr;
  1388. backend_ctx->kernel_repeat = nullptr;
  1389. }
  1390. }
  1391. // pad
  1392. {
  1393. #ifdef GGML_OPENCL_EMBED_KERNELS
  1394. const std::string kernel_src {
  1395. #include "pad.cl.h"
  1396. };
  1397. #else
  1398. const std::string kernel_src = read_file("pad.cl");
  1399. #endif
  1400. if (!kernel_src.empty()) {
  1401. backend_ctx->program_pad =
  1402. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1403. CL_CHECK((backend_ctx->kernel_pad = clCreateKernel(backend_ctx->program_pad, "kernel_pad", &err), err));
  1404. GGML_LOG_CONT(".");
  1405. } else {
  1406. GGML_LOG_WARN("ggml_opencl: pad kernel source not found or empty. Pad operations will not be available.\n");
  1407. backend_ctx->program_pad = nullptr;
  1408. backend_ctx->kernel_pad = nullptr;
  1409. }
  1410. }
  1411. // tanh
  1412. {
  1413. #ifdef GGML_OPENCL_EMBED_KERNELS
  1414. const std::string kernel_src {
  1415. #include "tanh.cl.h"
  1416. };
  1417. #else
  1418. const std::string kernel_src = read_file("tanh.cl");
  1419. #endif
  1420. if (!kernel_src.empty()) {
  1421. backend_ctx->program_tanh =
  1422. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1423. CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
  1424. CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
  1425. GGML_LOG_CONT(".");
  1426. } else {
  1427. GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
  1428. backend_ctx->program_tanh = nullptr;
  1429. backend_ctx->kernel_tanh_f32_nd = nullptr;
  1430. backend_ctx->kernel_tanh_f16_nd = nullptr;
  1431. }
  1432. }
  1433. // upscale
  1434. {
  1435. #ifdef GGML_OPENCL_EMBED_KERNELS
  1436. const std::string kernel_src {
  1437. #include "upscale.cl.h"
  1438. };
  1439. #else
  1440. const std::string kernel_src = read_file("upscale.cl");
  1441. #endif
  1442. if (!kernel_src.empty()) {
  1443. backend_ctx->program_upscale =
  1444. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1445. CL_CHECK((backend_ctx->kernel_upscale = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale", &err), err));
  1446. if (backend_ctx->program_upscale) {
  1447. cl_int err_bilinear;
  1448. backend_ctx->kernel_upscale_bilinear = clCreateKernel(backend_ctx->program_upscale, "kernel_upscale_bilinear", &err_bilinear);
  1449. if (err_bilinear != CL_SUCCESS) {
  1450. GGML_LOG_WARN("ggml_opencl: kernel_upscale_bilinear not found in upscale.cl. Bilinear upscale will not be available. Error: %d\n", err_bilinear);
  1451. backend_ctx->kernel_upscale_bilinear = nullptr;
  1452. }
  1453. } else {
  1454. backend_ctx->kernel_upscale_bilinear = nullptr;
  1455. }
  1456. GGML_LOG_CONT(".");
  1457. } else {
  1458. GGML_LOG_WARN("ggml_opencl: upscale kernel source not found or empty. Upscale operations will not be available.\n");
  1459. backend_ctx->program_upscale = nullptr;
  1460. backend_ctx->kernel_upscale = nullptr;
  1461. backend_ctx->kernel_upscale_bilinear = nullptr;
  1462. }
  1463. }
  1464. // concat
  1465. {
  1466. #ifdef GGML_OPENCL_EMBED_KERNELS
  1467. const std::string kernel_src {
  1468. #include "concat.cl.h"
  1469. };
  1470. #else
  1471. const std::string kernel_src = read_file("concat.cl");
  1472. #endif
  1473. if (!kernel_src.empty()) {
  1474. backend_ctx->program_concat =
  1475. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1476. CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
  1477. CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
  1478. GGML_LOG_CONT(".");
  1479. } else {
  1480. GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
  1481. backend_ctx->program_concat = nullptr;
  1482. backend_ctx->kernel_concat_f32_contiguous = nullptr;
  1483. backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
  1484. }
  1485. }
  1486. // timestep_embedding
  1487. {
  1488. #ifdef GGML_OPENCL_EMBED_KERNELS
  1489. const std::string kernel_src {
  1490. #include "tsembd.cl.h"
  1491. };
  1492. #else
  1493. const std::string kernel_src = read_file("tsembd.cl");
  1494. #endif
  1495. if (!kernel_src.empty()) {
  1496. backend_ctx->program_tsembd =
  1497. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1498. CL_CHECK((backend_ctx->kernel_timestep_embedding = clCreateKernel(backend_ctx->program_tsembd, "kernel_timestep_embedding", &err), err));
  1499. GGML_LOG_CONT(".");
  1500. } else {
  1501. GGML_LOG_WARN("ggml_opencl: timestep_embedding kernel source not found or empty. This op will not be available.\n");
  1502. backend_ctx->program_tsembd = nullptr;
  1503. backend_ctx->kernel_timestep_embedding = nullptr;
  1504. }
  1505. }
  1506. // set_rows
  1507. {
  1508. #ifdef GGML_OPENCL_EMBED_KERNELS
  1509. const std::string kernel_src {
  1510. #include "set_rows.cl.h"
  1511. };
  1512. #else
  1513. const std::string kernel_src = read_file("set_rows.cl");
  1514. #endif
  1515. backend_ctx->program_set_rows =
  1516. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1517. CL_CHECK((backend_ctx->kernel_set_rows_f32_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i64", &err), err));
  1518. CL_CHECK((backend_ctx->kernel_set_rows_f32_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f32_i32", &err), err));
  1519. CL_CHECK((backend_ctx->kernel_set_rows_f16_i64 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i64", &err), err));
  1520. CL_CHECK((backend_ctx->kernel_set_rows_f16_i32 = clCreateKernel(backend_ctx->program_set_rows, "kernel_set_rows_f16_i32", &err), err));
  1521. GGML_LOG_CONT(".");
  1522. }
  1523. // conv2d
  1524. {
  1525. #ifdef GGML_OPENCL_EMBED_KERNELS
  1526. const std::string kernel_src {
  1527. #include "conv2d.cl.h"
  1528. };
  1529. const std::string kernel_src_f16_f32 {
  1530. #include "conv2d_f16_f32.cl.h"
  1531. };
  1532. #else
  1533. const std::string kernel_src = read_file("conv2d.cl");
  1534. const std::string kernel_src_f16_f32 = read_file("conv2d_f16_f32.cl");
  1535. #endif
  1536. if (!kernel_src.empty()) {
  1537. backend_ctx->program_conv_2d_f16 =
  1538. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), (std::string(compile_opts) + " -DUSE_FP16=1").c_str());
  1539. CL_CHECK((backend_ctx->kernel_conv_2d_f16 = clCreateKernel(backend_ctx->program_conv_2d_f16, "kernel_conv_2d", &err), err));
  1540. GGML_LOG_CONT(".");
  1541. backend_ctx->program_conv_2d_f32 =
  1542. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1543. CL_CHECK((backend_ctx->kernel_conv_2d_f32 = clCreateKernel(backend_ctx->program_conv_2d_f32, "kernel_conv_2d", &err), err));
  1544. GGML_LOG_CONT(".");
  1545. } else {
  1546. GGML_LOG_WARN("ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n");
  1547. backend_ctx->program_conv_2d_f16 = nullptr;
  1548. backend_ctx->kernel_conv_2d_f16 = nullptr;
  1549. backend_ctx->program_conv_2d_f32 = nullptr;
  1550. backend_ctx->kernel_conv_2d_f32 = nullptr;
  1551. }
  1552. if (!kernel_src_f16_f32.empty()) {
  1553. backend_ctx->program_conv_2d_f16_f32 =
  1554. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_f16_f32.c_str(), compile_opts);
  1555. CL_CHECK((backend_ctx->kernel_conv_2d_f16_f32 = clCreateKernel(backend_ctx->program_conv_2d_f16_f32, "kernel_conv_2d", &err), err));
  1556. GGML_LOG_CONT(".");
  1557. } else {
  1558. GGML_LOG_WARN("ggml_opencl: conv2d_f16_f32 kernel source not found or empty. This op will not be available.\n");
  1559. backend_ctx->program_conv_2d_f16_f32 = nullptr;
  1560. backend_ctx->kernel_conv_2d_f16_f32 = nullptr;
  1561. }
  1562. }
  1563. // mul_mv_id_q4_0_f32_8x_flat
  1564. {
  1565. #ifdef GGML_OPENCL_EMBED_KERNELS
  1566. const std::string kernel_src {
  1567. #include "mul_mv_id_q4_0_f32_8x_flat.cl.h"
  1568. };
  1569. #else
  1570. const std::string kernel_src = read_file("mul_mv_id_q4_0_f32_8x_flat.cl");
  1571. #endif
  1572. backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat =
  1573. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1574. CL_CHECK((backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q4_0_f32_8x_flat, "kernel_mul_mv_id_q4_0_f32_8x_flat", &err), err));
  1575. GGML_LOG_CONT(".");
  1576. }
  1577. // mul_mv_id_q8_0_f32
  1578. {
  1579. #ifdef GGML_OPENCL_EMBED_KERNELS
  1580. const std::string kernel_src {
  1581. #include "mul_mv_id_q8_0_f32.cl.h"
  1582. };
  1583. #else
  1584. const std::string kernel_src = read_file("mul_mv_id_q8_0_f32.cl");
  1585. #endif
  1586. backend_ctx->program_mul_mv_id_q8_0_f32 =
  1587. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1588. CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32, "kernel_mul_mv_id_q8_0_f32", &err), err));
  1589. GGML_LOG_CONT(".");
  1590. }
  1591. // mul_mv_id_q8_0_f32_flat
  1592. {
  1593. #ifdef GGML_OPENCL_EMBED_KERNELS
  1594. const std::string kernel_src {
  1595. #include "mul_mv_id_q8_0_f32_flat.cl.h"
  1596. };
  1597. #else
  1598. const std::string kernel_src = read_file("mul_mv_id_q8_0_f32_flat.cl");
  1599. #endif
  1600. backend_ctx->program_mul_mv_id_q8_0_f32_flat =
  1601. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1602. CL_CHECK((backend_ctx->kernel_mul_mv_id_q8_0_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_q8_0_f32_flat, "kernel_mul_mv_id_q8_0_f32_flat", &err), err));
  1603. GGML_LOG_CONT(".");
  1604. }
  1605. // mul_mv_id_mxfp4_f32
  1606. {
  1607. #ifdef GGML_OPENCL_EMBED_KERNELS
  1608. const std::string kernel_src {
  1609. #include "mul_mv_id_mxfp4_f32.cl.h"
  1610. };
  1611. #else
  1612. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32.cl");
  1613. #endif
  1614. backend_ctx->program_mul_mv_id_mxfp4_f32 =
  1615. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1616. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32 = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32, "kernel_mul_mv_id_mxfp4_f32", &err), err));
  1617. GGML_LOG_CONT(".");
  1618. }
  1619. // mul_mv_id_mxfp4_f32_flat
  1620. {
  1621. #ifdef GGML_OPENCL_EMBED_KERNELS
  1622. const std::string kernel_src {
  1623. #include "mul_mv_id_mxfp4_f32_flat.cl.h"
  1624. };
  1625. #else
  1626. const std::string kernel_src = read_file("mul_mv_id_mxfp4_f32_flat.cl");
  1627. #endif
  1628. backend_ctx->program_mul_mv_id_mxfp4_f32_flat =
  1629. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1630. CL_CHECK((backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat = clCreateKernel(backend_ctx->program_mul_mv_id_mxfp4_f32_flat, "kernel_mul_mv_id_mxfp4_f32_flat", &err), err));
  1631. GGML_LOG_CONT(".");
  1632. }
  1633. // Adreno kernels
  1634. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1635. // transpose
  1636. {
  1637. #ifdef GGML_OPENCL_EMBED_KERNELS
  1638. const std::string kernel_src {
  1639. #include "transpose.cl.h"
  1640. };
  1641. #else
  1642. const std::string kernel_src = read_file("transpose.cl");
  1643. #endif
  1644. backend_ctx->program_transpose =
  1645. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
  1646. CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32_16", &err), err));
  1647. CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_32", &err), err));
  1648. CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16", &err), err));
  1649. CL_CHECK((backend_ctx->kernel_transpose_16_4x1 = clCreateKernel(backend_ctx->program_transpose, "kernel_transpose_16_4x1", &err), err));
  1650. GGML_LOG_CONT(".");
  1651. }
  1652. // gemv_noshuffle_general
  1653. {
  1654. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1655. " -cl-mad-enable "
  1656. " -DSIMDGROUP_WIDTH=" +
  1657. std::to_string(backend_ctx->adreno_wave_size);
  1658. if (backend_ctx->has_vector_subgroup_broadcast) {
  1659. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1660. }
  1661. #ifdef GGML_OPENCL_EMBED_KERNELS
  1662. const std::string kernel_src_CL_gemv_general {
  1663. #include "gemv_noshuffle_general.cl.h"
  1664. };
  1665. #else
  1666. const std::string kernel_src_CL_gemv_general = read_file("gemv_noshuffle_general.cl");
  1667. #endif
  1668. backend_ctx->program_CL_gemv_general = build_program_from_source(
  1669. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
  1670. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
  1671. GGML_LOG_CONT(".");
  1672. }
  1673. // gemv_noshuffle
  1674. {
  1675. // Gemv 2048, 16384
  1676. std::string CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1677. " -cl-mad-enable "
  1678. " -DLINE_STRIDE_A=2048 "
  1679. " -DBLOCK_STRIDE_A=16384 "
  1680. " -DSIMDGROUP_WIDTH=" +
  1681. std::to_string(backend_ctx->adreno_wave_size);
  1682. if (backend_ctx->has_vector_subgroup_broadcast) {
  1683. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1684. }
  1685. #ifdef GGML_OPENCL_EMBED_KERNELS
  1686. const std::string kernel_src_CL_gemv {
  1687. #include "gemv_noshuffle.cl.h"
  1688. };
  1689. #else
  1690. const std::string kernel_src_CL_gemv = read_file("gemv_noshuffle.cl");
  1691. #endif
  1692. backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
  1693. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1694. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
  1695. GGML_LOG_CONT(".");
  1696. // Gemv 2048, 16384
  1697. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1698. " -cl-mad-enable "
  1699. " -DLINE_STRIDE_A=2048 "
  1700. " -DBLOCK_STRIDE_A=16384 "
  1701. " -DSIMDGROUP_WIDTH=" +
  1702. std::to_string(backend_ctx->adreno_wave_size);
  1703. if (backend_ctx->has_vector_subgroup_broadcast) {
  1704. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1705. }
  1706. backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
  1707. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1708. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
  1709. GGML_LOG_CONT(".");
  1710. // Gemv 5504, 44032
  1711. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1712. " -cl-mad-enable "
  1713. " -DLINE_STRIDE_A=5504 "
  1714. " -DBLOCK_STRIDE_A=44032 "
  1715. " -DSIMDGROUP_WIDTH=" +
  1716. std::to_string(backend_ctx->adreno_wave_size);
  1717. if (backend_ctx->has_vector_subgroup_broadcast) {
  1718. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1719. }
  1720. backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
  1721. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1722. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
  1723. GGML_LOG_CONT(".");
  1724. // Gemv 16000, 128000
  1725. CL_gemv_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1726. " -cl-mad-enable "
  1727. " -DLINE_STRIDE_A=16000 "
  1728. " -DBLOCK_STRIDE_A=128000 "
  1729. " -DSIMDGROUP_WIDTH=" +
  1730. std::to_string(backend_ctx->adreno_wave_size);
  1731. if (backend_ctx->has_vector_subgroup_broadcast) {
  1732. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  1733. }
  1734. backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(
  1735. backend_ctx->context, backend_ctx->device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  1736. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
  1737. GGML_LOG_CONT(".");
  1738. }
  1739. // mul_mat_Ab_Bi_8x4
  1740. {
  1741. #ifdef GGML_OPENCL_EMBED_KERNELS
  1742. const std::string kernel_src_CL_gemm {
  1743. #include "mul_mat_Ab_Bi_8x4.cl.h"
  1744. };
  1745. #else
  1746. const std::string kernel_src_CL_gemm = read_file("mul_mat_Ab_Bi_8x4.cl");
  1747. #endif
  1748. backend_ctx->program_CL_gemm = build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src_CL_gemm.c_str(), compile_opts);
  1749. CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
  1750. GGML_LOG_CONT(".");
  1751. }
  1752. std::string CL_moe_compile_opts = std::string("-cl-std=") + opencl_c_std +
  1753. " -cl-mad-enable "
  1754. " -cl-fast-relaxed-math";
  1755. // gemv_moe_mxfp4_f32
  1756. {
  1757. #ifdef GGML_OPENCL_EMBED_KERNELS
  1758. const std::string kernel_src {
  1759. #include "gemv_moe_mxfp4_f32.cl.h"
  1760. };
  1761. #else
  1762. const std::string kernel_src = read_file("gemv_moe_mxfp4_f32.cl");
  1763. #endif
  1764. backend_ctx->program_gemv_moe_mxfp4_f32 =
  1765. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
  1766. CL_CHECK((backend_ctx->kernel_gemv_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemv_moe_mxfp4_f32, "kernel_gemv_moe_mxfp4_f32", &err), err));
  1767. GGML_LOG_CONT(".");
  1768. }
  1769. // gemm_moe_mxfp4_f32
  1770. {
  1771. #ifdef GGML_OPENCL_EMBED_KERNELS
  1772. const std::string kernel_src {
  1773. #include "gemm_moe_mxfp4_f32.cl.h"
  1774. };
  1775. #else
  1776. const std::string kernel_src = read_file("gemm_moe_mxfp4_f32.cl");
  1777. #endif
  1778. backend_ctx->program_gemm_moe_mxfp4_f32 =
  1779. build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), CL_moe_compile_opts);
  1780. CL_CHECK((backend_ctx->kernel_gemm_moe_mxfp4_f32 = clCreateKernel(backend_ctx->program_gemm_moe_mxfp4_f32, "kernel_gemm_moe_mxfp4_f32", &err), err));
  1781. GGML_LOG_CONT(".");
  1782. }
  1783. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1784. GGML_LOG_CONT("\n");
  1785. }
  1786. // XXX static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1787. // XXX static bool initialized = false;
  1788. // XXX static ggml_backend_opencl_context *backend_ctx = nullptr;
  1789. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev);
  1790. namespace /* anonymous */ {
  1791. extern struct ggml_backend_device_i ggml_backend_opencl_device_i;
  1792. }
  1793. // Look for available and suitable devices.
  1794. static std::vector<ggml_backend_device> ggml_opencl_probe_devices(ggml_backend_reg * reg) {
  1795. std::vector<ggml_backend_device> found_devices;
  1796. #ifdef GGML_OPENCL_PROFILING
  1797. GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
  1798. #endif
  1799. struct cl_device;
  1800. struct cl_platform {
  1801. cl_platform_id id;
  1802. unsigned number;
  1803. char name[128];
  1804. char vendor[128];
  1805. struct cl_device * devices;
  1806. unsigned n_devices;
  1807. struct cl_device * default_device;
  1808. };
  1809. struct cl_device {
  1810. struct cl_platform * platform;
  1811. cl_device_id id;
  1812. unsigned number;
  1813. cl_device_type type;
  1814. char name[128];
  1815. char version[128];
  1816. };
  1817. enum { NPLAT = 16, NDEV = 16 };
  1818. struct cl_platform platforms[NPLAT];
  1819. unsigned n_platforms = 0;
  1820. struct cl_device devices[NDEV];
  1821. unsigned n_devices = 0;
  1822. struct cl_device * default_device = NULL;
  1823. unsigned default_platform_number = 0;
  1824. cl_platform_id platform_ids[NPLAT];
  1825. if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
  1826. GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
  1827. return found_devices;
  1828. }
  1829. for (unsigned i = 0; i < n_platforms; i++) {
  1830. struct cl_platform * p = &platforms[i];
  1831. p->number = i;
  1832. p->id = platform_ids[i];
  1833. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  1834. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  1835. cl_device_id device_ids[NDEV];
  1836. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  1837. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  1838. p->n_devices = 0;
  1839. } else {
  1840. CL_CHECK(clGetDeviceIDsError);
  1841. }
  1842. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  1843. p->default_device = NULL;
  1844. for (unsigned j = 0; j < p->n_devices; j++) {
  1845. struct cl_device * d = &devices[n_devices];
  1846. d->number = n_devices++;
  1847. d->id = device_ids[j];
  1848. d->platform = p;
  1849. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  1850. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  1851. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
  1852. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  1853. p->default_device = d;
  1854. }
  1855. }
  1856. if (default_device == NULL && p->default_device != NULL) {
  1857. default_device = p->default_device;
  1858. default_platform_number = i;
  1859. }
  1860. }
  1861. if (n_devices == 0) {
  1862. GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
  1863. return found_devices;
  1864. }
  1865. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  1866. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  1867. int user_platform_number = -1;
  1868. int user_device_number = -1;
  1869. cl_device * candidate_devices = nullptr;
  1870. unsigned n_candidate_devices = 0;
  1871. unsigned n;
  1872. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  1873. user_platform_number = (int)n;
  1874. }
  1875. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  1876. user_device_number = (int)n;
  1877. }
  1878. if (user_platform_number != -1 && user_device_number != -1) {
  1879. cl_platform* platform = &platforms[user_platform_number];
  1880. if ((unsigned)user_device_number >= platform->n_devices) {
  1881. GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
  1882. exit(1);
  1883. }
  1884. default_device = &platform->devices[user_device_number];
  1885. candidate_devices = platform->devices;
  1886. n_candidate_devices = platform->n_devices;
  1887. } else {
  1888. // Choose a platform by matching a substring.
  1889. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  1890. for (unsigned i = 0; i < n_platforms; i++) {
  1891. struct cl_platform * p = &platforms[i];
  1892. if (strstr(p->name, user_platform_string) != NULL ||
  1893. strstr(p->vendor, user_platform_string) != NULL) {
  1894. user_platform_number = (int)i;
  1895. break;
  1896. }
  1897. }
  1898. if (user_platform_number == -1) {
  1899. GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  1900. exit(1);
  1901. }
  1902. }
  1903. int platform_idx = user_platform_number != -1 ? user_platform_number : default_platform_number;
  1904. struct cl_platform * p = &platforms[platform_idx];
  1905. candidate_devices = p->devices;
  1906. n_candidate_devices = p->n_devices;
  1907. default_device = p->default_device;
  1908. if (n_candidate_devices == 0) {
  1909. GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  1910. exit(1);
  1911. }
  1912. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  1913. for (unsigned i = 0; i < n_candidate_devices; i++) {
  1914. struct cl_device * d = &candidate_devices[i];
  1915. if (strstr(d->name, user_device_string) != NULL) {
  1916. user_device_number = d->number;
  1917. break;
  1918. }
  1919. }
  1920. if (user_device_number == -1) {
  1921. GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  1922. exit(1);
  1923. }
  1924. }
  1925. if (user_device_number != -1) {
  1926. candidate_devices = &devices[user_device_number];
  1927. n_candidate_devices = 1;
  1928. default_device = &candidate_devices[0];
  1929. }
  1930. GGML_ASSERT(n_candidate_devices > 0);
  1931. if (default_device == NULL) {
  1932. default_device = &candidate_devices[0];
  1933. }
  1934. }
  1935. GGML_ASSERT(n_candidate_devices != 0 && candidate_devices);
  1936. // Put the default device in front.
  1937. for (unsigned i = 1; i < n_candidate_devices; i++) {
  1938. if (&candidate_devices[i] == default_device) {
  1939. std::swap(candidate_devices[0], candidate_devices[i]);
  1940. default_device = &candidate_devices[0];
  1941. break;
  1942. }
  1943. }
  1944. GGML_LOG_INFO("ggml_opencl: selected platform: '%s'\n", default_device->platform->name);
  1945. std::vector<cl_device_id> device_ids;
  1946. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1947. device_ids.push_back(dev->id);
  1948. }
  1949. cl_int err;
  1950. cl_context shared_context;
  1951. cl_context_properties properties[] = { (intptr_t) CL_CONTEXT_PLATFORM, (intptr_t) default_device->platform->id, 0 };
  1952. CL_CHECK(
  1953. (shared_context = clCreateContext(properties, device_ids.size(), device_ids.data(), NULL, NULL, &err), err));
  1954. for (auto dev = candidate_devices, dev_end = candidate_devices + n_candidate_devices; dev != dev_end; dev++) {
  1955. GGML_LOG_INFO("\nggml_opencl: device: '%s (%s)'\n", dev->name, dev->version);
  1956. auto dev_ctx = std::unique_ptr<ggml_backend_opencl_device_context>(new ggml_backend_opencl_device_context{
  1957. /*.platform =*/dev->platform->id,
  1958. /*.platform_nane =*/dev->platform->name,
  1959. /*.device =*/dev->id,
  1960. /*.device_name =*/dev->name,
  1961. /*.device_type =*/dev->type,
  1962. /*.device_version =*/dev->version,
  1963. /*.backend_ctx =*/nullptr,
  1964. /*.buffer_type =*/{},
  1965. /*.context =*/shared_context,
  1966. });
  1967. found_devices.push_back(ggml_backend_device{
  1968. /* .iface = */ ggml_backend_opencl_device_i,
  1969. /* .reg = */ reg,
  1970. /* .context = */ dev_ctx.get(),
  1971. });
  1972. if (!ggml_cl2_init(&found_devices.back())) {
  1973. found_devices.pop_back();
  1974. GGML_LOG_INFO("ggml_opencl: drop unsupported device.\n");
  1975. continue;
  1976. }
  1977. dev_ctx.release();
  1978. }
  1979. if (found_devices.size()) {
  1980. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(found_devices.front().context);
  1981. GGML_LOG_INFO("ggml_opencl: default device: '%s (%s)'\n", dev_ctx->device_name.c_str(),
  1982. dev_ctx->device_version.c_str());
  1983. if (dev_ctx->device_type != CL_DEVICE_TYPE_GPU) {
  1984. GGML_LOG_WARN("ggml_opencl: warning, the default device is not a GPU: '%s'.\n",
  1985. dev_ctx->device_name.c_str());
  1986. }
  1987. }
  1988. return found_devices;
  1989. }
  1990. // Initialize device if it is supported (returns nullptr if it is not).
  1991. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  1992. GGML_ASSERT(dev);
  1993. GGML_ASSERT(dev->context);
  1994. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  1995. GGML_ASSERT(dev_ctx->platform);
  1996. GGML_ASSERT(dev_ctx->device);
  1997. if (dev_ctx->backend_ctx) {
  1998. return dev_ctx->backend_ctx;
  1999. }
  2000. auto backend_ctx = std::make_unique<ggml_backend_opencl_context>();
  2001. backend_ctx->device = dev_ctx->device;
  2002. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  2003. // ref_count get increased in ggml_backend_opencl_device_init
  2004. // This function is also used to retrieve backend context, so we don't want
  2005. // to increase ref_count for each call. We only want to increase ref_count
  2006. // when the associated device is initialized
  2007. backend_ctx->ref_count = 0;
  2008. if (strstr(dev_ctx->device_name.c_str(), "Adreno") ||
  2009. strstr(dev_ctx->device_name.c_str(), "Qualcomm") ||
  2010. strstr(dev_ctx->device_version.c_str(), "Adreno")) {
  2011. backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
  2012. // Usually device version contains the detailed device name
  2013. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_version.c_str());
  2014. if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
  2015. backend_ctx->adreno_gen = get_adreno_gpu_gen(dev_ctx->device_name.c_str());
  2016. }
  2017. // Use wave size of 64 for all Adreno GPUs.
  2018. backend_ctx->adreno_wave_size = 64;
  2019. } else if (strstr(dev_ctx->device_name.c_str(), "Intel")) {
  2020. backend_ctx->gpu_family = GPU_FAMILY::INTEL;
  2021. } else {
  2022. GGML_LOG_ERROR("Unsupported GPU: %s\n", dev_ctx->device_name.c_str());
  2023. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  2024. return nullptr;
  2025. }
  2026. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2027. if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
  2028. GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
  2029. "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
  2030. return nullptr;
  2031. }
  2032. #endif
  2033. // Populate backend device name
  2034. backend_ctx->device_name = dev_ctx->device_name;
  2035. // A local ref of cl_device_id for convenience
  2036. cl_device_id device = backend_ctx->device;
  2037. ggml_cl_version platform_version = get_opencl_platform_version(dev_ctx->platform);
  2038. // Check device OpenCL version, OpenCL 2.0 or above is required
  2039. ggml_cl_version opencl_c_version = get_opencl_c_version(platform_version, device);
  2040. if (opencl_c_version.major < 2) {
  2041. GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
  2042. return nullptr;
  2043. }
  2044. // Check driver version
  2045. size_t driver_version_str_size;
  2046. clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
  2047. char *driver_version = (char *)alloca(driver_version_str_size + 1);
  2048. clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
  2049. driver_version[driver_version_str_size] = '\0';
  2050. GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
  2051. backend_ctx->driver_version = driver_version;
  2052. backend_ctx->adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
  2053. backend_ctx->has_vector_subgroup_broadcast =
  2054. (backend_ctx->adreno_cl_compiler_version.type == E031 && backend_ctx->adreno_cl_compiler_version.major >= 47) ||
  2055. (backend_ctx->adreno_cl_compiler_version.type == DX && backend_ctx->adreno_cl_compiler_version.major >= 17);
  2056. GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
  2057. backend_ctx->has_vector_subgroup_broadcast ? "true" : "false");
  2058. size_t ext_str_size;
  2059. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  2060. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  2061. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  2062. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  2063. // Check if ext_buffer contains cl_khr_fp16
  2064. backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  2065. GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
  2066. // fp16 is required
  2067. if (!backend_ctx->fp16_support) {
  2068. GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
  2069. return nullptr;
  2070. }
  2071. // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
  2072. // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
  2073. if (opencl_c_version.major == 3 && strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
  2074. strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
  2075. GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
  2076. "(note that subgroups is an optional feature in OpenCL 3.0)\n");
  2077. return nullptr;
  2078. }
  2079. cl_uint base_align_in_bits;
  2080. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &base_align_in_bits, NULL));
  2081. GGML_ASSERT(base_align_in_bits % 8u == 0);
  2082. backend_ctx->alignment = base_align_in_bits / 8u;
  2083. GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
  2084. clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
  2085. GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
  2086. clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &backend_ctx->max_workgroup_size, NULL);
  2087. GGML_LOG_INFO("ggml_opencl: device max workgroup size: %lu\n", backend_ctx->max_workgroup_size);
  2088. // Check SVM.
  2089. cl_device_svm_capabilities svm_caps;
  2090. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
  2091. GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
  2092. svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
  2093. GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
  2094. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
  2095. GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
  2096. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
  2097. GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
  2098. svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
  2099. if (opencl_c_version.major >= 3) {
  2100. // Assume it is not available for 3.0, since it is optional in 3.0.
  2101. // If compiling against 3.0, then we can query.
  2102. backend_ctx->non_uniform_workgroups = false;
  2103. #if CL_TARGET_OPENCL_VERSION >= 300
  2104. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT, sizeof(cl_bool),
  2105. &backend_ctx->non_uniform_workgroups, 0));
  2106. #endif
  2107. } else {
  2108. GGML_ASSERT(opencl_c_version.major == 2);
  2109. // Non-uniform workgroup sizes is mandatory feature in v2.x.
  2110. backend_ctx->non_uniform_workgroups = true;
  2111. }
  2112. // Print out configurations
  2113. #ifdef GGML_OPENCL_SOA_Q
  2114. GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
  2115. #endif // GGML_OPENCL_SOA_Q
  2116. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2117. GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
  2118. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2119. cl_int err;
  2120. // A local ref of cl_context for convenience
  2121. cl_context context = backend_ctx->context = dev_ctx->context;
  2122. //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  2123. // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  2124. // (queue = clCreateCommandQueue(context, device, 0, &err), err)
  2125. //)));
  2126. cl_command_queue_properties command_queue_props = 0;
  2127. #ifdef GGML_OPENCL_PROFILING
  2128. command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
  2129. #endif
  2130. CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
  2131. // Load kernels
  2132. load_cl_kernels(backend_ctx.get(), opencl_c_version);
  2133. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2134. // Allocate intermediate buffers and images
  2135. size_t required_A_q_d_bytes = 311164928;
  2136. size_t required_A_s_d_bytes = 38895616;
  2137. size_t required_B_d_bytes = 45088768;
  2138. // Ensure buffer sizes do not exceed the maximum allocation size
  2139. size_t max_A_q_d_bytes = MIN(required_A_q_d_bytes, backend_ctx->max_alloc_size);
  2140. size_t max_A_s_d_bytes = MIN(required_A_s_d_bytes, backend_ctx->max_alloc_size);
  2141. size_t max_B_d_bytes = MIN(required_B_d_bytes, backend_ctx->max_alloc_size);
  2142. if (required_A_q_d_bytes > backend_ctx->max_alloc_size) {
  2143. GGML_LOG_WARN("ggml_opencl: A_q_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2144. required_A_q_d_bytes, max_A_q_d_bytes);
  2145. }
  2146. if (required_A_s_d_bytes > backend_ctx->max_alloc_size) {
  2147. GGML_LOG_WARN("ggml_opencl: A_s_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2148. required_A_s_d_bytes, max_A_s_d_bytes);
  2149. }
  2150. if (required_B_d_bytes > backend_ctx->max_alloc_size) {
  2151. GGML_LOG_WARN("ggml_opencl: B_d buffer size reduced from %zu to %zu due to device limitations.\n",
  2152. required_B_d_bytes, max_B_d_bytes);
  2153. }
  2154. CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
  2155. CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
  2156. CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
  2157. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2158. backend_ctx->disable_fusion = getenv("GGML_OPENCL_DISABLE_FUSION") != nullptr;
  2159. dev_ctx->backend_ctx = backend_ctx.release();
  2160. return dev_ctx->backend_ctx;
  2161. }
  2162. static void ggml_cl2_free(ggml_backend_t backend) {
  2163. ggml_backend_opencl_context * ctx = (ggml_backend_opencl_context *) backend->context;
  2164. ctx->free();
  2165. // The CL context is shared by all backends, release it if all backends have been released
  2166. bool should_release_opencl = true;
  2167. for (auto device : g_ggml_backend_opencl_devices) {
  2168. ggml_backend_opencl_device_context * ctx_dev = (ggml_backend_opencl_device_context *) device.context;
  2169. if (ctx_dev->backend_ctx->ref_count > 0) {
  2170. should_release_opencl = false;
  2171. }
  2172. }
  2173. if (should_release_opencl) {
  2174. CL_CHECK(clReleaseContext(ctx->context));
  2175. }
  2176. }
  2177. //------------------------------------------------------------------------------
  2178. // Tensor extra management
  2179. //------------------------------------------------------------------------------
  2180. struct ggml_tensor_extra_cl {
  2181. // The buffer object that holds the data.
  2182. cl_mem data_device;
  2183. // The offset into the buffer object. This is primarily for scratch buffer
  2184. // and view operation.
  2185. // NB: this offset no longer includes view offset (view_offs). Whenever this
  2186. // offset is used, view_offs should be considered.
  2187. cl_ulong offset;
  2188. // The actual size of the cl_mem object. This is needed when returning the
  2189. // block to the pool.
  2190. size_t actual_size;
  2191. void reset() {
  2192. data_device = nullptr;
  2193. offset = 0;
  2194. actual_size = 0;
  2195. }
  2196. };
  2197. // Additional tensor extra structs for quantized tensors.
  2198. // These tensors are loaded from files and should not be allocated in scratch --
  2199. // they should always be allocated from the pool. Hence, they do not have an
  2200. // `offset`, which indicate their locations in the scratch buffer.
  2201. struct ggml_tensor_extra_cl_q4_0 {
  2202. // Quantized values.
  2203. cl_mem q = nullptr;
  2204. // Quantized values in image1d_buffer_t.
  2205. cl_mem q_img = nullptr;
  2206. // Scales.
  2207. cl_mem d = nullptr;
  2208. // Scales in image1d_buffer_t.
  2209. cl_mem d_img = nullptr;
  2210. // Size of quantized values.
  2211. size_t size_q = 0;
  2212. // Size of scales.
  2213. size_t size_d = 0;
  2214. ~ggml_tensor_extra_cl_q4_0() {
  2215. reset();
  2216. }
  2217. void reset() {
  2218. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2219. // They must be properly released so that the original buffer can be
  2220. // properly released to avoid memory leak.
  2221. if (q != nullptr) {
  2222. CL_CHECK(clReleaseMemObject(q));
  2223. q = nullptr;
  2224. }
  2225. if (d != nullptr) {
  2226. CL_CHECK(clReleaseMemObject(d));
  2227. d = nullptr;
  2228. }
  2229. // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
  2230. // enabled. They point to the images in ggml_backend_opencl_buffer_context.
  2231. // So, there is no need to release them here.
  2232. // TODO: initialize them for non SMALL_PATH path, or remove them.
  2233. q_img = nullptr;
  2234. d_img = nullptr;
  2235. size_q = 0;
  2236. size_d = 0;
  2237. }
  2238. };
  2239. struct ggml_tensor_extra_cl_mxfp4 {
  2240. // Quantized values.
  2241. cl_mem q = nullptr;
  2242. // Quantized values in image1d_buffer_t.
  2243. cl_mem q_img = nullptr;
  2244. // Scales in E8M0.
  2245. cl_mem e = nullptr;
  2246. // Scales in image1d_buffer_t.
  2247. cl_mem e_img = nullptr;
  2248. // Size of quantized values.
  2249. size_t size_q = 0;
  2250. // Size of scales.
  2251. size_t size_e = 0;
  2252. ~ggml_tensor_extra_cl_mxfp4() {
  2253. reset();
  2254. }
  2255. void reset() {
  2256. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2257. // They must be properly released so that the original buffer can be
  2258. // properly released to avoid memory leak.
  2259. if (q != nullptr) {
  2260. CL_CHECK(clReleaseMemObject(q));
  2261. q = nullptr;
  2262. }
  2263. if (e != nullptr) {
  2264. CL_CHECK(clReleaseMemObject(e));
  2265. e = nullptr;
  2266. }
  2267. if (q != nullptr) {
  2268. CL_CHECK(clReleaseMemObject(q_img));
  2269. q = nullptr;
  2270. }
  2271. // Currently, q_img and d_img are not used. They can be image1d_buffer_t
  2272. // that wraps around q and d to utilize image access path.
  2273. q_img = nullptr;
  2274. e_img = nullptr;
  2275. size_q = 0;
  2276. size_e = 0;
  2277. }
  2278. };
  2279. struct ggml_tensor_extra_cl_q8_0 {
  2280. cl_mem q = nullptr;
  2281. cl_mem q_img = nullptr;
  2282. cl_mem d = nullptr;
  2283. cl_mem d_img = nullptr;
  2284. size_t size_q = 0;
  2285. size_t size_d = 0;
  2286. ~ggml_tensor_extra_cl_q8_0() {
  2287. reset();
  2288. }
  2289. void reset() {
  2290. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  2291. // They must be properly released so that the original buffer can be
  2292. // properly released to avoid memory leak.
  2293. if (q != nullptr) {
  2294. CL_CHECK(clReleaseMemObject(q));
  2295. q = nullptr;
  2296. }
  2297. if (d != nullptr) {
  2298. CL_CHECK(clReleaseMemObject(d));
  2299. d = nullptr;
  2300. }
  2301. // Currently, q_img and d_img are not used. They can be image1d_buffer_t
  2302. // that wraps around q and d to utilize image access path.
  2303. q_img = nullptr;
  2304. d_img = nullptr;
  2305. size_q = 0;
  2306. size_d = 0;
  2307. }
  2308. };
  2309. //------------------------------------------------------------------------------
  2310. // Backend API
  2311. //------------------------------------------------------------------------------
  2312. //
  2313. // backend
  2314. //
  2315. static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
  2316. return "OpenCL";
  2317. UNUSED(backend);
  2318. }
  2319. static void ggml_backend_opencl_free(ggml_backend_t backend) {
  2320. ggml_cl2_free(backend);
  2321. }
  2322. static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2323. GGML_UNUSED(backend);
  2324. GGML_UNUSED(tensor);
  2325. GGML_UNUSED(data);
  2326. GGML_UNUSED(offset);
  2327. GGML_UNUSED(size);
  2328. }
  2329. static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  2330. GGML_UNUSED(backend);
  2331. GGML_UNUSED(tensor);
  2332. GGML_UNUSED(data);
  2333. GGML_UNUSED(offset);
  2334. GGML_UNUSED(size);
  2335. }
  2336. static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  2337. GGML_UNUSED(backend);
  2338. GGML_UNUSED(src);
  2339. GGML_UNUSED(dst);
  2340. return false;
  2341. }
  2342. static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
  2343. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2344. cl_event evt;
  2345. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, 0, nullptr, &evt));
  2346. CL_CHECK(clWaitForEvents(1, &evt));
  2347. CL_CHECK(clReleaseEvent(evt));
  2348. }
  2349. // Syncronizes the 'backend_ctx's device with others so that commands
  2350. // enqueued to it won't start until commands in the other devices have
  2351. // completed.
  2352. static void sync_with_other_backends(ggml_backend_opencl_context * backend_ctx) {
  2353. if (g_ggml_backend_opencl_devices.size() < 2)
  2354. return; // No other devices to synchronize with.
  2355. std::vector<cl_event> events;
  2356. events.reserve(g_ggml_backend_opencl_devices.size());
  2357. for (ggml_backend_device & backend_dev : g_ggml_backend_opencl_devices) {
  2358. auto * other_backend_ctx = ggml_cl2_init(&backend_dev);
  2359. if (backend_ctx != other_backend_ctx) {
  2360. cl_event ev;
  2361. CL_CHECK(clEnqueueMarkerWithWaitList(other_backend_ctx->queue, 0, nullptr, &ev));
  2362. CL_CHECK(clFlush(other_backend_ctx->queue));
  2363. events.push_back(ev);
  2364. }
  2365. }
  2366. CL_CHECK(clEnqueueBarrierWithWaitList(backend_ctx->queue, events.size(), events.data(), nullptr));
  2367. for (auto ev : events) {
  2368. CL_CHECK(clReleaseEvent(ev));
  2369. }
  2370. }
  2371. static void sync_with_other_backends(ggml_backend_t backend) {
  2372. auto * backend_ctx = static_cast<ggml_backend_opencl_context *>(backend->context);
  2373. sync_with_other_backends(backend_ctx);
  2374. }
  2375. static bool ggml_opencl_can_fuse(const struct ggml_cgraph * cgraph, int node_idx, std::initializer_list<enum ggml_op> ops) {
  2376. if (!ggml_can_fuse(cgraph, node_idx, ops)) {
  2377. return false;
  2378. }
  2379. if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
  2380. const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
  2381. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2382. GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
  2383. GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
  2384. // rms_norm only supports f32
  2385. if (mul->src[0]->type != GGML_TYPE_F32 ||
  2386. mul->src[1]->type != GGML_TYPE_F32 ||
  2387. mul->type != GGML_TYPE_F32) {
  2388. return false;
  2389. }
  2390. // if rms_norm is the B operand, then we don't handle broadcast
  2391. if (rms_norm == mul->src[1] &&
  2392. !ggml_are_same_shape(mul->src[0], rms_norm)) {
  2393. return false;
  2394. }
  2395. // rms_norm assumes contiguous rows
  2396. if (!ggml_is_contiguous_rows(mul->src[0]) || !ggml_is_contiguous_rows(mul->src[1])) {
  2397. return false;
  2398. }
  2399. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2400. const ggml_tensor *norm = cgraph->nodes[node_idx];
  2401. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2402. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2403. const ggml_tensor *w = mul->src[0] == norm ? mul->src[1] : mul->src[0];
  2404. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2405. // norm fusion only supports F32
  2406. if (norm->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2407. return false;
  2408. }
  2409. if (norm->src[0]->ne[0] % 4 != 0) {
  2410. return false;
  2411. }
  2412. if (!ggml_is_contiguous(norm->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2413. return false;
  2414. }
  2415. } else if (ops.size() == 3 && ops.begin()[0] == GGML_OP_GROUP_NORM && ops.begin()[1] == GGML_OP_MUL && ops.begin()[2] == GGML_OP_ADD) {
  2416. const ggml_tensor *gn = cgraph->nodes[node_idx];
  2417. const ggml_tensor *mul = cgraph->nodes[node_idx+1];
  2418. const ggml_tensor *add = cgraph->nodes[node_idx+2];
  2419. const ggml_tensor *w = mul->src[0] == gn ? mul->src[1] : mul->src[0];
  2420. const ggml_tensor *b = add->src[0] == mul ? add->src[1] : add->src[0];
  2421. if (gn->src[0]->type != GGML_TYPE_F32 || w->type != GGML_TYPE_F32 || b->type != GGML_TYPE_F32) {
  2422. return false;
  2423. }
  2424. if (!ggml_is_contiguous(gn->src[0]) || !ggml_is_contiguous(w) || !ggml_is_contiguous(b)) {
  2425. return false;
  2426. }
  2427. }
  2428. return true;
  2429. }
  2430. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor);
  2431. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2432. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor);
  2433. static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  2434. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2435. for (int i = 0; i < cgraph->n_nodes; i++) {
  2436. ggml_tensor * node = cgraph->nodes[i];
  2437. // NOTE: this may oversynchronize by synchronizing with
  2438. // backends/devices which don't compute 'cgraph's
  2439. // dependencies.
  2440. sync_with_other_backends(backend);
  2441. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2442. continue;
  2443. }
  2444. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2445. ggml_opencl_op_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2446. i += 2;
  2447. continue;
  2448. }
  2449. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_GROUP_NORM, GGML_OP_MUL, GGML_OP_ADD })) {
  2450. ggml_opencl_op_group_norm_fused(backend, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
  2451. i += 2;
  2452. continue;
  2453. }
  2454. if (!backend_ctx->disable_fusion && ggml_opencl_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL })) {
  2455. ggml_opencl_op_rms_norm_fused(backend, node, cgraph->nodes[i+1]);
  2456. i++;
  2457. continue;
  2458. }
  2459. bool ok = ggml_cl_compute_forward(backend, node);
  2460. if (!ok) {
  2461. GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  2462. }
  2463. GGML_ASSERT(ok);
  2464. }
  2465. return GGML_STATUS_SUCCESS;
  2466. }
  2467. static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  2468. ggml_backend_opencl_device_context * dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
  2469. ggml_backend_opencl_context * backend_ctx = dev_ctx->backend_ctx;
  2470. switch (op->op) {
  2471. case GGML_OP_NONE:
  2472. return true;
  2473. case GGML_OP_GET_ROWS:
  2474. switch (op->src[0]->type) {
  2475. case GGML_TYPE_F32:
  2476. case GGML_TYPE_F16:
  2477. return true;
  2478. case GGML_TYPE_Q4_0:
  2479. #ifdef GGML_OPENCL_SOA_Q
  2480. // We do not support flattened Q4_0 (and possibly other Q's)
  2481. return false;
  2482. #else // GGML_OPENCL_SOA_Q
  2483. return true;
  2484. #endif // GGML_OPENCL_SOA_Q
  2485. default:
  2486. return false;
  2487. }
  2488. case GGML_OP_SET_ROWS:
  2489. {
  2490. // TODO: add support
  2491. // ref: https://github.com/ggml-org/llama.cpp/pull/14274
  2492. #pragma message("TODO: implement BF16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, IQ4_NL support (https://github.com/ggml-org/llama.cpp/pull/14661)")
  2493. if (op->src[0]->type != GGML_TYPE_F32) {
  2494. return false;
  2495. }
  2496. switch (op->type) {
  2497. case GGML_TYPE_F16:
  2498. case GGML_TYPE_F32:
  2499. return (op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32);
  2500. default:
  2501. return false;
  2502. }
  2503. }
  2504. case GGML_OP_CPY:
  2505. case GGML_OP_DUP:
  2506. case GGML_OP_CONT:
  2507. switch (op->src[0]->type) {
  2508. case GGML_TYPE_F32:
  2509. switch (op->type) {
  2510. case GGML_TYPE_F16:
  2511. case GGML_TYPE_F32:
  2512. return true;
  2513. default:
  2514. return false;
  2515. }
  2516. case GGML_TYPE_F16:
  2517. switch (op->type) {
  2518. case GGML_TYPE_F16:
  2519. case GGML_TYPE_F32:
  2520. return true;
  2521. default:
  2522. return false;
  2523. }
  2524. default:
  2525. return false;
  2526. }
  2527. case GGML_OP_SCALE:
  2528. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2529. case GGML_OP_ADD:
  2530. if (op->type == GGML_TYPE_F16) {
  2531. const bool src0_ok = op->src[0]->type == GGML_TYPE_F16 || op->src[0]->type == GGML_TYPE_F32;
  2532. const bool src1_ok = op->src[1]->type == GGML_TYPE_F16 || op->src[1]->type == GGML_TYPE_F32;
  2533. if (src0_ok && src1_ok) {
  2534. return true;
  2535. }
  2536. }
  2537. case GGML_OP_MUL:
  2538. case GGML_OP_DIV:
  2539. case GGML_OP_SUB:
  2540. return (op->src[0]->type == op->src[1]->type) &&
  2541. (op->src[0]->type == op->type) &&
  2542. (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16);
  2543. case GGML_OP_ADD_ID:
  2544. return op->src[0]->type == GGML_TYPE_F32;
  2545. case GGML_OP_UNARY:
  2546. switch (ggml_get_unary_op(op)) {
  2547. case GGML_UNARY_OP_GELU:
  2548. case GGML_UNARY_OP_SILU:
  2549. case GGML_UNARY_OP_RELU:
  2550. case GGML_UNARY_OP_GELU_ERF:
  2551. case GGML_UNARY_OP_GELU_QUICK:
  2552. return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
  2553. case GGML_UNARY_OP_SIGMOID:
  2554. return ggml_is_contiguous(op->src[0]);
  2555. case GGML_UNARY_OP_TANH:
  2556. return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2557. (op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
  2558. default:
  2559. return false;
  2560. }
  2561. case GGML_OP_GLU:
  2562. switch (ggml_get_glu_op(op)) {
  2563. case GGML_GLU_OP_GEGLU:
  2564. case GGML_GLU_OP_REGLU:
  2565. case GGML_GLU_OP_SWIGLU:
  2566. case GGML_GLU_OP_SWIGLU_OAI:
  2567. case GGML_GLU_OP_GEGLU_ERF:
  2568. case GGML_GLU_OP_GEGLU_QUICK:
  2569. return ggml_is_contiguous_1(op->src[0]) && (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16);
  2570. default:
  2571. return false;
  2572. }
  2573. case GGML_OP_CLAMP:
  2574. return op->src[0]->type == GGML_TYPE_F32;
  2575. case GGML_OP_SOFT_MAX:
  2576. case GGML_OP_NORM:
  2577. return true;
  2578. case GGML_OP_RMS_NORM:
  2579. return op->ne[0] % 4 == 0 && ggml_is_contiguous_rows(op->src[0]);
  2580. case GGML_OP_REPEAT:
  2581. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32; // Assuming F32 for now, can be expanded
  2582. case GGML_OP_PAD:
  2583. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2584. case GGML_OP_UPSCALE:
  2585. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2586. case GGML_OP_CONV_2D:
  2587. return (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16) ||
  2588. (op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
  2589. (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32);
  2590. case GGML_OP_CONCAT:
  2591. return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2592. case GGML_OP_TIMESTEP_EMBEDDING:
  2593. return op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2594. case GGML_OP_GROUP_NORM:
  2595. return ggml_is_contiguous(op->src[0]);
  2596. case GGML_OP_MUL_MAT:
  2597. if (op->src[0]->type == GGML_TYPE_F16) {
  2598. return true;
  2599. } else if (op->src[0]->type == GGML_TYPE_F32) {
  2600. return op->src[1]->type == GGML_TYPE_F32;
  2601. } else if (op->src[0]->type == GGML_TYPE_Q4_0 || op->src[0]->type == GGML_TYPE_MXFP4 ||
  2602. op->src[0]->type == GGML_TYPE_Q6_K) {
  2603. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2604. } else if (op->src[0]->type == GGML_TYPE_Q8_0) {
  2605. return op->src[1]->type == GGML_TYPE_F32;
  2606. }
  2607. return false;
  2608. case GGML_OP_MUL_MAT_ID:
  2609. if (op->src[0]->type == GGML_TYPE_Q4_0 ||
  2610. op->src[0]->type == GGML_TYPE_Q8_0 ||
  2611. op->src[0]->type == GGML_TYPE_MXFP4) {
  2612. if (op->src[1]->type == GGML_TYPE_F32) {
  2613. return ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  2614. }
  2615. }
  2616. return false;
  2617. case GGML_OP_RESHAPE:
  2618. case GGML_OP_VIEW:
  2619. case GGML_OP_PERMUTE:
  2620. case GGML_OP_TRANSPOSE:
  2621. return true;
  2622. case GGML_OP_DIAG_MASK_INF:
  2623. return op->ne[3] == 1;
  2624. case GGML_OP_ROPE: {
  2625. const int mode = ((const int32_t *) op->op_params)[2];
  2626. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2627. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2628. if (is_mrope && !is_vision) {
  2629. if (op->src[0]->type == GGML_TYPE_F32 ||
  2630. op->src[0]->type == GGML_TYPE_F16) {
  2631. return true;
  2632. }
  2633. return false;
  2634. }
  2635. if (is_vision) {
  2636. if (op->src[0]->type == GGML_TYPE_F32 ||
  2637. op->src[0]->type == GGML_TYPE_F16) {
  2638. return true;
  2639. }
  2640. return false;
  2641. }
  2642. return true;
  2643. }
  2644. case GGML_OP_IM2COL:
  2645. return true;
  2646. case GGML_OP_ARGSORT: {
  2647. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  2648. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  2649. int cols = 1;
  2650. while (cols < op->ne[0]) {
  2651. cols *= 2;
  2652. }
  2653. return cols <= max_workgroup_size && op->src[0]->type == GGML_TYPE_F32;
  2654. }
  2655. case GGML_OP_SUM_ROWS:
  2656. return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
  2657. case GGML_OP_FLASH_ATTN_EXT:
  2658. {
  2659. const ggml_tensor * q = op->src[0];
  2660. const ggml_tensor * k = op->src[1];
  2661. const ggml_tensor * v = op->src[2];
  2662. const int dk = q->ne[0];
  2663. const int dv = v->ne[0];
  2664. const struct { int dk; int dv; } supported_dims[] = {
  2665. { 40, 40}, { 64, 64}, { 80, 80}, { 96, 96},
  2666. {112, 112}, {128, 128}, {192, 128},
  2667. {192, 192}, {256, 256},
  2668. };
  2669. bool dims_supported = false;
  2670. for (size_t i = 0; i < sizeof(supported_dims)/sizeof(supported_dims[0]); ++i) {
  2671. if (supported_dims[i].dk == dk && supported_dims[i].dv == dv) {
  2672. dims_supported = true;
  2673. break;
  2674. }
  2675. }
  2676. if (!dims_supported) {
  2677. return false;
  2678. }
  2679. const bool is_f32_f32 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F32 &&
  2680. v->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
  2681. const bool is_f16_f16 = q->type == GGML_TYPE_F16 && k->type == GGML_TYPE_F16 &&
  2682. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16;
  2683. const bool is_f32_f16 = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16 &&
  2684. v->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F32;
  2685. return is_f32_f32 || is_f16_f16 || is_f32_f16;
  2686. }
  2687. default:
  2688. return false;
  2689. }
  2690. }
  2691. // Forward declaration - implementation appears later in the file.
  2692. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
  2693. static ggml_guid_t ggml_backend_opencl_guid() {
  2694. static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
  2695. return &guid;
  2696. }
  2697. static ggml_backend_i ggml_backend_opencl_i = {
  2698. /* .get_name = */ ggml_backend_opencl_name,
  2699. /* .free = */ ggml_backend_opencl_free,
  2700. /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
  2701. /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
  2702. /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
  2703. /* .synchronize = */ ggml_backend_opencl_synchronize,
  2704. /* .graph_plan_create = */ NULL,
  2705. /* .graph_plan_free = */ NULL,
  2706. /* .graph_plan_update = */ NULL,
  2707. /* .graph_plan_compute = */ NULL,
  2708. /* .graph_compute = */ ggml_backend_opencl_graph_compute,
  2709. /* .event_record = */ NULL,
  2710. /* .event_wait = */ NULL,
  2711. /* .graph_optimize = */ NULL,
  2712. };
  2713. ggml_backend_t ggml_backend_opencl_init(void) {
  2714. ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
  2715. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  2716. ggml_backend_t backend = new ggml_backend {
  2717. /* .guid = */ ggml_backend_opencl_guid(),
  2718. /* .iface = */ ggml_backend_opencl_i,
  2719. /* .device = */ dev,
  2720. /* .context = */ backend_ctx
  2721. };
  2722. return backend;
  2723. }
  2724. bool ggml_backend_is_opencl(ggml_backend_t backend) {
  2725. return backend && backend->iface.get_name == ggml_backend_opencl_name;
  2726. }
  2727. //
  2728. // buffer
  2729. //
  2730. struct ggml_backend_opencl_buffer_context {
  2731. // A buffer context can hold multiple cl_mem objects. This is for flattening
  2732. // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
  2733. // each tensor is allocated a separate buffer. When flattening is enabled
  2734. // with small allocation, each tensor is backed by two cl_mem objects (for
  2735. // quants and scales) packed into a backend_opencl_buffer.
  2736. ggml_backend_opencl_buffer_context(cl_mem buf)
  2737. : name("OpenCL") {
  2738. buffer.push_back(buf);
  2739. }
  2740. ~ggml_backend_opencl_buffer_context() {
  2741. for (cl_mem buf : buffer) {
  2742. CL_CHECK(clReleaseMemObject(buf));
  2743. }
  2744. for (cl_mem im : img) {
  2745. CL_CHECK(clReleaseMemObject(im));
  2746. }
  2747. // Delete all extras to trigger their destructors
  2748. for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
  2749. delete e;
  2750. }
  2751. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2752. delete e;
  2753. }
  2754. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
  2755. delete e;
  2756. }
  2757. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2758. delete e;
  2759. }
  2760. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4) {
  2761. delete e;
  2762. }
  2763. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
  2764. delete e;
  2765. }
  2766. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0) {
  2767. delete e;
  2768. }
  2769. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
  2770. delete e;
  2771. }
  2772. }
  2773. ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
  2774. ggml_tensor_extra_cl * extra;
  2775. if (temp_tensor_extras.empty()) {
  2776. extra = new ggml_tensor_extra_cl();
  2777. } else {
  2778. extra = temp_tensor_extras.back();
  2779. temp_tensor_extras.pop_back();
  2780. }
  2781. temp_tensor_extras_in_use.push_back(extra);
  2782. extra->reset();
  2783. return extra;
  2784. }
  2785. ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
  2786. ggml_tensor_extra_cl_q4_0 * extra;
  2787. if (temp_tensor_extras_q4_0.empty()) {
  2788. extra = new ggml_tensor_extra_cl_q4_0();
  2789. } else {
  2790. extra = temp_tensor_extras_q4_0.back();
  2791. temp_tensor_extras_q4_0.pop_back();
  2792. }
  2793. temp_tensor_extras_q4_0_in_use.push_back(extra);
  2794. extra->reset();
  2795. return extra;
  2796. }
  2797. ggml_tensor_extra_cl_mxfp4 * ggml_opencl_alloc_temp_tensor_extra_mxfp4() {
  2798. ggml_tensor_extra_cl_mxfp4 * extra;
  2799. if (temp_tensor_extras_mxfp4.empty()) {
  2800. extra = new ggml_tensor_extra_cl_mxfp4();
  2801. } else {
  2802. extra = temp_tensor_extras_mxfp4.back();
  2803. temp_tensor_extras_mxfp4.pop_back();
  2804. }
  2805. temp_tensor_extras_mxfp4_in_use.push_back(extra);
  2806. extra->reset();
  2807. return extra;
  2808. }
  2809. ggml_tensor_extra_cl_q8_0 * ggml_opencl_alloc_temp_tensor_extra_q8_0() {
  2810. ggml_tensor_extra_cl_q8_0 * extra;
  2811. if (temp_tensor_extras_q8_0.empty()) {
  2812. extra = new ggml_tensor_extra_cl_q8_0();
  2813. } else {
  2814. extra = temp_tensor_extras_q8_0.back();
  2815. temp_tensor_extras_q8_0.pop_back();
  2816. }
  2817. temp_tensor_extras_q8_0_in_use.push_back(extra);
  2818. extra->reset();
  2819. return extra;
  2820. }
  2821. void reset() {
  2822. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  2823. temp_tensor_extras.push_back(e);
  2824. }
  2825. temp_tensor_extras_in_use.clear();
  2826. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  2827. temp_tensor_extras_q4_0.push_back(e);
  2828. }
  2829. temp_tensor_extras_q4_0_in_use.clear();
  2830. for (ggml_tensor_extra_cl_mxfp4 * e : temp_tensor_extras_mxfp4_in_use) {
  2831. temp_tensor_extras_mxfp4.push_back(e);
  2832. }
  2833. temp_tensor_extras_mxfp4_in_use.clear();
  2834. for (ggml_tensor_extra_cl_q8_0 * e : temp_tensor_extras_q8_0_in_use) {
  2835. temp_tensor_extras_q8_0.push_back(e);
  2836. }
  2837. temp_tensor_extras_q8_0_in_use.clear();
  2838. }
  2839. // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
  2840. // being used are in `temp_tensor_extras_in_use`. At the first run, new
  2841. // extras get created and put in `in_use`. When the buffer is reset via
  2842. // the `reset` callback, all extras in `in_use` get moved to available extras
  2843. // for reuse.
  2844. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
  2845. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
  2846. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
  2847. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
  2848. std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4;
  2849. std::vector<ggml_tensor_extra_cl_mxfp4 *> temp_tensor_extras_mxfp4_in_use;
  2850. std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0;
  2851. std::vector<ggml_tensor_extra_cl_q8_0 *> temp_tensor_extras_q8_0_in_use;
  2852. // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
  2853. // before any tensor is initialized (at the beginning of alloc_tensor_range).
  2854. // Hence, there is alway a buffer object in this vector. When each tensor is
  2855. // being initialized, this original buffer object will be released if both
  2856. // flattening and small allocation are enabled, and additional buffer
  2857. // objects will be created in init_tensor to represent flattened quantized
  2858. // weights.
  2859. std::vector<cl_mem> buffer;
  2860. // These are image1d_buffer_t objects that wrap around the quants and scales.
  2861. // For Q4_0 quantization, there should be two of them - one for quants and
  2862. // one for scales. They should be populated only when flattening and small
  2863. // allocation are enabled.
  2864. std::vector<cl_mem> img;
  2865. std::string name;
  2866. };
  2867. static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  2868. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2869. delete ctx;
  2870. }
  2871. static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
  2872. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer->buft->device);
  2873. return (void *) (uintptr_t) backend_ctx->alignment;
  2874. }
  2875. static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  2876. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2877. ggml_cl2_init(buffer->buft->device);
  2878. if (tensor->view_src != nullptr) {
  2879. GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
  2880. ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
  2881. GGML_ASSERT(view_extra && "view_extra is nullptr?");
  2882. // Reuse extra of the parent tensor. The offset of this view tensor
  2883. // becomes `extra->offset + view_offs` and needs to be calculated when
  2884. // it is used. This changes is needed because of the change to
  2885. // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
  2886. // `buffer` passed in here will always be `tensor->buffer`. It is OK
  2887. // to allocate extras from the same buffer context for ordinary
  2888. // intermediate tensors. But for views into kv cache tensors, doing so
  2889. // would mess up the extras used by kv cache.
  2890. // Before #7640, `buffer` is for intermediate tensors, which is always
  2891. // different from that of kv cache tensors.
  2892. //
  2893. // NB: now extra->offset no longer accounts for view_offs.
  2894. // NB: this should not apply to weight tensors (for end-to-end runs, but
  2895. // may apply for test-backend-ops).
  2896. // FIXME: if any unexpected results are seen, double check the offset -
  2897. // there could be other places that need fix.
  2898. tensor->extra = view_extra;
  2899. } else {
  2900. {
  2901. size_t offset = (char *) tensor->data - (char *) ggml_backend_opencl_buffer_get_base(buffer);
  2902. ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
  2903. extra->offset = offset;
  2904. extra->data_device = ctx->buffer[0];
  2905. extra->actual_size = ggml_nbytes(tensor);
  2906. tensor->extra = extra;
  2907. }
  2908. }
  2909. return GGML_STATUS_SUCCESS;
  2910. }
  2911. // The optimized gemm and gemv kernels are used for large matrices without batch.
  2912. // tensor is the quantized weights matrix.
  2913. inline bool use_adreno_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  2914. int64_t threshold_ne0 = 512;
  2915. int64_t threshold_ne1 = 512;
  2916. if (!backend_ctx->adreno_cl_compiler_version.newer_than_or_same(E031, 38, 11, 0) &&
  2917. backend_ctx->adreno_cl_compiler_version.type != DX) {
  2918. threshold_ne0 = 128;
  2919. threshold_ne1 = 128;
  2920. }
  2921. return tensor->ne[0] >= threshold_ne0 && tensor->ne[1] >= threshold_ne1 &&
  2922. tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2923. }
  2924. inline bool use_adreno_moe_kernels(const ggml_backend_opencl_context *backend_ctx, const ggml_tensor *tensor) {
  2925. GGML_UNUSED(backend_ctx);
  2926. int ne01 = tensor->ne[1];
  2927. return ((strstr(tensor->name, "ffn") != NULL) || (strstr(tensor->name, "as") != NULL)) && (ne01 % 64 == 0);
  2928. }
  2929. static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  2930. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  2931. cl_context context = backend_ctx->context;
  2932. cl_command_queue queue = backend_ctx->queue;
  2933. #ifdef GGML_OPENCL_SOA_Q
  2934. // We separate the quantized bits and scale from block_q4_0 by using an
  2935. // additional kernel, where each thread handles a block. We first read the
  2936. // original weights into a temporary buffer, then create two separate
  2937. // buffers for quantized bits and scales, which are then populated by the
  2938. // conversion kernel.
  2939. if (tensor->type == GGML_TYPE_Q4_0) {
  2940. // Tensors should have been preallocated, therefore they should
  2941. // already have ggml_tensor_extra_cl as extra.
  2942. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  2943. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  2944. // Allocate the new extra and create aliases from the original.
  2945. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  2946. ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
  2947. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  2948. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  2949. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  2950. cl_int err;
  2951. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  2952. ggml_nbytes(tensor), NULL, &err);
  2953. CL_CHECK(err);
  2954. CL_CHECK(clEnqueueWriteBuffer(
  2955. queue, data_device, CL_TRUE, 0,
  2956. ggml_nbytes(tensor), data, 0, NULL, NULL));
  2957. // We consider the specified offset arg as always, although For weights
  2958. // the offset arg should be 0 (we do not assert this).
  2959. //GGML_ASSERT(offset == 0);
  2960. // We create subbuffers from the original tensor buffer for scales and
  2961. // quants - i.e., scales and quants are aliases into the buffer obejct
  2962. // that backs the original tensor. This is a cleaner way to adapt to the
  2963. // new memory management.
  2964. // In the old code, we allocate new buffers for scales and quants
  2965. // respectively, which could still be done but would result in double
  2966. // allocation; properly deallocating the preallocated buffer that backs
  2967. // the tensors is tricky and would leak the backend specific information
  2968. // into the general backend code.
  2969. // Does this create misaligned subbuffers (alignment is 1024) in certain
  2970. // cases ?
  2971. cl_buffer_region region;
  2972. // The original tensor memory is divided into scales and quants, i.e.,
  2973. // we first store scales, then quants.
  2974. // Create subbuffer for scales.
  2975. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  2976. region.size = size_d;
  2977. extra->d = clCreateSubBuffer(
  2978. extra_orig->data_device, CL_MEM_READ_WRITE,
  2979. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  2980. CL_CHECK(err);
  2981. auto previous_origin = region.origin;
  2982. // Create subbuffer for quants.
  2983. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  2984. region.size = size_q;
  2985. extra->q = clCreateSubBuffer(
  2986. extra_orig->data_device, CL_MEM_READ_WRITE,
  2987. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  2988. CL_CHECK(err);
  2989. //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2990. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2991. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2992. // The optimized kernels need weights in natural order, so unshuffle.
  2993. if (use_adreno_kernels(backend_ctx, tensor)) {
  2994. kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
  2995. }
  2996. #else
  2997. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  2998. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2999. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3000. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3001. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  3002. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3003. size_t local_work_size[] = {64, 1, 1};
  3004. cl_event evt;
  3005. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3006. CL_CHECK(clWaitForEvents(1, &evt));
  3007. CL_CHECK(clReleaseMemObject(data_device));
  3008. tensor->extra = extra;
  3009. // transpose the weights and scales
  3010. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3011. // Only do transpose for large, non batched matrix
  3012. // TODO: use preallocated images instead of sub-buffer then image
  3013. if (use_adreno_kernels(backend_ctx, tensor)) {
  3014. // <----------------------------------------------------------------------------------> //
  3015. // start transpose
  3016. // <----------------------------------------------------------------------------------> //
  3017. int M = tensor->ne[1]; // ne01
  3018. int K = tensor->ne[0]; // ne00
  3019. //For matrix-vector multiplication kernel, we assume K is a multiple of 32
  3020. GGML_ASSERT(K % 32 == 0);
  3021. //For transpose kernels, we assume K is a multiple of 4 (satisfied by prior assert), and M is a multiple of 4
  3022. GGML_ASSERT(M % 4 == 0);
  3023. // transpose is out of place, so we need to allocate transposed buffers
  3024. // <----------------------------------------------------------------------------------> //
  3025. // use sub_buffer of max buffer size instead
  3026. size_t q_size_bytes = K * M / 8 * sizeof(float);
  3027. cl_buffer_region region;
  3028. region.origin = 0;
  3029. region.size = q_size_bytes;
  3030. cl_mem qT_d = clCreateSubBuffer(
  3031. backend_ctx->A_q_d_max,
  3032. 0,
  3033. CL_BUFFER_CREATE_TYPE_REGION,
  3034. &region,
  3035. &err);
  3036. // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
  3037. CL_CHECK(err);
  3038. bool K_tile_trans = true;
  3039. if ((K / 32) % 4 != 0){
  3040. K_tile_trans =false;
  3041. }
  3042. size_t d_size_bytes = M * (K / 32) * 2;
  3043. region.origin = 0;
  3044. region.size = d_size_bytes;
  3045. cl_mem dT_d = clCreateSubBuffer(
  3046. backend_ctx->A_s_d_max,
  3047. 0,
  3048. CL_BUFFER_CREATE_TYPE_REGION,
  3049. &region,
  3050. &err);
  3051. // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
  3052. CL_CHECK(err);
  3053. // <----------------------------------------------------------------------------------> //
  3054. // create images from the buffers
  3055. // <----------------------------------------------------------------------------------> //
  3056. cl_mem q_d_image1D;
  3057. cl_mem d_d_image1D;
  3058. cl_mem qT_d_image1D;
  3059. cl_mem dT_d_image1D;
  3060. cl_image_format img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3061. cl_image_desc img_desc_1d;
  3062. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3063. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3064. img_desc_1d.image_width = M * K / 4 / 4;
  3065. img_desc_1d.buffer = extra->q;
  3066. q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3067. CL_CHECK(err);
  3068. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3069. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3070. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3071. img_desc_1d.image_width = M * K / 4 / 4;
  3072. img_desc_1d.buffer = qT_d;
  3073. qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3074. CL_CHECK(err);
  3075. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3076. if (K_tile_trans) {
  3077. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3078. img_desc_1d.image_width = M * K / 32 / 4;
  3079. } else {
  3080. img_fmt_1d = { CL_R, CL_HALF_FLOAT };
  3081. img_desc_1d.image_width = M * K / 32;
  3082. }
  3083. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3084. img_desc_1d.buffer = extra->d;
  3085. d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3086. CL_CHECK(err);
  3087. img_fmt_1d = { CL_RGBA, CL_HALF_FLOAT };
  3088. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  3089. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  3090. img_desc_1d.image_width = M * K / 32 / 4;
  3091. img_desc_1d.buffer = dT_d;
  3092. dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  3093. CL_CHECK(err);
  3094. // <----------------------------------------------------------------------------------> //
  3095. // set up and call the transpose kernels
  3096. // <----------------------------------------------------------------------------------> //
  3097. // weights
  3098. int height_q = M / 4;
  3099. int width_q = K / 4 / 4;
  3100. kernel = backend_ctx->kernel_transpose_16;
  3101. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
  3102. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
  3103. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
  3104. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
  3105. size_t local_size_q[3] = {4, 16, 1};
  3106. size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
  3107. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
  3108. CL_CHECK(clWaitForEvents(1, &evt));
  3109. // scales
  3110. int height_s = M / 4;
  3111. int width_s = K / 32 / 4;
  3112. kernel = backend_ctx->kernel_transpose_16;
  3113. if (!K_tile_trans) {
  3114. kernel = backend_ctx->kernel_transpose_16_4x1;
  3115. width_s = K / 32;
  3116. }
  3117. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
  3118. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
  3119. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
  3120. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
  3121. size_t local_size_s[3] = {4, 16, 1};
  3122. size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
  3123. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
  3124. CL_CHECK(clWaitForEvents(1, &evt));
  3125. // <----------------------------------------------------------------------------------> //
  3126. // copy transposed buffer contents to original buffers
  3127. // <----------------------------------------------------------------------------------> //
  3128. // weights
  3129. CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
  3130. CL_CHECK(clWaitForEvents(1, &evt));
  3131. // scales
  3132. CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
  3133. CL_CHECK(clWaitForEvents(1, &evt));
  3134. // <----------------------------------------------------------------------------------> //
  3135. // deallocate transpose buffers
  3136. // <----------------------------------------------------------------------------------> //
  3137. CL_CHECK(clReleaseMemObject(qT_d));
  3138. CL_CHECK(clReleaseMemObject(dT_d));
  3139. // deallocate temporary images
  3140. CL_CHECK(clReleaseMemObject(q_d_image1D));
  3141. CL_CHECK(clReleaseMemObject(d_d_image1D));
  3142. CL_CHECK(clReleaseMemObject(qT_d_image1D));
  3143. CL_CHECK(clReleaseMemObject(dT_d_image1D));
  3144. // <----------------------------------------------------------------------------------> //
  3145. // end transpose
  3146. // <----------------------------------------------------------------------------------> //
  3147. }
  3148. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  3149. return;
  3150. }
  3151. if (tensor->type == GGML_TYPE_MXFP4) {
  3152. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3153. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3154. // Allocate the new extra and create aliases from the original.
  3155. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3156. ggml_tensor_extra_cl_mxfp4 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_mxfp4();
  3157. size_t size_e = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(char);
  3158. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  3159. GGML_ASSERT(size_e + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3160. cl_int err;
  3161. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3162. ggml_nbytes(tensor), NULL, &err);
  3163. CL_CHECK(err);
  3164. CL_CHECK(clEnqueueWriteBuffer(
  3165. queue, data_device, CL_TRUE, 0,
  3166. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3167. // The original tensor memory is divided into scales and quants, i.e.,
  3168. // we first store scales, then quants.
  3169. cl_buffer_region region;
  3170. // Create subbuffer for scales.
  3171. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3172. region.size = size_e;
  3173. extra->e = clCreateSubBuffer(
  3174. extra_orig->data_device, CL_MEM_READ_WRITE,
  3175. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3176. CL_CHECK(err);
  3177. auto previous_origin = region.origin;
  3178. // Create subbuffer for quants.
  3179. region.origin = align_to(previous_origin + size_e, backend_ctx->alignment);
  3180. region.size = size_q;
  3181. extra->q = clCreateSubBuffer(
  3182. extra_orig->data_device, CL_MEM_READ_WRITE,
  3183. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3184. CL_CHECK(err);
  3185. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3186. if (use_adreno_moe_kernels(backend_ctx, tensor)) {
  3187. cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4_trans;
  3188. int ne00 = tensor->ne[0];
  3189. int ne01 = tensor->ne[1];
  3190. int ne02 = tensor->ne[2];
  3191. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3192. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3193. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
  3194. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &ne00));
  3195. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01));
  3196. size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
  3197. size_t local_work_size[3] = {64, 2, 1};
  3198. cl_event evt;
  3199. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3200. CL_CHECK(clWaitForEvents(1, &evt));
  3201. CL_CHECK(clReleaseMemObject(data_device));
  3202. tensor->extra = extra;
  3203. return;
  3204. }
  3205. #endif
  3206. cl_kernel kernel = backend_ctx->kernel_convert_block_mxfp4;
  3207. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3208. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3209. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->e));
  3210. size_t global_work_size[3] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3211. size_t local_work_size[3] = {64, 1, 1};
  3212. cl_event evt;
  3213. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3214. CL_CHECK(clWaitForEvents(1, &evt));
  3215. CL_CHECK(clReleaseMemObject(data_device));
  3216. // Create image for Q
  3217. cl_image_format img_format_q = {CL_RG, CL_UNSIGNED_INT32};
  3218. cl_image_desc img_desc_q = {
  3219. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  3220. static_cast<size_t>(ggml_nelements(tensor)/32*2),
  3221. 0, 0, 0, 0, 0, 0, 0,
  3222. { extra->q }
  3223. };
  3224. extra->q_img = clCreateImage(context, CL_MEM_READ_ONLY, &img_format_q, &img_desc_q, NULL, &err);
  3225. tensor->extra = extra;
  3226. return;
  3227. }
  3228. if (tensor->type == GGML_TYPE_Q8_0) {
  3229. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  3230. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  3231. // Allocate the new extra and create aliases from the original.
  3232. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3233. ggml_tensor_extra_cl_q8_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q8_0();
  3234. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  3235. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*(ggml_blck_size(tensor->type)*sizeof(char));
  3236. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  3237. cl_int err;
  3238. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3239. ggml_nbytes(tensor), NULL, &err);
  3240. CL_CHECK(err);
  3241. CL_CHECK(clEnqueueWriteBuffer(
  3242. queue, data_device, CL_TRUE, 0,
  3243. ggml_nbytes(tensor), data, 0, NULL, NULL));
  3244. // The original tensor memory is divided into scales and quants, i.e.,
  3245. // we first store scales, then quants.
  3246. cl_buffer_region region;
  3247. // Create subbuffer for scales.
  3248. region.origin = align_to(extra_orig->offset + tensor->view_offs + offset, backend_ctx->alignment);
  3249. region.size = size_d;
  3250. extra->d = clCreateSubBuffer(
  3251. extra_orig->data_device, CL_MEM_READ_WRITE,
  3252. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3253. CL_CHECK(err);
  3254. auto previous_origin = region.origin;
  3255. // Create subbuffer for quants.
  3256. region.origin = align_to(previous_origin + size_d, backend_ctx->alignment);
  3257. region.size = size_q;
  3258. extra->q = clCreateSubBuffer(
  3259. extra_orig->data_device, CL_MEM_READ_WRITE,
  3260. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  3261. CL_CHECK(err);
  3262. cl_kernel kernel = backend_ctx->kernel_convert_block_q8_0;
  3263. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  3264. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  3265. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  3266. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3267. size_t local_work_size[] = {64, 1, 1};
  3268. cl_event evt;
  3269. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3270. CL_CHECK(clWaitForEvents(1, &evt));
  3271. CL_CHECK(clReleaseMemObject(data_device));
  3272. tensor->extra = extra;
  3273. return;
  3274. }
  3275. #endif // GGML_OPENCL_SOA_Q
  3276. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3277. GGML_ASSERT(extra);
  3278. CL_CHECK(clEnqueueWriteBuffer(
  3279. queue, extra->data_device, CL_TRUE, extra->offset + offset,
  3280. size, data, 0, NULL, NULL));
  3281. GGML_UNUSED(buffer);
  3282. }
  3283. static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  3284. GGML_ASSERT(tensor->extra);
  3285. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  3286. cl_context context = backend_ctx->context;
  3287. cl_command_queue queue = backend_ctx->queue;
  3288. // Make sure all previously submitted commands in other devices are finished.
  3289. sync_with_other_backends(backend_ctx);
  3290. #ifdef GGML_OPENCL_SOA_Q
  3291. // In end-to-end runs, get_tensor is usually used to get back the logits,
  3292. // where we can simply do clEnqueueReadBuffer since they are f32.
  3293. // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
  3294. // which requires reading back quantized weight tensors.
  3295. // To properly support this, we need to restore block_q4_0 struct arrays
  3296. // from the flattened buffers.
  3297. if (tensor->type == GGML_TYPE_Q4_0) {
  3298. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
  3299. cl_int err;
  3300. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3301. ggml_nbytes(tensor), NULL, &err);
  3302. CL_CHECK(err);
  3303. cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
  3304. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3305. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  3306. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3307. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3308. size_t local_work_size[] = {1, 1, 1};
  3309. cl_event evt;
  3310. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3311. global_work_size, local_work_size, 0, NULL, &evt));
  3312. CL_CHECK(clWaitForEvents(1, &evt));
  3313. CL_CHECK(clEnqueueReadBuffer(
  3314. queue, data_device, CL_TRUE, offset,
  3315. size, data, 0, NULL, NULL));
  3316. CL_CHECK(clReleaseMemObject(data_device));
  3317. return;
  3318. } else if (tensor->type == GGML_TYPE_MXFP4) {
  3319. ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *)tensor->extra;
  3320. cl_int err;
  3321. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3322. ggml_nbytes(tensor), NULL, &err);
  3323. CL_CHECK(err);
  3324. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  3325. if (use_adreno_moe_kernels(backend_ctx, tensor)) {
  3326. cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4_trans;
  3327. int ne00 = tensor->ne[0];
  3328. int ne01 = tensor->ne[1];
  3329. int ne02 = tensor->ne[2];
  3330. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3331. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
  3332. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3333. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_int), &ne00));
  3334. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_int), &ne01));
  3335. size_t global_work_size[3] = {static_cast<size_t>(((ne01 + 63) / 64) * 64), static_cast<size_t>(ne00 / 32), static_cast<size_t>(ne02)};
  3336. size_t local_work_size[3] = {64, 2, 1};
  3337. cl_event evt;
  3338. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3339. global_work_size, local_work_size, 0, NULL, &evt));
  3340. CL_CHECK(clWaitForEvents(1, &evt));
  3341. CL_CHECK(clEnqueueReadBuffer(
  3342. queue, data_device, CL_TRUE, offset,
  3343. size, data, 0, NULL, NULL));
  3344. CL_CHECK(clReleaseMemObject(data_device));
  3345. return;
  3346. }
  3347. #endif
  3348. cl_kernel kernel = backend_ctx->kernel_restore_block_mxfp4;
  3349. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3350. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->e));
  3351. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3352. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3353. size_t local_work_size[] = {1, 1, 1};
  3354. cl_event evt;
  3355. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3356. global_work_size, local_work_size, 0, NULL, &evt));
  3357. CL_CHECK(clWaitForEvents(1, &evt));
  3358. CL_CHECK(clEnqueueReadBuffer(
  3359. queue, data_device, CL_TRUE, offset,
  3360. size, data, 0, NULL, NULL));
  3361. CL_CHECK(clReleaseMemObject(data_device));
  3362. return;
  3363. }
  3364. if (tensor->type == GGML_TYPE_Q8_0) {
  3365. ggml_tensor_extra_cl_q8_0 * extra = (ggml_tensor_extra_cl_q8_0 *)tensor->extra;
  3366. cl_int err;
  3367. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  3368. ggml_nbytes(tensor), NULL, &err);
  3369. CL_CHECK(err);
  3370. cl_kernel kernel = backend_ctx->kernel_restore_block_q8_0;
  3371. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  3372. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  3373. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  3374. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  3375. size_t local_work_size[] = {1, 1, 1};
  3376. cl_event evt;
  3377. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  3378. global_work_size, local_work_size, 0, NULL, &evt));
  3379. CL_CHECK(clWaitForEvents(1, &evt));
  3380. CL_CHECK(clEnqueueReadBuffer(
  3381. queue, data_device, CL_TRUE, offset,
  3382. size, data, 0, NULL, NULL));
  3383. CL_CHECK(clReleaseMemObject(data_device));
  3384. return;
  3385. }
  3386. #endif // GGML_OPENCL_SOA_Q
  3387. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3388. CL_CHECK(clEnqueueReadBuffer(
  3389. queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
  3390. size, data, 0, NULL, NULL));
  3391. GGML_UNUSED(buffer);
  3392. }
  3393. static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  3394. ggml_backend_dev_t dev = buffer->buft->device;
  3395. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  3396. cl_command_queue queue = backend_ctx->queue;
  3397. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3398. for (cl_mem buf : ctx->buffer) {
  3399. CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
  3400. }
  3401. CL_CHECK(clFinish(queue));
  3402. }
  3403. static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
  3404. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  3405. ctx->reset();
  3406. }
  3407. static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
  3408. /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
  3409. /* .get_base = */ ggml_backend_opencl_buffer_get_base,
  3410. /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
  3411. /* .memset_tensor = */ NULL,
  3412. /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
  3413. /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
  3414. /* .cpy_tensor = */ NULL,
  3415. /* .clear = */ ggml_backend_opencl_buffer_clear,
  3416. /* .reset = */ ggml_backend_opencl_buffer_reset,
  3417. };
  3418. //
  3419. // buffer type
  3420. //
  3421. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
  3422. return "OpenCL";
  3423. GGML_UNUSED(buffer_type);
  3424. }
  3425. static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
  3426. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
  3427. // clCreateBuffer returns -61 for size 0
  3428. size = std::max(size, (size_t)1);
  3429. cl_int err;
  3430. cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
  3431. if (err != CL_SUCCESS) {
  3432. GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
  3433. return nullptr;
  3434. }
  3435. ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
  3436. return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
  3437. }
  3438. static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
  3439. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  3440. return backend_ctx->alignment;
  3441. }
  3442. static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
  3443. static size_t max_size = -1;
  3444. if (max_size == (size_t)-1) {
  3445. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  3446. max_size = backend_ctx->max_alloc_size;
  3447. }
  3448. return max_size;
  3449. }
  3450. static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  3451. return ggml_backend_is_opencl(backend);
  3452. UNUSED(buft);
  3453. }
  3454. static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
  3455. /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
  3456. /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
  3457. /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
  3458. /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
  3459. /* .get_alloc_size = */ NULL,
  3460. /* .is_host = */ NULL,
  3461. };
  3462. //
  3463. // backend device
  3464. //
  3465. static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
  3466. return "GPUOpenCL";
  3467. GGML_UNUSED(dev);
  3468. }
  3469. static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
  3470. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  3471. return dev_ctx->device_name.c_str();
  3472. }
  3473. static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  3474. *free = 1;
  3475. *total = 1;
  3476. GGML_UNUSED(dev);
  3477. }
  3478. static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
  3479. return GGML_BACKEND_DEVICE_TYPE_GPU;
  3480. GGML_UNUSED(dev);
  3481. }
  3482. static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  3483. props->name = ggml_backend_opencl_device_get_name(dev);
  3484. props->description = ggml_backend_opencl_device_get_description(dev);
  3485. props->type = ggml_backend_opencl_device_get_type(dev);
  3486. ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
  3487. props->caps = ggml_backend_dev_caps {
  3488. /* .async = */ false,
  3489. /* .host_buffer = */ false,
  3490. /* .buffer_from_host_ptr = */ false,
  3491. /* .events = */ false,
  3492. };
  3493. }
  3494. static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
  3495. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
  3496. // Getting a new reference to the backend, increase ref_count
  3497. backend_ctx->ref_count++;
  3498. ggml_backend_t backend = new ggml_backend {
  3499. /* .guid = */ ggml_backend_opencl_guid(),
  3500. /* .interface = */ ggml_backend_opencl_i,
  3501. /* .device = */ dev,
  3502. /* .context = */ backend_ctx,
  3503. };
  3504. return backend;
  3505. GGML_UNUSED(params);
  3506. }
  3507. static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
  3508. auto * dev_ctx = static_cast<ggml_backend_opencl_device_context *>(dev->context);
  3509. dev_ctx->buffer_type = ggml_backend_buffer_type{
  3510. /* .iface = */ ggml_backend_opencl_buffer_type_interface,
  3511. /* .device = */ dev,
  3512. /* .context = */ nullptr,
  3513. };
  3514. return &dev_ctx->buffer_type;
  3515. }
  3516. static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  3517. GGML_UNUSED(dev);
  3518. GGML_UNUSED(ptr);
  3519. GGML_UNUSED(size);
  3520. GGML_UNUSED(max_tensor_size);
  3521. return nullptr;
  3522. }
  3523. static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  3524. return ggml_opencl_supports_op(dev, op);
  3525. }
  3526. static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  3527. // Check 'dev' and 'buffer_type' are not objects belonging to this backend.
  3528. if (dev->iface.get_name != ggml_backend_opencl_device_get_name ||
  3529. buft->iface.get_name != ggml_backend_opencl_buffer_type_get_name) {
  3530. return false;
  3531. }
  3532. // Check cl_context is the same. clEnqueue* commands may not use
  3533. // buffers from another cl_context.
  3534. ggml_backend_opencl_context * backend_ctx0 = ggml_cl2_init(dev);
  3535. ggml_backend_opencl_context * backend_ctx1 = ggml_cl2_init(buft->device);
  3536. return backend_ctx0->context == backend_ctx1->context;
  3537. }
  3538. namespace /* anonymous */ {
  3539. struct ggml_backend_device_i ggml_backend_opencl_device_i = {
  3540. /* .get_name = */ ggml_backend_opencl_device_get_name,
  3541. /* .get_description = */ ggml_backend_opencl_device_get_description,
  3542. /* .get_memory = */ ggml_backend_opencl_device_get_memory,
  3543. /* .get_type = */ ggml_backend_opencl_device_get_type,
  3544. /* .get_props = */ ggml_backend_opencl_device_get_props,
  3545. /* .init_backend = */ ggml_backend_opencl_device_init,
  3546. /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
  3547. /* .get_host_buffer_type = */ NULL,
  3548. /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
  3549. /* .supports_op = */ ggml_backend_opencl_device_supports_op,
  3550. /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
  3551. /* .offload_op = */ NULL,
  3552. /* .event_new = */ NULL,
  3553. /* .event_free = */ NULL,
  3554. /* .event_synchronize = */ NULL,
  3555. };
  3556. }
  3557. // Backend registry
  3558. static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
  3559. return "OpenCL";
  3560. GGML_UNUSED(reg);
  3561. }
  3562. static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
  3563. return g_ggml_backend_opencl_devices.size();
  3564. GGML_UNUSED(reg);
  3565. }
  3566. static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
  3567. GGML_ASSERT(index < ggml_backend_opencl_reg_device_count(reg));
  3568. return &g_ggml_backend_opencl_devices[index];
  3569. GGML_UNUSED(reg);
  3570. GGML_UNUSED(index);
  3571. }
  3572. static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
  3573. /* .get_name = */ ggml_backend_opencl_reg_get_name,
  3574. /* .device_count = */ ggml_backend_opencl_reg_device_count,
  3575. /* .device_get = */ ggml_backend_opencl_reg_device_get,
  3576. /* .get_proc_address = */ NULL,
  3577. };
  3578. ggml_backend_reg_t ggml_backend_opencl_reg(void) {
  3579. static std::mutex mutex;
  3580. static ggml_backend_reg reg;
  3581. static bool initialized = false;
  3582. std::lock_guard<std::mutex> lock(mutex);
  3583. if (initialized) {
  3584. return &reg;
  3585. }
  3586. initialized = true;
  3587. g_ggml_backend_opencl_devices = ggml_opencl_probe_devices(&reg);
  3588. reg = ggml_backend_reg{
  3589. /* .api_version = */ GGML_BACKEND_API_VERSION,
  3590. /* .iface = */ ggml_backend_opencl_reg_i,
  3591. /* .context = */ NULL,
  3592. };
  3593. return &reg;
  3594. }
  3595. GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
  3596. //------------------------------------------------------------------------------
  3597. // Debugging utils
  3598. //------------------------------------------------------------------------------
  3599. #if 0
  3600. #define QK4_0 32
  3601. typedef struct {
  3602. ggml_fp16_t d; // delta
  3603. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  3604. } block_q4_0;
  3605. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
  3606. "wrong q4_0 block size/padding");
  3607. #include <math.h>
  3608. #ifdef __cplusplus
  3609. #include "half.hpp"
  3610. #endif
  3611. static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
  3612. void * buf = malloc(ggml_nbytes(tensor));
  3613. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3614. cl_command_queue queue = backend_ctx->queue;
  3615. #ifdef GGML_OPENCL_SOA_Q
  3616. void * buf_q;
  3617. void * buf_d;
  3618. #endif
  3619. // Make sure everything is done.
  3620. CL_CHECK(clFinish(queue));
  3621. #ifdef GGML_OPENCL_SOA_Q
  3622. if (tensor->type == GGML_TYPE_Q4_0) {
  3623. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
  3624. GGML_ASSERT(extra);
  3625. size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
  3626. size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
  3627. GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
  3628. buf_q = malloc(size_q);
  3629. buf_d = malloc(size_d);
  3630. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3631. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
  3632. CL_CHECK(clFinish(queue));
  3633. } else if (tensor->type == GGML_TYPE_MXFP4) {
  3634. ggml_tensor_extra_cl_mxfp4 * extra = (ggml_tensor_extra_cl_mxfp4 *) tensor->extra;
  3635. GGML_ASSERT(extra);
  3636. size_t size_q = ggml_nelements(tensor)/QK_MXFP4 * QK_MXFP4/2;
  3637. size_t size_e = ggml_nelements(tensor)/QK_MXFP4 * sizeof(char);
  3638. GGML_ASSERT(size_q + size_e == ggml_nbytes(tensor));
  3639. buf_q = malloc(size_q);
  3640. buf_d = malloc(size_e);
  3641. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  3642. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_e, buf_d, 0, NULL, NULL));
  3643. CL_CHECK(clFinish(queue));
  3644. } else {
  3645. // Read out the tensor from GPU memory.
  3646. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3647. GGML_ASSERT(extra);
  3648. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3649. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3650. CL_CHECK(clFinish(queue));
  3651. }
  3652. #else
  3653. // Read out the tensor from GPU memory.
  3654. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  3655. GGML_ASSERT(extra);
  3656. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  3657. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  3658. CL_CHECK(clFinish(queue));
  3659. #endif // GGML_OPENCL_SOA_Q
  3660. // Open file and dump.
  3661. char fname[512];
  3662. snprintf(fname, sizeof(fname), "./tensor-dumps/%s.txt", tensor->name);
  3663. FILE * f = fopen(fname, "w");
  3664. if (!f) {
  3665. printf("Failed to open %s\n", fname);
  3666. return;
  3667. }
  3668. if (tensor->type == GGML_TYPE_F32) {
  3669. float * data = (float *) buf;
  3670. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3671. if (isnan(data[i])) {
  3672. printf("NaN found: %s\n", tensor->name);
  3673. break;
  3674. }
  3675. fprintf(f, "%f\n", data[i]);
  3676. }
  3677. } else if (tensor->type == GGML_TYPE_I32) {
  3678. int * data = (int *) buf;
  3679. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3680. if (isnan(data[i])) {
  3681. printf("NaN found: %s\n", tensor->name);
  3682. break;
  3683. }
  3684. fprintf(f, "%d\n", data[i]);
  3685. }
  3686. } else if (tensor->type == GGML_TYPE_F16) {
  3687. #ifdef __cplusplus
  3688. half_float::half * data = (half_float::half *) buf;
  3689. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  3690. if (std::isnan(data[i])) {
  3691. printf("NaN found: %s\n", tensor->name);
  3692. break;
  3693. }
  3694. fprintf(f, "%f\n", float(data[i]));
  3695. }
  3696. #endif
  3697. } else if (tensor->type == GGML_TYPE_Q4_0) {
  3698. #ifdef GGML_OPENCL_SOA_Q
  3699. ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
  3700. unsigned char * data_q = (unsigned char *)buf_q;
  3701. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3702. fprintf(f, "%04x, ", data_d[i]);
  3703. for (int k = 0; k < QK4_0/2; ++k) {
  3704. fprintf(f, "%02x, ", data_q[k]);
  3705. }
  3706. fprintf(f, "\n");
  3707. data_q += QK4_0/2;
  3708. }
  3709. free(buf_d);
  3710. free(buf_q);
  3711. #else
  3712. block_q4_0 * data = (block_q4_0 *) buf;
  3713. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  3714. fprintf(f, "%04x, ", data[i].d);
  3715. for (int k = 0; k < QK4_0/2; ++k) {
  3716. fprintf(f, "%02x, ", data[i].qs[k]);
  3717. }
  3718. fprintf(f, "\n");
  3719. }
  3720. #endif // GGML_OPENCL_SOA_Q
  3721. }
  3722. free(buf);
  3723. fflush(f);
  3724. fclose(f);
  3725. }
  3726. #else
  3727. #define dump_tensor(tensor)
  3728. #endif
  3729. //------------------------------------------------------------------------------
  3730. // Ops
  3731. //------------------------------------------------------------------------------
  3732. static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  3733. const int64_t ne10 = src1->ne[0];
  3734. const int64_t ne0 = dst->ne[0];
  3735. const int64_t ne1 = dst->ne[1];
  3736. // TODO: find the optimal values for these
  3737. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  3738. src1->type == GGML_TYPE_F32 &&
  3739. dst->type == GGML_TYPE_F32 &&
  3740. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
  3741. }
  3742. static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3743. UNUSED(backend);
  3744. UNUSED(src0);
  3745. UNUSED(src1);
  3746. UNUSED(dst);
  3747. }
  3748. static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3749. GGML_ASSERT(src0);
  3750. GGML_ASSERT(src0->extra);
  3751. GGML_ASSERT(src1);
  3752. GGML_ASSERT(src1->extra);
  3753. GGML_ASSERT(dst);
  3754. GGML_ASSERT(dst->extra);
  3755. const int ne00 = src0->ne[0];
  3756. const cl_ulong nb01 = src0->nb[1];
  3757. const cl_ulong nb02 = src0->nb[2];
  3758. const cl_ulong nb03 = src0->nb[3];
  3759. const int ne10 = src1->ne[0];
  3760. const cl_ulong nb10 = src1->nb[0];
  3761. const int ne11 = src1->ne[1];
  3762. const int ne12 = src1->ne[2];
  3763. const cl_ulong nb11 = src1->nb[1];
  3764. const cl_ulong nb12 = src1->nb[2];
  3765. const cl_ulong nb1 = dst->nb[1];
  3766. const cl_ulong nb2 = dst->nb[2];
  3767. const cl_ulong nb3 = dst->nb[3];
  3768. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3769. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3770. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3771. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3772. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3773. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3774. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3775. cl_kernel kernel;
  3776. switch (src0->type) {
  3777. case GGML_TYPE_F32:
  3778. kernel = backend_ctx->kernel_get_rows_f32;
  3779. break;
  3780. case GGML_TYPE_F16:
  3781. kernel = backend_ctx->kernel_get_rows_f16;
  3782. break;
  3783. case GGML_TYPE_Q4_0:
  3784. kernel = backend_ctx->kernel_get_rows_q4_0;
  3785. break;
  3786. default:
  3787. GGML_ASSERT(false && "not implemented");
  3788. }
  3789. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3790. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3791. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3792. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3793. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3794. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3795. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3796. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3797. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3798. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3799. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  3800. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb10));
  3801. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  3802. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  3803. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb1));
  3804. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb2));
  3805. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb3));
  3806. size_t global_work_size[] = {(size_t)ne10*64, (size_t)ne11, (size_t)ne12};
  3807. size_t local_work_size[] = {64, 1, 1};
  3808. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3809. }
  3810. static void ggml_cl_set_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3811. GGML_ASSERT(src0);
  3812. GGML_ASSERT(src0->extra);
  3813. GGML_ASSERT(src1);
  3814. GGML_ASSERT(src1->extra);
  3815. GGML_ASSERT(dst);
  3816. GGML_ASSERT(dst->extra);
  3817. GGML_ASSERT(src1->type == GGML_TYPE_I64 || src1->type == GGML_TYPE_I32);
  3818. // ne0 = ne00
  3819. // ne2 = ne02
  3820. // ne3 = ne03
  3821. const int ne01 = src0->ne[1];
  3822. const int ne02 = src0->ne[2];
  3823. const int ne03 = src0->ne[3];
  3824. const cl_ulong nb01 = src0->nb[1];
  3825. const cl_ulong nb02 = src0->nb[2];
  3826. const cl_ulong nb03 = src0->nb[3];
  3827. const int ne11 = src1->ne[1];
  3828. const int ne12 = src1->ne[2];
  3829. const cl_ulong nb10 = src1->nb[0];
  3830. const cl_ulong nb11 = src1->nb[1];
  3831. const cl_ulong nb12 = src1->nb[2];
  3832. const int ne0 = dst->ne[0];
  3833. const cl_ulong nb1 = dst->nb[1];
  3834. const cl_ulong nb2 = dst->nb[2];
  3835. const cl_ulong nb3 = dst->nb[3];
  3836. const int nblk0 = ne0/ggml_blck_size(dst->type);
  3837. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3838. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3839. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3840. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3841. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3842. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3843. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3844. cl_kernel kernel;
  3845. switch (dst->type) {
  3846. case GGML_TYPE_F32:
  3847. if (src1->type == GGML_TYPE_I64) {
  3848. kernel = backend_ctx->kernel_set_rows_f32_i64;
  3849. } else {
  3850. kernel = backend_ctx->kernel_set_rows_f32_i32;
  3851. }
  3852. break;
  3853. case GGML_TYPE_F16:
  3854. if (src1->type == GGML_TYPE_I64) {
  3855. kernel = backend_ctx->kernel_set_rows_f16_i64;
  3856. } else {
  3857. kernel = backend_ctx->kernel_set_rows_f16_i32;
  3858. }
  3859. break;
  3860. default:
  3861. GGML_ABORT("not implemented");
  3862. }
  3863. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3864. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3865. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3866. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3867. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3868. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3869. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne01));
  3870. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  3871. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  3872. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  3873. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne11));
  3874. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  3875. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb10));
  3876. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb11));
  3877. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb12));
  3878. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &nblk0));
  3879. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb1));
  3880. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb2));
  3881. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb3));
  3882. int nth0 = 64;
  3883. if (backend_ctx->gpu_family == INTEL) {
  3884. nth0 = 32;
  3885. } else if (backend_ctx->gpu_family == ADRENO) {
  3886. nth0 = 64;
  3887. }
  3888. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  3889. while (nth0 < nblk0 && nth0 < max_workgroup_size) {
  3890. nth0 *= 2;
  3891. }
  3892. int rows_per_workgroup = 1;
  3893. if (nth0 > nblk0) {
  3894. rows_per_workgroup = nth0 / nblk0;
  3895. nth0 = nblk0;
  3896. }
  3897. size_t global_work_size[] = {
  3898. (size_t)(ne01 + rows_per_workgroup - 1)/rows_per_workgroup*nth0,
  3899. (size_t)ne02*rows_per_workgroup,
  3900. (size_t)ne03};
  3901. size_t local_work_size[] = {(size_t)nth0, (size_t)rows_per_workgroup, 1};
  3902. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  3903. }
  3904. static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3905. GGML_ASSERT(src0);
  3906. GGML_ASSERT(src0->extra);
  3907. GGML_ASSERT(src1);
  3908. GGML_ASSERT(src1->extra);
  3909. GGML_ASSERT(dst);
  3910. GGML_ASSERT(dst->extra);
  3911. const int ne00 = src0->ne[0];
  3912. const int ne01 = src0->ne[1];
  3913. const int ne02 = src0->ne[2];
  3914. const int ne03 = src0->ne[3];
  3915. const cl_ulong nb00 = src0->nb[0];
  3916. const cl_ulong nb01 = src0->nb[1];
  3917. const cl_ulong nb02 = src0->nb[2];
  3918. const cl_ulong nb03 = src0->nb[3];
  3919. const int ne10 = src1->ne[0];
  3920. const int ne11 = src1->ne[1];
  3921. const int ne12 = src1->ne[2];
  3922. const int ne13 = src1->ne[3];
  3923. const cl_ulong nb10 = src1->nb[0];
  3924. const cl_ulong nb11 = src1->nb[1];
  3925. const cl_ulong nb12 = src1->nb[2];
  3926. const cl_ulong nb13 = src1->nb[3];
  3927. const int ne0 = dst->ne[0];
  3928. const int ne1 = dst->ne[1];
  3929. const int ne2 = dst->ne[2];
  3930. const int ne3 = dst->ne[3];
  3931. const cl_ulong nb0 = dst->nb[0];
  3932. const cl_ulong nb1 = dst->nb[1];
  3933. const cl_ulong nb2 = dst->nb[2];
  3934. const cl_ulong nb3 = dst->nb[3];
  3935. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3936. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3937. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3938. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3939. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3940. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3941. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3942. cl_kernel kernel;
  3943. const bool bcast_row = ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0;
  3944. if (bcast_row) {
  3945. GGML_ASSERT(ggml_is_contiguous(src0));
  3946. GGML_ASSERT(ne11 == 1);
  3947. }
  3948. if (dst->type == GGML_TYPE_F32) {
  3949. GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32);
  3950. if (bcast_row) {
  3951. kernel = backend_ctx->kernel_add_row;
  3952. const int ne = ne00 / 4;
  3953. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3954. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3955. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3956. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3957. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3958. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3959. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  3960. } else {
  3961. kernel = backend_ctx->kernel_add;
  3962. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3963. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3964. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3965. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3966. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3967. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3968. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3969. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3970. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3971. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  3972. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  3973. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  3974. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  3975. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  3976. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  3977. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  3978. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  3979. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  3980. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  3981. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  3982. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  3983. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  3984. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  3985. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  3986. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  3987. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  3988. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  3989. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  3990. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  3991. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  3992. }
  3993. } else if (dst->type == GGML_TYPE_F16) {
  3994. GGML_ASSERT(src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_F32);
  3995. GGML_ASSERT(src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
  3996. const int type_src0 = (src0->type == GGML_TYPE_F32);
  3997. const int type_src1 = (src1->type == GGML_TYPE_F32);
  3998. if (bcast_row) {
  3999. kernel = backend_ctx->kernel_add_row_f16;
  4000. const int ne = ne00 / 4;
  4001. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4002. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4003. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4004. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4005. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4006. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4007. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4008. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &type_src0));
  4009. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &type_src1));
  4010. } else {
  4011. kernel = backend_ctx->kernel_add_f16;
  4012. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4013. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4014. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4015. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4016. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4017. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4018. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4019. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4020. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4021. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4022. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4023. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4024. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4025. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4026. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4027. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4028. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4029. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4030. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4031. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4032. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4033. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4034. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4035. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4036. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4037. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4038. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4039. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4040. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4041. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4042. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &type_src0));
  4043. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(int), &type_src1));
  4044. }
  4045. } else {
  4046. GGML_ASSERT(false && "unsupported data types for add");
  4047. }
  4048. if (bcast_row) {
  4049. int n = ggml_nelements(dst)/4;
  4050. size_t global_work_size[] = {(size_t)n, 1, 1};
  4051. size_t local_work_size[] = {64, 1, 1};
  4052. size_t * local_work_size_ptr = local_work_size;
  4053. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4054. local_work_size_ptr = nullptr;
  4055. }
  4056. backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size_ptr, dst);
  4057. } else {
  4058. unsigned int nth = MIN(64, ne0);
  4059. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4060. size_t local_work_size[] = {nth, 1, 1};
  4061. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4062. }
  4063. }
  4064. static void ggml_cl_add_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4065. GGML_ASSERT(src0);
  4066. GGML_ASSERT(src0->extra);
  4067. GGML_ASSERT(src1);
  4068. GGML_ASSERT(src1->extra);
  4069. GGML_ASSERT(dst);
  4070. GGML_ASSERT(dst->extra);
  4071. const ggml_tensor * src2 = dst->src[2];
  4072. GGML_ASSERT(src2);
  4073. GGML_ASSERT(src2->extra);
  4074. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  4075. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4076. GGML_ASSERT(src2->type == GGML_TYPE_I32);
  4077. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  4078. GGML_ASSERT(ggml_is_contiguous_rows(src0));
  4079. const int ne00 = src0->ne[0];
  4080. const int ne01 = src0->ne[1];
  4081. const int ne02 = src0->ne[2];
  4082. const cl_ulong nb01 = src0->nb[1];
  4083. const cl_ulong nb02 = src0->nb[2];
  4084. const cl_ulong nb11 = src1->nb[1];
  4085. const cl_ulong nb21 = src2->nb[1];
  4086. const int ne0 = dst->ne[0];
  4087. const int ne1 = dst->ne[1];
  4088. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4089. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4090. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4091. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4092. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4093. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4094. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4095. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4096. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4097. cl_kernel kernel = backend_ctx->kernel_add_id;
  4098. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4099. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4100. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4101. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4102. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4103. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4104. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4105. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4106. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4107. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4108. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb11));
  4109. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb21));
  4110. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
  4111. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne1));
  4112. int nth = MIN(ne00, (int) backend_ctx->get_kernel_workgroup_size(kernel));
  4113. size_t global_work_size[] = { (size_t)ne01*nth, (size_t)ne02, 1 };
  4114. size_t local_work_size[] = { (size_t)nth, 1, 1 };
  4115. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4116. }
  4117. static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4118. GGML_ASSERT(src0);
  4119. GGML_ASSERT(src0->extra);
  4120. GGML_ASSERT(src1);
  4121. GGML_ASSERT(src1->extra);
  4122. GGML_ASSERT(dst);
  4123. GGML_ASSERT(dst->extra);
  4124. GGML_ASSERT(src0->type == src1->type);
  4125. GGML_ASSERT(src0->type == dst->type);
  4126. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4127. const int ne00 = src0->ne[0];
  4128. const int ne01 = src0->ne[1];
  4129. const int ne02 = src0->ne[2];
  4130. const int ne03 = src0->ne[3];
  4131. const cl_ulong nb00 = src0->nb[0];
  4132. const cl_ulong nb01 = src0->nb[1];
  4133. const cl_ulong nb02 = src0->nb[2];
  4134. const cl_ulong nb03 = src0->nb[3];
  4135. const int ne10 = src1->ne[0];
  4136. const int ne11 = src1->ne[1];
  4137. const int ne12 = src1->ne[2];
  4138. const int ne13 = src1->ne[3]; UNUSED(ne13);
  4139. const cl_ulong nb10 = src1->nb[0];
  4140. const cl_ulong nb11 = src1->nb[1];
  4141. const cl_ulong nb12 = src1->nb[2];
  4142. const cl_ulong nb13 = src1->nb[3]; UNUSED(nb13);
  4143. const int ne0 = dst->ne[0];
  4144. const int ne1 = dst->ne[1];
  4145. const int ne2 = dst->ne[2];
  4146. const int ne3 = dst->ne[3];
  4147. const cl_ulong nb0 = dst->nb[0];
  4148. const cl_ulong nb1 = dst->nb[1];
  4149. const cl_ulong nb2 = dst->nb[2];
  4150. const cl_ulong nb3 = dst->nb[3];
  4151. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4152. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4153. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4154. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4155. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4156. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4157. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4158. bool bcast_row = false;
  4159. cl_kernel kernel;
  4160. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4161. GGML_ASSERT(ggml_is_contiguous(src0));
  4162. // src1 is a row
  4163. GGML_ASSERT(ne11 == 1);
  4164. bcast_row = true;
  4165. int ne = ne00 / 4;
  4166. if (src0->type == GGML_TYPE_F32) {
  4167. kernel = backend_ctx->kernel_mul_row;
  4168. } else {
  4169. kernel = backend_ctx->kernel_mul_row_f16;
  4170. }
  4171. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4172. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4173. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4174. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4175. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4176. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4177. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4178. } else {
  4179. if (src0->type == GGML_TYPE_F32) {
  4180. kernel = backend_ctx->kernel_mul;
  4181. } else {
  4182. kernel = backend_ctx->kernel_mul_f16;
  4183. }
  4184. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4185. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4186. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4187. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4188. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4189. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4190. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4191. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4192. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4193. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4194. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  4195. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  4196. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  4197. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  4198. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  4199. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  4200. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  4201. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  4202. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  4203. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4204. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4205. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4206. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  4207. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  4208. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  4209. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  4210. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  4211. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  4212. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  4213. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  4214. }
  4215. if (bcast_row) {
  4216. int n = ggml_nelements(dst)/4;
  4217. size_t global_work_size[] = {(size_t)n, 1, 1};
  4218. size_t local_work_size[] = {64, 1, 1};
  4219. size_t * local_work_size_ptr = local_work_size;
  4220. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4221. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4222. }
  4223. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4224. } else {
  4225. unsigned int nth = MIN(64, ne0);
  4226. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4227. size_t local_work_size[] = {nth, 1, 1};
  4228. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4229. }
  4230. }
  4231. static void ggml_cl_div(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4232. GGML_ASSERT(src0);
  4233. GGML_ASSERT(src0->extra);
  4234. GGML_ASSERT(src1);
  4235. GGML_ASSERT(src1->extra);
  4236. GGML_ASSERT(dst);
  4237. GGML_ASSERT(dst->extra);
  4238. GGML_ASSERT(src0->type == src1->type);
  4239. GGML_ASSERT(src0->type == dst->type);
  4240. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4241. const int ne00 = src0->ne[0];
  4242. const int ne01 = src0->ne[1];
  4243. const int ne02 = src0->ne[2];
  4244. const int ne03 = src0->ne[3];
  4245. const cl_ulong nb00 = src0->nb[0];
  4246. const cl_ulong nb01 = src0->nb[1];
  4247. const cl_ulong nb02 = src0->nb[2];
  4248. const cl_ulong nb03 = src0->nb[3];
  4249. const int ne10 = src1->ne[0];
  4250. const int ne11 = src1->ne[1];
  4251. const int ne12 = src1->ne[2];
  4252. const int ne13 = src1->ne[3];
  4253. const cl_ulong nb10 = src1->nb[0];
  4254. const cl_ulong nb11 = src1->nb[1];
  4255. const cl_ulong nb12 = src1->nb[2];
  4256. const cl_ulong nb13 = src1->nb[3];
  4257. const int ne0 = dst->ne[0];
  4258. const cl_ulong nb0 = dst->nb[0];
  4259. const cl_ulong nb1 = dst->nb[1];
  4260. const cl_ulong nb2 = dst->nb[2];
  4261. const cl_ulong nb3 = dst->nb[3];
  4262. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4263. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4264. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4265. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4266. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4267. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4268. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4269. bool bcast_row = false;
  4270. cl_kernel kernel;
  4271. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4272. GGML_ASSERT(ggml_is_contiguous(src0));
  4273. // src1 is a row
  4274. GGML_ASSERT(ne11 == 1);
  4275. bcast_row = true;
  4276. int ne = ne00 / 4;
  4277. if (src0->type == GGML_TYPE_F32) {
  4278. kernel = backend_ctx->kernel_div_row;
  4279. } else {
  4280. kernel = backend_ctx->kernel_div_row_f16;
  4281. }
  4282. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4283. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4284. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4285. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4286. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4287. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4288. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4289. } else {
  4290. if (src0->type == GGML_TYPE_F32) {
  4291. kernel = backend_ctx->kernel_div;
  4292. } else {
  4293. kernel = backend_ctx->kernel_div_f16;
  4294. }
  4295. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4296. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4297. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4298. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4299. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4300. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4301. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4302. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4303. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4304. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4305. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4306. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  4307. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  4308. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  4309. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4310. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4311. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4312. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4313. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  4314. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  4315. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4316. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4317. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4318. }
  4319. if (bcast_row) {
  4320. int n = ggml_nelements(dst)/4;
  4321. size_t global_work_size[] = {(size_t)n, 1, 1};
  4322. size_t local_work_size[] = {64, 1, 1};
  4323. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4324. } else {
  4325. unsigned int nth = MIN(64, ne0);
  4326. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4327. size_t local_work_size[] = {nth, 1, 1};
  4328. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4329. }
  4330. }
  4331. static void ggml_cl_sub(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4332. GGML_ASSERT(src0);
  4333. GGML_ASSERT(src0->extra);
  4334. GGML_ASSERT(src1);
  4335. GGML_ASSERT(src1->extra);
  4336. GGML_ASSERT(dst);
  4337. GGML_ASSERT(dst->extra);
  4338. GGML_ASSERT(src0->type == src1->type);
  4339. GGML_ASSERT(src0->type == dst->type);
  4340. GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
  4341. const int ne00 = src0->ne[0];
  4342. const int ne01 = src0->ne[1];
  4343. const int ne02 = src0->ne[2];
  4344. const int ne03 = src0->ne[3];
  4345. const cl_ulong nb00 = src0->nb[0];
  4346. const cl_ulong nb01 = src0->nb[1];
  4347. const cl_ulong nb02 = src0->nb[2];
  4348. const cl_ulong nb03 = src0->nb[3];
  4349. const int ne10 = src1->ne[0];
  4350. const int ne11 = src1->ne[1];
  4351. const int ne12 = src1->ne[2];
  4352. const int ne13 = src1->ne[3];
  4353. const cl_ulong nb10 = src1->nb[0];
  4354. const cl_ulong nb11 = src1->nb[1];
  4355. const cl_ulong nb12 = src1->nb[2];
  4356. const cl_ulong nb13 = src1->nb[3];
  4357. const int ne0 = dst->ne[0];
  4358. const cl_ulong nb0 = dst->nb[0];
  4359. const cl_ulong nb1 = dst->nb[1];
  4360. const cl_ulong nb2 = dst->nb[2];
  4361. const cl_ulong nb3 = dst->nb[3];
  4362. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4363. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4364. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4365. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4366. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4367. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4368. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4369. bool bcast_row = false;
  4370. cl_kernel kernel;
  4371. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  4372. GGML_ASSERT(ggml_is_contiguous(src0));
  4373. // src1 is a row
  4374. GGML_ASSERT(ne11 == 1);
  4375. bcast_row = true;
  4376. int ne = ne00 / 4;
  4377. if (src0->type == GGML_TYPE_F32) {
  4378. kernel = backend_ctx->kernel_sub_row;
  4379. } else {
  4380. kernel = backend_ctx->kernel_sub_row_f16;
  4381. }
  4382. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4383. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4384. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4385. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4386. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4387. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4388. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  4389. } else {
  4390. if (src0->type == GGML_TYPE_F32) {
  4391. kernel = backend_ctx->kernel_sub;
  4392. } else {
  4393. kernel = backend_ctx->kernel_sub_f16;
  4394. }
  4395. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4396. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4397. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4398. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4399. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4400. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4401. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb00));
  4402. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  4403. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  4404. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  4405. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne10));
  4406. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne11));
  4407. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  4408. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  4409. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  4410. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  4411. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  4412. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  4413. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
  4414. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
  4415. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4416. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4417. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4418. }
  4419. if (bcast_row) {
  4420. int n = ggml_nelements(dst)/4;
  4421. size_t global_work_size[] = {(size_t)n, 1, 1};
  4422. size_t local_work_size[] = {64, 1, 1};
  4423. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4424. } else {
  4425. unsigned int nth = MIN(64, ne0);
  4426. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  4427. size_t local_work_size[] = {nth, 1, 1};
  4428. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4429. }
  4430. }
  4431. static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4432. GGML_ASSERT(src0);
  4433. GGML_ASSERT(src0->extra);
  4434. GGML_ASSERT(dst);
  4435. GGML_ASSERT(dst->extra);
  4436. UNUSED(src1);
  4437. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4438. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4439. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4440. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4441. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4442. cl_kernel kernel;
  4443. int n = ggml_nelements(dst);
  4444. if (n % 4 == 0) {
  4445. kernel = backend_ctx->kernel_gelu_4;
  4446. n /= 4;
  4447. } else {
  4448. kernel = backend_ctx->kernel_gelu;
  4449. }
  4450. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4451. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4452. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4453. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4454. size_t global_work_size[] = {(size_t)n, 1, 1};
  4455. size_t local_work_size[] = {64, 1, 1};
  4456. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4457. }
  4458. static void ggml_cl_gelu_erf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4459. GGML_ASSERT(src0);
  4460. GGML_ASSERT(src0->extra);
  4461. GGML_ASSERT(dst);
  4462. GGML_ASSERT(dst->extra);
  4463. UNUSED(src1);
  4464. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4465. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4466. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4467. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4468. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4469. cl_kernel kernel;
  4470. int n = ggml_nelements(dst);
  4471. if (n % 4 == 0) {
  4472. kernel = backend_ctx->kernel_gelu_erf_4;
  4473. n /= 4;
  4474. } else {
  4475. kernel = backend_ctx->kernel_gelu_erf;
  4476. }
  4477. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4478. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4479. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4480. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4481. size_t global_work_size[] = {(size_t)n, 1, 1};
  4482. size_t local_work_size[] = {64, 1, 1};
  4483. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4484. }
  4485. static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4486. GGML_ASSERT(src0);
  4487. GGML_ASSERT(src0->extra);
  4488. GGML_ASSERT(dst);
  4489. GGML_ASSERT(dst->extra);
  4490. UNUSED(src1);
  4491. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4492. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4493. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4494. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4495. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4496. cl_kernel kernel;
  4497. int n = ggml_nelements(dst);
  4498. if (n % 4 == 0) {
  4499. kernel = backend_ctx->kernel_gelu_quick_4;
  4500. n /= 4;
  4501. } else {
  4502. kernel = backend_ctx->kernel_gelu_quick;
  4503. }
  4504. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4505. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4506. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4507. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4508. size_t global_work_size[] = {(size_t)n, 1, 1};
  4509. size_t local_work_size[] = {64, 1, 1};
  4510. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4511. }
  4512. static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4513. GGML_ASSERT(src0);
  4514. GGML_ASSERT(src0->extra);
  4515. GGML_ASSERT(dst);
  4516. GGML_ASSERT(dst->extra);
  4517. UNUSED(src1);
  4518. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4519. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4520. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4521. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4522. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4523. cl_kernel kernel;
  4524. int n = ggml_nelements(dst);
  4525. if (n % 4 == 0) {
  4526. kernel = backend_ctx->kernel_silu_4;
  4527. n /= 4;
  4528. } else {
  4529. kernel = backend_ctx->kernel_silu;
  4530. }
  4531. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4532. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4533. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4534. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4535. size_t global_work_size[] = {(size_t)n, 1, 1};
  4536. size_t local_work_size[] = {64, 1, 1};
  4537. size_t * local_work_size_ptr = local_work_size;
  4538. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4539. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4540. }
  4541. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4542. }
  4543. static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4544. GGML_ASSERT(src0);
  4545. GGML_ASSERT(src0->extra);
  4546. GGML_ASSERT(dst);
  4547. GGML_ASSERT(dst->extra);
  4548. UNUSED(src1);
  4549. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4550. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4551. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4552. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4553. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4554. cl_kernel kernel = backend_ctx->kernel_relu;
  4555. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4556. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4557. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4558. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4559. const int64_t n = ggml_nelements(dst);
  4560. size_t global_work_size[] = {(size_t)n, 1, 1};
  4561. size_t local_work_size[] = {64, 1, 1};
  4562. size_t * local_work_size_ptr = local_work_size;
  4563. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4564. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4565. }
  4566. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4567. }
  4568. static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4569. GGML_ASSERT(src0);
  4570. GGML_ASSERT(src0->extra);
  4571. GGML_ASSERT(dst);
  4572. GGML_ASSERT(dst->extra);
  4573. UNUSED(src1);
  4574. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4575. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4576. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4577. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4578. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4579. cl_kernel kernel;
  4580. if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
  4581. kernel = backend_ctx->kernel_sigmoid_f32;
  4582. } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
  4583. kernel = backend_ctx->kernel_sigmoid_f16;
  4584. } else {
  4585. GGML_ASSERT(false && "Unsupported data types for sigmoid (input and output must be both f32 or f16)");
  4586. }
  4587. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4588. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4589. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4590. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4591. const int64_t n = ggml_nelements(dst);
  4592. size_t global_work_size[] = {(size_t)n, 1, 1};
  4593. size_t local_work_size[] = {64, 1, 1};
  4594. size_t * local_work_size_ptr = local_work_size;
  4595. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4596. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4597. }
  4598. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4599. }
  4600. static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4601. GGML_ASSERT(src0);
  4602. GGML_ASSERT(src0->extra);
  4603. GGML_ASSERT(dst);
  4604. GGML_ASSERT(dst->extra);
  4605. UNUSED(src1);
  4606. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4607. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4608. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4609. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4610. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4611. float min;
  4612. float max;
  4613. memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
  4614. memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
  4615. cl_kernel kernel = backend_ctx->kernel_clamp;
  4616. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4617. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4618. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4619. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4620. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
  4621. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
  4622. const int64_t n = ggml_nelements(dst);
  4623. size_t global_work_size[] = {(size_t)n, 1, 1};
  4624. size_t local_work_size[] = {64, 1, 1};
  4625. size_t * local_work_size_ptr = local_work_size;
  4626. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  4627. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  4628. }
  4629. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  4630. }
  4631. static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4632. GGML_ASSERT(src0);
  4633. GGML_ASSERT(src0->extra);
  4634. GGML_ASSERT(dst);
  4635. GGML_ASSERT(dst->extra);
  4636. UNUSED(src1);
  4637. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4638. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4639. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4640. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4641. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4642. float eps;
  4643. memcpy(&eps, dst->op_params, sizeof(float));
  4644. const int ne00 = src0 ? src0->ne[0] : 0;
  4645. const int ne01 = src0 ? src0->ne[1] : 0;
  4646. const int ne02 = src0 ? src0->ne[2] : 0;
  4647. const int ne03 = src0 ? src0->ne[3] : 0;
  4648. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4649. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4650. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4651. const int nth = MIN(64, ne00);
  4652. cl_kernel kernel = backend_ctx->kernel_norm;
  4653. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4654. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4655. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4656. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4657. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4658. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4659. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4660. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4661. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4662. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4663. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4664. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  4665. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth, NULL));
  4666. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4667. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4668. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4669. }
  4670. static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4671. GGML_ASSERT(src0);
  4672. GGML_ASSERT(src0->extra);
  4673. GGML_ASSERT(dst);
  4674. GGML_ASSERT(dst->extra);
  4675. UNUSED(src1);
  4676. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4677. //ggml_backend_opencl_device_context * dev_ctx =
  4678. // (ggml_backend_opencl_device_context *)backend->device->context;
  4679. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4680. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4681. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4682. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4683. float eps;
  4684. memcpy(&eps, dst->op_params, sizeof(float));
  4685. const int ne00 = src0 ? src0->ne[0] : 0;
  4686. const int ne01 = src0 ? src0->ne[1] : 0;
  4687. const int ne02 = src0 ? src0->ne[2] : 0;
  4688. const int ne03 = src0 ? src0->ne[3] : 0;
  4689. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  4690. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  4691. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  4692. GGML_ASSERT(ne00 % 4 == 0);
  4693. const int nth = MIN(64, ne00);
  4694. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4695. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4696. cl_kernel kernel = backend_ctx->kernel_rms_norm;
  4697. // Note, this kernel declares local memory in kernel args and the size
  4698. // depends on subgroup size.
  4699. // Note, this requires OpenCL 2.1 and above
  4700. // For now we use fixed subgroup size to simplify support for OpenCL 2.0.
  4701. size_t sgs;
  4702. //CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
  4703. // CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
  4704. // sizeof(local_work_size), local_work_size,
  4705. // sizeof(size_t), &sgs, NULL));
  4706. if (backend_ctx->gpu_family == ADRENO) {
  4707. sgs = 64;
  4708. } else if (backend_ctx->gpu_family == INTEL) {
  4709. sgs = 32;
  4710. } else {
  4711. GGML_ASSERT(false && "Unsupported GPU");
  4712. }
  4713. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4714. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4715. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4716. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4717. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4718. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  4719. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  4720. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  4721. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  4722. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  4723. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  4724. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &eps));
  4725. // This is local memory - the size depends on subgroup size.
  4726. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float)*nth/sgs, NULL));
  4727. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4728. }
  4729. static void ggml_opencl_op_rms_norm_fused(ggml_backend_t backend, ggml_tensor * rms_norm_tensor, ggml_tensor * mul_tensor) {
  4730. GGML_ASSERT(mul_tensor);
  4731. GGML_ASSERT(rms_norm_tensor);
  4732. // src0 is the src of rms_norm, src1 is the other src of mul (one being rms_norm)
  4733. const ggml_tensor * src0 = rms_norm_tensor->src[0];
  4734. const ggml_tensor * src1;
  4735. if (mul_tensor->src[0] == rms_norm_tensor) {
  4736. src1 = mul_tensor->src[1];
  4737. } else if (mul_tensor->src[1] == rms_norm_tensor) {
  4738. src1 = mul_tensor->src[0];
  4739. } else {
  4740. GGML_ASSERT(false && "Invalid args for rms_norm and mul");
  4741. }
  4742. const ggml_tensor * dst = mul_tensor;
  4743. GGML_ASSERT(src0);
  4744. GGML_ASSERT(src0->extra);
  4745. GGML_ASSERT(src1);
  4746. GGML_ASSERT(src1->extra);
  4747. GGML_ASSERT(dst);
  4748. GGML_ASSERT(dst->extra);
  4749. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4750. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4751. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4752. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4753. cl_ulong offset1 = extra1->offset + src0->view_offs;
  4754. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4755. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4756. float eps;
  4757. memcpy(&eps, rms_norm_tensor->op_params, sizeof(float));
  4758. const int ne00 = src0->ne[0];
  4759. const int ne01 = src0->ne[1];
  4760. const int ne02 = src0->ne[2];
  4761. const int ne03 = src0->ne[3];
  4762. const cl_ulong nb01 = src0->nb[1];
  4763. const cl_ulong nb02 = src0->nb[2];
  4764. const cl_ulong nb03 = src0->nb[3];
  4765. const int ne10 = src1->ne[0];
  4766. const int ne11 = src1->ne[1];
  4767. const int ne12 = src1->ne[2];
  4768. const int ne13 = src1->ne[3];
  4769. const cl_ulong nb11 = src1->nb[1];
  4770. const cl_ulong nb12 = src1->nb[2];
  4771. const cl_ulong nb13 = src1->nb[3];
  4772. const cl_ulong nb1 = dst->nb[1];
  4773. const cl_ulong nb2 = dst->nb[2];
  4774. const cl_ulong nb3 = dst->nb[3];
  4775. GGML_ASSERT(ne00 % 4 == 0);
  4776. size_t sgs;
  4777. if (backend_ctx->gpu_family == ADRENO) {
  4778. sgs = 64;
  4779. } else if (backend_ctx->gpu_family == INTEL) {
  4780. sgs = 32;
  4781. } else {
  4782. GGML_ASSERT(false && "Unsupported GPU");
  4783. }
  4784. cl_kernel kernel = backend_ctx->kernel_rms_norm_mul;
  4785. int nth = sgs;
  4786. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4787. while (nth < ne00 && nth < max_workgroup_size) {
  4788. nth *= 2;
  4789. }
  4790. nth = MIN(nth, max_workgroup_size);
  4791. nth = MIN(nth, ne00);
  4792. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4793. size_t local_work_size[] = {(size_t)nth, 1, 1};
  4794. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4795. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4796. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4797. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4798. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  4799. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  4800. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  4801. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  4802. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  4803. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  4804. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  4805. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  4806. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  4807. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  4808. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  4809. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  4810. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne13));
  4811. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  4812. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  4813. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  4814. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
  4815. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
  4816. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
  4817. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &eps));
  4818. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*nth/sgs, NULL));
  4819. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4820. }
  4821. static void ggml_opencl_op_norm_fused(ggml_backend_t backend, ggml_tensor * norm_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  4822. GGML_ASSERT(norm_tensor && mul_tensor && add_tensor);
  4823. const ggml_tensor * src0 = norm_tensor->src[0];
  4824. const ggml_tensor * src1 = mul_tensor->src[0] == norm_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  4825. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  4826. const ggml_tensor * dst = add_tensor;
  4827. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4828. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4829. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4830. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4831. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4832. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4833. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4834. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4835. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4836. float eps;
  4837. memcpy(&eps, norm_tensor->op_params, sizeof(float));
  4838. const int ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  4839. const cl_ulong nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  4840. const int ne10 = src1->ne[0], ne11 = src1->ne[1], ne12 = src1->ne[2], ne13 = src1->ne[3];
  4841. const cl_ulong nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  4842. const int ne20 = src2->ne[0], ne21 = src2->ne[1], ne22 = src2->ne[2], ne23 = src2->ne[3];
  4843. const cl_ulong nb21 = src2->nb[1], nb22 = src2->nb[2], nb23 = src2->nb[3];
  4844. const cl_ulong nbd1 = dst->nb[1], nbd2 = dst->nb[2], nbd3 = dst->nb[3];
  4845. size_t sgs;
  4846. if (backend_ctx->gpu_family == ADRENO) sgs = 64;
  4847. else if (backend_ctx->gpu_family == INTEL) sgs = 32;
  4848. else GGML_ASSERT(false && "Unsupported GPU");
  4849. cl_kernel kernel = backend_ctx->kernel_norm_mul_add;
  4850. int nth = sgs;
  4851. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4852. while (nth < ne00/4 && nth < max_workgroup_size) nth *= 2;
  4853. nth = MIN(nth, max_workgroup_size);
  4854. nth = MIN(nth, ne00/4);
  4855. size_t gws[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  4856. size_t lws[] = {(size_t)nth, 1, 1};
  4857. size_t num_subgroups = (nth + sgs - 1) / sgs;
  4858. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4859. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4860. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4861. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4862. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4863. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4864. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4865. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4866. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  4867. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  4868. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  4869. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  4870. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb01));
  4871. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb02));
  4872. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb03));
  4873. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne10));
  4874. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne11));
  4875. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne12));
  4876. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne13));
  4877. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  4878. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  4879. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  4880. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne20));
  4881. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne21));
  4882. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne22));
  4883. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne23));
  4884. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb21));
  4885. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb22));
  4886. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb23));
  4887. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nbd1));
  4888. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(cl_ulong), &nbd2));
  4889. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_ulong), &nbd3));
  4890. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &eps));
  4891. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_float2) * num_subgroups, NULL));
  4892. backend_ctx->enqueue_ndrange_kernel(kernel, 3, gws, lws, dst);
  4893. }
  4894. static void ggml_opencl_op_group_norm_fused(ggml_backend_t backend, ggml_tensor * gn_tensor, ggml_tensor * mul_tensor, ggml_tensor * add_tensor) {
  4895. GGML_ASSERT(gn_tensor && mul_tensor && add_tensor);
  4896. const ggml_tensor * src0 = gn_tensor->src[0];
  4897. const ggml_tensor * src1 = mul_tensor->src[0] == gn_tensor ? mul_tensor->src[1] : mul_tensor->src[0];
  4898. const ggml_tensor * src2 = add_tensor->src[0] == mul_tensor ? add_tensor->src[1] : add_tensor->src[0];
  4899. const ggml_tensor * dst = add_tensor;
  4900. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4901. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  4902. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  4903. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4904. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4905. cl_ulong offset1 = extra1->offset + src1->view_offs;
  4906. cl_ulong offset2 = extra2->offset + src2->view_offs;
  4907. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4908. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4909. int groups;
  4910. float eps;
  4911. memcpy(&groups, gn_tensor->op_params, sizeof(int));
  4912. memcpy(&eps, (char *)gn_tensor->op_params + sizeof(int), sizeof(float));
  4913. cl_kernel kernel = backend_ctx->kernel_group_norm_mul_add;
  4914. int max_workgroup_size = backend_ctx->get_kernel_workgroup_size(kernel);
  4915. int ne = ggml_nelements(src0);
  4916. int group_size = ne / groups;
  4917. size_t lws[] = { (size_t)MIN(max_workgroup_size, group_size) };
  4918. size_t gws[] = { (size_t)groups * lws[0] };
  4919. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4920. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4921. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  4922. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  4923. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  4924. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  4925. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  4926. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  4927. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne));
  4928. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &group_size));
  4929. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &eps));
  4930. backend_ctx->enqueue_ndrange_kernel(kernel, 1, gws, lws, dst);
  4931. }
  4932. static void ggml_cl_group_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4933. GGML_ASSERT(src0);
  4934. GGML_ASSERT(src0->extra);
  4935. GGML_ASSERT(dst);
  4936. GGML_ASSERT(dst->extra);
  4937. UNUSED(src1);
  4938. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4939. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4940. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4941. cl_ulong offset0 = extra0->offset + src0->view_offs;
  4942. cl_ulong offsetd = extrad->offset + dst->view_offs;
  4943. int32_t n_groups = ((const int32_t *) dst->op_params)[0];
  4944. int32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + n_groups - 1) / n_groups);
  4945. float eps = ((const float *) dst->op_params)[1];
  4946. const int ne00 = src0->ne[0];
  4947. const int ne01 = src0->ne[1];
  4948. const int ne02 = src0->ne[2];
  4949. const int ne = ne00*ne01*ne02;
  4950. cl_kernel kernel = backend_ctx->kernel_group_norm;
  4951. size_t sgs = 64;
  4952. if (backend_ctx->gpu_family == ADRENO) {
  4953. sgs = 64;
  4954. } else if (backend_ctx->gpu_family == INTEL) {
  4955. sgs = 32;
  4956. } else {
  4957. GGML_ASSERT(false && "Unsupported GPU");
  4958. }
  4959. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4960. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  4961. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4962. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  4963. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne));
  4964. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &group_size));
  4965. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
  4966. size_t global_work_size[] = {(size_t)n_groups*sgs, 1, 1};
  4967. size_t local_work_size[] = {(size_t)sgs, 1, 1};
  4968. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  4969. }
  4970. static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  4971. GGML_ASSERT(src0);
  4972. GGML_ASSERT(src0->extra);
  4973. GGML_ASSERT(dst);
  4974. GGML_ASSERT(dst->extra);
  4975. UNUSED(src1);
  4976. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  4977. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  4978. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  4979. cl_ulong offset0_abs = extra0->offset + src0->view_offs;
  4980. cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
  4981. cl_kernel kernel;
  4982. if (dst->type == GGML_TYPE_F32) {
  4983. kernel = backend_ctx->kernel_tanh_f32_nd;
  4984. } else if (dst->type == GGML_TYPE_F16) {
  4985. kernel = backend_ctx->kernel_tanh_f16_nd;
  4986. } else {
  4987. GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
  4988. }
  4989. GGML_ASSERT(kernel != nullptr);
  4990. const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
  4991. const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
  4992. const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
  4993. const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
  4994. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  4995. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
  4996. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  4997. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
  4998. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  4999. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  5000. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  5001. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  5002. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  5003. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  5004. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
  5005. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
  5006. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  5007. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  5008. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  5009. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  5010. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
  5011. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
  5012. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
  5013. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
  5014. size_t global_work_size[3];
  5015. if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
  5016. return;
  5017. }
  5018. global_work_size[0] = (size_t)ne10;
  5019. global_work_size[1] = (size_t)ne11;
  5020. global_work_size[2] = (size_t)ne12;
  5021. size_t lws0 = 16, lws1 = 4, lws2 = 1;
  5022. if (ne10 < 16) lws0 = ne10;
  5023. if (ne11 < 4) lws1 = ne11;
  5024. if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
  5025. while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
  5026. while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
  5027. while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
  5028. size_t local_work_size[] = {lws0, lws1, lws2};
  5029. size_t* local_work_size_ptr = local_work_size;
  5030. if (!backend_ctx->non_uniform_workgroups) {
  5031. if (global_work_size[0] % local_work_size[0] != 0 ||
  5032. global_work_size[1] % local_work_size[1] != 0 ||
  5033. global_work_size[2] % local_work_size[2] != 0) {
  5034. local_work_size_ptr = NULL;
  5035. }
  5036. }
  5037. if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
  5038. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5039. }
  5040. static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
  5041. GGML_ASSERT(src0);
  5042. GGML_ASSERT(src0->extra);
  5043. GGML_ASSERT(dst);
  5044. GGML_ASSERT(dst->extra);
  5045. GGML_ASSERT(dst->type == src0->type);
  5046. UNUSED(src1_shape_def);
  5047. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5048. if (backend_ctx->kernel_repeat == nullptr) {
  5049. GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
  5050. return;
  5051. }
  5052. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5053. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5054. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5055. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5056. const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
  5057. const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
  5058. const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
  5059. const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
  5060. cl_kernel kernel = backend_ctx->kernel_repeat;
  5061. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5062. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
  5063. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
  5064. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5065. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
  5066. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
  5067. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
  5068. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
  5069. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
  5070. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
  5071. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
  5072. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
  5073. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
  5074. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
  5075. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
  5076. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
  5077. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
  5078. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
  5079. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
  5080. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
  5081. size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
  5082. size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
  5083. size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
  5084. size_t global_work_size[] = { gws0, gws1, gws2 };
  5085. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5086. }
  5087. static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5088. GGML_ASSERT(src0);
  5089. GGML_ASSERT(src0->extra);
  5090. GGML_ASSERT(dst);
  5091. GGML_ASSERT(dst->extra);
  5092. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5093. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5094. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5095. if (backend_ctx->kernel_pad == nullptr) {
  5096. GGML_LOG_WARN("%s: pad kernel not available, skipping OpenCL execution.\n", __func__);
  5097. return;
  5098. }
  5099. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5100. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5101. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5102. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5103. const int s_ne0 = src0->ne[0];
  5104. const int s_ne1 = src0->ne[1];
  5105. const int s_ne2 = src0->ne[2];
  5106. const int s_ne3 = src0->ne[3];
  5107. const int s_nb0 = src0->nb[0];
  5108. const int s_nb1 = src0->nb[1];
  5109. const int s_nb2 = src0->nb[2];
  5110. const int s_nb3 = src0->nb[3];
  5111. const int d_ne0 = dst->ne[0];
  5112. const int d_ne1 = dst->ne[1];
  5113. const int d_ne2 = dst->ne[2];
  5114. const int d_ne3 = dst->ne[3];
  5115. const int d_nb0 = dst->nb[0];
  5116. const int d_nb1 = dst->nb[1];
  5117. const int d_nb2 = dst->nb[2];
  5118. const int d_nb3 = dst->nb[3];
  5119. const int lp0 = ((const int*)(dst->op_params))[0];
  5120. const int rp0 = ((const int*)(dst->op_params))[1];
  5121. const int lp1 = ((const int*)(dst->op_params))[2];
  5122. const int rp1 = ((const int*)(dst->op_params))[3];
  5123. const int lp2 = ((const int*)(dst->op_params))[4];
  5124. const int rp2 = ((const int*)(dst->op_params))[5];
  5125. const int lp3 = ((const int*)(dst->op_params))[6];
  5126. const int rp3 = ((const int*)(dst->op_params))[7];
  5127. cl_kernel kernel = backend_ctx->kernel_pad;
  5128. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5129. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5130. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5131. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5132. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &s_ne0));
  5133. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &s_ne1));
  5134. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &s_ne2));
  5135. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &s_ne3));
  5136. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &s_nb0));
  5137. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &s_nb1));
  5138. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &s_nb2));
  5139. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &s_nb3));
  5140. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  5141. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  5142. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  5143. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &d_ne3));
  5144. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &d_nb0));
  5145. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &d_nb1));
  5146. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &d_nb2));
  5147. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &d_nb3));
  5148. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &lp0));
  5149. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &rp0));
  5150. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &lp1));
  5151. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &rp1));
  5152. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &lp2));
  5153. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &rp2));
  5154. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &lp3));
  5155. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(int), &rp3));
  5156. size_t lws0 = 64;
  5157. size_t gws0 = (( (size_t)d_ne0 + lws0 - 1 ) / lws0) * lws0;
  5158. size_t global_work_size[] = { gws0, (size_t)d_ne1, (size_t)d_ne2*d_ne3 };
  5159. size_t local_work_size[] = { lws0, 1, 1 };
  5160. size_t * local_work_size_ptr = local_work_size;
  5161. if (d_ne0 % lws0 != 0 && !backend_ctx->non_uniform_workgroups) {
  5162. local_work_size_ptr = nullptr;
  5163. }
  5164. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5165. }
  5166. static void ggml_cl_upscale(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5167. GGML_ASSERT(src0);
  5168. GGML_ASSERT(src0->extra);
  5169. GGML_ASSERT(dst);
  5170. GGML_ASSERT(dst->extra);
  5171. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5172. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5173. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5174. const int mode_flags = (ggml_scale_mode) ggml_get_op_params_i32(dst, 0);
  5175. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  5176. cl_kernel kernel = nullptr;
  5177. if (mode == GGML_SCALE_MODE_NEAREST) {
  5178. kernel = backend_ctx->kernel_upscale;
  5179. if (kernel == nullptr) {
  5180. GGML_LOG_WARN("%s: nearest upscale kernel not available, skipping OpenCL execution.\n", __func__);
  5181. return;
  5182. }
  5183. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  5184. kernel = backend_ctx->kernel_upscale_bilinear;
  5185. if (kernel == nullptr) {
  5186. GGML_LOG_WARN("%s: bilinear upscale kernel not available, skipping OpenCL execution.\n", __func__);
  5187. return;
  5188. }
  5189. } else {
  5190. GGML_LOG_WARN("%s: unsupported upscale mode %d, skipping OpenCL execution.\n", __func__, mode);
  5191. return;
  5192. }
  5193. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5194. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5195. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5196. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5197. const cl_ulong nb00 = src0->nb[0];
  5198. const cl_ulong nb01 = src0->nb[1];
  5199. const cl_ulong nb02 = src0->nb[2];
  5200. const cl_ulong nb03 = src0->nb[3];
  5201. const int ne00 = src0->ne[0];
  5202. const int ne01 = src0->ne[1];
  5203. const int ne02 = src0->ne[2];
  5204. const int ne03 = src0->ne[3];
  5205. const int ne0 = dst->ne[0];
  5206. const int ne1 = dst->ne[1];
  5207. const int ne2 = dst->ne[2];
  5208. const int ne3 = dst->ne[3];
  5209. float sf0 = (float)ne0 / ne00;
  5210. float sf1 = (float)ne1 / ne01;
  5211. float sf2 = (float)ne2 / ne02;
  5212. float sf3 = (float)ne3 / ne03;
  5213. float pixel_offset = 0.5f;
  5214. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5215. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5216. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5217. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5218. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &nb00));
  5219. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
  5220. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb02));
  5221. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb03));
  5222. if (mode == GGML_SCALE_MODE_NEAREST) {
  5223. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  5224. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne1));
  5225. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne2));
  5226. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne3));
  5227. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &sf0));
  5228. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &sf1));
  5229. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf2));
  5230. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf3));
  5231. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  5232. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  5233. sf0 = ne0 > 1 && ne00 > 1 ? (float)(ne0 - 1) / (ne00 - 1) : sf0;
  5234. sf1 = ne1 > 1 && ne01 > 1 ? (float)(ne1 - 1) / (ne01 - 1) : sf1;
  5235. pixel_offset = 0.0f;
  5236. }
  5237. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  5238. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  5239. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne0));
  5240. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne1));
  5241. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne2));
  5242. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne3));
  5243. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(float), &sf0));
  5244. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(float), &sf1));
  5245. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(float), &sf2));
  5246. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(float), &sf3));
  5247. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float), &pixel_offset));
  5248. }
  5249. size_t dst_total_elements = (size_t)ne0 * ne1 * ne2 * ne3;
  5250. if (dst_total_elements == 0) {
  5251. return;
  5252. }
  5253. size_t global_work_size[] = { dst_total_elements, 1, 1 };
  5254. size_t local_work_size_pref = 256;
  5255. size_t local_work_size[] = { MIN(local_work_size_pref, dst_total_elements), 1, 1};
  5256. size_t * local_work_size_ptr = local_work_size;
  5257. if (dst_total_elements % local_work_size[0] != 0 && !backend_ctx->non_uniform_workgroups) {
  5258. local_work_size_ptr = nullptr;
  5259. }
  5260. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  5261. }
  5262. static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5263. GGML_ASSERT(src0);
  5264. GGML_ASSERT(src0->extra);
  5265. GGML_ASSERT(src1);
  5266. GGML_ASSERT(src1->extra);
  5267. GGML_ASSERT(dst);
  5268. GGML_ASSERT(dst->extra);
  5269. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5270. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5271. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5272. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5273. cl_command_queue queue = backend_ctx->queue;
  5274. if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
  5275. GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
  5276. return;
  5277. }
  5278. ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
  5279. ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
  5280. ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
  5281. cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
  5282. cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
  5283. cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
  5284. const int32_t dim = ((const int32_t *) dst->op_params)[0];
  5285. GGML_ASSERT(dim >= 0 && dim <= 3);
  5286. if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
  5287. if (dim == 3) {
  5288. size_t nbytes_src0 = ggml_nbytes(src0);
  5289. size_t nbytes_src1 = ggml_nbytes(src1);
  5290. CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
  5291. off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
  5292. CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
  5293. off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
  5294. } else {
  5295. cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
  5296. size_t global_work_size[3];
  5297. for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
  5298. cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
  5299. cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
  5300. cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
  5301. int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
  5302. int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
  5303. int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
  5304. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  5305. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &current_off_src0));
  5306. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  5307. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &current_off_src1));
  5308. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  5309. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &current_off_dst));
  5310. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
  5311. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
  5312. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
  5313. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
  5314. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
  5315. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
  5316. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
  5317. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
  5318. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
  5319. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
  5320. global_work_size[0] = d_ne0;
  5321. global_work_size[1] = d_ne1;
  5322. global_work_size[2] = d_ne2;
  5323. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5324. }
  5325. }
  5326. } else {
  5327. cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
  5328. cl_long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
  5329. cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
  5330. cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
  5331. cl_long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
  5332. cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
  5333. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
  5334. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5335. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
  5336. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
  5337. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
  5338. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
  5339. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &ne00));
  5340. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &ne01));
  5341. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &ne02));
  5342. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &ne03));
  5343. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  5344. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  5345. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  5346. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  5347. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
  5348. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
  5349. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
  5350. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
  5351. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_long), &d_ne0));
  5352. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_long), &d_ne1));
  5353. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_long), &d_ne2));
  5354. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_long), &d_ne3));
  5355. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
  5356. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
  5357. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
  5358. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
  5359. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
  5360. size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
  5361. d_ne2 > 0 ? (size_t)d_ne2 : 1,
  5362. d_ne3 > 0 ? (size_t)d_ne3 : 1 };
  5363. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
  5364. }
  5365. }
  5366. static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
  5367. GGML_ASSERT(src0);
  5368. GGML_ASSERT(src0->extra);
  5369. GGML_ASSERT(dst);
  5370. GGML_ASSERT(dst->extra);
  5371. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5372. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  5373. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5374. if (backend_ctx->kernel_timestep_embedding == nullptr) {
  5375. GGML_LOG_WARN("%s: timestep_embedding kernel not available, skipping OpenCL execution.\n", __func__);
  5376. return;
  5377. }
  5378. ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
  5379. ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
  5380. cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
  5381. cl_ulong off_dst = extra_dst->offset + dst->view_offs;
  5382. const int logical_dim = dst->op_params[0];
  5383. const int max_period = dst->op_params[1];
  5384. const int dst_nb1_bytes = dst->nb[1];
  5385. cl_kernel kernel = backend_ctx->kernel_timestep_embedding;
  5386. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
  5387. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
  5388. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_dst->data_device));
  5389. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
  5390. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &dst_nb1_bytes));
  5391. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &logical_dim));
  5392. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &max_period));
  5393. size_t gws0 = (size_t)(((logical_dim + 1) / 2) + 1);
  5394. size_t gws1 = (size_t)src0->ne[0];
  5395. size_t global_work_size[] = {gws0, gws1, 1};
  5396. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
  5397. }
  5398. static void ggml_cl_flash_attn(ggml_backend_t backend, const ggml_tensor * q, const ggml_tensor * k, ggml_tensor * dst) {
  5399. const ggml_tensor * v = dst->src[2];
  5400. const ggml_tensor * mask = dst->src[3];
  5401. const ggml_tensor * sinks = dst->src[4];
  5402. GGML_ASSERT(q->extra);
  5403. GGML_ASSERT(k->extra);
  5404. GGML_ASSERT(v->extra);
  5405. GGML_ASSERT(dst->extra);
  5406. if (mask) {
  5407. GGML_ASSERT(mask->extra);
  5408. }
  5409. if (sinks) {
  5410. GGML_ASSERT(sinks->extra);
  5411. }
  5412. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5413. const int n_q = q->ne[1];
  5414. const int n_kv = k->ne[1];
  5415. const int d_head_q = q->ne[0];
  5416. const int d_head_v = v->ne[0];
  5417. const int n_head = q->ne[2];
  5418. const int n_head_kv = k->ne[2];
  5419. const int n_batch = q->ne[3];
  5420. cl_kernel kernel = NULL;
  5421. const bool is_f16 = q->type == GGML_TYPE_F16;
  5422. const bool is_mixed = q->type == GGML_TYPE_F32 && k->type == GGML_TYPE_F16;
  5423. const std::pair<int, int> dk_dv = {d_head_q, d_head_v};
  5424. if (n_q == 1) {
  5425. if (is_mixed) {
  5426. kernel = backend_ctx->kernels_flash_attn_f32_f16_q1.at(dk_dv);
  5427. } else if (is_f16) {
  5428. kernel = backend_ctx->kernels_flash_attn_f16_q1.at(dk_dv);
  5429. } else {
  5430. kernel = backend_ctx->kernels_flash_attn_f32_q1.at(dk_dv);
  5431. }
  5432. } else {
  5433. if (is_mixed) {
  5434. kernel = backend_ctx->kernels_flash_attn_f32_f16.at(dk_dv);
  5435. } else if (is_f16) {
  5436. kernel = backend_ctx->kernels_flash_attn_f16.at(dk_dv);
  5437. } else {
  5438. kernel = backend_ctx->kernels_flash_attn_f32.at(dk_dv);
  5439. }
  5440. }
  5441. GGML_ASSERT(kernel != NULL);
  5442. ggml_tensor_extra_cl * extra_q = (ggml_tensor_extra_cl *)q->extra;
  5443. ggml_tensor_extra_cl * extra_k = (ggml_tensor_extra_cl *)k->extra;
  5444. ggml_tensor_extra_cl * extra_v = (ggml_tensor_extra_cl *)v->extra;
  5445. ggml_tensor_extra_cl * extra_o = (ggml_tensor_extra_cl *)dst->extra;
  5446. ggml_tensor_extra_cl * extra_mask = mask ? (ggml_tensor_extra_cl *)mask->extra : NULL;
  5447. ggml_tensor_extra_cl * extra_sinks = sinks ? (ggml_tensor_extra_cl *)sinks->extra : NULL;
  5448. cl_ulong offset_q = extra_q->offset + q->view_offs;
  5449. cl_ulong offset_k = extra_k->offset + k->view_offs;
  5450. cl_ulong offset_v = extra_v->offset + v->view_offs;
  5451. cl_ulong offset_o = extra_o->offset + dst->view_offs;
  5452. cl_mem mask_buffer = extra_mask ? extra_mask->data_device : NULL;
  5453. cl_ulong offset_mask = extra_mask ? extra_mask->offset + mask->view_offs : 0;
  5454. cl_mem sinks_buffer = extra_sinks ? extra_sinks->data_device : NULL;
  5455. cl_ulong offset_sinks = extra_sinks ? extra_sinks->offset + sinks->view_offs : 0;
  5456. const cl_ulong q_nb1 = q->nb[1], q_nb2 = q->nb[2], q_nb3 = q->nb[3];
  5457. const cl_ulong k_nb1 = k->nb[1], k_nb2 = k->nb[2], k_nb3 = k->nb[3];
  5458. const cl_ulong v_nb1 = v->nb[1], v_nb2 = v->nb[2], v_nb3 = v->nb[3];
  5459. const cl_ulong o_nb1 = dst->nb[1], o_nb2 = dst->nb[2], o_nb3 = dst->nb[3];
  5460. const cl_ulong mask_nb1 = mask ? mask->nb[1] : 0;
  5461. const cl_ulong mask_nb2 = mask ? mask->nb[2] : 0;
  5462. const cl_ulong mask_nb3 = mask ? mask->nb[3] : 0;
  5463. const int mask_ne2 = mask ? mask->ne[2] : 0;
  5464. const int mask_ne3 = mask ? mask->ne[3] : 0;
  5465. float scale, max_bias, logit_softcap;
  5466. const float * params = (const float *)dst->op_params;
  5467. scale = params[0];
  5468. max_bias = params[1];
  5469. logit_softcap = params[2];
  5470. const int is_causal = (mask == NULL && n_q > 1 && n_q == n_kv);
  5471. const int n_head_log2_val = n_head > 0 ? 1u << (int)floorf(log2f((float)n_head)) : 0;
  5472. const float n_head_log2_f = n_head_log2_val > 0 ? (float)n_head_log2_val : 1.0f;
  5473. const float m0 = powf(2.0f, -(max_bias) / n_head_log2_f);
  5474. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2_f);
  5475. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_q->data_device));
  5476. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset_q));
  5477. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra_k->data_device));
  5478. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset_k));
  5479. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra_v->data_device));
  5480. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset_v));
  5481. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extra_o->data_device));
  5482. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offset_o));
  5483. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(float), &scale));
  5484. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &n_q));
  5485. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &n_kv));
  5486. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &is_causal));
  5487. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &n_head));
  5488. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &q_nb1)); CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &q_nb2)); CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &q_nb3));
  5489. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &k_nb1)); CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &k_nb2)); CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &k_nb3));
  5490. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &v_nb1)); CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &v_nb2)); CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &v_nb3));
  5491. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &o_nb1)); CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &o_nb2)); CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &o_nb3));
  5492. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(float), &max_bias));
  5493. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(float), &m0));
  5494. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &m1));
  5495. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(int), &n_head_log2_val));
  5496. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &logit_softcap));
  5497. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(int), &n_head_kv));
  5498. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(cl_mem), &mask_buffer));
  5499. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(cl_ulong), &offset_mask));
  5500. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(cl_ulong), &mask_nb1));
  5501. CL_CHECK(clSetKernelArg(kernel, 34, sizeof(cl_ulong), &mask_nb2));
  5502. CL_CHECK(clSetKernelArg(kernel, 35, sizeof(cl_ulong), &mask_nb3));
  5503. CL_CHECK(clSetKernelArg(kernel, 36, sizeof(int), &mask_ne2));
  5504. CL_CHECK(clSetKernelArg(kernel, 37, sizeof(int), &mask_ne3));
  5505. CL_CHECK(clSetKernelArg(kernel, 38, sizeof(cl_mem), &sinks_buffer));
  5506. CL_CHECK(clSetKernelArg(kernel, 39, sizeof(cl_ulong), &offset_sinks));
  5507. if (n_q == 1) {
  5508. const size_t wg_size = 64;
  5509. size_t local_work_size[] = { wg_size, 1 };
  5510. size_t global_work_size[] = { wg_size, (size_t)(n_head * n_batch) };
  5511. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5512. } else {
  5513. const int block_m = backend_ctx->kernels_flash_attn_bm.at(dk_dv);
  5514. const size_t wg_size = block_m;
  5515. size_t local_work_size[] = { wg_size, 1 };
  5516. size_t global_work_size[] = { (size_t)((n_q + block_m - 1) / block_m) * wg_size, (size_t)(n_head * n_batch) };
  5517. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5518. }
  5519. }
  5520. static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5521. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5522. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5523. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5524. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5525. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5526. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5527. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5528. const int M = src0->ne[1];
  5529. const int N = src1->ne[1];
  5530. const int K = src0->ne[0];
  5531. cl_kernel kernel = backend_ctx->kernel_mul_mat_f16_f32_tiled;
  5532. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(int), &M));
  5533. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(int), &N));
  5534. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &K));
  5535. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &extra0->data_device));
  5536. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &offset0));
  5537. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_mem), &extra1->data_device));
  5538. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &offset1));
  5539. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_mem), &extrad->data_device));
  5540. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &offsetd));
  5541. // Tiling parameters. These need to be tuned for optimal performance.
  5542. // They must match the #defines in the kernel mul_mat_f16_f32.cl.
  5543. //
  5544. // OPWM / OPWN: Output tile size per Work-Group. A work-group computes a tile of size OPWM x OPWN.
  5545. // TPWM / TPWN: Threads per Work-group. This is the work-group size.
  5546. // OPTM / OPTN: Output elements per Thread. Each thread computes OPTM x OPTN elements.
  5547. //
  5548. // The following relationships must hold:
  5549. // OPWM = TPWM * OPTM
  5550. // OPWN = TPWN * OPTN
  5551. //
  5552. const int OPWM = 64;
  5553. const int OPWN = 64;
  5554. const int TPWM = 16;
  5555. const int TPWN = 8;
  5556. size_t local_work_size[2] = { TPWM, TPWN };
  5557. size_t global_work_size[2] = {
  5558. (size_t) ((M + OPWM - 1) / OPWM) * TPWM,
  5559. (size_t) ((N + OPWN - 1) / OPWN) * TPWN,
  5560. };
  5561. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5562. }
  5563. static void ggml_cl_conv_2d(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5564. GGML_TENSOR_BINARY_OP_LOCALS;
  5565. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5566. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5567. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5568. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5569. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5570. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5571. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5572. const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
  5573. const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
  5574. const cl_uint s0 = dst->op_params[0]; const cl_uint s1 = dst->op_params[1];
  5575. const cl_uint p0 = dst->op_params[2]; const cl_uint p1 = dst->op_params[3];
  5576. const cl_uint d0 = dst->op_params[4]; const cl_uint d1 = dst->op_params[5];
  5577. const cl_uint cl_nb01 = nb01/ggml_type_size(src0->type); const cl_uint cl_nb02 = nb02/ggml_type_size(src0->type); const cl_uint cl_nb03 = nb03/ggml_type_size(src0->type);
  5578. const cl_uint cl_nb11 = nb11/ggml_type_size(src1->type); const cl_uint cl_nb12 = nb12/ggml_type_size(src1->type); const cl_uint cl_nb13 = nb13/ggml_type_size(src1->type);
  5579. const cl_uint cl_nb1 = nb1/ggml_type_size(dst->type); const cl_uint cl_nb2 = nb2/ggml_type_size(dst->type); const cl_uint cl_nb3 = nb3/ggml_type_size(dst->type);
  5580. const int64_t NPQ = (int64_t)N * OW * OH;
  5581. const uint32_t BS_K = 64;
  5582. const uint32_t BS_NPQ = 64;
  5583. const uint32_t BS_CRS = 16;
  5584. const uint32_t VEC_SIZE = 4;
  5585. const uint32_t TS_K = 4;
  5586. const uint32_t TS_NPQ = 8;
  5587. const uint32_t WG_K = BS_K / TS_K;
  5588. const uint32_t WG_NPQ = BS_NPQ / TS_NPQ;
  5589. auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1) / block_size; };
  5590. const uint32_t NB_K = splitWork(Cout, BS_K);
  5591. const uint32_t NB_NPQ = splitWork(NPQ, BS_NPQ);
  5592. cl_kernel kernel;
  5593. size_t shmem_size;
  5594. if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
  5595. kernel = backend_ctx->kernel_conv_2d_f16;
  5596. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_half4));
  5597. } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
  5598. kernel = backend_ctx->kernel_conv_2d_f32;
  5599. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_float) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  5600. } else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
  5601. kernel = backend_ctx->kernel_conv_2d_f16_f32;
  5602. shmem_size = (size_t)(BS_K * BS_CRS * sizeof(cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE) * sizeof(cl_float4));
  5603. } else {
  5604. GGML_ASSERT(false && "Unsupported data type combination for conv2d");
  5605. }
  5606. cl_uint idx = 0;
  5607. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra0->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset0));
  5608. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extra1->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offset1));
  5609. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_mem), &extrad->data_device)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_ulong), &offsetd));
  5610. CL_CHECK(clSetKernelArg(kernel, idx++, shmem_size, NULL));
  5611. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cout)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &Cin)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &N));
  5612. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &KH)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &W)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &H));
  5613. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OW)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &OH));
  5614. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &s1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &p1));
  5615. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d0)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &d1));
  5616. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb01)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb02)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb03));
  5617. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb11)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb12)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb13));
  5618. CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb1)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb2)); CL_CHECK(clSetKernelArg(kernel, idx++, sizeof(cl_uint), &cl_nb3));
  5619. size_t global_work_size[] = { (size_t)NB_K * WG_K, (size_t)NB_NPQ * WG_NPQ, 1 };
  5620. size_t local_work_size[] = { (size_t)WG_K, (size_t)WG_NPQ, 1 };
  5621. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_work_size, local_work_size, dst);
  5622. }
  5623. static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  5624. GGML_ASSERT(src0);
  5625. GGML_ASSERT(src0->extra);
  5626. GGML_ASSERT(src1);
  5627. GGML_ASSERT(src1->extra);
  5628. GGML_ASSERT(dst);
  5629. GGML_ASSERT(dst->extra);
  5630. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  5631. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  5632. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  5633. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  5634. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  5635. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  5636. cl_ulong offset0 = extra0->offset + src0->view_offs;
  5637. cl_ulong offset1 = extra1->offset + src1->view_offs;
  5638. cl_ulong offsetd = extrad->offset + dst->view_offs;
  5639. #ifdef GGML_OPENCL_SOA_Q
  5640. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  5641. ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
  5642. ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
  5643. #endif
  5644. const int ne00 = src0 ? src0->ne[0] : 0;
  5645. const int ne01 = src0 ? src0->ne[1] : 0;
  5646. const int ne02 = src0 ? src0->ne[2] : 0;
  5647. const int ne03 = src0 ? src0->ne[3] : 0;
  5648. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  5649. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  5650. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  5651. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  5652. const int ne10 = src1 ? src1->ne[0] : 0;
  5653. const int ne11 = src1 ? src1->ne[1] : 0;
  5654. const int ne12 = src1 ? src1->ne[2] : 0;
  5655. const int ne13 = src1 ? src1->ne[3] : 0;
  5656. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  5657. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  5658. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  5659. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  5660. const int ne0 = dst ? dst->ne[0] : 0;
  5661. const int ne1 = dst ? dst->ne[1] : 0;
  5662. int r2 = ne12/ne02;
  5663. int r3 = ne13/ne03;
  5664. GGML_ASSERT(ne00 == ne10);
  5665. int nth0 = 32;
  5666. int nth1 = 1;
  5667. int nrows = 1;
  5668. // The number of values produced by each subgroup
  5669. int ndst = 4;
  5670. cl_kernel kernel;
  5671. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  5672. cl_context context = backend_ctx->context;
  5673. if (ne01 && ne1 && use_adreno_kernels(backend_ctx, src0)) {
  5674. // init CL objects
  5675. // <--------------------------------------------> //
  5676. cl_int status;
  5677. cl_image_format img_fmt_1d;
  5678. cl_image_desc img_desc_1d;
  5679. cl_buffer_region region;
  5680. cl_mem A_image1d = nullptr;
  5681. cl_mem B_image1d = nullptr;
  5682. cl_mem B_sub_buffer = nullptr;
  5683. cl_mem C_d = nullptr;
  5684. // for B transpose
  5685. cl_mem B_d = nullptr;
  5686. cl_mem B_d_input_image = nullptr;
  5687. // <--------------------------------------------> //
  5688. // define matrix dimensions
  5689. // <--------------------------------------------> //
  5690. int M = ne01;
  5691. int N = ne1;
  5692. int K = ne00;
  5693. int padding;
  5694. // <--------------------------------------------> //
  5695. // q4_0 x fp32
  5696. if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
  5697. // TODO: remove duplicate definitions of image description + format -- move to top
  5698. // create an image for A
  5699. // <--------------------------------------------> //
  5700. if (N == 1) {
  5701. img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
  5702. } else {
  5703. img_fmt_1d = { CL_R, CL_FLOAT};
  5704. }
  5705. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5706. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5707. img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
  5708. img_desc_1d.buffer = extra0_q4_0->q;
  5709. A_image1d = clCreateImage(
  5710. context,
  5711. CL_MEM_READ_ONLY,
  5712. &img_fmt_1d,
  5713. &img_desc_1d,
  5714. NULL,
  5715. &status);
  5716. CL_CHECK(status);
  5717. // <--------------------------------------------> //
  5718. // create a sub_buffer for B
  5719. // <--------------------------------------------> //
  5720. region.origin = (extra1->offset);
  5721. region.size = K * N * sizeof(float);
  5722. B_sub_buffer = clCreateSubBuffer(
  5723. extra1->data_device,
  5724. 0,
  5725. CL_BUFFER_CREATE_TYPE_REGION,
  5726. &region,
  5727. &status);
  5728. CL_CHECK(status);
  5729. // <--------------------------------------------> //
  5730. // transpose activation for Skyler's gemm
  5731. if (N != 1) {
  5732. //how many extra elements beyond multiple of 8
  5733. int extra_elements = N % 8;
  5734. //how much padding to add
  5735. padding = 0;
  5736. if (extra_elements > 0){
  5737. padding = 8 - extra_elements;
  5738. }
  5739. // Specify the starting offset (in bytes)
  5740. region.origin = 0;
  5741. // Specify the size of the sub-buffer (divide by 2 for FP16)
  5742. region.size = K * (N + padding) * sizeof(float)/2;
  5743. B_d = clCreateSubBuffer(
  5744. backend_ctx->B_d_max,
  5745. 0,
  5746. CL_BUFFER_CREATE_TYPE_REGION,
  5747. &region,
  5748. &status);
  5749. CL_CHECK(status);
  5750. cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
  5751. cl_image_desc image_desc_B_d_input = {
  5752. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  5753. static_cast<size_t>(K * N / 4),
  5754. 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
  5755. };
  5756. B_d_input_image = clCreateImage(
  5757. context,
  5758. 0,
  5759. &image_format_B_d_input,
  5760. &image_desc_B_d_input,
  5761. NULL,
  5762. &status);
  5763. CL_CHECK(status);
  5764. cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
  5765. cl_image_desc image_desc_B_d_output = {
  5766. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  5767. static_cast<size_t>(K * (N + padding)/4),
  5768. 0, 0, 0, 0, 0, 0, 0, { B_d }
  5769. };
  5770. B_image1d = clCreateImage(
  5771. context,
  5772. 0,
  5773. &image_format_B_d_output,
  5774. &image_desc_B_d_output,
  5775. NULL,
  5776. &status);
  5777. CL_CHECK(status);
  5778. int height_B = N/4;
  5779. if (height_B == 0) {
  5780. height_B = 1;
  5781. }
  5782. int width_B = K/4;
  5783. int padded_height_B = (N + padding)/4;
  5784. kernel = backend_ctx->kernel_transpose_32_16;
  5785. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
  5786. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
  5787. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
  5788. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
  5789. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
  5790. size_t local_size_t[2] = { 1, 16 };
  5791. //WGS tuning
  5792. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  5793. local_size_t[0]=4;
  5794. local_size_t[1]=8;
  5795. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  5796. local_size_t[0]=2;
  5797. local_size_t[1]=8;
  5798. } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  5799. local_size_t[0]=1;
  5800. local_size_t[1]=8;
  5801. } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  5802. local_size_t[0]=2;
  5803. local_size_t[1]=8;
  5804. }
  5805. size_t global_size_t[2] = {
  5806. static_cast<size_t>(width_B),
  5807. static_cast<size_t>(padded_height_B)
  5808. };
  5809. backend_ctx->enqueue_ndrange_kernel(kernel, 2, global_size_t, local_size_t, dst);
  5810. } else {
  5811. // no need to transpose B in other cases
  5812. // create an image for B from sub_buffer
  5813. // <--------------------------------------------> //
  5814. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  5815. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  5816. img_desc_1d.image_width = K * N / 4;
  5817. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  5818. img_desc_1d.buffer = B_sub_buffer;
  5819. B_image1d = clCreateImage(
  5820. context,
  5821. CL_MEM_READ_ONLY,
  5822. &img_fmt_1d,
  5823. &img_desc_1d,
  5824. NULL,
  5825. &status);
  5826. CL_CHECK(status);
  5827. // <--------------------------------------------> //
  5828. }
  5829. // choose gemm or gemv kernel
  5830. // <--------------------------------------------> //
  5831. if (N == 1) {
  5832. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  5833. if (M == 4096 && K == 4096) {
  5834. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  5835. } else if (M == 4096 && K == 11008) {
  5836. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  5837. } else if (M == 11008 && K == 4096) {
  5838. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  5839. } else if (M == 32000 && K == 4096) {
  5840. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  5841. }
  5842. } else {
  5843. kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
  5844. }
  5845. // <--------------------------------------------> //
  5846. // set kernel args
  5847. // <--------------------------------------------> //
  5848. cl_uint k_arg = 0;
  5849. if (N == 1) {
  5850. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  5851. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
  5852. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
  5853. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
  5854. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
  5855. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
  5856. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
  5857. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
  5858. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  5859. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
  5860. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  5861. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
  5862. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
  5863. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
  5864. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
  5865. } else {
  5866. region.origin = extrad->offset; // Specify the starting offset (in bytes)
  5867. region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
  5868. C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  5869. CL_CHECK(status);
  5870. int padded_N = ne1 + padding;
  5871. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
  5872. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
  5873. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
  5874. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
  5875. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
  5876. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
  5877. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
  5878. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
  5879. }
  5880. // <--------------------------------------------> //
  5881. // choose workgroup size
  5882. // <--------------------------------------------> //
  5883. size_t global_work_size[3] = {
  5884. 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
  5885. size_t local_work_size[3] = {64, 2, 4};
  5886. global_work_size[0] = (size_t)(ceil((float)ne1/8));
  5887. global_work_size[1] = (size_t)(ne01/4);
  5888. global_work_size[2] = (size_t)(1);
  5889. local_work_size[0] = (size_t)(1); //4x32 for FP32
  5890. local_work_size[1] = (size_t)(128);
  5891. local_work_size[2] = (size_t)(1);
  5892. //WGS tuning
  5893. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  5894. local_work_size[0] = 1;
  5895. local_work_size[1] = 128;
  5896. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  5897. local_work_size[0] = 2;
  5898. local_work_size[1] = 64;
  5899. } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  5900. local_work_size[0] = 2;
  5901. local_work_size[1] = 64;
  5902. } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  5903. local_work_size[0] = 2;
  5904. local_work_size[1] = 64;
  5905. }
  5906. if (N == 1) {
  5907. size_t wavesize = backend_ctx->adreno_wave_size;
  5908. local_work_size[0] = wavesize; // localsize
  5909. local_work_size[1] = 4; // reduce factor
  5910. local_work_size[2] = 1;
  5911. global_work_size[0] = (((M / 2) + wavesize - 1) / wavesize) * wavesize;
  5912. global_work_size[1] = 4; // reduce factor
  5913. global_work_size[2] = 1;
  5914. }
  5915. // <--------------------------------------------> //
  5916. // enqueue kernel with profiling
  5917. // <--------------------------------------------> //
  5918. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5919. // <--------------------------------------------> //
  5920. // deallocate sub buffers and images
  5921. // <--------------------------------------------> //
  5922. CL_CHECK(clReleaseMemObject(A_image1d));
  5923. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  5924. CL_CHECK(clReleaseMemObject(B_image1d));
  5925. if (N != 1) {
  5926. CL_CHECK(clReleaseMemObject(B_d));
  5927. CL_CHECK(clReleaseMemObject(B_d_input_image));
  5928. CL_CHECK(clReleaseMemObject(C_d));
  5929. }
  5930. // <--------------------------------------------> //
  5931. return;
  5932. }
  5933. } // if (ne01 && ne1)
  5934. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  5935. // GEMM using local memory
  5936. // Current BK = 16, so ne00 % 16 == 0
  5937. if (ggml_is_contiguous(src0) &&
  5938. ggml_is_contiguous(src1) &&
  5939. src1t == GGML_TYPE_F32 &&
  5940. ne00 % 16 == 0 &&
  5941. ne11 > 1) {
  5942. switch(src0t) {
  5943. case GGML_TYPE_F32: {
  5944. kernel = backend_ctx->kernel_mul_mm_f32_f32_l4_lm;
  5945. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  5946. int batch_stride_a = ne00*ne01;
  5947. int batch_stride_b = ne10*ne11;
  5948. int batch_stride_d = ne0*ne1;
  5949. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5950. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5951. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5952. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5953. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5954. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5955. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5956. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5957. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5958. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  5959. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5960. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  5961. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  5962. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  5963. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  5964. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  5965. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  5966. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  5967. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  5968. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  5969. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  5970. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  5971. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  5972. return;
  5973. }
  5974. case GGML_TYPE_F16: {
  5975. kernel = backend_ctx->kernel_mul_mm_f16_f32_l4_lm;
  5976. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  5977. int batch_stride_a = ne00*ne01;
  5978. int batch_stride_b = ne10*ne11;
  5979. int batch_stride_d = ne0*ne1;
  5980. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  5981. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  5982. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  5983. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  5984. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  5985. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  5986. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  5987. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  5988. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  5989. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  5990. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  5991. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  5992. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  5993. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  5994. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  5995. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  5996. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  5997. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  5998. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  5999. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6000. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6001. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6002. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6003. return;
  6004. }
  6005. case GGML_TYPE_Q8_0: {
  6006. if (ne11 < 32) {
  6007. break;
  6008. }
  6009. kernel = backend_ctx->kernel_mul_mm_q8_0_f32_l4_lm;
  6010. nth0 = 128; // calculated as (BM*BN)/(TM*TN)
  6011. int batch_stride_a = ne00*ne01;
  6012. int batch_stride_b = ne10*ne11;
  6013. int batch_stride_d = ne0*ne1;
  6014. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6015. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6016. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6017. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6018. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6019. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6020. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6021. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6022. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6023. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne11));
  6024. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6025. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10)); // stride_a
  6026. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10)); // stride_b
  6027. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne01)); // stride_d
  6028. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &batch_stride_a));
  6029. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &batch_stride_b));
  6030. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &batch_stride_d));
  6031. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6032. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6033. // 64 is block tile size BM and BN - change here when BM and BN in the kernel are changed.
  6034. size_t global_work_size[] = {(size_t)(CEIL_DIV(ne01, 64)*nth0), (size_t)(CEIL_DIV(ne11, 64)), (size_t)ne12*ne13};
  6035. size_t local_work_size[] = {(size_t)nth0, 1, 1};
  6036. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6037. return;
  6038. }
  6039. default:
  6040. break;
  6041. }
  6042. }
  6043. if (src0t == GGML_TYPE_F16 && src1t == GGML_TYPE_F32 &&
  6044. src0->ne[1] > 32 && // M > 32
  6045. src1->ne[1] > 32 && // N > 32
  6046. src0->ne[0] > 32 && // K > 32
  6047. src0->ne[2] == 1 && src0->ne[3] == 1 &&
  6048. src1->ne[2] == 1 && src1->ne[3] == 1 &&
  6049. ggml_is_contiguous(src0) && ggml_is_contiguous(src1) &&
  6050. backend_ctx->kernel_mul_mat_f16_f32_tiled != NULL) {
  6051. ggml_cl_mul_mat_f16_f32_tiled(backend, src0, src1, dst);
  6052. return;
  6053. }
  6054. if (!ggml_is_transposed(src0) &&
  6055. !ggml_is_transposed(src1) &&
  6056. src1t == GGML_TYPE_F32 &&
  6057. ne00%32 == 0 &&
  6058. ne11 > 2) {
  6059. #ifdef GGML_OPENCL_SOA_Q
  6060. // Set up kernel.
  6061. switch(src0t) {
  6062. case GGML_TYPE_Q4_0:
  6063. // This should have been satisfied.
  6064. GGML_ASSERT(ne11 == ne1);
  6065. GGML_ASSERT(ne01 == ne0);
  6066. if (backend_ctx->gpu_family == INTEL) {
  6067. nth0 = 16;
  6068. nth1 = 1;
  6069. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
  6070. } else if (backend_ctx->gpu_family == ADRENO) {
  6071. nth0 = 64;
  6072. nth1 = 1;
  6073. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
  6074. } else {
  6075. GGML_ASSERT(false && "TODO: Unknown GPU");
  6076. }
  6077. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6078. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6079. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6080. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6081. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6082. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6083. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6084. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6085. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6086. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6087. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6088. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6089. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6090. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6091. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6092. break;
  6093. default:
  6094. break;
  6095. }
  6096. // Launch kernel.
  6097. if (src0t == GGML_TYPE_Q4_0) {
  6098. size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6099. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6100. if (backend_ctx->gpu_family == INTEL) {
  6101. // Set global size for Intel. It uses 16x output values.
  6102. global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
  6103. global_work_size[1] = (size_t)ne11*nth1;
  6104. global_work_size[2] = (size_t)ne12*ne13;
  6105. }
  6106. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6107. return;
  6108. }
  6109. #else // GGML_OPENCL_SOA_Q
  6110. // TODO: add block_q4_0 variant.
  6111. #endif // GGML_OPENCL_SOA_Q
  6112. }
  6113. // use custom matrix x vector kernel
  6114. switch (src0t) {
  6115. case GGML_TYPE_F32:
  6116. //GGML_ASSERT(ne02 == ne12);
  6117. GGML_ASSERT(src1t == GGML_TYPE_F32);
  6118. kernel = backend_ctx->kernel_mul_mat_f32_f32;
  6119. nrows = 4;
  6120. if (backend_ctx->gpu_family == INTEL) {
  6121. nth0 = 32;
  6122. nth1 = 1;
  6123. } else if (backend_ctx->gpu_family == ADRENO) {
  6124. nth0 = 64;
  6125. nth1 = 1;
  6126. } else {
  6127. GGML_ASSERT(false && "TODO: Unknown GPU");
  6128. }
  6129. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6130. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6131. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6132. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6133. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6134. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6135. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6136. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6137. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6138. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  6139. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6140. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6141. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  6142. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6143. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6144. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6145. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6146. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6147. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6148. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6149. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6150. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6151. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6152. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6153. break;
  6154. case GGML_TYPE_F16:
  6155. //GGML_ASSERT(ne02 == ne12);
  6156. if (backend_ctx->gpu_family == INTEL) {
  6157. nth0 = 32;
  6158. nth1 = 1;
  6159. } else if (backend_ctx->gpu_family == ADRENO) {
  6160. nth0 = 64;
  6161. nth1 = 1;
  6162. } else {
  6163. GGML_ASSERT(false && "TODO: Unknown GPU");
  6164. }
  6165. if (src1t == GGML_TYPE_F32) {
  6166. if (ne11 * ne12 < 4) {
  6167. kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
  6168. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  6169. kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
  6170. nrows = ne11;
  6171. } else {
  6172. kernel = backend_ctx->kernel_mul_mat_f16_f32;
  6173. nrows = 4;
  6174. }
  6175. } else {
  6176. kernel = backend_ctx->kernel_mul_mat_f16_f16;
  6177. nrows = 4;
  6178. }
  6179. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6180. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6181. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6182. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6183. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6184. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6185. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6186. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6187. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6188. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  6189. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6190. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6191. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  6192. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6193. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6194. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6195. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6196. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6197. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6198. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6199. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6200. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6201. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6202. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6203. break;
  6204. case GGML_TYPE_Q4_0:
  6205. // This should have been satisfied.
  6206. GGML_ASSERT(ne11 == ne1);
  6207. GGML_ASSERT(ne01 == ne0);
  6208. #ifdef GGML_OPENCL_SOA_Q
  6209. if (backend_ctx->gpu_family == INTEL) {
  6210. nth0 = 16;
  6211. nth1 = 1;
  6212. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  6213. ndst = 8;
  6214. } else if (backend_ctx->gpu_family == ADRENO) {
  6215. nth0 = 64;
  6216. nth1 = 1;
  6217. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  6218. ndst =8;
  6219. } else {
  6220. GGML_ASSERT(false && "TODO: Unknown GPU");
  6221. }
  6222. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6223. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6224. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6225. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6226. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6227. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6228. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6229. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6230. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6231. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6232. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6233. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6234. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6235. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6236. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6237. #else // GGML_OPENCL_SOA_Q
  6238. if (backend_ctx->gpu_family == INTEL) {
  6239. // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
  6240. // group produces N_DST (4 for Q4_0 kernel) values in the result.
  6241. // The number of workgroups on dim 0 (the leading dimension) is
  6242. // the nearest multiple of 4 that covers ne0 (equals ne01).
  6243. nth0 = 16;
  6244. nth1 = 1;
  6245. kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
  6246. ndst = 4;
  6247. } else if (backend_ctx->gpu_family == ADRENO) {
  6248. nth0 = 64;
  6249. nth1 = 1;
  6250. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
  6251. ndst = 4;
  6252. } else {
  6253. GGML_ASSERT(false && "TODO: Unknown GPU");
  6254. }
  6255. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6256. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6257. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6258. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6259. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6260. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6261. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6262. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6263. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6264. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6265. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6266. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6267. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6268. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6269. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6270. #endif // GGML_OPENCL_SOA_Q
  6271. break;
  6272. case GGML_TYPE_Q4_1:
  6273. case GGML_TYPE_Q8_0: {
  6274. #ifdef GGML_OPENCL_SOA_Q
  6275. kernel = backend_ctx->kernel_mul_mv_q8_0_f32_flat;
  6276. // nth0 - subgroup size
  6277. // nth1 - number of subgroups per workgroup
  6278. // ndst - number of output values per workgroup = output per subgroup * number of subgroups
  6279. if (backend_ctx->gpu_family == INTEL) {
  6280. nth0 = 16;
  6281. nth1 = 2;
  6282. ndst = nth1*4;
  6283. } else if (backend_ctx->gpu_family == ADRENO) {
  6284. nth0 = 64;
  6285. nth1 = 2;
  6286. ndst = nth1*4;
  6287. } else {
  6288. GGML_ASSERT(false && "TODO: Unknown GPU");
  6289. }
  6290. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6291. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6292. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6293. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6294. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6295. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6296. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6297. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6298. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6299. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6300. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6301. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  6302. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  6303. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  6304. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  6305. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
  6306. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
  6307. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6308. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6309. #else
  6310. kernel = backend_ctx->kernel_mul_mv_q8_0_f32;
  6311. // nth0 - subgroup size
  6312. // nth1 - number of subgroups per workgroup
  6313. // ndst - number of output values per workgroup = output per subgroup * number of subgroups
  6314. if (backend_ctx->gpu_family == INTEL) {
  6315. nth0 = 16;
  6316. nth1 = 2;
  6317. ndst = nth1*4;
  6318. } else if (backend_ctx->gpu_family == ADRENO) {
  6319. nth0 = 64;
  6320. nth1 = 2;
  6321. ndst = nth1*4;
  6322. } else {
  6323. GGML_ASSERT(false && "TODO: Unknown GPU");
  6324. }
  6325. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6326. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6327. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6328. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6329. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6330. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6331. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6332. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6333. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  6334. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  6335. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  6336. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne12));
  6337. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb11));
  6338. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb12));
  6339. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb13));
  6340. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne0));
  6341. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne1));
  6342. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r2));
  6343. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &r3));
  6344. #endif // GGML_OPENCL_SOA_Q
  6345. break;
  6346. }
  6347. case GGML_TYPE_Q2_K:
  6348. case GGML_TYPE_Q3_K:
  6349. case GGML_TYPE_Q4_K:
  6350. case GGML_TYPE_Q5_K:
  6351. case GGML_TYPE_Q6_K:
  6352. kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
  6353. if (backend_ctx->gpu_family == INTEL) {
  6354. nth0 = 2;
  6355. nth1 = 16;
  6356. } else if (backend_ctx->gpu_family == ADRENO) {
  6357. nth0 = 2;
  6358. nth1 = 64;
  6359. } else {
  6360. GGML_ASSERT(false && "TODO: Unknown GPU");
  6361. }
  6362. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6363. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6364. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6365. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6366. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6367. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6368. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6369. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  6370. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  6371. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  6372. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6373. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  6374. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  6375. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  6376. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  6377. break;
  6378. case GGML_TYPE_MXFP4: {
  6379. #ifdef GGML_OPENCL_SOA_Q
  6380. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32_flat;
  6381. cl_mem q;
  6382. if (backend_ctx->gpu_family == INTEL) {
  6383. nth0 = 16;
  6384. nth1 = 2;
  6385. ndst = nth1*2;
  6386. q = extra0_mxfp4->q;
  6387. } else if (backend_ctx->gpu_family == ADRENO) {
  6388. nth0 = 64;
  6389. nth1 = 2;
  6390. ndst = nth1*2;
  6391. q = extra0_mxfp4->q_img;
  6392. } else {
  6393. GGML_ASSERT(false && "TODO: Unknown GPU");
  6394. }
  6395. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
  6396. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
  6397. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6398. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6399. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6400. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6401. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6402. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  6403. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  6404. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  6405. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6406. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  6407. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  6408. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  6409. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  6410. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  6411. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  6412. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  6413. #else
  6414. kernel = backend_ctx->kernel_mul_mv_mxfp4_f32;
  6415. if (backend_ctx->gpu_family == INTEL) {
  6416. nth0 = 16;
  6417. nth1 = 2;
  6418. ndst = nth1*2;
  6419. } else if (backend_ctx->gpu_family == ADRENO) {
  6420. nth0 = 64;
  6421. nth1 = 2;
  6422. ndst = nth1*2;
  6423. } else {
  6424. GGML_ASSERT(false && "TODO: Unknown GPU");
  6425. }
  6426. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6427. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6428. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6429. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6430. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  6431. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  6432. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  6433. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  6434. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  6435. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb03));
  6436. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  6437. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  6438. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb12));
  6439. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb13));
  6440. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne0));
  6441. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne1));
  6442. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &r2));
  6443. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &r3));
  6444. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(float)*nth0,nullptr));
  6445. #endif
  6446. break;
  6447. }
  6448. default:
  6449. GGML_ASSERT(false && "not implemented");
  6450. }
  6451. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_MXFP4 ||
  6452. src0t == GGML_TYPE_Q4_1 ||
  6453. src0t == GGML_TYPE_Q8_0 ||
  6454. src0t == GGML_TYPE_Q2_K) {
  6455. // Each SIMD group produces N_DST values in the result. Assuming each
  6456. // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
  6457. // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
  6458. // (number of workgroups) will be a nearest multiple of
  6459. // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
  6460. // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
  6461. size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6462. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6463. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6464. } else if (src0t == GGML_TYPE_Q4_K) {
  6465. GGML_ASSERT(false && "not implemented");
  6466. } else if (src0t == GGML_TYPE_Q3_K) {
  6467. GGML_ASSERT(false && "not implemented");
  6468. } else if (src0t == GGML_TYPE_Q5_K) {
  6469. GGML_ASSERT(false && "not implemented");
  6470. } else if (src0t == GGML_TYPE_Q6_K) {
  6471. size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  6472. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6473. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6474. } else {
  6475. int64_t ny = (ne11 + nrows - 1)/nrows;
  6476. size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
  6477. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  6478. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6479. }
  6480. }
  6481. static void ggml_cl_mul_mat_id(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6482. GGML_ASSERT(src0);
  6483. GGML_ASSERT(src0->extra);
  6484. GGML_ASSERT(src1);
  6485. GGML_ASSERT(src1->extra);
  6486. GGML_ASSERT(dst);
  6487. GGML_ASSERT(dst->extra);
  6488. const ggml_tensor * src2 = dst->src[2];
  6489. GGML_ASSERT(src2);
  6490. GGML_ASSERT(src2->extra);
  6491. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6492. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6493. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6494. ggml_tensor_extra_cl * extra2 = (ggml_tensor_extra_cl *)src2->extra;
  6495. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6496. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6497. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6498. cl_ulong offset2 = extra2->offset + src2->view_offs;
  6499. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6500. GGML_UNUSED(offset0);
  6501. #ifdef GGML_OPENCL_SOA_Q
  6502. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  6503. ggml_tensor_extra_cl_mxfp4 * extra0_mxfp4 = (ggml_tensor_extra_cl_mxfp4 *)src0->extra;
  6504. ggml_tensor_extra_cl_q8_0 * extra0_q8_0 = (ggml_tensor_extra_cl_q8_0 *)src0->extra;
  6505. #endif
  6506. const int ne00 = src0->ne[0];
  6507. const int ne01 = src0->ne[1];
  6508. const int ne02 = src0->ne[2];
  6509. const int ne03 = src0->ne[3];
  6510. const cl_ulong nb00 = src0->nb[0];
  6511. const cl_ulong nb01 = src0->nb[1];
  6512. const cl_ulong nb02 = src0->nb[2];
  6513. const cl_ulong nb03 = src0->nb[3];
  6514. const int ne10 = src1->ne[0];
  6515. const int ne11 = src1->ne[1];
  6516. const int ne12 = src1->ne[2];
  6517. const int ne13 = src1->ne[3];
  6518. const cl_ulong nb11 = src1->nb[1];
  6519. const cl_ulong nb12 = src1->nb[2];
  6520. const cl_ulong nb13 = src1->nb[3];
  6521. const int ne20 = src2->ne[0];
  6522. const int ne21 = src2->ne[1];
  6523. const cl_ulong nb21 = src2->nb[1];
  6524. const cl_ulong nb20 = src2->nb[0];
  6525. UNUSED(nb20);
  6526. const int ne0 = dst->ne[0];
  6527. const int ne1 = dst->ne[1];
  6528. const int r2 = ne12/ne02;
  6529. const int r3 = ne13/ne03;
  6530. const int dst_rows = ne20*ne21; // ne20 = n_used_experts, ne21 = n_rows
  6531. GGML_ASSERT(ne00 == ne10);
  6532. int sgs = 32; // subgroup size
  6533. int nsg = 1; // number of subgroups
  6534. int nrows = 1; // number of row in src1
  6535. int ndst = 4; // number of values produced by each subgroup
  6536. cl_kernel kernel;
  6537. // subgroup mat vec
  6538. switch (src0->type) {
  6539. case GGML_TYPE_Q4_0: {
  6540. kernel = backend_ctx->kernel_mul_mv_id_q4_0_f32_8x_flat;
  6541. if (backend_ctx->gpu_family == INTEL) {
  6542. sgs = 16;
  6543. nsg = 1;
  6544. ndst = 8;
  6545. } else if (backend_ctx->gpu_family == ADRENO) {
  6546. sgs = 64;
  6547. nsg = 1;
  6548. ndst = 8;
  6549. } else {
  6550. GGML_ASSERT(false && "TODO: Unknown GPU");
  6551. }
  6552. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  6553. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  6554. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6555. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6556. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6557. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6558. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6559. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6560. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6561. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  6562. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  6563. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb00));
  6564. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  6565. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  6566. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  6567. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  6568. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb11));
  6569. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb12));
  6570. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne20));
  6571. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne21));
  6572. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb21));
  6573. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne0));
  6574. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne1));
  6575. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r2));
  6576. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &r3));
  6577. break;
  6578. }
  6579. case GGML_TYPE_Q8_0: {
  6580. #ifdef GGML_OPENCL_SOA_Q
  6581. kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32_flat;
  6582. if (backend_ctx->gpu_family == INTEL) {
  6583. sgs = 16;
  6584. nsg = 2;
  6585. ndst = 4;
  6586. } else if (backend_ctx->gpu_family == ADRENO) {
  6587. sgs = 64;
  6588. nsg = 2;
  6589. ndst = 4;
  6590. } else {
  6591. GGML_ASSERT(false && "TODO: Unknown GPU");
  6592. }
  6593. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q8_0->q));
  6594. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q8_0->d));
  6595. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6596. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6597. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6598. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6599. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6600. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6601. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6602. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  6603. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6604. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6605. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6606. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6607. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6608. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6609. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
  6610. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
  6611. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
  6612. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
  6613. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
  6614. #else
  6615. kernel = backend_ctx->kernel_mul_mv_id_q8_0_f32;
  6616. if (backend_ctx->gpu_family == INTEL) {
  6617. sgs = 16;
  6618. nsg = 2;
  6619. ndst = 4;
  6620. } else if (backend_ctx->gpu_family == ADRENO) {
  6621. sgs = 64;
  6622. nsg = 2;
  6623. ndst = 4;
  6624. } else {
  6625. GGML_ASSERT(false && "TODO: Unknown GPU");
  6626. }
  6627. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6628. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6629. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6630. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6631. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6632. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6633. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6634. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6635. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6636. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  6637. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  6638. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  6639. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6640. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6641. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6642. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6643. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne20));
  6644. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne21));
  6645. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb21));
  6646. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne0));
  6647. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne1));
  6648. #endif // GGML_OPENCL_SOA_Q
  6649. break;
  6650. }
  6651. case GGML_TYPE_MXFP4: {
  6652. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  6653. if (use_adreno_moe_kernels(backend_ctx, src0)) {
  6654. cl_int status;
  6655. size_t local_size[3] = {64, 2, 1};
  6656. size_t global_size[3] = {64, 2, 1};
  6657. cl_mem src1_sub_buffer, buf_src1_image, buf_src2;
  6658. int tile_size = 320;
  6659. if (ne12 == 1) { // for gemv
  6660. kernel = backend_ctx->kernel_gemv_moe_mxfp4_f32;
  6661. // create a sub_buffer for src2
  6662. cl_buffer_region region;
  6663. region.origin = offset2;
  6664. region.size = ne20 * ne21 * sizeof(int);
  6665. buf_src2 = clCreateSubBuffer(extra2->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6666. CL_CHECK(status);
  6667. // set thread grid
  6668. global_size[0] = static_cast<size_t>(ne01);
  6669. global_size[1] = 4;
  6670. global_size[2] = static_cast<size_t>(ne20);
  6671. local_size[1] = 4;
  6672. } else { // for gemm
  6673. kernel = backend_ctx->kernel_gemm_moe_mxfp4_f32;
  6674. // preprocess router table
  6675. int num_tiles_per_expert = (ne01 + tile_size - 1) / tile_size;
  6676. void * host_src2_reorder = malloc(ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short));
  6677. void * host_src2 = malloc(ne21 * nb21);
  6678. CL_CHECK(clEnqueueReadBuffer(backend_ctx->queue, extra2->data_device, CL_TRUE, offset2, ne21 * nb21, host_src2, 0, NULL, NULL));
  6679. int total_experts = nb21 / nb20;
  6680. int out_idx = 0;
  6681. for (int i_expert = 0; i_expert < ne02; i_expert++) {
  6682. for (int i_tile = 0; i_tile < num_tiles_per_expert; i_tile++) {
  6683. for (int j = 0; j < ne21; j++) {
  6684. for (int i = 0; i < ne20; i++) {
  6685. int expert = ((int *)host_src2)[j * total_experts + i];
  6686. if (i_expert == expert) {
  6687. ((short *)host_src2_reorder)[out_idx] = static_cast<short>(expert);
  6688. ((short *)host_src2_reorder)[out_idx + 1] = static_cast<short>(j * ne11 + (i % ne11));
  6689. ((short *)host_src2_reorder)[out_idx + 2] = static_cast<short>(j * ne20 + i);
  6690. ((short *)host_src2_reorder)[out_idx + 3] = static_cast<short>(i_tile);
  6691. out_idx += 4;
  6692. }
  6693. }
  6694. }
  6695. }
  6696. }
  6697. buf_src2 = clCreateBuffer(backend_ctx->context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, ne20 * ne21 * 4 * num_tiles_per_expert * sizeof(short), host_src2_reorder, &status);
  6698. CL_CHECK(status);
  6699. // set thread grid
  6700. global_size[0] = static_cast<size_t>(tile_size);
  6701. global_size[2] = static_cast<size_t>(ne20 * ne21 * num_tiles_per_expert);
  6702. }
  6703. // create a sub_buffer for src1
  6704. cl_buffer_region region;
  6705. region.origin = offset1;
  6706. region.size = ne10 * ne11 * ne12 * sizeof(float);
  6707. src1_sub_buffer = clCreateSubBuffer(extra1->data_device, 0, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  6708. CL_CHECK(status);
  6709. // create image for src1
  6710. cl_image_format image_format_buf_src1 = {CL_RGBA, CL_FLOAT};
  6711. cl_image_desc image_desc_buf_src1 = {CL_MEM_OBJECT_IMAGE1D_BUFFER, static_cast<size_t>(ne10 * ne11 * ne12 / 4), 0,0,0,0,0,0,0, {src1_sub_buffer}};
  6712. buf_src1_image = clCreateImage(backend_ctx->context, CL_MEM_READ_ONLY, &image_format_buf_src1, &image_desc_buf_src1, NULL, &status);
  6713. CL_CHECK(status);
  6714. // Set kernel args
  6715. int arg_idx = 0;
  6716. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->q));
  6717. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extra0_mxfp4->e));
  6718. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src1_image));
  6719. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &buf_src2));
  6720. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_mem), &extrad->data_device));
  6721. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(cl_ulong), &offsetd));
  6722. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne00));
  6723. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne01));
  6724. if (ne12 == 1) {
  6725. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &ne11));
  6726. } else {
  6727. CL_CHECK(clSetKernelArg(kernel, arg_idx++, sizeof(int), &tile_size));
  6728. }
  6729. // launch kernel
  6730. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_size, local_size, dst);
  6731. // deallocate sub buffers and images
  6732. CL_CHECK(clReleaseMemObject(src1_sub_buffer));
  6733. CL_CHECK(clReleaseMemObject(buf_src1_image));
  6734. CL_CHECK(clReleaseMemObject(buf_src2));
  6735. return;
  6736. } // else fallback to generic kernel
  6737. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  6738. #ifdef GGML_OPENCL_SOA_Q
  6739. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32_flat;
  6740. cl_mem q;
  6741. if (backend_ctx->gpu_family == INTEL) {
  6742. sgs = 16;
  6743. nsg = 2;
  6744. ndst = 2;
  6745. q = extra0_mxfp4->q;
  6746. } else if (backend_ctx->gpu_family == ADRENO) {
  6747. sgs = 64;
  6748. nsg = 1;
  6749. ndst = 4;
  6750. q = extra0_mxfp4->q_img;
  6751. } else {
  6752. GGML_ASSERT(false && "TODO: Unknown GPU");
  6753. }
  6754. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q));
  6755. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_mxfp4->e));
  6756. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6757. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6758. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6759. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6760. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6761. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6762. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6763. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  6764. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  6765. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  6766. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6767. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6768. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6769. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6770. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  6771. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  6772. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  6773. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  6774. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6775. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6776. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6777. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6778. #else // GGML_OPENCL_SOA_Q
  6779. kernel = backend_ctx->kernel_mul_mv_id_mxfp4_f32;
  6780. if (backend_ctx->gpu_family == INTEL) {
  6781. sgs = 16;
  6782. nsg = 2;
  6783. ndst = 2;
  6784. } else if (backend_ctx->gpu_family == ADRENO) {
  6785. sgs = 64;
  6786. nsg = 2;
  6787. ndst = 2;
  6788. } else {
  6789. GGML_ASSERT(false && "TODO: Unknown GPU");
  6790. }
  6791. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6792. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6793. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6794. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6795. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extra2->data_device));
  6796. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  6797. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  6798. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  6799. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  6800. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  6801. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  6802. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  6803. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne11));
  6804. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne12));
  6805. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  6806. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  6807. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  6808. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne20));
  6809. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne21));
  6810. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb21));
  6811. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  6812. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  6813. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  6814. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  6815. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(float)*sgs,nullptr));
  6816. #endif // GGML_OPENCL_SOA_Q
  6817. break;
  6818. }
  6819. default:
  6820. GGML_ASSERT(false && "not implemented");;
  6821. }
  6822. int _ne1 = 1;
  6823. int ne123 = dst_rows;
  6824. size_t global_work_size[] = {(size_t)(ne01+ndst*nsg-1)/(ndst*nsg)*sgs, (size_t)(_ne1+nrows-1)/nrows*nsg, (size_t)ne123};
  6825. size_t local_work_size[] = {(size_t)sgs, (size_t)nsg, 1};
  6826. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6827. }
  6828. static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6829. GGML_ASSERT(src0);
  6830. GGML_ASSERT(src0->extra);
  6831. GGML_ASSERT(dst);
  6832. GGML_ASSERT(dst->extra);
  6833. GGML_UNUSED(src1);
  6834. GGML_ASSERT(ggml_is_contiguous(src0));
  6835. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6836. float scale;
  6837. float bias;
  6838. memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(float));
  6839. memcpy(&bias, ((int32_t *) dst->op_params) + 1, sizeof(float));
  6840. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6841. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6842. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6843. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6844. cl_kernel kernel = backend_ctx->kernel_scale;
  6845. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6846. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6847. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6848. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6849. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
  6850. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
  6851. int n = ggml_nelements(dst)/4;
  6852. size_t global_work_size[] = {(size_t)n, 1, 1};
  6853. size_t local_work_size[] = {64, 1, 1};
  6854. size_t * local_work_size_ptr = local_work_size;
  6855. if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  6856. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  6857. }
  6858. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  6859. }
  6860. static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6861. GGML_ASSERT(src0);
  6862. GGML_ASSERT(src0->extra);
  6863. GGML_ASSERT(src1);
  6864. GGML_ASSERT(src1->extra);
  6865. // GGML_OP_CPY happens between src0 and src1.
  6866. // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
  6867. UNUSED(dst);
  6868. const int ne00 = src0 ? src0->ne[0] : 0;
  6869. const int ne01 = src0 ? src0->ne[1] : 0;
  6870. const int ne02 = src0 ? src0->ne[2] : 0;
  6871. const int ne03 = src0 ? src0->ne[3] : 0;
  6872. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  6873. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  6874. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  6875. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  6876. const int ne10 = src1 ? src1->ne[0] : 0;
  6877. const int ne11 = src1 ? src1->ne[1] : 0;
  6878. const int ne12 = src1 ? src1->ne[2] : 0;
  6879. const int ne13 = src1 ? src1->ne[3] : 0;
  6880. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  6881. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  6882. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  6883. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  6884. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  6885. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  6886. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6887. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6888. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  6889. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6890. cl_ulong offset1 = extra1->offset + src1->view_offs;
  6891. cl_kernel kernel;
  6892. switch (src0t) {
  6893. case GGML_TYPE_F32:
  6894. switch (src1t) {
  6895. case GGML_TYPE_F16:
  6896. kernel = backend_ctx->kernel_cpy_f32_f16;
  6897. break;
  6898. case GGML_TYPE_F32:
  6899. kernel = backend_ctx->kernel_cpy_f32_f32;
  6900. break;
  6901. default:
  6902. GGML_ASSERT(false && "not implemented");
  6903. }
  6904. break;
  6905. case GGML_TYPE_F16:
  6906. switch (src1t) {
  6907. case GGML_TYPE_F16:
  6908. kernel = backend_ctx->kernel_cpy_f16_f16;
  6909. break;
  6910. case GGML_TYPE_F32:
  6911. kernel = backend_ctx->kernel_cpy_f16_f32;
  6912. break;
  6913. default:
  6914. GGML_ASSERT(false && "not implemented");
  6915. }
  6916. break;
  6917. default:
  6918. GGML_ASSERT(false && "not implemented");
  6919. }
  6920. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6921. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6922. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  6923. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  6924. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6925. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  6926. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  6927. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  6928. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  6929. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  6930. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  6931. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  6932. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  6933. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  6934. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  6935. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  6936. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  6937. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  6938. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  6939. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  6940. const int nth = MIN(64, ne00);
  6941. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  6942. size_t local_work_size[] = {(size_t)nth, 1, 1};
  6943. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, src1);
  6944. }
  6945. static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6946. ggml_cl_cpy(backend, src0, dst, nullptr);
  6947. UNUSED(src1);
  6948. }
  6949. static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6950. GGML_ASSERT(src0);
  6951. GGML_ASSERT(src0->extra);
  6952. GGML_ASSERT(dst);
  6953. GGML_ASSERT(dst->extra);
  6954. UNUSED(src1);
  6955. int n_past = ((int32_t *)(dst->op_params))[0];
  6956. const int ne00 = src0 ? src0->ne[0] : 0;
  6957. const int ne01 = src0 ? src0->ne[1] : 0;
  6958. const int ne02 = src0 ? src0->ne[2] : 0;
  6959. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  6960. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  6961. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  6962. cl_ulong offset0 = extra0->offset + src0->view_offs;
  6963. cl_ulong offsetd = extrad->offset + dst->view_offs;
  6964. cl_kernel kernel;
  6965. if (ne00%8 == 0) {
  6966. kernel = backend_ctx->kernel_diag_mask_inf_8;
  6967. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6968. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6969. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6970. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6971. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6972. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  6973. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  6974. size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
  6975. size_t local_work_size[] = {64, 1, 1};
  6976. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  6977. } else {
  6978. kernel = backend_ctx->kernel_diag_mask_inf;
  6979. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  6980. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  6981. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  6982. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  6983. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  6984. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  6985. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  6986. size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
  6987. size_t local_work_size[] = {64, 1, 1};
  6988. size_t * local_work_size_ptr = local_work_size;
  6989. if (ne00 % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
  6990. local_work_size_ptr = nullptr; // Let driver choose the work-group sizes.
  6991. }
  6992. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
  6993. }
  6994. }
  6995. static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  6996. GGML_ASSERT(src0);
  6997. GGML_ASSERT(src0->extra);
  6998. GGML_ASSERT(dst);
  6999. GGML_ASSERT(dst->extra);
  7000. // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
  7001. // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
  7002. // alibi is not used; however, for some other models, it is used.
  7003. // KQ_mask
  7004. if (src1) {
  7005. GGML_ASSERT(src1);
  7006. GGML_ASSERT(src1->extra);
  7007. }
  7008. const ggml_tensor * src2 = dst->src[2];
  7009. if (src2) {
  7010. GGML_ASSERT(src2->extra);
  7011. }
  7012. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7013. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7014. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7015. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  7016. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  7017. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7018. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7019. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  7020. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  7021. const int ne00 = src0->ne[0];
  7022. const int ne01 = src0->ne[1];
  7023. const int ne02 = src0->ne[2];
  7024. const int ne03 = src0->ne[3];
  7025. const cl_long nb01 = src0->nb[1];
  7026. const cl_long nb02 = src0->nb[2];
  7027. const cl_long nb03 = src0->nb[3];
  7028. const int ne12 = src1 ? src1->ne[2] : 0;
  7029. const int ne13 = src1 ? src1->ne[3] : 0;
  7030. const cl_long nb11 = src1 ? src1->nb[1] : 0;
  7031. const cl_long nb12 = src1 ? src1->nb[2] : 0;
  7032. const cl_long nb13 = src1 ? src1->nb[3] : 0;
  7033. const cl_long nb1 = dst->nb[1];
  7034. const cl_long nb2 = dst->nb[2];
  7035. const cl_long nb3 = dst->nb[3];
  7036. float scale, max_bias;
  7037. memcpy(&scale, dst->op_params + 0, sizeof(float));
  7038. memcpy(&max_bias, dst->op_params + 1, sizeof(float));
  7039. const int n_head = src0->ne[2];
  7040. const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
  7041. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  7042. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  7043. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  7044. // Local size must be wave size. Each workgroup is a wave, working on a row,
  7045. // where a row corresponds to leading dimension.
  7046. int nth = MIN(32, ne00);
  7047. if (backend_ctx->gpu_family == INTEL) {
  7048. // This is the same as the initial value.
  7049. nth = MIN(32, ne00);
  7050. }
  7051. else if (backend_ctx->gpu_family == ADRENO) {
  7052. nth = 64;
  7053. } else {
  7054. GGML_ASSERT(false && "TODO: Unknown GPU");
  7055. }
  7056. cl_kernel kernel;
  7057. if (ne00%4 == 0) {
  7058. if (use_f16) {
  7059. kernel = backend_ctx->kernel_soft_max_4_f16;
  7060. } else {
  7061. kernel = backend_ctx->kernel_soft_max_4;
  7062. }
  7063. } else {
  7064. if (use_f16) {
  7065. kernel = backend_ctx->kernel_soft_max_f16;
  7066. } else {
  7067. kernel = backend_ctx->kernel_soft_max;
  7068. }
  7069. }
  7070. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7071. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7072. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
  7073. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7074. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  7075. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7076. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7077. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7078. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7079. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  7080. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  7081. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  7082. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne12));
  7083. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne13));
  7084. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb11));
  7085. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb12));
  7086. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb13));
  7087. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb1));
  7088. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb2));
  7089. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb3));
  7090. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(float), &scale));
  7091. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(float), &max_bias));
  7092. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(float), &m0));
  7093. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(float), &m1));
  7094. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_head_log2));
  7095. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7096. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7097. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7098. }
  7099. static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7100. GGML_ASSERT(src0);
  7101. GGML_ASSERT(src0->extra);
  7102. GGML_ASSERT(src1);
  7103. GGML_ASSERT(src1->extra);
  7104. GGML_ASSERT(dst);
  7105. GGML_ASSERT(dst->extra);
  7106. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7107. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7108. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7109. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7110. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7111. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7112. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7113. ggml_tensor * src2 = dst->src[2];
  7114. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  7115. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  7116. const int ne00 = src0 ? src0->ne[0] : 0;
  7117. const int ne01 = src0 ? src0->ne[1] : 0;
  7118. const int ne02 = src0 ? src0->ne[2] : 0;
  7119. const int ne03 = src0 ? src0->ne[3] : 0;
  7120. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  7121. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  7122. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  7123. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  7124. const int ne10 = src1 ? src1->ne[0] : 0;
  7125. const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
  7126. const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
  7127. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  7128. const int ne0 = dst ? dst->ne[0] : 0;
  7129. const int ne1 = dst ? dst->ne[1] : 0;
  7130. const int ne2 = dst ? dst->ne[2] : 0;
  7131. const int ne3 = dst ? dst->ne[3] : 0;
  7132. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  7133. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  7134. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  7135. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  7136. GGML_ASSERT(ne10 % ne02 == 0);
  7137. GGML_ASSERT(ne10 >= ne02);
  7138. int nth = MIN(64, ne00);
  7139. const int n_past = ((int *) dst->op_params)[0];
  7140. const int n_dims = ((int *) dst->op_params)[1];
  7141. const int mode = ((int *) dst->op_params)[2];
  7142. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  7143. float freq_base;
  7144. float freq_scale;
  7145. float ext_factor;
  7146. float attn_factor;
  7147. float beta_fast;
  7148. float beta_slow;
  7149. int32_t sections[4];
  7150. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  7151. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  7152. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  7153. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  7154. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  7155. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  7156. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
  7157. const bool is_neox = mode & 2;
  7158. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  7159. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  7160. const int is_imrope = mode == GGML_ROPE_TYPE_IMROPE;
  7161. if (is_mrope) {
  7162. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  7163. }
  7164. if (is_vision) {
  7165. GGML_ASSERT(n_dims == ne00/2);
  7166. }
  7167. cl_kernel kernel;
  7168. if (is_neox) {
  7169. switch (src0->type) {
  7170. case GGML_TYPE_F32:
  7171. kernel = backend_ctx->kernel_rope_neox_f32;
  7172. break;
  7173. case GGML_TYPE_F16:
  7174. kernel = backend_ctx->kernel_rope_neox_f16;
  7175. break;
  7176. default:
  7177. GGML_ASSERT(false);
  7178. };
  7179. } else if (is_mrope && !is_vision) {
  7180. switch (src0->type) {
  7181. case GGML_TYPE_F32:
  7182. kernel = backend_ctx->kernel_rope_multi_f32;
  7183. break;
  7184. case GGML_TYPE_F16:
  7185. kernel = backend_ctx->kernel_rope_multi_f16;
  7186. break;
  7187. default:
  7188. GGML_ASSERT(false);
  7189. };
  7190. } else if (is_vision) {
  7191. switch (src0->type) {
  7192. case GGML_TYPE_F32:
  7193. kernel = backend_ctx->kernel_rope_vision_f32;
  7194. break;
  7195. case GGML_TYPE_F16:
  7196. kernel = backend_ctx->kernel_rope_vision_f16;
  7197. break;
  7198. default:
  7199. GGML_ASSERT(false);
  7200. }
  7201. } else {
  7202. switch (src0->type) {
  7203. case GGML_TYPE_F32:
  7204. kernel = backend_ctx->kernel_rope_norm_f32;
  7205. break;
  7206. case GGML_TYPE_F16:
  7207. kernel = backend_ctx->kernel_rope_norm_f16;
  7208. break;
  7209. default:
  7210. GGML_ASSERT(false);
  7211. };
  7212. }
  7213. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7214. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7215. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  7216. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7217. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  7218. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  7219. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  7220. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  7221. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  7222. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  7223. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  7224. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  7225. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
  7226. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
  7227. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
  7228. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
  7229. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
  7230. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
  7231. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
  7232. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
  7233. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
  7234. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
  7235. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
  7236. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
  7237. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
  7238. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
  7239. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
  7240. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
  7241. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
  7242. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
  7243. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
  7244. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
  7245. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
  7246. // both mrope and vision kernels have sections
  7247. if (is_mrope || is_vision) {
  7248. CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
  7249. }
  7250. // only mrope has is_imrope
  7251. if (is_mrope && !is_vision) {
  7252. CL_CHECK(clSetKernelArg(kernel, 34, sizeof(int), &is_imrope));
  7253. }
  7254. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  7255. size_t local_work_size[] = {(size_t)nth, 1, 1};
  7256. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7257. }
  7258. static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7259. GGML_ASSERT(src0);
  7260. GGML_ASSERT(src1);
  7261. GGML_ASSERT(src1->extra);
  7262. GGML_ASSERT(dst);
  7263. GGML_ASSERT(dst->extra);
  7264. // src0 - filter, src1 - input
  7265. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7266. GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
  7267. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7268. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  7269. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7270. cl_ulong offset1 = extra1->offset + src1->view_offs;
  7271. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7272. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  7273. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  7274. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  7275. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  7276. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  7277. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  7278. const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
  7279. const cl_long IC = src1->ne[is_2D ? 2 : 1];
  7280. const cl_long IH = is_2D ? src1->ne[1] : 1;
  7281. const cl_long IW = src1->ne[0];
  7282. const cl_long KH = is_2D ? src0->ne[1] : 1;
  7283. const cl_long KW = src0->ne[0];
  7284. const cl_long OH = is_2D ? dst->ne[2] : 1;
  7285. const cl_long OW = dst->ne[1];
  7286. // nb is byte offset, src is type float32
  7287. const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
  7288. const cl_long batch = src1->ne[is_2D ? 3 : 2];
  7289. const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
  7290. const cl_long pelements = OW*KW*KH;
  7291. const cl_long CHW = IC*KH*KW;
  7292. cl_kernel kernel;
  7293. if(dst->type == GGML_TYPE_F16) {
  7294. kernel = backend_ctx->kernel_im2col_f16;
  7295. } else {
  7296. kernel = backend_ctx->kernel_im2col_f32;
  7297. }
  7298. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
  7299. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
  7300. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7301. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7302. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
  7303. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
  7304. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
  7305. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
  7306. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
  7307. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
  7308. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
  7309. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
  7310. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
  7311. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
  7312. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
  7313. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
  7314. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
  7315. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
  7316. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
  7317. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
  7318. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
  7319. const int num_blocks = (pelements + 256 - 1) / 256;
  7320. size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
  7321. size_t local_work_size[] = {256, 1, 1};
  7322. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7323. }
  7324. static void ggml_cl_argsort(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7325. GGML_ASSERT(src0);
  7326. GGML_ASSERT(src0->extra);
  7327. GGML_ASSERT(dst);
  7328. GGML_ASSERT(dst->extra);
  7329. GGML_UNUSED(src1);
  7330. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7331. GGML_ASSERT( dst->type == GGML_TYPE_I32);
  7332. GGML_ASSERT(ggml_is_contiguous(src0));
  7333. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7334. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7335. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7336. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7337. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7338. const int ne00 = src0->ne[0];
  7339. const int nrows = ggml_nrows(src0);
  7340. int ne00_padded = 1;
  7341. while (ne00_padded < ne00) {
  7342. ne00_padded *= 2;
  7343. }
  7344. int order = (enum ggml_sort_order) dst->op_params[0];
  7345. cl_kernel kernel = backend_ctx->kernel_argsort_f32_i32;
  7346. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7347. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7348. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7349. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7350. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7351. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne00_padded));
  7352. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &order));
  7353. CL_CHECK(clSetKernelArg(kernel, 7, ne00_padded*sizeof(int), NULL));
  7354. size_t global_work_size[] = {(size_t)ne00_padded, (size_t)nrows, (size_t)1};
  7355. size_t local_work_size[] = {(size_t)ne00_padded, 1, 1};
  7356. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7357. }
  7358. static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7359. GGML_ASSERT(src0);
  7360. GGML_ASSERT(src0->extra);
  7361. GGML_ASSERT(dst);
  7362. GGML_ASSERT(dst->extra);
  7363. GGML_UNUSED(src1);
  7364. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  7365. GGML_ASSERT(ggml_is_contiguous(src0));
  7366. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7367. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7368. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7369. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7370. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7371. const int ne00 = src0->ne[0];
  7372. const int ne01 = src0->ne[1];
  7373. const int ne02 = src0->ne[2];
  7374. const int ne03 = src0->ne[3];
  7375. const cl_ulong nb01 = src0->nb[1];
  7376. const cl_ulong nb02 = src0->nb[2];
  7377. const cl_ulong nb03 = src0->nb[3];
  7378. const cl_ulong nb1 = dst->nb[1];
  7379. const cl_ulong nb2 = dst->nb[2];
  7380. const cl_ulong nb3 = dst->nb[3];
  7381. cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
  7382. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7383. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7384. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  7385. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  7386. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  7387. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  7388. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  7389. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  7390. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb01));
  7391. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb02));
  7392. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb03));
  7393. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb1));
  7394. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
  7395. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
  7396. size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
  7397. size_t local_work_size[] = {(size_t)64, 1, 1};
  7398. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7399. }
  7400. static void ggml_cl_glu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  7401. GGML_ASSERT(src0);
  7402. GGML_ASSERT(src0->extra);
  7403. GGML_ASSERT(dst);
  7404. GGML_ASSERT(dst->extra);
  7405. GGML_ASSERT(ggml_is_contiguous_1(src0));
  7406. if (src1) {
  7407. GGML_ASSERT(src1);
  7408. GGML_ASSERT(src1->extra);
  7409. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  7410. }
  7411. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  7412. cl_kernel kernel;
  7413. switch (ggml_get_glu_op(dst)) {
  7414. case GGML_GLU_OP_GEGLU:
  7415. if (dst->type == GGML_TYPE_F32) {
  7416. kernel = backend_ctx->kernel_geglu;
  7417. } else {
  7418. kernel = backend_ctx->kernel_geglu_f16;
  7419. }
  7420. break;
  7421. case GGML_GLU_OP_REGLU:
  7422. if (dst->type == GGML_TYPE_F32) {
  7423. kernel = backend_ctx->kernel_reglu;
  7424. } else {
  7425. kernel = backend_ctx->kernel_reglu_f16;
  7426. }
  7427. break;
  7428. case GGML_GLU_OP_SWIGLU:
  7429. if (dst->type == GGML_TYPE_F32) {
  7430. kernel = backend_ctx->kernel_swiglu;
  7431. } else {
  7432. kernel = backend_ctx->kernel_swiglu_f16;
  7433. }
  7434. break;
  7435. case GGML_GLU_OP_SWIGLU_OAI:
  7436. kernel = backend_ctx->kernel_swiglu_oai;
  7437. break;
  7438. case GGML_GLU_OP_GEGLU_ERF:
  7439. if (dst->type == GGML_TYPE_F32) {
  7440. kernel = backend_ctx->kernel_geglu_erf;
  7441. } else {
  7442. kernel = backend_ctx->kernel_geglu_erf_f16;
  7443. }
  7444. break;
  7445. case GGML_GLU_OP_GEGLU_QUICK:
  7446. if (dst->type == GGML_TYPE_F32) {
  7447. kernel = backend_ctx->kernel_geglu_quick;
  7448. } else {
  7449. kernel = backend_ctx->kernel_geglu_quick_f16;
  7450. }
  7451. break;
  7452. default:
  7453. GGML_ABORT("Unsupported glu op");
  7454. }
  7455. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  7456. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  7457. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  7458. cl_ulong offset0 = extra0->offset + src0->view_offs;
  7459. cl_ulong offsetd = extrad->offset + dst->view_offs;
  7460. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  7461. const int ne0 = dst->ne[0];
  7462. const cl_ulong nb01 = src0->nb[1];
  7463. const cl_ulong nb11 = src1 ? src1->nb[1] : nb01;
  7464. const cl_ulong nb1 = dst->nb[1];
  7465. const int swp = ggml_get_op_params_i32(dst, 1);
  7466. const float alpha = ggml_get_op_params_f32(dst, 2);
  7467. const float limit = ggml_get_op_params_f32(dst, 3);
  7468. const int ne00_off = src1 ? 0 : (swp ? ne0 : 0);
  7469. const int ne10_off = src1 ? 0 : (swp ? 0 : ne0);
  7470. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  7471. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  7472. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), src1 ? &extra1->data_device : &extra0->data_device));
  7473. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  7474. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  7475. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  7476. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
  7477. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb11));
  7478. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne0));
  7479. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb1));
  7480. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne00_off));
  7481. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne10_off));
  7482. if (ggml_get_glu_op(dst) == GGML_GLU_OP_SWIGLU_OAI) {
  7483. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &limit));
  7484. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(float), &alpha));
  7485. }
  7486. const size_t nrows = ggml_nrows(src0);
  7487. size_t nth = 512;
  7488. size_t global_work_size[] = {nrows*nth, 1, 1};
  7489. size_t local_work_size[] = {nth, 1, 1};
  7490. backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
  7491. }
  7492. //------------------------------------------------------------------------------
  7493. // Op offloading
  7494. //------------------------------------------------------------------------------
  7495. typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  7496. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
  7497. ggml_cl_func_t func = nullptr;
  7498. ggml_tensor * src0 = tensor->src[0];
  7499. ggml_tensor * src1 = tensor->src[1];
  7500. const bool any_on_device = tensor->extra
  7501. || (src0 != nullptr && src0->extra)
  7502. || (src1 != nullptr && src1->extra);
  7503. switch (tensor->op) {
  7504. case GGML_OP_GET_ROWS:
  7505. if (!any_on_device) {
  7506. return false;
  7507. }
  7508. func = ggml_cl_get_rows;
  7509. break;
  7510. case GGML_OP_SET_ROWS:
  7511. if (!any_on_device) {
  7512. return false;
  7513. }
  7514. func = ggml_cl_set_rows;
  7515. break;
  7516. case GGML_OP_CPY:
  7517. if (!any_on_device) {
  7518. return false;
  7519. }
  7520. func = ggml_cl_cpy;
  7521. break;
  7522. case GGML_OP_DUP:
  7523. case GGML_OP_CONT:
  7524. if (!any_on_device) {
  7525. return false;
  7526. }
  7527. func = ggml_cl_dup;
  7528. break;
  7529. case GGML_OP_ADD:
  7530. if (!any_on_device) {
  7531. return false;
  7532. }
  7533. func = ggml_cl_add;
  7534. break;
  7535. case GGML_OP_ADD_ID:
  7536. if (!any_on_device) {
  7537. return false;
  7538. }
  7539. func = ggml_cl_add_id;
  7540. break;
  7541. case GGML_OP_MUL:
  7542. if (!any_on_device) {
  7543. return false;
  7544. }
  7545. func = ggml_cl_mul;
  7546. break;
  7547. case GGML_OP_DIV:
  7548. if (!any_on_device) {
  7549. return false;
  7550. }
  7551. func = ggml_cl_div;
  7552. break;
  7553. case GGML_OP_SUB:
  7554. if (!any_on_device) {
  7555. return false;
  7556. }
  7557. func = ggml_cl_sub;
  7558. break;
  7559. case GGML_OP_UNARY:
  7560. switch (ggml_get_unary_op(tensor)) {
  7561. case GGML_UNARY_OP_GELU:
  7562. if (!any_on_device) {
  7563. return false;
  7564. }
  7565. func = ggml_cl_gelu;
  7566. break;
  7567. case GGML_UNARY_OP_GELU_ERF:
  7568. if (!any_on_device) {
  7569. return false;
  7570. }
  7571. func = ggml_cl_gelu_erf;
  7572. break;
  7573. case GGML_UNARY_OP_GELU_QUICK:
  7574. if (!any_on_device) {
  7575. return false;
  7576. }
  7577. func = ggml_cl_gelu_quick;
  7578. break;
  7579. case GGML_UNARY_OP_SILU:
  7580. if (!any_on_device) {
  7581. return false;
  7582. }
  7583. func = ggml_cl_silu;
  7584. break;
  7585. case GGML_UNARY_OP_RELU:
  7586. if (!any_on_device) {
  7587. return false;
  7588. }
  7589. func = ggml_cl_relu;
  7590. break;
  7591. case GGML_UNARY_OP_SIGMOID:
  7592. if (!any_on_device) {
  7593. return false;
  7594. }
  7595. func = ggml_cl_sigmoid;
  7596. break;
  7597. case GGML_UNARY_OP_TANH:
  7598. if (!any_on_device) {
  7599. return false;
  7600. }
  7601. func = ggml_cl_tanh;
  7602. break;
  7603. default:
  7604. return false;
  7605. } break;
  7606. case GGML_OP_GLU:
  7607. if (!any_on_device) {
  7608. return false;
  7609. }
  7610. func = ggml_cl_glu;
  7611. break;
  7612. case GGML_OP_CLAMP:
  7613. if (!any_on_device) {
  7614. return false;
  7615. }
  7616. func = ggml_cl_clamp;
  7617. break;
  7618. case GGML_OP_NORM:
  7619. if (!any_on_device) {
  7620. return false;
  7621. }
  7622. func = ggml_cl_norm;
  7623. break;
  7624. case GGML_OP_RMS_NORM:
  7625. if (!any_on_device) {
  7626. return false;
  7627. }
  7628. func = ggml_cl_rms_norm;
  7629. break;
  7630. case GGML_OP_GROUP_NORM:
  7631. if (!any_on_device) {
  7632. return false;
  7633. }
  7634. func = ggml_cl_group_norm;
  7635. break;
  7636. case GGML_OP_REPEAT:
  7637. if (!any_on_device) {
  7638. return false;
  7639. }
  7640. func = ggml_cl_repeat;
  7641. break;
  7642. case GGML_OP_PAD:
  7643. if (!any_on_device) {
  7644. return false;
  7645. }
  7646. ggml_cl_pad(backend, tensor->src[0], tensor);
  7647. return true;
  7648. case GGML_OP_UPSCALE:
  7649. if (!any_on_device) {
  7650. return false;
  7651. }
  7652. ggml_cl_upscale(backend, tensor->src[0], tensor);
  7653. return true;
  7654. case GGML_OP_CONV_2D:
  7655. if (!any_on_device) {
  7656. return false;
  7657. }
  7658. func = ggml_cl_conv_2d;
  7659. break;
  7660. case GGML_OP_CONCAT:
  7661. if (!any_on_device) {
  7662. return false;
  7663. }
  7664. func = ggml_cl_concat;
  7665. break;
  7666. case GGML_OP_TIMESTEP_EMBEDDING:
  7667. if (!any_on_device) {
  7668. return false;
  7669. }
  7670. ggml_cl_timestep_embedding(backend, tensor->src[0], tensor);
  7671. return true;
  7672. case GGML_OP_MUL_MAT:
  7673. if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  7674. return false;
  7675. }
  7676. func = ggml_cl_mul_mat;
  7677. break;
  7678. case GGML_OP_MUL_MAT_ID:
  7679. if (!any_on_device) {
  7680. return false;
  7681. }
  7682. func = ggml_cl_mul_mat_id;
  7683. break;
  7684. case GGML_OP_SCALE:
  7685. if (!any_on_device) {
  7686. return false;
  7687. }
  7688. func = ggml_cl_scale;
  7689. break;
  7690. case GGML_OP_RESHAPE:
  7691. case GGML_OP_VIEW:
  7692. case GGML_OP_PERMUTE:
  7693. case GGML_OP_TRANSPOSE:
  7694. if (!any_on_device) {
  7695. return false;
  7696. }
  7697. func = ggml_cl_nop;
  7698. break;
  7699. case GGML_OP_DIAG_MASK_INF:
  7700. if (!any_on_device) {
  7701. return false;
  7702. }
  7703. func = ggml_cl_diag_mask_inf;
  7704. break;
  7705. case GGML_OP_SOFT_MAX:
  7706. if (!any_on_device) {
  7707. return false;
  7708. }
  7709. func = ggml_cl_soft_max;
  7710. break;
  7711. case GGML_OP_ROPE:
  7712. if (!any_on_device) {
  7713. return false;
  7714. }
  7715. func = ggml_cl_rope;
  7716. break;
  7717. case GGML_OP_IM2COL:
  7718. if (!any_on_device) {
  7719. return false;
  7720. }
  7721. func = ggml_cl_im2col;
  7722. break;
  7723. case GGML_OP_ARGSORT:
  7724. if (!any_on_device) {
  7725. return false;
  7726. }
  7727. func = ggml_cl_argsort;
  7728. break;
  7729. case GGML_OP_SUM_ROWS:
  7730. if (!any_on_device) {
  7731. return false;
  7732. }
  7733. func = ggml_cl_sum_rows;
  7734. break;
  7735. case GGML_OP_FLASH_ATTN_EXT:
  7736. if (!any_on_device) {
  7737. return false;
  7738. }
  7739. ggml_cl_flash_attn(backend, tensor->src[0], tensor->src[1], tensor);
  7740. return true;
  7741. default:
  7742. return false;
  7743. }
  7744. func(backend, tensor->src[0], tensor->src[1], tensor);
  7745. return true;
  7746. }