ggml-quants.c 641 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994
  1. #define GGML_COMMON_IMPL_C
  2. #include "ggml-common.h"
  3. #include "ggml-quants.h"
  4. #include "ggml-impl.h"
  5. #include <math.h>
  6. #include <string.h>
  7. #include <assert.h>
  8. #include <float.h>
  9. #include <stdlib.h> // for qsort
  10. #include <stdio.h> // for GGML_ASSERT
  11. #define GROUP_MAX_EPS 1e-15f
  12. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  13. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  14. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  15. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  16. #if defined(_MSC_VER)
  17. // disable "possible loss of data" to avoid warnings for hundreds of casts
  18. // we should just be careful :)
  19. #pragma warning(disable: 4244 4267)
  20. #endif
  21. #define UNUSED GGML_UNUSED
  22. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  23. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  24. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  25. // multiply int8_t, add results pairwise twice
  26. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  27. // Get absolute values of x vectors
  28. const __m128i ax = _mm_sign_epi8(x, x);
  29. // Sign the values of the y vectors
  30. const __m128i sy = _mm_sign_epi8(y, x);
  31. // Perform multiplication and create 16-bit values
  32. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  33. const __m128i ones = _mm_set1_epi16(1);
  34. return _mm_madd_epi16(ones, dot);
  35. }
  36. #if __AVX__ || __AVX2__ || __AVX512F__
  37. // horizontally add 8 floats
  38. static inline float hsum_float_8(const __m256 x) {
  39. __m128 res = _mm256_extractf128_ps(x, 1);
  40. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  41. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  42. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  43. return _mm_cvtss_f32(res);
  44. }
  45. // horizontally add 8 int32_t
  46. static inline int hsum_i32_8(const __m256i a) {
  47. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  48. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  49. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  50. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  51. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  52. }
  53. // horizontally add 4 int32_t
  54. static inline int hsum_i32_4(const __m128i a) {
  55. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  56. const __m128i sum64 = _mm_add_epi32(hi64, a);
  57. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  58. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  59. }
  60. #if defined(__AVX2__) || defined(__AVX512F__)
  61. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  62. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  63. uint32_t x32;
  64. memcpy(&x32, x, sizeof(uint32_t));
  65. const __m256i shuf_mask = _mm256_set_epi64x(
  66. 0x0303030303030303, 0x0202020202020202,
  67. 0x0101010101010101, 0x0000000000000000);
  68. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  69. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  70. bytes = _mm256_or_si256(bytes, bit_mask);
  71. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  72. }
  73. // Unpack 32 4-bit fields into 32 bytes
  74. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  75. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  76. {
  77. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  78. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  79. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  80. return _mm256_and_si256(lowMask, bytes);
  81. }
  82. // add int16_t pairwise and return as float vector
  83. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  84. const __m256i ones = _mm256_set1_epi16(1);
  85. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  86. return _mm256_cvtepi32_ps(summed_pairs);
  87. }
  88. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  89. #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
  90. const __m256i zero = _mm256_setzero_si256();
  91. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  92. return _mm256_cvtepi32_ps(summed_pairs);
  93. #else
  94. // Perform multiplication and create 16-bit values
  95. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  96. return sum_i16_pairs_float(dot);
  97. #endif
  98. }
  99. // multiply int8_t, add results pairwise twice and return as float vector
  100. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  101. #if __AVXVNNIINT8__
  102. const __m256i zero = _mm256_setzero_si256();
  103. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  104. return _mm256_cvtepi32_ps(summed_pairs);
  105. #else
  106. // Get absolute values of x vectors
  107. const __m256i ax = _mm256_sign_epi8(x, x);
  108. // Sign the values of the y vectors
  109. const __m256i sy = _mm256_sign_epi8(y, x);
  110. return mul_sum_us8_pairs_float(ax, sy);
  111. #endif
  112. }
  113. static inline __m128i packNibbles( __m256i bytes )
  114. {
  115. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  116. #if __AVX512F__
  117. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  118. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  119. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  120. #else
  121. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  122. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  123. __m256i low = _mm256_and_si256( lowByte, bytes );
  124. high = _mm256_srli_epi16( high, 4 );
  125. bytes = _mm256_or_si256( low, high );
  126. // Compress uint16_t lanes into bytes
  127. __m128i r0 = _mm256_castsi256_si128( bytes );
  128. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  129. return _mm_packus_epi16( r0, r1 );
  130. #endif
  131. }
  132. #elif defined(__AVX__)
  133. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  134. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  135. uint32_t x32;
  136. memcpy(&x32, x, sizeof(uint32_t));
  137. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  138. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  139. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  140. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  141. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  142. bytesl = _mm_or_si128(bytesl, bit_mask);
  143. bytesh = _mm_or_si128(bytesh, bit_mask);
  144. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  145. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  146. return MM256_SET_M128I(bytesh, bytesl);
  147. }
  148. // Unpack 32 4-bit fields into 32 bytes
  149. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  150. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  151. {
  152. // Load 16 bytes from memory
  153. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  154. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  155. const __m128i lowMask = _mm_set1_epi8(0xF);
  156. tmpl = _mm_and_si128(lowMask, tmpl);
  157. tmph = _mm_and_si128(lowMask, tmph);
  158. return MM256_SET_M128I(tmph, tmpl);
  159. }
  160. // add int16_t pairwise and return as float vector
  161. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  162. const __m128i ones = _mm_set1_epi16(1);
  163. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  164. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  165. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  166. return _mm256_cvtepi32_ps(summed_pairs);
  167. }
  168. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  169. const __m128i axl = _mm256_castsi256_si128(ax);
  170. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  171. const __m128i syl = _mm256_castsi256_si128(sy);
  172. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  173. // Perform multiplication and create 16-bit values
  174. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  175. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  176. return sum_i16_pairs_float(doth, dotl);
  177. }
  178. // multiply int8_t, add results pairwise twice and return as float vector
  179. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  180. const __m128i xl = _mm256_castsi256_si128(x);
  181. const __m128i xh = _mm256_extractf128_si256(x, 1);
  182. const __m128i yl = _mm256_castsi256_si128(y);
  183. const __m128i yh = _mm256_extractf128_si256(y, 1);
  184. // Get absolute values of x vectors
  185. const __m128i axl = _mm_sign_epi8(xl, xl);
  186. const __m128i axh = _mm_sign_epi8(xh, xh);
  187. // Sign the values of the y vectors
  188. const __m128i syl = _mm_sign_epi8(yl, xl);
  189. const __m128i syh = _mm_sign_epi8(yh, xh);
  190. // Perform multiplication and create 16-bit values
  191. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  192. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  193. return sum_i16_pairs_float(doth, dotl);
  194. }
  195. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  196. {
  197. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  198. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  199. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  200. __m128i low = _mm_and_si128( lowByte, bytes1 );
  201. high = _mm_srli_epi16( high, 4 );
  202. bytes1 = _mm_or_si128( low, high );
  203. high = _mm_andnot_si128( lowByte, bytes2 );
  204. low = _mm_and_si128( lowByte, bytes2 );
  205. high = _mm_srli_epi16( high, 4 );
  206. bytes2 = _mm_or_si128( low, high );
  207. return _mm_packus_epi16( bytes1, bytes2);
  208. }
  209. #endif
  210. #elif defined(__SSSE3__)
  211. // horizontally add 4x4 floats
  212. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  213. __m128 res_0 =_mm_hadd_ps(a, b);
  214. __m128 res_1 =_mm_hadd_ps(c, d);
  215. __m128 res =_mm_hadd_ps(res_0, res_1);
  216. res =_mm_hadd_ps(res, res);
  217. res =_mm_hadd_ps(res, res);
  218. return _mm_cvtss_f32(res);
  219. }
  220. #endif // __AVX__ || __AVX2__ || __AVX512F__
  221. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  222. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  223. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  224. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  225. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  226. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  227. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  228. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  229. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  230. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  231. // precomputed tables for expanding 8bits to 8 bytes:
  232. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  233. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  234. #endif
  235. #if defined(__loongarch_asx)
  236. #ifdef __clang__
  237. #define VREGS_PREFIX "$vr"
  238. #define XREGS_PREFIX "$xr"
  239. #else // GCC
  240. #define VREGS_PREFIX "$f"
  241. #define XREGS_PREFIX "$f"
  242. #endif
  243. #define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31"
  244. // Convert __m128i to __m256i
  245. static inline __m256i ____m256i(__m128i in) {
  246. __m256i out = __lasx_xvldi(0);
  247. __asm__ volatile (
  248. ".irp i," __ALL_REGS "\n\t"
  249. " .ifc %[out], " XREGS_PREFIX"\\i \n\t"
  250. " .irp j," __ALL_REGS "\n\t"
  251. " .ifc %[in], " VREGS_PREFIX "\\j \n\t"
  252. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  253. " .endif \n\t"
  254. " .endr \n\t"
  255. " .endif \n\t"
  256. ".endr \n\t"
  257. : [out] "+f" (out) : [in] "f" (in)
  258. );
  259. return out;
  260. }
  261. // Convert two __m128i to __m256i
  262. static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) {
  263. __m256i out;
  264. __asm__ volatile (
  265. ".irp i," __ALL_REGS "\n\t"
  266. " .ifc %[hi], " VREGS_PREFIX "\\i \n\t"
  267. " .irp j," __ALL_REGS "\n\t"
  268. " .ifc %[lo], " VREGS_PREFIX "\\j \n\t"
  269. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  270. " .endif \n\t"
  271. " .endr \n\t"
  272. " .endif \n\t"
  273. ".endr \n\t"
  274. ".ifnc %[out], %[hi] \n\t"
  275. ".irp i," __ALL_REGS "\n\t"
  276. " .ifc %[out], " XREGS_PREFIX "\\i \n\t"
  277. " .irp j," __ALL_REGS "\n\t"
  278. " .ifc %[hi], " VREGS_PREFIX "\\j \n\t"
  279. " xvori.b $xr\\i, $xr\\j, 0 \n\t"
  280. " .endif \n\t"
  281. " .endr \n\t"
  282. " .endif \n\t"
  283. ".endr \n\t"
  284. ".endif \n\t"
  285. : [out] "=f" (out), [hi] "+f" (inhi)
  286. : [lo] "f" (inlo)
  287. );
  288. return out;
  289. }
  290. // Convert __m256i low part to __m128i
  291. static inline __m128i lasx_extracti128_lo(__m256i in) {
  292. __m128i out;
  293. __asm__ volatile (
  294. ".ifnc %[out], %[in] \n\t"
  295. ".irp i," __ALL_REGS "\n\t"
  296. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  297. " .irp j," __ALL_REGS "\n\t"
  298. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  299. " vori.b $vr\\i, $vr\\j, 0 \n\t"
  300. " .endif \n\t"
  301. " .endr \n\t"
  302. " .endif \n\t"
  303. ".endr \n\t"
  304. ".endif \n\t"
  305. : [out] "=f" (out) : [in] "f" (in)
  306. );
  307. return out;
  308. }
  309. // Convert __m256i high part to __m128i
  310. static inline __m128i lasx_extracti128_hi(__m256i in) {
  311. __m128i out;
  312. __asm__ volatile (
  313. ".irp i," __ALL_REGS "\n\t"
  314. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  315. " .irp j," __ALL_REGS "\n\t"
  316. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  317. " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t"
  318. " .endif \n\t"
  319. " .endr \n\t"
  320. " .endif \n\t"
  321. ".endr \n\t"
  322. : [out] "=f" (out) : [in] "f" (in)
  323. );
  324. return out;
  325. }
  326. static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) {
  327. v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7};
  328. return (__m256i)__ret;
  329. }
  330. static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
  331. v4i32 __ret = {d, c, b, a};
  332. return (__m128i)__ret;
  333. }
  334. static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
  335. v4i64 __ret = {d, c, b, a};
  336. return (__m256i)__ret;
  337. }
  338. static __m256i lasx_insertf128( __m128i x, __m128i y) {
  339. return lasx_set_q(x, y);
  340. }
  341. static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
  342. __m128i mask_f, zero, tmp0, tmp2, mask;
  343. int f = 0x8f;
  344. mask_f = __lsx_vreplgr2vr_b(f);
  345. zero = __lsx_vldi(0);
  346. tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
  347. tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  348. mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
  349. tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
  350. return __lsx_vshuf_b(a, zero, tmp2);
  351. }
  352. static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
  353. __m256i mask_f, zero, tmp0, tmp2, mask;
  354. int f = 0x8f;
  355. mask_f = __lasx_xvreplgr2vr_b(f);
  356. zero = __lasx_xvldi(0);
  357. tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits
  358. tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  359. mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask
  360. tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones
  361. return __lasx_xvshuf_b(a, zero, tmp2);
  362. }
  363. static __m256i lasx_extu8_16(__m128i a) {
  364. __m128i zero = __lsx_vldi(0);
  365. __m128i vlo = __lsx_vilvl_b(zero, a);
  366. __m128i vhi = __lsx_vilvh_b(zero, a);
  367. return lasx_set_q(vhi, vlo);
  368. }
  369. static __m256i lasx_ext8_16(__m128i a) {
  370. __m128i sign = __lsx_vslti_b(a, 0);
  371. __m128i vlo = __lsx_vilvl_b(sign, a);
  372. __m128i vhi = __lsx_vilvh_b(sign, a);
  373. return lasx_set_q(vhi, vlo);
  374. }
  375. static __m256i lasx_ext16_32(__m128i a) {
  376. __m256i tmp1;
  377. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
  378. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
  379. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
  380. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
  381. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
  382. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
  383. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
  384. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
  385. return tmp1;
  386. }
  387. static __m128i lasx_extracti128( __m256i a, int pos) {
  388. __m128i ret;
  389. if( pos == 0)
  390. {
  391. ret = lasx_extracti128_lo(a);
  392. } else {
  393. ret = lasx_extracti128_hi(a);
  394. }
  395. return ret;
  396. }
  397. static __m128 lasx_extractf128( __m256 a, int pos) {
  398. __m128 ret;
  399. if( pos == 0)
  400. {
  401. ret = (__m128)lasx_extracti128_lo((__m256i)a);
  402. } else {
  403. ret = (__m128)lasx_extracti128_hi((__m256i)a);
  404. }
  405. return ret;
  406. }
  407. static __m128i lsx_hadd_h(__m128i a, __m128i b) {
  408. __m128i tmp1 = __lsx_vpickev_h(b, a);
  409. __m128i tmp2 = __lsx_vpickod_h(b, a);
  410. return __lsx_vadd_h(tmp1, tmp2);
  411. }
  412. static __m128i lsx_hadd_w(__m128i a, __m128i b) {
  413. __m128i tmp1 = __lsx_vpickev_w(b, a);
  414. __m128i tmp2 = __lsx_vpickod_w(b, a);
  415. return __lsx_vadd_w(tmp1, tmp2);
  416. }
  417. static __m128 lsx_hadd_s(__m128 a, __m128 b) {
  418. __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
  419. __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
  420. return __lsx_vfadd_s(tmp1, tmp2);
  421. }
  422. static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
  423. __m256i tmp1, tmp2;
  424. tmp1 = __lasx_xvmulwev_h_b(a, b);
  425. tmp2 = __lasx_xvmulwod_h_b(a, b);
  426. return __lasx_xvsadd_h(tmp1, tmp2);
  427. }
  428. static __m256i lasx_madd_h(__m256i a, __m256i b) {
  429. __m256i tmp1, tmp2;
  430. tmp1 = __lasx_xvmulwev_w_h(a, b);
  431. tmp2 = __lasx_xvmulwod_w_h(a, b);
  432. return __lasx_xvadd_w(tmp1, tmp2);
  433. }
  434. static __m256i lasx_packs_w(__m256i a, __m256i b) {
  435. __m256i tmp, tmp1;
  436. tmp = __lasx_xvsat_w(a, 15);
  437. tmp1 = __lasx_xvsat_w(b, 15);
  438. return __lasx_xvpickev_h(tmp1, tmp);
  439. }
  440. static __m256i lasx_packs_h(__m256i a, __m256i b) {
  441. __m256i tmp, tmp1;
  442. tmp = __lasx_xvsat_h(a, 7);
  443. tmp1 = __lasx_xvsat_h(b, 7);
  444. return __lasx_xvpickev_b(tmp1, tmp);
  445. }
  446. static __m128i lsx_packs_w(__m128i a, __m128i b) {
  447. __m128i tmp, tmp1;
  448. tmp = __lsx_vsat_w(a, 15);
  449. tmp1 = __lsx_vsat_w(b, 15);
  450. return __lsx_vpickev_h(tmp1, tmp);
  451. }
  452. static __m128i lsx_packs_h(__m128i a, __m128i b) {
  453. __m128i tmp, tmp1;
  454. tmp = __lsx_vsat_h(a, 7);
  455. tmp1 = __lsx_vsat_h(b, 7);
  456. return __lsx_vpickev_b(tmp1, tmp);
  457. }
  458. static __m128i lsx_packus_h(__m128i a, __m128i b) {
  459. __m128i tmp, tmp1;
  460. tmp = __lsx_vsat_hu(a, 7);
  461. tmp1 = __lsx_vsat_hu(b, 7);
  462. return __lsx_vpickev_b(tmp1, tmp);
  463. }
  464. static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
  465. __m128i tmp1, tmp2;
  466. tmp1 = __lsx_vmulwev_h_b(a, b);
  467. tmp2 = __lsx_vmulwod_h_b(a, b);
  468. return __lsx_vsadd_h(tmp1, tmp2);
  469. }
  470. static __m128i lsx_madd_h(__m128i a, __m128i b) {
  471. __m128i tmp1, tmp2;
  472. tmp1 = __lsx_vmulwev_w_h(a, b);
  473. tmp2 = __lsx_vmulwod_w_h(a, b);
  474. return __lsx_vadd_w(tmp1, tmp2);
  475. }
  476. // multiply int8_t, add results pairwise twice
  477. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  478. // Get absolute values of x vectors
  479. const __m128i ax = __lsx_vsigncov_b(x, x);
  480. // Sign the values of the y vectors
  481. const __m128i sy = __lsx_vsigncov_b(x, y);
  482. // Perform multiplication and create 16-bit values
  483. const __m128i dot = lsx_maddubs_h(ax, sy);
  484. const __m128i ones = __lsx_vreplgr2vr_h(1);
  485. return lsx_madd_h(ones, dot);
  486. }
  487. // horizontally add 8 floats
  488. static inline float hsum_float_8(const __m256 x) {
  489. __m128 res = lasx_extractf128(x, 1);
  490. ft_union tmp;
  491. res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
  492. res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
  493. res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
  494. tmp.i = __lsx_vpickve2gr_w(res, 0);
  495. return tmp.f;
  496. }
  497. // horizontally add 8 int32_t
  498. static inline int hsum_i32_8(const __m256i a) {
  499. __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11);
  500. __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00);
  501. __m128i tmp1_128 = lasx_extracti128_lo(tmp1);
  502. __m128i tmp2_128 = lasx_extracti128_lo(tmp2);
  503. __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128);
  504. __m128i ev = __lsx_vpickev_w(sum128, sum128);
  505. __m128i od = __lsx_vpickod_w(sum128, sum128);
  506. __m128i sum64 = __lsx_vadd_w(ev, od);
  507. int sum64_1, sum64_2;
  508. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  509. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  510. return sum64_1 + sum64_2;
  511. }
  512. // horizontally add 4 int32_t
  513. static inline int hsum_i32_4(const __m128i a) {
  514. __m128i ev = __lsx_vpickev_w(a, a);
  515. __m128i od = __lsx_vpickod_w(a, a);
  516. __m128i sum64 = __lsx_vadd_w(ev, od);
  517. int sum64_1, sum64_2;
  518. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  519. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  520. return sum64_1 + sum64_2;
  521. }
  522. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  523. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  524. uint32_t x32;
  525. memcpy(&x32, x, sizeof(uint32_t));
  526. const __m256i shuf_mask = lasx_set_d(
  527. 0x0303030303030303, 0x0202020202020202,
  528. 0x0101010101010101, 0x0000000000000000);
  529. __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask);
  530. const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe);
  531. bytes = __lasx_xvor_v(bytes, bit_mask);
  532. return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1));
  533. }
  534. // Unpack 32 4-bit fields into 32 bytes
  535. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  536. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  537. const __m128i lo = __lsx_vld((const __m128i *)rsi, 0);
  538. __m128i hi = __lsx_vsrli_h(lo, 4);
  539. return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf);
  540. }
  541. // add int16_t pairwise and return as float vector
  542. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  543. __m256i v = __lasx_xvpackod_h(x, x);
  544. __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v);
  545. return __lasx_xvffint_s_w(summed_pairs);
  546. }
  547. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  548. // Perform multiplication and create 16-bit values
  549. const __m256i dot = lasx_maddubs_h(ax, sy);
  550. return sum_i16_pairs_float(dot);
  551. }
  552. // multiply int8_t, add results pairwise twice and return as float vector
  553. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  554. // Get absolute values of x vectors
  555. const __m256i ax = __lasx_xvsigncov_b(x, x);
  556. // Sign the values of the y vectors
  557. const __m256i sy = __lasx_xvsigncov_b(x, y);
  558. return mul_sum_us8_pairs_float(ax, sy);
  559. }
  560. static inline __m128i packNibbles( __m256i bytes ) {
  561. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  562. const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF);
  563. __m256i high = __lasx_xvandn_v(lowByte, bytes);
  564. __m256i low = __lasx_xvand_v(lowByte, bytes);
  565. high = __lasx_xvsrli_h(high, 4);
  566. bytes = __lasx_xvor_v(low, high);
  567. // Compress uint16_t lanes into bytes
  568. __m128i *r0 = (__m128i *)&bytes;
  569. __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11);
  570. __m128i *r1 = (__m128i *)&tmp_h128;
  571. __m128i zero = __lsx_vldi(0);
  572. __m128i tmp, tmp2, tmp3;
  573. tmp = __lsx_vmax_h(zero, *r0);
  574. tmp2 = __lsx_vsat_hu(tmp, 7);
  575. tmp = __lsx_vmax_h(zero, *r1);
  576. tmp3 = __lsx_vsat_hu(tmp, 7);
  577. return __lsx_vpickev_b(tmp3, tmp2);
  578. }
  579. #endif //__loongarch_asx
  580. // reference implementation for deterministic creation of model files
  581. void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int64_t k) {
  582. static const int qk = QK4_0;
  583. assert(k % qk == 0);
  584. const int nb = k / qk;
  585. for (int i = 0; i < nb; i++) {
  586. float amax = 0.0f; // absolute max
  587. float max = 0.0f;
  588. for (int j = 0; j < qk; j++) {
  589. const float v = x[i*qk + j];
  590. if (amax < fabsf(v)) {
  591. amax = fabsf(v);
  592. max = v;
  593. }
  594. }
  595. const float d = max / -8;
  596. const float id = d ? 1.0f/d : 0.0f;
  597. y[i].d = GGML_FP32_TO_FP16(d);
  598. for (int j = 0; j < qk/2; ++j) {
  599. const float x0 = x[i*qk + 0 + j]*id;
  600. const float x1 = x[i*qk + qk/2 + j]*id;
  601. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  602. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  603. y[i].qs[j] = xi0;
  604. y[i].qs[j] |= xi1 << 4;
  605. }
  606. }
  607. }
  608. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  609. quantize_row_q4_0_reference(x, y, k);
  610. }
  611. void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int64_t k) {
  612. const int qk = QK4_1;
  613. assert(k % qk == 0);
  614. const int nb = k / qk;
  615. for (int i = 0; i < nb; i++) {
  616. float min = FLT_MAX;
  617. float max = -FLT_MAX;
  618. for (int j = 0; j < qk; j++) {
  619. const float v = x[i*qk + j];
  620. if (v < min) min = v;
  621. if (v > max) max = v;
  622. }
  623. const float d = (max - min) / ((1 << 4) - 1);
  624. const float id = d ? 1.0f/d : 0.0f;
  625. y[i].d = GGML_FP32_TO_FP16(d);
  626. y[i].m = GGML_FP32_TO_FP16(min);
  627. for (int j = 0; j < qk/2; ++j) {
  628. const float x0 = (x[i*qk + 0 + j] - min)*id;
  629. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  630. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  631. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  632. y[i].qs[j] = xi0;
  633. y[i].qs[j] |= xi1 << 4;
  634. }
  635. }
  636. }
  637. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  638. quantize_row_q4_1_reference(x, y, k);
  639. }
  640. void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int64_t k) {
  641. static const int qk = QK5_0;
  642. assert(k % qk == 0);
  643. const int nb = k / qk;
  644. for (int i = 0; i < nb; i++) {
  645. float amax = 0.0f; // absolute max
  646. float max = 0.0f;
  647. for (int j = 0; j < qk; j++) {
  648. const float v = x[i*qk + j];
  649. if (amax < fabsf(v)) {
  650. amax = fabsf(v);
  651. max = v;
  652. }
  653. }
  654. const float d = max / -16;
  655. const float id = d ? 1.0f/d : 0.0f;
  656. y[i].d = GGML_FP32_TO_FP16(d);
  657. uint32_t qh = 0;
  658. for (int j = 0; j < qk/2; ++j) {
  659. const float x0 = x[i*qk + 0 + j]*id;
  660. const float x1 = x[i*qk + qk/2 + j]*id;
  661. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  662. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  663. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  664. // get the 5-th bit and store it in qh at the right position
  665. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  666. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  667. }
  668. memcpy(&y[i].qh, &qh, sizeof(qh));
  669. }
  670. }
  671. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  672. quantize_row_q5_0_reference(x, y, k);
  673. }
  674. void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int64_t k) {
  675. const int qk = QK5_1;
  676. assert(k % qk == 0);
  677. const int nb = k / qk;
  678. for (int i = 0; i < nb; i++) {
  679. float min = FLT_MAX;
  680. float max = -FLT_MAX;
  681. for (int j = 0; j < qk; j++) {
  682. const float v = x[i*qk + j];
  683. if (v < min) min = v;
  684. if (v > max) max = v;
  685. }
  686. const float d = (max - min) / ((1 << 5) - 1);
  687. const float id = d ? 1.0f/d : 0.0f;
  688. y[i].d = GGML_FP32_TO_FP16(d);
  689. y[i].m = GGML_FP32_TO_FP16(min);
  690. uint32_t qh = 0;
  691. for (int j = 0; j < qk/2; ++j) {
  692. const float x0 = (x[i*qk + 0 + j] - min)*id;
  693. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  694. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  695. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  696. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  697. // get the 5-th bit and store it in qh at the right position
  698. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  699. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  700. }
  701. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  702. }
  703. }
  704. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  705. quantize_row_q5_1_reference(x, y, k);
  706. }
  707. // reference implementation for deterministic creation of model files
  708. void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int64_t k) {
  709. assert(k % QK8_0 == 0);
  710. const int nb = k / QK8_0;
  711. for (int i = 0; i < nb; i++) {
  712. float amax = 0.0f; // absolute max
  713. for (int j = 0; j < QK8_0; j++) {
  714. const float v = x[i*QK8_0 + j];
  715. amax = MAX(amax, fabsf(v));
  716. }
  717. const float d = amax / ((1 << 7) - 1);
  718. const float id = d ? 1.0f/d : 0.0f;
  719. y[i].d = GGML_FP32_TO_FP16(d);
  720. for (int j = 0; j < QK8_0; ++j) {
  721. const float x0 = x[i*QK8_0 + j]*id;
  722. y[i].qs[j] = roundf(x0);
  723. }
  724. }
  725. }
  726. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  727. assert(QK8_0 == 32);
  728. assert(k % QK8_0 == 0);
  729. const int nb = k / QK8_0;
  730. block_q8_0 * restrict y = vy;
  731. #if defined(__ARM_NEON)
  732. for (int i = 0; i < nb; i++) {
  733. float32x4_t srcv [8];
  734. float32x4_t asrcv[8];
  735. float32x4_t amaxv[8];
  736. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  737. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  738. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  739. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  740. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  741. const float amax = vmaxvq_f32(amaxv[0]);
  742. const float d = amax / ((1 << 7) - 1);
  743. const float id = d ? 1.0f/d : 0.0f;
  744. y[i].d = GGML_FP32_TO_FP16(d);
  745. for (int j = 0; j < 8; j++) {
  746. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  747. const int32x4_t vi = vcvtnq_s32_f32(v);
  748. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  749. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  750. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  751. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  752. }
  753. }
  754. #elif defined(__wasm_simd128__)
  755. for (int i = 0; i < nb; i++) {
  756. v128_t srcv [8];
  757. v128_t asrcv[8];
  758. v128_t amaxv[8];
  759. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  760. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  761. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  762. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  763. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  764. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  765. wasm_f32x4_extract_lane(amaxv[0], 1)),
  766. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  767. wasm_f32x4_extract_lane(amaxv[0], 3)));
  768. const float d = amax / ((1 << 7) - 1);
  769. const float id = d ? 1.0f/d : 0.0f;
  770. y[i].d = GGML_FP32_TO_FP16(d);
  771. for (int j = 0; j < 8; j++) {
  772. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  773. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  774. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  775. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  776. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  777. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  778. }
  779. }
  780. #elif defined(__AVX2__) || defined(__AVX__)
  781. for (int i = 0; i < nb; i++) {
  782. // Load elements into 4 AVX vectors
  783. __m256 v0 = _mm256_loadu_ps( x );
  784. __m256 v1 = _mm256_loadu_ps( x + 8 );
  785. __m256 v2 = _mm256_loadu_ps( x + 16 );
  786. __m256 v3 = _mm256_loadu_ps( x + 24 );
  787. x += 32;
  788. // Compute max(abs(e)) for the block
  789. const __m256 signBit = _mm256_set1_ps( -0.0f );
  790. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  791. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  792. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  793. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  794. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  795. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  796. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  797. const float maxScalar = _mm_cvtss_f32( max4 );
  798. // Quantize these floats
  799. const float d = maxScalar / 127.f;
  800. y[i].d = GGML_FP32_TO_FP16(d);
  801. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  802. const __m256 mul = _mm256_set1_ps( id );
  803. // Apply the multiplier
  804. v0 = _mm256_mul_ps( v0, mul );
  805. v1 = _mm256_mul_ps( v1, mul );
  806. v2 = _mm256_mul_ps( v2, mul );
  807. v3 = _mm256_mul_ps( v3, mul );
  808. // Round to nearest integer
  809. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  810. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  811. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  812. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  813. // Convert floats to integers
  814. __m256i i0 = _mm256_cvtps_epi32( v0 );
  815. __m256i i1 = _mm256_cvtps_epi32( v1 );
  816. __m256i i2 = _mm256_cvtps_epi32( v2 );
  817. __m256i i3 = _mm256_cvtps_epi32( v3 );
  818. #if defined(__AVX2__)
  819. // Convert int32 to int16
  820. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  821. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  822. // Convert int16 to int8
  823. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  824. // We got our precious signed bytes, but the order is now wrong
  825. // These AVX2 pack instructions process 16-byte pieces independently
  826. // The following instruction is fixing the order
  827. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  828. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  829. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  830. #else
  831. // Since we don't have in AVX some necessary functions,
  832. // we split the registers in half and call AVX2 analogs from SSE
  833. __m128i ni0 = _mm256_castsi256_si128( i0 );
  834. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  835. __m128i ni2 = _mm256_castsi256_si128( i1 );
  836. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  837. __m128i ni4 = _mm256_castsi256_si128( i2 );
  838. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  839. __m128i ni6 = _mm256_castsi256_si128( i3 );
  840. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  841. // Convert int32 to int16
  842. ni0 = _mm_packs_epi32( ni0, ni1 );
  843. ni2 = _mm_packs_epi32( ni2, ni3 );
  844. ni4 = _mm_packs_epi32( ni4, ni5 );
  845. ni6 = _mm_packs_epi32( ni6, ni7 );
  846. // Convert int16 to int8
  847. ni0 = _mm_packs_epi16( ni0, ni2 );
  848. ni4 = _mm_packs_epi16( ni4, ni6 );
  849. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  850. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  851. #endif
  852. }
  853. #elif defined(__riscv_v_intrinsic)
  854. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  855. for (int i = 0; i < nb; i++) {
  856. // load elements
  857. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  858. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  859. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  860. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  861. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = GGML_FP32_TO_FP16(d);
  865. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  866. // convert to integer
  867. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  868. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  869. // store result
  870. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  871. }
  872. #elif defined(__POWER9_VECTOR__)
  873. for (int i = 0; i < nb; i++) {
  874. vector float srcv [8];
  875. vector float asrcv[8];
  876. vector float amaxv[8];
  877. vector signed int vi[8];
  878. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  879. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  880. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  881. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  882. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  883. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  884. vec_extract(amaxv[0], 1)),
  885. MAX(vec_extract(amaxv[0], 2),
  886. vec_extract(amaxv[0], 3)));
  887. const float d = amax / ((1 << 7) - 1);
  888. const float id = d ? 1.0f/d : 0.0f;
  889. const vector float vid = vec_splats(id);
  890. y[i].d = GGML_FP32_TO_FP16(d);
  891. for (int j = 0; j < 8; j++) {
  892. const vector float v = vec_round(vec_mul(srcv[j], vid));
  893. vi[j] = vec_cts(v, 0);
  894. }
  895. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  896. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  897. }
  898. #elif defined(__loongarch_asx)
  899. for (int i = 0; i < nb; i++) {
  900. ft_union fi;
  901. __m256 v0 = (__m256)__lasx_xvld( x , 0);
  902. __m256 v1 = (__m256)__lasx_xvld( x , 32);
  903. __m256 v2 = (__m256)__lasx_xvld( x , 64);
  904. __m256 v3 = (__m256)__lasx_xvld( x , 96);
  905. x += 32;
  906. // Compute max(abs(e)) for the block
  907. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  908. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  909. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  910. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  911. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  912. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) );
  913. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  914. __m128 tmp = max4;
  915. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
  916. fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  917. const float max_scalar = fi.f;
  918. // Quantize these floats
  919. const float d = max_scalar / 127.f;
  920. y[i].d = GGML_FP32_TO_FP16(d);
  921. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  922. const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
  923. // Apply the multiplier
  924. v0 = __lasx_xvfmul_s( v0, mul );
  925. v1 = __lasx_xvfmul_s( v1, mul );
  926. v2 = __lasx_xvfmul_s( v2, mul );
  927. v3 = __lasx_xvfmul_s( v3, mul );
  928. // Round to nearest integer
  929. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  930. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  931. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  932. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  933. __m128i ni0 = lasx_extracti128( i0, 0 );
  934. __m128i ni1 = lasx_extracti128( i0, 1);
  935. __m128i ni2 = lasx_extracti128( i1, 0);
  936. __m128i ni3 = lasx_extracti128( i1, 1);
  937. __m128i ni4 = lasx_extracti128( i2, 0);
  938. __m128i ni5 = lasx_extracti128( i2, 1);
  939. __m128i ni6 = lasx_extracti128( i3, 0);
  940. __m128i ni7 = lasx_extracti128( i3, 1);
  941. // Convert int32 to int16
  942. ni0 = lsx_packs_w( ni0, ni1 );
  943. ni2 = lsx_packs_w( ni2, ni3 );
  944. ni4 = lsx_packs_w( ni4, ni5 );
  945. ni6 = lsx_packs_w( ni6, ni7 );
  946. // Convert int16 to int8
  947. ni0 = lsx_packs_h( ni0, ni2 );
  948. ni4 = lsx_packs_h( ni4, ni6 );
  949. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  950. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  951. }
  952. #else
  953. GGML_UNUSED(nb);
  954. // scalar
  955. quantize_row_q8_0_reference(x, y, k);
  956. #endif
  957. }
  958. // reference implementation for deterministic creation of model files
  959. void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int64_t k) {
  960. assert(QK8_1 == 32);
  961. assert(k % QK8_1 == 0);
  962. const int nb = k / QK8_1;
  963. for (int i = 0; i < nb; i++) {
  964. float amax = 0.0f; // absolute max
  965. for (int j = 0; j < QK8_1; j++) {
  966. const float v = x[i*QK8_1 + j];
  967. amax = MAX(amax, fabsf(v));
  968. }
  969. const float d = amax / ((1 << 7) - 1);
  970. const float id = d ? 1.0f/d : 0.0f;
  971. y[i].d = GGML_FP32_TO_FP16(d);
  972. int sum = 0;
  973. for (int j = 0; j < QK8_1/2; ++j) {
  974. const float v0 = x[i*QK8_1 + j]*id;
  975. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  976. y[i].qs[ j] = roundf(v0);
  977. y[i].qs[QK8_1/2 + j] = roundf(v1);
  978. sum += y[i].qs[ j];
  979. sum += y[i].qs[QK8_1/2 + j];
  980. }
  981. y[i].s = GGML_FP32_TO_FP16(sum*d);
  982. }
  983. }
  984. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  985. assert(k % QK8_1 == 0);
  986. const int nb = k / QK8_1;
  987. block_q8_1 * restrict y = vy;
  988. #if defined(__ARM_NEON)
  989. for (int i = 0; i < nb; i++) {
  990. float32x4_t srcv [8];
  991. float32x4_t asrcv[8];
  992. float32x4_t amaxv[8];
  993. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  994. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  995. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  996. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  997. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  998. const float amax = vmaxvq_f32(amaxv[0]);
  999. const float d = amax / ((1 << 7) - 1);
  1000. const float id = d ? 1.0f/d : 0.0f;
  1001. y[i].d = GGML_FP32_TO_FP16(d);
  1002. int32x4_t accv = vdupq_n_s32(0);
  1003. for (int j = 0; j < 8; j++) {
  1004. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1005. const int32x4_t vi = vcvtnq_s32_f32(v);
  1006. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1007. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1008. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1009. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1010. accv = vaddq_s32(accv, vi);
  1011. }
  1012. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  1013. }
  1014. #elif defined(__wasm_simd128__)
  1015. for (int i = 0; i < nb; i++) {
  1016. v128_t srcv [8];
  1017. v128_t asrcv[8];
  1018. v128_t amaxv[8];
  1019. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1020. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1021. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1022. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1023. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1024. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1025. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1026. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1027. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1028. const float d = amax / ((1 << 7) - 1);
  1029. const float id = d ? 1.0f/d : 0.0f;
  1030. y[i].d = GGML_FP32_TO_FP16(d);
  1031. v128_t accv = wasm_i32x4_splat(0);
  1032. for (int j = 0; j < 8; j++) {
  1033. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1034. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1035. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1036. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1037. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1038. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1039. accv = wasm_i32x4_add(accv, vi);
  1040. }
  1041. y[i].s = GGML_FP32_TO_FP16(
  1042. d * (wasm_i32x4_extract_lane(accv, 0) +
  1043. wasm_i32x4_extract_lane(accv, 1) +
  1044. wasm_i32x4_extract_lane(accv, 2) +
  1045. wasm_i32x4_extract_lane(accv, 3)));
  1046. }
  1047. #elif defined(__AVX2__) || defined(__AVX__)
  1048. for (int i = 0; i < nb; i++) {
  1049. // Load elements into 4 AVX vectors
  1050. __m256 v0 = _mm256_loadu_ps( x );
  1051. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1052. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1053. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1054. x += 32;
  1055. // Compute max(abs(e)) for the block
  1056. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1057. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1058. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1059. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1060. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1061. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1062. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1063. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1064. const float max_scalar = _mm_cvtss_f32( max4 );
  1065. // Quantize these floats
  1066. const float d = max_scalar / 127.f;
  1067. y[i].d = GGML_FP32_TO_FP16(d);
  1068. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1069. const __m256 mul = _mm256_set1_ps( id );
  1070. // Apply the multiplier
  1071. v0 = _mm256_mul_ps( v0, mul );
  1072. v1 = _mm256_mul_ps( v1, mul );
  1073. v2 = _mm256_mul_ps( v2, mul );
  1074. v3 = _mm256_mul_ps( v3, mul );
  1075. // Round to nearest integer
  1076. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1077. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1078. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1079. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1080. // Convert floats to integers
  1081. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1082. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1083. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1084. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1085. #if defined(__AVX2__)
  1086. // Compute the sum of the quants and set y[i].s
  1087. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  1088. // Convert int32 to int16
  1089. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1090. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1091. // Convert int16 to int8
  1092. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1093. // We got our precious signed bytes, but the order is now wrong
  1094. // These AVX2 pack instructions process 16-byte pieces independently
  1095. // The following instruction is fixing the order
  1096. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1097. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1098. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1099. #else
  1100. // Since we don't have in AVX some necessary functions,
  1101. // we split the registers in half and call AVX2 analogs from SSE
  1102. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1103. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1104. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1105. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1106. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1107. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1108. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1109. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1110. // Compute the sum of the quants and set y[i].s
  1111. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1112. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1113. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  1114. // Convert int32 to int16
  1115. ni0 = _mm_packs_epi32( ni0, ni1 );
  1116. ni2 = _mm_packs_epi32( ni2, ni3 );
  1117. ni4 = _mm_packs_epi32( ni4, ni5 );
  1118. ni6 = _mm_packs_epi32( ni6, ni7 );
  1119. // Convert int16 to int8
  1120. ni0 = _mm_packs_epi16( ni0, ni2 );
  1121. ni4 = _mm_packs_epi16( ni4, ni6 );
  1122. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1123. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1124. #endif
  1125. }
  1126. #elif defined(__riscv_v_intrinsic)
  1127. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1128. for (int i = 0; i < nb; i++) {
  1129. // load elements
  1130. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1131. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1132. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1133. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1134. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1135. const float d = amax / ((1 << 7) - 1);
  1136. const float id = d ? 1.0f/d : 0.0f;
  1137. y[i].d = GGML_FP32_TO_FP16(d);
  1138. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1139. // convert to integer
  1140. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1141. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1142. // store result
  1143. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1144. // compute sum for y[i].s
  1145. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1146. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1147. // set y[i].s
  1148. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1149. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1150. }
  1151. #elif defined(__POWER9_VECTOR__)
  1152. for (int i = 0; i < nb; i++) {
  1153. vector float srcv [8];
  1154. vector float asrcv[8];
  1155. vector float amaxv[8];
  1156. vector signed int vi[8];
  1157. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  1158. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  1159. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  1160. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  1161. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  1162. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  1163. vec_extract(amaxv[0], 1)),
  1164. MAX(vec_extract(amaxv[0], 2),
  1165. vec_extract(amaxv[0], 3)));
  1166. const float d = amax / ((1 << 7) - 1);
  1167. const float id = d ? 1.0f/d : 0.0f;
  1168. const vector float vid = vec_splats(id);
  1169. y[i].d = GGML_FP32_TO_FP16(d);
  1170. vector int accv = vec_splats(0);
  1171. for (int j = 0; j < 8; j++) {
  1172. const vector float v = vec_round(vec_mul(srcv[j], vid));
  1173. vi[j] = vec_cts(v, 0);
  1174. accv = vec_add(accv, vi[j]);
  1175. }
  1176. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  1177. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  1178. accv = vec_add(accv, vec_sld(accv, accv, 4));
  1179. accv = vec_add(accv, vec_sld(accv, accv, 8));
  1180. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  1181. }
  1182. #elif defined(__loongarch_asx)
  1183. for (int i = 0; i < nb; i++) {
  1184. ft_union ft;
  1185. __m256 v0 = (__m256)__lasx_xvld( x , 0 );
  1186. __m256 v1 = (__m256)__lasx_xvld( x , 32 );
  1187. __m256 v2 = (__m256)__lasx_xvld( x , 64 );
  1188. __m256 v3 = (__m256)__lasx_xvld( x , 96 );
  1189. x += 32;
  1190. // Compute max(abs(e)) for the block
  1191. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  1192. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  1193. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  1194. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  1195. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  1196. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
  1197. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  1198. __m128 tmp = max4;
  1199. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
  1200. ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  1201. const float max_scalar = ft.f;
  1202. // Quantize these floats
  1203. const float d = max_scalar / 127.f;
  1204. y[i].d = GGML_FP32_TO_FP16(d);
  1205. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1206. const __m256 mul = __lasx_xvreplfr2vr_s( id );
  1207. // Apply the multiplier
  1208. v0 = __lasx_xvfmul_s( v0, mul );
  1209. v1 = __lasx_xvfmul_s( v1, mul );
  1210. v2 = __lasx_xvfmul_s( v2, mul );
  1211. v3 = __lasx_xvfmul_s( v3, mul );
  1212. // Round to nearest integer
  1213. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  1214. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  1215. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  1216. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  1217. __m128i ni0 = lasx_extracti128(i0, 0);
  1218. __m128i ni1 = lasx_extracti128( i0, 1);
  1219. __m128i ni2 = lasx_extracti128( i1, 0);
  1220. __m128i ni3 = lasx_extracti128( i1, 1);
  1221. __m128i ni4 = lasx_extracti128( i2, 0 );
  1222. __m128i ni5 = lasx_extracti128( i2, 1);
  1223. __m128i ni6 = lasx_extracti128( i3, 0);
  1224. __m128i ni7 = lasx_extracti128( i3, 1);
  1225. // Compute the sum of the quants and set y[i].s
  1226. const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
  1227. const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
  1228. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
  1229. // Convert int32 to int16
  1230. ni0 = lsx_packs_w( ni0, ni1 );
  1231. ni2 = lsx_packs_w( ni2, ni3 );
  1232. ni4 = lsx_packs_w( ni4, ni5 );
  1233. ni6 = lsx_packs_w( ni6, ni7 );
  1234. // Convert int16 to int8
  1235. ni0 = lsx_packs_h( ni0, ni2 );
  1236. ni4 = lsx_packs_h( ni4, ni6 );
  1237. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  1238. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  1239. }
  1240. #else
  1241. GGML_UNUSED(nb);
  1242. // scalar
  1243. quantize_row_q8_1_reference(x, y, k);
  1244. #endif
  1245. }
  1246. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int64_t k) {
  1247. static const int qk = QK4_0;
  1248. assert(k % qk == 0);
  1249. const int nb = k / qk;
  1250. for (int i = 0; i < nb; i++) {
  1251. const float d = GGML_FP16_TO_FP32(x[i].d);
  1252. for (int j = 0; j < qk/2; ++j) {
  1253. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1254. const int x1 = (x[i].qs[j] >> 4) - 8;
  1255. y[i*qk + j + 0 ] = x0*d;
  1256. y[i*qk + j + qk/2] = x1*d;
  1257. }
  1258. }
  1259. }
  1260. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int64_t k) {
  1261. static const int qk = QK4_1;
  1262. assert(k % qk == 0);
  1263. const int nb = k / qk;
  1264. for (int i = 0; i < nb; i++) {
  1265. const float d = GGML_FP16_TO_FP32(x[i].d);
  1266. const float m = GGML_FP16_TO_FP32(x[i].m);
  1267. for (int j = 0; j < qk/2; ++j) {
  1268. const int x0 = (x[i].qs[j] & 0x0F);
  1269. const int x1 = (x[i].qs[j] >> 4);
  1270. y[i*qk + j + 0 ] = x0*d + m;
  1271. y[i*qk + j + qk/2] = x1*d + m;
  1272. }
  1273. }
  1274. }
  1275. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int64_t k) {
  1276. static const int qk = QK5_0;
  1277. assert(k % qk == 0);
  1278. const int nb = k / qk;
  1279. for (int i = 0; i < nb; i++) {
  1280. const float d = GGML_FP16_TO_FP32(x[i].d);
  1281. uint32_t qh;
  1282. memcpy(&qh, x[i].qh, sizeof(qh));
  1283. for (int j = 0; j < qk/2; ++j) {
  1284. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1285. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1286. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1287. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1288. y[i*qk + j + 0 ] = x0*d;
  1289. y[i*qk + j + qk/2] = x1*d;
  1290. }
  1291. }
  1292. }
  1293. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int64_t k) {
  1294. static const int qk = QK5_1;
  1295. assert(k % qk == 0);
  1296. const int nb = k / qk;
  1297. for (int i = 0; i < nb; i++) {
  1298. const float d = GGML_FP16_TO_FP32(x[i].d);
  1299. const float m = GGML_FP16_TO_FP32(x[i].m);
  1300. uint32_t qh;
  1301. memcpy(&qh, x[i].qh, sizeof(qh));
  1302. for (int j = 0; j < qk/2; ++j) {
  1303. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1304. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1305. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1306. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1307. y[i*qk + j + 0 ] = x0*d + m;
  1308. y[i*qk + j + qk/2] = x1*d + m;
  1309. }
  1310. }
  1311. }
  1312. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int64_t k) {
  1313. static const int qk = QK8_0;
  1314. assert(k % qk == 0);
  1315. const int nb = k / qk;
  1316. for (int i = 0; i < nb; i++) {
  1317. const float d = GGML_FP16_TO_FP32(x[i].d);
  1318. for (int j = 0; j < qk; ++j) {
  1319. y[i*qk + j] = x[i].qs[j]*d;
  1320. }
  1321. }
  1322. }
  1323. //
  1324. // 2-6 bit quantization in super-blocks
  1325. //
  1326. //
  1327. // ===================== Helper functions
  1328. //
  1329. static inline int nearest_int(float fval) {
  1330. assert(fval <= 4194303.f);
  1331. float val = fval + 12582912.f;
  1332. int i; memcpy(&i, &val, sizeof(int));
  1333. return (i & 0x007fffff) - 0x00400000;
  1334. }
  1335. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1336. const float * restrict qw) {
  1337. float max = 0;
  1338. float amax = 0;
  1339. for (int i = 0; i < n; ++i) {
  1340. float ax = fabsf(x[i]);
  1341. if (ax > amax) { amax = ax; max = x[i]; }
  1342. }
  1343. if (amax < GROUP_MAX_EPS) { // all zero
  1344. for (int i = 0; i < n; ++i) {
  1345. L[i] = 0;
  1346. }
  1347. return 0.f;
  1348. }
  1349. float iscale = -nmax / max;
  1350. if (rmse_type == 0) {
  1351. for (int i = 0; i < n; ++i) {
  1352. int l = nearest_int(iscale * x[i]);
  1353. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1354. }
  1355. return 1/iscale;
  1356. }
  1357. bool return_early = false;
  1358. if (rmse_type < 0) {
  1359. rmse_type = -rmse_type;
  1360. return_early = true;
  1361. }
  1362. float sumlx = 0;
  1363. float suml2 = 0;
  1364. #ifdef HAVE_BUGGY_APPLE_LINKER
  1365. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1366. for (volatile int i = 0; i < n; ++i) {
  1367. #else
  1368. for (int i = 0; i < n; ++i) {
  1369. #endif
  1370. int l = nearest_int(iscale * x[i]);
  1371. l = MAX(-nmax, MIN(nmax-1, l));
  1372. L[i] = l + nmax;
  1373. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1374. sumlx += w*x[i]*l;
  1375. suml2 += w*l*l;
  1376. }
  1377. float scale = suml2 ? sumlx/suml2 : 0.0f;
  1378. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1379. float best = scale * sumlx;
  1380. for (int is = -9; is <= 9; ++is) {
  1381. if (is == 0) {
  1382. continue;
  1383. }
  1384. iscale = -(nmax + 0.1f*is) / max;
  1385. sumlx = suml2 = 0;
  1386. for (int i = 0; i < n; ++i) {
  1387. int l = nearest_int(iscale * x[i]);
  1388. l = MAX(-nmax, MIN(nmax-1, l));
  1389. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1390. sumlx += w*x[i]*l;
  1391. suml2 += w*l*l;
  1392. }
  1393. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1394. for (int i = 0; i < n; ++i) {
  1395. int l = nearest_int(iscale * x[i]);
  1396. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1397. }
  1398. scale = sumlx/suml2; best = scale*sumlx;
  1399. }
  1400. }
  1401. return scale;
  1402. }
  1403. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1404. float max = 0;
  1405. float amax = 0;
  1406. for (int i = 0; i < n; ++i) {
  1407. float ax = fabsf(x[i]);
  1408. if (ax > amax) { amax = ax; max = x[i]; }
  1409. }
  1410. if (amax < GROUP_MAX_EPS) { // all zero
  1411. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1412. return 0.f;
  1413. }
  1414. float iscale = -nmax / max;
  1415. if (do_rmse) {
  1416. float sumlx = 0;
  1417. float suml2 = 0;
  1418. for (int i = 0; i < n; ++i) {
  1419. int l = nearest_int(iscale * x[i]);
  1420. l = MAX(-nmax, MIN(nmax-1, l));
  1421. L[i] = l;
  1422. float w = x[i]*x[i];
  1423. sumlx += w*x[i]*l;
  1424. suml2 += w*l*l;
  1425. }
  1426. for (int itry = 0; itry < 5; ++itry) {
  1427. int n_changed = 0;
  1428. for (int i = 0; i < n; ++i) {
  1429. float w = x[i]*x[i];
  1430. float slx = sumlx - w*x[i]*L[i];
  1431. if (slx > 0) {
  1432. float sl2 = suml2 - w*L[i]*L[i];
  1433. int new_l = nearest_int(x[i] * sl2 / slx);
  1434. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1435. if (new_l != L[i]) {
  1436. slx += w*x[i]*new_l;
  1437. sl2 += w*new_l*new_l;
  1438. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1439. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1440. ++n_changed;
  1441. }
  1442. }
  1443. }
  1444. }
  1445. if (!n_changed) {
  1446. break;
  1447. }
  1448. }
  1449. for (int i = 0; i < n; ++i) {
  1450. L[i] += nmax;
  1451. }
  1452. return sumlx / suml2;
  1453. }
  1454. for (int i = 0; i < n; ++i) {
  1455. int l = nearest_int(iscale * x[i]);
  1456. l = MAX(-nmax, MIN(nmax-1, l));
  1457. L[i] = l + nmax;
  1458. }
  1459. return 1/iscale;
  1460. }
  1461. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1462. int ntry, float alpha) {
  1463. float min = x[0];
  1464. float max = x[0];
  1465. for (int i = 1; i < n; ++i) {
  1466. if (x[i] < min) min = x[i];
  1467. if (x[i] > max) max = x[i];
  1468. }
  1469. if (max == min) {
  1470. for (int i = 0; i < n; ++i) L[i] = 0;
  1471. *the_min = 0;
  1472. return 0.f;
  1473. }
  1474. if (min > 0) min = 0;
  1475. float iscale = nmax/(max - min);
  1476. float scale = 1/iscale;
  1477. for (int itry = 0; itry < ntry; ++itry) {
  1478. float sumlx = 0; int suml2 = 0;
  1479. bool did_change = false;
  1480. for (int i = 0; i < n; ++i) {
  1481. int l = nearest_int(iscale*(x[i] - min));
  1482. l = MAX(0, MIN(nmax, l));
  1483. if (l != L[i]) {
  1484. L[i] = l;
  1485. did_change = true;
  1486. }
  1487. sumlx += (x[i] - min)*l;
  1488. suml2 += l*l;
  1489. }
  1490. scale = sumlx/suml2;
  1491. float sum = 0;
  1492. for (int i = 0; i < n; ++i) {
  1493. sum += x[i] - scale*L[i];
  1494. }
  1495. min = alpha*min + (1 - alpha)*sum/n;
  1496. if (min > 0) min = 0;
  1497. iscale = 1/scale;
  1498. if (!did_change) break;
  1499. }
  1500. *the_min = -min;
  1501. return scale;
  1502. }
  1503. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1504. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1505. float rmin, float rdelta, int nstep, bool use_mad) {
  1506. float min = x[0];
  1507. float max = x[0];
  1508. float sum_w = weights[0];
  1509. float sum_x = sum_w * x[0];
  1510. #ifdef HAVE_BUGGY_APPLE_LINKER
  1511. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1512. for (volatile int i = 1; i < n; ++i) {
  1513. #else
  1514. for (int i = 1; i < n; ++i) {
  1515. #endif
  1516. if (x[i] < min) min = x[i];
  1517. if (x[i] > max) max = x[i];
  1518. float w = weights[i];
  1519. sum_w += w;
  1520. sum_x += w * x[i];
  1521. }
  1522. if (min > 0) min = 0;
  1523. if (max == min) {
  1524. for (int i = 0; i < n; ++i) L[i] = 0;
  1525. *the_min = -min;
  1526. return 0.f;
  1527. }
  1528. float iscale = nmax/(max - min);
  1529. float scale = 1/iscale;
  1530. float best_mad = 0;
  1531. for (int i = 0; i < n; ++i) {
  1532. int l = nearest_int(iscale*(x[i] - min));
  1533. L[i] = MAX(0, MIN(nmax, l));
  1534. float diff = scale * L[i] + min - x[i];
  1535. diff = use_mad ? fabsf(diff) : diff * diff;
  1536. float w = weights[i];
  1537. best_mad += w * diff;
  1538. }
  1539. if (nstep < 1) {
  1540. *the_min = -min;
  1541. return scale;
  1542. }
  1543. for (int is = 0; is <= nstep; ++is) {
  1544. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1545. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1546. for (int i = 0; i < n; ++i) {
  1547. int l = nearest_int(iscale*(x[i] - min));
  1548. l = MAX(0, MIN(nmax, l));
  1549. Laux[i] = l;
  1550. float w = weights[i];
  1551. sum_l += w*l;
  1552. sum_l2 += w*l*l;
  1553. sum_xl += w*l*x[i];
  1554. }
  1555. float D = sum_w * sum_l2 - sum_l * sum_l;
  1556. if (D > 0) {
  1557. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1558. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1559. if (this_min > 0) {
  1560. this_min = 0;
  1561. this_scale = sum_xl / sum_l2;
  1562. }
  1563. float mad = 0;
  1564. for (int i = 0; i < n; ++i) {
  1565. float diff = this_scale * Laux[i] + this_min - x[i];
  1566. diff = use_mad ? fabsf(diff) : diff * diff;
  1567. float w = weights[i];
  1568. mad += w * diff;
  1569. }
  1570. if (mad < best_mad) {
  1571. for (int i = 0; i < n; ++i) {
  1572. L[i] = Laux[i];
  1573. }
  1574. best_mad = mad;
  1575. scale = this_scale;
  1576. min = this_min;
  1577. }
  1578. }
  1579. }
  1580. *the_min = -min;
  1581. return scale;
  1582. }
  1583. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1584. if (j < 4) {
  1585. *d = q[j] & 63; *m = q[j + 4] & 63;
  1586. } else {
  1587. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1588. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1589. }
  1590. }
  1591. //========================- 2-bit (de)-quantization
  1592. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int64_t k) {
  1593. assert(k % QK_K == 0);
  1594. const int nb = k / QK_K;
  1595. uint8_t L[QK_K];
  1596. uint8_t Laux[16];
  1597. float weights[16];
  1598. float mins[QK_K/16];
  1599. float scales[QK_K/16];
  1600. const float q4scale = 15.f;
  1601. for (int i = 0; i < nb; i++) {
  1602. float max_scale = 0; // as we are deducting the min, scales are always positive
  1603. float max_min = 0;
  1604. for (int j = 0; j < QK_K/16; ++j) {
  1605. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1606. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1607. float scale = scales[j];
  1608. if (scale > max_scale) {
  1609. max_scale = scale;
  1610. }
  1611. float min = mins[j];
  1612. if (min > max_min) {
  1613. max_min = min;
  1614. }
  1615. }
  1616. if (max_scale > 0) {
  1617. float iscale = q4scale/max_scale;
  1618. for (int j = 0; j < QK_K/16; ++j) {
  1619. int l = nearest_int(iscale*scales[j]);
  1620. y[i].scales[j] = l;
  1621. }
  1622. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1623. } else {
  1624. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1625. y[i].d = GGML_FP32_TO_FP16(0.f);
  1626. }
  1627. if (max_min > 0) {
  1628. float iscale = q4scale/max_min;
  1629. for (int j = 0; j < QK_K/16; ++j) {
  1630. int l = nearest_int(iscale*mins[j]);
  1631. y[i].scales[j] |= (l << 4);
  1632. }
  1633. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1634. } else {
  1635. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1636. }
  1637. for (int j = 0; j < QK_K/16; ++j) {
  1638. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1639. if (!d) continue;
  1640. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1641. for (int ii = 0; ii < 16; ++ii) {
  1642. int l = nearest_int((x[16*j + ii] + dm)/d);
  1643. l = MAX(0, MIN(3, l));
  1644. L[16*j + ii] = l;
  1645. }
  1646. }
  1647. for (int j = 0; j < QK_K; j += 128) {
  1648. for (int l = 0; l < 32; ++l) {
  1649. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1650. }
  1651. }
  1652. x += QK_K;
  1653. }
  1654. }
  1655. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int64_t k) {
  1656. assert(k % QK_K == 0);
  1657. const int nb = k / QK_K;
  1658. for (int i = 0; i < nb; i++) {
  1659. const float d = GGML_FP16_TO_FP32(x[i].d);
  1660. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1661. const uint8_t * q = x[i].qs;
  1662. int is = 0;
  1663. float dl, ml;
  1664. for (int n = 0; n < QK_K; n += 128) {
  1665. int shift = 0;
  1666. for (int j = 0; j < 4; ++j) {
  1667. uint8_t sc = x[i].scales[is++];
  1668. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1669. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1670. sc = x[i].scales[is++];
  1671. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1672. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1673. shift += 2;
  1674. }
  1675. q += 32;
  1676. }
  1677. }
  1678. }
  1679. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1680. quantize_row_q2_K_reference(x, vy, k);
  1681. }
  1682. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1683. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1684. float rmin, float rdelta, int nstep, bool use_mad) {
  1685. float min = x[0];
  1686. float max = x[0];
  1687. float sum_w = weights ? weights[0] : x[0]*x[0];
  1688. float sum_x = sum_w * x[0];
  1689. #ifdef HAVE_BUGGY_APPLE_LINKER
  1690. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1691. for (volatile int i = 1; i < n; ++i) {
  1692. #else
  1693. for (int i = 1; i < n; ++i) {
  1694. #endif
  1695. if (x[i] < min) min = x[i];
  1696. if (x[i] > max) max = x[i];
  1697. float w = weights ? weights[i] : x[i]*x[i];
  1698. sum_w += w;
  1699. sum_x += w * x[i];
  1700. }
  1701. if (min > 0) {
  1702. min = 0;
  1703. }
  1704. if (max <= min) {
  1705. memset(L, 0, n);
  1706. *the_min = -min;
  1707. return 0.f;
  1708. }
  1709. float iscale = nmax/(max - min);
  1710. float scale = 1/iscale;
  1711. float best_mad = 0;
  1712. for (int i = 0; i < n; ++i) {
  1713. int l = nearest_int(iscale*(x[i] - min));
  1714. L[i] = MAX(0, MIN(nmax, l));
  1715. float diff = scale * L[i] + min - x[i];
  1716. diff = use_mad ? fabsf(diff) : diff*diff;
  1717. float w = weights ? weights[i] : x[i]*x[i];
  1718. best_mad += w * diff;
  1719. }
  1720. if (nstep < 1) {
  1721. *the_min = -min;
  1722. return scale;
  1723. }
  1724. for (int is = 0; is <= nstep; ++is) {
  1725. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1726. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1727. for (int i = 0; i < n; ++i) {
  1728. int l = nearest_int(iscale*(x[i] - min));
  1729. l = MAX(0, MIN(nmax, l));
  1730. Laux[i] = l;
  1731. float w = weights ? weights[i] : x[i]*x[i];
  1732. sum_l += w*l;
  1733. sum_l2 += w*l*l;
  1734. sum_xl += w*l*x[i];
  1735. }
  1736. float D = sum_w * sum_l2 - sum_l * sum_l;
  1737. if (D > 0) {
  1738. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1739. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1740. if (this_min > 0) {
  1741. this_min = 0;
  1742. this_scale = sum_xl / sum_l2;
  1743. }
  1744. float mad = 0;
  1745. for (int i = 0; i < n; ++i) {
  1746. float diff = this_scale * Laux[i] + this_min - x[i];
  1747. diff = use_mad ? fabsf(diff) : diff*diff;
  1748. float w = weights ? weights[i] : x[i]*x[i];
  1749. mad += w * diff;
  1750. }
  1751. if (mad < best_mad) {
  1752. for (int i = 0; i < n; ++i) {
  1753. L[i] = Laux[i];
  1754. }
  1755. best_mad = mad;
  1756. scale = this_scale;
  1757. min = this_min;
  1758. }
  1759. }
  1760. }
  1761. *the_min = -min;
  1762. return scale;
  1763. }
  1764. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1765. float max = 0;
  1766. for (int i = 0; i < n; ++i) {
  1767. max = MAX(max, x[i]);
  1768. }
  1769. if (!max) { // all zero
  1770. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1771. return 0.f;
  1772. }
  1773. float iscale = nmax / max;
  1774. for (int i = 0; i < n; ++i) {
  1775. L[i] = nearest_int(iscale * x[i]);
  1776. }
  1777. float scale = 1/iscale;
  1778. float best_mse = 0;
  1779. for (int i = 0; i < n; ++i) {
  1780. float diff = x[i] - scale*L[i];
  1781. float w = quant_weights[i];
  1782. best_mse += w*diff*diff;
  1783. }
  1784. for (int is = -4; is <= 4; ++is) {
  1785. if (is == 0) continue;
  1786. float iscale_is = (0.1f*is + nmax)/max;
  1787. float scale_is = 1/iscale_is;
  1788. float mse = 0;
  1789. for (int i = 0; i < n; ++i) {
  1790. int l = nearest_int(iscale_is*x[i]);
  1791. l = MIN(nmax, l);
  1792. float diff = x[i] - scale_is*l;
  1793. float w = quant_weights[i];
  1794. mse += w*diff*diff;
  1795. }
  1796. if (mse < best_mse) {
  1797. best_mse = mse;
  1798. iscale = iscale_is;
  1799. }
  1800. }
  1801. float sumlx = 0;
  1802. float suml2 = 0;
  1803. for (int i = 0; i < n; ++i) {
  1804. int l = nearest_int(iscale * x[i]);
  1805. l = MIN(nmax, l);
  1806. L[i] = l;
  1807. float w = quant_weights[i];
  1808. sumlx += w*x[i]*l;
  1809. suml2 += w*l*l;
  1810. }
  1811. for (int itry = 0; itry < 5; ++itry) {
  1812. int n_changed = 0;
  1813. for (int i = 0; i < n; ++i) {
  1814. float w = quant_weights[i];
  1815. float slx = sumlx - w*x[i]*L[i];
  1816. float sl2 = suml2 - w*L[i]*L[i];
  1817. if (slx > 0 && sl2 > 0) {
  1818. int new_l = nearest_int(x[i] * sl2 / slx);
  1819. new_l = MIN(nmax, new_l);
  1820. if (new_l != L[i]) {
  1821. slx += w*x[i]*new_l;
  1822. sl2 += w*new_l*new_l;
  1823. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1824. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1825. ++n_changed;
  1826. }
  1827. }
  1828. }
  1829. }
  1830. if (!n_changed) {
  1831. break;
  1832. }
  1833. }
  1834. return sumlx/suml2;
  1835. }
  1836. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1837. GGML_ASSERT(quant_weights);
  1838. assert(k % QK_K == 0);
  1839. const int nb = k / QK_K;
  1840. const bool requantize = true;
  1841. uint8_t L[QK_K];
  1842. uint8_t Laux[16];
  1843. float mins[QK_K/16];
  1844. float scales[QK_K/16];
  1845. float sw[QK_K/16];
  1846. float weight[16];
  1847. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1848. for (int i = 0; i < nb; i++) {
  1849. memset(sw, 0, QK_K/16*sizeof(float));
  1850. float sumx2 = 0;
  1851. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1852. float sigma2 = sumx2/QK_K;
  1853. for (int j = 0; j < QK_K/16; ++j) {
  1854. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1855. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1856. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1857. scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1858. }
  1859. float dm, mm;
  1860. dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1861. mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1862. y[i].d = GGML_FP32_TO_FP16(dm);
  1863. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1864. dm = GGML_FP16_TO_FP32(y[i].d);
  1865. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1866. for (int j = 0; j < QK_K/16; ++j) {
  1867. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1868. }
  1869. if (requantize) {
  1870. for (int j = 0; j < QK_K/16; ++j) {
  1871. const float d = dm * (y[i].scales[j] & 0xF);
  1872. if (!d) continue;
  1873. const float m = mm * (y[i].scales[j] >> 4);
  1874. for (int ii = 0; ii < 16; ++ii) {
  1875. int l = nearest_int((x[16*j + ii] + m)/d);
  1876. l = MAX(0, MIN(3, l));
  1877. L[16*j + ii] = l;
  1878. }
  1879. }
  1880. }
  1881. for (int j = 0; j < QK_K; j += 128) {
  1882. for (int l = 0; l < 32; ++l) {
  1883. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1884. }
  1885. }
  1886. x += QK_K;
  1887. }
  1888. }
  1889. size_t quantize_q2_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  1890. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1891. if (!quant_weights) {
  1892. quantize_row_q2_K_reference(src, dst, (int64_t)nrow*n_per_row);
  1893. }
  1894. else {
  1895. char * qrow = (char *)dst;
  1896. for (int64_t row = 0; row < nrow; ++row) {
  1897. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1898. src += n_per_row;
  1899. qrow += row_size;
  1900. }
  1901. }
  1902. return nrow * row_size;
  1903. }
  1904. //========================= 3-bit (de)-quantization
  1905. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int64_t k) {
  1906. assert(k % QK_K == 0);
  1907. const int nb = k / QK_K;
  1908. int8_t L[QK_K];
  1909. float scales[QK_K / 16];
  1910. for (int i = 0; i < nb; i++) {
  1911. float max_scale = 0;
  1912. float amax = 0;
  1913. for (int j = 0; j < QK_K/16; ++j) {
  1914. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1915. float scale = fabsf(scales[j]);
  1916. if (scale > amax) {
  1917. amax = scale; max_scale = scales[j];
  1918. }
  1919. }
  1920. memset(y[i].scales, 0, 12);
  1921. if (max_scale) {
  1922. float iscale = -32.f/max_scale;
  1923. for (int j = 0; j < QK_K/16; ++j) {
  1924. int8_t l = nearest_int(iscale*scales[j]);
  1925. l = MAX(-32, MIN(31, l)) + 32;
  1926. if (j < 8) {
  1927. y[i].scales[j] = l & 0xF;
  1928. } else {
  1929. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1930. }
  1931. l >>= 4;
  1932. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1933. }
  1934. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1935. } else {
  1936. y[i].d = GGML_FP32_TO_FP16(0.f);
  1937. }
  1938. int8_t sc;
  1939. for (int j = 0; j < QK_K/16; ++j) {
  1940. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1941. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1942. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1943. if (!d) {
  1944. continue;
  1945. }
  1946. for (int ii = 0; ii < 16; ++ii) {
  1947. int l = nearest_int(x[16*j + ii]/d);
  1948. l = MAX(-4, MIN(3, l));
  1949. L[16*j + ii] = l + 4;
  1950. }
  1951. }
  1952. memset(y[i].hmask, 0, QK_K/8);
  1953. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1954. int m = 0;
  1955. uint8_t hm = 1;
  1956. for (int j = 0; j < QK_K; ++j) {
  1957. if (L[j] > 3) {
  1958. y[i].hmask[m] |= hm;
  1959. L[j] -= 4;
  1960. }
  1961. if (++m == QK_K/8) {
  1962. m = 0; hm <<= 1;
  1963. }
  1964. }
  1965. for (int j = 0; j < QK_K; j += 128) {
  1966. for (int l = 0; l < 32; ++l) {
  1967. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1968. }
  1969. }
  1970. x += QK_K;
  1971. }
  1972. }
  1973. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) {
  1974. assert(k % QK_K == 0);
  1975. const int nb = k / QK_K;
  1976. const uint32_t kmask1 = 0x03030303;
  1977. const uint32_t kmask2 = 0x0f0f0f0f;
  1978. uint32_t aux[4];
  1979. const int8_t * scales = (const int8_t*)aux;
  1980. for (int i = 0; i < nb; i++) {
  1981. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1982. const uint8_t * restrict q = x[i].qs;
  1983. const uint8_t * restrict hm = x[i].hmask;
  1984. uint8_t m = 1;
  1985. memcpy(aux, x[i].scales, 12);
  1986. uint32_t tmp = aux[2];
  1987. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1988. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1989. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1990. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1991. int is = 0;
  1992. float dl;
  1993. for (int n = 0; n < QK_K; n += 128) {
  1994. int shift = 0;
  1995. for (int j = 0; j < 4; ++j) {
  1996. dl = d_all * (scales[is++] - 32);
  1997. for (int l = 0; l < 16; ++l) {
  1998. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  1999. }
  2000. dl = d_all * (scales[is++] - 32);
  2001. for (int l = 0; l < 16; ++l) {
  2002. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  2003. }
  2004. shift += 2;
  2005. m <<= 1;
  2006. }
  2007. q += 32;
  2008. }
  2009. }
  2010. }
  2011. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  2012. quantize_row_q3_K_reference(x, vy, k);
  2013. }
  2014. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) {
  2015. assert(n_per_row % QK_K == 0);
  2016. const int nb = n_per_row / QK_K;
  2017. int8_t L[QK_K];
  2018. float scales[QK_K / 16];
  2019. float weight[16];
  2020. float sw[QK_K / 16];
  2021. int8_t Ls[QK_K / 16];
  2022. for (int i = 0; i < nb; i++) {
  2023. float sumx2 = 0;
  2024. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  2025. float sigma2 = 2*sumx2/QK_K;
  2026. for (int j = 0; j < QK_K/16; ++j) {
  2027. if (quant_weights) {
  2028. const float * qw = quant_weights + QK_K * i + 16*j;
  2029. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  2030. } else {
  2031. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  2032. }
  2033. float sumw = 0;
  2034. for (int l = 0; l < 16; ++l) sumw += weight[l];
  2035. sw[j] = sumw;
  2036. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  2037. }
  2038. memset(y[i].scales, 0, 12);
  2039. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  2040. for (int j = 0; j < QK_K/16; ++j) {
  2041. int l = Ls[j];
  2042. if (j < 8) {
  2043. y[i].scales[j] = l & 0xF;
  2044. } else {
  2045. y[i].scales[j-8] |= ((l & 0xF) << 4);
  2046. }
  2047. l >>= 4;
  2048. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  2049. }
  2050. y[i].d = GGML_FP32_TO_FP16(d_block);
  2051. int8_t sc;
  2052. for (int j = 0; j < QK_K/16; ++j) {
  2053. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  2054. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  2055. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2056. if (!d) {
  2057. continue;
  2058. }
  2059. for (int ii = 0; ii < 16; ++ii) {
  2060. int l = nearest_int(x[16*j + ii]/d);
  2061. l = MAX(-4, MIN(3, l));
  2062. L[16*j + ii] = l + 4;
  2063. }
  2064. }
  2065. memset(y[i].hmask, 0, QK_K/8);
  2066. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  2067. int m = 0;
  2068. uint8_t hm = 1;
  2069. for (int j = 0; j < QK_K; ++j) {
  2070. if (L[j] > 3) {
  2071. y[i].hmask[m] |= hm;
  2072. L[j] -= 4;
  2073. }
  2074. if (++m == QK_K/8) {
  2075. m = 0; hm <<= 1;
  2076. }
  2077. }
  2078. for (int j = 0; j < QK_K; j += 128) {
  2079. for (int l = 0; l < 32; ++l) {
  2080. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  2081. }
  2082. }
  2083. x += QK_K;
  2084. }
  2085. }
  2086. size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2087. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  2088. if (!quant_weights) {
  2089. quantize_row_q3_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2090. }
  2091. else {
  2092. char * qrow = (char *)dst;
  2093. for (int64_t row = 0; row < nrow; ++row) {
  2094. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  2095. src += n_per_row;
  2096. qrow += row_size;
  2097. }
  2098. }
  2099. return nrow * row_size;
  2100. }
  2101. // ====================== 4-bit (de)-quantization
  2102. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int64_t k) {
  2103. assert(k % QK_K == 0);
  2104. const int nb = k / QK_K;
  2105. uint8_t L[QK_K];
  2106. uint8_t Laux[32];
  2107. float weights[32];
  2108. float mins[QK_K/32];
  2109. float scales[QK_K/32];
  2110. for (int i = 0; i < nb; i++) {
  2111. float max_scale = 0; // as we are deducting the min, scales are always positive
  2112. float max_min = 0;
  2113. for (int j = 0; j < QK_K/32; ++j) {
  2114. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2115. float sum_x2 = 0;
  2116. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2117. float av_x = sqrtf(sum_x2/32);
  2118. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2119. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  2120. float scale = scales[j];
  2121. if (scale > max_scale) {
  2122. max_scale = scale;
  2123. }
  2124. float min = mins[j];
  2125. if (min > max_min) {
  2126. max_min = min;
  2127. }
  2128. }
  2129. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2130. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2131. for (int j = 0; j < QK_K/32; ++j) {
  2132. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2133. uint8_t lm = nearest_int(inv_min*mins[j]);
  2134. ls = MIN(63, ls);
  2135. lm = MIN(63, lm);
  2136. if (j < 4) {
  2137. y[i].scales[j] = ls;
  2138. y[i].scales[j+4] = lm;
  2139. } else {
  2140. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2141. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2142. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2143. }
  2144. }
  2145. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2146. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2147. uint8_t sc, m;
  2148. for (int j = 0; j < QK_K/32; ++j) {
  2149. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2150. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2151. if (!d) continue;
  2152. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2153. for (int ii = 0; ii < 32; ++ii) {
  2154. int l = nearest_int((x[32*j + ii] + dm)/d);
  2155. l = MAX(0, MIN(15, l));
  2156. L[32*j + ii] = l;
  2157. }
  2158. }
  2159. uint8_t * q = y[i].qs;
  2160. for (int j = 0; j < QK_K; j += 64) {
  2161. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2162. q += 32;
  2163. }
  2164. x += QK_K;
  2165. }
  2166. }
  2167. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int64_t k) {
  2168. assert(k % QK_K == 0);
  2169. const int nb = k / QK_K;
  2170. for (int i = 0; i < nb; i++) {
  2171. const uint8_t * q = x[i].qs;
  2172. const float d = GGML_FP16_TO_FP32(x[i].d);
  2173. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2174. int is = 0;
  2175. uint8_t sc, m;
  2176. for (int j = 0; j < QK_K; j += 64) {
  2177. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2178. const float d1 = d * sc; const float m1 = min * m;
  2179. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2180. const float d2 = d * sc; const float m2 = min * m;
  2181. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2182. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2183. q += 32; is += 2;
  2184. }
  2185. }
  2186. }
  2187. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  2188. assert(k % QK_K == 0);
  2189. block_q4_K * restrict y = vy;
  2190. quantize_row_q4_K_reference(x, y, k);
  2191. }
  2192. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2193. assert(n_per_row % QK_K == 0);
  2194. const int64_t nb = n_per_row / QK_K;
  2195. uint8_t L[QK_K];
  2196. uint8_t Laux[32];
  2197. uint8_t Ls[QK_K/32];
  2198. uint8_t Lm[QK_K/32];
  2199. float weights[32];
  2200. float sw[QK_K/32];
  2201. float mins[QK_K/32];
  2202. float scales[QK_K/32];
  2203. for (int i = 0; i < nb; i++) {
  2204. float sum_x2 = 0;
  2205. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2206. float sigma2 = 2*sum_x2/QK_K;
  2207. float av_x = sqrtf(sigma2);
  2208. for (int j = 0; j < QK_K/32; ++j) {
  2209. if (quant_weights) {
  2210. const float * qw = quant_weights + QK_K*i + 32*j;
  2211. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2212. } else {
  2213. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2214. }
  2215. float sumw = 0;
  2216. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2217. sw[j] = sumw;
  2218. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2219. }
  2220. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2221. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2222. for (int j = 0; j < QK_K/32; ++j) {
  2223. uint8_t ls = Ls[j];
  2224. uint8_t lm = Lm[j];
  2225. if (j < 4) {
  2226. y[i].scales[j] = ls;
  2227. y[i].scales[j+4] = lm;
  2228. } else {
  2229. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2230. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2231. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2232. }
  2233. }
  2234. y[i].d = GGML_FP32_TO_FP16(d_block);
  2235. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2236. uint8_t sc, m;
  2237. for (int j = 0; j < QK_K/32; ++j) {
  2238. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2239. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2240. if (!d) continue;
  2241. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2242. for (int ii = 0; ii < 32; ++ii) {
  2243. int l = nearest_int((x[32*j + ii] + dm)/d);
  2244. l = MAX(0, MIN(15, l));
  2245. L[32*j + ii] = l;
  2246. }
  2247. }
  2248. uint8_t * q = y[i].qs;
  2249. for (int j = 0; j < QK_K; j += 64) {
  2250. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2251. q += 32;
  2252. }
  2253. x += QK_K;
  2254. }
  2255. }
  2256. size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2257. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2258. if (!quant_weights) {
  2259. quantize_row_q4_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2260. }
  2261. else {
  2262. char * qrow = (char *)dst;
  2263. for (int64_t row = 0; row < nrow; ++row) {
  2264. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2265. src += n_per_row;
  2266. qrow += row_size;
  2267. }
  2268. }
  2269. return nrow * row_size;
  2270. }
  2271. // ====================== 5-bit (de)-quantization
  2272. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int64_t k) {
  2273. assert(k % QK_K == 0);
  2274. const int64_t nb = k / QK_K;
  2275. uint8_t L[QK_K];
  2276. float mins[QK_K/32];
  2277. float scales[QK_K/32];
  2278. float weights[32];
  2279. uint8_t Laux[32];
  2280. for (int i = 0; i < nb; i++) {
  2281. float max_scale = 0; // as we are deducting the min, scales are always positive
  2282. float max_min = 0;
  2283. for (int j = 0; j < QK_K/32; ++j) {
  2284. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2285. float sum_x2 = 0;
  2286. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2287. float av_x = sqrtf(sum_x2/32);
  2288. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2289. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2290. float scale = scales[j];
  2291. if (scale > max_scale) {
  2292. max_scale = scale;
  2293. }
  2294. float min = mins[j];
  2295. if (min > max_min) {
  2296. max_min = min;
  2297. }
  2298. }
  2299. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2300. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2301. for (int j = 0; j < QK_K/32; ++j) {
  2302. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2303. uint8_t lm = nearest_int(inv_min*mins[j]);
  2304. ls = MIN(63, ls);
  2305. lm = MIN(63, lm);
  2306. if (j < 4) {
  2307. y[i].scales[j] = ls;
  2308. y[i].scales[j+4] = lm;
  2309. } else {
  2310. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2311. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2312. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2313. }
  2314. }
  2315. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2316. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2317. uint8_t sc, m;
  2318. for (int j = 0; j < QK_K/32; ++j) {
  2319. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2320. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2321. if (!d) continue;
  2322. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2323. for (int ii = 0; ii < 32; ++ii) {
  2324. int l = nearest_int((x[32*j + ii] + dm)/d);
  2325. l = MAX(0, MIN(31, l));
  2326. L[32*j + ii] = l;
  2327. }
  2328. }
  2329. uint8_t * restrict qh = y[i].qh;
  2330. uint8_t * restrict ql = y[i].qs;
  2331. memset(qh, 0, QK_K/8);
  2332. uint8_t m1 = 1, m2 = 2;
  2333. for (int n = 0; n < QK_K; n += 64) {
  2334. for (int j = 0; j < 32; ++j) {
  2335. int l1 = L[n + j];
  2336. if (l1 > 15) {
  2337. l1 -= 16; qh[j] |= m1;
  2338. }
  2339. int l2 = L[n + j + 32];
  2340. if (l2 > 15) {
  2341. l2 -= 16; qh[j] |= m2;
  2342. }
  2343. ql[j] = l1 | (l2 << 4);
  2344. }
  2345. m1 <<= 2; m2 <<= 2;
  2346. ql += 32;
  2347. }
  2348. x += QK_K;
  2349. }
  2350. }
  2351. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int64_t k) {
  2352. assert(k % QK_K == 0);
  2353. const int64_t nb = k / QK_K;
  2354. for (int i = 0; i < nb; i++) {
  2355. const uint8_t * ql = x[i].qs;
  2356. const uint8_t * qh = x[i].qh;
  2357. const float d = GGML_FP16_TO_FP32(x[i].d);
  2358. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2359. int is = 0;
  2360. uint8_t sc, m;
  2361. uint8_t u1 = 1, u2 = 2;
  2362. for (int j = 0; j < QK_K; j += 64) {
  2363. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2364. const float d1 = d * sc; const float m1 = min * m;
  2365. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2366. const float d2 = d * sc; const float m2 = min * m;
  2367. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2368. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2369. ql += 32; is += 2;
  2370. u1 <<= 2; u2 <<= 2;
  2371. }
  2372. }
  2373. }
  2374. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  2375. assert(k % QK_K == 0);
  2376. block_q5_K * restrict y = vy;
  2377. quantize_row_q5_K_reference(x, y, k);
  2378. }
  2379. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2380. assert(n_per_row % QK_K == 0);
  2381. const int64_t nb = n_per_row / QK_K;
  2382. uint8_t L[QK_K];
  2383. uint8_t Laux[32];
  2384. uint8_t Ls[QK_K/32];
  2385. uint8_t Lm[QK_K/32];
  2386. float mins[QK_K/32];
  2387. float scales[QK_K/32];
  2388. float sw[QK_K/32];
  2389. float weights[32];
  2390. for (int i = 0; i < nb; i++) {
  2391. float sum_x2 = 0;
  2392. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2393. float sigma2 = 2*sum_x2/QK_K;
  2394. float av_x = sqrtf(sigma2);
  2395. for (int j = 0; j < QK_K/32; ++j) {
  2396. if (quant_weights) {
  2397. const float * qw = quant_weights + QK_K*i + 32*j;
  2398. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2399. } else {
  2400. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2401. }
  2402. float sumw = 0;
  2403. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2404. sw[j] = sumw;
  2405. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2406. }
  2407. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2408. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2409. for (int j = 0; j < QK_K/32; ++j) {
  2410. uint8_t ls = Ls[j];
  2411. uint8_t lm = Lm[j];
  2412. ls = MIN(63, ls);
  2413. lm = MIN(63, lm);
  2414. if (j < 4) {
  2415. y[i].scales[j] = ls;
  2416. y[i].scales[j+4] = lm;
  2417. } else {
  2418. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2419. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2420. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2421. }
  2422. }
  2423. y[i].d = GGML_FP32_TO_FP16(d_block);
  2424. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2425. uint8_t sc, m;
  2426. for (int j = 0; j < QK_K/32; ++j) {
  2427. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2428. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2429. if (!d) continue;
  2430. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2431. for (int ii = 0; ii < 32; ++ii) {
  2432. int l = nearest_int((x[32*j + ii] + dm)/d);
  2433. l = MAX(0, MIN(31, l));
  2434. L[32*j + ii] = l;
  2435. }
  2436. }
  2437. uint8_t * restrict qh = y[i].qh;
  2438. uint8_t * restrict ql = y[i].qs;
  2439. memset(qh, 0, QK_K/8);
  2440. uint8_t m1 = 1, m2 = 2;
  2441. for (int n = 0; n < QK_K; n += 64) {
  2442. for (int j = 0; j < 32; ++j) {
  2443. int l1 = L[n + j];
  2444. if (l1 > 15) {
  2445. l1 -= 16; qh[j] |= m1;
  2446. }
  2447. int l2 = L[n + j + 32];
  2448. if (l2 > 15) {
  2449. l2 -= 16; qh[j] |= m2;
  2450. }
  2451. ql[j] = l1 | (l2 << 4);
  2452. }
  2453. m1 <<= 2; m2 <<= 2;
  2454. ql += 32;
  2455. }
  2456. x += QK_K;
  2457. }
  2458. }
  2459. size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2460. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2461. if (!quant_weights) {
  2462. quantize_row_q5_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2463. }
  2464. else {
  2465. char * qrow = (char *)dst;
  2466. for (int64_t row = 0; row < nrow; ++row) {
  2467. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2468. src += n_per_row;
  2469. qrow += row_size;
  2470. }
  2471. }
  2472. return nrow * row_size;
  2473. }
  2474. // ====================== 6-bit (de)-quantization
  2475. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int64_t k) {
  2476. assert(k % QK_K == 0);
  2477. const int64_t nb = k / QK_K;
  2478. int8_t L[QK_K];
  2479. float scales[QK_K/16];
  2480. for (int i = 0; i < nb; i++) {
  2481. float max_scale = 0;
  2482. float max_abs_scale = 0;
  2483. for (int ib = 0; ib < QK_K/16; ++ib) {
  2484. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2485. scales[ib] = scale;
  2486. const float abs_scale = fabsf(scale);
  2487. if (abs_scale > max_abs_scale) {
  2488. max_abs_scale = abs_scale;
  2489. max_scale = scale;
  2490. }
  2491. }
  2492. if (max_abs_scale < GROUP_MAX_EPS) {
  2493. memset(&y[i], 0, sizeof(block_q6_K));
  2494. y[i].d = GGML_FP32_TO_FP16(0.f);
  2495. x += QK_K;
  2496. continue;
  2497. }
  2498. float iscale = -128.f/max_scale;
  2499. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2500. for (int ib = 0; ib < QK_K/16; ++ib) {
  2501. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2502. }
  2503. for (int j = 0; j < QK_K/16; ++j) {
  2504. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2505. if (!d) {
  2506. continue;
  2507. }
  2508. for (int ii = 0; ii < 16; ++ii) {
  2509. int l = nearest_int(x[16*j + ii]/d);
  2510. l = MAX(-32, MIN(31, l));
  2511. L[16*j + ii] = l + 32;
  2512. }
  2513. }
  2514. uint8_t * restrict ql = y[i].ql;
  2515. uint8_t * restrict qh = y[i].qh;
  2516. for (int j = 0; j < QK_K; j += 128) {
  2517. for (int l = 0; l < 32; ++l) {
  2518. const uint8_t q1 = L[j + l + 0] & 0xF;
  2519. const uint8_t q2 = L[j + l + 32] & 0xF;
  2520. const uint8_t q3 = L[j + l + 64] & 0xF;
  2521. const uint8_t q4 = L[j + l + 96] & 0xF;
  2522. ql[l+ 0] = q1 | (q3 << 4);
  2523. ql[l+32] = q2 | (q4 << 4);
  2524. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2525. }
  2526. ql += 64;
  2527. qh += 32;
  2528. }
  2529. x += QK_K;
  2530. }
  2531. }
  2532. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int64_t k) {
  2533. assert(k % QK_K == 0);
  2534. const int64_t nb = k / QK_K;
  2535. for (int i = 0; i < nb; i++) {
  2536. const float d = GGML_FP16_TO_FP32(x[i].d);
  2537. const uint8_t * restrict ql = x[i].ql;
  2538. const uint8_t * restrict qh = x[i].qh;
  2539. const int8_t * restrict sc = x[i].scales;
  2540. for (int n = 0; n < QK_K; n += 128) {
  2541. for (int l = 0; l < 32; ++l) {
  2542. int is = l/16;
  2543. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2544. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2545. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2546. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2547. y[l + 0] = d * sc[is + 0] * q1;
  2548. y[l + 32] = d * sc[is + 2] * q2;
  2549. y[l + 64] = d * sc[is + 4] * q3;
  2550. y[l + 96] = d * sc[is + 6] * q4;
  2551. }
  2552. y += 128;
  2553. ql += 64;
  2554. qh += 32;
  2555. sc += 8;
  2556. }
  2557. }
  2558. }
  2559. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  2560. assert(k % QK_K == 0);
  2561. block_q6_K * restrict y = vy;
  2562. quantize_row_q6_K_reference(x, y, k);
  2563. }
  2564. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) {
  2565. assert(n_per_row % QK_K == 0);
  2566. const int64_t nb = n_per_row / QK_K;
  2567. int8_t L[QK_K];
  2568. float scales[QK_K/16];
  2569. //float weights[16];
  2570. for (int i = 0; i < nb; i++) {
  2571. //float sum_x2 = 0;
  2572. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2573. //float sigma2 = sum_x2/QK_K;
  2574. float max_scale = 0;
  2575. float max_abs_scale = 0;
  2576. for (int ib = 0; ib < QK_K/16; ++ib) {
  2577. float scale;
  2578. if (quant_weights) {
  2579. const float * qw = quant_weights + QK_K*i + 16*ib;
  2580. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2581. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2582. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2583. } else {
  2584. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2585. }
  2586. scales[ib] = scale;
  2587. const float abs_scale = fabsf(scale);
  2588. if (abs_scale > max_abs_scale) {
  2589. max_abs_scale = abs_scale;
  2590. max_scale = scale;
  2591. }
  2592. }
  2593. if (max_abs_scale < GROUP_MAX_EPS) {
  2594. memset(&y[i], 0, sizeof(block_q6_K));
  2595. y[i].d = GGML_FP32_TO_FP16(0.f);
  2596. x += QK_K;
  2597. continue;
  2598. }
  2599. float iscale = -128.f/max_scale;
  2600. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2601. for (int ib = 0; ib < QK_K/16; ++ib) {
  2602. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2603. }
  2604. for (int j = 0; j < QK_K/16; ++j) {
  2605. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2606. if (!d) {
  2607. continue;
  2608. }
  2609. for (int ii = 0; ii < 16; ++ii) {
  2610. int l = nearest_int(x[16*j + ii]/d);
  2611. l = MAX(-32, MIN(31, l));
  2612. L[16*j + ii] = l + 32;
  2613. }
  2614. }
  2615. uint8_t * restrict ql = y[i].ql;
  2616. uint8_t * restrict qh = y[i].qh;
  2617. for (int j = 0; j < QK_K; j += 128) {
  2618. for (int l = 0; l < 32; ++l) {
  2619. const uint8_t q1 = L[j + l + 0] & 0xF;
  2620. const uint8_t q2 = L[j + l + 32] & 0xF;
  2621. const uint8_t q3 = L[j + l + 64] & 0xF;
  2622. const uint8_t q4 = L[j + l + 96] & 0xF;
  2623. ql[l+ 0] = q1 | (q3 << 4);
  2624. ql[l+32] = q2 | (q4 << 4);
  2625. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2626. }
  2627. ql += 64;
  2628. qh += 32;
  2629. }
  2630. x += QK_K;
  2631. }
  2632. }
  2633. size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2634. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2635. if (!quant_weights) {
  2636. quantize_row_q6_K_reference(src, dst, (int64_t)nrow*n_per_row);
  2637. }
  2638. else {
  2639. char * qrow = (char *)dst;
  2640. for (int64_t row = 0; row < nrow; ++row) {
  2641. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2642. src += n_per_row;
  2643. qrow += row_size;
  2644. }
  2645. }
  2646. return nrow * row_size;
  2647. }
  2648. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2649. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2650. if (!quant_weights) {
  2651. quantize_row_q4_0_reference(x, y, n_per_row);
  2652. return;
  2653. }
  2654. float weight[QK4_0];
  2655. int8_t L[QK4_0];
  2656. float sum_x2 = 0;
  2657. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2658. float sigma2 = sum_x2/n_per_row;
  2659. const int64_t nb = n_per_row/QK4_0;
  2660. for (int ib = 0; ib < nb; ++ib) {
  2661. const float * xb = x + QK4_0 * ib;
  2662. const float * qw = quant_weights + QK4_0 * ib;
  2663. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2664. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2665. y[ib].d = GGML_FP32_TO_FP16(d);
  2666. for (int j = 0; j < 16; ++j) {
  2667. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2668. }
  2669. }
  2670. }
  2671. size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2672. if (!quant_weights) {
  2673. quantize_row_q4_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2674. return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2675. }
  2676. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2677. char * qrow = (char *)dst;
  2678. for (int64_t row = 0; row < nrow; ++row) {
  2679. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2680. src += n_per_row;
  2681. qrow += row_size;
  2682. }
  2683. return nrow * row_size;
  2684. }
  2685. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2686. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2687. if (!quant_weights) {
  2688. quantize_row_q4_1_reference(x, y, n_per_row);
  2689. return;
  2690. }
  2691. float weight[QK4_1];
  2692. uint8_t L[QK4_1], Laux[QK4_1];
  2693. float sum_x2 = 0;
  2694. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2695. float sigma2 = sum_x2/n_per_row;
  2696. const int64_t nb = n_per_row/QK4_1;
  2697. for (int ib = 0; ib < nb; ++ib) {
  2698. const float * xb = x + QK4_1 * ib;
  2699. const float * qw = quant_weights + QK4_1 * ib;
  2700. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2701. float min;
  2702. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2703. y[ib].d = GGML_FP32_TO_FP16(d);
  2704. y[ib].m = GGML_FP32_TO_FP16(-min);
  2705. for (int j = 0; j < 16; ++j) {
  2706. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2707. }
  2708. }
  2709. }
  2710. size_t quantize_q4_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2711. if (!quant_weights) {
  2712. quantize_row_q4_1_reference(src, dst, (int64_t)nrow*n_per_row);
  2713. return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2714. }
  2715. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2716. char * qrow = (char *)dst;
  2717. for (int64_t row = 0; row < nrow; ++row) {
  2718. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2719. src += n_per_row;
  2720. qrow += row_size;
  2721. }
  2722. return nrow * row_size;
  2723. }
  2724. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2725. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2726. if (!quant_weights) {
  2727. quantize_row_q5_0_reference(x, y, n_per_row);
  2728. return;
  2729. }
  2730. float weight[QK5_0];
  2731. int8_t L[QK5_0];
  2732. float sum_x2 = 0;
  2733. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2734. float sigma2 = sum_x2/n_per_row;
  2735. const int64_t nb = n_per_row/QK5_0;
  2736. for (int ib = 0; ib < nb; ++ib) {
  2737. const float * xb = x + QK5_0 * ib;
  2738. const float * qw = quant_weights + QK5_0 * ib;
  2739. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2740. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2741. y[ib].d = GGML_FP32_TO_FP16(d);
  2742. uint32_t qh = 0;
  2743. for (int j = 0; j < 16; ++j) {
  2744. const uint8_t xi0 = L[j];
  2745. const uint8_t xi1 = L[j+16];
  2746. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2747. // get the 5-th bit and store it in qh at the right position
  2748. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2749. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2750. }
  2751. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2752. }
  2753. }
  2754. size_t quantize_q5_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2755. if (!quant_weights) {
  2756. quantize_row_q5_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2757. return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2758. }
  2759. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2760. char * qrow = (char *)dst;
  2761. for (int64_t row = 0; row < nrow; ++row) {
  2762. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2763. src += n_per_row;
  2764. qrow += row_size;
  2765. }
  2766. return nrow * row_size;
  2767. }
  2768. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int64_t n_per_row, const float * quant_weights) {
  2769. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2770. if (!quant_weights) {
  2771. quantize_row_q5_1_reference(x, y, n_per_row);
  2772. return;
  2773. }
  2774. float weight[QK5_1];
  2775. uint8_t L[QK5_1], Laux[QK5_1];
  2776. float sum_x2 = 0;
  2777. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2778. float sigma2 = sum_x2/n_per_row;
  2779. const int64_t nb = n_per_row/QK5_1;
  2780. for (int ib = 0; ib < nb; ++ib) {
  2781. const float * xb = x + QK5_1 * ib;
  2782. const float * qw = quant_weights + QK5_1 * ib;
  2783. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2784. float min;
  2785. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2786. y[ib].d = GGML_FP32_TO_FP16(d);
  2787. y[ib].m = GGML_FP32_TO_FP16(-min);
  2788. uint32_t qh = 0;
  2789. for (int j = 0; j < 16; ++j) {
  2790. const uint8_t xi0 = L[j];
  2791. const uint8_t xi1 = L[j+16];
  2792. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2793. // get the 5-th bit and store it in qh at the right position
  2794. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2795. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2796. }
  2797. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2798. }
  2799. }
  2800. size_t quantize_q5_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2801. if (!quant_weights) {
  2802. quantize_row_q5_1_reference(src, dst, (int64_t)nrow*n_per_row);
  2803. return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2804. }
  2805. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2806. char * qrow = (char *)dst;
  2807. for (int64_t row = 0; row < nrow; ++row) {
  2808. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2809. src += n_per_row;
  2810. qrow += row_size;
  2811. }
  2812. return nrow * row_size;
  2813. }
  2814. size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  2815. (void)quant_weights; // not used
  2816. const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
  2817. quantize_row_q8_0_reference(src, dst, (int64_t)nrow*n_per_row);
  2818. return nrow * row_size;
  2819. }
  2820. // ====================== "True" 2-bit (de)-quantization
  2821. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) {
  2822. assert(k % QK_K == 0);
  2823. const int64_t nb = k / QK_K;
  2824. uint32_t aux32[2];
  2825. const uint8_t * aux8 = (const uint8_t *)aux32;
  2826. for (int i = 0; i < nb; i++) {
  2827. const float d = GGML_FP16_TO_FP32(x[i].d);
  2828. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2829. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  2830. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  2831. for (int l = 0; l < 4; ++l) {
  2832. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  2833. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  2834. for (int j = 0; j < 8; ++j) {
  2835. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2836. }
  2837. y += 8;
  2838. }
  2839. }
  2840. }
  2841. }
  2842. // ====================== 2.3125 bpw (de)-quantization
  2843. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int64_t k) {
  2844. assert(k % QK_K == 0);
  2845. const int64_t nb = k / QK_K;
  2846. float db[2];
  2847. for (int i = 0; i < nb; i++) {
  2848. const float d = GGML_FP16_TO_FP32(x[i].d);
  2849. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2850. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2851. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2852. for (int l = 0; l < 4; ++l) {
  2853. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  2854. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  2855. for (int j = 0; j < 8; ++j) {
  2856. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  2857. }
  2858. y += 8;
  2859. }
  2860. }
  2861. }
  2862. }
  2863. // ====================== 2.5625 bpw (de)-quantization
  2864. void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int64_t k) {
  2865. assert(k % QK_K == 0);
  2866. const int64_t nb = k / QK_K;
  2867. float db[2];
  2868. for (int i = 0; i < nb; i++) {
  2869. const float d = GGML_FP16_TO_FP32(x[i].d);
  2870. const uint8_t * qs = x[i].qs;
  2871. const uint8_t * qh = x[i].qh;
  2872. const uint8_t * signs = qs + QK_K/8;
  2873. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2874. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  2875. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  2876. for (int l = 0; l < 4; ++l) {
  2877. const float dl = db[l/2];
  2878. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  2879. for (int j = 0; j < 8; ++j) {
  2880. y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f);
  2881. }
  2882. y += 8;
  2883. }
  2884. qs += 4;
  2885. signs += 4;
  2886. }
  2887. }
  2888. }
  2889. // ====================== 3.0625 bpw (de)-quantization
  2890. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int64_t k) {
  2891. assert(k % QK_K == 0);
  2892. const int64_t nb = k / QK_K;
  2893. uint32_t aux32;
  2894. for (int i = 0; i < nb; i++) {
  2895. const float d = GGML_FP16_TO_FP32(x[i].d);
  2896. const uint8_t * qs = x[i].qs;
  2897. const uint8_t * scales_and_signs = qs + QK_K/4;
  2898. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  2899. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  2900. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  2901. for (int l = 0; l < 4; ++l) {
  2902. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  2903. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  2904. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  2905. for (int j = 0; j < 4; ++j) {
  2906. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2907. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2908. }
  2909. y += 8;
  2910. }
  2911. qs += 8;
  2912. }
  2913. }
  2914. }
  2915. // ====================== 3.3125 bpw (de)-quantization
  2916. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int64_t k) {
  2917. assert(k % QK_K == 0);
  2918. const int64_t nb = k / QK_K;
  2919. for (int i = 0; i < nb; i++) {
  2920. const float d = GGML_FP16_TO_FP32(x[i].d);
  2921. const uint8_t * qs = x[i].qs;
  2922. const uint8_t * qh = x[i].qh;
  2923. const uint8_t * signs = x[i].signs;
  2924. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  2925. const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  2926. const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4));
  2927. for (int l = 0; l < 4; ++l) {
  2928. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  2929. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  2930. for (int j = 0; j < 4; ++j) {
  2931. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2932. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2933. }
  2934. y += 8;
  2935. }
  2936. qs += 8;
  2937. signs += 4;
  2938. for (int l = 0; l < 4; ++l) {
  2939. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  2940. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  2941. for (int j = 0; j < 4; ++j) {
  2942. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  2943. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  2944. }
  2945. y += 8;
  2946. }
  2947. qh += 2;
  2948. qs += 8;
  2949. signs += 4;
  2950. }
  2951. }
  2952. }
  2953. // ====================== 1.5625 bpw (de)-quantization
  2954. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int64_t k) {
  2955. assert(k % QK_K == 0);
  2956. const int64_t nb = k / QK_K;
  2957. for (int i = 0; i < nb; i++) {
  2958. const float d = GGML_FP16_TO_FP32(x[i].d);
  2959. const uint8_t * qs = x[i].qs;
  2960. const uint16_t * qh = x[i].qh;
  2961. for (int ib = 0; ib < QK_K/32; ++ib) {
  2962. const float dl = d * (2*((qh[ib] >> 12) & 7) + 1);
  2963. const float delta = qh[ib] & 0x8000 ? -IQ1S_DELTA : IQ1S_DELTA;
  2964. for (int l = 0; l < 4; ++l) {
  2965. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  2966. for (int j = 0; j < 8; ++j) {
  2967. y[j] = dl * (grid[j] + delta);
  2968. }
  2969. y += 8;
  2970. }
  2971. qs += 4;
  2972. }
  2973. }
  2974. }
  2975. void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int64_t k) {
  2976. assert(k % QK_K == 0);
  2977. const int64_t nb = k / QK_K;
  2978. float delta[4];
  2979. uint16_t idx[4];
  2980. iq1m_scale_t scale;
  2981. for (int i = 0; i < nb; i++) {
  2982. const uint16_t * sc = (const uint16_t *)x[i].scales;
  2983. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  2984. const float d = GGML_FP16_TO_FP32(scale.f16);
  2985. const uint8_t * qs = x[i].qs;
  2986. const uint8_t * qh = x[i].qh;
  2987. for (int ib = 0; ib < QK_K/32; ++ib) {
  2988. const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1);
  2989. const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1);
  2990. idx[0] = qs[0] | ((qh[0] << 8) & 0x700);
  2991. idx[1] = qs[1] | ((qh[0] << 4) & 0x700);
  2992. idx[2] = qs[2] | ((qh[1] << 8) & 0x700);
  2993. idx[3] = qs[3] | ((qh[1] << 4) & 0x700);
  2994. delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  2995. delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  2996. delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA;
  2997. delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA;
  2998. for (int l = 0; l < 2; ++l) {
  2999. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3000. for (int j = 0; j < 8; ++j) {
  3001. y[j] = dl1 * (grid[j] + delta[l]);
  3002. }
  3003. y += 8;
  3004. }
  3005. for (int l = 2; l < 4; ++l) {
  3006. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3007. for (int j = 0; j < 8; ++j) {
  3008. y[j] = dl2 * (grid[j] + delta[l]);
  3009. }
  3010. y += 8;
  3011. }
  3012. qs += 4;
  3013. qh += 2;
  3014. }
  3015. }
  3016. }
  3017. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3018. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int64_t k) {
  3019. assert(k % QK4_NL == 0);
  3020. const int64_t nb = k / QK4_NL;
  3021. for (int i = 0; i < nb; i++) {
  3022. const uint8_t * qs = x[i].qs;
  3023. const float d = GGML_FP16_TO_FP32(x[i].d);
  3024. for (int j = 0; j < QK4_NL/2; ++j) {
  3025. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3026. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3027. }
  3028. y += QK4_NL;
  3029. qs += QK4_NL/2;
  3030. }
  3031. }
  3032. void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) {
  3033. assert(k % QK_K == 0);
  3034. const int64_t nb = k / QK_K;
  3035. for (int i = 0; i < nb; i++) {
  3036. const uint8_t * qs = x[i].qs;
  3037. const float d = GGML_FP16_TO_FP32(x[i].d);
  3038. for (int ib = 0; ib < QK_K/32; ++ib) {
  3039. const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4);
  3040. const float dl = d * (ls - 32);
  3041. for (int j = 0; j < 16; ++j) {
  3042. y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf];
  3043. y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4];
  3044. }
  3045. y += 32;
  3046. qs += 16;
  3047. }
  3048. }
  3049. }
  3050. //===================================== Q8_K ==============================================
  3051. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int64_t k) {
  3052. assert(k % QK_K == 0);
  3053. const int64_t nb = k / QK_K;
  3054. for (int i = 0; i < nb; i++) {
  3055. float max = 0;
  3056. float amax = 0;
  3057. for (int j = 0; j < QK_K; ++j) {
  3058. float ax = fabsf(x[j]);
  3059. if (ax > amax) {
  3060. amax = ax; max = x[j];
  3061. }
  3062. }
  3063. if (!amax) {
  3064. y[i].d = 0;
  3065. memset(y[i].qs, 0, QK_K);
  3066. x += QK_K;
  3067. continue;
  3068. }
  3069. //const float iscale = -128.f/max;
  3070. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3071. const float iscale = -127.f/max;
  3072. for (int j = 0; j < QK_K; ++j) {
  3073. int v = nearest_int(iscale*x[j]);
  3074. y[i].qs[j] = MIN(127, v);
  3075. }
  3076. for (int j = 0; j < QK_K/16; ++j) {
  3077. int sum = 0;
  3078. for (int ii = 0; ii < 16; ++ii) {
  3079. sum += y[i].qs[j*16 + ii];
  3080. }
  3081. y[i].bsums[j] = sum;
  3082. }
  3083. y[i].d = 1/iscale;
  3084. x += QK_K;
  3085. }
  3086. }
  3087. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int64_t k) {
  3088. assert(k % QK_K == 0);
  3089. const int64_t nb = k / QK_K;
  3090. for (int i = 0; i < nb; i++) {
  3091. for (int j = 0; j < QK_K; ++j) {
  3092. *y++ = x[i].d * x[i].qs[j];
  3093. }
  3094. }
  3095. }
  3096. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  3097. quantize_row_q8_K_reference(x, y, k);
  3098. }
  3099. //===================================== Dot ptoducts =================================
  3100. //
  3101. // Helper functions
  3102. //
  3103. #if __AVX__ || __AVX2__ || __AVX512F__
  3104. // shuffles to pick the required scales in dot products
  3105. static inline __m256i get_scale_shuffle_q3k(int i) {
  3106. static const uint8_t k_shuffle[128] = {
  3107. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3108. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3109. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3110. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3111. };
  3112. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3113. }
  3114. static inline __m256i get_scale_shuffle_k4(int i) {
  3115. static const uint8_t k_shuffle[256] = {
  3116. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3117. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3118. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3119. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3120. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3121. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3122. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3123. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3124. };
  3125. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3126. }
  3127. static inline __m128i get_scale_shuffle(int i) {
  3128. static const uint8_t k_shuffle[128] = {
  3129. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3130. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3131. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3132. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3133. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3134. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3135. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3136. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3137. };
  3138. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3139. }
  3140. #elif defined(__loongarch_asx)
  3141. // shuffles to pick the required scales in dot products
  3142. static inline __m256i get_scale_shuffle_q3k(int i) {
  3143. static const uint8_t k_shuffle[128] = {
  3144. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3145. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3146. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3147. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3148. };
  3149. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3150. }
  3151. static inline __m256i get_scale_shuffle_k4(int i) {
  3152. static const uint8_t k_shuffle[256] = {
  3153. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3154. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3155. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3156. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3157. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3158. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3159. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3160. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3161. };
  3162. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  3163. }
  3164. static inline __m128i get_scale_shuffle(int i) {
  3165. static const uint8_t k_shuffle[128] = {
  3166. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3167. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3168. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3169. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3170. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3171. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3172. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3173. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3174. };
  3175. return __lsx_vld((const __m128i*)k_shuffle + i, 0);
  3176. }
  3177. #endif
  3178. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3179. const int qk = QK8_0;
  3180. const int nb = n / qk;
  3181. assert(n % qk == 0);
  3182. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3183. assert((nrc == 2) || (nrc == 1));
  3184. #else
  3185. assert(nrc == 1);
  3186. #endif
  3187. UNUSED(nrc);
  3188. UNUSED(bx);
  3189. UNUSED(by);
  3190. UNUSED(bs);
  3191. const block_q4_0 * restrict x = vx;
  3192. const block_q8_0 * restrict y = vy;
  3193. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3194. if (nrc == 2) {
  3195. const block_q4_0 * restrict vx0 = vx;
  3196. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  3197. const block_q8_0 * restrict vy0 = vy;
  3198. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  3199. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3200. for (int i = 0; i < nb; i++) {
  3201. const block_q4_0 * restrict b_x0 = &vx0[i];
  3202. const block_q4_0 * restrict b_x1 = &vx1[i];
  3203. const block_q8_0 * restrict b_y0 = &vy0[i];
  3204. const block_q8_0 * restrict b_y1 = &vy1[i];
  3205. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3206. const int8x16_t s8b = vdupq_n_s8(0x8);
  3207. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3208. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3209. // 4-bit -> 8-bit
  3210. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3211. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3212. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3213. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3214. // sub 8
  3215. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3216. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3217. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3218. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3219. // load y
  3220. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3221. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3222. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3223. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3224. float32_t _scale[4] = { GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3225. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3226. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3227. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3228. float32x4_t scale = vld1q_f32(_scale);
  3229. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3230. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3231. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3232. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3233. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3234. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3235. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3236. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3237. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3238. l1, r1)), l2, r2)), l3, r3))), scale);
  3239. }
  3240. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3241. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3242. vst1_f32(s, vget_low_f32(sumv2));
  3243. vst1_f32(s + bs, vget_high_f32(sumv2));
  3244. return;
  3245. }
  3246. #endif
  3247. #if defined(__ARM_FEATURE_SVE)
  3248. const svbool_t ptrueh = svptrue_pat_b8(SV_VL16);
  3249. const svbool_t ptruel = svnot_b_z(svptrue_b8(), ptrueh);
  3250. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  3251. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  3252. assert(nb % 2 == 0); // TODO: handle odd nb
  3253. for (int i = 0; i < nb; i += 2) {
  3254. const block_q4_0 * restrict x0 = &x[i + 0];
  3255. const block_q4_0 * restrict x1 = &x[i + 1];
  3256. const block_q8_0 * restrict y0 = &y[i + 0];
  3257. const block_q8_0 * restrict y1 = &y[i + 1];
  3258. // load x
  3259. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  3260. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  3261. // 4-bit -> 8-bit
  3262. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(ptruel, svand_n_u8_m(ptrueh, qx0r, 0x0F), 0x04));
  3263. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(ptruel, svand_n_u8_m(ptrueh, qx1r, 0x0F), 0x04));
  3264. // sub 8
  3265. const svint8_t qx0s = svsub_n_s8_x(svptrue_b8(), qx0, 8);
  3266. const svint8_t qx1s = svsub_n_s8_x(svptrue_b8(), qx1, 8);
  3267. // load y
  3268. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  3269. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  3270. // dot product
  3271. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3272. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3273. }
  3274. *s = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  3275. #elif defined(__ARM_NEON)
  3276. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3277. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3278. assert(nb % 2 == 0); // TODO: handle odd nb
  3279. for (int i = 0; i < nb; i += 2) {
  3280. const block_q4_0 * restrict x0 = &x[i + 0];
  3281. const block_q4_0 * restrict x1 = &x[i + 1];
  3282. const block_q8_0 * restrict y0 = &y[i + 0];
  3283. const block_q8_0 * restrict y1 = &y[i + 1];
  3284. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3285. const int8x16_t s8b = vdupq_n_s8(0x8);
  3286. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3287. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3288. // 4-bit -> 8-bit
  3289. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3290. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3291. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3292. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3293. // sub 8
  3294. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3295. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3296. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3297. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3298. // load y
  3299. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3300. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3301. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3302. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3303. // dot product into int32x4_t
  3304. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3305. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3306. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3307. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3308. }
  3309. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3310. #elif defined(__AVX2__)
  3311. // Initialize accumulator with zeros
  3312. __m256 acc = _mm256_setzero_ps();
  3313. // Main loop
  3314. for (int i = 0; i < nb; ++i) {
  3315. /* Compute combined scale for the block */
  3316. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3317. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3318. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3319. const __m256i off = _mm256_set1_epi8( 8 );
  3320. qx = _mm256_sub_epi8( qx, off );
  3321. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3322. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3323. /* Multiply q with scale and accumulate */
  3324. acc = _mm256_fmadd_ps( d, q, acc );
  3325. }
  3326. *s = hsum_float_8(acc);
  3327. #elif defined(__AVX__)
  3328. // Initialize accumulator with zeros
  3329. __m256 acc = _mm256_setzero_ps();
  3330. // Main loop
  3331. for (int i = 0; i < nb; ++i) {
  3332. // Compute combined scale for the block
  3333. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3334. const __m128i lowMask = _mm_set1_epi8(0xF);
  3335. const __m128i off = _mm_set1_epi8(8);
  3336. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  3337. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3338. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3339. bx_0 = _mm_sub_epi8(bx_0, off);
  3340. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3341. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3342. by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3343. bx_0 = _mm_sub_epi8(bx_0, off);
  3344. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3345. // Convert int32_t to float
  3346. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3347. // Apply the scale, and accumulate
  3348. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3349. }
  3350. *s = hsum_float_8(acc);
  3351. #elif defined(__SSSE3__)
  3352. // set constants
  3353. const __m128i lowMask = _mm_set1_epi8(0xF);
  3354. const __m128i off = _mm_set1_epi8(8);
  3355. // Initialize accumulator with zeros
  3356. __m128 acc_0 = _mm_setzero_ps();
  3357. __m128 acc_1 = _mm_setzero_ps();
  3358. __m128 acc_2 = _mm_setzero_ps();
  3359. __m128 acc_3 = _mm_setzero_ps();
  3360. // First round without accumulation
  3361. {
  3362. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3363. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3364. // Compute combined scale for the block 0 and 1
  3365. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3366. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  3367. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3368. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  3369. bx_0 = _mm_sub_epi8(bx_0, off);
  3370. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3371. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3372. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  3373. bx_1 = _mm_sub_epi8(bx_1, off);
  3374. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3375. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  3376. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  3377. // Compute combined scale for the block 2 and 3
  3378. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3379. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  3380. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3381. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  3382. bx_2 = _mm_sub_epi8(bx_2, off);
  3383. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3384. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3385. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  3386. bx_3 = _mm_sub_epi8(bx_3, off);
  3387. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3388. // Convert int32_t to float
  3389. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3390. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3391. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3392. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3393. // Apply the scale
  3394. acc_0 = _mm_mul_ps( d_0_1, p0 );
  3395. acc_1 = _mm_mul_ps( d_0_1, p1 );
  3396. acc_2 = _mm_mul_ps( d_2_3, p2 );
  3397. acc_3 = _mm_mul_ps( d_2_3, p3 );
  3398. }
  3399. assert(nb % 2 == 0); // TODO: handle odd nb
  3400. // Main loop
  3401. for (int i = 2; i < nb; i+=2) {
  3402. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  3403. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  3404. // Compute combined scale for the block 0 and 1
  3405. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3406. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  3407. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3408. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3409. bx_0 = _mm_sub_epi8(bx_0, off);
  3410. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3411. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3412. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3413. bx_1 = _mm_sub_epi8(bx_1, off);
  3414. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3415. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3416. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3417. // Compute combined scale for the block 2 and 3
  3418. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3419. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  3420. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3421. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  3422. bx_2 = _mm_sub_epi8(bx_2, off);
  3423. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3424. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3425. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  3426. bx_3 = _mm_sub_epi8(bx_3, off);
  3427. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3428. // Convert int32_t to float
  3429. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3430. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3431. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3432. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3433. // Apply the scale
  3434. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3435. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3436. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3437. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3438. // Acummulate
  3439. acc_0 = _mm_add_ps(p0_d, acc_0);
  3440. acc_1 = _mm_add_ps(p1_d, acc_1);
  3441. acc_2 = _mm_add_ps(p2_d, acc_2);
  3442. acc_3 = _mm_add_ps(p3_d, acc_3);
  3443. }
  3444. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3445. #elif defined(__riscv_v_intrinsic)
  3446. float sumf = 0.0;
  3447. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3448. for (int i = 0; i < nb; i++) {
  3449. // load elements
  3450. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3451. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3452. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3453. // mask and store lower part of x, and then upper part
  3454. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3455. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3456. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3457. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3458. // subtract offset
  3459. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3460. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3461. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3462. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3463. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3464. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3465. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3466. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3467. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3468. }
  3469. *s = sumf;
  3470. #elif defined(__POWER9_VECTOR__)
  3471. const vector signed char lowMask = vec_splats((signed char)0xF);
  3472. const vector signed int v0 = vec_splats((int32_t)0);
  3473. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3474. const vector signed char v8 = vec_splats((signed char)0x8);
  3475. vector float vsumf0 = vec_splats(0.0f);
  3476. #pragma GCC unroll 8
  3477. for (int i = 0; i < nb; i++) {
  3478. __builtin_prefetch(x[i].qs, 0, 1);
  3479. __builtin_prefetch(y[i].qs, 0, 1);
  3480. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3481. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3482. vector float vd = vec_mul(vxd, vyd);
  3483. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3484. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3485. vector signed char q8y1 = vec_xl(16, y[i].qs);
  3486. vector signed char q4x0 = vec_and(qxs, lowMask);
  3487. vector signed char q4x1 = vec_sr(qxs, v4);
  3488. q4x0 = vec_sub(q4x0, v8);
  3489. q4x1 = vec_sub(q4x1, v8);
  3490. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  3491. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  3492. vector signed int vsumi0 = v0;
  3493. vsumi0 = vec_sum4s(qv0, vsumi0);
  3494. vsumi0 = vec_sum4s(qv1, vsumi0);
  3495. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3496. }
  3497. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3498. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3499. *s = vec_extract(vsumf0, 0);
  3500. #elif defined(__loongarch_asx)
  3501. // Initialize accumulator with zeros
  3502. __m256 acc = (__m256)__lasx_xvldi(0);
  3503. // Main loop
  3504. for (int i = 0; i < nb; ++i) {
  3505. /* Compute combined scale for the block */
  3506. const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3507. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3508. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3509. const __m256i off = __lasx_xvreplgr2vr_b( 8 );
  3510. qx = __lasx_xvsub_b( qx, off );
  3511. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  3512. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3513. /* Multiply q with scale and accumulate */
  3514. acc = __lasx_xvfmadd_s( d, q, acc );
  3515. }
  3516. *s = hsum_float_8(acc);
  3517. #elif defined(__loongarch_sx)
  3518. // set constants
  3519. const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
  3520. const __m128i off = __lsx_vreplgr2vr_b(8);
  3521. // Initialize accumulator with zeros
  3522. __m128 acc_0 = __lsx_vldi(0);
  3523. __m128 acc_1 = __lsx_vldi(0);
  3524. __m128 acc_2 = __lsx_vldi(0);
  3525. __m128 acc_3 = __lsx_vldi(0);
  3526. // First round without accumulation
  3527. {
  3528. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3529. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3530. // Compute combined scale for the block 0 and 1
  3531. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3532. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[0].qs, 0);
  3533. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3534. __m128i by_0 = __lsx_vld((const __m128i *)y[0].qs, 0);
  3535. bx_0 = __lsx_vsub_b(bx_0, off);
  3536. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3537. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3538. __m128i by_1 = __lsx_vld((const __m128i *)(y[0].qs + 16), 0);
  3539. bx_1 = __lsx_vsub_b(bx_1, off);
  3540. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3541. // Compute combined scale for the block 2 and 3
  3542. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3543. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[1].qs, 0);
  3544. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3545. __m128i by_2 = __lsx_vld((const __m128i *)y[1].qs, 0);
  3546. bx_2 = __lsx_vsub_b(bx_2, off);
  3547. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3548. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3549. __m128i by_3 = __lsx_vld((const __m128i *)(y[1].qs + 16), 0);
  3550. bx_3 = __lsx_vsub_b(bx_3, off);
  3551. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3552. // Convert int32_t to float
  3553. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3554. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3555. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3556. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3557. // Apply the scale
  3558. acc_0 = __lsx_vfmul_s( d_0_1, p0 );
  3559. acc_1 = __lsx_vfmul_s( d_0_1, p1 );
  3560. acc_2 = __lsx_vfmul_s( d_2_3, p2 );
  3561. acc_3 = __lsx_vfmul_s( d_2_3, p3 );
  3562. }
  3563. assert(nb % 2 == 0); // TODO: handle odd nb
  3564. // Main loop
  3565. for (int i = 2; i < nb; i+=2) {
  3566. // Compute combined scale for the block 0 and 1
  3567. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3568. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[i].qs, 0);
  3569. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  3570. __m128i by_0 = __lsx_vld((const __m128i *)y[i].qs, 0);
  3571. bx_0 = __lsx_vsub_b(bx_0, off);
  3572. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3573. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  3574. __m128i by_1 = __lsx_vld((const __m128i *)(y[i].qs + 16), 0);
  3575. bx_1 = __lsx_vsub_b(bx_1, off);
  3576. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3577. //_mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3578. //_mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3579. // Compute combined scale for the block 2 and 3
  3580. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3581. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[i + 1].qs, 0);
  3582. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  3583. __m128i by_2 = __lsx_vld((const __m128i *)y[i + 1].qs, 0);
  3584. bx_2 = __lsx_vsub_b(bx_2, off);
  3585. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3586. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  3587. __m128i by_3 = __lsx_vld((const __m128i *)(y[i + 1].qs + 16), 0);
  3588. bx_3 = __lsx_vsub_b(bx_3, off);
  3589. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3590. // Convert int32_t to float
  3591. __m128 p0 = __lsx_vffint_s_w(i32_0);
  3592. __m128 p1 = __lsx_vffint_s_w(i32_1);
  3593. __m128 p2 = __lsx_vffint_s_w(i32_2);
  3594. __m128 p3 = __lsx_vffint_s_w(i32_3);
  3595. // Apply the scale
  3596. __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 );
  3597. __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 );
  3598. __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 );
  3599. __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 );
  3600. // Acummulate
  3601. acc_0 = __lsx_vfadd_s(p0_d, acc_0);
  3602. acc_1 = __lsx_vfadd_s(p1_d, acc_1);
  3603. acc_2 = __lsx_vfadd_s(p2_d, acc_2);
  3604. acc_3 = __lsx_vfadd_s(p3_d, acc_3);
  3605. }
  3606. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3607. #else
  3608. // scalar
  3609. float sumf = 0.0;
  3610. for (int i = 0; i < nb; i++) {
  3611. int sumi = 0;
  3612. for (int j = 0; j < qk/2; ++j) {
  3613. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  3614. const int v1 = (x[i].qs[j] >> 4) - 8;
  3615. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3616. }
  3617. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3618. }
  3619. *s = sumf;
  3620. #endif
  3621. }
  3622. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3623. const int qk = QK8_1;
  3624. const int nb = n / qk;
  3625. assert(n % qk == 0);
  3626. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3627. assert((nrc == 2) || (nrc == 1));
  3628. #else
  3629. assert(nrc == 1);
  3630. #endif
  3631. UNUSED(nrc);
  3632. UNUSED(bx);
  3633. UNUSED(by);
  3634. UNUSED(bs);
  3635. const block_q4_1 * restrict x = vx;
  3636. const block_q8_1 * restrict y = vy;
  3637. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3638. if (nrc == 2) {
  3639. const block_q4_1 * restrict vx0 = vx;
  3640. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  3641. const block_q8_1 * restrict vy0 = vy;
  3642. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  3643. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3644. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3645. for (int i = 0; i < nb; i++) {
  3646. const block_q4_1 * restrict b_x0 = &vx0[i];
  3647. const block_q4_1 * restrict b_x1 = &vx1[i];
  3648. const block_q8_1 * restrict b_y0 = &vy0[i];
  3649. const block_q8_1 * restrict b_y1 = &vy1[i];
  3650. float32_t summs_t[4] = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  3651. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  3652. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  3653. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)};
  3654. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  3655. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3656. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3657. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3658. // 4-bit -> 8-bit
  3659. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3660. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3661. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3662. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3663. // load y
  3664. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3665. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3666. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3667. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3668. // mmla into int32x4_t
  3669. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d,
  3670. GGML_FP16_TO_FP32(b_x0->d)*b_y1->d,
  3671. GGML_FP16_TO_FP32(b_x1->d)*b_y0->d,
  3672. GGML_FP16_TO_FP32(b_x1->d)*b_y1->d};
  3673. float32x4_t scale = vld1q_f32(_scale);
  3674. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3675. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3676. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3677. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3678. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3679. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3680. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3681. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3682. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3683. l1, r1)), l2, r2)), l3, r3))), scale);
  3684. }
  3685. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3686. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3687. sumv2 = vaddq_f32(sumv2, summs0);
  3688. vst1_f32(s, vget_low_f32(sumv2));
  3689. vst1_f32(s + bs, vget_high_f32(sumv2));
  3690. return;
  3691. }
  3692. #endif
  3693. // TODO: add WASM SIMD
  3694. #if defined(__ARM_NEON)
  3695. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3696. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3697. float summs = 0;
  3698. assert(nb % 2 == 0); // TODO: handle odd nb
  3699. for (int i = 0; i < nb; i += 2) {
  3700. const block_q4_1 * restrict x0 = &x[i + 0];
  3701. const block_q4_1 * restrict x1 = &x[i + 1];
  3702. const block_q8_1 * restrict y0 = &y[i + 0];
  3703. const block_q8_1 * restrict y1 = &y[i + 1];
  3704. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  3705. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3706. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3707. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3708. // 4-bit -> 8-bit
  3709. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3710. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3711. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3712. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3713. // load y
  3714. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3715. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3716. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3717. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3718. // dot product into int32x4_t
  3719. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3720. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3721. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3722. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3723. }
  3724. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3725. #elif defined(__AVX2__) || defined(__AVX__)
  3726. // Initialize accumulator with zeros
  3727. __m256 acc = _mm256_setzero_ps();
  3728. float summs = 0;
  3729. // Main loop
  3730. for (int i = 0; i < nb; ++i) {
  3731. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3732. const float d1 = GGML_FP16_TO_FP32(y[i].d);
  3733. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  3734. const __m256 d0v = _mm256_set1_ps( d0 );
  3735. const __m256 d1v = _mm256_set1_ps( d1 );
  3736. // Compute combined scales
  3737. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3738. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3739. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3740. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  3741. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3742. // Accumulate d0*d1*x*y
  3743. #if defined(__AVX2__)
  3744. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3745. #else
  3746. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3747. #endif
  3748. }
  3749. *s = hsum_float_8(acc) + summs;
  3750. #elif defined(__riscv_v_intrinsic)
  3751. float sumf = 0.0;
  3752. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3753. for (int i = 0; i < nb; i++) {
  3754. // load elements
  3755. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3756. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3757. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3758. // mask and store lower part of x, and then upper part
  3759. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3760. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3761. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3762. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3763. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3764. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3765. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3766. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3767. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3768. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3769. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  3770. }
  3771. *s = sumf;
  3772. #elif defined(__POWER9_VECTOR__)
  3773. const vector signed char lowMask = vec_splats((signed char)0xF);
  3774. const vector signed int v0 = vec_splats((int32_t)0);
  3775. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3776. vector float vsumf0 = vec_splats(0.0f);
  3777. #pragma GCC unroll 4
  3778. for (int i = 0; i < nb; i++) {
  3779. __builtin_prefetch(x[i].qs, 0, 1);
  3780. __builtin_prefetch(y[i].qs, 0, 1);
  3781. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3782. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  3783. vector float vd = vec_mul(vxd, vyd);
  3784. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m));
  3785. vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.0f, 0.0f, 0.0f};
  3786. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  3787. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  3788. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  3789. vector signed char q8y1 = vec_xl(16, y[i].qs);
  3790. vector unsigned char q4x0 = (vector unsigned char)vec_and(qxs, lowMask);
  3791. vector unsigned char q4x1 = (vector unsigned char)vec_sr(qxs, v4);
  3792. vector signed int vsumi0 = v0;
  3793. vsumi0 = vec_msum(q8y0, q4x0, vsumi0);
  3794. vsumi0 = vec_msum(q8y1, q4x1, vsumi0);
  3795. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3796. }
  3797. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3798. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3799. *s = vec_extract(vsumf0, 0);
  3800. #elif defined(__loongarch_asx)
  3801. // Initialize accumulator with zeros
  3802. __m256 acc = (__m256)__lasx_xvldi(0);
  3803. float summs = 0;
  3804. // Main loop
  3805. for (int i = 0; i < nb; ++i) {
  3806. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3807. const float d1 = GGML_FP16_TO_FP32(y[i].d);
  3808. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  3809. const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
  3810. const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
  3811. // Compute combined scales
  3812. const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v );
  3813. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3814. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3815. const __m256i qy = __lasx_xvld( (const __m256i *)y[i].qs, 0);
  3816. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3817. // Accumulate d0*d1*x*y
  3818. acc = __lasx_xvfmadd_s( d0d1, xy, acc );
  3819. }
  3820. *s = hsum_float_8(acc) + summs;
  3821. #else
  3822. // scalar
  3823. float sumf = 0.0;
  3824. for (int i = 0; i < nb; i++) {
  3825. int sumi = 0;
  3826. for (int j = 0; j < qk/2; ++j) {
  3827. const int v0 = (x[i].qs[j] & 0x0F);
  3828. const int v1 = (x[i].qs[j] >> 4);
  3829. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3830. }
  3831. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  3832. }
  3833. *s = sumf;
  3834. #endif
  3835. }
  3836. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3837. const int qk = QK8_0;
  3838. const int nb = n / qk;
  3839. assert(n % qk == 0);
  3840. assert(qk == QK5_0);
  3841. assert(nrc == 1);
  3842. UNUSED(nrc);
  3843. UNUSED(bx);
  3844. UNUSED(by);
  3845. UNUSED(bs);
  3846. const block_q5_0 * restrict x = vx;
  3847. const block_q8_0 * restrict y = vy;
  3848. #if defined(__ARM_NEON)
  3849. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3850. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3851. uint32_t qh0;
  3852. uint32_t qh1;
  3853. uint64_t tmp0[4];
  3854. uint64_t tmp1[4];
  3855. assert(nb % 2 == 0); // TODO: handle odd nb
  3856. for (int i = 0; i < nb; i += 2) {
  3857. const block_q5_0 * restrict x0 = &x[i];
  3858. const block_q5_0 * restrict x1 = &x[i + 1];
  3859. const block_q8_0 * restrict y0 = &y[i];
  3860. const block_q8_0 * restrict y1 = &y[i + 1];
  3861. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3862. // extract the 5th bit via lookup table ((!b) << 4)
  3863. memcpy(&qh0, x0->qh, sizeof(qh0));
  3864. memcpy(&qh1, x1->qh, sizeof(qh1));
  3865. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  3866. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  3867. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  3868. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  3869. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  3870. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  3871. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  3872. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  3873. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3874. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3875. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3876. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3877. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3878. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3879. // 4-bit -> 8-bit
  3880. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3881. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3882. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3883. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3884. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3885. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  3886. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  3887. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  3888. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  3889. // load y
  3890. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3891. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3892. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3893. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3894. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3895. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3896. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3897. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3898. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3899. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3900. }
  3901. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3902. #elif defined(__wasm_simd128__)
  3903. v128_t sumv = wasm_f32x4_splat(0.0f);
  3904. uint32_t qh;
  3905. uint64_t tmp[4];
  3906. // TODO: check if unrolling this is better
  3907. for (int i = 0; i < nb; ++i) {
  3908. const block_q5_0 * restrict x0 = &x[i];
  3909. const block_q8_0 * restrict y0 = &y[i];
  3910. const v128_t m4b = wasm_i8x16_splat(0x0F);
  3911. // extract the 5th bit
  3912. memcpy(&qh, x0->qh, sizeof(qh));
  3913. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  3914. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  3915. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  3916. tmp[3] = table_b2b_1[(qh >> 24) ];
  3917. const v128_t qhl = wasm_v128_load(tmp + 0);
  3918. const v128_t qhh = wasm_v128_load(tmp + 2);
  3919. const v128_t v0 = wasm_v128_load(x0->qs);
  3920. // 4-bit -> 8-bit
  3921. const v128_t v0l = wasm_v128_and (v0, m4b);
  3922. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  3923. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3924. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  3925. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  3926. // load y
  3927. const v128_t v1l = wasm_v128_load(y0->qs);
  3928. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  3929. // int8x16 -> int16x8
  3930. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  3931. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  3932. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  3933. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  3934. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  3935. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  3936. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  3937. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  3938. // dot product
  3939. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  3940. wasm_i32x4_add(
  3941. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  3942. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  3943. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  3944. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  3945. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  3946. }
  3947. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  3948. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  3949. #elif defined(__AVX2__)
  3950. // Initialize accumulator with zeros
  3951. __m256 acc = _mm256_setzero_ps();
  3952. // Main loop
  3953. for (int i = 0; i < nb; i++) {
  3954. /* Compute combined scale for the block */
  3955. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3956. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3957. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3958. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  3959. qx = _mm256_or_si256(qx, bxhi);
  3960. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3961. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3962. /* Multiply q with scale and accumulate */
  3963. acc = _mm256_fmadd_ps(d, q, acc);
  3964. }
  3965. *s = hsum_float_8(acc);
  3966. #elif defined(__AVX__)
  3967. // Initialize accumulator with zeros
  3968. __m256 acc = _mm256_setzero_ps();
  3969. __m128i mask = _mm_set1_epi8((char)0xF0);
  3970. // Main loop
  3971. for (int i = 0; i < nb; i++) {
  3972. /* Compute combined scale for the block */
  3973. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  3974. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  3975. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  3976. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  3977. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  3978. bxhil = _mm_andnot_si128(bxhil, mask);
  3979. bxhih = _mm_andnot_si128(bxhih, mask);
  3980. __m128i bxl = _mm256_castsi256_si128(bx_0);
  3981. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  3982. bxl = _mm_or_si128(bxl, bxhil);
  3983. bxh = _mm_or_si128(bxh, bxhih);
  3984. bx_0 = MM256_SET_M128I(bxh, bxl);
  3985. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3986. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  3987. /* Multiply q with scale and accumulate */
  3988. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  3989. }
  3990. *s = hsum_float_8(acc);
  3991. #elif defined(__riscv_v_intrinsic)
  3992. float sumf = 0.0;
  3993. uint32_t qh;
  3994. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3995. // These temporary registers are for masking and shift operations
  3996. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  3997. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  3998. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  3999. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4000. for (int i = 0; i < nb; i++) {
  4001. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4002. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4003. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  4004. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  4005. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4006. // ((qh & (1u << (j + 16))) >> (j + 12));
  4007. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  4008. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  4009. // narrowing
  4010. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  4011. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4012. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  4013. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4014. // load
  4015. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4016. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4017. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4018. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4019. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4020. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4021. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4022. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4023. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4024. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  4025. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  4026. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4027. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4028. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4029. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4030. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4031. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4032. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4033. }
  4034. *s = sumf;
  4035. #elif defined(__POWER9_VECTOR__)
  4036. const vector signed char lowMask = vec_splats((signed char)0xF);
  4037. const vector unsigned char v4 = vec_splats((unsigned char)4);
  4038. vector float vsumf0 = vec_splats(0.0f);
  4039. #pragma GCC unroll 4
  4040. for (int i = 0; i < nb; ++i) {
  4041. __builtin_prefetch(x[i].qs, 0, 1);
  4042. __builtin_prefetch(y[i].qs, 0, 1);
  4043. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4044. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4045. vector float vd = vec_mul(vxd, vyd);
  4046. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[i].qh[0]]), (uint64_t)(table_b2b_1[x[i].qh[1]])};
  4047. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[i].qh[2]]), (uint64_t)(table_b2b_1[x[i].qh[3]])};
  4048. vector signed char qh0 = (vector signed char)aux64x2_0;
  4049. vector signed char qh1 = (vector signed char)aux64x2_1;
  4050. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  4051. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  4052. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  4053. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4054. vector signed char q8y1 = vec_xl( 16, y[i].qs);
  4055. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  4056. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  4057. qv0 = vec_add(qv0, qv1);
  4058. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  4059. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4060. }
  4061. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4062. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4063. *s = vec_extract(vsumf0, 0);
  4064. #elif defined(__loongarch_asx)
  4065. // Initialize accumulator with zeros
  4066. __m256 acc = (__m256)__lasx_xvldi(0);
  4067. // Main loop
  4068. for (int i = 0; i < nb; i++) {
  4069. /* Compute combined scale for the block */
  4070. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); //FIXME
  4071. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4072. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4073. bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0));
  4074. qx = __lasx_xvor_v(qx, bxhi);
  4075. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4076. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4077. /* Multiply q with scale and accumulate */
  4078. acc = __lasx_xvfmadd_s(d, q, acc);
  4079. }
  4080. *s = hsum_float_8(acc);
  4081. #else
  4082. // scalar
  4083. float sumf = 0.0;
  4084. for (int i = 0; i < nb; i++) {
  4085. uint32_t qh;
  4086. memcpy(&qh, x[i].qh, sizeof(qh));
  4087. int sumi = 0;
  4088. for (int j = 0; j < qk/2; ++j) {
  4089. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4090. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  4091. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  4092. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  4093. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4094. }
  4095. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4096. }
  4097. *s = sumf;
  4098. #endif
  4099. }
  4100. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4101. const int qk = QK8_1;
  4102. const int nb = n / qk;
  4103. assert(n % qk == 0);
  4104. assert(qk == QK5_1);
  4105. assert(nrc == 1);
  4106. UNUSED(nrc);
  4107. UNUSED(bx);
  4108. UNUSED(by);
  4109. UNUSED(bs);
  4110. const block_q5_1 * restrict x = vx;
  4111. const block_q8_1 * restrict y = vy;
  4112. #if defined(__ARM_NEON)
  4113. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4114. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4115. float summs0 = 0.0f;
  4116. float summs1 = 0.0f;
  4117. uint32_t qh0;
  4118. uint32_t qh1;
  4119. uint64_t tmp0[4];
  4120. uint64_t tmp1[4];
  4121. assert(nb % 2 == 0); // TODO: handle odd nb
  4122. for (int i = 0; i < nb; i += 2) {
  4123. const block_q5_1 * restrict x0 = &x[i];
  4124. const block_q5_1 * restrict x1 = &x[i + 1];
  4125. const block_q8_1 * restrict y0 = &y[i];
  4126. const block_q8_1 * restrict y1 = &y[i + 1];
  4127. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4128. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4129. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  4130. // extract the 5th bit via lookup table ((b) << 4)
  4131. memcpy(&qh0, x0->qh, sizeof(qh0));
  4132. memcpy(&qh1, x1->qh, sizeof(qh1));
  4133. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4134. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4135. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4136. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4137. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4138. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4139. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4140. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4141. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4142. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4143. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4144. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4145. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4146. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4147. // 4-bit -> 8-bit
  4148. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4149. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4150. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4151. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4152. // add high bit
  4153. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4154. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4155. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4156. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4157. // load y
  4158. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4159. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4160. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4161. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4162. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4163. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4164. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4165. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4166. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4167. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4168. }
  4169. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4170. #elif defined(__wasm_simd128__)
  4171. v128_t sumv = wasm_f32x4_splat(0.0f);
  4172. float summs = 0.0f;
  4173. uint32_t qh;
  4174. uint64_t tmp[4];
  4175. // TODO: check if unrolling this is better
  4176. for (int i = 0; i < nb; ++i) {
  4177. const block_q5_1 * restrict x0 = &x[i];
  4178. const block_q8_1 * restrict y0 = &y[i];
  4179. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  4180. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4181. // extract the 5th bit
  4182. memcpy(&qh, x0->qh, sizeof(qh));
  4183. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4184. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4185. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4186. tmp[3] = table_b2b_0[(qh >> 24) ];
  4187. const v128_t qhl = wasm_v128_load(tmp + 0);
  4188. const v128_t qhh = wasm_v128_load(tmp + 2);
  4189. const v128_t v0 = wasm_v128_load(x0->qs);
  4190. // 4-bit -> 8-bit
  4191. const v128_t v0l = wasm_v128_and (v0, m4b);
  4192. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4193. // add high bit
  4194. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4195. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4196. // load y
  4197. const v128_t v1l = wasm_v128_load(y0->qs);
  4198. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4199. // int8x16 -> int16x8
  4200. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4201. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4202. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4203. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4204. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4205. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4206. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4207. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4208. // dot product
  4209. sumv = wasm_f32x4_add(sumv,
  4210. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4211. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4212. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4213. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4214. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4215. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4216. }
  4217. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4218. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4219. #elif defined(__AVX2__)
  4220. // Initialize accumulator with zeros
  4221. __m256 acc = _mm256_setzero_ps();
  4222. float summs = 0.0f;
  4223. // Main loop
  4224. for (int i = 0; i < nb; i++) {
  4225. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4226. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4227. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4228. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4229. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4230. qx = _mm256_or_si256(qx, bxhi);
  4231. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d));
  4232. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4233. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4234. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4235. }
  4236. *s = hsum_float_8(acc) + summs;
  4237. #elif defined(__AVX__)
  4238. // Initialize accumulator with zeros
  4239. __m256 acc = _mm256_setzero_ps();
  4240. __m128i mask = _mm_set1_epi8(0x10);
  4241. float summs = 0.0f;
  4242. // Main loop
  4243. for (int i = 0; i < nb; i++) {
  4244. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4245. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4246. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4247. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4248. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4249. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4250. bxhil = _mm_and_si128(bxhil, mask);
  4251. bxhih = _mm_and_si128(bxhih, mask);
  4252. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4253. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4254. bxl = _mm_or_si128(bxl, bxhil);
  4255. bxh = _mm_or_si128(bxh, bxhih);
  4256. bx_0 = MM256_SET_M128I(bxh, bxl);
  4257. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d));
  4258. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4259. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4260. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4261. }
  4262. *s = hsum_float_8(acc) + summs;
  4263. #elif defined(__riscv_v_intrinsic)
  4264. float sumf = 0.0;
  4265. uint32_t qh;
  4266. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4267. // temporary registers for shift operations
  4268. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4269. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4270. for (int i = 0; i < nb; i++) {
  4271. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4272. // load qh
  4273. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4274. // ((qh >> (j + 0)) << 4) & 0x10;
  4275. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4276. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4277. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4278. // ((qh >> (j + 12)) ) & 0x10;
  4279. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4280. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4281. // narrowing
  4282. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4283. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4284. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4285. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4286. // load
  4287. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4288. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4289. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4290. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4291. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4292. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4293. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4294. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4295. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4296. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4297. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4298. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4299. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4300. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4301. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4302. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4303. }
  4304. *s = sumf;
  4305. #elif defined(__POWER9_VECTOR__)
  4306. const vector signed char lowMask = vec_splats((signed char)0xF);
  4307. const vector signed int v0 = vec_splats((int32_t)0);
  4308. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4309. vector float vsumf0 = vec_splats(0.0f);
  4310. #pragma GCC unroll 4
  4311. for (int i = 0; i < nb; ++i) {
  4312. __builtin_prefetch(x[i].qs, 0, 1);
  4313. __builtin_prefetch(y[i].qs, 0, 1);
  4314. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4315. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4316. vector float vd = vec_mul(vxd, vyd);
  4317. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].m));
  4318. vector float vys = {GGML_FP16_TO_FP32(y[i].s), 0.f, 0.f, 0.f};
  4319. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  4320. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[i].qh[0]]), (uint64_t)(table_b2b_0[x[i].qh[1]])};
  4321. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[i].qh[2]]), (uint64_t)(table_b2b_0[x[i].qh[3]])};
  4322. vector signed char qh0 = (vector signed char)aux64x2_0;
  4323. vector signed char qh1 = (vector signed char)aux64x2_1;
  4324. vector signed char qxs = (vector signed char)vec_xl( 0, x[i].qs);
  4325. vector unsigned char q5x0 = (vector unsigned char)vec_or(vec_and(qxs, lowMask), qh0);
  4326. vector unsigned char q5x1 = (vector unsigned char)vec_or(vec_sr(qxs, v4), qh1);
  4327. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4328. vector signed char q8y1 = vec_xl( 16, y[i].qs);
  4329. vector signed int vsumi0 = v0;
  4330. vsumi0 = vec_msum(q8y0, q5x0, vsumi0);
  4331. vsumi0 = vec_msum(q8y1, q5x1, vsumi0);
  4332. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4333. }
  4334. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4335. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4336. *s = vec_extract(vsumf0, 0);
  4337. #elif defined(__loongarch_asx)
  4338. // Initialize accumulator with zeros
  4339. __m256 acc = (__m256)__lasx_xvldi(0);
  4340. float summs = 0.0f;
  4341. // Main loop
  4342. for (int i = 0; i < nb; i++) {
  4343. const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d));
  4344. summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s);
  4345. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4346. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4347. bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
  4348. qx = __lasx_xvor_v(qx, bxhi);
  4349. const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[i].d));
  4350. const __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4351. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4352. acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc);
  4353. }
  4354. *s = hsum_float_8(acc) + summs;
  4355. #else
  4356. // scalar
  4357. float sumf = 0.0;
  4358. for (int i = 0; i < nb; i++) {
  4359. uint32_t qh;
  4360. memcpy(&qh, x[i].qh, sizeof(qh));
  4361. int sumi = 0;
  4362. for (int j = 0; j < qk/2; ++j) {
  4363. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4364. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4365. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  4366. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  4367. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4368. }
  4369. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s);
  4370. }
  4371. *s = sumf;
  4372. #endif
  4373. }
  4374. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4375. const int qk = QK8_0;
  4376. const int nb = n / qk;
  4377. assert(n % qk == 0);
  4378. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4379. assert((nrc == 2) || (nrc == 1));
  4380. #else
  4381. assert(nrc == 1);
  4382. #endif
  4383. UNUSED(nrc);
  4384. UNUSED(bx);
  4385. UNUSED(by);
  4386. UNUSED(bs);
  4387. const block_q8_0 * restrict x = vx;
  4388. const block_q8_0 * restrict y = vy;
  4389. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4390. if (nrc == 2) {
  4391. const block_q8_0 * restrict vx0 = vx;
  4392. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  4393. const block_q8_0 * restrict vy0 = vy;
  4394. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  4395. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4396. for (int i = 0; i < nb; i++) {
  4397. const block_q8_0 * restrict b_x0 = &vx0[i];
  4398. const block_q8_0 * restrict b_y0 = &vy0[i];
  4399. const block_q8_0 * restrict b_x1 = &vx1[i];
  4400. const block_q8_0 * restrict b_y1 = &vy1[i];
  4401. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4402. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4403. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4404. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4405. // load y
  4406. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4407. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4408. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4409. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4410. float32_t _scale[4] = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4411. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4412. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4413. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4414. float32x4_t scale = vld1q_f32(_scale);
  4415. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4416. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4417. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4418. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4419. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4420. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4421. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4422. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4423. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4424. l1, r1)), l2, r2)), l3, r3))), scale);
  4425. }
  4426. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4427. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4428. vst1_f32(s, vget_low_f32(sumv2));
  4429. vst1_f32(s + bs, vget_high_f32(sumv2));
  4430. return;
  4431. }
  4432. #endif
  4433. #if defined(__ARM_FEATURE_SVE)
  4434. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  4435. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  4436. assert(nb % 2 == 0); // TODO: handle odd nb
  4437. for (int i = 0; i < nb; i += 2) {
  4438. const block_q8_0 * restrict x0 = &x[i + 0];
  4439. const block_q8_0 * restrict x1 = &x[i + 1];
  4440. const block_q8_0 * restrict y0 = &y[i + 0];
  4441. const block_q8_0 * restrict y1 = &y[i + 1];
  4442. // load x
  4443. const svint8_t qx0 = svld1_s8(svptrue_b8(), x0->qs);
  4444. const svint8_t qx1 = svld1_s8(svptrue_b8(), x1->qs);
  4445. // load y
  4446. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  4447. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  4448. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4449. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4450. }
  4451. *s = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  4452. #elif defined(__ARM_NEON)
  4453. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4454. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4455. assert(nb % 2 == 0); // TODO: handle odd nb
  4456. for (int i = 0; i < nb; i += 2) {
  4457. const block_q8_0 * restrict x0 = &x[i + 0];
  4458. const block_q8_0 * restrict x1 = &x[i + 1];
  4459. const block_q8_0 * restrict y0 = &y[i + 0];
  4460. const block_q8_0 * restrict y1 = &y[i + 1];
  4461. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4462. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4463. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4464. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4465. // load y
  4466. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4467. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4468. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4469. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4470. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4471. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4472. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4473. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4474. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4475. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4476. }
  4477. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4478. #elif defined(__AVX2__) || defined(__AVX__)
  4479. // Initialize accumulator with zeros
  4480. __m256 acc = _mm256_setzero_ps();
  4481. // Main loop
  4482. for (int i = 0; i < nb; ++i) {
  4483. // Compute combined scale for the block
  4484. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4485. __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  4486. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4487. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4488. // Multiply q with scale and accumulate
  4489. #if defined(__AVX2__)
  4490. acc = _mm256_fmadd_ps( d, q, acc );
  4491. #else
  4492. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4493. #endif
  4494. }
  4495. *s = hsum_float_8(acc);
  4496. #elif defined(__riscv_v_intrinsic)
  4497. float sumf = 0.0;
  4498. size_t vl = __riscv_vsetvl_e8m1(qk);
  4499. for (int i = 0; i < nb; i++) {
  4500. // load elements
  4501. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
  4502. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  4503. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4504. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4505. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4506. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4507. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4508. }
  4509. *s = sumf;
  4510. #elif defined(__POWER9_VECTOR__)
  4511. const vector signed int v0 = vec_splats((int32_t)0);
  4512. vector float vsumf0 = vec_splats(0.0f);
  4513. #pragma GCC unroll 8
  4514. for (int i = 0; i < nb; i++) {
  4515. __builtin_prefetch(x[i].qs, 0, 1);
  4516. __builtin_prefetch(y[i].qs, 0, 1);
  4517. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4518. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[i].d));
  4519. vector float vd = vec_mul(vxd, vyd);
  4520. vector signed char q8x0 = vec_xl( 0, x[i].qs);
  4521. vector signed char q8x1 = vec_xl(16, x[i].qs);
  4522. vector signed char q8y0 = vec_xl( 0, y[i].qs);
  4523. vector signed char q8y1 = vec_xl(16, y[i].qs);
  4524. vector signed short qv0 = vec_mule(q8x0, q8y0);
  4525. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  4526. vector signed short qv2 = vec_mule(q8x1, q8y1);
  4527. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  4528. vector signed int vsumi0 = v0;
  4529. vector signed int vsumi1 = v0;
  4530. vsumi0 = vec_sum4s(qv0, vsumi0);
  4531. vsumi1 = vec_sum4s(qv1, vsumi1);
  4532. vsumi0 = vec_sum4s(qv2, vsumi0);
  4533. vsumi1 = vec_sum4s(qv3, vsumi1);
  4534. vsumi0 = vec_add(vsumi0, vsumi1);
  4535. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4536. }
  4537. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4538. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4539. *s = vec_extract(vsumf0, 0);
  4540. #elif defined(__loongarch_asx)
  4541. // Initialize accumulator with zeros
  4542. __m256 acc = (__m256)__lasx_xvldi(0);
  4543. // Main loop
  4544. for (int i = 0; i < nb; ++i) {
  4545. // Compute combined scale for the block
  4546. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4547. __m256i qx = __lasx_xvld((const __m256i *)x[i].qs, 0);
  4548. __m256i qy = __lasx_xvld((const __m256i *)y[i].qs, 0);
  4549. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4550. // Multiply q with scale and accumulate
  4551. acc = __lasx_xvfmadd_s( d, q, acc );
  4552. }
  4553. *s = hsum_float_8(acc);
  4554. #else
  4555. // scalar
  4556. float sumf = 0.0;
  4557. for (int i = 0; i < nb; i++) {
  4558. int sumi = 0;
  4559. for (int j = 0; j < qk; j++) {
  4560. sumi += x[i].qs[j]*y[i].qs[j];
  4561. }
  4562. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4563. }
  4564. *s = sumf;
  4565. #endif
  4566. }
  4567. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4568. assert(nrc == 1);
  4569. UNUSED(nrc);
  4570. UNUSED(bx);
  4571. UNUSED(by);
  4572. UNUSED(bs);
  4573. const block_q2_K * restrict x = vx;
  4574. const block_q8_K * restrict y = vy;
  4575. const int nb = n / QK_K;
  4576. #ifdef __ARM_NEON
  4577. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4578. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4579. const int32x4_t vzero = vdupq_n_s32(0);
  4580. ggml_int8x16x2_t q2bytes;
  4581. uint8_t aux[16];
  4582. float sum = 0;
  4583. for (int i = 0; i < nb; ++i) {
  4584. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4585. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4586. const uint8_t * restrict q2 = x[i].qs;
  4587. const int8_t * restrict q8 = y[i].qs;
  4588. const uint8_t * restrict sc = x[i].scales;
  4589. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4590. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4591. vst1q_u8(aux, scales);
  4592. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4593. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4594. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4595. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4596. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4597. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4598. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4599. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4600. int isum = 0;
  4601. int is = 0;
  4602. // We use this macro instead of a function call because for some reason
  4603. // the code runs 2-3% slower, even if the function is declared inline
  4604. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4605. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4606. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4607. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4608. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4609. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4610. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4611. MULTIPLY_ACCUM_WITH_SCALE((index));
  4612. for (int j = 0; j < QK_K/128; ++j) {
  4613. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4614. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4615. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4616. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4617. MULTIPLY_ACCUM_WITH_SCALE(0);
  4618. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4619. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4620. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4621. is += 8;
  4622. }
  4623. sum += d * isum;
  4624. }
  4625. *s = sum;
  4626. #elif defined __AVX2__
  4627. const __m256i m3 = _mm256_set1_epi8(3);
  4628. const __m128i m4 = _mm_set1_epi8(0xF);
  4629. __m256 acc = _mm256_setzero_ps();
  4630. for (int i = 0; i < nb; ++i) {
  4631. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4632. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4633. const uint8_t * restrict q2 = x[i].qs;
  4634. const int8_t * restrict q8 = y[i].qs;
  4635. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4636. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4637. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4638. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4639. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4640. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4641. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4642. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4643. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4644. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4645. __m256i sumi = _mm256_setzero_si256();
  4646. for (int j = 0; j < QK_K/128; ++j) {
  4647. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4648. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4649. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4650. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4651. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4652. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4653. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4654. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4655. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4656. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4657. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4658. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4659. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4660. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4661. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4662. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4663. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4664. p0 = _mm256_add_epi32(p0, p1);
  4665. p2 = _mm256_add_epi32(p2, p3);
  4666. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4667. }
  4668. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4669. }
  4670. *s = hsum_float_8(acc);
  4671. #elif defined __AVX__
  4672. const __m128i m3 = _mm_set1_epi8(0x3);
  4673. const __m128i m4 = _mm_set1_epi8(0xF);
  4674. const __m128i m2 = _mm_set1_epi8(0x2);
  4675. __m256 acc = _mm256_setzero_ps();
  4676. for (int i = 0; i < nb; ++i) {
  4677. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4678. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4679. const uint8_t * restrict q2 = x[i].qs;
  4680. const int8_t * restrict q8 = y[i].qs;
  4681. // load mins and scales from block_q2_K.scales[QK_K/16]
  4682. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4683. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4684. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4685. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4686. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4687. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4688. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4689. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4690. // sumf += -dmin * summs in 32bits*8
  4691. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4692. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4693. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4694. const __m128i scales[2] = { scales_0, scales_1 };
  4695. __m128i sumi_0 = _mm_setzero_si128();
  4696. __m128i sumi_1 = _mm_setzero_si128();
  4697. for (int j = 0; j < QK_K/128; ++j) {
  4698. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4699. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4700. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4701. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4702. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4703. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4704. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4705. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4706. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4707. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4708. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4709. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4710. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4711. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4712. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4713. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4714. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4715. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4716. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4717. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4718. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4719. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4720. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4721. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4722. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4723. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4724. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4725. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4726. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4727. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4728. __m128i shuffle = _mm_set1_epi16(0x0100);
  4729. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4730. shuffle = _mm_add_epi16(shuffle, m2);
  4731. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4732. shuffle = _mm_add_epi16(shuffle, m2);
  4733. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4734. shuffle = _mm_add_epi16(shuffle, m2);
  4735. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4736. shuffle = _mm_add_epi16(shuffle, m2);
  4737. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4738. shuffle = _mm_add_epi16(shuffle, m2);
  4739. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4740. shuffle = _mm_add_epi16(shuffle, m2);
  4741. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4742. shuffle = _mm_add_epi16(shuffle, m2);
  4743. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4744. p0 = _mm_add_epi32(p0, p1);
  4745. p2 = _mm_add_epi32(p2, p3);
  4746. p4 = _mm_add_epi32(p4, p5);
  4747. p6 = _mm_add_epi32(p6, p7);
  4748. // isum in 32bits*4*2
  4749. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4750. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4751. }
  4752. // sumf += dall * isum - dmin * summs in 32bits
  4753. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4754. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4755. }
  4756. *s = hsum_float_8(acc);
  4757. #elif defined __riscv_v_intrinsic
  4758. float sumf = 0;
  4759. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4760. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  4761. for (int i = 0; i < nb; ++i) {
  4762. const uint8_t * q2 = x[i].qs;
  4763. const int8_t * q8 = y[i].qs;
  4764. const uint8_t * sc = x[i].scales;
  4765. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4766. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4767. size_t vl = 16;
  4768. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  4769. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  4770. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  4771. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  4772. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  4773. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  4774. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  4775. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4776. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  4777. vl = 32;
  4778. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4779. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  4780. uint8_t is=0;
  4781. int isum=0;
  4782. for (int j = 0; j < QK_K/128; ++j) {
  4783. // load Q2
  4784. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  4785. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  4786. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  4787. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  4788. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  4789. // duplicate scale elements for product
  4790. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  4791. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  4792. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  4793. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  4794. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  4795. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  4796. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  4797. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  4798. // load Q8
  4799. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4800. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4801. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  4802. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  4803. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  4804. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  4805. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  4806. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  4807. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  4808. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  4809. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  4810. q2+=32; q8+=128; is=8;
  4811. }
  4812. sumf += dall * isum;
  4813. }
  4814. *s = sumf;
  4815. #elif defined(__POWER9_VECTOR__)
  4816. const vector signed char lowMask = vec_splats((signed char)0x3);
  4817. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  4818. const vector int v0 = vec_splats((int32_t)0);
  4819. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  4820. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  4821. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4822. vector float vsumf0 = vec_splats(0.0f);
  4823. vector float vsumf1 = vec_splats(0.0f);
  4824. vector float vsumf2 = vec_splats(0.0f);
  4825. vector float vsumf3 = vec_splats(0.0f);
  4826. for (int i = 0; i < nb; ++i) {
  4827. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4828. vector float vyd = vec_splats(y[i].d);
  4829. vector float vd = vec_mul(vxd, vyd);
  4830. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  4831. vector float vdmin = vec_mul(vxmin, vyd);
  4832. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  4833. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  4834. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  4835. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  4836. q2xmins = vec_sr(q2xmins, v4);
  4837. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  4838. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  4839. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  4840. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  4841. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  4842. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  4843. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  4844. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  4845. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  4846. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  4847. vector signed int vsumi0 = v0;
  4848. vector signed int vsumi1 = v0;
  4849. vector signed int vsumi2 = v0;
  4850. vector signed int vsumi3 = v0;
  4851. vector signed int vsumi4 = v0;
  4852. vector signed int vsumi5 = v0;
  4853. vector signed int vsumi6 = v0;
  4854. vector signed int vsumi7 = v0;
  4855. const uint8_t * restrict q2 = x[i].qs;
  4856. const int8_t * restrict q8 = y[i].qs;
  4857. for (int j = 0; j < QK_K/128; ++j) {
  4858. __builtin_prefetch(q2, 0, 1);
  4859. __builtin_prefetch(q8, 0, 1);
  4860. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  4861. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  4862. q2 += 32;
  4863. vector unsigned char q2x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  4864. vector unsigned char q2x01 = (vector unsigned char)vec_and(vec_sr(qxs0, v2), lowMask);
  4865. vector unsigned char q2x02 = (vector unsigned char)vec_and(vec_sr(qxs0, v4), lowMask);
  4866. vector unsigned char q2x03 = (vector unsigned char)vec_and(vec_sr(qxs0, v6), lowMask);
  4867. vector unsigned char q2x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  4868. vector unsigned char q2x11 = (vector unsigned char)vec_and(vec_sr(qxs1, v2), lowMask);
  4869. vector unsigned char q2x12 = (vector unsigned char)vec_and(vec_sr(qxs1, v4), lowMask);
  4870. vector unsigned char q2x13 = (vector unsigned char)vec_and(vec_sr(qxs1, v6), lowMask);
  4871. vector signed char q8y00 = vec_xl( 0, q8);
  4872. vector signed char q8y10 = vec_xl( 16, q8);
  4873. vector signed char q8y01 = vec_xl( 32, q8);
  4874. vector signed char q8y11 = vec_xl( 48, q8);
  4875. vector signed char q8y02 = vec_xl( 64, q8);
  4876. vector signed char q8y12 = vec_xl( 80, q8);
  4877. vector signed char q8y03 = vec_xl( 96, q8);
  4878. vector signed char q8y13 = vec_xl(112, q8);
  4879. q8 += 128;
  4880. vector signed int qv0 = vec_msum(q8y00, q2x00, v0);
  4881. vector signed int qv1 = vec_msum(q8y01, q2x01, v0);
  4882. vector signed int qv2 = vec_msum(q8y02, q2x02, v0);
  4883. vector signed int qv3 = vec_msum(q8y03, q2x03, v0);
  4884. vector signed int qv4 = vec_msum(q8y10, q2x10, v0);
  4885. vector signed int qv5 = vec_msum(q8y11, q2x11, v0);
  4886. vector signed int qv6 = vec_msum(q8y12, q2x12, v0);
  4887. vector signed int qv7 = vec_msum(q8y13, q2x13, v0);
  4888. vector signed short vscales_07 = vec_unpackh(vscales);
  4889. vector signed int vscales_03 = vec_unpackh(vscales_07);
  4890. vector signed int vscales_47 = vec_unpackl(vscales_07);
  4891. vector signed int vs0 = vec_splat(vscales_03, 0);
  4892. vector signed int vs1 = vec_splat(vscales_03, 1);
  4893. vector signed int vs2 = vec_splat(vscales_03, 2);
  4894. vector signed int vs3 = vec_splat(vscales_03, 3);
  4895. vector signed int vs4 = vec_splat(vscales_47, 0);
  4896. vector signed int vs5 = vec_splat(vscales_47, 1);
  4897. vector signed int vs6 = vec_splat(vscales_47, 2);
  4898. vector signed int vs7 = vec_splat(vscales_47, 3);
  4899. vscales = vec_sld(vscales, vscales, 8);
  4900. vsumi0 = vec_add(vec_mul(qv0, vs0), vsumi0);
  4901. vsumi1 = vec_add(vec_mul(qv1, vs2), vsumi1);
  4902. vsumi2 = vec_add(vec_mul(qv2, vs4), vsumi2);
  4903. vsumi3 = vec_add(vec_mul(qv3, vs6), vsumi3);
  4904. vsumi4 = vec_add(vec_mul(qv4, vs1), vsumi4);
  4905. vsumi5 = vec_add(vec_mul(qv5, vs3), vsumi5);
  4906. vsumi6 = vec_add(vec_mul(qv6, vs5), vsumi6);
  4907. vsumi7 = vec_add(vec_mul(qv7, vs7), vsumi7);
  4908. }
  4909. vsumi0 = vec_add(vsumi0, vsumi4);
  4910. vsumi1 = vec_add(vsumi1, vsumi5);
  4911. vsumi2 = vec_add(vsumi2, vsumi6);
  4912. vsumi3 = vec_add(vsumi3, vsumi7);
  4913. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4914. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4915. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4916. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4917. }
  4918. vsumf0 = vec_add(vsumf0, vsumf2);
  4919. vsumf1 = vec_add(vsumf1, vsumf3);
  4920. vsumf0 = vec_add(vsumf0, vsumf1);
  4921. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4922. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4923. *s = vec_extract(vsumf0, 0);
  4924. #elif defined __loongarch_asx
  4925. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  4926. const __m128i m4 = __lsx_vreplgr2vr_b(0xF);
  4927. __m256 acc = (__m256)__lasx_xvldi(0);
  4928. for (int i = 0; i < nb; ++i) {
  4929. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4930. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4931. const uint8_t * restrict q2 = x[i].qs;
  4932. const int8_t * restrict q8 = y[i].qs;
  4933. const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  4934. const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
  4935. const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
  4936. const __m256i mins = lasx_ext8_16(mins8);
  4937. const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0));
  4938. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc);
  4939. const __m256i all_scales = lasx_ext8_16(scales8);
  4940. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  4941. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  4942. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  4943. __m256i sumi = __lasx_xvldi(0);
  4944. for (int j = 0; j < QK_K/128; ++j) {
  4945. const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32;
  4946. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4947. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4948. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4949. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4950. const __m256i q2_0 = __lasx_xvand_v(q2bits, m3);
  4951. const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3);
  4952. const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3);
  4953. const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3);
  4954. __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  4955. __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  4956. __m256i p2 = lasx_maddubs_h(q2_2, q8_2);
  4957. __m256i p3 = lasx_maddubs_h(q2_3, q8_3);
  4958. p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0);
  4959. p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1);
  4960. p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2);
  4961. p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3);
  4962. p0 = __lasx_xvadd_w(p0, p1);
  4963. p2 = __lasx_xvadd_w(p2, p3);
  4964. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2));
  4965. }
  4966. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  4967. }
  4968. *s = hsum_float_8(acc);
  4969. #else
  4970. float sumf = 0;
  4971. for (int i = 0; i < nb; ++i) {
  4972. const uint8_t * q2 = x[i].qs;
  4973. const int8_t * q8 = y[i].qs;
  4974. const uint8_t * sc = x[i].scales;
  4975. int summs = 0;
  4976. for (int j = 0; j < 16; ++j) {
  4977. summs += y[i].bsums[j] * (sc[j] >> 4);
  4978. }
  4979. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4980. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4981. int isum = 0;
  4982. int is = 0;
  4983. int d;
  4984. for (int k = 0; k < QK_K/128; ++k) {
  4985. int shift = 0;
  4986. for (int j = 0; j < 4; ++j) {
  4987. d = sc[is++] & 0xF;
  4988. int isuml = 0;
  4989. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4990. isum += d * isuml;
  4991. d = sc[is++] & 0xF;
  4992. isuml = 0;
  4993. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4994. isum += d * isuml;
  4995. shift += 2;
  4996. q8 += 32;
  4997. }
  4998. q2 += 32;
  4999. }
  5000. sumf += dall * isum - dmin * summs;
  5001. }
  5002. *s = sumf;
  5003. #endif
  5004. }
  5005. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5006. assert(n % QK_K == 0);
  5007. assert(nrc == 1);
  5008. UNUSED(nrc);
  5009. UNUSED(bx);
  5010. UNUSED(by);
  5011. UNUSED(bs);
  5012. const uint32_t kmask1 = 0x03030303;
  5013. const uint32_t kmask2 = 0x0f0f0f0f;
  5014. const block_q3_K * restrict x = vx;
  5015. const block_q8_K * restrict y = vy;
  5016. const int nb = n / QK_K;
  5017. #ifdef __ARM_NEON
  5018. uint32_t aux[3];
  5019. uint32_t utmp[4];
  5020. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5021. const int32x4_t vzero = vdupq_n_s32(0);
  5022. const uint8x16_t m0 = vdupq_n_u8(1);
  5023. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  5024. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  5025. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  5026. const int8_t m32 = 32;
  5027. ggml_int8x16x4_t q3bytes;
  5028. float sum = 0;
  5029. for (int i = 0; i < nb; ++i) {
  5030. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5031. const uint8_t * restrict q3 = x[i].qs;
  5032. const uint8_t * restrict qh = x[i].hmask;
  5033. const int8_t * restrict q8 = y[i].qs;
  5034. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  5035. ggml_uint8x16x4_t q3h;
  5036. int32_t isum = 0;
  5037. // Set up scales
  5038. memcpy(aux, x[i].scales, 12);
  5039. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5040. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5041. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5042. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5043. int8_t * scale = (int8_t *)utmp;
  5044. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  5045. for (int j = 0; j < QK_K/128; ++j) {
  5046. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  5047. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5048. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5049. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  5050. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  5051. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  5052. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  5053. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5054. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5055. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5056. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5057. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  5058. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  5059. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  5060. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  5061. scale += 4;
  5062. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  5063. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  5064. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  5065. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  5066. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5067. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5068. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5069. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5070. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  5071. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  5072. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  5073. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  5074. scale += 4;
  5075. if (j == 0) {
  5076. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  5077. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  5078. }
  5079. }
  5080. sum += d * isum;
  5081. }
  5082. *s = sum;
  5083. #elif defined __AVX2__
  5084. const __m256i m3 = _mm256_set1_epi8(3);
  5085. const __m256i mone = _mm256_set1_epi8(1);
  5086. const __m128i m32 = _mm_set1_epi8(32);
  5087. __m256 acc = _mm256_setzero_ps();
  5088. uint32_t aux[3];
  5089. for (int i = 0; i < nb; ++i) {
  5090. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5091. const uint8_t * restrict q3 = x[i].qs;
  5092. const int8_t * restrict q8 = y[i].qs;
  5093. // Set up scales
  5094. memcpy(aux, x[i].scales, 12);
  5095. __m128i scales128 = _mm_set_epi32(
  5096. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5097. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5098. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5099. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5100. scales128 = _mm_sub_epi8(scales128, m32);
  5101. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  5102. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5103. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5104. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5105. // high bit
  5106. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  5107. // integer accumulator
  5108. __m256i sumi = _mm256_setzero_si256();
  5109. int bit = 0;
  5110. int is = 0;
  5111. for (int j = 0; j < QK_K/128; ++j) {
  5112. // load low 2 bits
  5113. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  5114. // prepare low and high bits
  5115. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  5116. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5117. ++bit;
  5118. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  5119. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5120. ++bit;
  5121. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  5122. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5123. ++bit;
  5124. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  5125. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5126. ++bit;
  5127. // load Q8 quants
  5128. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5129. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5130. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5131. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5132. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5133. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5134. // and 2 if the high bit was set)
  5135. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5136. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5137. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  5138. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  5139. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5140. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5141. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  5142. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  5143. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5144. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5145. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5146. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5147. // multiply with scales
  5148. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5149. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5150. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5151. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5152. // accumulate
  5153. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5154. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  5155. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  5156. }
  5157. // multiply with block scale and accumulate
  5158. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5159. }
  5160. *s = hsum_float_8(acc);
  5161. #elif defined __AVX__
  5162. const __m128i m3 = _mm_set1_epi8(3);
  5163. const __m128i mone = _mm_set1_epi8(1);
  5164. const __m128i m32 = _mm_set1_epi8(32);
  5165. const __m128i m2 = _mm_set1_epi8(2);
  5166. __m256 acc = _mm256_setzero_ps();
  5167. const uint32_t *aux;
  5168. for (int i = 0; i < nb; ++i) {
  5169. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5170. const uint8_t * restrict q3 = x[i].qs;
  5171. const int8_t * restrict q8 = y[i].qs;
  5172. // Set up scales
  5173. aux = (const uint32_t *)x[i].scales;
  5174. __m128i scales128 = _mm_set_epi32(
  5175. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5176. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5177. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5178. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5179. scales128 = _mm_sub_epi8(scales128, m32);
  5180. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  5181. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  5182. const __m128i scales[2] = { scales_0, scales_1 };
  5183. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5184. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5185. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5186. // integer accumulator
  5187. __m128i sumi_0 = _mm_setzero_si128();
  5188. __m128i sumi_1 = _mm_setzero_si128();
  5189. for (int j = 0; j < QK_K/128; ++j) {
  5190. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5191. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5192. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5193. // prepare low and high bits
  5194. const int bit = j << 2;
  5195. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5196. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5197. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5198. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5199. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5200. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5201. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5202. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5203. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5204. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5205. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5206. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5207. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5208. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5209. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5210. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5211. // load Q8 quants from block_q8_K.qs[QK_K]
  5212. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5213. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5214. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5215. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5216. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5217. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5218. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5219. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5220. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5221. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5222. // and 2 if the high bit was set)
  5223. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5224. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5225. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5226. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5227. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5228. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5229. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5230. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5231. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5232. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5233. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5234. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5235. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5236. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5237. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5238. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5239. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5240. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5241. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5242. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5243. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5244. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5245. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5246. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5247. // multiply with scales
  5248. __m128i shuffle = _mm_set1_epi16(0x0100);
  5249. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5250. shuffle = _mm_add_epi16(shuffle, m2);
  5251. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5252. shuffle = _mm_add_epi16(shuffle, m2);
  5253. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5254. shuffle = _mm_add_epi16(shuffle, m2);
  5255. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5256. shuffle = _mm_add_epi16(shuffle, m2);
  5257. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5258. shuffle = _mm_add_epi16(shuffle, m2);
  5259. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5260. shuffle = _mm_add_epi16(shuffle, m2);
  5261. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5262. shuffle = _mm_add_epi16(shuffle, m2);
  5263. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5264. // accumulate
  5265. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5266. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5267. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5268. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5269. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5270. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5271. }
  5272. // multiply with block scale and accumulate
  5273. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5274. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5275. }
  5276. *s = hsum_float_8(acc);
  5277. #elif defined __riscv_v_intrinsic
  5278. uint32_t aux[3];
  5279. uint32_t utmp[4];
  5280. float sumf = 0;
  5281. for (int i = 0; i < nb; ++i) {
  5282. const uint8_t * restrict q3 = x[i].qs;
  5283. const uint8_t * restrict qh = x[i].hmask;
  5284. const int8_t * restrict q8 = y[i].qs;
  5285. memcpy(aux, x[i].scales, 12);
  5286. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5287. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5288. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5289. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5290. int8_t * scale = (int8_t *)utmp;
  5291. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5292. size_t vl = 32;
  5293. uint8_t m = 1;
  5294. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5295. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5296. int sum_t = 0;
  5297. for (int j = 0; j < QK_K; j += 128) {
  5298. vl = 32;
  5299. // load Q3
  5300. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5301. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5302. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5303. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5304. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5305. // compute mask for subtraction
  5306. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5307. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5308. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
  5309. m <<= 1;
  5310. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5311. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5312. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
  5313. m <<= 1;
  5314. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5315. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5316. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
  5317. m <<= 1;
  5318. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5319. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5320. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
  5321. m <<= 1;
  5322. // load Q8 and take product with Q3
  5323. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5324. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5325. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5326. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5327. vl = 16;
  5328. // retrieve lane to multiply with scale
  5329. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5330. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5331. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5332. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5333. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5334. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5335. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5336. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5337. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5338. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5339. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5340. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5341. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5342. q3 += 32; q8 += 128; scale += 8;
  5343. }
  5344. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5345. sumf += d*sum_t;
  5346. }
  5347. *s = sumf;
  5348. #elif defined(__POWER9_VECTOR__)
  5349. const vector signed char lowMask = vec_splats((signed char)0x3);
  5350. const vector signed char lowMask1 = vec_splats((int8_t)0xf);
  5351. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  5352. const vector int v0 = vec_splats((int32_t)0);
  5353. const vector signed char v1 = vec_splats((signed char)0x1);
  5354. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5355. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5356. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5357. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5358. const vector signed char off = vec_splats((signed char)0x20);
  5359. vector float vsumf0 = vec_splats(0.0f);
  5360. vector float vsumf1 = vec_splats(0.0f);
  5361. vector float vsumf2 = vec_splats(0.0f);
  5362. vector float vsumf3 = vec_splats(0.0f);
  5363. for (int i = 0; i < nb; ++i) {
  5364. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5365. vector float vyd = vec_splats(y[i].d);
  5366. vector float vd = vec_mul(vxd, vyd);
  5367. UNUSED(kmask1);
  5368. UNUSED(kmask2);
  5369. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  5370. vector signed char u1 = vec_and(u0, lowMask1);
  5371. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  5372. vector signed char u3 = (vector signed char)vec_mergeh((vector signed int)u2, (vector signed int)vec_sr(u2, v2));
  5373. vector signed char u30 = vec_sl(vec_and(u3, lowMask), v4);
  5374. vector signed char u31 = vec_and(u3, lowMask2);
  5375. u1 = vec_or(u1, u30);
  5376. u2 = vec_or(vec_sr(u0, v4), u31);
  5377. vector signed char vscales = (vector signed char)vec_mergeh((vector signed long long)u1, (vector signed long long)u2);
  5378. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  5379. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  5380. vscales = vec_sub(vscales, off);
  5381. vector signed int vsumi0 = v0;
  5382. vector signed int vsumi1 = v0;
  5383. vector signed int vsumi2 = v0;
  5384. vector signed int vsumi3 = v0;
  5385. vector signed int vsumi4 = v0;
  5386. vector signed int vsumi5 = v0;
  5387. vector signed int vsumi6 = v0;
  5388. vector signed int vsumi7 = v0;
  5389. const uint8_t * restrict q3 = x[i].qs;
  5390. const int8_t * restrict q8 = y[i].qs;
  5391. for (int j = 0; j < QK_K/128; ++j) {
  5392. __builtin_prefetch(q3, 0, 1);
  5393. __builtin_prefetch(q8, 0, 1);
  5394. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  5395. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  5396. q3 += 32;
  5397. //the low 2 bits
  5398. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5399. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  5400. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  5401. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  5402. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5403. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  5404. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  5405. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  5406. //the 3rd bit
  5407. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  5408. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  5409. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  5410. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  5411. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  5412. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  5413. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  5414. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  5415. qxhs0 = vec_sr(qxhs0, v4);
  5416. qxhs1 = vec_sr(qxhs1, v4);
  5417. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  5418. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  5419. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  5420. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  5421. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  5422. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  5423. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  5424. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  5425. vector signed char q8y00 = vec_xl( 0, q8);
  5426. vector signed char q8y10 = vec_xl( 16, q8);
  5427. vector signed char q8y01 = vec_xl( 32, q8);
  5428. vector signed char q8y11 = vec_xl( 48, q8);
  5429. vector signed char q8y02 = vec_xl( 64, q8);
  5430. vector signed char q8y12 = vec_xl( 80, q8);
  5431. vector signed char q8y03 = vec_xl( 96, q8);
  5432. vector signed char q8y13 = vec_xl(112, q8);
  5433. q8 += 128;
  5434. vector signed short vscales_h = vec_unpackh(vscales);
  5435. vector signed short vs0 = vec_splat(vscales_h, 0);
  5436. vector signed short vs1 = vec_splat(vscales_h, 1);
  5437. vector signed short vs2 = vec_splat(vscales_h, 2);
  5438. vector signed short vs3 = vec_splat(vscales_h, 3);
  5439. vector signed short vs4 = vec_splat(vscales_h, 4);
  5440. vector signed short vs5 = vec_splat(vscales_h, 5);
  5441. vector signed short vs6 = vec_splat(vscales_h, 6);
  5442. vector signed short vs7 = vec_splat(vscales_h, 7);
  5443. vscales = vec_sld(vscales, vscales, 8);
  5444. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  5445. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  5446. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  5447. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  5448. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  5449. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  5450. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  5451. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  5452. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  5453. vsumi1 = vec_msum(qv01, vs2, vsumi1);
  5454. vsumi2 = vec_msum(qv02, vs4, vsumi2);
  5455. vsumi3 = vec_msum(qv03, vs6, vsumi3);
  5456. vsumi4 = vec_msum(qv10, vs1, vsumi4);
  5457. vsumi5 = vec_msum(qv11, vs3, vsumi5);
  5458. vsumi6 = vec_msum(qv12, vs5, vsumi6);
  5459. vsumi7 = vec_msum(qv13, vs7, vsumi7);
  5460. }
  5461. vsumi0 = vec_add(vsumi0, vsumi4);
  5462. vsumi1 = vec_add(vsumi1, vsumi5);
  5463. vsumi2 = vec_add(vsumi2, vsumi6);
  5464. vsumi3 = vec_add(vsumi3, vsumi7);
  5465. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5466. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5467. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5468. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5469. }
  5470. vsumf0 = vec_add(vsumf0, vsumf2);
  5471. vsumf1 = vec_add(vsumf1, vsumf3);
  5472. vsumf0 = vec_add(vsumf0, vsumf1);
  5473. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5474. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5475. *s = vec_extract(vsumf0, 0);
  5476. #elif defined __loongarch_asx
  5477. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  5478. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  5479. const __m128i m32 = __lsx_vreplgr2vr_b(32);
  5480. __m256 acc = (__m256)__lasx_xvldi(0);
  5481. uint32_t aux[3];
  5482. for (int i = 0; i < nb; ++i) {
  5483. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5484. const uint8_t * restrict q3 = x[i].qs;
  5485. const int8_t * restrict q8 = y[i].qs;
  5486. // Set up scales
  5487. memcpy(aux, x[i].scales, 12);
  5488. __m128i scales128 = lsx_set_w(
  5489. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5490. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5491. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5492. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5493. scales128 = __lsx_vsub_b(scales128, m32);
  5494. const __m256i all_scales = lasx_ext8_16(scales128);
  5495. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  5496. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  5497. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  5498. // high bit
  5499. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0);
  5500. // integer accumulator
  5501. __m256i sumi = __lasx_xvldi(0);
  5502. int bit = 0;
  5503. int is = 0;
  5504. __m256i xvbit;
  5505. for (int j = 0; j < QK_K/128; ++j) {
  5506. // load low 2 bits
  5507. const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
  5508. xvbit = __lasx_xvreplgr2vr_h(bit);
  5509. // prepare low and high bits
  5510. const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
  5511. const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5512. ++bit;
  5513. xvbit = __lasx_xvreplgr2vr_h(bit);
  5514. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
  5515. const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5516. ++bit;
  5517. xvbit = __lasx_xvreplgr2vr_h(bit);
  5518. const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
  5519. const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5520. ++bit;
  5521. xvbit = __lasx_xvreplgr2vr_h(bit);
  5522. const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
  5523. const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  5524. ++bit;
  5525. // load Q8 quants
  5526. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5527. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5528. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5529. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5530. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  5531. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5532. // and 2 if the high bit was set)
  5533. __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  5534. __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  5535. __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2);
  5536. __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3);
  5537. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  5538. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  5539. __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2);
  5540. __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3);
  5541. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  5542. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  5543. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  5544. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  5545. // multiply with scales
  5546. p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5547. p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5548. p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5549. p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5550. // accumulate
  5551. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  5552. p16_2 = __lasx_xvadd_w(p16_2, p16_3);
  5553. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2));
  5554. }
  5555. // multiply with block scale and accumulate
  5556. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME
  5557. }
  5558. *s = hsum_float_8(acc);
  5559. #else
  5560. // scalar version
  5561. // This function is written like this so the compiler can manage to vectorize most of it
  5562. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  5563. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  5564. // The ideal situation would be if we could just write the code once, and the compiler would
  5565. // automatically produce the best possible set of machine instructions, instead of us having to manually
  5566. // write vectorized versions for AVX, ARM_NEON, etc.
  5567. int8_t aux8[QK_K];
  5568. int16_t aux16[8];
  5569. float sums [8];
  5570. int32_t aux32[8];
  5571. memset(sums, 0, 8*sizeof(float));
  5572. uint32_t auxs[4];
  5573. const int8_t * scales = (const int8_t*)auxs;
  5574. float sumf = 0;
  5575. for (int i = 0; i < nb; ++i) {
  5576. const uint8_t * restrict q3 = x[i].qs;
  5577. const uint8_t * restrict hm = x[i].hmask;
  5578. const int8_t * restrict q8 = y[i].qs;
  5579. memset(aux32, 0, 8*sizeof(int32_t));
  5580. int8_t * restrict a = aux8;
  5581. uint8_t m = 1;
  5582. for (int j = 0; j < QK_K; j += 128) {
  5583. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  5584. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5585. a += 32; m <<= 1;
  5586. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  5587. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5588. a += 32; m <<= 1;
  5589. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  5590. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5591. a += 32; m <<= 1;
  5592. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  5593. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5594. a += 32; m <<= 1;
  5595. q3 += 32;
  5596. }
  5597. a = aux8;
  5598. memcpy(auxs, x[i].scales, 12);
  5599. uint32_t tmp = auxs[2];
  5600. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  5601. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  5602. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  5603. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  5604. for (int j = 0; j < QK_K/16; ++j) {
  5605. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5606. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5607. q8 += 8; a += 8;
  5608. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5609. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5610. q8 += 8; a += 8;
  5611. }
  5612. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5613. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5614. }
  5615. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5616. *s = sumf;
  5617. #endif
  5618. }
  5619. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5620. assert(n % QK_K == 0);
  5621. assert(nrc == 1);
  5622. UNUSED(nrc);
  5623. UNUSED(bx);
  5624. UNUSED(by);
  5625. UNUSED(bs);
  5626. const block_q4_K * restrict x = vx;
  5627. const block_q8_K * restrict y = vy;
  5628. const int nb = n / QK_K;
  5629. static const uint32_t kmask1 = 0x3f3f3f3f;
  5630. static const uint32_t kmask2 = 0x0f0f0f0f;
  5631. static const uint32_t kmask3 = 0x03030303;
  5632. uint32_t utmp[4];
  5633. #ifdef __ARM_NEON
  5634. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5635. const int32x4_t mzero = vdupq_n_s32(0);
  5636. ggml_int8x16x2_t q4bytes;
  5637. ggml_int8x16x2_t q8bytes;
  5638. float sumf = 0;
  5639. for (int i = 0; i < nb; ++i) {
  5640. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5641. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5642. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5643. memcpy(utmp, x[i].scales, 12);
  5644. uint32x2_t mins8 = { 0 };
  5645. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  5646. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  5647. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5648. utmp[0] &= kmask1;
  5649. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  5650. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5651. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5652. sumf -= dmin * vaddvq_s32(prod);
  5653. const uint8_t * scales = (const uint8_t *)utmp;
  5654. const uint8_t * restrict q4 = x[i].qs;
  5655. const int8_t * restrict q8 = y[i].qs;
  5656. int32_t sumi1 = 0;
  5657. int32_t sumi2 = 0;
  5658. for (int j = 0; j < QK_K/64; ++j) {
  5659. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  5660. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5661. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5662. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5663. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5664. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  5665. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5666. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5667. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5668. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5669. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  5670. }
  5671. sumf += d * (sumi1 + sumi2);
  5672. }
  5673. *s = sumf;
  5674. #elif defined __AVX2__
  5675. const __m256i m4 = _mm256_set1_epi8(0xF);
  5676. __m256 acc = _mm256_setzero_ps();
  5677. __m128 acc_m = _mm_setzero_ps();
  5678. for (int i = 0; i < nb; ++i) {
  5679. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5680. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5681. memcpy(utmp, x[i].scales, 12);
  5682. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5683. const uint32_t uaux = utmp[1] & kmask1;
  5684. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5685. utmp[2] = uaux;
  5686. utmp[0] &= kmask1;
  5687. const uint8_t * restrict q4 = x[i].qs;
  5688. const int8_t * restrict q8 = y[i].qs;
  5689. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5690. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5691. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5692. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5693. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  5694. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5695. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5696. __m256i sumi = _mm256_setzero_si256();
  5697. for (int j = 0; j < QK_K/64; ++j) {
  5698. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5699. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5700. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5701. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5702. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5703. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5704. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5705. p16l = _mm256_madd_epi16(scale_l, p16l);
  5706. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5707. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5708. p16h = _mm256_madd_epi16(scale_h, p16h);
  5709. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  5710. sumi = _mm256_add_epi32(sumi, sumj);
  5711. }
  5712. __m256 vd = _mm256_set1_ps(d);
  5713. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5714. }
  5715. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5716. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5717. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5718. #elif defined __AVX__
  5719. const __m128i m4 = _mm_set1_epi8(0xF);
  5720. const __m128i m2 = _mm_set1_epi8(0x2);
  5721. __m256 acc = _mm256_setzero_ps();
  5722. __m128 acc_m = _mm_setzero_ps();
  5723. for (int i = 0; i < nb; ++i) {
  5724. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5725. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5726. const uint8_t * restrict q4 = x[i].qs;
  5727. const int8_t * restrict q8 = y[i].qs;
  5728. memcpy(utmp, x[i].scales, 12);
  5729. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5730. const uint32_t uaux = utmp[1] & kmask1;
  5731. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5732. utmp[2] = uaux;
  5733. utmp[0] &= kmask1;
  5734. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5735. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5736. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5737. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5738. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5739. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5740. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5741. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  5742. __m128i sumi_0 = _mm_setzero_si128();
  5743. __m128i sumi_1 = _mm_setzero_si128();
  5744. __m128i shuffle = _mm_set1_epi16(0x0100);
  5745. for (int j = 0; j < QK_K/64; ++j) {
  5746. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  5747. shuffle = _mm_add_epi16(shuffle, m2);
  5748. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  5749. shuffle = _mm_add_epi16(shuffle, m2);
  5750. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5751. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  5752. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5753. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5754. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  5755. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5756. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5757. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  5758. p16l = _mm_madd_epi16(scale_l, p16l);
  5759. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  5760. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5761. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  5762. p16l = _mm_madd_epi16(scale_l, p16l);
  5763. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  5764. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5765. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  5766. p16h = _mm_madd_epi16(scale_h, p16h);
  5767. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  5768. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5769. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  5770. p16h = _mm_madd_epi16(scale_h, p16h);
  5771. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  5772. }
  5773. __m256 vd = _mm256_set1_ps(d);
  5774. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5775. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5776. }
  5777. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5778. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5779. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5780. #elif defined __riscv_v_intrinsic
  5781. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5782. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5783. float sumf = 0;
  5784. for (int i = 0; i < nb; ++i) {
  5785. size_t vl = 8;
  5786. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5787. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5788. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5789. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5790. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5791. memcpy(utmp, x[i].scales, 12);
  5792. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5793. const uint32_t uaux = utmp[1] & kmask1;
  5794. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5795. utmp[2] = uaux;
  5796. utmp[0] &= kmask1;
  5797. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5798. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5799. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5800. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5801. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5802. const uint8_t * restrict q4 = x[i].qs;
  5803. const int8_t * restrict q8 = y[i].qs;
  5804. vl = 32;
  5805. int32_t sum_1 = 0;
  5806. int32_t sum_2 = 0;
  5807. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5808. for (int j = 0; j < QK_K/64; ++j) {
  5809. // load Q4
  5810. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5811. // load Q8 and multiply it with lower Q4 nibble
  5812. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5813. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5814. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  5815. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  5816. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  5817. // load Q8 and multiply it with upper Q4 nibble
  5818. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5819. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5820. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  5821. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  5822. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  5823. q4 += 32; q8 += 64;
  5824. }
  5825. sumf += d*(sum_1 + sum_2);
  5826. }
  5827. *s = sumf;
  5828. #elif defined(__POWER9_VECTOR__)
  5829. const vector signed char lowMask = vec_splats((signed char)0xF);
  5830. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  5831. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  5832. const vector int v0 = vec_splats((int32_t)0);
  5833. const vector unsigned char v2 = vec_splats((uint8_t)2);
  5834. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5835. vector float vsumf0 = vec_splats(0.0f);
  5836. vector float vsumf1 = vec_splats(0.0f);
  5837. vector float vsumf2 = vec_splats(0.0f);
  5838. vector float vsumf3 = vec_splats(0.0f);
  5839. for (int i = 0; i < nb; ++i) {
  5840. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5841. vector float vyd = vec_splats(y[i].d);
  5842. vector float vd = vec_mul(vxd, vyd);
  5843. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5844. vector float vdmin = vec_mul(vxmin, vyd);
  5845. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5846. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5847. UNUSED(kmask1);
  5848. UNUSED(kmask2);
  5849. UNUSED(kmask3);
  5850. UNUSED(utmp);
  5851. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  5852. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  5853. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  5854. vector signed char u3 = vec_sr(u2, v4);
  5855. vector signed char u30 = u1;
  5856. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  5857. u1 = vec_and(u0, lowMask1);
  5858. u2 = vec_or(u30, u31);
  5859. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  5860. vector signed short vscales = vec_unpackh(utmps);
  5861. vector signed short q4xmins = vec_unpackl(utmps);
  5862. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  5863. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  5864. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  5865. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  5866. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  5867. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  5868. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5869. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5870. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5871. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5872. vector signed int vsumi0 = v0;
  5873. vector signed int vsumi1 = v0;
  5874. vector signed int vsumi2 = v0;
  5875. vector signed int vsumi3 = v0;
  5876. const uint8_t * restrict q4 = x[i].qs;
  5877. const int8_t * restrict q8 = y[i].qs;
  5878. for (int j = 0; j < QK_K/64; j+=2) {
  5879. __builtin_prefetch(q4, 0, 1);
  5880. __builtin_prefetch(q8, 0, 1);
  5881. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  5882. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  5883. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  5884. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  5885. q4 += 64;
  5886. vector unsigned char q4x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  5887. vector unsigned char q4x01 = (vector unsigned char)vec_sr(qxs0, v4);
  5888. vector unsigned char q4x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  5889. vector unsigned char q4x11 = (vector unsigned char)vec_sr(qxs1, v4);
  5890. vector unsigned char q4x20 = (vector unsigned char)vec_and(qxs2, lowMask);
  5891. vector unsigned char q4x21 = (vector unsigned char)vec_sr(qxs2, v4);
  5892. vector unsigned char q4x30 = (vector unsigned char)vec_and(qxs3, lowMask);
  5893. vector unsigned char q4x31 = (vector unsigned char)vec_sr(qxs3, v4);
  5894. vector signed char q8y00 = vec_xl( 0, q8);
  5895. vector signed char q8y10 = vec_xl( 16, q8);
  5896. vector signed char q8y01 = vec_xl( 32, q8);
  5897. vector signed char q8y11 = vec_xl( 48, q8);
  5898. vector signed char q8y20 = vec_xl( 64, q8);
  5899. vector signed char q8y30 = vec_xl( 80, q8);
  5900. vector signed char q8y21 = vec_xl( 96, q8);
  5901. vector signed char q8y31 = vec_xl(112, q8);
  5902. q8 += 128;
  5903. vector signed int qv00 = vec_msum(q8y00, q4x00, v0);
  5904. vector signed int qv01 = vec_msum(q8y01, q4x01, v0);
  5905. vector signed int qv10 = vec_msum(q8y10, q4x10, v0);
  5906. vector signed int qv11 = vec_msum(q8y11, q4x11, v0);
  5907. vector signed int qv20 = vec_msum(q8y20, q4x20, v0);
  5908. vector signed int qv21 = vec_msum(q8y21, q4x21, v0);
  5909. vector signed int qv30 = vec_msum(q8y30, q4x30, v0);
  5910. vector signed int qv31 = vec_msum(q8y31, q4x31, v0);
  5911. vector signed int vscales_h = vec_unpackh(vscales);
  5912. vector signed int vs0 = vec_splat(vscales_h, 0);
  5913. vector signed int vs1 = vec_splat(vscales_h, 1);
  5914. vector signed int vs2 = vec_splat(vscales_h, 2);
  5915. vector signed int vs3 = vec_splat(vscales_h, 3);
  5916. vscales = vec_sld(vscales, vscales, 8);
  5917. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  5918. vsumi1 = vec_add(vec_mul(qv01, vs1), vsumi1);
  5919. vsumi2 = vec_add(vec_mul(qv20, vs2), vsumi2);
  5920. vsumi3 = vec_add(vec_mul(qv21, vs3), vsumi3);
  5921. vsumi0 = vec_add(vec_mul(qv10, vs0), vsumi0);
  5922. vsumi1 = vec_add(vec_mul(qv11, vs1), vsumi1);
  5923. vsumi2 = vec_add(vec_mul(qv30, vs2), vsumi2);
  5924. vsumi3 = vec_add(vec_mul(qv31, vs3), vsumi3);
  5925. }
  5926. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5927. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5928. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5929. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5930. }
  5931. vsumf0 = vec_add(vsumf0, vsumf2);
  5932. vsumf1 = vec_add(vsumf1, vsumf3);
  5933. vsumf0 = vec_add(vsumf0, vsumf1);
  5934. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5935. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5936. *s = vec_extract(vsumf0, 0);
  5937. #elif defined __loongarch_asx
  5938. GGML_UNUSED(kmask1);
  5939. GGML_UNUSED(kmask2);
  5940. GGML_UNUSED(kmask3);
  5941. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  5942. __m256 acc = (__m256)__lasx_xvldi(0);
  5943. __m128 acc_m = (__m128)__lsx_vldi(0);
  5944. for (int i = 0; i < nb; ++i) {
  5945. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5946. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5947. memcpy(utmp, x[i].scales, 12);
  5948. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5949. const uint32_t uaux = utmp[1] & kmask1;
  5950. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5951. utmp[2] = uaux;
  5952. utmp[0] &= kmask1;
  5953. const uint8_t * restrict q4 = x[i].qs;
  5954. const int8_t * restrict q8 = y[i].qs;
  5955. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  5956. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  5957. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  5958. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  5959. acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m);
  5960. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  5961. const __m256i scales = lasx_insertf128(sc128, sc128);
  5962. __m256i sumi = __lasx_xvldi(0);
  5963. for (int j = 0; j < QK_K/64; ++j) {
  5964. const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  5965. const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  5966. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  5967. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  5968. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  5969. const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5970. __m256i p16l = lasx_maddubs_h(q4l, q8l);
  5971. p16l = lasx_madd_h(scale_l, p16l);
  5972. const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5973. __m256i p16h = lasx_maddubs_h(q4h, q8h);
  5974. p16h = lasx_madd_h(scale_h, p16h);
  5975. const __m256i sumj = __lasx_xvadd_w(p16l, p16h);
  5976. sumi = __lasx_xvadd_w(sumi, sumj);
  5977. }
  5978. __m256 vd = __lasx_xvreplfr2vr_s(d);
  5979. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  5980. }
  5981. acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
  5982. __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
  5983. acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
  5984. ft_union fi;
  5985. fi.i = __lsx_vpickve2gr_w(acc_m, 0);
  5986. *s = hsum_float_8(acc) + fi.f ;
  5987. #else
  5988. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5989. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5990. int8_t aux8[QK_K];
  5991. int16_t aux16[8];
  5992. float sums [8];
  5993. int32_t aux32[8];
  5994. memset(sums, 0, 8*sizeof(float));
  5995. float sumf = 0;
  5996. for (int i = 0; i < nb; ++i) {
  5997. const uint8_t * restrict q4 = x[i].qs;
  5998. const int8_t * restrict q8 = y[i].qs;
  5999. memset(aux32, 0, 8*sizeof(int32_t));
  6000. int8_t * restrict a = aux8;
  6001. for (int j = 0; j < QK_K/64; ++j) {
  6002. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6003. a += 32;
  6004. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6005. a += 32; q4 += 32;
  6006. }
  6007. memcpy(utmp, x[i].scales, 12);
  6008. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6009. const uint32_t uaux = utmp[1] & kmask1;
  6010. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6011. utmp[2] = uaux;
  6012. utmp[0] &= kmask1;
  6013. int sumi = 0;
  6014. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6015. a = aux8;
  6016. int is = 0;
  6017. for (int j = 0; j < QK_K/32; ++j) {
  6018. int32_t scale = scales[is++];
  6019. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6020. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6021. q8 += 8; a += 8;
  6022. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6023. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6024. q8 += 8; a += 8;
  6025. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6026. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6027. q8 += 8; a += 8;
  6028. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6029. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6030. q8 += 8; a += 8;
  6031. }
  6032. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6033. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6034. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6035. sumf -= dmin * sumi;
  6036. }
  6037. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6038. *s = sumf;
  6039. #endif
  6040. }
  6041. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6042. assert(n % QK_K == 0);
  6043. assert(nrc == 1);
  6044. UNUSED(nrc);
  6045. UNUSED(bx);
  6046. UNUSED(by);
  6047. UNUSED(bs);
  6048. const block_q5_K * restrict x = vx;
  6049. const block_q8_K * restrict y = vy;
  6050. const int nb = n / QK_K;
  6051. static const uint32_t kmask1 = 0x3f3f3f3f;
  6052. static const uint32_t kmask2 = 0x0f0f0f0f;
  6053. static const uint32_t kmask3 = 0x03030303;
  6054. uint32_t utmp[4];
  6055. #ifdef __ARM_NEON
  6056. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6057. const uint8x16_t mone = vdupq_n_u8(1);
  6058. const uint8x16_t mtwo = vdupq_n_u8(2);
  6059. const int32x4_t mzero = vdupq_n_s32(0);
  6060. ggml_int8x16x4_t q5bytes;
  6061. float sumf = 0;
  6062. for (int i = 0; i < nb; ++i) {
  6063. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6064. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6065. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6066. memcpy(utmp, x[i].scales, 12);
  6067. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6068. const uint32_t uaux = utmp[1] & kmask1;
  6069. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6070. utmp[2] = uaux;
  6071. utmp[0] &= kmask1;
  6072. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  6073. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  6074. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6075. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6076. int32_t sumi_mins = vaddvq_s32(prod);
  6077. const uint8_t * scales = (const uint8_t *)utmp;
  6078. const uint8_t * restrict q5 = x[i].qs;
  6079. const uint8_t * restrict qh = x[i].qh;
  6080. const int8_t * restrict q8 = y[i].qs;
  6081. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  6082. ggml_uint8x16x4_t q5h;
  6083. int32_t sumi = 0;
  6084. for (int j = 0; j < QK_K/64; ++j) {
  6085. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  6086. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6087. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6088. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6089. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  6090. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  6091. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  6092. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  6093. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  6094. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  6095. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  6096. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  6097. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  6098. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  6099. }
  6100. sumf += d * sumi - dmin * sumi_mins;
  6101. }
  6102. *s = sumf;
  6103. #elif defined __AVX2__
  6104. const __m256i m4 = _mm256_set1_epi8(0xF);
  6105. const __m128i mzero = _mm_setzero_si128();
  6106. const __m256i mone = _mm256_set1_epi8(1);
  6107. __m256 acc = _mm256_setzero_ps();
  6108. float summs = 0.f;
  6109. for (int i = 0; i < nb; ++i) {
  6110. const uint8_t * restrict q5 = x[i].qs;
  6111. const int8_t * restrict q8 = y[i].qs;
  6112. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6113. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6114. memcpy(utmp, x[i].scales, 12);
  6115. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6116. const uint32_t uaux = utmp[1] & kmask1;
  6117. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6118. utmp[2] = uaux;
  6119. utmp[0] &= kmask1;
  6120. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6121. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6122. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6123. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6124. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6125. summs += dmin * _mm_extract_epi32(hsum, 0);
  6126. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6127. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6128. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6129. __m256i hmask = mone;
  6130. __m256i sumi = _mm256_setzero_si256();
  6131. int bit = 0;
  6132. for (int j = 0; j < QK_K/64; ++j) {
  6133. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6134. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6135. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6136. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6137. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6138. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6139. hmask = _mm256_slli_epi16(hmask, 1);
  6140. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6141. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6142. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6143. hmask = _mm256_slli_epi16(hmask, 1);
  6144. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6145. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6146. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6147. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6148. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6149. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6150. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6151. }
  6152. __m256 vd = _mm256_set1_ps(d);
  6153. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6154. }
  6155. *s = hsum_float_8(acc) + summs;
  6156. #elif defined __AVX__
  6157. const __m128i m4 = _mm_set1_epi8(0xF);
  6158. const __m128i mzero = _mm_setzero_si128();
  6159. const __m128i mone = _mm_set1_epi8(1);
  6160. const __m128i m2 = _mm_set1_epi8(2);
  6161. __m256 acc = _mm256_setzero_ps();
  6162. float summs = 0.f;
  6163. for (int i = 0; i < nb; ++i) {
  6164. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6165. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6166. const uint8_t * restrict q5 = x[i].qs;
  6167. const int8_t * restrict q8 = y[i].qs;
  6168. memcpy(utmp, x[i].scales, 12);
  6169. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6170. const uint32_t uaux = utmp[1] & kmask1;
  6171. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6172. utmp[2] = uaux;
  6173. utmp[0] &= kmask1;
  6174. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6175. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6176. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6177. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6178. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6179. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6180. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6181. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6182. summs += dmin * _mm_extract_epi32(hsum, 0);
  6183. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6184. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6185. __m128i hmask = mone;
  6186. __m128i sumi_0 = _mm_setzero_si128();
  6187. __m128i sumi_1 = _mm_setzero_si128();
  6188. int bit = 0;
  6189. __m128i shuffle = _mm_set1_epi16(0x0100);
  6190. for (int j = 0; j < QK_K/64; ++j) {
  6191. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6192. shuffle = _mm_add_epi16(shuffle, m2);
  6193. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6194. shuffle = _mm_add_epi16(shuffle, m2);
  6195. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6196. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6197. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6198. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6199. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6200. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6201. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6202. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6203. hmask = _mm_slli_epi16(hmask, 1);
  6204. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6205. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6206. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6207. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6208. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6209. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6210. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6211. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6212. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6213. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6214. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6215. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6216. hmask = _mm_slli_epi16(hmask, 1);
  6217. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6218. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6219. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6220. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6221. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6222. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6223. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6224. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6225. }
  6226. __m256 vd = _mm256_set1_ps(d);
  6227. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6228. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6229. }
  6230. *s = hsum_float_8(acc) + summs;
  6231. #elif defined __riscv_v_intrinsic
  6232. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6233. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6234. float sumf = 0;
  6235. float sums = 0.0;
  6236. size_t vl;
  6237. for (int i = 0; i < nb; ++i) {
  6238. vl = 8;
  6239. const uint8_t * restrict q5 = x[i].qs;
  6240. const uint8_t * restrict hm = x[i].qh;
  6241. const int8_t * restrict q8 = y[i].qs;
  6242. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6243. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6244. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6245. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6246. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6247. memcpy(utmp, x[i].scales, 12);
  6248. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6249. const uint32_t uaux = utmp[1] & kmask1;
  6250. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6251. utmp[2] = uaux;
  6252. utmp[0] &= kmask1;
  6253. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6254. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6255. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6256. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6257. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6258. vl = 32;
  6259. int32_t aux32 = 0;
  6260. int is = 0;
  6261. uint8_t m = 1;
  6262. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6263. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6264. for (int j = 0; j < QK_K/64; ++j) {
  6265. // load Q5 and Q8
  6266. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6267. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6268. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6269. // compute mask for addition
  6270. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6271. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6272. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6273. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
  6274. m <<= 1;
  6275. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6276. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6277. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6278. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
  6279. m <<= 1;
  6280. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6281. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6282. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6283. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6284. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6285. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6286. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6287. q5 += 32; q8 += 64;
  6288. }
  6289. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6290. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6291. }
  6292. *s = sumf+sums;
  6293. #elif defined(__POWER9_VECTOR__)
  6294. const vector signed char lowMask = vec_splats((signed char)0xF);
  6295. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  6296. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  6297. const vector int v0 = vec_splats((int32_t)0);
  6298. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  6299. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6300. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6301. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6302. vector float vsumf0 = vec_splats(0.0f);
  6303. vector float vsumf1 = vec_splats(0.0f);
  6304. vector float vsumf2 = vec_splats(0.0f);
  6305. vector float vsumf3 = vec_splats(0.0f);
  6306. for (int i = 0; i < nb; ++i) {
  6307. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6308. vector float vyd = vec_splats(y[i].d);
  6309. vector float vd = vec_mul(vxd, vyd);
  6310. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  6311. vector float vdmin = vec_mul(vxmin, vyd);
  6312. UNUSED(kmask1);
  6313. UNUSED(kmask2);
  6314. UNUSED(kmask3);
  6315. UNUSED(utmp);
  6316. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  6317. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  6318. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  6319. vector signed char u3 = vec_sr(u2, v4);
  6320. vector signed char u30 = u1;
  6321. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  6322. u1 = vec_and(u0, lowMask1);
  6323. u2 = vec_or(u30, u31);
  6324. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  6325. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  6326. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  6327. vector signed short vscales = vec_unpackh(utmps);
  6328. vector signed short q5xmins = vec_unpackl(utmps);
  6329. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  6330. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  6331. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  6332. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  6333. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  6334. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  6335. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  6336. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  6337. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  6338. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  6339. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  6340. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  6341. vector signed int vsumi0 = v0;
  6342. vector signed int vsumi1 = v0;
  6343. vector signed int vsumi2 = v0;
  6344. vector signed int vsumi3 = v0;
  6345. const uint8_t * restrict q5 = x[i].qs;
  6346. const int8_t * restrict q8 = y[i].qs;
  6347. for (int j = 0; j < QK_K/64; ++j) {
  6348. __builtin_prefetch(q5, 0, 1);
  6349. __builtin_prefetch(q8, 0, 1);
  6350. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  6351. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  6352. q5 += 32;
  6353. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6354. vector signed char qxs01 = vec_sr(qxs0, v4);
  6355. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6356. vector signed char qxs11 = vec_sr(qxs1, v4);
  6357. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  6358. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  6359. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  6360. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  6361. qxhs0 = vec_sr(qxhs0, v2);
  6362. qxhs1 = vec_sr(qxhs1, v2);
  6363. vector unsigned char q5x00 = (vector unsigned char)vec_or(q5h00, qxs00);
  6364. vector unsigned char q5x01 = (vector unsigned char)vec_or(q5h01, qxs01);
  6365. vector unsigned char q5x10 = (vector unsigned char)vec_or(q5h10, qxs10);
  6366. vector unsigned char q5x11 = (vector unsigned char)vec_or(q5h11, qxs11);
  6367. vector signed char q8y00 = vec_xl( 0, q8);
  6368. vector signed char q8y10 = vec_xl(16, q8);
  6369. vector signed char q8y01 = vec_xl(32, q8);
  6370. vector signed char q8y11 = vec_xl(48, q8);
  6371. q8 += 64;
  6372. vector signed int qv00 = vec_msum(q8y00, q5x00, v0);
  6373. vector signed int qv01 = vec_msum(q8y01, q5x01, v0);
  6374. vector signed int qv10 = vec_msum(q8y10, q5x10, v0);
  6375. vector signed int qv11 = vec_msum(q8y11, q5x11, v0);
  6376. vector signed int vscales_h = vec_unpackh(vscales);
  6377. vector signed int vs0 = vec_splat(vscales_h, 0);
  6378. vector signed int vs1 = vec_splat(vscales_h, 1);
  6379. vscales = vec_sld(vscales, vscales, 12);
  6380. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  6381. vsumi1 = vec_add(vec_mul(qv10, vs0), vsumi1);
  6382. vsumi2 = vec_add(vec_mul(qv01, vs1), vsumi2);
  6383. vsumi3 = vec_add(vec_mul(qv11, vs1), vsumi3);
  6384. }
  6385. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6386. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6387. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6388. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6389. }
  6390. vsumf0 = vec_add(vsumf0, vsumf2);
  6391. vsumf1 = vec_add(vsumf1, vsumf3);
  6392. vsumf0 = vec_add(vsumf0, vsumf1);
  6393. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6394. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6395. *s = vec_extract(vsumf0, 0);
  6396. #elif defined __loongarch_asx
  6397. GGML_UNUSED(kmask1);
  6398. GGML_UNUSED(kmask2);
  6399. GGML_UNUSED(kmask3);
  6400. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6401. const __m128i mzero = __lsx_vldi(0);
  6402. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  6403. __m256 acc = (__m256)__lasx_xvldi(0);
  6404. float summs = 0.f;
  6405. for (int i = 0; i < nb; ++i) {
  6406. const uint8_t * restrict q5 = x[i].qs;
  6407. const int8_t * restrict q8 = y[i].qs;
  6408. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6409. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6410. memcpy(utmp, x[i].scales, 12);
  6411. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6412. const uint32_t uaux = utmp[1] & kmask1;
  6413. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6414. utmp[2] = uaux;
  6415. utmp[0] &= kmask1;
  6416. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  6417. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  6418. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  6419. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  6420. const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero);
  6421. summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check
  6422. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  6423. const __m256i scales = lasx_insertf128(sc128, sc128);
  6424. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0);
  6425. __m256i hmask = mone;
  6426. __m256i sumi = __lasx_xvldi(0);
  6427. int bit = 0;
  6428. __m256i xvbit;
  6429. for (int j = 0; j < QK_K/64; ++j) {
  6430. const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  6431. const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  6432. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
  6433. xvbit = __lasx_xvreplgr2vr_h(bit++);
  6434. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  6435. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  6436. const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
  6437. hmask = __lasx_xvslli_h(hmask, 1);
  6438. xvbit = __lasx_xvreplgr2vr_h(bit++);
  6439. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  6440. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  6441. const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
  6442. hmask = __lasx_xvslli_h(hmask, 1);
  6443. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6444. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6445. __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0);
  6446. __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1);
  6447. p16_0 = lasx_madd_h(scale_0, p16_0);
  6448. p16_1 = lasx_madd_h(scale_1, p16_1);
  6449. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  6450. }
  6451. __m256 vd = __lasx_xvreplfr2vr_s(d);
  6452. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  6453. }
  6454. *s = hsum_float_8(acc) + summs;
  6455. #else
  6456. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6457. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6458. int8_t aux8[QK_K];
  6459. int16_t aux16[8];
  6460. float sums [8];
  6461. int32_t aux32[8];
  6462. memset(sums, 0, 8*sizeof(float));
  6463. float sumf = 0;
  6464. for (int i = 0; i < nb; ++i) {
  6465. const uint8_t * restrict q4 = x[i].qs;
  6466. const uint8_t * restrict hm = x[i].qh;
  6467. const int8_t * restrict q8 = y[i].qs;
  6468. memset(aux32, 0, 8*sizeof(int32_t));
  6469. int8_t * restrict a = aux8;
  6470. uint8_t m = 1;
  6471. for (int j = 0; j < QK_K/64; ++j) {
  6472. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6473. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6474. a += 32; m <<= 1;
  6475. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6476. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6477. a += 32; m <<= 1;
  6478. q4 += 32;
  6479. }
  6480. memcpy(utmp, x[i].scales, 12);
  6481. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6482. const uint32_t uaux = utmp[1] & kmask1;
  6483. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6484. utmp[2] = uaux;
  6485. utmp[0] &= kmask1;
  6486. int sumi = 0;
  6487. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6488. a = aux8;
  6489. int is = 0;
  6490. for (int j = 0; j < QK_K/32; ++j) {
  6491. int32_t scale = scales[is++];
  6492. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6493. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6494. q8 += 8; a += 8;
  6495. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6496. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6497. q8 += 8; a += 8;
  6498. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6499. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6500. q8 += 8; a += 8;
  6501. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6502. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6503. q8 += 8; a += 8;
  6504. }
  6505. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6506. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6507. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6508. sumf -= dmin * sumi;
  6509. }
  6510. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6511. *s = sumf;
  6512. #endif
  6513. }
  6514. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6515. assert(n % QK_K == 0);
  6516. assert(nrc == 1);
  6517. UNUSED(nrc);
  6518. UNUSED(bx);
  6519. UNUSED(by);
  6520. UNUSED(bs);
  6521. const block_q6_K * restrict x = vx;
  6522. const block_q8_K * restrict y = vy;
  6523. const int nb = n / QK_K;
  6524. #ifdef __ARM_NEON
  6525. float sum = 0;
  6526. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6527. const int32x4_t vzero = vdupq_n_s32(0);
  6528. //const int8x16_t m32s = vdupq_n_s8(32);
  6529. const uint8x16_t mone = vdupq_n_u8(3);
  6530. ggml_int8x16x4_t q6bytes;
  6531. ggml_uint8x16x4_t q6h;
  6532. for (int i = 0; i < nb; ++i) {
  6533. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6534. const uint8_t * restrict q6 = x[i].ql;
  6535. const uint8_t * restrict qh = x[i].qh;
  6536. const int8_t * restrict q8 = y[i].qs;
  6537. const int8_t * restrict scale = x[i].scales;
  6538. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  6539. const int8x16_t scales = vld1q_s8(scale);
  6540. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  6541. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  6542. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  6543. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  6544. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  6545. int32_t isum_mins = vaddvq_s32(prod);
  6546. int32_t isum = 0;
  6547. for (int j = 0; j < QK_K/128; ++j) {
  6548. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  6549. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  6550. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6551. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6552. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6553. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  6554. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6555. shifted = vshrq_n_u8(qhbits.val[1], 2);
  6556. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6557. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6558. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6559. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  6560. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  6561. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  6562. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  6563. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  6564. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  6565. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6566. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6567. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6568. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6569. scale += 4;
  6570. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6571. shifted = vshrq_n_u8(qhbits.val[0], 4);
  6572. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6573. shifted = vshrq_n_u8(qhbits.val[1], 4);
  6574. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6575. shifted = vshrq_n_u8(qhbits.val[0], 6);
  6576. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6577. shifted = vshrq_n_u8(qhbits.val[1], 6);
  6578. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6579. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  6580. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  6581. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  6582. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  6583. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  6584. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  6585. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  6586. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  6587. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6588. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6589. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6590. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6591. scale += 4;
  6592. }
  6593. //sum += isum * d_all * y[i].d;
  6594. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  6595. }
  6596. *s = sum;
  6597. #elif defined __AVX2__
  6598. const __m256i m4 = _mm256_set1_epi8(0xF);
  6599. const __m256i m2 = _mm256_set1_epi8(3);
  6600. const __m256i m32s = _mm256_set1_epi8(32);
  6601. __m256 acc = _mm256_setzero_ps();
  6602. for (int i = 0; i < nb; ++i) {
  6603. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6604. const uint8_t * restrict q4 = x[i].ql;
  6605. const uint8_t * restrict qh = x[i].qh;
  6606. const int8_t * restrict q8 = y[i].qs;
  6607. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6608. __m256i sumi = _mm256_setzero_si256();
  6609. int is = 0;
  6610. for (int j = 0; j < QK_K/128; ++j) {
  6611. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  6612. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  6613. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  6614. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  6615. is += 4;
  6616. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6617. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6618. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  6619. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  6620. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  6621. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  6622. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  6623. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6624. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  6625. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  6626. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  6627. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6628. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6629. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6630. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6631. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6632. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6633. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  6634. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  6635. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6636. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6637. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  6638. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  6639. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6640. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6641. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  6642. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  6643. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6644. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6645. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  6646. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  6647. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6648. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  6649. }
  6650. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6651. }
  6652. *s = hsum_float_8(acc);
  6653. #elif defined __AVX__
  6654. const __m128i m4 = _mm_set1_epi8(0xF);
  6655. const __m128i m3 = _mm_set1_epi8(3);
  6656. const __m128i m32s = _mm_set1_epi8(32);
  6657. const __m128i m2 = _mm_set1_epi8(2);
  6658. __m256 acc = _mm256_setzero_ps();
  6659. for (int i = 0; i < nb; ++i) {
  6660. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6661. const uint8_t * restrict q4 = x[i].ql;
  6662. const uint8_t * restrict qh = x[i].qh;
  6663. const int8_t * restrict q8 = y[i].qs;
  6664. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6665. __m128i sumi_0 = _mm_setzero_si128();
  6666. __m128i sumi_1 = _mm_setzero_si128();
  6667. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  6668. for (int j = 0; j < QK_K/128; ++j) {
  6669. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6670. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6671. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  6672. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  6673. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  6674. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  6675. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  6676. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  6677. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  6678. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  6679. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6680. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6681. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6682. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6683. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  6684. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  6685. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  6686. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  6687. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  6688. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  6689. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  6690. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  6691. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6692. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6693. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6694. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6695. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6696. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6697. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6698. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6699. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  6700. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  6701. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  6702. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  6703. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  6704. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  6705. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  6706. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  6707. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  6708. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  6709. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  6710. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  6711. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  6712. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  6713. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  6714. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  6715. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6716. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6717. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6718. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6719. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  6720. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  6721. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  6722. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  6723. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6724. shuffle = _mm_add_epi8(shuffle, m2);
  6725. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6726. shuffle = _mm_add_epi8(shuffle, m2);
  6727. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  6728. shuffle = _mm_add_epi8(shuffle, m2);
  6729. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  6730. shuffle = _mm_add_epi8(shuffle, m2);
  6731. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  6732. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  6733. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  6734. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  6735. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  6736. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  6737. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  6738. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  6739. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6740. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6741. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  6742. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  6743. }
  6744. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6745. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  6746. }
  6747. *s = hsum_float_8(acc);
  6748. #elif defined __riscv_v_intrinsic
  6749. float sumf = 0;
  6750. for (int i = 0; i < nb; ++i) {
  6751. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6752. const uint8_t * restrict q6 = x[i].ql;
  6753. const uint8_t * restrict qh = x[i].qh;
  6754. const int8_t * restrict q8 = y[i].qs;
  6755. const int8_t * restrict scale = x[i].scales;
  6756. size_t vl;
  6757. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6758. int sum_t = 0;
  6759. int is = 0;
  6760. for (int j = 0; j < QK_K/128; ++j) {
  6761. vl = 32;
  6762. // load qh
  6763. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  6764. // load Q6
  6765. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  6766. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  6767. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  6768. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  6769. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  6770. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  6771. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  6772. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  6773. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  6774. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  6775. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  6776. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  6777. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  6778. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  6779. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  6780. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  6781. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  6782. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  6783. // load Q8 and take product
  6784. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  6785. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6786. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  6787. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  6788. vl = 16;
  6789. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  6790. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  6791. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  6792. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  6793. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  6794. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  6795. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  6796. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  6797. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  6798. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  6799. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  6800. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  6801. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  6802. q6 += 64; qh += 32; q8 += 128; is=8;
  6803. }
  6804. sumf += d * sum_t;
  6805. }
  6806. *s = sumf;
  6807. #elif defined(__POWER9_VECTOR__)
  6808. const vector signed char lowMask = vec_splats((signed char)0xF);
  6809. const vector int v0 = vec_splats((int32_t)0);
  6810. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  6811. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  6812. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  6813. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  6814. const vector signed char off = vec_splats((signed char)0x20);
  6815. vector float vsumf0 = vec_splats(0.0f);
  6816. vector float vsumf1 = vec_splats(0.0f);
  6817. vector float vsumf2 = vec_splats(0.0f);
  6818. vector float vsumf3 = vec_splats(0.0f);
  6819. for (int i = 0; i < nb; ++i) {
  6820. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6821. vector float vyd = vec_splats(y[i].d);
  6822. vector float vd = vec_mul(vxd, vyd);
  6823. vector signed int vsumi0 = v0;
  6824. vector signed int vsumi1 = v0;
  6825. vector signed int vsumi2 = v0;
  6826. vector signed int vsumi3 = v0;
  6827. vector signed int vsumi4 = v0;
  6828. vector signed int vsumi5 = v0;
  6829. vector signed int vsumi6 = v0;
  6830. vector signed int vsumi7 = v0;
  6831. const uint8_t * restrict q6 = x[i].ql;
  6832. const uint8_t * restrict qh = x[i].qh;
  6833. const int8_t * restrict qs = x[i].scales;
  6834. const int8_t * restrict q8 = y[i].qs;
  6835. for (int j = 0; j < QK_K/128; ++j) {
  6836. __builtin_prefetch(q6, 0, 0);
  6837. __builtin_prefetch(qh, 0, 0);
  6838. __builtin_prefetch(q8, 0, 0);
  6839. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  6840. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  6841. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  6842. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  6843. q6 += 64;
  6844. vector signed char qxs00 = vec_and(qxs0, lowMask);
  6845. vector signed char qxs01 = vec_sr(qxs0, v4);
  6846. vector signed char qxs10 = vec_and(qxs1, lowMask);
  6847. vector signed char qxs11 = vec_sr(qxs1, v4);
  6848. vector signed char qxs20 = vec_and(qxs2, lowMask);
  6849. vector signed char qxs21 = vec_sr(qxs2, v4);
  6850. vector signed char qxs30 = vec_and(qxs3, lowMask);
  6851. vector signed char qxs31 = vec_sr(qxs3, v4);
  6852. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  6853. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  6854. qh += 32;
  6855. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  6856. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  6857. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  6858. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  6859. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  6860. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  6861. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  6862. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  6863. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  6864. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  6865. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  6866. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  6867. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  6868. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  6869. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  6870. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  6871. vector signed char q8y00 = vec_xl( 0, q8);
  6872. vector signed char q8y10 = vec_xl( 16, q8);
  6873. vector signed char q8y20 = vec_xl( 32, q8);
  6874. vector signed char q8y30 = vec_xl( 48, q8);
  6875. vector signed char q8y01 = vec_xl( 64, q8);
  6876. vector signed char q8y11 = vec_xl( 80, q8);
  6877. vector signed char q8y21 = vec_xl( 96, q8);
  6878. vector signed char q8y31 = vec_xl(112, q8);
  6879. q8 += 128;
  6880. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  6881. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  6882. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  6883. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  6884. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  6885. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  6886. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  6887. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  6888. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  6889. qs += 8;
  6890. vector signed short vs0 = vec_splat(vscales, 0);
  6891. vector signed short vs1 = vec_splat(vscales, 1);
  6892. vector signed short vs2 = vec_splat(vscales, 2);
  6893. vector signed short vs3 = vec_splat(vscales, 3);
  6894. vector signed short vs4 = vec_splat(vscales, 4);
  6895. vector signed short vs5 = vec_splat(vscales, 5);
  6896. vector signed short vs6 = vec_splat(vscales, 6);
  6897. vector signed short vs7 = vec_splat(vscales, 7);
  6898. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  6899. vsumi1 = vec_msum(qv01, vs4, vsumi1);
  6900. vsumi2 = vec_msum(qv10, vs1, vsumi2);
  6901. vsumi3 = vec_msum(qv11, vs5, vsumi3);
  6902. vsumi4 = vec_msum(qv20, vs2, vsumi4);
  6903. vsumi5 = vec_msum(qv21, vs6, vsumi5);
  6904. vsumi6 = vec_msum(qv30, vs3, vsumi6);
  6905. vsumi7 = vec_msum(qv31, vs7, vsumi7);
  6906. }
  6907. vsumi0 = vec_add(vsumi0, vsumi4);
  6908. vsumi1 = vec_add(vsumi1, vsumi5);
  6909. vsumi2 = vec_add(vsumi2, vsumi6);
  6910. vsumi3 = vec_add(vsumi3, vsumi7);
  6911. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6912. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6913. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6914. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6915. }
  6916. vsumf0 = vec_add(vsumf0, vsumf2);
  6917. vsumf1 = vec_add(vsumf1, vsumf3);
  6918. vsumf0 = vec_add(vsumf0, vsumf1);
  6919. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6920. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6921. *s = vec_extract(vsumf0, 0);
  6922. #elif defined __loongarch_asx
  6923. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  6924. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  6925. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  6926. __m256 acc = (__m256)__lasx_xvldi(0);
  6927. for (int i = 0; i < nb; ++i) {
  6928. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6929. const uint8_t * restrict q4 = x[i].ql;
  6930. const uint8_t * restrict qh = x[i].qh;
  6931. const int8_t * restrict q8 = y[i].qs;
  6932. const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  6933. __m256i sumi = __lasx_xvldi(0);
  6934. int is = 0;
  6935. for (int j = 0; j < QK_K/128; ++j) {
  6936. const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0));
  6937. const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1));
  6938. const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2));
  6939. const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3));
  6940. is += 4;
  6941. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6942. const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  6943. const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32;
  6944. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4);
  6945. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4);
  6946. const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4);
  6947. const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4);
  6948. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  6949. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1);
  6950. const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2);
  6951. const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3);
  6952. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6953. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6954. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6955. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  6956. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  6957. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  6958. __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2);
  6959. __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3);
  6960. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  6961. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  6962. __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2);
  6963. __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3);
  6964. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  6965. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  6966. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  6967. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  6968. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  6969. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  6970. p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2);
  6971. p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3);
  6972. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  6973. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3));
  6974. }
  6975. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  6976. }
  6977. *s = hsum_float_8(acc);
  6978. #else
  6979. int8_t aux8[QK_K];
  6980. int16_t aux16[8];
  6981. float sums [8];
  6982. int32_t aux32[8];
  6983. memset(sums, 0, 8*sizeof(float));
  6984. float sumf = 0;
  6985. for (int i = 0; i < nb; ++i) {
  6986. const uint8_t * restrict q4 = x[i].ql;
  6987. const uint8_t * restrict qh = x[i].qh;
  6988. const int8_t * restrict q8 = y[i].qs;
  6989. memset(aux32, 0, 8*sizeof(int32_t));
  6990. int8_t * restrict a = aux8;
  6991. for (int j = 0; j < QK_K; j += 128) {
  6992. for (int l = 0; l < 32; ++l) {
  6993. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  6994. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  6995. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  6996. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  6997. }
  6998. a += 128;
  6999. q4 += 64;
  7000. qh += 32;
  7001. }
  7002. a = aux8;
  7003. int is = 0;
  7004. for (int j = 0; j < QK_K/16; ++j) {
  7005. int scale = x[i].scales[is++];
  7006. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7007. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7008. q8 += 8; a += 8;
  7009. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7010. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7011. q8 += 8; a += 8;
  7012. }
  7013. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7014. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7015. }
  7016. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7017. *s = sumf;
  7018. #endif
  7019. }
  7020. #if defined (__AVX__) || defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
  7021. static const int8_t keven_signs_q2xs[1024] = {
  7022. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  7023. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  7024. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  7025. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  7026. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  7027. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  7028. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  7029. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  7030. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  7031. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  7032. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  7033. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  7034. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  7035. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  7036. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  7037. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  7038. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  7039. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  7040. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  7041. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  7042. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  7043. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  7044. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  7045. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  7046. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  7047. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  7048. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  7049. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  7050. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  7051. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  7052. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  7053. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  7054. };
  7055. #endif
  7056. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7057. assert(n % QK_K == 0);
  7058. assert(nrc == 1);
  7059. UNUSED(nrc);
  7060. UNUSED(bx);
  7061. UNUSED(by);
  7062. UNUSED(bs);
  7063. const block_iq2_xxs * restrict x = vx;
  7064. const block_q8_K * restrict y = vy;
  7065. const int nb = n / QK_K;
  7066. #if defined(__ARM_NEON)
  7067. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7068. uint32_t aux32[4];
  7069. const uint8_t * aux8 = (const uint8_t *)aux32;
  7070. ggml_int8x16x4_t q2u;
  7071. ggml_int8x16x4_t q2s;
  7072. ggml_int8x16x4_t q8b;
  7073. float sumf = 0;
  7074. for (int i = 0; i < nb; ++i) {
  7075. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7076. const uint16_t * restrict q2 = x[i].qs;
  7077. const int8_t * restrict q8 = y[i].qs;
  7078. float sumf1 = 0, sumf2 = 0;
  7079. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7080. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7081. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7082. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7083. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7084. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7085. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7086. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7087. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7088. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7089. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7090. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7091. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7092. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7093. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7094. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7095. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7096. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7097. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7098. }
  7099. sumf += d*(sumf1 + sumf2);
  7100. }
  7101. *s = 0.25f * sumf;
  7102. #elif defined(__AVX2__)
  7103. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7104. uint32_t aux32[4];
  7105. const uint8_t * aux8 = (const uint8_t *)aux32;
  7106. __m256 accumf = _mm256_setzero_ps();
  7107. for (int i = 0; i < nb; ++i) {
  7108. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7109. const uint16_t * restrict q2 = x[i].qs;
  7110. const int8_t * restrict q8 = y[i].qs;
  7111. __m256i sumi1 = _mm256_setzero_si256();
  7112. __m256i sumi2 = _mm256_setzero_si256();
  7113. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7114. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7115. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7116. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7117. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7118. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7119. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7120. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7121. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7122. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7123. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7124. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7125. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7126. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7127. const uint16_t ls1 = aux32[1] >> 28;
  7128. const uint16_t ls2 = aux32[3] >> 28;
  7129. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7130. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7131. sumi1 = _mm256_add_epi32(sumi1, p1);
  7132. sumi2 = _mm256_add_epi32(sumi2, p2);
  7133. }
  7134. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7135. }
  7136. *s = 0.125f * hsum_float_8(accumf);
  7137. #elif defined(__AVX__)
  7138. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7139. uint32_t aux32[4];
  7140. const uint8_t * aux8 = (const uint8_t *)aux32;
  7141. __m256 accumf = _mm256_setzero_ps();
  7142. for (int i = 0; i < nb; ++i) {
  7143. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7144. const uint16_t * restrict q2 = x[i].qs;
  7145. const int8_t * restrict q8 = y[i].qs;
  7146. __m128i sumi1_0 = _mm_setzero_si128();
  7147. __m128i sumi1_1 = _mm_setzero_si128();
  7148. __m128i sumi2_0 = _mm_setzero_si128();
  7149. __m128i sumi2_1 = _mm_setzero_si128();
  7150. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7151. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7152. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7153. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7154. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7155. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7156. const __m128i q2_1_0 = _mm_set_epi64x(iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7157. const __m128i q2_1_1 = _mm_set_epi64x(iq2xxs_grid[aux8[3]], iq2xxs_grid[aux8[2]]);
  7158. const __m128i q2_2_0 = _mm_set_epi64x(iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7159. const __m128i q2_2_1 = _mm_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]]);
  7160. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7161. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  7162. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7163. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127]);
  7164. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  7165. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  7166. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  7167. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  7168. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7169. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7170. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7171. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7172. const uint16_t ls1 = aux32[1] >> 28;
  7173. const uint16_t ls2 = aux32[3] >> 28;
  7174. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  7175. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  7176. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  7177. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  7178. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7179. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7180. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7181. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7182. }
  7183. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7184. }
  7185. *s = 0.125f * hsum_float_8(accumf);
  7186. #elif defined(__POWER9_VECTOR__)
  7187. const vector int v0 = vec_splats((int32_t)0);
  7188. vector float vsumf0 = vec_splats(0.0f);
  7189. vector float vsumf1 = vec_splats(0.0f);
  7190. vector float vsumf2 = vec_splats(0.0f);
  7191. vector float vsumf3 = vec_splats(0.0f);
  7192. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7193. for (int i = 0; i < nb; ++i) {
  7194. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7195. vector float vyd = vec_splats(y[i].d);
  7196. vector float vd = vec_mul(vxd, vyd);
  7197. vector signed int vsumi0 = v0;
  7198. vector signed int vsumi1 = v0;
  7199. vector signed int vsumi2 = v0;
  7200. vector signed int vsumi3 = v0;
  7201. const uint16_t * restrict q2 = x[i].qs;
  7202. const int8_t * restrict q8 = y[i].qs;
  7203. for (int j = 0; j < QK_K/32; j += 2) {
  7204. __builtin_prefetch(q2, 0, 1);
  7205. __builtin_prefetch(q8, 0, 1);
  7206. uint32_t aux32[4];
  7207. const uint8_t * aux8 = (const uint8_t *)aux32;
  7208. memcpy(aux32, q2, 4*sizeof(uint32_t));
  7209. q2 += 8;
  7210. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  7211. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  7212. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  7213. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  7214. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  7215. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  7216. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  7217. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  7218. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7219. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7220. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7221. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7222. vector signed char q8y0 = vec_xl( 0, q8);
  7223. vector signed char q8y1 = vec_xl(16, q8);
  7224. vector signed char q8y2 = vec_xl(32, q8);
  7225. vector signed char q8y3 = vec_xl(48, q8);
  7226. q8 += 64;
  7227. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7228. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7229. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7230. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7231. const uint16_t ls0 = aux32[1] >> 28;
  7232. const uint16_t ls1 = aux32[3] >> 28;
  7233. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  7234. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  7235. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7236. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7237. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7238. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7239. }
  7240. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7241. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7242. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7243. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7244. }
  7245. vsumf0 = vec_add(vsumf0, vsumf2);
  7246. vsumf1 = vec_add(vsumf1, vsumf3);
  7247. vsumf0 = vec_add(vsumf0, vsumf1);
  7248. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7249. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7250. *s = 0.125f * vec_extract(vsumf0, 0);
  7251. #elif defined(__loongarch_asx)
  7252. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7253. uint32_t aux32[4];
  7254. const uint8_t * aux8 = (const uint8_t *)aux32;
  7255. __m256 accumf = (__m256)__lasx_xvldi(0);
  7256. for (int i = 0; i < nb; ++i) {
  7257. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7258. const uint16_t * restrict q2 = x[i].qs;
  7259. const int8_t * restrict q8 = y[i].qs;
  7260. __m256i sumi1 = __lasx_xvldi(0);
  7261. __m256i sumi2 = __lasx_xvldi(0);
  7262. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7263. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7264. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7265. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7266. const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7267. const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7268. const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7269. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7270. const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7271. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7272. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  7273. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  7274. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7275. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7276. const uint16_t ls1 = aux32[1] >> 28;
  7277. const uint16_t ls2 = aux32[3] >> 28;
  7278. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7279. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7280. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7281. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7282. }
  7283. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7284. }
  7285. *s = 0.125f * hsum_float_8(accumf);
  7286. #else
  7287. uint32_t aux32[2];
  7288. const uint8_t * aux8 = (const uint8_t *)aux32;
  7289. float sumf = 0.f;
  7290. for (int i = 0; i < nb; ++i) {
  7291. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7292. const uint16_t * restrict q2 = x[i].qs;
  7293. const int8_t * restrict q8 = y[i].qs;
  7294. int32_t bsum = 0;
  7295. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7296. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7297. q2 += 4;
  7298. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7299. int32_t sumi = 0;
  7300. for (int l = 0; l < 4; ++l) {
  7301. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7302. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7303. for (int j = 0; j < 8; ++j) {
  7304. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7305. }
  7306. q8 += 8;
  7307. }
  7308. bsum += sumi * ls;
  7309. }
  7310. sumf += d * bsum;
  7311. }
  7312. *s = 0.125f * sumf;
  7313. #endif
  7314. }
  7315. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7316. assert(n % QK_K == 0);
  7317. assert(nrc == 1);
  7318. UNUSED(nrc);
  7319. UNUSED(bx);
  7320. UNUSED(by);
  7321. UNUSED(bs);
  7322. const block_iq2_xs * restrict x = vx;
  7323. const block_q8_K * restrict y = vy;
  7324. const int nb = n / QK_K;
  7325. #if defined(__ARM_NEON)
  7326. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7327. ggml_int8x16x4_t q2u;
  7328. ggml_int8x16x4_t q2s;
  7329. ggml_int8x16x4_t q8b;
  7330. int32x4x4_t scales32;
  7331. float sumf = 0;
  7332. for (int i = 0; i < nb; ++i) {
  7333. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7334. const uint16_t * restrict q2 = x[i].qs;
  7335. const int8_t * restrict q8 = y[i].qs;
  7336. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  7337. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  7338. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  7339. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  7340. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  7341. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  7342. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  7343. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  7344. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  7345. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  7346. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  7347. int32x4_t sumi = vdupq_n_s32(0);
  7348. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  7349. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7350. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  7351. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  7352. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  7353. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  7354. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  7355. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  7356. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  7357. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  7358. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7359. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7360. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7361. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7362. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  7363. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  7364. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  7365. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  7366. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  7367. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  7368. q2 += 8;
  7369. }
  7370. sumf += d*vaddvq_s32(sumi);
  7371. }
  7372. *s = 0.125f * sumf;
  7373. #elif defined(__AVX2__)
  7374. const __m256i mone = _mm256_set1_epi8(1);
  7375. static const char block_sign_shuffle_mask_1[32] = {
  7376. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7377. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7378. };
  7379. static const char block_sign_shuffle_mask_2[32] = {
  7380. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7381. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7382. };
  7383. static const uint8_t bit_selector_mask_bytes[32] = {
  7384. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7385. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7386. };
  7387. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  7388. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  7389. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  7390. static const uint8_t k_bit_helper[32] = {
  7391. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7392. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7393. };
  7394. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  7395. const __m256i m511 = _mm256_set1_epi16(511);
  7396. const __m128i m4 = _mm_set1_epi8(0xf);
  7397. const __m128i m1 = _mm_set1_epi8(1);
  7398. uint64_t aux64;
  7399. // somewhat hacky, but gives a significant boost in performance
  7400. __m256i aux_gindex;
  7401. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7402. __m256 accumf = _mm256_setzero_ps();
  7403. for (int i = 0; i < nb; ++i) {
  7404. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7405. const uint16_t * restrict q2 = x[i].qs;
  7406. const int8_t * restrict q8 = y[i].qs;
  7407. memcpy(&aux64, x[i].scales, 8);
  7408. __m128i stmp = _mm_set1_epi64x(aux64);
  7409. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7410. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7411. __m256i sumi1 = _mm256_setzero_si256();
  7412. __m256i sumi2 = _mm256_setzero_si256();
  7413. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7414. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  7415. aux_gindex = _mm256_and_si256(q2_data, m511);
  7416. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  7417. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  7418. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  7419. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  7420. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  7421. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7422. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7423. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7424. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7425. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7426. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7427. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7428. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7429. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7430. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7431. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7432. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7433. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  7434. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  7435. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  7436. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  7437. __m256i signs;
  7438. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  7439. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7440. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  7441. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  7442. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7443. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  7444. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  7445. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7446. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  7447. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  7448. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7449. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  7450. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7451. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7452. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  7453. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  7454. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  7455. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  7456. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  7457. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  7458. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  7459. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  7460. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  7461. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  7462. }
  7463. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7464. }
  7465. *s = 0.125f * hsum_float_8(accumf);
  7466. #elif defined(__AVX__)
  7467. const __m128i mone = _mm_set1_epi8(1);
  7468. static const char block_sign_shuffle_mask_1[32] = {
  7469. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7470. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7471. };
  7472. static const char block_sign_shuffle_mask_2[32] = {
  7473. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7474. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7475. };
  7476. static const uint8_t bit_selector_mask_bytes[32] = {
  7477. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7478. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7479. };
  7480. const __m128i bit_selector_mask_0 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes);
  7481. const __m128i bit_selector_mask_1 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes + 1);
  7482. const __m128i block_sign_shuffle_1_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1);
  7483. const __m128i block_sign_shuffle_1_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1 + 1);
  7484. const __m128i block_sign_shuffle_2_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2);
  7485. const __m128i block_sign_shuffle_2_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2 + 1);
  7486. static const uint8_t k_bit_helper[32] = {
  7487. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7488. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7489. };
  7490. const __m128i bit_helper_0 = _mm_loadu_si128((const __m128i*)k_bit_helper);
  7491. const __m128i bit_helper_1 = _mm_loadu_si128((const __m128i*)k_bit_helper + 1);
  7492. const __m128i m511 = _mm_set1_epi16(511);
  7493. const __m128i m4 = _mm_set1_epi8(0xf);
  7494. const __m128i m1 = _mm_set1_epi8(1);
  7495. uint64_t aux64;
  7496. // somewhat hacky, but gives a significant boost in performance
  7497. __m256i aux_gindex;
  7498. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7499. __m256 accumf = _mm256_setzero_ps();
  7500. for (int i = 0; i < nb; ++i) {
  7501. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7502. const uint16_t * restrict q2 = x[i].qs;
  7503. const int8_t * restrict q8 = y[i].qs;
  7504. memcpy(&aux64, x[i].scales, 8);
  7505. __m128i stmp = _mm_set1_epi64x(aux64);
  7506. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7507. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7508. __m128i sumi1_0 = _mm_setzero_si128();
  7509. __m128i sumi1_1 = _mm_setzero_si128();
  7510. __m128i sumi2_0 = _mm_setzero_si128();
  7511. __m128i sumi2_1 = _mm_setzero_si128();
  7512. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7513. const __m128i q2_data_0 = _mm_loadu_si128((const __m128i*)q2);
  7514. const __m128i q2_data_1 = _mm_loadu_si128((const __m128i*)q2 + 1); q2 += 16;
  7515. aux_gindex = MM256_SET_M128I(_mm_and_si128(q2_data_1, m511), _mm_and_si128(q2_data_0, m511));
  7516. const __m128i partial_sign_bits_0 = _mm_srli_epi16(q2_data_0, 9);
  7517. const __m128i partial_sign_bits_1 = _mm_srli_epi16(q2_data_1, 9);
  7518. const __m128i partial_sign_bits_upper_0 = _mm_srli_epi16(q2_data_0, 13);
  7519. const __m128i partial_sign_bits_upper_1 = _mm_srli_epi16(q2_data_1, 13);
  7520. const __m128i partial_sign_bits_for_counting_0 = _mm_xor_si128(partial_sign_bits_0, partial_sign_bits_upper_0);
  7521. const __m128i partial_sign_bits_for_counting_1 = _mm_xor_si128(partial_sign_bits_1, partial_sign_bits_upper_1);
  7522. const __m128i odd_bits_0 = _mm_shuffle_epi8(bit_helper_0, partial_sign_bits_for_counting_0);
  7523. const __m128i odd_bits_1 = _mm_shuffle_epi8(bit_helper_1, partial_sign_bits_for_counting_1);
  7524. const __m128i full_sign_bits_0 = _mm_or_si128(partial_sign_bits_0, odd_bits_0);
  7525. const __m128i full_sign_bits_1 = _mm_or_si128(partial_sign_bits_1, odd_bits_1);
  7526. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7527. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7528. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7529. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7530. const __m128i q8_3_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7531. const __m128i q8_3_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7532. const __m128i q8_4_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7533. const __m128i q8_4_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7534. const __m128i q2_1_0 = _mm_set_epi64x(iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]);
  7535. const __m128i q2_1_1 = _mm_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]]);
  7536. const __m128i q2_2_0 = _mm_set_epi64x(iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]);
  7537. const __m128i q2_2_1 = _mm_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]]);
  7538. const __m128i q2_3_0 = _mm_set_epi64x(iq2xs_grid[gindex[9]], iq2xs_grid[gindex[8]]);
  7539. const __m128i q2_3_1 = _mm_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]]);
  7540. const __m128i q2_4_0 = _mm_set_epi64x(iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7541. const __m128i q2_4_1 = _mm_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]]);
  7542. // AVX2 full_signs_1 is full_sign_bits_0 here
  7543. // AVX2 full_signs_2 is full_sign_bits_1 here
  7544. __m128i signs_0, signs_1;
  7545. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_0);
  7546. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_1);
  7547. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  7548. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  7549. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, _mm_or_si128(signs_0, mone));
  7550. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, _mm_or_si128(signs_1, mone));
  7551. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_0);
  7552. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_1);
  7553. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  7554. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  7555. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, _mm_or_si128(signs_0, mone));
  7556. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, _mm_or_si128(signs_1, mone));
  7557. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_0);
  7558. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_1);
  7559. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  7560. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  7561. const __m128i q8s_3_0 = _mm_sign_epi8(q8_3_0, _mm_or_si128(signs_0, mone));
  7562. const __m128i q8s_3_1 = _mm_sign_epi8(q8_3_1, _mm_or_si128(signs_1, mone));
  7563. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_0);
  7564. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_1);
  7565. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  7566. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  7567. const __m128i q8s_4_0 = _mm_sign_epi8(q8_4_0, _mm_or_si128(signs_0, mone));
  7568. const __m128i q8s_4_1 = _mm_sign_epi8(q8_4_1, _mm_or_si128(signs_1, mone));
  7569. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7570. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7571. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7572. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7573. const __m128i dot3_0 = _mm_maddubs_epi16(q2_3_0, q8s_3_0);
  7574. const __m128i dot3_1 = _mm_maddubs_epi16(q2_3_1, q8s_3_1);
  7575. const __m128i dot4_0 = _mm_maddubs_epi16(q2_4_0, q8s_4_0);
  7576. const __m128i dot4_1 = _mm_maddubs_epi16(q2_4_1, q8s_4_1);
  7577. __m128i sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0));
  7578. const __m128i sc1_0 = _mm_cvtepi8_epi16(sc_tmp);
  7579. const __m128i sc1_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  7580. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1));
  7581. const __m128i sc2_0 = _mm_cvtepi8_epi16(sc_tmp);
  7582. const __m128i sc2_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  7583. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2));
  7584. const __m128i sc3_0 = _mm_cvtepi8_epi16(sc_tmp);
  7585. const __m128i sc3_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  7586. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3));
  7587. const __m128i sc4_0 = _mm_cvtepi8_epi16(sc_tmp);
  7588. const __m128i sc4_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  7589. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot1_0, sc1_0));
  7590. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot1_1, sc1_1));
  7591. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot2_0, sc2_0));
  7592. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot2_1, sc2_1));
  7593. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot3_0, sc3_0));
  7594. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot3_1, sc3_1));
  7595. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot4_0, sc4_0));
  7596. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot4_1, sc4_1));
  7597. }
  7598. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7599. }
  7600. *s = 0.125f * hsum_float_8(accumf);
  7601. #elif defined(__loongarch_asx)
  7602. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  7603. static const char block_sign_shuffle_mask_1[32] = {
  7604. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7605. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7606. };
  7607. static const char block_sign_shuffle_mask_2[32] = {
  7608. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7609. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7610. };
  7611. static const uint8_t bit_selector_mask_bytes[32] = {
  7612. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7613. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7614. };
  7615. const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0);
  7616. const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0);
  7617. const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0);
  7618. static const uint8_t k_bit_helper[32] = {
  7619. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7620. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7621. };
  7622. const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0);
  7623. const __m256i m511 = __lasx_xvreplgr2vr_h(511);
  7624. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  7625. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  7626. uint64_t aux64;
  7627. // somewhat hacky, but gives a significant boost in performance
  7628. __m256i aux_gindex;
  7629. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7630. __m256 accumf = (__m256)__lasx_xvldi(0);
  7631. for (int i = 0; i < nb; ++i) {
  7632. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7633. const uint16_t * restrict q2 = x[i].qs;
  7634. const int8_t * restrict q8 = y[i].qs;
  7635. memcpy(&aux64, x[i].scales, 8);
  7636. __m128i stmp = __lsx_vreplgr2vr_d(aux64);
  7637. stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4));
  7638. const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1);
  7639. __m256i sumi1 = __lasx_xvldi(0);
  7640. __m256i sumi2 = __lasx_xvldi(0);
  7641. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7642. const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16;
  7643. aux_gindex = __lasx_xvand_v(q2_data, m511);
  7644. const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9);
  7645. const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13);
  7646. const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper);
  7647. const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  7648. const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits);
  7649. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7650. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7651. const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7652. const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7653. const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7654. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7655. const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7656. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7657. const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7658. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7659. const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7660. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7661. const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0);
  7662. const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1);
  7663. const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l);
  7664. const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h);
  7665. __m256i signs;
  7666. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1);
  7667. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7668. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  7669. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2);
  7670. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7671. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  7672. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1);
  7673. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7674. const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3);
  7675. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2);
  7676. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  7677. const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4);
  7678. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7679. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7680. const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3);
  7681. const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4);
  7682. const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0)));
  7683. const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1)));
  7684. const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2)));
  7685. const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3)));
  7686. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1));
  7687. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2));
  7688. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3));
  7689. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4));
  7690. }
  7691. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7692. }
  7693. *s = 0.125f * hsum_float_8(accumf);
  7694. #elif defined(__POWER9_VECTOR__)
  7695. const vector int v0 = vec_splats((int32_t)0);
  7696. vector float vsumf0 = vec_splats(0.0f);
  7697. vector float vsumf1 = vec_splats(0.0f);
  7698. vector float vsumf2 = vec_splats(0.0f);
  7699. vector float vsumf3 = vec_splats(0.0f);
  7700. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7701. for (int i = 0; i < nb; ++i) {
  7702. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7703. vector float vyd = vec_splats(y[i].d);
  7704. vector float vd = vec_mul(vxd, vyd);
  7705. vector signed int vsumi0 = v0;
  7706. vector signed int vsumi1 = v0;
  7707. vector signed int vsumi2 = v0;
  7708. vector signed int vsumi3 = v0;
  7709. const uint16_t * restrict q2 = x[i].qs;
  7710. const uint8_t * restrict sc = x[i].scales;
  7711. const int8_t * restrict q8 = y[i].qs;
  7712. for (int j = 0; j < QK_K/64; ++j) {
  7713. __builtin_prefetch(q2, 0, 1);
  7714. __builtin_prefetch(q8, 0, 1);
  7715. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  7716. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  7717. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  7718. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  7719. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  7720. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  7721. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  7722. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  7723. q2 += 8;
  7724. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  7725. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  7726. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  7727. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  7728. vector signed char q8y0 = vec_xl( 0, q8);
  7729. vector signed char q8y1 = vec_xl(16, q8);
  7730. vector signed char q8y2 = vec_xl(32, q8);
  7731. vector signed char q8y3 = vec_xl(48, q8);
  7732. q8 += 64;
  7733. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  7734. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  7735. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  7736. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  7737. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  7738. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  7739. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  7740. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  7741. sc += 2;
  7742. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  7743. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  7744. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  7745. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  7746. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  7747. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  7748. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  7749. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  7750. }
  7751. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7752. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7753. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7754. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7755. }
  7756. vsumf0 = vec_add(vsumf0, vsumf2);
  7757. vsumf1 = vec_add(vsumf1, vsumf3);
  7758. vsumf0 = vec_add(vsumf0, vsumf1);
  7759. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7760. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7761. *s = 0.125f * vec_extract(vsumf0, 0);
  7762. #else
  7763. float sumf = 0.f;
  7764. for (int i = 0; i < nb; ++i) {
  7765. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7766. const uint16_t * restrict q2 = x[i].qs;
  7767. const uint8_t * restrict sc = x[i].scales;
  7768. const int8_t * restrict q8 = y[i].qs;
  7769. int32_t bsum = 0;
  7770. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7771. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  7772. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  7773. int32_t sumi = 0;
  7774. for (int l = 0; l < 2; ++l) {
  7775. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7776. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7777. for (int j = 0; j < 8; ++j) {
  7778. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7779. }
  7780. q8 += 8;
  7781. }
  7782. bsum += sumi * ls1;
  7783. sumi = 0;
  7784. for (int l = 2; l < 4; ++l) {
  7785. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7786. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7787. for (int j = 0; j < 8; ++j) {
  7788. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7789. }
  7790. q8 += 8;
  7791. }
  7792. bsum += sumi * ls2;
  7793. q2 += 4;
  7794. }
  7795. sumf += d * bsum;
  7796. }
  7797. *s = 0.125f * sumf;
  7798. #endif
  7799. }
  7800. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7801. assert(n % QK_K == 0);
  7802. assert(nrc == 1);
  7803. UNUSED(nrc);
  7804. UNUSED(bx);
  7805. UNUSED(by);
  7806. UNUSED(bs);
  7807. const block_iq2_s * restrict x = vx;
  7808. const block_q8_K * restrict y = vy;
  7809. const int nb = n / QK_K;
  7810. #if defined(__ARM_NEON)
  7811. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7812. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7813. };
  7814. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7815. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  7816. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7817. const uint8x16_t m1 = vdupq_n_u8(1);
  7818. const int32x4_t vzero = vdupq_n_s32(0);
  7819. uint8x16x2_t vs;
  7820. ggml_int8x16x4_t q2s;
  7821. ggml_int8x16x4_t q8b;
  7822. float sumf = 0;
  7823. for (int i = 0; i < nb; ++i) {
  7824. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7825. const uint8_t * restrict qs = x[i].qs;
  7826. const uint8_t * restrict qh = x[i].qh;
  7827. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7828. const int8_t * restrict q8 = y[i].qs;
  7829. int sumi1 = 0, sumi2 = 0;
  7830. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7831. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7832. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  7833. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  7834. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  7835. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  7836. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  7837. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  7838. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  7839. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  7840. qs += 8;
  7841. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  7842. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7843. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7844. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7845. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7846. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  7847. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  7848. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  7849. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7850. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7851. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7852. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7853. signs += 4;
  7854. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  7855. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  7856. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  7857. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  7858. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  7859. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  7860. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  7861. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  7862. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  7863. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  7864. }
  7865. sumf += d*(sumi1 + sumi2);
  7866. }
  7867. *s = 0.125f * sumf;
  7868. #elif defined(__AVX2__)
  7869. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7870. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7871. };
  7872. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7873. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7874. };
  7875. const __m128i m4 = _mm_set1_epi8(0xf);
  7876. const __m128i m1 = _mm_set1_epi8(1);
  7877. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7878. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7879. uint64_t aux64;
  7880. __m256 accumf = _mm256_setzero_ps();
  7881. for (int i = 0; i < nb; ++i) {
  7882. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7883. const uint8_t * restrict qs = x[i].qs;
  7884. const uint8_t * restrict qh = x[i].qh;
  7885. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7886. const int8_t * restrict q8 = y[i].qs;
  7887. memcpy(&aux64, x[i].scales, 8);
  7888. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  7889. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  7890. __m256i sumi1 = _mm256_setzero_si256();
  7891. __m256i sumi2 = _mm256_setzero_si256();
  7892. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7893. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7894. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7895. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  7896. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  7897. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  7898. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  7899. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  7900. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  7901. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  7902. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  7903. qs += 8;
  7904. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  7905. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7906. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7907. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7908. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  7909. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7910. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7911. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7912. signs += 4;
  7913. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  7914. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  7915. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  7916. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  7917. sumi1 = _mm256_add_epi32(sumi1, p1);
  7918. sumi2 = _mm256_add_epi32(sumi2, p2);
  7919. }
  7920. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7921. }
  7922. *s = 0.125f * hsum_float_8(accumf);
  7923. #elif defined(__AVX__)
  7924. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7925. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7926. };
  7927. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7928. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7929. };
  7930. const __m128i m4 = _mm_set1_epi8(0xf);
  7931. const __m128i m1 = _mm_set1_epi8(1);
  7932. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  7933. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  7934. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  7935. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  7936. uint64_t aux64;
  7937. __m256 accumf = _mm256_setzero_ps();
  7938. for (int i = 0; i < nb; ++i) {
  7939. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7940. const uint8_t * restrict qs = x[i].qs;
  7941. const uint8_t * restrict qh = x[i].qh;
  7942. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  7943. const int8_t * restrict q8 = y[i].qs;
  7944. memcpy(&aux64, x[i].scales, 8);
  7945. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  7946. const __m128i scales16_0 = _mm_cvtepi8_epi16(scales8);
  7947. const __m128i scales16_1 = _mm_cvtepi8_epi16(_mm_srli_si128(scales8, 8));
  7948. __m128i sumi1_0 = _mm_setzero_si128();
  7949. __m128i sumi1_1 = _mm_setzero_si128();
  7950. __m128i sumi2_0 = _mm_setzero_si128();
  7951. __m128i sumi2_1 = _mm_setzero_si128();
  7952. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7953. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7954. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7955. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7956. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7957. const __m128i q2_1_0 = _mm_set_epi64x(iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  7958. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  7959. const __m128i q2_1_1 = _mm_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  7960. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)]);
  7961. const __m128i q2_2_0 = _mm_set_epi64x(iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  7962. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  7963. const __m128i q2_2_1 = _mm_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  7964. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)]);
  7965. qs += 8;
  7966. __m128i aux128_0 = _mm_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  7967. __m128i aux128_1 = aux128_0;
  7968. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  7969. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  7970. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  7971. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  7972. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  7973. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  7974. aux128_0 = _mm_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  7975. aux128_1 = aux128_0;
  7976. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  7977. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  7978. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  7979. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  7980. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  7981. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  7982. signs += 4;
  7983. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7984. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7985. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7986. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7987. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 0)));
  7988. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 1)));
  7989. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 0)));
  7990. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 1)));
  7991. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7992. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7993. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7994. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7995. }
  7996. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7997. }
  7998. *s = 0.125f * hsum_float_8(accumf);
  7999. #elif defined(__POWER9_VECTOR__)
  8000. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8001. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8002. };
  8003. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8004. const vector int v0 = vec_splats((int32_t)0);
  8005. vector float vsumf0 = vec_splats(0.0f);
  8006. vector float vsumf1 = vec_splats(0.0f);
  8007. vector float vsumf2 = vec_splats(0.0f);
  8008. vector float vsumf3 = vec_splats(0.0f);
  8009. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  8010. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  8011. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  8012. for (int i = 0; i < nb; ++i) {
  8013. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8014. vector float vyd = vec_splats(y[i].d);
  8015. vector float vd = vec_mul(vxd, vyd);
  8016. vector signed int vsumi0 = v0;
  8017. vector signed int vsumi1 = v0;
  8018. vector signed int vsumi2 = v0;
  8019. vector signed int vsumi3 = v0;
  8020. const uint8_t * restrict q2 = x[i].qs;
  8021. const uint8_t * restrict qh = x[i].qh;
  8022. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8023. const uint8_t * restrict sc = x[i].scales;
  8024. const int8_t * restrict q8 = y[i].qs;
  8025. for (int j = 0; j < QK_K/32; j += 2) {
  8026. __builtin_prefetch(q2, 0, 1);
  8027. __builtin_prefetch(q8, 0, 1);
  8028. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  8029. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  8030. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  8031. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  8032. q2 += 8;
  8033. qh += 2;
  8034. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  8035. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  8036. signs += 4;
  8037. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  8038. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  8039. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  8040. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  8041. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  8042. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  8043. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  8044. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  8045. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  8046. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  8047. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  8048. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  8049. vector signed char q8y0 = vec_xl( 0, q8);
  8050. vector signed char q8y1 = vec_xl(16, q8);
  8051. vector signed char q8y2 = vec_xl(32, q8);
  8052. vector signed char q8y3 = vec_xl(48, q8);
  8053. q8 += 64;
  8054. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  8055. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  8056. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  8057. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  8058. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8059. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8060. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  8061. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  8062. sc += 2;
  8063. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  8064. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  8065. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  8066. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  8067. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  8068. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  8069. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  8070. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  8071. }
  8072. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8073. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8074. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8075. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8076. }
  8077. vsumf0 = vec_add(vsumf0, vsumf2);
  8078. vsumf1 = vec_add(vsumf1, vsumf3);
  8079. vsumf0 = vec_add(vsumf0, vsumf1);
  8080. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8081. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8082. *s = 0.125f * vec_extract(vsumf0, 0);
  8083. #elif defined(__loongarch_asx)
  8084. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8085. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8086. };
  8087. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8088. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8089. };
  8090. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  8091. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  8092. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  8093. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  8094. uint64_t aux64;
  8095. __m256 accumf = (__m256)__lasx_xvldi(0);
  8096. for (int i = 0; i < nb; ++i) {
  8097. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8098. const uint8_t * restrict qs = x[i].qs;
  8099. const uint8_t * restrict qh = x[i].qh;
  8100. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  8101. const int8_t * restrict q8 = y[i].qs;
  8102. __m128i tmp1;
  8103. memcpy(&aux64, x[i].scales, 8);
  8104. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0);
  8105. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1);
  8106. const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1);
  8107. const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  8108. __m256i sumi1 = __lasx_xvldi(0);
  8109. __m256i sumi2 = __lasx_xvldi(0);
  8110. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8111. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8112. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8113. const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  8114. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  8115. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  8116. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  8117. const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  8118. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  8119. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  8120. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  8121. qs += 8;
  8122. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16));
  8123. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8124. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  8125. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  8126. aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16));
  8127. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8128. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  8129. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  8130. signs += 4;
  8131. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  8132. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  8133. const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0)));
  8134. const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1)));
  8135. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8136. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8137. }
  8138. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8139. }
  8140. *s = 0.125f * hsum_float_8(accumf);
  8141. #else
  8142. float sumf = 0;
  8143. for (int i = 0; i < nb; i++) {
  8144. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8145. const int8_t * q8 = y[i].qs;
  8146. const uint8_t * qs = x[i].qs;
  8147. const uint8_t * qh = x[i].qh;
  8148. const uint8_t * signs = qs + QK_K/8;
  8149. int bsum = 0;
  8150. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8151. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  8152. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  8153. int sumi1 = 0, sumi2 = 0;
  8154. for (int l = 0; l < 2; ++l) {
  8155. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  8156. for (int j = 0; j < 8; ++j) {
  8157. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  8158. }
  8159. q8 += 8;
  8160. }
  8161. for (int l = 2; l < 4; ++l) {
  8162. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  8163. for (int j = 0; j < 8; ++j) {
  8164. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  8165. }
  8166. q8 += 8;
  8167. }
  8168. bsum += ls1 * sumi1 + ls2 * sumi2;
  8169. qs += 4;
  8170. signs += 4;
  8171. }
  8172. sumf += d * bsum;
  8173. }
  8174. *s = 0.125f * sumf;
  8175. #endif
  8176. }
  8177. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8178. assert(n % QK_K == 0);
  8179. assert(nrc == 1);
  8180. UNUSED(nrc);
  8181. UNUSED(bx);
  8182. UNUSED(by);
  8183. UNUSED(bs);
  8184. const block_iq3_xxs * restrict x = vx;
  8185. const block_q8_K * restrict y = vy;
  8186. const int nb = n / QK_K;
  8187. #if defined(__ARM_NEON)
  8188. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8189. uint32_t aux32[2];
  8190. ggml_int8x16x4_t q3s;
  8191. ggml_int8x16x4_t q8b;
  8192. float sumf = 0;
  8193. for (int i = 0; i < nb; ++i) {
  8194. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8195. const uint8_t * restrict q3 = x[i].qs;
  8196. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8197. const int8_t * restrict q8 = y[i].qs;
  8198. float sumf1 = 0, sumf2 = 0;
  8199. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8200. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8201. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  8202. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  8203. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  8204. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  8205. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  8206. q3 += 16;
  8207. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  8208. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  8209. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  8210. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  8211. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  8212. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  8213. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  8214. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  8215. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8216. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8217. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  8218. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  8219. }
  8220. sumf += d*(sumf1 + sumf2);
  8221. }
  8222. *s = 0.5f * sumf;
  8223. #elif defined(__AVX2__)
  8224. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8225. uint32_t aux32[2];
  8226. __m256 accumf = _mm256_setzero_ps();
  8227. for (int i = 0; i < nb; ++i) {
  8228. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8229. const uint8_t * restrict q3 = x[i].qs;
  8230. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8231. const int8_t * restrict q8 = y[i].qs;
  8232. __m256i sumi1 = _mm256_setzero_si256();
  8233. __m256i sumi2 = _mm256_setzero_si256();
  8234. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8235. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8236. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8237. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8238. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8239. q3 += 8;
  8240. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8241. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8242. q3 += 8;
  8243. memcpy(aux32, gas, 8); gas += 8;
  8244. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8245. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8246. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8247. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8248. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  8249. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  8250. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8251. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8252. const uint16_t ls1 = aux32[0] >> 28;
  8253. const uint16_t ls2 = aux32[1] >> 28;
  8254. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8255. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8256. sumi1 = _mm256_add_epi32(sumi1, p1);
  8257. sumi2 = _mm256_add_epi32(sumi2, p2);
  8258. }
  8259. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8260. }
  8261. *s = 0.25f * hsum_float_8(accumf);
  8262. #elif defined(__AVX__)
  8263. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8264. uint32_t aux32[2];
  8265. __m256 accumf = _mm256_setzero_ps();
  8266. for (int i = 0; i < nb; ++i) {
  8267. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8268. const uint8_t * restrict q3 = x[i].qs;
  8269. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8270. const int8_t * restrict q8 = y[i].qs;
  8271. __m128i sumi1_0 = _mm_setzero_si128();
  8272. __m128i sumi1_1 = _mm_setzero_si128();
  8273. __m128i sumi2_0 = _mm_setzero_si128();
  8274. __m128i sumi2_1 = _mm_setzero_si128();
  8275. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8276. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8277. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8278. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8279. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8280. const __m128i q2_1_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8281. const __m128i q2_1_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  8282. q3 += 8;
  8283. const __m128i q2_2_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8284. const __m128i q2_2_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  8285. q3 += 8;
  8286. memcpy(aux32, gas, 8); gas += 8;
  8287. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8288. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127]);
  8289. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8290. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  8291. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  8292. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  8293. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  8294. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  8295. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  8296. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  8297. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  8298. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  8299. const uint16_t ls1 = aux32[0] >> 28;
  8300. const uint16_t ls2 = aux32[1] >> 28;
  8301. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  8302. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  8303. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  8304. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  8305. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  8306. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  8307. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  8308. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  8309. }
  8310. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  8311. }
  8312. *s = 0.25f * hsum_float_8(accumf);
  8313. #elif defined(__POWER9_VECTOR__)
  8314. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8315. const vector int v0 = vec_splats((int32_t)0);
  8316. vector float vsumf0 = vec_splats(0.0f);
  8317. vector float vsumf1 = vec_splats(0.0f);
  8318. vector float vsumf2 = vec_splats(0.0f);
  8319. vector float vsumf3 = vec_splats(0.0f);
  8320. for (int i = 0; i < nb; ++i) {
  8321. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8322. vector float vyd = vec_splats(y[i].d);
  8323. vector float vd = vec_mul(vxd, vyd);
  8324. vector signed int vsumi0 = v0;
  8325. vector signed int vsumi1 = v0;
  8326. vector signed int vsumi2 = v0;
  8327. vector signed int vsumi3 = v0;
  8328. const uint8_t * restrict q3 = x[i].qs;
  8329. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  8330. const int8_t * restrict q8 = y[i].qs;
  8331. #pragma GCC unroll 1
  8332. for (int j = 0; j < QK_K/32; j += 2) {
  8333. __builtin_prefetch(q3, 0, 1);
  8334. __builtin_prefetch(q8, 0, 1);
  8335. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  8336. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  8337. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  8338. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  8339. q3 += 16;
  8340. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  8341. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  8342. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  8343. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  8344. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  8345. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  8346. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  8347. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  8348. vector signed char q8y0 = vec_xl( 0, q8);
  8349. vector signed char q8y1 = vec_xl(16, q8);
  8350. vector signed char q8y2 = vec_xl(32, q8);
  8351. vector signed char q8y3 = vec_xl(48, q8);
  8352. q8 += 64;
  8353. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  8354. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  8355. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  8356. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  8357. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  8358. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  8359. signs += 2;
  8360. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8361. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8362. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  8363. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  8364. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  8365. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  8366. }
  8367. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8368. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8369. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8370. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8371. }
  8372. vsumf0 = vec_add(vsumf0, vsumf2);
  8373. vsumf1 = vec_add(vsumf1, vsumf3);
  8374. vsumf0 = vec_add(vsumf0, vsumf1);
  8375. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8376. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8377. *s = 0.25f * vec_extract(vsumf0, 0);
  8378. #elif defined(__loongarch_asx)
  8379. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  8380. uint32_t aux32[2];
  8381. __m256 accumf = (__m256)__lasx_xvldi(0);
  8382. for (int i = 0; i < nb; ++i) {
  8383. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8384. const uint8_t * restrict q3 = x[i].qs;
  8385. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8386. const int8_t * restrict q8 = y[i].qs;
  8387. __m256i sumi1 = __lasx_xvldi(0);
  8388. __m256i sumi2 = __lasx_xvldi(0);
  8389. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8390. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8391. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8392. const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8393. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8394. q3 += 8;
  8395. const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  8396. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  8397. q3 += 8;
  8398. memcpy(aux32, gas, 8); gas += 8;
  8399. const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  8400. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  8401. const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  8402. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  8403. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  8404. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  8405. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8406. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8407. const uint16_t ls1 = aux32[0] >> 28;
  8408. const uint16_t ls2 = aux32[1] >> 28;
  8409. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  8410. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  8411. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8412. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8413. }
  8414. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8415. }
  8416. *s = 0.25f * hsum_float_8(accumf);
  8417. #else
  8418. uint32_t aux32;
  8419. float sumf = 0.f;
  8420. for (int i = 0; i < nb; ++i) {
  8421. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8422. const uint8_t * restrict q3 = x[i].qs;
  8423. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  8424. const int8_t * restrict q8 = y[i].qs;
  8425. int32_t bsum = 0;
  8426. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  8427. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  8428. const uint32_t ls = 2*(aux32 >> 28) + 1;
  8429. int32_t sumi = 0;
  8430. for (int l = 0; l < 4; ++l) {
  8431. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  8432. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  8433. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  8434. for (int j = 0; j < 4; ++j) {
  8435. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  8436. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  8437. }
  8438. q8 += 8;
  8439. }
  8440. q3 += 8;
  8441. bsum += sumi * ls;
  8442. }
  8443. sumf += d * bsum;
  8444. }
  8445. *s = 0.25f * sumf;
  8446. #endif
  8447. }
  8448. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8449. assert(n % QK_K == 0);
  8450. assert(nrc == 1);
  8451. UNUSED(nrc);
  8452. UNUSED(bx);
  8453. UNUSED(by);
  8454. UNUSED(bs);
  8455. const block_iq3_s * restrict x = vx;
  8456. const block_q8_K * restrict y = vy;
  8457. const int nb = n / QK_K;
  8458. #if defined(__ARM_NEON)
  8459. typedef union {
  8460. uint16x8_t vec_index;
  8461. uint16_t index[8];
  8462. } vec_index_t;
  8463. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8464. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8465. };
  8466. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8467. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  8468. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  8469. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  8470. const int16x8_t hshift = vld1q_s16(k_shift);
  8471. const uint16x8_t m256 = vdupq_n_u16(256);
  8472. const uint8x16_t m1 = vdupq_n_u8(1);
  8473. uint8x16x2_t vs;
  8474. ggml_int8x16x4_t q3s;
  8475. ggml_int8x16x4_t q8b;
  8476. vec_index_t idx;
  8477. uint32_t scales32[2];
  8478. const uint8_t * scales8 = (const uint8_t *)scales32;
  8479. float sumf = 0;
  8480. for (int i = 0; i < nb; ++i) {
  8481. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8482. const uint8_t * restrict qs = x[i].qs;
  8483. const uint8_t * restrict qh = x[i].qh;
  8484. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8485. const int8_t * restrict q8 = y[i].qs;
  8486. memcpy(scales32, x[i].scales, 4);
  8487. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  8488. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  8489. int sumi1 = 0, sumi2 = 0;
  8490. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8491. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8492. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  8493. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  8494. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  8495. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  8496. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  8497. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  8498. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  8499. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  8500. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  8501. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  8502. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  8503. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  8504. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8505. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8506. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  8507. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  8508. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  8509. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  8510. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  8511. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  8512. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  8513. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  8514. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  8515. signs += 4;
  8516. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  8517. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  8518. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  8519. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  8520. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  8521. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  8522. }
  8523. sumf += d*(sumi1 + sumi2);
  8524. }
  8525. *s = sumf;
  8526. #elif defined(__AVX2__)
  8527. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8528. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8529. };
  8530. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8531. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8532. };
  8533. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  8534. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  8535. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  8536. const __m256i idx_mask = _mm256_set1_epi32(256);
  8537. typedef union {
  8538. __m256i vec[2];
  8539. uint32_t index[16];
  8540. } index_t;
  8541. index_t idx;
  8542. __m256 accumf = _mm256_setzero_ps();
  8543. for (int i = 0; i < nb; ++i) {
  8544. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8545. const uint8_t * restrict qs = x[i].qs;
  8546. const uint8_t * restrict qh = x[i].qh;
  8547. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8548. const int8_t * restrict q8 = y[i].qs;
  8549. __m256i sumi1 = _mm256_setzero_si256();
  8550. __m256i sumi2 = _mm256_setzero_si256();
  8551. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8552. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8553. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8554. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  8555. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  8556. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  8557. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  8558. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  8559. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  8560. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  8561. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  8562. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  8563. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  8564. const __m256i q2_1 = _mm256_set_epi32(
  8565. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  8566. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  8567. );
  8568. const __m256i q2_2 = _mm256_set_epi32(
  8569. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  8570. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  8571. );
  8572. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  8573. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8574. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  8575. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  8576. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  8577. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  8578. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  8579. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  8580. signs += 4;
  8581. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  8582. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  8583. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8584. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8585. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  8586. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  8587. sumi1 = _mm256_add_epi32(sumi1, p1);
  8588. sumi2 = _mm256_add_epi32(sumi2, p2);
  8589. }
  8590. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  8591. }
  8592. *s = hsum_float_8(accumf);
  8593. #elif defined(__AVX__)
  8594. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8595. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8596. };
  8597. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8598. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8599. };
  8600. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  8601. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  8602. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  8603. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  8604. const __m128i idx_mul_0 = _mm_set_epi32(32, 64, 128, 256);
  8605. const __m128i idx_mul_1 = _mm_set_epi32(2, 4, 8, 16);
  8606. const __m128i idx_mask = _mm_set1_epi32(256);
  8607. typedef union {
  8608. __m128i vec[4];
  8609. uint32_t index[16];
  8610. } index_t;
  8611. index_t idx;
  8612. __m256 accumf = _mm256_setzero_ps();
  8613. for (int i = 0; i < nb; ++i) {
  8614. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8615. const uint8_t * restrict qs = x[i].qs;
  8616. const uint8_t * restrict qh = x[i].qh;
  8617. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8618. const int8_t * restrict q8 = y[i].qs;
  8619. __m128i sumi1_0 = _mm_setzero_si128();
  8620. __m128i sumi1_1 = _mm_setzero_si128();
  8621. __m128i sumi2_0 = _mm_setzero_si128();
  8622. __m128i sumi2_1 = _mm_setzero_si128();
  8623. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8624. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8625. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8626. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8627. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8628. const __m128i qs_tmp = _mm_loadu_si128((const __m128i *)qs);
  8629. const __m128i idx_l_0 = _mm_cvtepu8_epi16(qs_tmp);
  8630. const __m128i idx_l_1 = _mm_cvtepu8_epi16(_mm_srli_si128(qs_tmp, 8)); qs += 16;
  8631. idx.vec[0] = _mm_set1_epi32(qh[ib32+0]);
  8632. idx.vec[1] = idx.vec[0];
  8633. idx.vec[2] = _mm_set1_epi32(qh[ib32+1]);
  8634. idx.vec[3] = idx.vec[2];
  8635. idx.vec[0] = _mm_and_si128(_mm_mullo_epi32(idx.vec[0], idx_mul_0), idx_mask);
  8636. idx.vec[1] = _mm_and_si128(_mm_mullo_epi32(idx.vec[1], idx_mul_1), idx_mask);
  8637. idx.vec[2] = _mm_and_si128(_mm_mullo_epi32(idx.vec[2], idx_mul_0), idx_mask);
  8638. idx.vec[3] = _mm_and_si128(_mm_mullo_epi32(idx.vec[3], idx_mul_1), idx_mask);
  8639. idx.vec[0] = _mm_or_si128(idx.vec[0], _mm_cvtepi16_epi32(idx_l_0));
  8640. idx.vec[1] = _mm_or_si128(idx.vec[1], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_0, 8)));
  8641. idx.vec[2] = _mm_or_si128(idx.vec[2], _mm_cvtepi16_epi32(idx_l_1));
  8642. idx.vec[3] = _mm_or_si128(idx.vec[3], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_1, 8)));
  8643. const __m128i q2_1_0 = _mm_set_epi32(iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]);
  8644. const __m128i q2_1_1 = _mm_set_epi32(iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]]);
  8645. const __m128i q2_2_0 = _mm_set_epi32(iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[9]], iq3s_grid[idx.index[8]]);
  8646. const __m128i q2_2_1 = _mm_set_epi32(iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]]);
  8647. __m128i aux128_0 = _mm_set1_epi32(signs[0] | (signs[1] << 16));
  8648. __m128i aux128_1 = aux128_0;
  8649. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  8650. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  8651. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  8652. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  8653. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  8654. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  8655. aux128_0 = _mm_set1_epi32(signs[2] | (signs[3] << 16));
  8656. aux128_1 = aux128_0;
  8657. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  8658. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  8659. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  8660. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  8661. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  8662. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  8663. signs += 4;
  8664. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  8665. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  8666. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  8667. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  8668. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8669. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8670. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  8671. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  8672. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  8673. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  8674. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  8675. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  8676. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  8677. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  8678. }
  8679. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  8680. }
  8681. *s = hsum_float_8(accumf);
  8682. #elif defined(__POWER9_VECTOR__)
  8683. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8684. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8685. };
  8686. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  8687. const vector int v0 = vec_splats((int32_t)0);
  8688. vector float vsumf0 = vec_splats(0.0f);
  8689. vector float vsumf1 = vec_splats(0.0f);
  8690. vector float vsumf2 = vec_splats(0.0f);
  8691. vector float vsumf3 = vec_splats(0.0f);
  8692. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  8693. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  8694. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  8695. for (int i = 0; i < nb; ++i) {
  8696. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  8697. vector float vyd = vec_splats(y[i].d);
  8698. vector float vd = vec_mul(vxd, vyd);
  8699. const uint8_t * restrict q3 = x[i].qs;
  8700. const uint8_t * restrict qh = x[i].qh;
  8701. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  8702. const uint8_t * restrict sc = x[i].scales;
  8703. const int8_t * restrict q8 = y[i].qs;
  8704. vector signed int vsumi0 = v0;
  8705. vector signed int vsumi1 = v0;
  8706. vector signed int vsumi2 = v0;
  8707. vector signed int vsumi3 = v0;
  8708. for (int j = 0; j < QK_K/32; j += 2) {
  8709. __builtin_prefetch(q3, 0, 1);
  8710. __builtin_prefetch(q8, 0, 1);
  8711. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  8712. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  8713. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  8714. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  8715. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  8716. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  8717. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  8718. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  8719. q3 += 16;
  8720. qh += 2;
  8721. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  8722. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  8723. signs += 4;
  8724. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  8725. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  8726. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  8727. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  8728. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  8729. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  8730. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  8731. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  8732. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  8733. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  8734. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  8735. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  8736. vector signed char q8y0 = vec_xl( 0, q8);
  8737. vector signed char q8y1 = vec_xl(16, q8);
  8738. vector signed char q8y2 = vec_xl(32, q8);
  8739. vector signed char q8y3 = vec_xl(48, q8);
  8740. q8 += 64;
  8741. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  8742. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  8743. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  8744. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  8745. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  8746. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  8747. sc ++;
  8748. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  8749. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  8750. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  8751. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  8752. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  8753. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  8754. }
  8755. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8756. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8757. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8758. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8759. }
  8760. vsumf0 = vec_add(vsumf0, vsumf2);
  8761. vsumf1 = vec_add(vsumf1, vsumf3);
  8762. vsumf0 = vec_add(vsumf0, vsumf1);
  8763. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8764. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8765. *s = vec_extract(vsumf0, 0);
  8766. #elif defined(__loongarch_asx)
  8767. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  8768. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  8769. };
  8770. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8771. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  8772. };
  8773. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  8774. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  8775. __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8);
  8776. const __m256i idx_mask = __lasx_xvreplgr2vr_w(256);
  8777. typedef union {
  8778. __m256i vec[2];
  8779. uint32_t index[16];
  8780. } index_t;
  8781. index_t idx;
  8782. __m256 accumf = (__m256)__lasx_xvldi(0);
  8783. for (int i = 0; i < nb; ++i) {
  8784. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8785. const uint8_t * restrict qs = x[i].qs;
  8786. const uint8_t * restrict qh = x[i].qh;
  8787. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  8788. const int8_t * restrict q8 = y[i].qs;
  8789. __m256i sumi1 = __lasx_xvldi(0);
  8790. __m256i sumi2 = __lasx_xvldi(0);
  8791. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8792. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8793. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8794. const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16;
  8795. idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]);
  8796. idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]);
  8797. idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask);
  8798. idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask);
  8799. idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0)));
  8800. idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1)));
  8801. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  8802. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  8803. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  8804. const __m256i q2_1 = lasx_set_w(
  8805. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  8806. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  8807. );
  8808. const __m256i q2_2 = lasx_set_w(
  8809. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  8810. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  8811. );
  8812. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16));
  8813. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8814. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  8815. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  8816. aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16));
  8817. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  8818. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  8819. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  8820. signs += 4;
  8821. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  8822. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  8823. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  8824. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  8825. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  8826. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  8827. sumi1 = __lasx_xvadd_w(sumi1, p1);
  8828. sumi2 = __lasx_xvadd_w(sumi2, p2);
  8829. }
  8830. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  8831. }
  8832. *s = hsum_float_8(accumf);
  8833. #else
  8834. float sumf = 0.f;
  8835. for (int i = 0; i < nb; ++i) {
  8836. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  8837. const uint8_t * restrict qs = x[i].qs;
  8838. const uint8_t * restrict qh = x[i].qh;
  8839. const uint8_t * restrict signs = x[i].signs;
  8840. const int8_t * restrict q8 = y[i].qs;
  8841. int32_t bsum = 0;
  8842. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  8843. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  8844. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  8845. int32_t sumi = 0;
  8846. for (int l = 0; l < 4; ++l) {
  8847. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  8848. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  8849. for (int j = 0; j < 4; ++j) {
  8850. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8851. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8852. }
  8853. q8 += 8;
  8854. }
  8855. qs += 8;
  8856. signs += 4;
  8857. bsum += sumi * ls1;
  8858. sumi = 0;
  8859. for (int l = 0; l < 4; ++l) {
  8860. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  8861. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  8862. for (int j = 0; j < 4; ++j) {
  8863. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  8864. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  8865. }
  8866. q8 += 8;
  8867. }
  8868. qs += 8;
  8869. signs += 4;
  8870. bsum += sumi * ls2;
  8871. }
  8872. sumf += d * bsum;
  8873. }
  8874. *s = sumf;
  8875. #endif
  8876. }
  8877. #if defined(__AVX__)
  8878. static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
  8879. const __m128i ax = _mm_sign_epi8(x, x);
  8880. const __m128i sy = _mm_sign_epi8(y, x);
  8881. return _mm_maddubs_epi16(ax, sy);
  8882. }
  8883. #endif
  8884. #if defined(__AVX2__)
  8885. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  8886. const __m256i ax = _mm256_sign_epi8(x, x);
  8887. const __m256i sy = _mm256_sign_epi8(y, x);
  8888. return _mm256_maddubs_epi16(ax, sy);
  8889. }
  8890. #elif defined(__loongarch_asx)
  8891. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  8892. const __m256i ax = __lasx_xvsigncov_b(x, x);
  8893. const __m256i sy = __lasx_xvsigncov_b(x, y);
  8894. __m256i tmp1, tmp2, tmp3;
  8895. tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy);
  8896. tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy);
  8897. tmp3 = __lasx_xvadd_h(tmp1, tmp2);
  8898. return __lasx_xvsat_h(tmp3, 15);
  8899. }
  8900. #endif
  8901. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8902. assert(n % QK_K == 0);
  8903. assert(nrc == 1);
  8904. UNUSED(nrc);
  8905. UNUSED(bx);
  8906. UNUSED(by);
  8907. UNUSED(bs);
  8908. const block_iq1_s * restrict x = vx;
  8909. const block_q8_K * restrict y = vy;
  8910. const int nb = n / QK_K;
  8911. #if defined __ARM_NEON
  8912. ggml_int8x16x4_t q1b;
  8913. ggml_int8x16x4_t q8b;
  8914. float sumf = 0;
  8915. for (int i = 0; i < nb; ++i) {
  8916. const int8_t * q8 = y[i].qs;
  8917. const uint8_t * qs = x[i].qs;
  8918. const uint16_t * qh = x[i].qh;
  8919. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  8920. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8921. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  8922. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  8923. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  8924. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  8925. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  8926. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  8927. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  8928. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  8929. qs += 8;
  8930. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8931. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  8932. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  8933. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8934. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8935. sumi1 += vaddvq_s32(p1) * ls1;
  8936. sumi2 += vaddvq_s32(p2) * ls2;
  8937. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  8938. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  8939. }
  8940. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  8941. }
  8942. *s = sumf;
  8943. #elif defined __AVX2__
  8944. __m256 accum = _mm256_setzero_ps();
  8945. float accum1 = 0;
  8946. for (int i = 0; i < nb; ++i) {
  8947. const int8_t * q8 = y[i].qs;
  8948. const uint8_t * qs = x[i].qs;
  8949. const uint16_t * qh = x[i].qh;
  8950. __m256i sumi = _mm256_setzero_si256();
  8951. int sumi1 = 0;
  8952. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8953. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  8954. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  8955. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  8956. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  8957. qs += 8;
  8958. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8959. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8960. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8961. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8962. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  8963. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  8964. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  8965. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  8966. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  8967. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  8968. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  8969. }
  8970. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  8971. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  8972. accum1 += d * sumi1;
  8973. }
  8974. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  8975. #elif defined __AVX__
  8976. __m256 accum = _mm256_setzero_ps();
  8977. float accum1 = 0;
  8978. for (int i = 0; i < nb; ++i) {
  8979. const int8_t * q8 = y[i].qs;
  8980. const uint8_t * qs = x[i].qs;
  8981. const uint16_t * qh = x[i].qh;
  8982. __m128i sumi1_0 = _mm_setzero_si128();
  8983. __m128i sumi1_1 = _mm_setzero_si128();
  8984. int sumi1 = 0;
  8985. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8986. const __m128i q1b_1_0 = _mm_set_epi64x(iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  8987. const __m128i q1b_1_1 = _mm_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)]);
  8988. const __m128i q1b_2_0 = _mm_set_epi64x(iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  8989. const __m128i q1b_2_1 = _mm_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)]);
  8990. qs += 8;
  8991. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8992. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8993. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8994. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8995. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  8996. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  8997. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  8998. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  8999. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9000. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9001. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(ls1));
  9002. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(ls1));
  9003. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(ls2));
  9004. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(ls2));
  9005. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  9006. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  9007. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  9008. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  9009. }
  9010. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  9011. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum);
  9012. accum1 += d * sumi1;
  9013. }
  9014. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  9015. #elif defined(__POWER9_VECTOR__)
  9016. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  9017. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  9018. vector float vsumf0 = vec_splats(0.0f);
  9019. vector float vsumf1 = vec_splats(0.0f);
  9020. vector float vsumf2 = vec_splats(0.0f);
  9021. vector float vsumf3 = vec_splats(0.0f);
  9022. for (int i = 0; i < nb; ++i) {
  9023. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  9024. vector float vyd = vec_splats(y[i].d);
  9025. vector float vd = vec_mul(vxd, vyd);
  9026. vector signed int vsumi0 = vec_splats((int32_t)0);
  9027. vector signed int vsumi1 = vec_splats((int32_t)0);
  9028. vector signed int vsumi2 = vec_splats((int32_t)0);
  9029. vector signed int vsumi3 = vec_splats((int32_t)0);
  9030. vector signed int vsumi8 = vec_splats((int32_t)0);
  9031. const uint8_t * restrict q1 = x[i].qs;
  9032. const uint16_t * restrict qh = x[i].qh;
  9033. const int8_t * restrict q8 = y[i].qs;
  9034. const int16_t * restrict qs = y[i].bsums;
  9035. for (int j = 0; j < QK_K/32; j += 2) {
  9036. __builtin_prefetch(q1, 0, 1);
  9037. __builtin_prefetch(qh, 0, 1);
  9038. __builtin_prefetch(q8, 0, 1);
  9039. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  9040. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  9041. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  9042. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  9043. q1 += 8;
  9044. vector signed char q1x0 = (vector signed char)aux64x2_0;
  9045. vector signed char q1x1 = (vector signed char)aux64x2_1;
  9046. vector signed char q1x2 = (vector signed char)aux64x2_2;
  9047. vector signed char q1x3 = (vector signed char)aux64x2_3;
  9048. vector signed char q8y0 = vec_xl( 0, q8);
  9049. vector signed char q8y1 = vec_xl(16, q8);
  9050. vector signed char q8y2 = vec_xl(32, q8);
  9051. vector signed char q8y3 = vec_xl(48, q8);
  9052. q8 += 64;
  9053. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  9054. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  9055. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  9056. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  9057. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  9058. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  9059. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  9060. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  9061. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  9062. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  9063. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  9064. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  9065. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  9066. vector signed short q8ysums = vec_xl_len(qs, 8);
  9067. qs += 4;
  9068. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  9069. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  9070. qh += 2;
  9071. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  9072. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  9073. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  9074. }
  9075. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9076. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9077. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9078. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9079. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  9080. }
  9081. vsumf0 = vec_add(vsumf0, vsumf2);
  9082. vsumf1 = vec_add(vsumf1, vsumf3);
  9083. vsumf0 = vec_add(vsumf0, vsumf1);
  9084. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9085. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9086. *s = vec_extract(vsumf0, 0);
  9087. #elif defined(__loongarch_asx)
  9088. __m256 accum = (__m256)__lasx_xvldi(0);
  9089. float accum1 = 0;
  9090. for (int i = 0; i < nb; ++i) {
  9091. const int8_t * q8 = y[i].qs;
  9092. const uint8_t * qs = x[i].qs;
  9093. const uint16_t * qh = x[i].qh;
  9094. __m256i sumi = __lasx_xvldi(0);
  9095. int sumi1 = 0;
  9096. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9097. __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0);
  9098. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1);
  9099. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2);
  9100. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3);
  9101. __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0);
  9102. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1);
  9103. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2);
  9104. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3);
  9105. qs += 8;
  9106. const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  9107. const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  9108. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9109. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9110. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  9111. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  9112. __m256i tmp1, tmp5, tmp6;
  9113. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  9114. tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1);
  9115. tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1);
  9116. const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6);
  9117. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  9118. tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1);
  9119. tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1);
  9120. const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6);
  9121. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2));
  9122. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  9123. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  9124. }
  9125. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  9126. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
  9127. accum1 += d * sumi1;
  9128. }
  9129. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  9130. #else
  9131. float sumf = 0;
  9132. for (int i = 0; i < nb; i++) {
  9133. const int8_t * q8 = y[i].qs;
  9134. const uint8_t * qs = x[i].qs;
  9135. const uint16_t * qh = x[i].qh;
  9136. int sumi = 0, sumi1 = 0;
  9137. for (int ib = 0; ib < QK_K/32; ++ib) {
  9138. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  9139. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  9140. int lsum = 0;
  9141. for (int l = 0; l < 4; ++l) {
  9142. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  9143. for (int j = 0; j < 8; ++j) {
  9144. lsum += q8[j] * grid[j];
  9145. }
  9146. q8 += 8;
  9147. }
  9148. sumi += ls * lsum;
  9149. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  9150. qs += 4;
  9151. }
  9152. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  9153. }
  9154. *s = sumf;
  9155. #endif
  9156. }
  9157. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9158. assert(n % QK_K == 0);
  9159. assert(nrc == 1);
  9160. UNUSED(nrc);
  9161. UNUSED(bx);
  9162. UNUSED(by);
  9163. UNUSED(bs);
  9164. const block_iq1_m * restrict x = vx;
  9165. const block_q8_K * restrict y = vy;
  9166. const int nb = n / QK_K;
  9167. iq1m_scale_t scale;
  9168. #if defined __ARM_NEON
  9169. const int32x4_t mask = vdupq_n_s32(0x7);
  9170. const int32x4_t mone = vdupq_n_s32(1);
  9171. const int32x4_t mzero = vdupq_n_s32(0);
  9172. ggml_int8x16x4_t deltas;
  9173. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  9174. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  9175. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  9176. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  9177. ggml_int8x16x4_t q1b;
  9178. ggml_int8x16x4_t q8b;
  9179. uint32_t aux32;
  9180. const uint8_t * aux8 = (const uint8_t *)&aux32;
  9181. float sumf = 0;
  9182. for (int i = 0; i < nb; ++i) {
  9183. const int8_t * q8 = y[i].qs;
  9184. const uint8_t * qs = x[i].qs;
  9185. const uint8_t * qh = x[i].qh;
  9186. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9187. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9188. int32x4_t sumi1 = mzero;
  9189. int32x4_t sumi2 = mzero;
  9190. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9191. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  9192. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  9193. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  9194. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  9195. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  9196. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  9197. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  9198. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  9199. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9200. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  9201. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  9202. const int32x4_t p12 = vpaddq_s32(p1, p2);
  9203. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  9204. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  9205. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  9206. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  9207. const int32x4_t p34 = vpaddq_s32(p3, p4);
  9208. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  9209. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  9210. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  9211. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  9212. qs += 8; qh += 4;
  9213. }
  9214. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  9215. }
  9216. *s = sumf;
  9217. #elif defined __AVX2__
  9218. const __m256i mask = _mm256_set1_epi16(0x7);
  9219. const __m256i mone = _mm256_set1_epi16(1);
  9220. __m256 accum1 = _mm256_setzero_ps();
  9221. __m256 accum2 = _mm256_setzero_ps();
  9222. for (int i = 0; i < nb; ++i) {
  9223. const int8_t * q8 = y[i].qs;
  9224. const uint8_t * qs = x[i].qs;
  9225. const uint8_t * qh = x[i].qh;
  9226. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9227. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9228. __m256i sumi1 = _mm256_setzero_si256();
  9229. __m256i sumi2 = _mm256_setzero_si256();
  9230. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9231. const __m256i q1b_1 = _mm256_set_epi64x(
  9232. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  9233. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  9234. );
  9235. const __m256i q1b_2 = _mm256_set_epi64x(
  9236. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  9237. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  9238. );
  9239. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9240. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  9241. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  9242. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  9243. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9244. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  9245. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9246. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9247. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9248. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  9249. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9250. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9251. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  9252. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  9253. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  9254. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  9255. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  9256. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  9257. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  9258. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  9259. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  9260. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  9261. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  9262. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  9263. qs += 8; qh += 4;
  9264. }
  9265. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  9266. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  9267. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  9268. }
  9269. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  9270. #elif defined __AVX__
  9271. const __m128i mask = _mm_set1_epi16(0x7);
  9272. const __m128i mone = _mm_set1_epi16(1);
  9273. __m256 accum1 = _mm256_setzero_ps();
  9274. __m256 accum2 = _mm256_setzero_ps();
  9275. for (int i = 0; i < nb; ++i) {
  9276. const int8_t * q8 = y[i].qs;
  9277. const uint8_t * qs = x[i].qs;
  9278. const uint8_t * qh = x[i].qh;
  9279. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9280. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9281. __m128i sumi1_0 = _mm_setzero_si128();
  9282. __m128i sumi1_1 = _mm_setzero_si128();
  9283. __m128i sumi2_0 = _mm_setzero_si128();
  9284. __m128i sumi2_1 = _mm_setzero_si128();
  9285. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9286. const __m128i q1b_1_0 = _mm_set_epi64x(
  9287. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]);
  9288. const __m128i q1b_1_1 = _mm_set_epi64x(
  9289. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)]);
  9290. const __m128i q1b_2_0 = _mm_set_epi64x(
  9291. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]);
  9292. const __m128i q1b_2_1 = _mm_set_epi64x(
  9293. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)]);
  9294. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9295. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9296. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9297. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9298. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  9299. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  9300. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  9301. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  9302. const __m128i delta1_0 = _mm_set_epi64x(qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9303. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9304. const __m128i delta1_1 = _mm_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9305. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9306. const __m128i delta2_0 = _mm_set_epi64x(qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9307. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9308. const __m128i delta2_1 = _mm_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  9309. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  9310. const __m128i dot3_0 = mul_add_epi8_sse(delta1_0, q8b_1_0);
  9311. const __m128i dot3_1 = mul_add_epi8_sse(delta1_1, q8b_1_1);
  9312. const __m128i dot4_0 = mul_add_epi8_sse(delta2_0, q8b_2_0);
  9313. const __m128i dot4_1 = mul_add_epi8_sse(delta2_1, q8b_2_1);
  9314. __m128i scale1_0 = _mm_set1_epi16(sc[ib/2] >> 0);
  9315. __m128i scale1_1 = _mm_set1_epi16(sc[ib/2] >> 3);
  9316. __m128i scale2_0 = _mm_set1_epi16(sc[ib/2] >> 6);
  9317. __m128i scale2_1 = _mm_set1_epi16(sc[ib/2] >> 9);
  9318. scale1_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_0, mask), 1), mone);
  9319. scale1_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_1, mask), 1), mone);
  9320. scale2_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_0, mask), 1), mone);
  9321. scale2_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_1, mask), 1), mone);
  9322. const __m128i p1_0 = _mm_madd_epi16(dot1_0, scale1_0);
  9323. const __m128i p1_1 = _mm_madd_epi16(dot1_1, scale1_1);
  9324. const __m128i p2_0 = _mm_madd_epi16(dot2_0, scale2_0);
  9325. const __m128i p2_1 = _mm_madd_epi16(dot2_1, scale2_1);
  9326. const __m128i p3_0 = _mm_madd_epi16(dot3_0, scale1_0);
  9327. const __m128i p3_1 = _mm_madd_epi16(dot3_1, scale1_1);
  9328. const __m128i p4_0 = _mm_madd_epi16(dot4_0, scale2_0);
  9329. const __m128i p4_1 = _mm_madd_epi16(dot4_1, scale2_1);
  9330. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  9331. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  9332. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_add_epi32(p3_0, p4_0));
  9333. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_add_epi32(p3_1, p4_1));
  9334. qs += 8; qh += 4;
  9335. }
  9336. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  9337. accum1 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum1);
  9338. accum2 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi2_1, sumi2_0))), accum2);
  9339. }
  9340. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  9341. #else
  9342. int sum1[2], sum2[2], delta[4];
  9343. float sumf = 0;
  9344. for (int i = 0; i < nb; i++) {
  9345. const int8_t * q8 = y[i].qs;
  9346. const uint8_t * qs = x[i].qs;
  9347. const uint8_t * qh = x[i].qh;
  9348. const uint16_t * sc = (const uint16_t *)x[i].scales;
  9349. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  9350. int sumi1 = 0, sumi2 = 0;
  9351. for (int ib = 0; ib < QK_K/32; ++ib) {
  9352. delta[0] = qh[0] & 0x08 ? -1 : 1;
  9353. delta[1] = qh[0] & 0x80 ? -1 : 1;
  9354. delta[2] = qh[1] & 0x08 ? -1 : 1;
  9355. delta[3] = qh[1] & 0x80 ? -1 : 1;
  9356. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  9357. for (int l = 0; l < 4; ++l) {
  9358. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  9359. int lsum1 = 0, lsum2 = 0;
  9360. for (int j = 0; j < 8; ++j) {
  9361. lsum1 += q8[j] * grid[j];
  9362. lsum2 += q8[j];
  9363. }
  9364. q8 += 8;
  9365. sum1[l/2] += lsum1;
  9366. sum2[l/2] += lsum2*delta[l];
  9367. }
  9368. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  9369. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  9370. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  9371. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  9372. qs += 4;
  9373. qh += 2;
  9374. }
  9375. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  9376. }
  9377. *s = sumf;
  9378. #endif
  9379. }
  9380. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9381. assert(nrc == 1);
  9382. UNUSED(nrc);
  9383. UNUSED(bx);
  9384. UNUSED(by);
  9385. UNUSED(bs);
  9386. assert(n % QK4_NL == 0);
  9387. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  9388. const block_iq4_nl * restrict x = vx;
  9389. const block_q8_0 * restrict y = vy;
  9390. const int nb = n / QK4_NL;
  9391. #if defined __ARM_NEON
  9392. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  9393. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  9394. uint8x16x2_t q4bits;
  9395. int8x16x4_t q4b;
  9396. int8x16x4_t q8b;
  9397. int32x4_t prod_1, prod_2;
  9398. float sumf = 0;
  9399. for (int ib = 0; ib < nb; ib += 2) {
  9400. q4bits.val[0] = vld1q_u8(x[ib+0].qs);
  9401. q4bits.val[1] = vld1q_u8(x[ib+1].qs);
  9402. q8b.val[0] = vld1q_s8(y[ib+0].qs);
  9403. q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
  9404. q8b.val[2] = vld1q_s8(y[ib+1].qs);
  9405. q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
  9406. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  9407. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  9408. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  9409. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  9410. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  9411. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  9412. sumf +=
  9413. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
  9414. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
  9415. }
  9416. *s = sumf;
  9417. #elif defined __AVX2__
  9418. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9419. const __m128i m4b = _mm_set1_epi8(0x0f);
  9420. const __m256i mone = _mm256_set1_epi16(1);
  9421. __m256 accum1 = _mm256_setzero_ps();
  9422. __m256 accum2 = _mm256_setzero_ps();
  9423. for (int ib = 0; ib < nb; ib += 2) {
  9424. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
  9425. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
  9426. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
  9427. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
  9428. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  9429. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  9430. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  9431. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  9432. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9433. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9434. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  9435. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  9436. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  9437. _mm256_cvtepi32_ps(p_1), accum1);
  9438. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  9439. _mm256_cvtepi32_ps(p_2), accum2);
  9440. y += 2;
  9441. x += 2;
  9442. }
  9443. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  9444. #elif defined __AVX__
  9445. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9446. const __m128i m4b = _mm_set1_epi8(0x0f);
  9447. const __m128i mone = _mm_set1_epi16(1);
  9448. __m256 accum1 = _mm256_setzero_ps();
  9449. __m256 accum2 = _mm256_setzero_ps();
  9450. for (int ib = 0; ib < nb; ib += 2) {
  9451. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  9452. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[1].qs);
  9453. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  9454. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[0].qs + 1);
  9455. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[1].qs);
  9456. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[1].qs + 1);
  9457. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  9458. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  9459. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  9460. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  9461. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  9462. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  9463. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  9464. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  9465. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
  9466. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
  9467. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
  9468. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
  9469. accum1 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  9470. _mm256_cvtepi32_ps(MM256_SET_M128I(p_1_1, p_1_0))), accum1);
  9471. accum2 = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  9472. _mm256_cvtepi32_ps(MM256_SET_M128I(p_2_1, p_2_0))), accum2);
  9473. y += 2;
  9474. x += 2;
  9475. }
  9476. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  9477. #elif defined(__POWER9_VECTOR__)
  9478. const vector signed char lowMask = vec_splats((signed char)0xF);
  9479. const vector signed int v0 = vec_splats((int32_t)0);
  9480. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  9481. vector float vsumf0 = vec_splats(0.0f);
  9482. vector float vsumf1 = vec_splats(0.0f);
  9483. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  9484. #pragma GCC unroll 4
  9485. for (int ib = 0; ib < nb; ++ib) {
  9486. __builtin_prefetch(x[ib].qs, 0, 1);
  9487. __builtin_prefetch(y[ib].qs, 0, 1);
  9488. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  9489. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  9490. vector float vd = vec_mul(vxd, vyd);
  9491. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  9492. vector signed char q4x0 = vec_and(qxs, lowMask);
  9493. vector signed char q4x1 = vec_sr(qxs, v4);
  9494. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  9495. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  9496. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  9497. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  9498. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  9499. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  9500. vector signed int vsumi0 = v0;
  9501. vector signed int vsumi1 = v0;
  9502. vsumi0 = vec_sum4s(qv0, vsumi0);
  9503. vsumi1 = vec_sum4s(qv1, vsumi1);
  9504. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9505. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9506. }
  9507. vsumf0 = vec_add(vsumf0, vsumf1);
  9508. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9509. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9510. *s = vec_extract(vsumf0, 0);
  9511. #elif defined (__loongarch_asx)
  9512. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  9513. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  9514. const __m256i mone = __lasx_xvreplgr2vr_h(1);
  9515. __m256 accum1 = (__m256)__lasx_xvldi(0);
  9516. __m256 accum2 = (__m256)__lasx_xvldi(0);
  9517. for (int ib = 0; ib < nb; ib += 2) {
  9518. const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[0].qs, 0);
  9519. const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[1].qs, 0);
  9520. const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[0].qs, 0);
  9521. const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[1].qs, 0);
  9522. const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)),
  9523. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b)));
  9524. const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)),
  9525. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b)));
  9526. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9527. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9528. const __m256i p_1 = lasx_madd_h(p16_1, mone);
  9529. const __m256i p_2 = lasx_madd_h(p16_2, mone);
  9530. accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  9531. __lasx_xvffint_s_w(p_1), accum1);
  9532. accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  9533. __lasx_xvffint_s_w(p_2), accum2);
  9534. y += 2;
  9535. x += 2;
  9536. }
  9537. *s = hsum_float_8(__lasx_xvfadd_s(accum1, accum2));
  9538. #else
  9539. float sumf = 0;
  9540. for (int ib = 0; ib < nb; ++ib) {
  9541. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  9542. int sumi1 = 0, sumi2 = 0;
  9543. for (int j = 0; j < QK4_NL/2; ++j) {
  9544. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  9545. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  9546. }
  9547. sumf += d * (sumi1 + sumi2);
  9548. }
  9549. *s = sumf;
  9550. #endif
  9551. }
  9552. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  9553. assert(nrc == 1);
  9554. UNUSED(nrc);
  9555. UNUSED(bx);
  9556. UNUSED(by);
  9557. UNUSED(bs);
  9558. assert(n % QK_K == 0);
  9559. const block_iq4_xs * restrict x = vx;
  9560. const block_q8_K * restrict y = vy;
  9561. const int nb = n / QK_K;
  9562. #if defined __ARM_NEON
  9563. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  9564. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  9565. ggml_uint8x16x2_t q4bits;
  9566. ggml_int8x16x4_t q4b;
  9567. ggml_int8x16x4_t q8b;
  9568. int32x4_t prod_1, prod_2;
  9569. float sumf = 0;
  9570. for (int ibl = 0; ibl < nb; ++ibl) {
  9571. const int8_t * q8 = y[ibl].qs;
  9572. const uint8_t * q4 = x[ibl].qs;
  9573. uint16_t h = x[ibl].scales_h;
  9574. int sumi1 = 0, sumi2 = 0;
  9575. for (int ib = 0; ib < QK_K/64; ++ib) {
  9576. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  9577. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  9578. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  9579. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  9580. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  9581. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  9582. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  9583. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  9584. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  9585. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  9586. h >>= 4;
  9587. sumi1 += vaddvq_s32(prod_1) * ls1;
  9588. sumi2 += vaddvq_s32(prod_2) * ls2;
  9589. }
  9590. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  9591. }
  9592. *s = sumf;
  9593. #elif defined __AVX2__
  9594. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9595. const __m128i m4b = _mm_set1_epi8(0x0f);
  9596. __m256 accum = _mm256_setzero_ps();
  9597. for (int ibl = 0; ibl < nb; ++ibl) {
  9598. const uint8_t * qs = x[ibl].qs;
  9599. const int8_t * q8 = y[ibl].qs;
  9600. uint16_t sh = x[ibl].scales_h;
  9601. __m256i sumi1 = _mm256_setzero_si256();
  9602. __m256i sumi2 = _mm256_setzero_si256();
  9603. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9604. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  9605. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  9606. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9607. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  9608. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  9609. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  9610. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  9611. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  9612. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9613. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9614. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9615. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9616. sh >>= 4;
  9617. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  9618. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  9619. sumi1 = _mm256_add_epi32(p_1, sumi1);
  9620. sumi2 = _mm256_add_epi32(p_2, sumi2);
  9621. }
  9622. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9623. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  9624. }
  9625. *s = hsum_float_8(accum);
  9626. #elif defined __AVX__
  9627. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  9628. const __m128i m4b = _mm_set1_epi8(0x0f);
  9629. __m256 accum = _mm256_setzero_ps();
  9630. for (int ibl = 0; ibl < nb; ++ibl) {
  9631. const uint8_t * qs = x[ibl].qs;
  9632. const int8_t * q8 = y[ibl].qs;
  9633. uint16_t sh = x[ibl].scales_h;
  9634. __m128i sumi1_0 = _mm_setzero_si128();
  9635. __m128i sumi1_1 = _mm_setzero_si128();
  9636. __m128i sumi2_0 = _mm_setzero_si128();
  9637. __m128i sumi2_1 = _mm_setzero_si128();
  9638. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9639. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  9640. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  9641. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9642. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9643. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9644. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  9645. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  9646. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  9647. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  9648. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  9649. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  9650. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  9651. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  9652. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  9653. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9654. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9655. sh >>= 4;
  9656. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, _mm_set1_epi16(ls1));
  9657. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, _mm_set1_epi16(ls1));
  9658. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, _mm_set1_epi16(ls2));
  9659. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, _mm_set1_epi16(ls2));
  9660. sumi1_0 = _mm_add_epi32(p_1_0, sumi1_0);
  9661. sumi1_1 = _mm_add_epi32(p_1_1, sumi1_1);
  9662. sumi2_0 = _mm_add_epi32(p_2_0, sumi2_0);
  9663. sumi2_1 = _mm_add_epi32(p_2_1, sumi2_1);
  9664. }
  9665. __m128i sumi12_0 = _mm_add_epi32(sumi1_0, sumi2_0);
  9666. __m128i sumi12_1 = _mm_add_epi32(sumi1_1, sumi2_1);
  9667. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9668. _mm256_cvtepi32_ps(MM256_SET_M128I(sumi12_1, sumi12_0))), accum);
  9669. }
  9670. *s = hsum_float_8(accum);
  9671. #elif defined(__POWER9_VECTOR__)
  9672. const vector signed char lowMask = vec_splats((signed char)0xF);
  9673. const vector int v0 = vec_splats((int32_t)0);
  9674. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  9675. vector float vsumf0 = vec_splats(0.0f);
  9676. vector float vsumf1 = vec_splats(0.0f);
  9677. vector float vsumf2 = vec_splats(0.0f);
  9678. vector float vsumf3 = vec_splats(0.0f);
  9679. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  9680. for (int ibl = 0; ibl < nb; ++ibl) {
  9681. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  9682. vector float vyd = vec_splats(y[ibl].d);
  9683. vector float vd = vec_mul(vxd, vyd);
  9684. vector signed int vsumi0 = v0;
  9685. vector signed int vsumi1 = v0;
  9686. vector signed int vsumi2 = v0;
  9687. vector signed int vsumi3 = v0;
  9688. uint16_t h = x[ibl].scales_h;
  9689. const uint8_t * restrict q4 = x[ibl].qs;
  9690. const uint8_t * restrict sc = x[ibl].scales_l;
  9691. const int8_t * restrict q8 = y[ibl].qs;
  9692. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  9693. __builtin_prefetch(q4, 0, 1);
  9694. __builtin_prefetch(q8, 0, 1);
  9695. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  9696. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  9697. q4 += 32;
  9698. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  9699. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  9700. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  9701. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  9702. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  9703. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  9704. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  9705. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  9706. vector signed char q8y0 = vec_xl( 0, q8);
  9707. vector signed char q8y1 = vec_xl(16, q8);
  9708. vector signed char q8y2 = vec_xl(32, q8);
  9709. vector signed char q8y3 = vec_xl(48, q8);
  9710. q8 += 64;
  9711. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  9712. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  9713. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  9714. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  9715. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  9716. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  9717. h >>= 4;
  9718. sc ++;
  9719. vector signed short vscales01 = vec_splats((int16_t)ls0);
  9720. vector signed short vscales23 = vec_splats((int16_t)ls1);
  9721. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  9722. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  9723. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  9724. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  9725. }
  9726. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  9727. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  9728. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  9729. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  9730. }
  9731. vsumf0 = vec_add(vsumf0, vsumf2);
  9732. vsumf1 = vec_add(vsumf1, vsumf3);
  9733. vsumf0 = vec_add(vsumf0, vsumf1);
  9734. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  9735. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  9736. *s = vec_extract(vsumf0, 0);
  9737. #elif defined(__loongarch_asx)
  9738. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  9739. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  9740. __m256 accum = (__m256)__lasx_xvldi(0);
  9741. __m256i tmp1;
  9742. __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask;
  9743. mask_8f = __lsx_vreplgr2vr_b(0x8f);
  9744. for (int ibl = 0; ibl < nb; ++ibl) {
  9745. const uint8_t * qs = x[ibl].qs;
  9746. const int8_t * q8 = y[ibl].qs;
  9747. uint16_t sh = x[ibl].scales_h;
  9748. __m256i sumi1 = __lasx_xvldi(0);
  9749. __m256i sumi2 = __lasx_xvldi(0);
  9750. __m128i zero = __lsx_vldi(0);
  9751. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9752. const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  9753. const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  9754. const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9755. const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  9756. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f);
  9757. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9758. mask = __lsx_vsle_b(zero, tmp2);
  9759. tmp3 = __lsx_vand_v(tmp0, mask);
  9760. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  9761. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f);
  9762. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9763. mask = __lsx_vsle_b(zero, tmp2);
  9764. tmp4 = __lsx_vand_v(tmp0, mask);
  9765. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  9766. const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4);
  9767. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f);
  9768. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9769. mask = __lsx_vsle_b(zero, tmp2);
  9770. tmp3 = __lsx_vand_v(tmp0, mask);
  9771. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  9772. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f);
  9773. tmp0 = __lsx_vori_b(tmp2, 0x10);
  9774. mask = __lsx_vsle_b(zero, tmp2);
  9775. tmp4 = __lsx_vand_v(tmp0, mask);
  9776. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  9777. const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4);
  9778. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  9779. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  9780. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  9781. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  9782. sh >>= 4;
  9783. __m256i tmp5, tmp6;
  9784. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  9785. tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1);
  9786. tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1);
  9787. const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6);
  9788. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  9789. tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1);
  9790. tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1);
  9791. const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6);
  9792. sumi1 = __lasx_xvadd_w(p_1, sumi1);
  9793. sumi2 = __lasx_xvadd_w(p_2, sumi2);
  9794. }
  9795. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  9796. __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
  9797. }
  9798. *s = hsum_float_8(accum);
  9799. #else
  9800. float sumf = 0;
  9801. for (int ibl = 0; ibl < nb; ++ibl) {
  9802. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  9803. uint16_t h = x[ibl].scales_h;
  9804. const uint8_t * qs = x[ibl].qs;
  9805. const int8_t * q8 = y[ibl].qs;
  9806. for (int ib = 0; ib < QK_K/32; ib += 2) {
  9807. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  9808. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  9809. h >>= 4;
  9810. const float d1 = d4d8*(ls1 - 32);
  9811. const float d2 = d4d8*(ls2 - 32);
  9812. int sumi1 = 0, sumi2 = 0;
  9813. for (int j = 0; j < 16; ++j) {
  9814. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  9815. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  9816. }
  9817. sumf += d1 * (sumi1 + sumi2);
  9818. qs += 16;
  9819. q8 += 32;
  9820. sumi1 = sumi2 = 0;
  9821. for (int j = 0; j < 16; ++j) {
  9822. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  9823. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  9824. }
  9825. sumf += d2 * (sumi1 + sumi2);
  9826. qs += 16;
  9827. q8 += 32;
  9828. }
  9829. }
  9830. *s = sumf;
  9831. #endif
  9832. }
  9833. // ================================ IQ2 quantization =============================================
  9834. typedef struct {
  9835. uint64_t * grid;
  9836. int * map;
  9837. uint16_t * neighbours;
  9838. } iq2_entry_t;
  9839. static iq2_entry_t iq2_data[4] = {
  9840. {NULL, NULL, NULL},
  9841. {NULL, NULL, NULL},
  9842. {NULL, NULL, NULL},
  9843. {NULL, NULL, NULL},
  9844. };
  9845. static inline int iq2_data_index(enum ggml_type type) {
  9846. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9847. return type == GGML_TYPE_IQ2_XXS ? 0 :
  9848. type == GGML_TYPE_IQ2_XS ? 1 :
  9849. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3;
  9850. }
  9851. static inline int iq2_grid_size(enum ggml_type type) {
  9852. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  9853. return type == GGML_TYPE_IQ2_XXS ? 256 :
  9854. type == GGML_TYPE_IQ2_XS ? 512 :
  9855. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024;
  9856. }
  9857. static int iq2_compare_func(const void * left, const void * right) {
  9858. const int * l = (const int *)left;
  9859. const int * r = (const int *)right;
  9860. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  9861. }
  9862. void iq2xs_init_impl(enum ggml_type type) {
  9863. const int gindex = iq2_data_index(type);
  9864. const int grid_size = iq2_grid_size(type);
  9865. if (iq2_data[gindex].grid) {
  9866. return;
  9867. }
  9868. static const uint16_t kgrid_2bit_256[256] = {
  9869. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  9870. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  9871. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  9872. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  9873. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  9874. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  9875. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  9876. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  9877. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  9878. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  9879. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  9880. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  9881. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  9882. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  9883. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  9884. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  9885. };
  9886. static const uint16_t kgrid_2bit_512[512] = {
  9887. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  9888. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  9889. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  9890. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  9891. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  9892. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  9893. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  9894. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  9895. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  9896. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  9897. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  9898. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  9899. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  9900. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  9901. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  9902. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  9903. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  9904. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  9905. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  9906. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  9907. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  9908. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  9909. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  9910. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  9911. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  9912. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  9913. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  9914. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  9915. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  9916. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  9917. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  9918. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  9919. };
  9920. static const uint16_t kgrid_1bit_2048[NGRID_IQ1S] = {
  9921. 0, 2, 5, 8, 10, 17, 21, 32, 34, 40, 42, 69, 81, 84, 86, 101,
  9922. 128, 130, 136, 138, 149, 160, 162, 168, 170, 260, 261, 273, 276, 278, 281, 282,
  9923. 293, 321, 326, 329, 338, 341, 346, 353, 356, 358, 360, 389, 401, 404, 406, 421,
  9924. 512, 514, 520, 522, 533, 544, 546, 552, 554, 581, 593, 601, 612, 617, 640, 642,
  9925. 648, 650, 657, 661, 665, 672, 674, 680, 682, 1041, 1044, 1046, 1061, 1089, 1097, 1109,
  9926. 1114, 1124, 1125, 1169, 1177, 1189, 1281, 1284, 1285, 1286, 1301, 1304, 1306, 1321, 1344, 1349,
  9927. 1354, 1360, 1361, 1364, 1365, 1366, 1369, 1376, 1378, 1381, 1384, 1386, 1409, 1425, 1429, 1432,
  9928. 1434, 1441, 1444, 1445, 1446, 1449, 1556, 1561, 1601, 1604, 1616, 1618, 1621, 1624, 1632, 1633,
  9929. 1638, 1641, 1669, 1681, 1684, 1689, 2048, 2050, 2056, 2058, 2069, 2080, 2082, 2088, 2090, 2117,
  9930. 2129, 2134, 2149, 2176, 2178, 2184, 2186, 2197, 2208, 2210, 2216, 2218, 2309, 2321, 2324, 2329,
  9931. 2340, 2341, 2369, 2384, 2385, 2389, 2401, 2404, 2409, 2449, 2452, 2454, 2457, 2469, 2560, 2562,
  9932. 2568, 2570, 2581, 2592, 2594, 2600, 2602, 2629, 2641, 2649, 2657, 2661, 2688, 2690, 2693, 2696,
  9933. 2698, 2709, 2720, 2722, 2728, 2730, 4112, 4113, 4116, 4121, 4132, 4133, 4161, 4164, 4176, 4181,
  9934. 4184, 4193, 4196, 4197, 4201, 4241, 4244, 4246, 4257, 4261, 4353, 4356, 4358, 4361, 4368, 4370,
  9935. 4373, 4376, 4385, 4388, 4393, 4421, 4426, 4432, 4433, 4434, 4436, 4437, 4438, 4441, 4448, 4453,
  9936. 4484, 4498, 4501, 4513, 4516, 4625, 4628, 4630, 4645, 4672, 4678, 4681, 4690, 4693, 4696, 4698,
  9937. 4708, 4710, 4741, 4753, 4756, 4758, 4773, 5121, 5126, 5129, 5140, 5141, 5144, 5145, 5153, 5158,
  9938. 5185, 5189, 5190, 5192, 5194, 5201, 5204, 5205, 5206, 5209, 5218, 5221, 5224, 5252, 5257, 5264,
  9939. 5268, 5269, 5272, 5273, 5274, 5281, 5284, 5285, 5289, 5378, 5381, 5386, 5393, 5396, 5397, 5398,
  9940. 5401, 5408, 5410, 5413, 5416, 5418, 5441, 5444, 5445, 5446, 5457, 5458, 5460, 5461, 5462, 5465,
  9941. 5466, 5473, 5476, 5477, 5478, 5481, 5504, 5506, 5508, 5509, 5512, 5514, 5520, 5521, 5524, 5525,
  9942. 5526, 5529, 5530, 5536, 5538, 5541, 5633, 5636, 5637, 5638, 5653, 5654, 5656, 5658, 5665, 5670,
  9943. 5696, 5698, 5700, 5701, 5704, 5706, 5713, 5717, 5718, 5720, 5721, 5729, 5732, 5733, 5736, 5737,
  9944. 5738, 5766, 5770, 5778, 5781, 5796, 5801, 6161, 6166, 6181, 6209, 6212, 6214, 6217, 6224, 6229,
  9945. 6232, 6234, 6240, 6241, 6244, 6246, 6249, 6277, 6289, 6292, 6309, 6416, 6418, 6421, 6426, 6433,
  9946. 6437, 6466, 6468, 6469, 6472, 6481, 6484, 6485, 6486, 6489, 6490, 6496, 6501, 6506, 6537, 6545,
  9947. 6546, 6549, 6552, 6561, 6566, 6569, 6665, 6678, 6692, 6694, 6724, 6726, 6729, 6736, 6738, 6741,
  9948. 6744, 6753, 6758, 6761, 6789, 6801, 6806, 6810, 8192, 8194, 8200, 8202, 8213, 8224, 8226, 8229,
  9949. 8232, 8234, 8261, 8273, 8281, 8289, 8293, 8320, 8322, 8328, 8330, 8341, 8352, 8354, 8357, 8360,
  9950. 8362, 8453, 8465, 8468, 8473, 8485, 8514, 8516, 8521, 8533, 8536, 8538, 8545, 8548, 8549, 8550,
  9951. 8581, 8592, 8598, 8601, 8613, 8705, 8712, 8714, 8721, 8725, 8736, 8738, 8744, 8746, 8773, 8785,
  9952. 8790, 8793, 8805, 8833, 8840, 8842, 8849, 8853, 8864, 8866, 8872, 8874, 9221, 9236, 9238, 9241,
  9953. 9253, 9284, 9285, 9286, 9289, 9298, 9301, 9304, 9306, 9318, 9349, 9361, 9364, 9369, 9377, 9381,
  9954. 9481, 9493, 9505, 9513, 9536, 9541, 9544, 9553, 9556, 9557, 9561, 9570, 9573, 9576, 9609, 9616,
  9955. 9620, 9621, 9624, 9626, 9633, 9636, 9638, 9641, 9733, 9744, 9746, 9753, 9765, 9793, 9801, 9813,
  9956. 9824, 9825, 9833, 9860, 9862, 9872, 9882, 10240, 10242, 10248, 10250, 10261, 10272, 10274, 10280, 10282,
  9957. 10309, 10321, 10324, 10341, 10368, 10370, 10376, 10378, 10400, 10402, 10408, 10410, 10505, 10513, 10516, 10521,
  9958. 10533, 10566, 10569, 10578, 10581, 10593, 10596, 10598, 10601, 10629, 10640, 10646, 10649, 10660, 10661, 10752,
  9959. 10754, 10760, 10762, 10784, 10786, 10792, 10794, 10821, 10833, 10838, 10841, 10853, 10880, 10882, 10888, 10890,
  9960. 10901, 10912, 10914, 10920, 10922, 16389, 16401, 16406, 16421, 16457, 16466, 16469, 16472, 16474, 16481, 16484,
  9961. 16486, 16532, 16537, 16545, 16550, 16640, 16641, 16644, 16646, 16649, 16658, 16661, 16662, 16664, 16666, 16673,
  9962. 16678, 16681, 16709, 16712, 16714, 16721, 16724, 16725, 16726, 16729, 16730, 16741, 16744, 16746, 16769, 16772,
  9963. 16774, 16784, 16786, 16789, 16800, 16801, 16802, 16901, 16913, 16916, 16918, 16933, 16961, 16978, 16981, 16986,
  9964. 16996, 17001, 17033, 17044, 17061, 17409, 17429, 17433, 17449, 17477, 17480, 17482, 17489, 17492, 17493, 17494,
  9965. 17505, 17506, 17509, 17512, 17514, 17537, 17542, 17545, 17552, 17554, 17557, 17568, 17569, 17577, 17665, 17666,
  9966. 17669, 17674, 17681, 17684, 17685, 17686, 17689, 17696, 17701, 17706, 17729, 17732, 17733, 17734, 17737, 17744,
  9967. 17745, 17748, 17749, 17750, 17752, 17753, 17761, 17764, 17765, 17766, 17769, 17794, 17796, 17797, 17800, 17809,
  9968. 17812, 17813, 17814, 17817, 17818, 17829, 17832, 17834, 17921, 17925, 17929, 17940, 17941, 17944, 17946, 17953,
  9969. 17956, 17961, 17984, 17986, 17989, 17992, 18000, 18001, 18002, 18005, 18006, 18009, 18018, 18021, 18024, 18049,
  9970. 18053, 18058, 18068, 18069, 18081, 18084, 18086, 18437, 18449, 18453, 18458, 18469, 18498, 18505, 18512, 18517,
  9971. 18520, 18529, 18532, 18534, 18537, 18565, 18577, 18580, 18582, 18585, 18597, 18689, 18693, 18694, 18698, 18704,
  9972. 18708, 18709, 18712, 18721, 18724, 18726, 18752, 18757, 18762, 18769, 18770, 18772, 18773, 18774, 18777, 18784,
  9973. 18786, 18789, 18790, 18794, 18822, 18825, 18834, 18837, 18838, 18840, 18849, 18852, 18854, 18857, 18966, 19012,
  9974. 19014, 19017, 19029, 19032, 19034, 19044, 19049, 19092, 19109, 20481, 20484, 20485, 20486, 20489, 20498, 20501,
  9975. 20506, 20513, 20516, 20521, 20544, 20549, 20552, 20561, 20564, 20565, 20566, 20569, 20581, 20584, 20614, 20617,
  9976. 20629, 20632, 20640, 20641, 20646, 20649, 20741, 20744, 20745, 20746, 20753, 20756, 20757, 20758, 20760, 20761,
  9977. 20768, 20773, 20774, 20776, 20778, 20801, 20804, 20805, 20806, 20809, 20816, 20817, 20818, 20820, 20821, 20822,
  9978. 20824, 20825, 20826, 20833, 20836, 20837, 20838, 20841, 20866, 20869, 20881, 20884, 20885, 20886, 20889, 20896,
  9979. 20901, 20906, 20993, 20998, 21010, 21013, 21018, 21025, 21028, 21058, 21061, 21066, 21073, 21076, 21077, 21078,
  9980. 21081, 21090, 21093, 21125, 21136, 21138, 21141, 21145, 21146, 21156, 21508, 21509, 21521, 21524, 21525, 21526,
  9981. 21528, 21529, 21537, 21541, 21544, 21546, 21569, 21572, 21573, 21574, 21577, 21578, 21584, 21585, 21588, 21589,
  9982. 21590, 21592, 21593, 21594, 21601, 21602, 21604, 21605, 21606, 21609, 21632, 21640, 21642, 21649, 21652, 21653,
  9983. 21654, 21657, 21665, 21668, 21669, 21674, 21761, 21762, 21764, 21765, 21766, 21769, 21776, 21777, 21778, 21780,
  9984. 21781, 21782, 21785, 21786, 21793, 21796, 21797, 21798, 21801, 21824, 21825, 21826, 21828, 21829, 21830, 21832,
  9985. 21833, 21840, 21841, 21842, 21844, 21845, 21846, 21848, 21849, 21850, 21856, 21857, 21860, 21861, 21862, 21864,
  9986. 21865, 21866, 21889, 21892, 21893, 21897, 21898, 21904, 21905, 21908, 21909, 21910, 21912, 21913, 21921, 21924,
  9987. 21925, 21926, 21929, 22016, 22017, 22018, 22020, 22022, 22024, 22025, 22033, 22036, 22037, 22040, 22041, 22048,
  9988. 22049, 22050, 22052, 22053, 22054, 22056, 22057, 22081, 22085, 22086, 22088, 22089, 22090, 22096, 22097, 22098,
  9989. 22100, 22101, 22102, 22104, 22105, 22106, 22113, 22116, 22117, 22121, 22146, 22149, 22150, 22152, 22153, 22154,
  9990. 22161, 22165, 22170, 22178, 22181, 22182, 22184, 22185, 22532, 22533, 22534, 22537, 22544, 22549, 22552, 22561,
  9991. 22570, 22597, 22600, 22602, 22609, 22612, 22613, 22614, 22616, 22617, 22624, 22626, 22628, 22629, 22658, 22665,
  9992. 22672, 22674, 22677, 22680, 22689, 22697, 22785, 22786, 22789, 22794, 22801, 22804, 22805, 22806, 22809, 22821,
  9993. 22849, 22852, 22853, 22854, 22857, 22864, 22865, 22866, 22868, 22869, 22870, 22872, 22873, 22874, 22881, 22884,
  9994. 22885, 22886, 22889, 22913, 22917, 22921, 22929, 22932, 22933, 22934, 22936, 22937, 22949, 23044, 23048, 23061,
  9995. 23066, 23072, 23077, 23078, 23081, 23109, 23112, 23113, 23121, 23125, 23126, 23128, 23129, 23138, 23141, 23144,
  9996. 23146, 23169, 23178, 23186, 23189, 23190, 23192, 23194, 23201, 24581, 24596, 24598, 24601, 24613, 24644, 24656,
  9997. 24661, 24662, 24664, 24666, 24673, 24676, 24678, 24681, 24705, 24726, 24741, 24833, 24836, 24838, 24841, 24850,
  9998. 24853, 24865, 24866, 24870, 24873, 24901, 24905, 24913, 24917, 24918, 24921, 24933, 24934, 24938, 24964, 24970,
  9999. 24978, 24981, 24993, 24998, 25001, 25105, 25110, 25113, 25152, 25153, 25158, 25173, 25174, 25176, 25184, 25221,
  10000. 25233, 25238, 25253, 25617, 25618, 25621, 25622, 25626, 25633, 25638, 25641, 25664, 25666, 25669, 25672, 25674,
  10001. 25681, 25684, 25685, 25686, 25689, 25690, 25696, 25698, 25701, 25732, 25733, 25737, 25744, 25746, 25748, 25749,
  10002. 25750, 25752, 25754, 25761, 25764, 25769, 25861, 25864, 25866, 25873, 25877, 25878, 25881, 25924, 25925, 25926,
  10003. 25929, 25936, 25937, 25940, 25941, 25942, 25945, 25953, 25956, 25957, 25958, 25961, 25990, 25993, 25994, 26001,
  10004. 26005, 26006, 26009, 26010, 26018, 26021, 26022, 26024, 26114, 26121, 26133, 26144, 26150, 26152, 26153, 26176,
  10005. 26181, 26184, 26186, 26193, 26196, 26197, 26198, 26200, 26202, 26208, 26213, 26216, 26240, 26242, 26245, 26250,
  10006. 26260, 26262, 26264, 26265, 26272, 26276, 26278, 26282, 26646, 26649, 26661, 26689, 26706, 26709, 26714, 26721,
  10007. 26729, 26757, 26769, 26776, 26790, 26881, 26884, 26896, 26901, 26913, 26916, 26918, 26921, 26944, 26945, 26949,
  10008. 26950, 26952, 26961, 26964, 26965, 26966, 26969, 26976, 26981, 26986, 27010, 27012, 27018, 27029, 27041, 27044,
  10009. 27045, 27049, 27153, 27158, 27160, 27201, 27204, 27209, 27216, 27221, 27224, 27226, 27236, 27237, 27241, 27270,
  10010. 27284, 27288, 27290, 27302, 32768, 32770, 32776, 32778, 32800, 32802, 32808, 32810, 32837, 32848, 32849, 32852,
  10011. 32854, 32857, 32869, 32896, 32898, 32904, 32906, 32917, 32928, 32930, 32936, 32938, 33029, 33041, 33044, 33046,
  10012. 33049, 33061, 33089, 33092, 33097, 33104, 33106, 33109, 33110, 33112, 33113, 33124, 33126, 33129, 33157, 33161,
  10013. 33172, 33174, 33177, 33189, 33280, 33282, 33288, 33290, 33301, 33312, 33314, 33320, 33322, 33361, 33364, 33369,
  10014. 33381, 33408, 33410, 33416, 33418, 33429, 33440, 33442, 33448, 33450, 33812, 33817, 33857, 33860, 33873, 33877,
  10015. 33882, 33889, 33892, 33897, 33940, 33945, 34049, 34057, 34066, 34069, 34074, 34086, 34089, 34112, 34113, 34117,
  10016. 34120, 34129, 34132, 34133, 34134, 34137, 34138, 34149, 34150, 34152, 34154, 34177, 34180, 34182, 34185, 34192,
  10017. 34194, 34197, 34200, 34214, 34321, 34326, 34329, 34341, 34369, 34372, 34377, 34378, 34384, 34389, 34393, 34394,
  10018. 34401, 34406, 34410, 34437, 34449, 34458, 34468, 34816, 34818, 34824, 34826, 34837, 34848, 34850, 34856, 34858,
  10019. 34881, 34885, 34897, 34900, 34905, 34917, 34921, 34944, 34946, 34952, 34954, 34965, 34976, 34978, 34984, 34986,
  10020. 35077, 35078, 35089, 35092, 35094, 35109, 35137, 35140, 35142, 35145, 35152, 35154, 35157, 35162, 35169, 35172,
  10021. 35205, 35222, 35225, 35237, 35328, 35330, 35336, 35338, 35349, 35360, 35362, 35368, 35370, 35397, 35409, 35412,
  10022. 35414, 35456, 35458, 35464, 35466, 35477, 35488, 35490, 35496, 35498, 36869, 36881, 36886, 36888, 36889, 36901,
  10023. 36929, 36934, 36937, 36949, 36952, 36954, 36969, 36970, 36997, 37009, 37012, 37014, 37017, 37029, 37121, 37124,
  10024. 37126, 37129, 37136, 37141, 37144, 37146, 37153, 37156, 37158, 37161, 37184, 37189, 37200, 37201, 37204, 37205,
  10025. 37206, 37209, 37218, 37221, 37252, 37254, 37266, 37269, 37272, 37281, 37284, 37286, 37289, 37381, 37393, 37396,
  10026. 37401, 37413, 37444, 37446, 37449, 37456, 37458, 37461, 37464, 37478, 37481, 37509, 37524, 37526, 37545, 37889,
  10027. 37892, 37894, 37904, 37909, 37912, 37926, 37952, 37962, 37969, 37972, 37973, 37974, 37976, 37977, 37984, 37985,
  10028. 37986, 37989, 38020, 38022, 38034, 38036, 38037, 38040, 38049, 38057, 38144, 38149, 38152, 38154, 38160, 38161,
  10029. 38164, 38165, 38166, 38169, 38177, 38181, 38185, 38186, 38209, 38212, 38213, 38214, 38217, 38224, 38225, 38226,
  10030. 38228, 38229, 38230, 38232, 38233, 38234, 38241, 38244, 38245, 38246, 38249, 38273, 38277, 38280, 38289, 38290,
  10031. 38292, 38293, 38294, 38297, 38298, 38304, 38306, 38309, 38312, 38314, 38401, 38404, 38416, 38421, 38425, 38432,
  10032. 38438, 38441, 38469, 38472, 38473, 38481, 38482, 38485, 38486, 38489, 38501, 38504, 38530, 38532, 38537, 38538,
  10033. 38546, 38548, 38549, 38564, 38566, 38569, 38917, 38934, 38937, 38949, 38977, 38982, 38992, 38994, 38997, 38998,
  10034. 39002, 39012, 39013, 39045, 39057, 39062, 39065, 39077, 39172, 39174, 39177, 39184, 39186, 39189, 39192, 39194,
  10035. 39200, 39201, 39204, 39206, 39232, 39234, 39237, 39240, 39242, 39249, 39252, 39253, 39254, 39257, 39266, 39269,
  10036. 39270, 39274, 39297, 39300, 39312, 39314, 39317, 39322, 39329, 39334, 39429, 39445, 39461, 39492, 39494, 39497,
  10037. 39504, 39509, 39512, 39521, 39557, 39569, 39572, 39573, 39574, 40960, 40962, 40968, 40970, 40981, 40992, 40994,
  10038. 41000, 41002, 41029, 41041, 41044, 41046, 41049, 41088, 41090, 41096, 41098, 41109, 41120, 41122, 41128, 41130,
  10039. 41221, 41225, 41233, 41236, 41238, 41241, 41242, 41286, 41289, 41297, 41301, 41304, 41306, 41313, 41316, 41349,
  10040. 41360, 41362, 41366, 41369, 41474, 41480, 41482, 41488, 41497, 41506, 41512, 41514, 41541, 41553, 41558, 41561,
  10041. 41573, 41600, 41602, 41608, 41610, 41621, 41632, 41634, 41640, 41642, 42009, 42021, 42049, 42052, 42064, 42068,
  10042. 42069, 42072, 42074, 42081, 42085, 42086, 42088, 42089, 42117, 42246, 42249, 42256, 42258, 42261, 42264, 42278,
  10043. 42281, 42306, 42309, 42321, 42324, 42325, 42326, 42329, 42341, 42346, 42369, 42372, 42373, 42374, 42377, 42386,
  10044. 42389, 42392, 42501, 42513, 42518, 42522, 42529, 42533, 42564, 42566, 42570, 42578, 42581, 42582, 42584, 42592,
  10045. 42594, 42630, 42640, 42645, 42646, 42649, 42657, 42660, 42662, 43008, 43010, 43016, 43018, 43040, 43042, 43048,
  10046. 43050, 43089, 43092, 43094, 43097, 43136, 43138, 43144, 43146, 43157, 43168, 43170, 43176, 43178, 43269, 43284,
  10047. 43289, 43297, 43301, 43329, 43344, 43349, 43354, 43361, 43366, 43369, 43408, 43414, 43520, 43522, 43528, 43530,
  10048. 43552, 43554, 43560, 43562, 43601, 43604, 43606, 43648, 43650, 43656, 43658, 43669, 43680, 43682, 43688, 43690,
  10049. };
  10050. static const uint16_t kgrid_2bit_1024[1024] = {
  10051. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  10052. 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160,
  10053. 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328,
  10054. 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514,
  10055. 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660,
  10056. 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093,
  10057. 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176,
  10058. 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348,
  10059. 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537,
  10060. 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050,
  10061. 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133,
  10062. 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373,
  10063. 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100,
  10064. 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182,
  10065. 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357,
  10066. 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434,
  10067. 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641,
  10068. 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145,
  10069. 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253,
  10070. 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442,
  10071. 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700,
  10072. 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225,
  10073. 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562,
  10074. 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257,
  10075. 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512,
  10076. 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840,
  10077. 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297,
  10078. 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600,
  10079. 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500,
  10080. 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410,
  10081. 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513,
  10082. 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674,
  10083. 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785,
  10084. 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025,
  10085. 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476,
  10086. 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665,
  10087. 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760,
  10088. 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085,
  10089. 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528,
  10090. 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948,
  10091. 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548,
  10092. 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740,
  10093. 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865,
  10094. 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510,
  10095. 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636,
  10096. 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054,
  10097. 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800,
  10098. 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645,
  10099. 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912,
  10100. 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680,
  10101. 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880,
  10102. 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850,
  10103. 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060,
  10104. 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345,
  10105. 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873,
  10106. 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176,
  10107. 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076,
  10108. 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928,
  10109. 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200,
  10110. 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968,
  10111. 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976,
  10112. 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130,
  10113. 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121,
  10114. 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690,
  10115. };
  10116. const int kmap_size = 43692;
  10117. //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  10118. const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2;
  10119. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  10120. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 :
  10121. type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024;
  10122. uint64_t * kgrid_q2xs;
  10123. int * kmap_q2xs;
  10124. uint16_t * kneighbors_q2xs;
  10125. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  10126. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  10127. for (int k = 0; k < grid_size; ++k) {
  10128. int8_t * pos = (int8_t *)(the_grid + k);
  10129. for (int i = 0; i < 8; ++i) {
  10130. int l = (kgrid[k] >> 2*i) & 0x3;
  10131. pos[i] = 2*l + 1;
  10132. }
  10133. }
  10134. kgrid_q2xs = the_grid;
  10135. iq2_data[gindex].grid = the_grid;
  10136. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  10137. iq2_data[gindex].map = kmap_q2xs;
  10138. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  10139. uint64_t aux64;
  10140. uint8_t * aux8 = (uint8_t *)&aux64;
  10141. for (int i = 0; i < grid_size; ++i) {
  10142. aux64 = kgrid_q2xs[i];
  10143. uint16_t index = 0;
  10144. for (int k=0; k<8; ++k) {
  10145. uint16_t q = (aux8[k] - 1)/2;
  10146. index |= (q << 2*k);
  10147. }
  10148. kmap_q2xs[index] = i;
  10149. }
  10150. int8_t pos[8];
  10151. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  10152. int num_neighbors = 0, num_not_in_map = 0;
  10153. for (int i = 0; i < kmap_size; ++i) {
  10154. if (kmap_q2xs[i] >= 0) continue;
  10155. ++num_not_in_map;
  10156. for (int k = 0; k < 8; ++k) {
  10157. int l = (i >> 2*k) & 0x3;
  10158. pos[k] = 2*l + 1;
  10159. }
  10160. for (int j = 0; j < grid_size; ++j) {
  10161. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  10162. int d2 = 0;
  10163. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10164. dist2[2*j+0] = d2;
  10165. dist2[2*j+1] = j;
  10166. }
  10167. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  10168. int n = 0; int d2 = dist2[0];
  10169. int nhave = 1;
  10170. for (int j = 0; j < grid_size; ++j) {
  10171. if (dist2[2*j] > d2) {
  10172. if (nhave == nwant) break;
  10173. d2 = dist2[2*j];
  10174. ++nhave;
  10175. }
  10176. ++n;
  10177. }
  10178. num_neighbors += n;
  10179. }
  10180. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  10181. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  10182. iq2_data[gindex].neighbours = kneighbors_q2xs;
  10183. int counter = 0;
  10184. for (int i = 0; i < kmap_size; ++i) {
  10185. if (kmap_q2xs[i] >= 0) continue;
  10186. for (int k = 0; k < 8; ++k) {
  10187. int l = (i >> 2*k) & 0x3;
  10188. pos[k] = 2*l + 1;
  10189. }
  10190. for (int j = 0; j < grid_size; ++j) {
  10191. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  10192. int d2 = 0;
  10193. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10194. dist2[2*j+0] = d2;
  10195. dist2[2*j+1] = j;
  10196. }
  10197. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  10198. kmap_q2xs[i] = -(counter + 1);
  10199. int d2 = dist2[0];
  10200. uint16_t * start = &kneighbors_q2xs[counter++];
  10201. int n = 0, nhave = 1;
  10202. for (int j = 0; j < grid_size; ++j) {
  10203. if (dist2[2*j] > d2) {
  10204. if (nhave == nwant) break;
  10205. d2 = dist2[2*j];
  10206. ++nhave;
  10207. }
  10208. kneighbors_q2xs[counter++] = dist2[2*j+1];
  10209. ++n;
  10210. }
  10211. *start = n;
  10212. }
  10213. free(dist2);
  10214. }
  10215. void iq2xs_free_impl(enum ggml_type type) {
  10216. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S);
  10217. const int gindex = iq2_data_index(type);
  10218. if (iq2_data[gindex].grid) {
  10219. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  10220. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  10221. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  10222. }
  10223. }
  10224. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  10225. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  10226. int num_neighbors = neighbours[0];
  10227. GGML_ASSERT(num_neighbors > 0);
  10228. float best_d2 = FLT_MAX;
  10229. int grid_index = -1;
  10230. for (int j = 1; j <= num_neighbors; ++j) {
  10231. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10232. float d2 = 0;
  10233. for (int i = 0; i < 8; ++i) {
  10234. float q = pg[i];
  10235. float diff = scale*q - xval[i];
  10236. d2 += weight[i]*diff*diff;
  10237. }
  10238. if (d2 < best_d2) {
  10239. best_d2 = d2; grid_index = neighbours[j];
  10240. }
  10241. }
  10242. GGML_ASSERT(grid_index >= 0);
  10243. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10244. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  10245. return grid_index;
  10246. }
  10247. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  10248. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  10249. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10250. const int * kmap_q2xs = iq2_data[gindex].map;
  10251. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10252. GGML_ASSERT(quant_weights && "missing quantization weights");
  10253. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10254. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10255. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10256. GGML_ASSERT(n%QK_K == 0);
  10257. const int kMaxQ = 3;
  10258. const int64_t nbl = n/QK_K;
  10259. block_iq2_xxs * y = vy;
  10260. float scales[QK_K/32];
  10261. float weight[32];
  10262. float xval[32];
  10263. int8_t L[32];
  10264. int8_t Laux[32];
  10265. float waux[32];
  10266. uint8_t block_signs[4];
  10267. uint32_t q2[2*(QK_K/32)];
  10268. for (int ibl = 0; ibl < nbl; ++ibl) {
  10269. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10270. memset(q2, 0, QK_K/4);
  10271. float max_scale = 0;
  10272. const float * xbl = x + QK_K*ibl;
  10273. float sumx2 = 0;
  10274. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10275. float sigma2 = sumx2/QK_K;
  10276. for (int ib = 0; ib < QK_K/32; ++ib) {
  10277. const float * xb = xbl + 32*ib;
  10278. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  10279. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10280. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  10281. for (int k = 0; k < 4; ++k) {
  10282. int nflip = 0;
  10283. uint8_t s = 0;
  10284. for (int i = 0; i < 8; ++i) {
  10285. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10286. else {
  10287. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10288. }
  10289. }
  10290. if (nflip%2) {
  10291. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10292. for (int i = 1; i < 8; ++i) {
  10293. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10294. if (ax < min) {
  10295. min = ax; imin = i;
  10296. }
  10297. }
  10298. xval[8*k+imin] = -xval[8*k+imin];
  10299. s ^= (1 << imin);
  10300. }
  10301. block_signs[k] = s & 127;
  10302. }
  10303. float max = xval[0];
  10304. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  10305. if (max < GROUP_MAX_EPS) {
  10306. scales[ib] = 0;
  10307. memset(L, 0, 32);
  10308. continue;
  10309. }
  10310. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  10311. float eff_max = scale*kMaxQ;
  10312. float best = 0;
  10313. for (int is = -6; is <= 6; ++is) {
  10314. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  10315. float this_scale = 1/id;
  10316. for (int k = 0; k < 4; ++k) {
  10317. for (int i = 0; i < 8; ++i) {
  10318. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10319. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10320. }
  10321. uint16_t u = 0;
  10322. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  10323. int grid_index = kmap_q2xs[u];
  10324. if (grid_index < 0) {
  10325. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10326. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  10327. }
  10328. }
  10329. float sumqx = 0, sumq2 = 0;
  10330. for (int i = 0; i < 32; ++i) {
  10331. float w = weight[i];
  10332. float q = 2*Laux[i] + 1;
  10333. sumqx += w*xval[i]*q;
  10334. sumq2 += w*q*q;
  10335. }
  10336. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10337. scale = sumqx/sumq2; best = scale*sumqx;
  10338. memcpy(L, Laux, 32);
  10339. }
  10340. }
  10341. if (scale > 0) {
  10342. float id = 1/scale;
  10343. for (int k = 0; k < 4; ++k) {
  10344. uint16_t u = 0;
  10345. for (int i = 0; i < 8; ++i) {
  10346. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10347. l = MAX(0, MIN(kMaxQ-1, l));
  10348. u |= (l << 2*i);
  10349. }
  10350. int grid_index = kmap_q2xs[u];
  10351. if (grid_index < 0) {
  10352. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10353. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  10354. }
  10355. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  10356. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  10357. }
  10358. float sumqx = 0, sumq2 = 0;
  10359. for (int i = 0; i < 32; ++i) {
  10360. float w = weight[i];
  10361. float q = 2*L[i] + 1;
  10362. sumqx += w*xval[i]*q;
  10363. sumq2 += w*q*q;
  10364. }
  10365. if (sumq2 > 0) scale = sumqx/sumq2;
  10366. }
  10367. if (scale < 0) {
  10368. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10369. // and correspondingly flip quant signs.
  10370. scale = -scale;
  10371. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10372. }
  10373. for (int k = 0; k < 4; ++k) {
  10374. uint16_t u = 0;
  10375. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  10376. int grid_index = kmap_q2xs[u];
  10377. if (grid_index < 0) {
  10378. printf("Oops: found point %u not on grid:", u);
  10379. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  10380. printf("\n");
  10381. GGML_ASSERT(false);
  10382. }
  10383. q2[2*ib+0] |= ((uint32_t) grid_index << 8*k);
  10384. q2[2*ib+1] |= (block_signs[k] << 7*k);
  10385. }
  10386. GGML_ASSERT(scale >= 0);
  10387. scales[ib] = scale;
  10388. max_scale = MAX(max_scale, scale);
  10389. }
  10390. if (!max_scale) {
  10391. memset(y[ibl].qs, 0, QK_K/4);
  10392. continue;
  10393. }
  10394. float d = max_scale/31;
  10395. y[ibl].d = GGML_FP32_TO_FP16(d);
  10396. float id = 1/d;
  10397. for (int ib = 0; ib < QK_K/32; ++ib) {
  10398. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10399. l = MAX(0, MIN(15, l));
  10400. q2[2*ib+1] |= ((uint32_t)l << 28);
  10401. }
  10402. memcpy(y[ibl].qs, q2, QK_K/4);
  10403. }
  10404. }
  10405. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  10406. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  10407. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  10408. const int * kmap_q2xs = iq2_data[gindex].map;
  10409. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  10410. GGML_ASSERT(quant_weights && "missing quantization weights");
  10411. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  10412. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  10413. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  10414. GGML_ASSERT(n%QK_K == 0);
  10415. const int kMaxQ = 3;
  10416. const int64_t nbl = n/QK_K;
  10417. block_iq2_xs * y = vy;
  10418. float scales[QK_K/16];
  10419. float weight[16];
  10420. float xval[16];
  10421. int8_t L[16];
  10422. int8_t Laux[16];
  10423. float waux[16];
  10424. bool is_on_grid[2];
  10425. bool is_on_grid_aux[2];
  10426. uint8_t block_signs[2];
  10427. uint16_t q2[2*(QK_K/16)];
  10428. for (int ibl = 0; ibl < nbl; ++ibl) {
  10429. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  10430. memset(q2, 0, QK_K/4);
  10431. memset(y[ibl].scales, 0, QK_K/32);
  10432. float max_scale = 0;
  10433. const float * xbl = x + QK_K*ibl;
  10434. float sumx2 = 0;
  10435. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10436. float sigma2 = sumx2/QK_K;
  10437. for (int ib = 0; ib < QK_K/16; ++ib) {
  10438. const float * xb = xbl + 16*ib;
  10439. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  10440. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10441. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  10442. for (int k = 0; k < 2; ++k) {
  10443. int nflip = 0;
  10444. uint8_t s = 0;
  10445. for (int i = 0; i < 8; ++i) {
  10446. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10447. else {
  10448. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10449. }
  10450. }
  10451. if (nflip%2) {
  10452. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10453. for (int i = 1; i < 8; ++i) {
  10454. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10455. if (ax < min) {
  10456. min = ax; imin = i;
  10457. }
  10458. }
  10459. xval[8*k+imin] = -xval[8*k+imin];
  10460. s ^= (1 << imin);
  10461. }
  10462. block_signs[k] = s & 127;
  10463. }
  10464. float max = xval[0];
  10465. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  10466. if (max < GROUP_MAX_EPS) {
  10467. scales[ib] = 0;
  10468. memset(L, 0, 16);
  10469. continue;
  10470. }
  10471. float best = 0;
  10472. float scale = max/(2*kMaxQ-1);
  10473. is_on_grid[0] = is_on_grid[1] = true;
  10474. for (int is = -9; is <= 9; ++is) {
  10475. float id = (2*kMaxQ-1+is*0.1f)/max;
  10476. float this_scale = 1/id;
  10477. for (int k = 0; k < 2; ++k) {
  10478. for (int i = 0; i < 8; ++i) {
  10479. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10480. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10481. }
  10482. uint16_t u = 0;
  10483. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  10484. int grid_index = kmap_q2xs[u];
  10485. is_on_grid_aux[k] = true;
  10486. if (grid_index < 0) {
  10487. is_on_grid_aux[k] = false;
  10488. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10489. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  10490. }
  10491. }
  10492. float sumqx = 0, sumq2 = 0;
  10493. for (int i = 0; i < 16; ++i) {
  10494. float w = weight[i];
  10495. float q = 2*Laux[i] + 1;
  10496. sumqx += w*xval[i]*q;
  10497. sumq2 += w*q*q;
  10498. }
  10499. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10500. scale = sumqx/sumq2; best = scale*sumqx;
  10501. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  10502. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10503. }
  10504. }
  10505. int n_not_ongrid = 0;
  10506. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10507. if (n_not_ongrid > 0 && scale > 0) {
  10508. float id = 1/scale;
  10509. for (int k = 0; k < 2; ++k) {
  10510. if (is_on_grid[k]) continue;
  10511. uint16_t u = 0;
  10512. for (int i = 0; i < 8; ++i) {
  10513. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  10514. l = MAX(0, MIN(kMaxQ-1, l));
  10515. u |= (l << 2*i);
  10516. L[8*k + i] = l;
  10517. }
  10518. int grid_index = kmap_q2xs[u];
  10519. if (grid_index < 0) {
  10520. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  10521. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  10522. }
  10523. }
  10524. float sumqx = 0, sumq2 = 0;
  10525. for (int i = 0; i < 16; ++i) {
  10526. float w = weight[i];
  10527. float q = 2*L[i] + 1;
  10528. sumqx += w*xval[i]*q;
  10529. sumq2 += w*q*q;
  10530. }
  10531. if (sumq2 > 0) scale = sumqx/sumq2;
  10532. }
  10533. if (scale < 0) {
  10534. scale = -scale;
  10535. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10536. }
  10537. for (int k = 0; k < 2; ++k) {
  10538. uint16_t u = 0;
  10539. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  10540. int grid_index = kmap_q2xs[u];
  10541. if (grid_index < 0) {
  10542. printf("Oops: found point %u not on grid:", u);
  10543. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  10544. printf("\n");
  10545. GGML_ASSERT(false);
  10546. }
  10547. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  10548. }
  10549. GGML_ASSERT(scale >= 0);
  10550. scales[ib] = scale;
  10551. max_scale = MAX(max_scale, scale);
  10552. }
  10553. if (!max_scale) {
  10554. memset(y[ibl].qs, 0, QK_K/4);
  10555. continue;
  10556. }
  10557. float d = max_scale/31;
  10558. y[ibl].d = GGML_FP32_TO_FP16(d);
  10559. float id = 1/d;
  10560. for (int ib = 0; ib < QK_K/16; ++ib) {
  10561. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10562. l = MAX(0, MIN(15, l));
  10563. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  10564. else y[ibl].scales[ib/2] |= (l << 4);
  10565. }
  10566. memcpy(y[ibl].qs, q2, QK_K/4);
  10567. }
  10568. }
  10569. size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10570. GGML_ASSERT(n_per_row%QK_K == 0);
  10571. int64_t nblock = n_per_row/QK_K;
  10572. char * qrow = (char *)dst;
  10573. for (int64_t row = 0; row < nrow; ++row) {
  10574. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  10575. src += n_per_row;
  10576. qrow += nblock*sizeof(block_iq2_xxs);
  10577. }
  10578. return nrow * nblock * sizeof(block_iq2_xxs);
  10579. }
  10580. size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10581. GGML_ASSERT(n_per_row%QK_K == 0);
  10582. int64_t nblock = n_per_row/QK_K;
  10583. char * qrow = (char *)dst;
  10584. for (int64_t row = 0; row < nrow; ++row) {
  10585. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  10586. src += n_per_row;
  10587. qrow += nblock*sizeof(block_iq2_xs);
  10588. }
  10589. return nrow * nblock * sizeof(block_iq2_xs);
  10590. }
  10591. //
  10592. // ============================================= 3-bit using D4 lattice
  10593. //
  10594. typedef struct {
  10595. uint32_t * grid;
  10596. int * map;
  10597. uint16_t * neighbours;
  10598. } iq3_entry_t;
  10599. static iq3_entry_t iq3_data[2] = {
  10600. {NULL, NULL, NULL},
  10601. {NULL, NULL, NULL},
  10602. };
  10603. static inline int iq3_data_index(int grid_size) {
  10604. (void)grid_size;
  10605. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  10606. return grid_size == 256 ? 0 : 1;
  10607. }
  10608. static int iq3_compare_func(const void * left, const void * right) {
  10609. const int * l = (const int *)left;
  10610. const int * r = (const int *)right;
  10611. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  10612. }
  10613. void iq3xs_init_impl(int grid_size) {
  10614. const int gindex = iq3_data_index(grid_size);
  10615. if (iq3_data[gindex].grid) {
  10616. return;
  10617. }
  10618. static const uint16_t kgrid_256[256] = {
  10619. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  10620. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  10621. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  10622. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  10623. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  10624. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  10625. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  10626. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  10627. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  10628. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  10629. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  10630. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  10631. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  10632. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  10633. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  10634. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  10635. };
  10636. static const uint16_t kgrid_512[512] = {
  10637. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  10638. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  10639. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  10640. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  10641. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  10642. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  10643. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  10644. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  10645. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  10646. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  10647. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  10648. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  10649. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  10650. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  10651. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  10652. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  10653. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  10654. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  10655. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  10656. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  10657. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  10658. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  10659. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  10660. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  10661. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  10662. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  10663. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  10664. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  10665. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  10666. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  10667. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  10668. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  10669. };
  10670. const int kmap_size = 4096;
  10671. const int nwant = grid_size == 256 ? 2 : 3;
  10672. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  10673. uint32_t * kgrid_q3xs;
  10674. int * kmap_q3xs;
  10675. uint16_t * kneighbors_q3xs;
  10676. //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  10677. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  10678. for (int k = 0; k < grid_size; ++k) {
  10679. int8_t * pos = (int8_t *)(the_grid + k);
  10680. for (int i = 0; i < 4; ++i) {
  10681. int l = (kgrid[k] >> 3*i) & 0x7;
  10682. pos[i] = 2*l + 1;
  10683. }
  10684. }
  10685. kgrid_q3xs = the_grid;
  10686. iq3_data[gindex].grid = the_grid;
  10687. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  10688. iq3_data[gindex].map = kmap_q3xs;
  10689. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  10690. uint32_t aux32;
  10691. uint8_t * aux8 = (uint8_t *)&aux32;
  10692. for (int i = 0; i < grid_size; ++i) {
  10693. aux32 = kgrid_q3xs[i];
  10694. uint16_t index = 0;
  10695. for (int k=0; k<4; ++k) {
  10696. uint16_t q = (aux8[k] - 1)/2;
  10697. index |= (q << 3*k);
  10698. }
  10699. kmap_q3xs[index] = i;
  10700. }
  10701. int8_t pos[4];
  10702. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  10703. int num_neighbors = 0, num_not_in_map = 0;
  10704. for (int i = 0; i < kmap_size; ++i) {
  10705. if (kmap_q3xs[i] >= 0) continue;
  10706. ++num_not_in_map;
  10707. for (int k = 0; k < 4; ++k) {
  10708. int l = (i >> 3*k) & 0x7;
  10709. pos[k] = 2*l + 1;
  10710. }
  10711. for (int j = 0; j < grid_size; ++j) {
  10712. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  10713. int d2 = 0;
  10714. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10715. dist2[2*j+0] = d2;
  10716. dist2[2*j+1] = j;
  10717. }
  10718. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  10719. int n = 0; int d2 = dist2[0];
  10720. int nhave = 1;
  10721. for (int j = 0; j < grid_size; ++j) {
  10722. if (dist2[2*j] > d2) {
  10723. if (nhave == nwant) break;
  10724. d2 = dist2[2*j];
  10725. ++nhave;
  10726. }
  10727. ++n;
  10728. }
  10729. num_neighbors += n;
  10730. }
  10731. //printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  10732. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  10733. iq3_data[gindex].neighbours = kneighbors_q3xs;
  10734. int counter = 0;
  10735. for (int i = 0; i < kmap_size; ++i) {
  10736. if (kmap_q3xs[i] >= 0) continue;
  10737. for (int k = 0; k < 4; ++k) {
  10738. int l = (i >> 3*k) & 0x7;
  10739. pos[k] = 2*l + 1;
  10740. }
  10741. for (int j = 0; j < grid_size; ++j) {
  10742. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  10743. int d2 = 0;
  10744. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  10745. dist2[2*j+0] = d2;
  10746. dist2[2*j+1] = j;
  10747. }
  10748. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  10749. kmap_q3xs[i] = -(counter + 1);
  10750. int d2 = dist2[0];
  10751. uint16_t * start = &kneighbors_q3xs[counter++];
  10752. int n = 0, nhave = 1;
  10753. for (int j = 0; j < grid_size; ++j) {
  10754. if (dist2[2*j] > d2) {
  10755. if (nhave == nwant) break;
  10756. d2 = dist2[2*j];
  10757. ++nhave;
  10758. }
  10759. kneighbors_q3xs[counter++] = dist2[2*j+1];
  10760. ++n;
  10761. }
  10762. *start = n;
  10763. }
  10764. free(dist2);
  10765. }
  10766. void iq3xs_free_impl(int grid_size) {
  10767. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  10768. const int gindex = iq3_data_index(grid_size);
  10769. if (iq3_data[gindex].grid) {
  10770. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  10771. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  10772. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  10773. }
  10774. }
  10775. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  10776. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  10777. int num_neighbors = neighbours[0];
  10778. GGML_ASSERT(num_neighbors > 0);
  10779. float best_d2 = FLT_MAX;
  10780. int grid_index = -1;
  10781. for (int j = 1; j <= num_neighbors; ++j) {
  10782. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  10783. float d2 = 0;
  10784. for (int i = 0; i < 4; ++i) {
  10785. float q = pg[i];
  10786. float diff = scale*q - xval[i];
  10787. d2 += weight[i]*diff*diff;
  10788. }
  10789. if (d2 < best_d2) {
  10790. best_d2 = d2; grid_index = neighbours[j];
  10791. }
  10792. }
  10793. GGML_ASSERT(grid_index >= 0);
  10794. const int8_t * pg = (const int8_t *)(grid + grid_index);
  10795. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  10796. return grid_index;
  10797. }
  10798. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int64_t n,
  10799. const float * restrict quant_weights) {
  10800. const int gindex = iq3_data_index(grid_size);
  10801. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  10802. const int * kmap_q3xs = iq3_data[gindex].map;
  10803. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  10804. //GGML_ASSERT(quant_weights && "missing quantization weights");
  10805. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  10806. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  10807. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  10808. GGML_ASSERT(n%QK_K == 0);
  10809. const int kMaxQ = 8;
  10810. const int64_t nbl = n/QK_K;
  10811. ggml_fp16_t * dh;
  10812. uint8_t * qs;
  10813. int block_size;
  10814. if (grid_size == 256) {
  10815. block_iq3_xxs * y = vy;
  10816. dh = &y->d;
  10817. qs = y->qs;
  10818. block_size = sizeof(block_iq3_xxs);
  10819. } else {
  10820. block_iq3_s * y = vy;
  10821. dh = &y->d;
  10822. qs = y->qs;
  10823. block_size = sizeof(block_iq3_s);
  10824. }
  10825. int quant_size = block_size - sizeof(ggml_fp16_t);
  10826. float scales[QK_K/32];
  10827. float weight[32];
  10828. float xval[32];
  10829. int8_t L[32];
  10830. int8_t Laux[32];
  10831. float waux[32];
  10832. bool is_on_grid[8];
  10833. bool is_on_grid_aux[8];
  10834. uint8_t block_signs[8];
  10835. uint8_t q3[3*(QK_K/8)+QK_K/32];
  10836. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  10837. uint8_t * qh = q3 + 3*(QK_K/8);
  10838. for (int ibl = 0; ibl < nbl; ++ibl) {
  10839. dh[0] = GGML_FP32_TO_FP16(0.f);
  10840. memset(q3, 0, 3*QK_K/8+QK_K/32);
  10841. float max_scale = 0;
  10842. const float * xbl = x + QK_K*ibl;
  10843. float sumx2 = 0;
  10844. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  10845. float sigma2 = 2*sumx2/QK_K;
  10846. for (int ib = 0; ib < QK_K/32; ++ib) {
  10847. const float * xb = xbl + 32*ib;
  10848. if (quant_weights) {
  10849. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  10850. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  10851. } else {
  10852. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  10853. }
  10854. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  10855. for (int k = 0; k < 4; ++k) {
  10856. int nflip = 0;
  10857. uint8_t s = 0;
  10858. for (int i = 0; i < 8; ++i) {
  10859. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  10860. else {
  10861. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  10862. }
  10863. }
  10864. if (nflip%2) {
  10865. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  10866. for (int i = 1; i < 8; ++i) {
  10867. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  10868. if (ax < min) {
  10869. min = ax; imin = i;
  10870. }
  10871. }
  10872. xval[8*k+imin] = -xval[8*k+imin];
  10873. s ^= (1 << imin);
  10874. }
  10875. block_signs[k] = s & 127;
  10876. }
  10877. float max = xval[0];
  10878. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  10879. if (max < GROUP_MAX_EPS_IQ3_XXS) {
  10880. scales[ib] = 0;
  10881. memset(L, 0, 32);
  10882. continue;
  10883. }
  10884. float best = 0;
  10885. float scale = max/(2*kMaxQ-1);
  10886. for (int is = -15; is <= 15; ++is) {
  10887. float id = (2*kMaxQ-1+is*0.2f)/max;
  10888. float this_scale = 1/id;
  10889. for (int k = 0; k < 8; ++k) {
  10890. for (int i = 0; i < 4; ++i) {
  10891. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10892. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  10893. }
  10894. uint16_t u = 0;
  10895. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  10896. int grid_index = kmap_q3xs[u];
  10897. is_on_grid_aux[k] = true;
  10898. if (grid_index < 0) {
  10899. is_on_grid_aux[k] = false;
  10900. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10901. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  10902. }
  10903. }
  10904. float sumqx = 0, sumq2 = 0;
  10905. for (int i = 0; i < 32; ++i) {
  10906. float w = weight[i];
  10907. float q = 2*Laux[i] + 1;
  10908. sumqx += w*xval[i]*q;
  10909. sumq2 += w*q*q;
  10910. }
  10911. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  10912. scale = sumqx/sumq2; best = scale*sumqx;
  10913. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  10914. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  10915. }
  10916. }
  10917. int n_not_ongrid = 0;
  10918. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  10919. if (n_not_ongrid > 0 && scale > 0) {
  10920. float id = 1/scale;
  10921. for (int k = 0; k < 8; ++k) {
  10922. if (is_on_grid[k]) continue;
  10923. uint16_t u = 0;
  10924. for (int i = 0; i < 4; ++i) {
  10925. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  10926. l = MAX(0, MIN(kMaxQ-1, l));
  10927. u |= (l << 3*i);
  10928. }
  10929. int grid_index = kmap_q3xs[u];
  10930. if (grid_index < 0) {
  10931. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  10932. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  10933. }
  10934. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  10935. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  10936. }
  10937. float sumqx = 0, sumq2 = 0;
  10938. for (int i = 0; i < 32; ++i) {
  10939. float w = weight[i];
  10940. float q = 2*L[i] + 1;
  10941. sumqx += w*xval[i]*q;
  10942. sumq2 += w*q*q;
  10943. }
  10944. if (sumq2 > 0) scale = sumqx/sumq2;
  10945. }
  10946. if (scale < 0) {
  10947. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  10948. // and correspondingly flip quant signs.
  10949. scale = -scale;
  10950. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  10951. }
  10952. for (int k = 0; k < 8; ++k) {
  10953. uint16_t u = 0;
  10954. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  10955. int grid_index = kmap_q3xs[u];
  10956. if (grid_index < 0) {
  10957. printf("Oops: found point %u not on grid:", u);
  10958. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  10959. printf("\n");
  10960. GGML_ASSERT(false);
  10961. }
  10962. if (grid_size == 256) {
  10963. q3[8*ib+k] = grid_index;
  10964. } else {
  10965. q3[8*ib+k] = grid_index & 255;
  10966. qh[ib] |= ((grid_index >> 8) << k);
  10967. }
  10968. }
  10969. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  10970. GGML_ASSERT(scale >= 0);
  10971. scales[ib] = scale;
  10972. max_scale = MAX(max_scale, scale);
  10973. }
  10974. if (!max_scale) {
  10975. memset(qs, 0, quant_size);
  10976. dh += block_size/sizeof(ggml_fp16_t);
  10977. qs += block_size;
  10978. continue;
  10979. }
  10980. float d = max_scale/31;
  10981. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  10982. float id = 1/d;
  10983. for (int ib = 0; ib < QK_K/32; ++ib) {
  10984. int l = nearest_int(0.5f*(id*scales[ib]-1));
  10985. l = MAX(0, MIN(15, l));
  10986. scales_and_signs[ib] |= ((uint32_t)l << 28);
  10987. }
  10988. memcpy(qs, q3, quant_size);
  10989. dh += block_size/sizeof(ggml_fp16_t);
  10990. qs += block_size;
  10991. }
  10992. }
  10993. size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  10994. GGML_ASSERT(n_per_row%QK_K == 0);
  10995. int64_t nblock = n_per_row/QK_K;
  10996. char * qrow = (char *)dst;
  10997. for (int64_t row = 0; row < nrow; ++row) {
  10998. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  10999. src += n_per_row;
  11000. qrow += nblock*sizeof(block_iq3_xxs);
  11001. }
  11002. return nrow * nblock * sizeof(block_iq3_xxs);
  11003. }
  11004. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int64_t k) {
  11005. assert(k % QK_K == 0);
  11006. block_iq3_xxs * restrict y = vy;
  11007. quantize_row_iq3_xxs_reference(x, y, k);
  11008. }
  11009. void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int64_t k) {
  11010. assert(k % QK_K == 0);
  11011. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  11012. }
  11013. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  11014. const float * restrict quant_weights,
  11015. float * scales,
  11016. float * weight,
  11017. float * xval,
  11018. int8_t * L,
  11019. int8_t * Laux,
  11020. float * waux,
  11021. bool * is_on_grid,
  11022. bool * is_on_grid_aux,
  11023. uint8_t * block_signs) {
  11024. const int gindex = iq3_data_index(512);
  11025. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  11026. const int * kmap_q3xs = iq3_data[gindex].map;
  11027. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  11028. //GGML_ASSERT(quant_weights && "missing quantization weights");
  11029. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  11030. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  11031. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  11032. GGML_ASSERT(n%QK_K == 0);
  11033. const int kMaxQ = 8;
  11034. const int64_t nbl = n/QK_K;
  11035. block_iq3_s * y = vy;
  11036. const int bs4 = block_size/4;
  11037. const int bs8 = block_size/8;
  11038. for (int ibl = 0; ibl < nbl; ++ibl) {
  11039. memset(&y[ibl], 0, sizeof(block_iq3_s));
  11040. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11041. uint8_t * qs = y[ibl].qs;
  11042. uint8_t * qh = y[ibl].qh;
  11043. uint8_t * signs = y[ibl].signs;
  11044. float max_scale = 0;
  11045. const float * xbl = x + QK_K*ibl;
  11046. float sumx2 = 0;
  11047. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11048. float sigma2 = 2*sumx2/QK_K;
  11049. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11050. const float * xb = xbl + block_size*ib;
  11051. if (quant_weights) {
  11052. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11053. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11054. } else {
  11055. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11056. }
  11057. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  11058. for (int k = 0; k < bs8; ++k) {
  11059. uint8_t s = 0;
  11060. for (int i = 0; i < 8; ++i) {
  11061. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11062. else {
  11063. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  11064. }
  11065. }
  11066. block_signs[k] = s;
  11067. }
  11068. float max = xval[0];
  11069. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  11070. if (!max) {
  11071. scales[ib] = 0;
  11072. continue;
  11073. }
  11074. float best = 0;
  11075. float scale = max/(2*kMaxQ-1);
  11076. for (int k = 0; k < bs4; ++k) is_on_grid[k] = false;
  11077. for (int is = -9; is <= 9; ++is) {
  11078. float id = (2*kMaxQ-1+is*0.2f)/max;
  11079. float this_scale = 1/id;
  11080. for (int k = 0; k < bs4; ++k) {
  11081. for (int i = 0; i < 4; ++i) {
  11082. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11083. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11084. }
  11085. uint16_t u = 0;
  11086. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  11087. int grid_index = kmap_q3xs[u];
  11088. is_on_grid_aux[k] = true;
  11089. if (grid_index < 0) {
  11090. is_on_grid_aux[k] = false;
  11091. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11092. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  11093. }
  11094. }
  11095. float sumqx = 0, sumq2 = 0;
  11096. for (int i = 0; i < block_size; ++i) {
  11097. float w = weight[i];
  11098. float q = 2*Laux[i] + 1;
  11099. sumqx += w*xval[i]*q;
  11100. sumq2 += w*q*q;
  11101. }
  11102. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11103. scale = sumqx/sumq2; best = scale*sumqx;
  11104. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  11105. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  11106. }
  11107. }
  11108. int n_not_ongrid = 0;
  11109. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  11110. if (n_not_ongrid > 0 && scale > 0) {
  11111. float id = 1/scale;
  11112. for (int k = 0; k < bs4; ++k) {
  11113. //if (is_on_grid[k]) continue;
  11114. uint16_t u = 0;
  11115. for (int i = 0; i < 4; ++i) {
  11116. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  11117. l = MAX(0, MIN(kMaxQ-1, l));
  11118. u |= (l << 3*i);
  11119. }
  11120. int grid_index = kmap_q3xs[u];
  11121. if (grid_index < 0) {
  11122. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  11123. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  11124. }
  11125. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  11126. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  11127. }
  11128. float sumqx = 0, sumq2 = 0;
  11129. for (int i = 0; i < block_size; ++i) {
  11130. float w = weight[i];
  11131. float q = 2*L[i] + 1;
  11132. sumqx += w*xval[i]*q;
  11133. sumq2 += w*q*q;
  11134. }
  11135. if (sumq2 > 0) scale = sumqx/sumq2;
  11136. }
  11137. if (scale < 0) {
  11138. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  11139. // and correspondingly flip quant signs.
  11140. scale = -scale;
  11141. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  11142. }
  11143. for (int k = 0; k < bs4; ++k) {
  11144. uint16_t u = 0;
  11145. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  11146. int grid_index = kmap_q3xs[u];
  11147. if (grid_index < 0) {
  11148. printf("Oops: found point %u not on grid:", u);
  11149. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  11150. printf("\n");
  11151. GGML_ASSERT(false);
  11152. }
  11153. qs[k] = grid_index & 255;
  11154. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  11155. }
  11156. qs += bs4;
  11157. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  11158. signs += bs8;
  11159. GGML_ASSERT(scale >= 0);
  11160. scales[ib] = scale;
  11161. max_scale = MAX(max_scale, scale);
  11162. }
  11163. if (!max_scale) {
  11164. continue;
  11165. }
  11166. float d = max_scale/31;
  11167. y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f);
  11168. float id = 1/d;
  11169. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  11170. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  11171. l1 = MAX(0, MIN(15, l1));
  11172. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  11173. l2 = MAX(0, MIN(15, l2));
  11174. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  11175. }
  11176. }
  11177. }
  11178. #define IQ3S_BLOCK_SIZE 32
  11179. size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11180. GGML_ASSERT(n_per_row%QK_K == 0);
  11181. int64_t nblock = n_per_row/QK_K;
  11182. float scales[QK_K/IQ3S_BLOCK_SIZE];
  11183. float weight[IQ3S_BLOCK_SIZE];
  11184. float xval[IQ3S_BLOCK_SIZE];
  11185. int8_t L[IQ3S_BLOCK_SIZE];
  11186. int8_t Laux[IQ3S_BLOCK_SIZE];
  11187. float waux[IQ3S_BLOCK_SIZE];
  11188. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  11189. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  11190. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  11191. char * qrow = (char *)dst;
  11192. for (int64_t row = 0; row < nrow; ++row) {
  11193. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  11194. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  11195. src += n_per_row;
  11196. qrow += nblock*sizeof(block_iq3_s);
  11197. }
  11198. return nrow * nblock * sizeof(block_iq3_s);
  11199. }
  11200. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int64_t k) {
  11201. assert(k % QK_K == 0);
  11202. block_iq3_s * restrict y = vy;
  11203. quantize_row_iq3_s_reference(x, y, k);
  11204. }
  11205. void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int64_t k) {
  11206. assert(k % QK_K == 0);
  11207. quantize_iq3_s(x, y, 1, k, NULL);
  11208. }
  11209. // =================================== 1.5 bpw ===================================================
  11210. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11211. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  11212. int num_neighbors = neighbours[0];
  11213. GGML_ASSERT(num_neighbors > 0);
  11214. float best_score = -FLT_MAX;
  11215. int grid_index = -1;
  11216. for (int j = 1; j <= num_neighbors; ++j) {
  11217. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11218. float sumqx = 0, sumq2 = 0;
  11219. for (int i = 0; i < 8; ++i) {
  11220. float q = (pg[i] - 3)/2;
  11221. float w = weight[i];
  11222. sumqx += w*q*xval[i];
  11223. sumq2 += w*q*q;
  11224. }
  11225. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11226. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  11227. grid_index = neighbours[j];
  11228. }
  11229. }
  11230. if (grid_index < 0) {
  11231. for (int i = 0; i < ngrid; ++i) {
  11232. const int8_t * grid_i = (const int8_t *)(grid + i);
  11233. float sumqx = 0, sumq2 = 0;
  11234. for (int j = 0; j < 8; ++j) {
  11235. float w = weight[j];
  11236. float q = (grid_i[j] - 3)/2;
  11237. sumqx += w*q*xval[j];
  11238. sumq2 += w*q*q;
  11239. }
  11240. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11241. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  11242. grid_index = i;
  11243. }
  11244. }
  11245. }
  11246. if (grid_index < 0) {
  11247. printf("Oops, did not find grid point\n");
  11248. printf("Have %d neighbours\n", num_neighbors);
  11249. for (int j = 1; j <= num_neighbors; ++j) {
  11250. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11251. float sumqx = 0, sumq2 = 0;
  11252. for (int i = 0; i < 8; ++i) {
  11253. float q = (pg[i] - 3)/2;
  11254. float w = weight[i];
  11255. sumqx += w*q*xval[i];
  11256. sumq2 += w*q*q;
  11257. }
  11258. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  11259. }
  11260. }
  11261. GGML_ASSERT(grid_index >= 0);
  11262. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  11263. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  11264. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  11265. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11266. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11267. return grid_index;
  11268. }
  11269. static int iq1_find_best_neighbour2(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  11270. const float * restrict xval, const float * restrict weight, float scale, const float * restrict xg, int8_t * restrict L, int ngrid) {
  11271. int num_neighbors = neighbours[0];
  11272. GGML_ASSERT(num_neighbors > 0);
  11273. float best_score = FLT_MAX;
  11274. int grid_index = -1;
  11275. for (int j = 1; j <= num_neighbors; ++j) {
  11276. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11277. float d2 = 0;
  11278. for (int i = 0; i < 8; ++i) {
  11279. float q = xg[(pg[i] - 1)/2];
  11280. float w = weight[i];
  11281. float diff = scale*q - xval[i];
  11282. d2 += w*diff*diff;
  11283. }
  11284. if (d2 < best_score) {
  11285. best_score = d2;
  11286. grid_index = neighbours[j];
  11287. }
  11288. }
  11289. if (grid_index < 0) {
  11290. for (int i = 0; i < ngrid; ++i) {
  11291. const int8_t * grid_i = (const int8_t *)(grid + i);
  11292. float d2 = 0;
  11293. for (int j = 0; j < 8; ++j) {
  11294. float w = weight[j];
  11295. float q = xg[(grid_i[j] - 1)/2];
  11296. float diff = scale*q - xval[i];
  11297. d2 += w*diff*diff;
  11298. }
  11299. if (d2 < best_score) {
  11300. best_score = d2;
  11301. grid_index = i;
  11302. }
  11303. }
  11304. }
  11305. if (grid_index < 0) {
  11306. printf("Oops, did not find grid point\n");
  11307. printf("Have %d neighbours\n", num_neighbors);
  11308. for (int j = 1; j <= num_neighbors; ++j) {
  11309. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  11310. float sumqx = 0, sumq2 = 0;
  11311. for (int i = 0; i < 8; ++i) {
  11312. float q = xg[(pg[i] - 1)/2];
  11313. float w = weight[i];
  11314. sumqx += w*q*xval[i];
  11315. sumq2 += w*q*q;
  11316. }
  11317. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  11318. }
  11319. }
  11320. GGML_ASSERT(grid_index >= 0);
  11321. const int8_t * pg = (const int8_t *)(grid + grid_index);
  11322. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  11323. return grid_index;
  11324. }
  11325. static int iq1_sort_helper(const void * left, const void * right) {
  11326. const float * l = left;
  11327. const float * r = right;
  11328. return *l < *r ? -1 : *l > *r ? 1 : 0;
  11329. }
  11330. #define IQ1S_BLOCK_SIZE 32
  11331. #define IQ1M_BLOCK_SIZE 16
  11332. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  11333. float * scales,
  11334. float * weight,
  11335. float * sumx,
  11336. float * sumw,
  11337. float * pairs,
  11338. int8_t * L,
  11339. uint16_t * index,
  11340. int8_t * shifts) {
  11341. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  11342. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11343. const int * kmap_q2xs = iq2_data[gindex].map;
  11344. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11345. GGML_ASSERT(quant_weights && "missing quantization weights");
  11346. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11347. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11348. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11349. GGML_ASSERT(n%QK_K == 0);
  11350. block_iq1_s * y = vy;
  11351. const int64_t nbl = n/QK_K;
  11352. const int block_size = IQ1S_BLOCK_SIZE;
  11353. const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA};
  11354. const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA};
  11355. int * idx = (int *)(pairs + 1);
  11356. for (int ibl = 0; ibl < nbl; ++ibl) {
  11357. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11358. memset(y[ibl].qs, 0, QK_K/8);
  11359. memset(y[ibl].qh, 0, QK_K/16);
  11360. float max_scale = 0;
  11361. const float * xbl = x + QK_K*ibl;
  11362. float sumx2 = 0;
  11363. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11364. float sigma2 = 2*sumx2/QK_K;
  11365. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11366. const float * xb = xbl + block_size*ib;
  11367. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11368. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11369. float max = fabsf(xb[0]);
  11370. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  11371. if (max < GROUP_MAX_EPS_IQ1_S) {
  11372. scales[ib] = 0;
  11373. memset(L, 1, block_size);
  11374. continue;
  11375. }
  11376. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  11377. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  11378. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  11379. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  11380. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  11381. // for each possible and score for each split.
  11382. for (int j = 0; j < block_size; ++j) {
  11383. pairs[2*j] = xb[j];
  11384. idx[2*j] = j;
  11385. }
  11386. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  11387. {
  11388. sumx[0] = sumw[0] = 0;
  11389. for (int j = 0; j < block_size; ++j) {
  11390. int i = idx[2*j];
  11391. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  11392. sumw[j+1] = sumw[j] + weight[i];
  11393. }
  11394. }
  11395. float best_score = -FLT_MIN, scale = max;
  11396. int besti1 = -1, besti2 = -1, best_shift = 0;
  11397. for (int i1 = 0; i1 <= block_size; ++i1) {
  11398. for (int i2 = i1; i2 <= block_size; ++i2) {
  11399. float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2];
  11400. float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2];
  11401. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11402. scale = sumqx/sumq2; best_score = scale*sumqx;
  11403. besti1 = i1; besti2 = i2; best_shift = 1;
  11404. }
  11405. sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2];
  11406. sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2];
  11407. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  11408. scale = sumqx/sumq2; best_score = scale*sumqx;
  11409. besti1 = i1; besti2 = i2; best_shift = -1;
  11410. }
  11411. }
  11412. }
  11413. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0);
  11414. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  11415. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  11416. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  11417. if (scale < 0) {
  11418. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  11419. scale = -scale; best_shift = -best_shift;
  11420. }
  11421. bool all_on_grid = true;
  11422. const float * xx = best_shift == 1 ? x_p : x_m;
  11423. for (int k = 0; k < block_size/8; ++k) {
  11424. uint16_t u = 0;
  11425. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  11426. int grid_index = kmap_q2xs[u];
  11427. if (grid_index < 0) {
  11428. all_on_grid = false;
  11429. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11430. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  11431. GGML_ASSERT(grid_index >= 0);
  11432. }
  11433. index[k] = grid_index;
  11434. }
  11435. if (!all_on_grid) {
  11436. float sumqx = 0, sumq2 = 0;
  11437. for (int k = 0; k < block_size/8; ++k) {
  11438. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  11439. for (int j = 0; j < 8; ++j) {
  11440. float w = weight[8*k + j];
  11441. float q = xx[(pg[j] - 1)/2];
  11442. sumqx += w*q*xb[8*k+j];
  11443. sumq2 += w*q*q;
  11444. }
  11445. }
  11446. if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2;
  11447. }
  11448. uint16_t h = 0;
  11449. for (int k = 0; k < block_size/8; ++k) {
  11450. y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255;
  11451. h |= (index[k] >> 8) << 3*k;
  11452. }
  11453. y[ibl].qh[ib] = h;
  11454. GGML_ASSERT(scale >= 0);
  11455. scales[ib] = scale;
  11456. shifts[ib] = best_shift;
  11457. max_scale = MAX(max_scale, scale);
  11458. }
  11459. if (!max_scale) {
  11460. continue;
  11461. }
  11462. float d = max_scale/15;
  11463. y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed.
  11464. float id = 1/d;
  11465. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11466. int l = nearest_int(0.5f*(id*scales[ib]-1));
  11467. l = MAX(0, MIN(7, l));
  11468. if (shifts[ib] == -1) l |= 8;
  11469. y[ibl].qh[ib] |= (l << 12);
  11470. }
  11471. }
  11472. }
  11473. size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11474. GGML_ASSERT(n_per_row%QK_K == 0);
  11475. float scales[QK_K/IQ1S_BLOCK_SIZE];
  11476. float weight[IQ1S_BLOCK_SIZE];
  11477. int8_t L[IQ1S_BLOCK_SIZE];
  11478. float sumx[IQ1S_BLOCK_SIZE+1];
  11479. float sumw[IQ1S_BLOCK_SIZE+1];
  11480. float pairs[2*IQ1S_BLOCK_SIZE];
  11481. uint16_t index[IQ1S_BLOCK_SIZE/8];
  11482. int8_t shifts[QK_K/IQ1S_BLOCK_SIZE];
  11483. int64_t nblock = n_per_row/QK_K;
  11484. char * qrow = (char *)dst;
  11485. for (int64_t row = 0; row < nrow; ++row) {
  11486. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts);
  11487. src += n_per_row;
  11488. qrow += nblock*sizeof(block_iq1_s);
  11489. }
  11490. return nrow * nblock * sizeof(block_iq1_s);
  11491. }
  11492. static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights,
  11493. float * scales,
  11494. float * weight,
  11495. float * pairs,
  11496. int8_t * L,
  11497. uint16_t * index,
  11498. int8_t * shifts) {
  11499. const int gindex = iq2_data_index(GGML_TYPE_IQ1_M);
  11500. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11501. const int * kmap_q2xs = iq2_data[gindex].map;
  11502. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11503. //GGML_ASSERT(quant_weights && "missing quantization weights");
  11504. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11505. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11506. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11507. GGML_ASSERT(n%QK_K == 0);
  11508. block_iq1_m * y = vy;
  11509. const int64_t nbl = n/QK_K;
  11510. const int block_size = IQ1M_BLOCK_SIZE;
  11511. const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA};
  11512. const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA};
  11513. const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88};
  11514. int * idx = (int *)(pairs + 1);
  11515. float sumqx[4], sumq2[4];
  11516. iq1m_scale_t s;
  11517. const float * xx;
  11518. for (int ibl = 0; ibl < nbl; ++ibl) {
  11519. memset(y[ibl].qs, 0, QK_K/8);
  11520. memset(y[ibl].qh, 0, QK_K/16);
  11521. memset(y[ibl].scales, 0, QK_K/32);
  11522. float max_scale = 0;
  11523. const float * xbl = x + QK_K*ibl;
  11524. float sumx2 = 0;
  11525. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11526. float sigma2 = 2*sumx2/QK_K;
  11527. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11528. const float * xb = xbl + block_size*ib;
  11529. if (quant_weights) {
  11530. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11531. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11532. } else {
  11533. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11534. }
  11535. float max = fabsf(xb[0]);
  11536. for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i]));
  11537. if (max < GROUP_MAX_EPS_IQ1_M) {
  11538. scales[ib] = 0;
  11539. memset(L, 1, block_size);
  11540. continue;
  11541. }
  11542. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  11543. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  11544. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  11545. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  11546. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  11547. // for each possible and score for each split.
  11548. for (int j = 0; j < block_size; ++j) {
  11549. pairs[2*j] = xb[j];
  11550. idx[2*j] = j;
  11551. }
  11552. qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper);
  11553. float best_score = -FLT_MIN, scale = max;
  11554. int besti1 = -1, besti2 = -1, best_k = -1;
  11555. // 0: +, +
  11556. // 1: +, -
  11557. // 2: -, +
  11558. // 3: -, -
  11559. for (int i1 = 0; i1 <= block_size; ++i1) {
  11560. for (int i2 = i1; i2 <= block_size; ++i2) {
  11561. memset(sumqx, 0, 4*sizeof(float));
  11562. memset(sumq2, 0, 4*sizeof(float));
  11563. for (int j = 0; j < i1; ++j) {
  11564. int i = idx[2*j];
  11565. if (i < block_size/2) {
  11566. sumqx[0] += weight[i]*x_p[0]*xb[i];
  11567. sumqx[1] += weight[i]*x_p[0]*xb[i];
  11568. sumqx[2] += weight[i]*x_m[0]*xb[i];
  11569. sumqx[3] += weight[i]*x_m[0]*xb[i];
  11570. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  11571. sumq2[1] += weight[i]*x_p[0]*x_p[0];
  11572. sumq2[2] += weight[i]*x_m[0]*x_m[0];
  11573. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  11574. } else {
  11575. sumqx[0] += weight[i]*x_p[0]*xb[i];
  11576. sumqx[2] += weight[i]*x_p[0]*xb[i];
  11577. sumqx[1] += weight[i]*x_m[0]*xb[i];
  11578. sumqx[3] += weight[i]*x_m[0]*xb[i];
  11579. sumq2[0] += weight[i]*x_p[0]*x_p[0];
  11580. sumq2[2] += weight[i]*x_p[0]*x_p[0];
  11581. sumq2[1] += weight[i]*x_m[0]*x_m[0];
  11582. sumq2[3] += weight[i]*x_m[0]*x_m[0];
  11583. }
  11584. }
  11585. for (int j = i1; j < i2; ++j) {
  11586. int i = idx[2*j];
  11587. if (i < block_size/2) {
  11588. sumqx[0] += weight[i]*x_p[1]*xb[i];
  11589. sumqx[1] += weight[i]*x_p[1]*xb[i];
  11590. sumqx[2] += weight[i]*x_m[1]*xb[i];
  11591. sumqx[3] += weight[i]*x_m[1]*xb[i];
  11592. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  11593. sumq2[1] += weight[i]*x_p[1]*x_p[1];
  11594. sumq2[2] += weight[i]*x_m[1]*x_m[1];
  11595. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  11596. } else {
  11597. sumqx[0] += weight[i]*x_p[1]*xb[i];
  11598. sumqx[2] += weight[i]*x_p[1]*xb[i];
  11599. sumqx[1] += weight[i]*x_m[1]*xb[i];
  11600. sumqx[3] += weight[i]*x_m[1]*xb[i];
  11601. sumq2[0] += weight[i]*x_p[1]*x_p[1];
  11602. sumq2[2] += weight[i]*x_p[1]*x_p[1];
  11603. sumq2[1] += weight[i]*x_m[1]*x_m[1];
  11604. sumq2[3] += weight[i]*x_m[1]*x_m[1];
  11605. }
  11606. }
  11607. for (int j = i2; j < block_size; ++j) {
  11608. int i = idx[2*j];
  11609. if (i < block_size/2) {
  11610. sumqx[0] += weight[i]*x_p[2]*xb[i];
  11611. sumqx[1] += weight[i]*x_p[2]*xb[i];
  11612. sumqx[2] += weight[i]*x_m[2]*xb[i];
  11613. sumqx[3] += weight[i]*x_m[2]*xb[i];
  11614. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  11615. sumq2[1] += weight[i]*x_p[2]*x_p[2];
  11616. sumq2[2] += weight[i]*x_m[2]*x_m[2];
  11617. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  11618. } else {
  11619. sumqx[0] += weight[i]*x_p[2]*xb[i];
  11620. sumqx[2] += weight[i]*x_p[2]*xb[i];
  11621. sumqx[1] += weight[i]*x_m[2]*xb[i];
  11622. sumqx[3] += weight[i]*x_m[2]*xb[i];
  11623. sumq2[0] += weight[i]*x_p[2]*x_p[2];
  11624. sumq2[2] += weight[i]*x_p[2]*x_p[2];
  11625. sumq2[1] += weight[i]*x_m[2]*x_m[2];
  11626. sumq2[3] += weight[i]*x_m[2]*x_m[2];
  11627. }
  11628. }
  11629. for (int k = 0; k < 4; ++k) {
  11630. if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) {
  11631. scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k];
  11632. besti1 = i1; besti2 = i2; best_k = k;
  11633. }
  11634. }
  11635. }
  11636. }
  11637. GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0);
  11638. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  11639. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  11640. for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2;
  11641. if (scale < 0) {
  11642. for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j];
  11643. scale = -scale;
  11644. best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0;
  11645. }
  11646. bool all_on_grid = true;
  11647. for (int k = 0; k < block_size/8; ++k) {
  11648. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  11649. else xx = best_k%2 == 0 ? x_p : x_m;
  11650. uint16_t u = 0;
  11651. for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j);
  11652. int grid_index = kmap_q2xs[u];
  11653. if (grid_index < 0) {
  11654. all_on_grid = false;
  11655. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11656. grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S);
  11657. GGML_ASSERT(grid_index >= 0);
  11658. }
  11659. index[k] = grid_index;
  11660. }
  11661. if (!all_on_grid) {
  11662. float sumqx_f = 0, sumq2_f = 0;
  11663. for (int k = 0; k < block_size/8; ++k) {
  11664. if (k == 0) xx = best_k < 2 ? x_p : x_m;
  11665. else xx = best_k%2 == 0 ? x_p : x_m;
  11666. const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]);
  11667. for (int j = 0; j < 8; ++j) {
  11668. float w = weight[8*k + j];
  11669. float q = xx[(pg[j] - 1)/2];
  11670. sumqx_f += w*q*xb[8*k+j];
  11671. sumq2_f += w*q*q;
  11672. }
  11673. }
  11674. if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f;
  11675. }
  11676. y[ibl].qs[2*ib + 0] = index[0] & 255;
  11677. y[ibl].qs[2*ib + 1] = index[1] & 255;
  11678. y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4);
  11679. GGML_ASSERT(scale >= 0);
  11680. scales[ib] = scale;
  11681. shifts[ib] = best_k;
  11682. max_scale = MAX(max_scale, scale);
  11683. }
  11684. if (!max_scale) {
  11685. continue;
  11686. }
  11687. uint16_t * sc = (uint16_t *)y[ibl].scales;
  11688. float d = max_scale/15;
  11689. float id = 1/d;
  11690. float sumqx_f = 0, sumq2_f = 0;
  11691. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  11692. int l = nearest_int(0.5f*(id*scales[ib+0]-1));
  11693. l = MAX(0, MIN(7, l));
  11694. sc[ib/4] |= (l << 3*(ib%4));
  11695. y[ibl].qh[ib] |= masks[shifts[ib]];
  11696. const float * xb = xbl + block_size*ib;
  11697. if (quant_weights) {
  11698. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  11699. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11700. } else {
  11701. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  11702. }
  11703. for (int k = 0; k < block_size/8; ++k) {
  11704. if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m;
  11705. else xx = shifts[ib]%2 == 0 ? x_p : x_m;
  11706. const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700));
  11707. for (int j = 0; j < 8; ++j) {
  11708. float w = weight[8*k + j];
  11709. float q = xx[(pg[j] - 1)/2]*(2*l+1);
  11710. sumqx_f += w*q*xb[8*k+j];
  11711. sumq2_f += w*q*q;
  11712. }
  11713. }
  11714. }
  11715. if (sumq2_f > 0) d = sumqx_f/sumq2_f;
  11716. s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed.
  11717. sc[0] |= ((s.u16 & 0x000f) << 12);
  11718. sc[1] |= ((s.u16 & 0x00f0) << 8);
  11719. sc[2] |= ((s.u16 & 0x0f00) << 4);
  11720. sc[3] |= ((s.u16 & 0xf000) << 0);
  11721. }
  11722. }
  11723. size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11724. GGML_ASSERT(n_per_row%QK_K == 0);
  11725. float scales[QK_K/IQ1M_BLOCK_SIZE];
  11726. float weight[IQ1M_BLOCK_SIZE];
  11727. int8_t L[IQ1M_BLOCK_SIZE];
  11728. float pairs[2*IQ1M_BLOCK_SIZE];
  11729. uint16_t index[IQ1M_BLOCK_SIZE/8];
  11730. int8_t shifts[QK_K/IQ1M_BLOCK_SIZE];
  11731. int64_t nblock = n_per_row/QK_K;
  11732. char * qrow = (char *)dst;
  11733. for (int64_t row = 0; row < nrow; ++row) {
  11734. quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts);
  11735. src += n_per_row;
  11736. qrow += nblock*sizeof(block_iq1_m);
  11737. }
  11738. return nrow * nblock * sizeof(block_iq1_m);
  11739. }
  11740. // ============================ 4-bit non-linear quants
  11741. static inline int best_index_int8(int n, const int8_t * val, float x) {
  11742. if (x <= val[0]) return 0;
  11743. if (x >= val[n-1]) return n-1;
  11744. int ml = 0, mu = n-1;
  11745. while (mu-ml > 1) {
  11746. int mav = (ml+mu)/2;
  11747. if (x < val[mav]) mu = mav; else ml = mav;
  11748. }
  11749. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  11750. }
  11751. static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
  11752. ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
  11753. float * scales, float * weight, uint8_t * L,
  11754. const int8_t * values,
  11755. const float * quant_weights,
  11756. const int ntry) {
  11757. float sigma2 = 0;
  11758. for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j];
  11759. sigma2 *= 2.f/super_block_size;
  11760. memset(q4, 0, super_block_size/2);
  11761. dh[0] = GGML_FP32_TO_FP16(0.f);
  11762. float max_scale = 0, amax_scale = 0;
  11763. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  11764. const float * xb = x + ib*block_size;
  11765. uint8_t * Lb = L + ib*block_size;
  11766. if (quant_weights) {
  11767. const float * qw = quant_weights + ib*block_size;
  11768. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  11769. } else {
  11770. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  11771. }
  11772. float amax = 0, max = 0;
  11773. for (int j = 0; j < block_size; ++j) {
  11774. float ax = fabsf(xb[j]);
  11775. if (ax > amax) {
  11776. amax = ax; max = xb[j];
  11777. }
  11778. }
  11779. if (amax < GROUP_MAX_EPS) {
  11780. scales[ib] = 0;
  11781. continue;
  11782. }
  11783. float d = ntry > 0 ? -max/values[0] : max/values[0];
  11784. float id = 1/d;
  11785. float sumqx = 0, sumq2 = 0;
  11786. for (int j = 0; j < block_size; ++j) {
  11787. float al = id*xb[j];
  11788. int l = best_index_int8(16, values, al);
  11789. Lb[j] = l;
  11790. float q = values[l];
  11791. float w = weight[j];
  11792. sumqx += w*q*xb[j];
  11793. sumq2 += w*q*q;
  11794. }
  11795. d = sumqx/sumq2;
  11796. float best = d*sumqx;
  11797. for (int itry = -ntry; itry <= ntry; ++itry) {
  11798. id = (itry + values[0])/max;
  11799. sumqx = sumq2 = 0;
  11800. for (int j = 0; j < block_size; ++j) {
  11801. float al = id*xb[j];
  11802. int l = best_index_int8(16, values, al);
  11803. float q = values[l];
  11804. float w = weight[j];
  11805. sumqx += w*q*xb[j];
  11806. sumq2 += w*q*q;
  11807. }
  11808. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  11809. d = sumqx/sumq2; best = d * sumqx;
  11810. }
  11811. }
  11812. scales[ib] = d;
  11813. float abs_d = fabsf(d);
  11814. if (abs_d > amax_scale) {
  11815. amax_scale = abs_d; max_scale = d;
  11816. }
  11817. }
  11818. if (super_block_size/block_size > 1) {
  11819. int nb = super_block_size/block_size;
  11820. memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t));
  11821. float d = -max_scale/32;
  11822. dh[0] = GGML_FP32_TO_FP16(d);
  11823. float id = d ? 1/d : 0.f;
  11824. for (int ib = 0; ib < super_block_size/block_size; ++ib) {
  11825. int l = nearest_int(id*scales[ib]);
  11826. l = MAX(-32, MIN(31, l));
  11827. float dl = d * l;
  11828. float idl = dl ? 1/dl : 0.f;
  11829. uint8_t * Lb = L + ib*block_size;
  11830. const float * xb = x + ib*block_size;
  11831. for (int j = 0; j < block_size; ++j) {
  11832. Lb[j] = best_index_int8(16, values, idl*xb[j]);
  11833. }
  11834. l += 32;
  11835. uint8_t l_l = l & 0xf;
  11836. uint8_t l_h = l >> 4;
  11837. if (ib%2 == 0) scales_l[ib/2] = l_l;
  11838. else scales_l[ib/2] |= (l_l << 4);
  11839. scales_h[ib/8] |= (l_h << 2*(ib%8));
  11840. }
  11841. } else {
  11842. dh[0] = GGML_FP32_TO_FP16(scales[0]);
  11843. if (ntry > 0) {
  11844. float id = scales[0] ? 1/scales[0] : 0;
  11845. for (int j = 0; j < super_block_size; ++j) {
  11846. L[j] = best_index_int8(16, values, id*x[j]);
  11847. }
  11848. }
  11849. }
  11850. for (int i = 0; i < super_block_size/32; ++i) {
  11851. for (int j = 0; j < 16; ++j) {
  11852. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  11853. }
  11854. }
  11855. }
  11856. size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11857. GGML_ASSERT(n_per_row%QK4_NL == 0);
  11858. int64_t nblock = n_per_row/QK4_NL;
  11859. char * qrow = (char *)dst;
  11860. uint8_t L[QK4_NL];
  11861. float weight[QK4_NL];
  11862. uint16_t unused_h;
  11863. uint8_t * unused_l = NULL;
  11864. float scale;
  11865. for (int64_t row = 0; row < nrow; ++row) {
  11866. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  11867. for (int ibl = 0; ibl < nblock; ++ibl) {
  11868. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  11869. quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  11870. &scale, weight, L, kvalues_iq4nl, qw, 7);
  11871. }
  11872. src += n_per_row;
  11873. qrow += nblock*sizeof(block_iq4_nl);
  11874. }
  11875. return nrow * nblock * sizeof(block_iq4_nl);
  11876. }
  11877. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int64_t k) {
  11878. GGML_ASSERT(k%QK4_NL == 0);
  11879. int64_t nblock = k/QK4_NL;
  11880. uint8_t L[QK4_NL];
  11881. float weight[QK4_NL];
  11882. uint16_t unused_h;
  11883. uint8_t * unused_l = NULL;
  11884. float scale;
  11885. block_iq4_nl * iq4 = (block_iq4_nl *)vy;
  11886. for (int ibl = 0; ibl < nblock; ++ibl) {
  11887. quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l,
  11888. &scale, weight, L, kvalues_iq4nl, NULL, -1);
  11889. }
  11890. }
  11891. void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int64_t k) {
  11892. assert(k % QK4_NL == 0);
  11893. quantize_row_iq4_nl(x, y, k);
  11894. }
  11895. size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  11896. GGML_ASSERT(n_per_row%QK_K == 0);
  11897. int64_t nblock = n_per_row/QK_K;
  11898. char * qrow = (char *)dst;
  11899. uint8_t L[QK_K];
  11900. float weight[32];
  11901. float scales[QK_K/32];
  11902. for (int64_t row = 0; row < nrow; ++row) {
  11903. block_iq4_xs * iq4 = (block_iq4_xs *)qrow;
  11904. for (int ibl = 0; ibl < nblock; ++ibl) {
  11905. const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL;
  11906. quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l,
  11907. scales, weight, L, kvalues_iq4nl, qw, 7);
  11908. }
  11909. src += n_per_row;
  11910. qrow += nblock*sizeof(block_iq4_xs);
  11911. }
  11912. return nrow * nblock * sizeof(block_iq4_xs);
  11913. }
  11914. void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int64_t k) {
  11915. assert(k % QK_K == 0);
  11916. block_iq4_xs * restrict y = vy;
  11917. quantize_row_iq4_xs_reference(x, y, k);
  11918. }
  11919. void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int64_t k) {
  11920. assert(k % QK_K == 0);
  11921. quantize_iq4_xs(x, y, 1, k, NULL);
  11922. }
  11923. // =============================== 2.5625 bpw
  11924. static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) {
  11925. const int gindex = iq2_data_index(GGML_TYPE_IQ2_S);
  11926. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  11927. const int * kmap_q2xs = iq2_data[gindex].map;
  11928. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  11929. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  11930. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  11931. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  11932. GGML_ASSERT(n%QK_K == 0);
  11933. const int kMaxQ = 3;
  11934. const int64_t nbl = n/QK_K;
  11935. block_iq2_s * y = vy;
  11936. float scales[QK_K/16];
  11937. float weight[16];
  11938. float xval[16];
  11939. int8_t L[16];
  11940. int8_t Laux[16];
  11941. float waux[16];
  11942. bool is_on_grid[2];
  11943. bool is_on_grid_aux[2];
  11944. uint8_t block_signs[2];
  11945. for (int ibl = 0; ibl < nbl; ++ibl) {
  11946. memset(&y[ibl], 0, sizeof(block_iq2_s));
  11947. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  11948. float max_scale = 0;
  11949. const float * xbl = x + QK_K*ibl;
  11950. float sumx2 = 0;
  11951. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  11952. float sigma2 = 2*sumx2/QK_K;
  11953. for (int ib = 0; ib < QK_K/16; ++ib) {
  11954. const float * xb = xbl + 16*ib;
  11955. if (quant_weights) {
  11956. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  11957. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  11958. } else {
  11959. for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i];
  11960. }
  11961. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  11962. for (int k = 0; k < 2; ++k) {
  11963. uint8_t s = 0;
  11964. for (int i = 0; i < 8; ++i) {
  11965. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  11966. else {
  11967. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  11968. }
  11969. }
  11970. block_signs[k] = s;
  11971. }
  11972. float max = xval[0];
  11973. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  11974. if (max < GROUP_MAX_EPS_IQ2_S) {
  11975. scales[ib] = 0;
  11976. continue;
  11977. }
  11978. float best = 0;
  11979. float scale = max/(2*kMaxQ-1);
  11980. is_on_grid[0] = is_on_grid[1] = true;
  11981. for (int is = -9; is <= 9; ++is) {
  11982. float id = (2*kMaxQ-1+is*0.1f)/max;
  11983. float this_scale = 1/id;
  11984. for (int k = 0; k < 2; ++k) {
  11985. for (int i = 0; i < 8; ++i) {
  11986. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  11987. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  11988. }
  11989. uint16_t u = 0;
  11990. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  11991. int grid_index = kmap_q2xs[u];
  11992. is_on_grid_aux[k] = true;
  11993. if (grid_index < 0) {
  11994. is_on_grid_aux[k] = false;
  11995. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  11996. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  11997. }
  11998. }
  11999. float sumqx = 0, sumq2 = 0;
  12000. for (int i = 0; i < 16; ++i) {
  12001. float w = weight[i];
  12002. float q = 2*Laux[i] + 1;
  12003. sumqx += w*xval[i]*q;
  12004. sumq2 += w*q*q;
  12005. }
  12006. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  12007. scale = sumqx/sumq2; best = scale*sumqx;
  12008. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  12009. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  12010. }
  12011. }
  12012. int n_not_ongrid = 0;
  12013. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  12014. if (n_not_ongrid > 0 && scale > 0) {
  12015. float id = 1/scale;
  12016. for (int k = 0; k < 2; ++k) {
  12017. if (is_on_grid[k]) continue;
  12018. uint16_t u = 0;
  12019. for (int i = 0; i < 8; ++i) {
  12020. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  12021. l = MAX(0, MIN(kMaxQ-1, l));
  12022. u |= (l << 2*i);
  12023. L[8*k + i] = l;
  12024. }
  12025. int grid_index = kmap_q2xs[u];
  12026. if (grid_index < 0) {
  12027. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  12028. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  12029. }
  12030. }
  12031. float sumqx = 0, sumq2 = 0;
  12032. for (int i = 0; i < 16; ++i) {
  12033. float w = weight[i];
  12034. float q = 2*L[i] + 1;
  12035. sumqx += w*xval[i]*q;
  12036. sumq2 += w*q*q;
  12037. }
  12038. if (sumq2 > 0) scale = sumqx/sumq2;
  12039. }
  12040. if (scale < 0) {
  12041. scale = -scale;
  12042. for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k];
  12043. }
  12044. for (int k = 0; k < 2; ++k) {
  12045. uint16_t u = 0;
  12046. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  12047. int grid_index = kmap_q2xs[u];
  12048. if (grid_index < 0) {
  12049. printf("Oops: found point %u not on grid:", u);
  12050. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  12051. printf("\n");
  12052. GGML_ASSERT(false);
  12053. }
  12054. const int i8 = 2*ib + k;
  12055. y[ibl].qs[i8] = grid_index & 255;
  12056. y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4));
  12057. y[ibl].qs[QK_K/8 + i8] = block_signs[k];
  12058. }
  12059. GGML_ASSERT(scale >= 0);
  12060. scales[ib] = scale;
  12061. max_scale = MAX(max_scale, scale);
  12062. }
  12063. if (!max_scale) {
  12064. continue;
  12065. }
  12066. float d = max_scale/31;
  12067. y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f);
  12068. float id = 1/d;
  12069. for (int ib = 0; ib < QK_K/16; ++ib) {
  12070. int l = nearest_int(0.5f*(id*scales[ib]-1));
  12071. l = MAX(0, MIN(15, l));
  12072. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  12073. else y[ibl].scales[ib/2] |= (l << 4);
  12074. }
  12075. }
  12076. }
  12077. size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
  12078. GGML_ASSERT(n_per_row%QK_K == 0);
  12079. int64_t nblock = n_per_row/QK_K;
  12080. char * qrow = (char *)dst;
  12081. for (int64_t row = 0; row < nrow; ++row) {
  12082. quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights);
  12083. src += n_per_row;
  12084. qrow += nblock*sizeof(block_iq2_s);
  12085. }
  12086. return nrow * nblock * sizeof(block_iq2_s);
  12087. }
  12088. void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int64_t k) {
  12089. assert(k % QK_K == 0);
  12090. quantize_iq2_s(x, y, 1, k, NULL);
  12091. }
  12092. void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k) {
  12093. assert(k % QK_K == 0);
  12094. block_iq2_s * restrict y = vy;
  12095. quantize_row_iq2_s_reference(x, y, k);
  12096. }
  12097. static bool validate_float(float f, size_t i) {
  12098. if (isinf(f)) {
  12099. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  12100. return false;
  12101. }
  12102. if (isnan(f)) {
  12103. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  12104. return false;
  12105. }
  12106. return true;
  12107. }
  12108. static bool isinf_fp16(ggml_fp16_t f) {
  12109. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) == 0;
  12110. }
  12111. static bool isnan_fp16(ggml_fp16_t f) {
  12112. return (f & 0x7c00) == 0x7c00 && (f & 0x03ff) != 0;
  12113. }
  12114. static bool validate_fp16(ggml_fp16_t f, size_t i) {
  12115. if (isinf_fp16(f)) {
  12116. fprintf(stderr, "ggml_validate_row_data: found inf value at block %zu\n", i);
  12117. return false;
  12118. }
  12119. if (isnan_fp16(f)) {
  12120. fprintf(stderr, "ggml_validate_row_data: found nan value at block %zu\n", i);
  12121. return false;
  12122. }
  12123. return true;
  12124. }
  12125. #define VALIDATE_ROW_DATA_D_F16_IMPL(type, data, nb) \
  12126. const type * q = (const type *) (data); \
  12127. for (size_t i = 0; i < (nb); ++i) { \
  12128. if (!validate_fp16(q[i].d, i)) { \
  12129. return false; \
  12130. } \
  12131. }
  12132. #define VALIDATE_ROW_DATA_DM_F16_IMPL(type, data, nb, d, m) \
  12133. const type * q = (const type *) (data); \
  12134. for (size_t i = 0; i < (nb); ++i) { \
  12135. if (!validate_fp16(q[i].d, i) || !validate_fp16(q[i].m, i)) { \
  12136. return false; \
  12137. } \
  12138. }
  12139. bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes) {
  12140. if (type < 0 || type >= GGML_TYPE_COUNT) {
  12141. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  12142. return false;
  12143. }
  12144. if (nbytes % ggml_type_size(type) != 0) {
  12145. fprintf(stderr, "%s: invalid size %zu for type %d\n", __func__, nbytes, type);
  12146. return false;
  12147. }
  12148. const size_t nb = nbytes/ggml_type_size(type);
  12149. switch (type) {
  12150. case GGML_TYPE_BF16:
  12151. {
  12152. int nans = 0;
  12153. int infs = 0;
  12154. const unsigned short * f = (const unsigned short *) data;
  12155. for (size_t i = 0; i < nb; ++i) {
  12156. nans += (f[i] & 0x7fff) > 0x7f80;
  12157. infs += (f[i] & 0x7fff) == 0x7f80;
  12158. }
  12159. if (nans) {
  12160. fprintf(stderr, "%s: found %d NaNs in row of %zu BF16 values\n", __func__, nans, nb);
  12161. return false;
  12162. }
  12163. if (infs) {
  12164. fprintf(stderr, "%s: found %d infinities in row of %zu BF16 values\n", __func__, infs, nb);
  12165. return false;
  12166. }
  12167. } break;
  12168. case GGML_TYPE_F16:
  12169. {
  12170. const ggml_fp16_t * f = (const ggml_fp16_t *) data;
  12171. size_t i = 0;
  12172. #if defined(__AVX2__)
  12173. for (; i + 15 < nb; i += 16) {
  12174. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  12175. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi16(0x7c00));
  12176. __m256i cmp = _mm256_cmpeq_epi16(vexp, _mm256_set1_epi16(0x7c00));
  12177. int mask = _mm256_movemask_epi8(cmp);
  12178. if (mask) {
  12179. for (size_t j = 0; j < 16; ++j) {
  12180. if (!validate_fp16(f[i + j], i + j)) {
  12181. return false;
  12182. }
  12183. }
  12184. GGML_UNREACHABLE();
  12185. }
  12186. }
  12187. #elif defined(__ARM_NEON)
  12188. for (; i + 7 < nb; i += 8) {
  12189. uint16x8_t v = vld1q_u16(f + i);
  12190. uint16x8_t vexp = vandq_u16(v, vdupq_n_u16(0x7c00));
  12191. uint16x8_t cmp = vceqq_u16(vexp, vdupq_n_u16(0x7c00));
  12192. uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(vshrn_n_u16(cmp, 4)), 0);
  12193. if (mask) {
  12194. for (size_t j = 0; j < 8; ++j) {
  12195. if (!validate_fp16(f[i + j], i + j)) {
  12196. return false;
  12197. }
  12198. }
  12199. GGML_UNREACHABLE();
  12200. }
  12201. }
  12202. #endif
  12203. for (; i < nb; ++i) {
  12204. if (!validate_fp16(f[i], i)) {
  12205. return false;
  12206. }
  12207. }
  12208. } break;
  12209. case GGML_TYPE_F32:
  12210. {
  12211. const float * f = (const float *) data;
  12212. size_t i = 0;
  12213. #if defined(__AVX2__)
  12214. for (; i + 7 < nb; i += 8) {
  12215. __m256i v = _mm256_loadu_si256((const __m256i *)(f + i));
  12216. __m256i vexp = _mm256_and_si256(v, _mm256_set1_epi32(0x7f800000));
  12217. __m256i cmp = _mm256_cmpeq_epi32(vexp, _mm256_set1_epi32(0x7f800000));
  12218. int mask = _mm256_movemask_epi8(cmp);
  12219. if (mask) {
  12220. for (size_t j = 0; j < 8; ++j) {
  12221. if (!validate_float(f[i + j], i + j)) {
  12222. return false;
  12223. }
  12224. }
  12225. GGML_UNREACHABLE();
  12226. }
  12227. }
  12228. #elif defined(__ARM_NEON)
  12229. for (; i + 3 < nb; i += 4) {
  12230. uint32x4_t v = vld1q_u32((const uint32_t *)f + i);
  12231. uint32x4_t vexp = vandq_u32(v, vdupq_n_u32(0x7f800000));
  12232. uint32x4_t cmp = vceqq_u32(vexp, vdupq_n_u32(0x7f800000));
  12233. uint64_t mask = vget_lane_u64(vreinterpret_u64_u16(vshrn_n_u32(cmp, 8)), 0);
  12234. if (mask) {
  12235. for (size_t j = 0; j < 4; ++j) {
  12236. if (!validate_float(f[i + j], i + j)) {
  12237. return false;
  12238. }
  12239. }
  12240. GGML_UNREACHABLE();
  12241. }
  12242. }
  12243. #endif
  12244. for (; i < nb; ++i) {
  12245. if (!validate_float(f[i], i)) {
  12246. return false;
  12247. }
  12248. }
  12249. } break;
  12250. case GGML_TYPE_F64:
  12251. {
  12252. const double * f = (const double *) data;
  12253. for (size_t i = 0; i < nb; ++i) {
  12254. if (!validate_float(f[i], i)) {
  12255. return false;
  12256. }
  12257. }
  12258. } break;
  12259. case GGML_TYPE_Q4_0:
  12260. {
  12261. VALIDATE_ROW_DATA_D_F16_IMPL(block_q4_0, data, nb);
  12262. } break;
  12263. case GGML_TYPE_Q4_1:
  12264. {
  12265. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_1, data, nb, d, m);
  12266. } break;
  12267. case GGML_TYPE_Q5_0:
  12268. {
  12269. VALIDATE_ROW_DATA_D_F16_IMPL(block_q5_0, data, nb);
  12270. } break;
  12271. case GGML_TYPE_Q5_1:
  12272. {
  12273. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_1, data, nb, d, m);
  12274. } break;
  12275. case GGML_TYPE_Q8_0:
  12276. {
  12277. VALIDATE_ROW_DATA_D_F16_IMPL(block_q8_0, data, nb);
  12278. } break;
  12279. case GGML_TYPE_Q2_K:
  12280. {
  12281. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q2_K, data, nb, d, dmin);
  12282. } break;
  12283. case GGML_TYPE_Q3_K:
  12284. {
  12285. VALIDATE_ROW_DATA_D_F16_IMPL(block_q3_K, data, nb);
  12286. } break;
  12287. case GGML_TYPE_Q4_K:
  12288. {
  12289. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q4_K, data, nb, d, dmin);
  12290. } break;
  12291. case GGML_TYPE_Q5_K:
  12292. {
  12293. VALIDATE_ROW_DATA_DM_F16_IMPL(block_q5_K, data, nb, d, dmin);
  12294. } break;
  12295. case GGML_TYPE_Q6_K:
  12296. {
  12297. VALIDATE_ROW_DATA_D_F16_IMPL(block_q6_K, data, nb);
  12298. } break;
  12299. case GGML_TYPE_Q8_K:
  12300. {
  12301. const block_q8_K * q = (const block_q8_K *) data;
  12302. for (size_t i = 0; i < nb; ++i) {
  12303. if (!validate_float(q[i].d, i)) {
  12304. return false;
  12305. }
  12306. }
  12307. } break;
  12308. case GGML_TYPE_IQ1_S:
  12309. {
  12310. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq1_s, data, nb);
  12311. } break;
  12312. case GGML_TYPE_IQ1_M:
  12313. {
  12314. const block_iq1_m * q = (const block_iq1_m *) data;
  12315. for (size_t i = 0; i < nb; ++i) {
  12316. iq1m_scale_t scale;
  12317. const uint16_t * sc = (const uint16_t *)q[i].scales;
  12318. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  12319. if (!validate_fp16(scale.f16, i)) {
  12320. return false;
  12321. }
  12322. }
  12323. } break;
  12324. case GGML_TYPE_IQ2_XXS:
  12325. {
  12326. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xxs, data, nb);
  12327. } break;
  12328. case GGML_TYPE_IQ2_XS:
  12329. {
  12330. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_xs, data, nb);
  12331. } break;
  12332. case GGML_TYPE_IQ2_S:
  12333. {
  12334. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq2_s, data, nb);
  12335. } break;
  12336. case GGML_TYPE_IQ3_XXS:
  12337. {
  12338. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_xxs, data, nb);
  12339. } break;
  12340. case GGML_TYPE_IQ3_S:
  12341. {
  12342. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq3_s, data, nb);
  12343. } break;
  12344. case GGML_TYPE_IQ4_XS:
  12345. {
  12346. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_xs, data, nb);
  12347. } break;
  12348. case GGML_TYPE_IQ4_NL:
  12349. {
  12350. VALIDATE_ROW_DATA_D_F16_IMPL(block_iq4_nl, data, nb);
  12351. } break;
  12352. case GGML_TYPE_I8:
  12353. case GGML_TYPE_I16:
  12354. case GGML_TYPE_I32:
  12355. case GGML_TYPE_I64:
  12356. // nothing to validate
  12357. break;
  12358. default:
  12359. {
  12360. fprintf(stderr, "%s: invalid type %d\n", __func__, type);
  12361. return false;
  12362. }
  12363. }
  12364. return true;
  12365. }