ggml-alloc.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041
  1. #include "ggml-alloc.h"
  2. #include "ggml-backend-impl.h"
  3. #include "ggml.h"
  4. #include "ggml-impl.h"
  5. #include <assert.h>
  6. #include <limits.h>
  7. #include <stdarg.h>
  8. #include <stdio.h>
  9. #include <stdlib.h>
  10. #include <string.h>
  11. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  12. #define MAX_FREE_BLOCKS 256
  13. //#define GGML_ALLOCATOR_DEBUG
  14. //#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
  15. #define AT_PRINTF(...)
  16. static bool ggml_is_view(const struct ggml_tensor * t) {
  17. return t->view_src != NULL;
  18. }
  19. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  20. if (a->type != b->type) {
  21. return false;
  22. }
  23. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  24. if (a->ne[i] != b->ne[i]) {
  25. return false;
  26. }
  27. if (a->nb[i] != b->nb[i]) {
  28. return false;
  29. }
  30. }
  31. return true;
  32. }
  33. static bool ggml_op_can_inplace(enum ggml_op op) {
  34. switch (op) {
  35. case GGML_OP_SCALE:
  36. case GGML_OP_DIAG_MASK_ZERO:
  37. case GGML_OP_DIAG_MASK_INF:
  38. case GGML_OP_ADD:
  39. case GGML_OP_ADD1:
  40. case GGML_OP_SUB:
  41. case GGML_OP_MUL:
  42. case GGML_OP_DIV:
  43. case GGML_OP_SQR:
  44. case GGML_OP_SQRT:
  45. case GGML_OP_LOG:
  46. case GGML_OP_UNARY:
  47. case GGML_OP_ROPE:
  48. case GGML_OP_RMS_NORM:
  49. case GGML_OP_SOFT_MAX:
  50. return true;
  51. default:
  52. return false;
  53. }
  54. }
  55. static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
  56. assert(alignment && !(alignment & (alignment - 1))); // power of 2
  57. size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
  58. return offset + align;
  59. }
  60. // tallocr
  61. struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
  62. void * base = ggml_backend_buffer_get_base(buffer);
  63. size_t align = ggml_backend_buffer_get_alignment(buffer);
  64. assert(align && !(align & (align - 1))); // power of 2
  65. struct ggml_tallocr talloc = (struct ggml_tallocr) {
  66. /*.buffer = */ buffer,
  67. /*.base = */ base,
  68. /*.alignment = */ align,
  69. /*.offset = */ aligned_offset(base, 0, align),
  70. };
  71. return talloc;
  72. }
  73. void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
  74. size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
  75. size = GGML_PAD(size, talloc->alignment);
  76. if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) {
  77. fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
  78. __func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
  79. GGML_ASSERT(!"not enough space in the buffer");
  80. return;
  81. }
  82. void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
  83. talloc->offset += size;
  84. assert(((uintptr_t)addr % talloc->alignment) == 0);
  85. ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
  86. }
  87. // dynamic tensor allocator
  88. struct free_block {
  89. size_t offset;
  90. size_t size;
  91. };
  92. struct ggml_dyn_tallocr {
  93. size_t alignment;
  94. int n_free_blocks;
  95. struct free_block free_blocks[MAX_FREE_BLOCKS];
  96. size_t max_size;
  97. #ifdef GGML_ALLOCATOR_DEBUG
  98. struct {
  99. const struct ggml_tensor * tensor;
  100. size_t offset;
  101. } allocated_tensors[1024];
  102. #endif
  103. };
  104. #ifdef GGML_ALLOCATOR_DEBUG
  105. static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
  106. for (int i = 0; i < 1024; i++) {
  107. if (alloc->allocated_tensors[i].tensor == NULL) {
  108. alloc->allocated_tensors[i].tensor = tensor;
  109. alloc->allocated_tensors[i].offset = offset;
  110. return;
  111. }
  112. }
  113. GGML_ASSERT(!"out of allocated_tensors");
  114. }
  115. static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
  116. for (int i = 0; i < 1024; i++) {
  117. if (alloc->allocated_tensors[i].offset == offset) {
  118. alloc->allocated_tensors[i].tensor = NULL;
  119. return;
  120. }
  121. }
  122. fprintf(stderr, "tried to free tensor %s not found\n", tensor->name);
  123. GGML_ASSERT(!"tensor not found");
  124. }
  125. #endif
  126. static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
  127. size = aligned_offset(NULL, size, alloc->alignment);
  128. AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
  129. size_t max_avail = 0;
  130. // find the best fitting free block besides the last block
  131. int best_fit_block = -1;
  132. size_t best_fit_size = SIZE_MAX;
  133. for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
  134. struct free_block * block = &alloc->free_blocks[i];
  135. max_avail = MAX(max_avail, block->size);
  136. if (block->size >= size && block->size <= best_fit_size) {
  137. best_fit_block = i;
  138. best_fit_size = block->size;
  139. }
  140. }
  141. if (best_fit_block == -1) {
  142. // the last block is our last resort
  143. struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
  144. max_avail = MAX(max_avail, block->size);
  145. if (block->size >= size) {
  146. best_fit_block = alloc->n_free_blocks - 1;
  147. } else {
  148. // this should never happen
  149. fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
  150. __func__, size, max_avail);
  151. GGML_ASSERT(!"not enough space in the buffer");
  152. GGML_UNREACHABLE();
  153. }
  154. }
  155. struct free_block * block = &alloc->free_blocks[best_fit_block];
  156. size_t offset = block->offset;
  157. block->offset = offset + size;
  158. block->size -= size;
  159. if (block->size == 0) {
  160. // remove block if empty
  161. alloc->n_free_blocks--;
  162. for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
  163. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  164. }
  165. }
  166. AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
  167. #ifdef GGML_ALLOCATOR_DEBUG
  168. add_allocated_tensor(alloc, offset, tensor);
  169. size_t cur_max = offset + size;
  170. if (cur_max > alloc->max_size) {
  171. // sort allocated_tensors by offset
  172. for (int i = 0; i < 1024; i++) {
  173. for (int j = i + 1; j < 1024; j++) {
  174. if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
  175. const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
  176. size_t tmp_offset = alloc->allocated_tensors[i].offset;
  177. alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
  178. alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
  179. alloc->allocated_tensors[j].tensor = tmp_tensor;
  180. alloc->allocated_tensors[j].offset = tmp_offset;
  181. }
  182. }
  183. }
  184. fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
  185. for (int i = 0; i < 1024; i++) {
  186. if (alloc->allocated_tensors[i].tensor) {
  187. fprintf(stderr, "%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
  188. alloc->allocated_tensors[i].offset,
  189. alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
  190. ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
  191. }
  192. }
  193. fprintf(stderr, "\n");
  194. }
  195. #endif
  196. alloc->max_size = MAX(alloc->max_size, offset + size);
  197. return offset;
  198. GGML_UNUSED(tensor);
  199. }
  200. // this is a very naive implementation, but for our case the number of free blocks should be very small
  201. static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) {
  202. size = aligned_offset(NULL, size, alloc->alignment);
  203. AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
  204. #ifdef GGML_ALLOCATOR_DEBUG
  205. remove_allocated_tensor(alloc, offset, tensor);
  206. #endif
  207. // see if we can merge with an existing block
  208. for (int i = 0; i < alloc->n_free_blocks; i++) {
  209. struct free_block * block = &alloc->free_blocks[i];
  210. // check if ptr is at the end of the block
  211. if (block->offset + block->size == offset) {
  212. block->size += size;
  213. // check if we can merge with the next block
  214. if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
  215. block->size += alloc->free_blocks[i+1].size;
  216. alloc->n_free_blocks--;
  217. for (int j = i+1; j < alloc->n_free_blocks; j++) {
  218. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  219. }
  220. }
  221. return;
  222. }
  223. // check if ptr is at the beginning of the block
  224. if (offset + size == block->offset) {
  225. block->offset = offset;
  226. block->size += size;
  227. // check if we can merge with the previous block
  228. if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
  229. alloc->free_blocks[i-1].size += block->size;
  230. alloc->n_free_blocks--;
  231. for (int j = i; j < alloc->n_free_blocks; j++) {
  232. alloc->free_blocks[j] = alloc->free_blocks[j+1];
  233. }
  234. }
  235. return;
  236. }
  237. }
  238. // otherwise, add a new block
  239. GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
  240. // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
  241. int insert_pos = 0;
  242. while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
  243. insert_pos++;
  244. }
  245. // shift all blocks from insert_pos onward to make room for the new block
  246. for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
  247. alloc->free_blocks[i] = alloc->free_blocks[i-1];
  248. }
  249. // insert the new block
  250. alloc->free_blocks[insert_pos].offset = offset;
  251. alloc->free_blocks[insert_pos].size = size;
  252. alloc->n_free_blocks++;
  253. GGML_UNUSED(tensor);
  254. }
  255. static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
  256. alloc->n_free_blocks = 1;
  257. alloc->free_blocks[0].offset = 0;
  258. alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
  259. alloc->max_size = 0;
  260. }
  261. static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
  262. struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr));
  263. *alloc = (struct ggml_dyn_tallocr) {
  264. /*.alignment = */ alignment,
  265. /*.n_free_blocks = */ 0,
  266. /*.free_blocks = */ {{0}},
  267. /*.max_size = */ 0,
  268. #ifdef GGML_ALLOCATOR_DEBUG
  269. /*.allocated_tensors = */ {{0}},
  270. #endif
  271. };
  272. ggml_dyn_tallocr_reset(alloc);
  273. return alloc;
  274. }
  275. static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
  276. free(alloc);
  277. }
  278. static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
  279. return alloc->max_size;
  280. }
  281. /////////////////////////////////////
  282. // graph allocator
  283. struct hash_node {
  284. int n_children;
  285. int n_views;
  286. int buffer_id;
  287. size_t offset; // offset within the buffer
  288. bool allocated;
  289. };
  290. struct tensor_alloc {
  291. int buffer_id;
  292. size_t offset;
  293. size_t size_max; // 0 = pre-allocated, unused, or view
  294. };
  295. struct leaf_alloc {
  296. int buffer_id;
  297. struct tensor_alloc leaf;
  298. };
  299. struct node_alloc {
  300. struct tensor_alloc dst;
  301. struct tensor_alloc src[GGML_MAX_SRC];
  302. };
  303. struct ggml_gallocr {
  304. ggml_backend_buffer_type_t * bufts; // [n_buffers]
  305. ggml_backend_buffer_t * buffers; // [n_buffers]
  306. struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
  307. int n_buffers;
  308. struct ggml_hash_set hash_set;
  309. struct hash_node * hash_values; // [hash_set.size]
  310. struct node_alloc * node_allocs; // [n_nodes]
  311. int n_nodes;
  312. struct leaf_alloc * leaf_allocs; // [n_leafs]
  313. int n_leafs;
  314. };
  315. ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
  316. ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(1, sizeof(struct ggml_gallocr));
  317. GGML_ASSERT(galloc != NULL);
  318. galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t));
  319. GGML_ASSERT(galloc->bufts != NULL);
  320. galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
  321. GGML_ASSERT(galloc->buffers != NULL);
  322. galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
  323. GGML_ASSERT(galloc->buf_tallocs != NULL);
  324. for (int i = 0; i < n_bufs; i++) {
  325. galloc->bufts[i] = bufts[i];
  326. galloc->buffers[i] = NULL;
  327. // check if the same buffer type is used multiple times and reuse the same allocator
  328. for (int j = 0; j < i; j++) {
  329. if (bufts[i] == bufts[j]) {
  330. galloc->buf_tallocs[i] = galloc->buf_tallocs[j];
  331. break;
  332. }
  333. }
  334. if (galloc->buf_tallocs[i] == NULL) {
  335. size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
  336. galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
  337. }
  338. }
  339. galloc->n_buffers = n_bufs;
  340. return galloc;
  341. }
  342. ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) {
  343. return ggml_gallocr_new_n(&buft, 1);
  344. }
  345. void ggml_gallocr_free(ggml_gallocr_t galloc) {
  346. if (galloc == NULL) {
  347. return;
  348. }
  349. for (int i = 0; i < galloc->n_buffers; i++) {
  350. if (galloc->buffers != NULL) {
  351. // skip if already freed
  352. bool freed = false;
  353. for (int j = 0; j < i; j++) {
  354. if (galloc->buffers[j] == galloc->buffers[i]) {
  355. freed = true;
  356. break;
  357. }
  358. }
  359. if (!freed) {
  360. ggml_backend_buffer_free(galloc->buffers[i]);
  361. }
  362. }
  363. if (galloc->buf_tallocs != NULL) {
  364. // skip if already freed
  365. bool freed = false;
  366. for (int j = 0; j < i; j++) {
  367. if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
  368. freed = true;
  369. break;
  370. }
  371. }
  372. if (!freed) {
  373. ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
  374. }
  375. }
  376. }
  377. free(galloc->hash_set.keys);
  378. free(galloc->hash_values);
  379. free(galloc->bufts);
  380. free(galloc->buffers);
  381. free(galloc->buf_tallocs);
  382. free(galloc->node_allocs);
  383. free(galloc->leaf_allocs);
  384. free(galloc);
  385. }
  386. typedef struct ggml_gallocr * ggml_gallocr_t;
  387. static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
  388. size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
  389. return &galloc->hash_values[i];
  390. }
  391. static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) {
  392. return ggml_gallocr_hash_get(galloc, t)->allocated;
  393. }
  394. static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) {
  395. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  396. hn->buffer_id = buffer_id;
  397. hn->offset = offset;
  398. hn->allocated = true;
  399. }
  400. static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) {
  401. return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated;
  402. }
  403. static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
  404. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  405. if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
  406. hn->allocated = true;
  407. assert(hn->offset == 0);
  408. // try to reuse a parent's buffer (inplace)
  409. if (ggml_op_can_inplace(node->op)) {
  410. for (int i = 0; i < GGML_MAX_SRC; i++) {
  411. struct ggml_tensor * parent = node->src[i];
  412. if (parent == NULL) {
  413. continue;
  414. }
  415. // if the node's data is external, then we cannot re-use it
  416. if (!ggml_gallocr_is_own(galloc, parent)) {
  417. AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
  418. continue;
  419. }
  420. // outputs cannot be reused
  421. if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) {
  422. AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name);
  423. continue;
  424. }
  425. if (!ggml_are_same_layout(node, parent)) {
  426. AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name);
  427. continue;
  428. }
  429. struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
  430. if (p_hn->n_children == 1 && p_hn->n_views == 0) {
  431. if (ggml_is_view(parent)) {
  432. struct ggml_tensor * view_src = parent->view_src;
  433. struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
  434. if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
  435. AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
  436. assert(view_src_hn->offset == p_hn->offset);
  437. hn->buffer_id = p_hn->buffer_id;
  438. hn->offset = p_hn->offset;
  439. p_hn->allocated = false; // avoid freeing the parent
  440. view_src_hn->allocated = false;
  441. return;
  442. }
  443. } else {
  444. AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
  445. hn->buffer_id = p_hn->buffer_id;
  446. hn->offset = p_hn->offset;
  447. p_hn->allocated = false; // avoid freeing the parent
  448. return;
  449. }
  450. }
  451. }
  452. }
  453. // allocate tensor from the buffer
  454. struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
  455. ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
  456. size_t size = ggml_backend_buft_get_alloc_size(buft, node);
  457. size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node);
  458. hn->buffer_id = buffer_id;
  459. hn->offset = offset;
  460. return;
  461. }
  462. }
  463. static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
  464. // graph outputs are never freed
  465. if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
  466. AT_PRINTF("not freeing output %s\n", node->name);
  467. return;
  468. }
  469. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  470. size_t offset = hn->offset;
  471. int buffer_id = hn->buffer_id;
  472. struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
  473. ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
  474. size_t size = ggml_backend_buft_get_alloc_size(buft, node);
  475. ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
  476. hn->allocated = false;
  477. }
  478. static int get_node_buffer_id(const int * node_buffer_ids, int i) {
  479. return node_buffer_ids ? node_buffer_ids[i] : 0;
  480. }
  481. static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
  482. // clear hash tables
  483. memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
  484. memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
  485. // allocate leafs
  486. // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
  487. for (int i = 0; i < graph->n_leafs; i++) {
  488. struct ggml_tensor * leaf = graph->leafs[i];
  489. ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i));
  490. }
  491. // count number of children and views
  492. // allocate other graph inputs and leafs first to avoid overwriting them
  493. for (int i = 0; i < graph->n_nodes; i++) {
  494. struct ggml_tensor * node = graph->nodes[i];
  495. // TODO: better way to add external dependencies
  496. // GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
  497. // control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
  498. // itself is never used and should not be considered a dependency
  499. if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
  500. struct ggml_tensor * view_src = node->view_src;
  501. ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
  502. }
  503. if (node->flags & GGML_TENSOR_FLAG_INPUT) {
  504. ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
  505. }
  506. for (int j = 0; j < GGML_MAX_SRC; j++) {
  507. struct ggml_tensor * src = node->src[j];
  508. if (src == NULL) {
  509. continue;
  510. }
  511. ggml_gallocr_hash_get(galloc, src)->n_children += 1;
  512. // allocate explicit inputs
  513. if (src->flags & GGML_TENSOR_FLAG_INPUT) {
  514. ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
  515. }
  516. }
  517. }
  518. // allocate tensors
  519. for (int i = 0; i < graph->n_nodes; i++) {
  520. struct ggml_tensor * node = graph->nodes[i];
  521. int buffer_id = get_node_buffer_id(node_buffer_ids, i);
  522. // allocate parents (only leafs need to be allocated at this point)
  523. for (int j = 0; j < GGML_MAX_SRC; j++) {
  524. struct ggml_tensor * parent = node->src[j];
  525. if (parent == NULL) {
  526. continue;
  527. }
  528. ggml_gallocr_allocate_node(galloc, parent, buffer_id);
  529. }
  530. // allocate node
  531. ggml_gallocr_allocate_node(galloc, node, buffer_id);
  532. AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name);
  533. for (int j = 0; j < GGML_MAX_SRC; j++) {
  534. struct ggml_tensor * parent = node->src[j];
  535. if (parent == NULL) {
  536. continue;
  537. }
  538. AT_PRINTF("%s", parent->name);
  539. if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
  540. AT_PRINTF(", ");
  541. }
  542. }
  543. AT_PRINTF("\n");
  544. // update parents
  545. for (int j = 0; j < GGML_MAX_SRC; j++) {
  546. struct ggml_tensor * parent = node->src[j];
  547. if (parent == NULL) {
  548. continue;
  549. }
  550. struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
  551. p_hn->n_children -= 1;
  552. AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n",
  553. parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated);
  554. if (p_hn->n_children == 0 && p_hn->n_views == 0) {
  555. if (ggml_is_view(parent)) {
  556. struct ggml_tensor * view_src = parent->view_src;
  557. struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
  558. view_src_hn->n_views -= 1;
  559. AT_PRINTF("view_src %s: %d children, %d views\n",
  560. view_src->name, view_src_hn->n_children, view_src_hn->n_views);
  561. if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) {
  562. ggml_gallocr_free_node(galloc, view_src);
  563. }
  564. }
  565. else if (p_hn->allocated) {
  566. ggml_gallocr_free_node(galloc, parent);
  567. }
  568. }
  569. AT_PRINTF("\n");
  570. }
  571. }
  572. }
  573. bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
  574. size_t hash_size = graph->visited_hash_table.size;
  575. // initialize hash table
  576. if (galloc->hash_set.size < hash_size) {
  577. free(galloc->hash_set.keys);
  578. free(galloc->hash_values);
  579. galloc->hash_set.size = hash_size;
  580. galloc->hash_set.keys = calloc(hash_size, sizeof(struct ggml_tensor *));
  581. galloc->hash_values = calloc(hash_size, sizeof(struct hash_node));
  582. GGML_ASSERT(galloc->hash_set.keys != NULL);
  583. GGML_ASSERT(galloc->hash_values != NULL);
  584. } else {
  585. // reset hash table
  586. memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size);
  587. memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
  588. }
  589. // reset allocators
  590. for (int i = 0; i < galloc->n_buffers; i++) {
  591. ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]);
  592. }
  593. // allocate in hash table
  594. ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids);
  595. // set the node_allocs from the hash table
  596. if (galloc->n_nodes < graph->n_nodes) {
  597. free(galloc->node_allocs);
  598. galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc));
  599. GGML_ASSERT(galloc->node_allocs != NULL);
  600. }
  601. galloc->n_nodes = graph->n_nodes;
  602. for (int i = 0; i < graph->n_nodes; i++) {
  603. struct ggml_tensor * node = graph->nodes[i];
  604. struct node_alloc * node_alloc = &galloc->node_allocs[i];
  605. if (node->view_src || node->data) {
  606. node_alloc->dst.buffer_id = -1;
  607. node_alloc->dst.offset = SIZE_MAX;
  608. node_alloc->dst.size_max = 0;
  609. } else {
  610. struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
  611. node_alloc->dst.buffer_id = hn->buffer_id;
  612. node_alloc->dst.offset = hn->offset;
  613. node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
  614. }
  615. for (int j = 0; j < GGML_MAX_SRC; j++) {
  616. struct ggml_tensor * src = node->src[j];
  617. if (!src || src->view_src || src->data) {
  618. node_alloc->src[j].buffer_id = -1;
  619. node_alloc->src[j].offset = SIZE_MAX;
  620. node_alloc->src[j].size_max = 0;
  621. } else {
  622. struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
  623. node_alloc->src[j].buffer_id = hn->buffer_id;
  624. node_alloc->src[j].offset = hn->offset;
  625. node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
  626. }
  627. }
  628. }
  629. if (galloc->n_leafs < graph->n_leafs) {
  630. free(galloc->leaf_allocs);
  631. galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0]));
  632. GGML_ASSERT(galloc->leaf_allocs != NULL);
  633. }
  634. galloc->n_leafs = graph->n_leafs;
  635. for (int i = 0; i < graph->n_leafs; i++) {
  636. struct ggml_tensor * leaf = graph->leafs[i];
  637. struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
  638. galloc->leaf_allocs[i].buffer_id = hn->buffer_id;
  639. if (leaf->view_src || leaf->data) {
  640. galloc->leaf_allocs[i].leaf.buffer_id = -1;
  641. galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
  642. galloc->leaf_allocs[i].leaf.size_max = 0;
  643. } else {
  644. galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
  645. galloc->leaf_allocs[i].leaf.offset = hn->offset;
  646. galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
  647. }
  648. }
  649. // reallocate buffers if needed
  650. for (int i = 0; i < galloc->n_buffers; i++) {
  651. // if the buffer type is used multiple times, we reuse the same buffer
  652. for (int j = 0; j < i; j++) {
  653. if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
  654. galloc->buffers[i] = galloc->buffers[j];
  655. break;
  656. }
  657. }
  658. size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
  659. size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
  660. // even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
  661. if (new_size > cur_size || galloc->buffers[i] == NULL) {
  662. #ifndef NDEBUG
  663. fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  664. #endif
  665. ggml_backend_buffer_free(galloc->buffers[i]);
  666. galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
  667. if (galloc->buffers[i] == NULL) {
  668. fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
  669. return false;
  670. }
  671. }
  672. }
  673. return true;
  674. }
  675. bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
  676. return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
  677. }
  678. static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
  679. int buffer_id = tensor_alloc->buffer_id;
  680. assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
  681. if (tensor->view_src != NULL) {
  682. if (tensor->buffer == NULL) {
  683. assert(tensor_alloc->offset == SIZE_MAX);
  684. if (tensor->view_src->buffer == NULL) {
  685. // this tensor was allocated without ggml-backend
  686. return;
  687. }
  688. ggml_backend_view_init(tensor);
  689. }
  690. } else {
  691. if (tensor->data == NULL) {
  692. assert(tensor_alloc->offset != SIZE_MAX);
  693. assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
  694. void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
  695. void * addr = (char *)base + tensor_alloc->offset;
  696. ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
  697. } else {
  698. if (tensor->buffer == NULL) {
  699. // this tensor was allocated without ggml-backend
  700. return;
  701. }
  702. }
  703. }
  704. }
  705. static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
  706. ggml_backend_buffer_type_t buft = talloc->buffer_id != -1 ? galloc->bufts[talloc->buffer_id] : NULL;
  707. size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node);
  708. return talloc->size_max >= node_size;
  709. }
  710. static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
  711. if (galloc->n_nodes != graph->n_nodes) {
  712. #ifndef NDEBUG
  713. fprintf(stderr, "%s: graph has different number of nodes\n", __func__);
  714. #endif
  715. return true;
  716. }
  717. if (galloc->n_leafs != graph->n_leafs) {
  718. #ifndef NDEBUG
  719. fprintf(stderr, "%s: graph has different number of leafs\n", __func__);
  720. #endif
  721. return true;
  722. }
  723. for (int i = 0; i < graph->n_nodes; i++) {
  724. struct ggml_tensor * node = graph->nodes[i];
  725. struct node_alloc * node_alloc = &galloc->node_allocs[i];
  726. if (!ggml_gallocr_node_needs_realloc(galloc, node, &node_alloc->dst)) {
  727. #ifndef NDEBUG
  728. fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name);
  729. #endif
  730. return true;
  731. }
  732. for (int j = 0; j < GGML_MAX_SRC; j++) {
  733. struct ggml_tensor * src = node->src[j];
  734. if (src == NULL) {
  735. continue;
  736. }
  737. if (!ggml_gallocr_node_needs_realloc(galloc, src, &node_alloc->src[j])) {
  738. #ifndef NDEBUG
  739. fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name);
  740. #endif
  741. return true;
  742. }
  743. }
  744. }
  745. return false;
  746. }
  747. bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
  748. if (ggml_gallocr_needs_realloc(galloc, graph)) {
  749. if (galloc->n_buffers == 1) {
  750. #ifndef NDEBUG
  751. fprintf(stderr, "%s: reallocating buffers automatically\n", __func__);
  752. #endif
  753. if (!ggml_gallocr_reserve(galloc, graph)) {
  754. return false;
  755. }
  756. } else {
  757. #ifndef NDEBUG
  758. fprintf(stderr, "%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__);
  759. #endif
  760. return false;
  761. }
  762. }
  763. // reset buffers
  764. for (int i = 0; i < galloc->n_buffers; i++) {
  765. if (galloc->buffers[i] != NULL) {
  766. ggml_backend_buffer_reset(galloc->buffers[i]);
  767. }
  768. }
  769. // allocate the graph tensors from the previous assignments
  770. // leafs
  771. for (int i = 0; i < graph->n_leafs; i++) {
  772. struct ggml_tensor * leaf = graph->leafs[i];
  773. struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
  774. ggml_gallocr_init_tensor(galloc, leaf, &leaf_alloc->leaf);
  775. }
  776. // nodes
  777. for (int i = 0; i < graph->n_nodes; i++) {
  778. struct ggml_tensor * node = graph->nodes[i];
  779. struct node_alloc * node_alloc = &galloc->node_allocs[i];
  780. for (int j = 0; j < GGML_MAX_SRC; j++) {
  781. struct ggml_tensor * src = node->src[j];
  782. if (src == NULL) {
  783. continue;
  784. }
  785. ggml_gallocr_init_tensor(galloc, src, &node_alloc->src[j]);
  786. }
  787. ggml_gallocr_init_tensor(galloc, node, &node_alloc->dst);
  788. }
  789. return true;
  790. }
  791. size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
  792. GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
  793. if (galloc->buffers[buffer_id] == NULL) {
  794. return 0;
  795. }
  796. for (int i = 0; i < buffer_id; i++) {
  797. if (galloc->buffers[i] == galloc->buffers[buffer_id]) {
  798. // this buffer is the same as a previous one due to the same buffer type being used multiple times
  799. // only return the buffer size the first time it appears to avoid double counting
  800. return 0;
  801. }
  802. }
  803. return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
  804. }
  805. // utils
  806. static bool alloc_tensor_range(struct ggml_context * ctx,
  807. struct ggml_tensor * first, struct ggml_tensor * last,
  808. ggml_backend_buffer_type_t buft, size_t size,
  809. ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
  810. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
  811. if (buffer == NULL) {
  812. #ifndef NDEBUG
  813. fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
  814. #endif
  815. for (size_t i = 0; i < *n_buffers; i++) {
  816. ggml_backend_buffer_free((*buffers)[i]);
  817. }
  818. free(*buffers);
  819. return false;
  820. }
  821. struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
  822. for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
  823. if (t->data == NULL) {
  824. if (t->view_src == NULL) {
  825. ggml_tallocr_alloc(&tallocr, t);
  826. } else if (t->buffer == NULL) {
  827. ggml_backend_view_init(t);
  828. }
  829. } else {
  830. if (t->view_src != NULL && t->buffer == NULL) {
  831. // view of a pre-allocated tensor
  832. ggml_backend_view_init(t);
  833. }
  834. }
  835. }
  836. *buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
  837. (*buffers)[(*n_buffers)++] = buffer;
  838. return true;
  839. }
  840. ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
  841. GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
  842. size_t alignment = ggml_backend_buft_get_alignment(buft);
  843. size_t max_size = ggml_backend_buft_get_max_size(buft);
  844. ggml_backend_buffer_t * buffers = NULL;
  845. size_t n_buffers = 0;
  846. size_t cur_buf_size = 0;
  847. struct ggml_tensor * first = ggml_get_first_tensor(ctx);
  848. for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  849. size_t this_size = 0;
  850. if (t->data == NULL && t->view_src == NULL) {
  851. this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
  852. }
  853. if (this_size > max_size) {
  854. fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
  855. __func__, t->name,
  856. ggml_backend_buft_name(buft),
  857. this_size, max_size);
  858. for (size_t i = 0; i < n_buffers; i++) {
  859. ggml_backend_buffer_free(buffers[i]);
  860. }
  861. free(buffers);
  862. return NULL;
  863. }
  864. if ((cur_buf_size + this_size) > max_size) {
  865. // allocate tensors in the current buffer
  866. if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
  867. return NULL;
  868. }
  869. first = t;
  870. cur_buf_size = this_size;
  871. } else {
  872. cur_buf_size += this_size;
  873. }
  874. }
  875. // allocate remaining tensors
  876. if (cur_buf_size > 0) {
  877. if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
  878. return NULL;
  879. }
  880. }
  881. if (n_buffers == 0) {
  882. #ifndef NDEBUG
  883. fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
  884. #endif
  885. return NULL;
  886. }
  887. ggml_backend_buffer_t buffer;
  888. if (n_buffers == 1) {
  889. buffer = buffers[0];
  890. } else {
  891. buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
  892. }
  893. free(buffers);
  894. return buffer;
  895. }
  896. ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
  897. return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
  898. }