ggml.c 384 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #endif
  129. #undef MIN
  130. #undef MAX
  131. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  132. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  133. // floating point type used to accumulate sums
  134. typedef double ggml_float;
  135. // 16-bit float
  136. // on Arm, we use __fp16
  137. // on x86, we use uint16_t
  138. #ifdef __ARM_NEON
  139. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  140. //
  141. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  142. //
  143. #include <arm_neon.h>
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  146. #define GGML_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_FP32_TO_FP16(x) (x)
  148. #else
  149. #ifdef __wasm_simd128__
  150. #include <wasm_simd128.h>
  151. #else
  152. #ifdef __POWER9_VECTOR__
  153. #include <altivec.h>
  154. #undef bool
  155. #define bool _Bool
  156. #else
  157. #include <immintrin.h>
  158. #endif
  159. #endif
  160. #ifdef __F16C__
  161. #ifdef _MSC_VER
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  164. #else
  165. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  166. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  167. #endif
  168. #elif defined(__POWER9_VECTOR__)
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  171. /* the inline asm below is about 12% faster than the lookup method */
  172. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  173. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  174. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  175. register float f;
  176. register double d;
  177. __asm__(
  178. "mtfprd %0,%2\n"
  179. "xscvhpdp %0,%0\n"
  180. "frsp %1,%0\n" :
  181. /* temp */ "=d"(d),
  182. /* out */ "=f"(f):
  183. /* in */ "r"(h));
  184. return f;
  185. }
  186. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  187. register double d;
  188. register ggml_fp16_t r;
  189. __asm__( /* xscvdphp can work on double or single precision */
  190. "xscvdphp %0,%2\n"
  191. "mffprd %1,%0\n" :
  192. /* temp */ "=d"(d),
  193. /* out */ "=r"(r):
  194. /* in */ "f"(f));
  195. return r;
  196. }
  197. #else
  198. // FP16 <-> FP32
  199. // ref: https://github.com/Maratyszcza/FP16
  200. static inline float fp32_from_bits(uint32_t w) {
  201. union {
  202. uint32_t as_bits;
  203. float as_value;
  204. } fp32;
  205. fp32.as_bits = w;
  206. return fp32.as_value;
  207. }
  208. static inline uint32_t fp32_to_bits(float f) {
  209. union {
  210. float as_value;
  211. uint32_t as_bits;
  212. } fp32;
  213. fp32.as_value = f;
  214. return fp32.as_bits;
  215. }
  216. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  217. const uint32_t w = (uint32_t) h << 16;
  218. const uint32_t sign = w & UINT32_C(0x80000000);
  219. const uint32_t two_w = w + w;
  220. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  221. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  222. const float exp_scale = 0x1.0p-112f;
  223. #else
  224. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  225. #endif
  226. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  227. const uint32_t magic_mask = UINT32_C(126) << 23;
  228. const float magic_bias = 0.5f;
  229. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  230. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  231. const uint32_t result = sign |
  232. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  233. return fp32_from_bits(result);
  234. }
  235. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  236. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  237. const float scale_to_inf = 0x1.0p+112f;
  238. const float scale_to_zero = 0x1.0p-110f;
  239. #else
  240. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  241. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  242. #endif
  243. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  244. const uint32_t w = fp32_to_bits(f);
  245. const uint32_t shl1_w = w + w;
  246. const uint32_t sign = w & UINT32_C(0x80000000);
  247. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  248. if (bias < UINT32_C(0x71000000)) {
  249. bias = UINT32_C(0x71000000);
  250. }
  251. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  252. const uint32_t bits = fp32_to_bits(base);
  253. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  254. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  255. const uint32_t nonsign = exp_bits + mantissa_bits;
  256. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  257. }
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  260. #endif // __F16C__
  261. #endif // __ARM_NEON
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t table_gelu_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB)
  272. static float table_f32_f16[1 << 16];
  273. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  274. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  275. // This is also true for POWER9.
  276. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  277. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  278. uint16_t s;
  279. memcpy(&s, &f, sizeof(uint16_t));
  280. return table_f32_f16[s];
  281. }
  282. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  283. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  284. #endif
  285. // note: do not use these inside ggml.c
  286. // these are meant to be used via the ggml.h API
  287. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  288. return (float) GGML_FP16_TO_FP32(x);
  289. }
  290. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  291. return GGML_FP32_TO_FP16(x);
  292. }
  293. //
  294. // timing
  295. //
  296. #if defined(_MSC_VER) || defined(__MINGW32__)
  297. static int64_t timer_freq;
  298. void ggml_time_init(void) {
  299. LARGE_INTEGER frequency;
  300. QueryPerformanceFrequency(&frequency);
  301. timer_freq = frequency.QuadPart;
  302. }
  303. int64_t ggml_time_ms(void) {
  304. LARGE_INTEGER t;
  305. QueryPerformanceCounter(&t);
  306. return (t.QuadPart * 1000) / timer_freq;
  307. }
  308. int64_t ggml_time_us(void) {
  309. LARGE_INTEGER t;
  310. QueryPerformanceCounter(&t);
  311. return (t.QuadPart * 1000000) / timer_freq;
  312. }
  313. #else
  314. void ggml_time_init(void) {}
  315. int64_t ggml_time_ms(void) {
  316. struct timespec ts;
  317. clock_gettime(CLOCK_MONOTONIC, &ts);
  318. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  319. }
  320. int64_t ggml_time_us(void) {
  321. struct timespec ts;
  322. clock_gettime(CLOCK_MONOTONIC, &ts);
  323. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  324. }
  325. #endif
  326. int64_t ggml_cycles(void) {
  327. return clock();
  328. }
  329. int64_t ggml_cycles_per_ms(void) {
  330. return CLOCKS_PER_SEC/1000;
  331. }
  332. #ifdef GGML_PERF
  333. #define ggml_perf_time_ms() ggml_time_ms()
  334. #define ggml_perf_time_us() ggml_time_us()
  335. #define ggml_perf_cycles() ggml_cycles()
  336. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  337. #else
  338. #define ggml_perf_time_ms() 0
  339. #define ggml_perf_time_us() 0
  340. #define ggml_perf_cycles() 0
  341. #define ggml_perf_cycles_per_ms() 0
  342. #endif
  343. //
  344. // cache line
  345. //
  346. #if defined(__cpp_lib_hardware_interference_size)
  347. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  348. #else
  349. #if defined(__POWER9_VECTOR__)
  350. #define CACHE_LINE_SIZE 128
  351. #else
  352. #define CACHE_LINE_SIZE 64
  353. #endif
  354. #endif
  355. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  356. //
  357. // quantization
  358. //
  359. #if __AVX__ || __AVX2__ || __AVX512F__
  360. // Unpack 16 4-bit fields into 16 bytes
  361. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  362. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  363. {
  364. // Load 8 bytes from memory
  365. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  366. // Expand bytes into uint16_t values
  367. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  368. // Unpack values into individual bytes
  369. const __m128i lowMask = _mm_set1_epi8( 0xF );
  370. __m128i high = _mm_andnot_si128( lowMask, bytes );
  371. __m128i low = _mm_and_si128( lowMask, bytes );
  372. high = _mm_slli_epi16( high, 4 );
  373. bytes = _mm_or_si128( low, high );
  374. return bytes;
  375. }
  376. // horizontally add 8 floats
  377. static inline float hsum_float_8(const __m256 x) {
  378. __m128 res = _mm256_extractf128_ps(x, 1);
  379. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  380. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  381. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  382. return _mm_cvtss_f32(res);
  383. }
  384. // horizontally add 8 int32_t
  385. static inline int hsum_i32_8(const __m256i a) {
  386. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  387. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  388. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  389. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  390. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  391. }
  392. #if __AVX2__ || __AVX512F__
  393. // Unpack 32 4-bit fields into 32 bytes
  394. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  395. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  396. {
  397. // Load 16 bytes from memory
  398. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  399. // Expand bytes into uint16_t values
  400. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  401. // Unpack values into individual bytes
  402. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  403. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  404. __m256i low = _mm256_and_si256( lowMask, bytes );
  405. high = _mm256_slli_epi16( high, 4 );
  406. bytes = _mm256_or_si256( low, high );
  407. return bytes;
  408. }
  409. // add int16_t pairwise and return as float vector
  410. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  411. const __m256i ones = _mm256_set1_epi16(1);
  412. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  413. return _mm256_cvtepi32_ps(summed_pairs);
  414. }
  415. // multiply int8_t, add results pairwise twice and return as float vector
  416. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  417. // Get absolute values of x vectors
  418. const __m256i ax = _mm256_sign_epi8(x, x);
  419. // Sign the values of the y vectors
  420. const __m256i sy = _mm256_sign_epi8(y, x);
  421. // Perform multiplication and create 16-bit values
  422. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  423. return sum_i16_pairs_float(dot);
  424. }
  425. static inline __m128i packNibbles( __m256i bytes )
  426. {
  427. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  428. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  429. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  430. __m256i low = _mm256_and_si256( lowByte, bytes );
  431. high = _mm256_srli_epi16( high, 4 );
  432. bytes = _mm256_or_si256( low, high );
  433. // Compress uint16_t lanes into bytes
  434. __m128i r0 = _mm256_castsi256_si128( bytes );
  435. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  436. return _mm_packus_epi16( r0, r1 );
  437. }
  438. #else
  439. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  440. {
  441. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  442. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  443. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  444. __m128i low = _mm_and_si128( lowByte, bytes1 );
  445. high = _mm_srli_epi16( high, 4 );
  446. bytes1 = _mm_or_si128( low, high );
  447. high = _mm_andnot_si128( lowByte, bytes2 );
  448. low = _mm_and_si128( lowByte, bytes2 );
  449. high = _mm_srli_epi16( high, 4 );
  450. bytes2 = _mm_or_si128( low, high );
  451. return _mm_packus_epi16( bytes1, bytes2);
  452. }
  453. #endif
  454. #endif // __AVX__ || __AVX2__ || __AVX512F__
  455. #if __ARM_NEON
  456. #if !defined(__aarch64__)
  457. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  458. return
  459. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  460. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  461. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  462. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  463. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  464. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  465. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  466. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  467. }
  468. inline static int16_t vaddvq_s8(int8x16_t v) {
  469. return
  470. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  471. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  472. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  473. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  474. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  475. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  476. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  477. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  478. }
  479. inline static int32_t vaddvq_s16(int16x8_t v) {
  480. return
  481. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  482. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  483. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  484. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  485. }
  486. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  487. return
  488. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  489. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  490. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  491. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  492. }
  493. inline static int32_t vaddvq_s32(int32x4_t v) {
  494. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  495. }
  496. inline static float vaddvq_f32(float32x4_t v) {
  497. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  498. }
  499. float vminvq_f32(float32x4_t v) {
  500. return
  501. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  502. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  503. }
  504. float vmaxvq_f32(float32x4_t v) {
  505. return
  506. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  507. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  508. }
  509. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  510. return vget_low_s8(vcombine_s8(a, b));
  511. }
  512. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  513. return vget_high_s8(vcombine_s8(a, b));
  514. }
  515. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  516. return vget_low_u8(vcombine_u8(a, b));
  517. }
  518. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  519. return vget_high_u8(vcombine_u8(a, b));
  520. }
  521. #endif
  522. #endif
  523. #define QK4_0 32
  524. typedef struct {
  525. float d; // delta
  526. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  527. } block_q4_0;
  528. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  529. #define QK4_1 32
  530. typedef struct {
  531. float d; // delta
  532. float m; // min
  533. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  534. } block_q4_1;
  535. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  536. #define QK4_2 16
  537. typedef struct {
  538. ggml_fp16_t d; // delta
  539. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  540. } block_q4_2;
  541. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  542. #define QK4_3 16
  543. typedef struct {
  544. ggml_fp16_t d; // delta
  545. ggml_fp16_t m; // min
  546. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  547. } block_q4_3;
  548. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  549. #define QK8_0 32
  550. typedef struct {
  551. float d; // delta
  552. float s; // d * sum(qs[i])
  553. int8_t qs[QK8_0]; // quants
  554. } block_q8_0;
  555. static_assert(sizeof(block_q8_0) == 2*sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  556. // reference implementation for deterministic creation of model files
  557. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  558. assert(k % QK4_0 == 0);
  559. const int nb = k / QK4_0;
  560. uint8_t pp[QK4_0/2];
  561. for (int i = 0; i < nb; i++) {
  562. float amax = 0.0f; // absolute max
  563. for (int l = 0; l < QK4_0; l++) {
  564. const float v = x[i*QK4_0 + l];
  565. amax = MAX(amax, fabsf(v));
  566. }
  567. const float d = amax / ((1 << 3) - 1);
  568. const float id = d ? 1.0f/d : 0.0f;
  569. y[i].d = d;
  570. for (int l = 0; l < QK4_0; l += 2) {
  571. const float v0 = x[i*QK4_0 + l + 0]*id;
  572. const float v1 = x[i*QK4_0 + l + 1]*id;
  573. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  574. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  575. assert(vi0 < 16);
  576. assert(vi1 < 16);
  577. pp[l/2] = vi0 | (vi1 << 4);
  578. }
  579. memcpy(y[i].qs, pp, sizeof(pp));
  580. }
  581. }
  582. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  583. assert(k % QK4_0 == 0);
  584. const int nb = k / QK4_0;
  585. block_q4_0 * restrict y = vy;
  586. #if defined(__POWER9_VECTOR__)
  587. const vector float v85 = vec_splats(8.5f);
  588. for (int i = 0; i < nb; i++) {
  589. float amax = 0.0f; // absolute max
  590. vector float srcv [8];
  591. vector float asrcv[8];
  592. vector float amaxv[8];
  593. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  594. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  595. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  596. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  597. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  598. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  599. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  600. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  601. amax = MAX(
  602. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  603. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  604. const float d = amax / ((1 << 3) - 1);
  605. const float id = d ? 1.0/d : 0.0;
  606. y[i].d = d;
  607. const vector float vid = vec_splats(id);
  608. uint8_t * restrict pb = y[i].qs;
  609. for (int l = 0; l < 8; l++) {
  610. const vector float vf = vec_madd(srcv[l], vid, v85);
  611. const vector signed int vi = vec_signed(vf);
  612. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  613. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  614. }
  615. }
  616. #elif __ARM_NEON
  617. for (int i = 0; i < nb; i++) {
  618. float32x4_t srcv [8];
  619. float32x4_t asrcv[8];
  620. float32x4_t amaxv[8];
  621. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  622. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  623. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  624. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  625. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  626. const float amax = vmaxvq_f32(amaxv[0]);
  627. const float d = amax / ((1 << 3) - 1);
  628. const float id = d ? 1.0f/d : 0.0f;
  629. y[i].d = d;
  630. for (int l = 0; l < 8; l++) {
  631. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  632. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  633. const int32x4_t vi = vcvtq_s32_f32(vf);
  634. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  635. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  636. }
  637. }
  638. #elif defined(__AVX2__)
  639. for (int i = 0; i < nb; i++) {
  640. // Load elements into 4 AVX vectors
  641. __m256 v0 = _mm256_loadu_ps( x );
  642. __m256 v1 = _mm256_loadu_ps( x + 8 );
  643. __m256 v2 = _mm256_loadu_ps( x + 16 );
  644. __m256 v3 = _mm256_loadu_ps( x + 24 );
  645. x += 32;
  646. // Compute max(abs(e)) for the block
  647. const __m256 signBit = _mm256_set1_ps( -0.0f );
  648. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  649. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  650. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  651. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  652. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  653. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  654. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  655. const float maxScalar = _mm_cvtss_f32( max4 );
  656. // Quantize these floats
  657. const float d = maxScalar / 7.0f;
  658. y[i].d = d;
  659. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  660. const __m256 mul = _mm256_set1_ps( id );
  661. // Apply the multiplier
  662. v0 = _mm256_mul_ps( v0, mul );
  663. v1 = _mm256_mul_ps( v1, mul );
  664. v2 = _mm256_mul_ps( v2, mul );
  665. v3 = _mm256_mul_ps( v3, mul );
  666. // Round to nearest integer
  667. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  668. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  669. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  670. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  671. // Convert floats to integers
  672. __m256i i0 = _mm256_cvtps_epi32( v0 );
  673. __m256i i1 = _mm256_cvtps_epi32( v1 );
  674. __m256i i2 = _mm256_cvtps_epi32( v2 );
  675. __m256i i3 = _mm256_cvtps_epi32( v3 );
  676. // Convert int32 to int16
  677. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  678. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  679. // Convert int16 to int8
  680. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  681. // We got our precious signed bytes, but the order is now wrong
  682. // These AVX2 pack instructions process 16-byte pieces independently
  683. // The following instruction is fixing the order
  684. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  685. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  686. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  687. const __m256i off = _mm256_set1_epi8( 8 );
  688. i0 = _mm256_add_epi8( i0, off );
  689. // Compress the vector into 4 bit/value, and store
  690. __m128i res = packNibbles( i0 );
  691. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  692. }
  693. #elif defined(__AVX__)
  694. for (int i = 0; i < nb; i++) {
  695. // Load elements into 4 AVX vectors
  696. __m256 v0 = _mm256_loadu_ps( x );
  697. __m256 v1 = _mm256_loadu_ps( x + 8 );
  698. __m256 v2 = _mm256_loadu_ps( x + 16 );
  699. __m256 v3 = _mm256_loadu_ps( x + 24 );
  700. x += 32;
  701. // Compute max(abs(e)) for the block
  702. const __m256 signBit = _mm256_set1_ps( -0.0f );
  703. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  704. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  705. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  706. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  707. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  708. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  709. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  710. const float maxScalar = _mm_cvtss_f32( max4 );
  711. // Quantize these floats
  712. const float d = maxScalar / 7.0f;
  713. y[i].d = d;
  714. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  715. const __m256 mul = _mm256_set1_ps( id );
  716. // Apply the multiplier
  717. v0 = _mm256_mul_ps( v0, mul );
  718. v1 = _mm256_mul_ps( v1, mul );
  719. v2 = _mm256_mul_ps( v2, mul );
  720. v3 = _mm256_mul_ps( v3, mul );
  721. // Round to nearest integer
  722. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  723. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  724. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  725. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  726. // Convert floats to integers
  727. __m256i i0 = _mm256_cvtps_epi32( v0 );
  728. __m256i i1 = _mm256_cvtps_epi32( v1 );
  729. __m256i i2 = _mm256_cvtps_epi32( v2 );
  730. __m256i i3 = _mm256_cvtps_epi32( v3 );
  731. // Since we don't have in AVX some necessary functions,
  732. // we split the registers in half and call AVX2 analogs from SSE
  733. __m128i ni0 = _mm256_castsi256_si128( i0 );
  734. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  735. __m128i ni2 = _mm256_castsi256_si128( i1 );
  736. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  737. __m128i ni4 = _mm256_castsi256_si128( i2 );
  738. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  739. __m128i ni6 = _mm256_castsi256_si128( i3 );
  740. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  741. // Convert int32 to int16
  742. ni0 = _mm_packs_epi32( ni0, ni1 );
  743. ni2 = _mm_packs_epi32( ni2, ni3 );
  744. ni4 = _mm_packs_epi32( ni4, ni5 );
  745. ni6 = _mm_packs_epi32( ni6, ni7 );
  746. // Convert int16 to int8
  747. ni0 = _mm_packs_epi16( ni0, ni2 );
  748. ni4 = _mm_packs_epi16( ni4, ni6 );
  749. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  750. const __m128i off = _mm_set1_epi8( 8);
  751. ni0 = _mm_add_epi8( ni0, off );
  752. ni4 = _mm_add_epi8( ni4, off );
  753. // Compress the vector into 4 bit/value, and store
  754. __m128i res = packNibbles( ni0, ni4 );
  755. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  756. }
  757. #elif defined(__wasm_simd128__)
  758. for (int i = 0; i < nb; i++) {
  759. float amax = 0.0f; // absolute max
  760. v128_t srcv [8];
  761. v128_t asrcv[8];
  762. v128_t amaxv[8];
  763. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  764. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  765. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  766. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  767. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  768. amax = MAX(
  769. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  770. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  771. const float d = amax / ((1 << 3) - 1);
  772. const float id = d ? 1.0/d : 0.0;
  773. y[i].d = d;
  774. for (int l = 0; l < 8; l++) {
  775. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  776. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  777. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  778. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  779. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  780. }
  781. }
  782. #else
  783. // scalar
  784. quantize_row_q4_0_reference(x, y, k);
  785. #endif
  786. }
  787. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  788. assert(k % QK4_1 == 0);
  789. const int nb = k / QK4_1;
  790. block_q4_1 * restrict y = vy;
  791. uint8_t pp[QK4_1/2];
  792. for (int i = 0; i < nb; i++) {
  793. float min = FLT_MAX;
  794. float max = -FLT_MAX;
  795. for (int l = 0; l < QK4_1; l++) {
  796. const float v = x[i*QK4_1 + l];
  797. if (v < min) min = v;
  798. if (v > max) max = v;
  799. }
  800. const float d = (max - min) / ((1 << 4) - 1);
  801. const float id = d ? 1.0f/d : 0.0f;
  802. y[i].d = d;
  803. y[i].m = min;
  804. for (int l = 0; l < QK4_1; l += 2) {
  805. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  806. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  807. const uint8_t vi0 = roundf(v0);
  808. const uint8_t vi1 = roundf(v1);
  809. assert(vi0 < 16);
  810. assert(vi1 < 16);
  811. pp[l/2] = vi0 | (vi1 << 4);
  812. }
  813. memcpy(y[i].qs, pp, sizeof(pp));
  814. }
  815. }
  816. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  817. assert(k % QK4_1 == 0);
  818. const int nb = k / QK4_1;
  819. block_q4_1 * restrict y = vy;
  820. #if defined(__AVX2__)
  821. for (int i = 0; i < nb; i++) {
  822. // Load elements into 4 AVX vectors
  823. __m256 v0 = _mm256_loadu_ps( x );
  824. __m256 v1 = _mm256_loadu_ps( x + 8 );
  825. __m256 v2 = _mm256_loadu_ps( x + 16 );
  826. __m256 v3 = _mm256_loadu_ps( x + 24 );
  827. x += 32;
  828. // Compute max for the block
  829. __m256 vmax;
  830. vmax = _mm256_max_ps( v0, v1 );
  831. vmax = _mm256_max_ps( vmax, v2 );
  832. vmax = _mm256_max_ps( vmax, v3 );
  833. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  834. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  835. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  836. const float maxScalar = _mm_cvtss_f32( max4 );
  837. // Compute min for the block
  838. __m256 vmin;
  839. vmin = _mm256_min_ps( v0, v1 );
  840. vmin = _mm256_min_ps( vmin, v2 );
  841. vmin = _mm256_min_ps( vmin, v3 );
  842. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  843. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  844. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  845. const float minScalar = _mm_cvtss_f32( min4 );
  846. // Quantize these floats
  847. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  848. const float id = d ? 1.0f/d : 0.0f;
  849. y[i].m = minScalar;
  850. y[i].d = d;
  851. // x = (x-min)*id
  852. const __m256 mul = _mm256_set1_ps( id );
  853. const __m256 off = _mm256_set1_ps( minScalar );
  854. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  855. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  856. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  857. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  858. // Round to nearest integer
  859. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  860. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  861. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  862. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  863. // Convert floats to integers
  864. __m256i i0 = _mm256_cvtps_epi32( v0 );
  865. __m256i i1 = _mm256_cvtps_epi32( v1 );
  866. __m256i i2 = _mm256_cvtps_epi32( v2 );
  867. __m256i i3 = _mm256_cvtps_epi32( v3 );
  868. // Convert int32 to int16
  869. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  870. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  871. // Convert int16 to int8
  872. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  873. // We got our precious signed bytes, but the order is now wrong
  874. // These AVX2 pack instructions process 16-byte pieces independently
  875. // The following instruction is fixing the order
  876. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  877. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  878. // Compress the vector into 4 bit/value, and store
  879. __m128i res = packNibbles( i0 );
  880. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  881. }
  882. #elif __ARM_NEON
  883. for (int i = 0; i < nb; i++) {
  884. float32x4_t srcv[8];
  885. float32x4_t minv[8];
  886. float32x4_t maxv[8];
  887. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  888. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  889. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  890. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  891. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  892. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  893. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  894. const float min = vminvq_f32(minv[0]);
  895. const float max = vmaxvq_f32(maxv[0]);
  896. const float d = (max - min) / ((1 << 4) - 1);
  897. const float id = d ? 1.0f/d : 0.0f;
  898. y[i].d = d;
  899. y[i].m = min;
  900. const float32x4_t minv0 = vdupq_n_f32(min);
  901. for (int l = 0; l < 8; l++) {
  902. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  903. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  904. const int32x4_t vi = vcvtq_s32_f32(vf);
  905. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  906. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  907. }
  908. }
  909. #else
  910. // scalar
  911. quantize_row_q4_1_reference(x, vy, k);
  912. #endif
  913. }
  914. // reference implementation for deterministic creation of model files
  915. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  916. assert(k % QK4_2 == 0);
  917. const int nb = k / QK4_2;
  918. for (int i = 0; i < nb; i++) {
  919. float amax = 0.0f; // absolute max
  920. for (int l = 0; l < QK4_2; l++) {
  921. const float v = x[i*QK4_2 + l];
  922. amax = MAX(amax, fabsf(v));
  923. }
  924. const float d = amax / ((1 << 3) - 1);
  925. const float id = d ? 1.0f/d : 0.0f;
  926. y[i].d = GGML_FP32_TO_FP16(d);
  927. for (int l = 0; l < QK4_2; l += 2) {
  928. const float v0 = x[i*QK4_2 + l + 0]*id;
  929. const float v1 = x[i*QK4_2 + l + 1]*id;
  930. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  931. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  932. assert(vi0 < 16);
  933. assert(vi1 < 16);
  934. y[i].qs[l/2] = vi0 | (vi1 << 4);
  935. }
  936. }
  937. }
  938. static inline int nearest_int(float fval) {
  939. assert(fval <= 4194303.f);
  940. float val = fval + 12582912.f;
  941. int i; memcpy(&i, &val, sizeof(int));
  942. return (i & 0x007fffff) - 0x00400000;
  943. }
  944. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  945. const float * restrict candidates, int8_t * restrict L) {
  946. assert (nmin >= INT8_MIN);
  947. assert (nmax <= INT8_MAX);
  948. float amax = 0;
  949. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  950. if (!amax) { // all zero
  951. for (int i=0; i<n; ++i) L[i] = 0;
  952. return 1.f;
  953. }
  954. float best = 0, bestScale = 0;
  955. for (int si=0; si<nCandidates; ++si) {
  956. float iscale = candidates[si]/amax;
  957. float sumlxP = 0; int suml2P = 0;
  958. float sumlxM = 0; int suml2M = 0;
  959. for (int i=0; i<n; ++i) {
  960. int l = nearest_int(iscale*X[i]);
  961. int lp = MAX(nmin, MIN(nmax, +l));
  962. int lm = MAX(nmin, MIN(nmax, -l));
  963. sumlxP += X[i]*lp; suml2P += lp*lp;
  964. sumlxM += X[i]*lm; suml2M += lm*lm;
  965. }
  966. float sumlxP2 = sumlxP*sumlxP;
  967. float sumlxM2 = sumlxM*sumlxM;
  968. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  969. if (sumlxP2 > best*suml2P) {
  970. best = sumlxP2/suml2P; bestScale = iscale;
  971. }
  972. } else {
  973. if (sumlxM2 > best*suml2M) {
  974. best = sumlxM2/suml2M; bestScale = -iscale;
  975. }
  976. }
  977. }
  978. float sumlx = 0; int suml2 = 0;
  979. for (int i=0; i<n; ++i) {
  980. int l = nearest_int(bestScale*X[i]);
  981. l = MAX(nmin, MIN(nmax, l));
  982. sumlx += X[i]*l; suml2 += l*l;
  983. L[i] = l;
  984. }
  985. float scale = sumlx/suml2;
  986. return scale;
  987. }
  988. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  989. #define CANDIDATE_COUNT 8
  990. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  991. assert(k % QK4_2 == 0);
  992. int8_t L[QK4_2];
  993. const int nb = k / QK4_2;
  994. for (int i = 0; i < nb; i++) {
  995. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  996. y[i].d = GGML_FP32_TO_FP16(scale);
  997. for (int l = 0; l < QK4_2; l += 2) {
  998. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  999. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  1000. assert(vi0 < 16);
  1001. assert(vi1 < 16);
  1002. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1003. }
  1004. x += QK4_2;
  1005. }
  1006. }
  1007. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1008. assert(k % QK4_2 == 0);
  1009. block_q4_2 * restrict y = vy;
  1010. //quantize_row_q4_2_reference(x, y, k);
  1011. // This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
  1012. quantize_row_q4_2_rmse(x, y, k);
  1013. }
  1014. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1015. assert(k % QK4_3 == 0);
  1016. const int nb = k / QK4_3;
  1017. for (int i = 0; i < nb; i++) {
  1018. float min = FLT_MAX;
  1019. float max = -FLT_MAX;
  1020. for (int l = 0; l < QK4_3; l++) {
  1021. const float v = x[i*QK4_3 + l];
  1022. if (v < min) min = v;
  1023. if (v > max) max = v;
  1024. }
  1025. const float d = (max - min) / ((1 << 4) - 1);
  1026. const float id = d ? 1.0f/d : 0.0f;
  1027. y[i].d = GGML_FP32_TO_FP16(d);
  1028. y[i].m = GGML_FP32_TO_FP16(min);
  1029. for (int l = 0; l < QK4_3; l += 2) {
  1030. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1031. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1032. const uint8_t vi0 = (int) (v0 + 0.5f);
  1033. const uint8_t vi1 = (int) (v1 + 0.5f);
  1034. assert(vi0 < 16);
  1035. assert(vi1 < 16);
  1036. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1037. }
  1038. }
  1039. }
  1040. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1041. assert(k % QK4_3 == 0);
  1042. block_q4_3 * restrict y = vy;
  1043. quantize_row_q4_3_reference(x, y, k);
  1044. }
  1045. // reference implementation for deterministic creation of model files
  1046. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1047. assert(k % QK8_0 == 0);
  1048. const int nb = k / QK8_0;
  1049. for (int i = 0; i < nb; i++) {
  1050. float amax = 0.0f; // absolute max
  1051. for (int l = 0; l < QK8_0; l++) {
  1052. const float v = x[i*QK8_0 + l];
  1053. amax = MAX(amax, fabsf(v));
  1054. }
  1055. const float d = amax / ((1 << 7) - 1);
  1056. const float id = d ? 1.0f/d : 0.0f;
  1057. y[i].d = d;
  1058. int sum = 0;
  1059. for (int l = 0; l < QK8_0; ++l) {
  1060. const float v = x[i*QK8_0 + l]*id;
  1061. y[i].qs[l] = roundf(v);
  1062. sum += y[i].qs[l];
  1063. }
  1064. y[i].s = d * sum;
  1065. }
  1066. }
  1067. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1068. assert(k % QK8_0 == 0);
  1069. const int nb = k / QK8_0;
  1070. block_q8_0 * restrict y = vy;
  1071. #if defined(__ARM_NEON)
  1072. for (int i = 0; i < nb; i++) {
  1073. float32x4_t srcv [8];
  1074. float32x4_t asrcv[8];
  1075. float32x4_t amaxv[8];
  1076. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1077. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1078. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1079. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1080. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1081. const float amax = vmaxvq_f32(amaxv[0]);
  1082. const float d = amax / ((1 << 7) - 1);
  1083. const float id = d ? 1.0f/d : 0.0f;
  1084. y[i].d = d;
  1085. int32x4_t accv = vdupq_n_s32(0);
  1086. for (int l = 0; l < 8; l++) {
  1087. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1088. const int32x4_t vi = vcvtnq_s32_f32(v);
  1089. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1090. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1091. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1092. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1093. accv = vaddq_s32(accv, vi);
  1094. }
  1095. int32_t sum = vaddvq_s32(accv);
  1096. y[i].s = d * sum;
  1097. }
  1098. #elif defined(__AVX2__) || defined(__AVX__)
  1099. for (int i = 0; i < nb; i++) {
  1100. // Load elements into 4 AVX vectors
  1101. __m256 v0 = _mm256_loadu_ps( x );
  1102. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1103. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1104. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1105. x += 32;
  1106. // Compute max(abs(e)) for the block
  1107. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1108. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1109. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1110. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1111. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1112. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1113. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1114. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1115. const float maxScalar = _mm_cvtss_f32( max4 );
  1116. // Quantize these floats
  1117. const float d = maxScalar / 127.f;
  1118. y[i].d = d;
  1119. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1120. const __m256 mul = _mm256_set1_ps( id );
  1121. // Apply the multiplier
  1122. v0 = _mm256_mul_ps( v0, mul );
  1123. v1 = _mm256_mul_ps( v1, mul );
  1124. v2 = _mm256_mul_ps( v2, mul );
  1125. v3 = _mm256_mul_ps( v3, mul );
  1126. // Round to nearest integer
  1127. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1128. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1129. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1130. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1131. // Convert floats to integers
  1132. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1133. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1134. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1135. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1136. #if defined(__AVX2__)
  1137. // Compute the sum of the quants and set y[i].s
  1138. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1139. // Convert int32 to int16
  1140. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1141. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1142. // Convert int16 to int8
  1143. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1144. // We got our precious signed bytes, but the order is now wrong
  1145. // These AVX2 pack instructions process 16-byte pieces independently
  1146. // The following instruction is fixing the order
  1147. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1148. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1149. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1150. #else
  1151. // Since we don't have in AVX some necessary functions,
  1152. // we split the registers in half and call AVX2 analogs from SSE
  1153. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1154. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1155. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1156. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1157. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1158. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1159. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1160. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1161. // Compute the sum of the quants and set y[i].s
  1162. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1163. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1164. y[i].s = d * hsum_i32_8(_mm256_set_m128i(s1, s0));
  1165. // Convert int32 to int16
  1166. ni0 = _mm_packs_epi32( ni0, ni1 );
  1167. ni2 = _mm_packs_epi32( ni2, ni3 );
  1168. ni4 = _mm_packs_epi32( ni4, ni5 );
  1169. ni6 = _mm_packs_epi32( ni6, ni7 );
  1170. // Convert int16 to int8
  1171. ni0 = _mm_packs_epi16( ni0, ni2 );
  1172. ni4 = _mm_packs_epi16( ni4, ni6 );
  1173. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1174. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1175. #endif
  1176. }
  1177. #else
  1178. // scalar
  1179. quantize_row_q8_0_reference(x, y, k);
  1180. #endif
  1181. }
  1182. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1183. assert(k % QK4_0 == 0);
  1184. const int nb = k / QK4_0;
  1185. const block_q4_0 * restrict x = vx;
  1186. #if defined(__AVX2__)
  1187. for (int i = 0; i < nb; i++) {
  1188. // scale factor
  1189. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1190. const uint8_t * restrict pp = x[i].qs;
  1191. for (int l = 0; l < QK4_0; l += 32) {
  1192. // Load 32x4-bit integers into 32x8-bit integers
  1193. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1194. // Subtract 8 from the integers
  1195. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1196. // Convert to 16-bit int
  1197. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1198. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1199. // Convert to 32-bit int -> float 32
  1200. const __m256 vf[4] = {
  1201. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1202. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1203. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1204. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1205. };
  1206. // Scale and store
  1207. for (int j = 0; j < 4; j++) {
  1208. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1209. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1210. }
  1211. }
  1212. }
  1213. #elif defined(__ARM_NEON)
  1214. for (int i = 0; i < nb; i++) {
  1215. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1216. const uint8_t * restrict pp = x[i].qs;
  1217. for (int l = 0; l < QK4_0; l += 16) {
  1218. // Load 16x4-bit integers into 8x8-bit integers
  1219. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1220. // Expand 4-bit qs to 8-bit bytes
  1221. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1222. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1223. // Convert to signed 8-bit integers
  1224. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1225. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1226. // Subtract 8 from each byte
  1227. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1228. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1229. // Interleave and combine
  1230. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1231. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1232. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1233. // convert to 2x int16x8_t
  1234. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1235. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1236. // convert to 4x float32x4_t
  1237. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1238. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1239. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1240. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1241. // Multiply by d
  1242. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1243. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1244. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1245. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1246. // Store
  1247. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1248. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1249. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1250. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1251. }
  1252. }
  1253. #else
  1254. // scalar
  1255. for (int i = 0; i < nb; i++) {
  1256. const float d = x[i].d;
  1257. const uint8_t * restrict pp = x[i].qs;
  1258. for (int l = 0; l < QK4_0; l += 2) {
  1259. const uint8_t vi = pp[l/2];
  1260. const int8_t vi0 = vi & 0xf;
  1261. const int8_t vi1 = vi >> 4;
  1262. const float v0 = (vi0 - 8)*d;
  1263. const float v1 = (vi1 - 8)*d;
  1264. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1265. y[i*QK4_0 + l + 0] = v0;
  1266. y[i*QK4_0 + l + 1] = v1;
  1267. assert(!isnan(y[i*QK4_0 + l + 0]));
  1268. assert(!isnan(y[i*QK4_0 + l + 1]));
  1269. }
  1270. }
  1271. #endif
  1272. }
  1273. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1274. assert(k % QK4_1 == 0);
  1275. const int nb = k / QK4_1;
  1276. const block_q4_1 * restrict x = vx;
  1277. #if defined(__AVX2__)
  1278. for (int i = 0; i < nb; i++) {
  1279. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1280. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1281. const uint8_t * restrict pp = x[i].qs;
  1282. for (int l = 0; l < QK4_1; l += 32) {
  1283. // Load 32x4-bit integers into 32x8-bit integers
  1284. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1285. // Convert to 16-bit int
  1286. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1287. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1288. // Convert to 32-bit int -> float 32
  1289. const __m256 vf[4] = {
  1290. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1291. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1292. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1293. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1294. };
  1295. // Scale, add m and store
  1296. for (int j = 0; j < 4; j++) {
  1297. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1298. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1299. }
  1300. }
  1301. }
  1302. #elif defined(__ARM_NEON)
  1303. for (int i = 0; i < nb; i++) {
  1304. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1305. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1306. const uint8_t * restrict pp = x[i].qs;
  1307. for (int l = 0; l < QK4_1; l += 16) {
  1308. // Load 16x4-bit integers into 8x8-bit integers
  1309. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1310. // Expand 4-bit qs to 8-bit bytes
  1311. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1312. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1313. // Interleave and combine
  1314. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1315. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1316. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1317. // convert to 2x uint16x8_t
  1318. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1319. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1320. // convert to 4x float32x4_t
  1321. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1322. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1323. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1324. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1325. // multiply by d and add m
  1326. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1327. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1328. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1329. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1330. // Store
  1331. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1332. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1333. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1334. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1335. }
  1336. }
  1337. #else
  1338. for (int i = 0; i < nb; i++) {
  1339. const float d = x[i].d;
  1340. const float m = x[i].m;
  1341. const uint8_t * restrict pp = x[i].qs;
  1342. for (int l = 0; l < QK4_1; l += 2) {
  1343. const uint8_t vi = pp[l/2];
  1344. const int8_t vi0 = vi & 0xf;
  1345. const int8_t vi1 = vi >> 4;
  1346. const float v0 = vi0*d + m;
  1347. const float v1 = vi1*d + m;
  1348. y[i*QK4_1 + l + 0] = v0;
  1349. y[i*QK4_1 + l + 1] = v1;
  1350. assert(!isnan(y[i*QK4_1 + l + 0]));
  1351. assert(!isnan(y[i*QK4_1 + l + 1]));
  1352. }
  1353. }
  1354. #endif
  1355. }
  1356. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1357. assert(k % QK4_2 == 0);
  1358. const int nb = k / QK4_2;
  1359. const block_q4_2 * restrict x = vx;
  1360. for (int i = 0; i < nb; i++) {
  1361. const float d = GGML_FP16_TO_FP32(x[i].d);
  1362. const uint8_t * restrict pp = x[i].qs;
  1363. for (int l = 0; l < QK4_2; l += 2) {
  1364. const uint8_t vi = pp[l/2];
  1365. const int8_t vi0 = vi & 0xf;
  1366. const int8_t vi1 = vi >> 4;
  1367. const float v0 = (vi0 - 8)*d;
  1368. const float v1 = (vi1 - 8)*d;
  1369. y[i*QK4_2 + l + 0] = v0;
  1370. y[i*QK4_2 + l + 1] = v1;
  1371. assert(!isnan(y[i*QK4_2 + l + 0]));
  1372. assert(!isnan(y[i*QK4_2 + l + 1]));
  1373. }
  1374. }
  1375. }
  1376. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1377. assert(k % QK4_3 == 0);
  1378. const int nb = k / QK4_3;
  1379. const block_q4_3 * restrict x = vx;
  1380. for (int i = 0; i < nb; i++) {
  1381. const float d = GGML_FP16_TO_FP32(x[i].d);
  1382. const float m = GGML_FP16_TO_FP32(x[i].m);
  1383. const uint8_t * restrict pp = x[i].qs;
  1384. for (int l = 0; l < QK4_3; l += 2) {
  1385. const uint8_t vi = pp[l/2];
  1386. const int8_t vi0 = vi & 0xf;
  1387. const int8_t vi1 = vi >> 4;
  1388. const float v0 = vi0*d + m;
  1389. const float v1 = vi1*d + m;
  1390. y[i*QK4_3 + l + 0] = v0;
  1391. y[i*QK4_3 + l + 1] = v1;
  1392. assert(!isnan(y[i*QK4_3 + l + 0]));
  1393. assert(!isnan(y[i*QK4_3 + l + 1]));
  1394. }
  1395. }
  1396. }
  1397. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1398. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1399. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1400. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1401. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1402. [GGML_TYPE_Q4_0] = {
  1403. .dequantize_row_q = dequantize_row_q4_0,
  1404. .quantize_row_q = quantize_row_q4_0,
  1405. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1406. .quantize_row_q_dot = quantize_row_q8_0,
  1407. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1408. },
  1409. [GGML_TYPE_Q4_1] = {
  1410. .dequantize_row_q = dequantize_row_q4_1,
  1411. .quantize_row_q = quantize_row_q4_1,
  1412. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1413. .quantize_row_q_dot = quantize_row_q8_0,
  1414. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1415. },
  1416. [GGML_TYPE_Q4_2] = {
  1417. .dequantize_row_q = dequantize_row_q4_2,
  1418. .quantize_row_q = quantize_row_q4_2,
  1419. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
  1420. .quantize_row_q_dot = quantize_row_q8_0,
  1421. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1422. },
  1423. [GGML_TYPE_Q4_3] = {
  1424. .dequantize_row_q = dequantize_row_q4_3,
  1425. .quantize_row_q = quantize_row_q4_3,
  1426. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference, // TODO: RMSE optimization
  1427. .quantize_row_q_dot = quantize_row_q8_0,
  1428. .vec_dot_q = ggml_vec_dot_q4_3_q8_0,
  1429. },
  1430. [GGML_TYPE_Q8_0] = {
  1431. .dequantize_row_q = NULL, // TODO
  1432. .quantize_row_q = quantize_row_q8_0,
  1433. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1434. .quantize_row_q_dot = quantize_row_q8_0,
  1435. .vec_dot_q = NULL, // TODO
  1436. },
  1437. };
  1438. // For internal test use
  1439. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1440. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1441. return quantize_fns[i];
  1442. }
  1443. //
  1444. // simd mappings
  1445. //
  1446. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1447. // we then implement the fundamental computation operations below using only these macros
  1448. // adding support for new architectures requires to define the corresponding SIMD macros
  1449. //
  1450. // GGML_F32_STEP / GGML_F16_STEP
  1451. // number of elements to process in a single step
  1452. //
  1453. // GGML_F32_EPR / GGML_F16_EPR
  1454. // number of elements to fit in a single register
  1455. //
  1456. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1457. #define GGML_SIMD
  1458. // F32 NEON
  1459. #define GGML_F32_STEP 16
  1460. #define GGML_F32_EPR 4
  1461. #define GGML_F32x4 float32x4_t
  1462. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1463. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1464. #define GGML_F32x4_LOAD vld1q_f32
  1465. #define GGML_F32x4_STORE vst1q_f32
  1466. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1467. #define GGML_F32x4_ADD vaddq_f32
  1468. #define GGML_F32x4_MUL vmulq_f32
  1469. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1470. #define GGML_F32x4_REDUCE(res, x) \
  1471. { \
  1472. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1473. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1474. } \
  1475. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1476. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1477. } \
  1478. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1479. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1480. } \
  1481. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1482. }
  1483. #define GGML_F32_VEC GGML_F32x4
  1484. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1485. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1486. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1487. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1488. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1489. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1490. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1491. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1492. // F16 NEON
  1493. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1494. #define GGML_F16_STEP 32
  1495. #define GGML_F16_EPR 8
  1496. #define GGML_F16x8 float16x8_t
  1497. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1498. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1499. #define GGML_F16x8_LOAD vld1q_f16
  1500. #define GGML_F16x8_STORE vst1q_f16
  1501. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1502. #define GGML_F16x8_ADD vaddq_f16
  1503. #define GGML_F16x8_MUL vmulq_f16
  1504. #define GGML_F16x8_REDUCE(res, x) \
  1505. { \
  1506. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1507. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1508. } \
  1509. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1510. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1511. } \
  1512. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1513. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1514. } \
  1515. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1516. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1517. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1518. }
  1519. #define GGML_F16_VEC GGML_F16x8
  1520. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1521. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1522. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1523. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1524. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1525. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1526. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1527. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1528. #else
  1529. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1530. // and take advantage of the vcvt_ functions to convert to/from FP16
  1531. #define GGML_F16_STEP 16
  1532. #define GGML_F16_EPR 4
  1533. #define GGML_F32Cx4 float32x4_t
  1534. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1535. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1536. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1537. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1538. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1539. #define GGML_F32Cx4_ADD vaddq_f32
  1540. #define GGML_F32Cx4_MUL vmulq_f32
  1541. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1542. #define GGML_F16_VEC GGML_F32Cx4
  1543. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1544. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1545. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1546. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1547. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1548. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1549. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1550. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1551. #endif
  1552. #elif defined(__AVX__)
  1553. #define GGML_SIMD
  1554. // F32 AVX
  1555. #define GGML_F32_STEP 32
  1556. #define GGML_F32_EPR 8
  1557. #define GGML_F32x8 __m256
  1558. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1559. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1560. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1561. #define GGML_F32x8_STORE _mm256_storeu_ps
  1562. #if defined(__FMA__)
  1563. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1564. #else
  1565. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1566. #endif
  1567. #define GGML_F32x8_ADD _mm256_add_ps
  1568. #define GGML_F32x8_MUL _mm256_mul_ps
  1569. #define GGML_F32x8_REDUCE(res, x) \
  1570. { \
  1571. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1572. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1573. } \
  1574. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1575. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1576. } \
  1577. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1578. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1579. } \
  1580. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1581. _mm256_extractf128_ps(x[0], 1)); \
  1582. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1583. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1584. }
  1585. // TODO: is this optimal ?
  1586. #define GGML_F32_VEC GGML_F32x8
  1587. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1588. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1589. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1590. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1591. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1592. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1593. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1594. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1595. // F16 AVX
  1596. #define GGML_F16_STEP 32
  1597. #define GGML_F16_EPR 8
  1598. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1599. #define GGML_F32Cx8 __m256
  1600. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1601. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1602. #if defined(__F16C__)
  1603. // the _mm256_cvt intrinsics require F16C
  1604. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1605. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1606. #else
  1607. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1608. float tmp[8];
  1609. for (int i = 0; i < 8; i++)
  1610. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1611. return _mm256_loadu_ps(tmp);
  1612. }
  1613. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1614. float arr[8];
  1615. _mm256_storeu_ps(arr, y);
  1616. for (int i = 0; i < 8; i++)
  1617. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1618. }
  1619. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1620. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1621. #endif
  1622. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1623. #define GGML_F32Cx8_ADD _mm256_add_ps
  1624. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1625. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1626. #define GGML_F16_VEC GGML_F32Cx8
  1627. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1628. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1629. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1630. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1631. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1632. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1633. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1634. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1635. #elif defined(__POWER9_VECTOR__)
  1636. #define GGML_SIMD
  1637. // F32 POWER9
  1638. #define GGML_F32_STEP 32
  1639. #define GGML_F32_EPR 4
  1640. #define GGML_F32x4 vector float
  1641. #define GGML_F32x4_ZERO 0.0f
  1642. #define GGML_F32x4_SET1 vec_splats
  1643. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1644. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1645. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1646. #define GGML_F32x4_ADD vec_add
  1647. #define GGML_F32x4_MUL vec_mul
  1648. #define GGML_F32x4_REDUCE(res, x) \
  1649. { \
  1650. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1651. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1652. } \
  1653. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1654. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1655. } \
  1656. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1657. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1658. } \
  1659. res = vec_extract(x[0], 0) + \
  1660. vec_extract(x[0], 1) + \
  1661. vec_extract(x[0], 2) + \
  1662. vec_extract(x[0], 3); \
  1663. }
  1664. #define GGML_F32_VEC GGML_F32x4
  1665. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1666. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1667. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1668. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1669. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1670. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1671. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1672. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1673. // F16 POWER9
  1674. #define GGML_F16_STEP GGML_F32_STEP
  1675. #define GGML_F16_EPR GGML_F32_EPR
  1676. #define GGML_F16_VEC GGML_F32x4
  1677. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1678. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1679. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1680. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1681. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1682. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1683. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1684. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1685. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1686. #define GGML_F16_VEC_STORE(p, r, i) \
  1687. if (i & 0x1) \
  1688. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1689. r[i - GGML_ENDIAN_BYTE(0)]), \
  1690. 0, p - GGML_F16_EPR)
  1691. #elif defined(__wasm_simd128__)
  1692. #define GGML_SIMD
  1693. // F32 WASM
  1694. #define GGML_F32_STEP 16
  1695. #define GGML_F32_EPR 4
  1696. #define GGML_F32x4 v128_t
  1697. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1698. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1699. #define GGML_F32x4_LOAD wasm_v128_load
  1700. #define GGML_F32x4_STORE wasm_v128_store
  1701. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1702. #define GGML_F32x4_ADD wasm_f32x4_add
  1703. #define GGML_F32x4_MUL wasm_f32x4_mul
  1704. #define GGML_F32x4_REDUCE(res, x) \
  1705. { \
  1706. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1707. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1708. } \
  1709. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1710. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1711. } \
  1712. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1713. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1714. } \
  1715. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1716. wasm_f32x4_extract_lane(x[0], 1) + \
  1717. wasm_f32x4_extract_lane(x[0], 2) + \
  1718. wasm_f32x4_extract_lane(x[0], 3); \
  1719. }
  1720. #define GGML_F32_VEC GGML_F32x4
  1721. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1722. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1723. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1724. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1725. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1726. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1727. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1728. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1729. // F16 WASM
  1730. #define GGML_F16_STEP 16
  1731. #define GGML_F16_EPR 4
  1732. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1733. float tmp[4];
  1734. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1735. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1736. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1737. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1738. return wasm_v128_load(tmp);
  1739. }
  1740. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1741. float tmp[4];
  1742. wasm_v128_store(tmp, x);
  1743. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1744. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1745. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1746. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1747. }
  1748. #define GGML_F16x4 v128_t
  1749. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1750. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1751. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1752. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1753. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1754. #define GGML_F16x4_ADD wasm_f32x4_add
  1755. #define GGML_F16x4_MUL wasm_f32x4_mul
  1756. #define GGML_F16x4_REDUCE(res, x) \
  1757. { \
  1758. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1759. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1760. } \
  1761. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1762. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1763. } \
  1764. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1765. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1766. } \
  1767. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1768. wasm_f32x4_extract_lane(x[0], 1) + \
  1769. wasm_f32x4_extract_lane(x[0], 2) + \
  1770. wasm_f32x4_extract_lane(x[0], 3); \
  1771. }
  1772. #define GGML_F16_VEC GGML_F16x4
  1773. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1774. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1775. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1776. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1777. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1778. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1779. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1780. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1781. #elif defined(__SSE3__)
  1782. #define GGML_SIMD
  1783. // F32 SSE
  1784. #define GGML_F32_STEP 32
  1785. #define GGML_F32_EPR 4
  1786. #define GGML_F32x4 __m128
  1787. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1788. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1789. #define GGML_F32x4_LOAD _mm_loadu_ps
  1790. #define GGML_F32x4_STORE _mm_storeu_ps
  1791. #if defined(__FMA__)
  1792. // TODO: Does this work?
  1793. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1794. #else
  1795. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1796. #endif
  1797. #define GGML_F32x4_ADD _mm_add_ps
  1798. #define GGML_F32x4_MUL _mm_mul_ps
  1799. #define GGML_F32x4_REDUCE(res, x) \
  1800. { \
  1801. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1802. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1803. } \
  1804. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1805. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1806. } \
  1807. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1808. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1809. } \
  1810. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1811. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1812. }
  1813. // TODO: is this optimal ?
  1814. #define GGML_F32_VEC GGML_F32x4
  1815. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1816. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1817. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1818. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1819. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1820. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1821. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1822. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1823. // F16 SSE
  1824. #define GGML_F16_STEP 32
  1825. #define GGML_F16_EPR 4
  1826. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1827. float tmp[4];
  1828. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1829. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1830. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1831. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1832. return _mm_loadu_ps(tmp);
  1833. }
  1834. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1835. float arr[4];
  1836. _mm_storeu_ps(arr, y);
  1837. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1838. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1839. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1840. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1841. }
  1842. #define GGML_F32Cx4 __m128
  1843. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1844. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1845. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1846. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1847. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1848. #define GGML_F32Cx4_ADD _mm_add_ps
  1849. #define GGML_F32Cx4_MUL _mm_mul_ps
  1850. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1851. #define GGML_F16_VEC GGML_F32Cx4
  1852. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1853. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1854. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1855. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1856. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1857. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1858. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1859. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1860. #endif
  1861. // GGML_F32_ARR / GGML_F16_ARR
  1862. // number of registers to use per step
  1863. #ifdef GGML_SIMD
  1864. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1865. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1866. #endif
  1867. //
  1868. // fundamental operations
  1869. //
  1870. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1871. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1872. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1873. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1874. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1875. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1876. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1877. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1878. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1879. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1880. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1881. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1882. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1883. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1884. #ifdef GGML_SIMD
  1885. float sumf = 0.0f;
  1886. const int np = (n & ~(GGML_F32_STEP - 1));
  1887. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1888. GGML_F32_VEC ax[GGML_F32_ARR];
  1889. GGML_F32_VEC ay[GGML_F32_ARR];
  1890. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1891. for (int j = 0; j < GGML_F32_ARR; j++) {
  1892. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1893. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1894. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1895. }
  1896. }
  1897. // reduce sum0..sum3 to sum0
  1898. GGML_F32_VEC_REDUCE(sumf, sum);
  1899. // leftovers
  1900. for (int i = np; i < n; ++i) {
  1901. sumf += x[i]*y[i];
  1902. }
  1903. #else
  1904. // scalar
  1905. ggml_float sumf = 0.0;
  1906. for (int i = 0; i < n; ++i) {
  1907. sumf += (ggml_float)(x[i]*y[i]);
  1908. }
  1909. #endif
  1910. *s = sumf;
  1911. }
  1912. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1913. ggml_float sumf = 0.0;
  1914. #if defined(GGML_SIMD)
  1915. const int np = (n & ~(GGML_F16_STEP - 1));
  1916. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1917. GGML_F16_VEC ax[GGML_F16_ARR];
  1918. GGML_F16_VEC ay[GGML_F16_ARR];
  1919. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1920. for (int j = 0; j < GGML_F16_ARR; j++) {
  1921. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1922. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1923. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1924. }
  1925. }
  1926. // reduce sum0..sum3 to sum0
  1927. GGML_F16_VEC_REDUCE(sumf, sum);
  1928. // leftovers
  1929. for (int i = np; i < n; ++i) {
  1930. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1931. }
  1932. #else
  1933. for (int i = 0; i < n; ++i) {
  1934. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1935. }
  1936. #endif
  1937. *s = sumf;
  1938. }
  1939. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1940. const int nb = n / QK8_0;
  1941. assert(n % QK8_0 == 0);
  1942. assert(nb % 2 == 0);
  1943. const block_q4_0 * restrict x = vx;
  1944. const block_q8_0 * restrict y = vy;
  1945. #if defined(__ARM_NEON)
  1946. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1947. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1948. float sum8 = 0;
  1949. for (int i = 0; i < nb; i += 2) {
  1950. const block_q4_0 * restrict x0 = &x[i + 0];
  1951. const block_q4_0 * restrict x1 = &x[i + 1];
  1952. const block_q8_0 * restrict y0 = &y[i + 0];
  1953. const block_q8_0 * restrict y1 = &y[i + 1];
  1954. sum8 += x0->d * y0->s + x1->d * y1->s;
  1955. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1956. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1957. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1958. // 4-bit -> 8-bit
  1959. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1960. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1961. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1962. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1963. // load y
  1964. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1965. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1966. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1967. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1968. // interleave
  1969. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1970. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1971. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1972. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1973. #if defined(__ARM_FEATURE_DOTPROD)
  1974. // dot product into int32x4_t
  1975. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  1976. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  1977. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1978. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1979. #else
  1980. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  1981. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  1982. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  1983. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  1984. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  1985. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  1986. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  1987. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  1988. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1989. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1990. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1991. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1992. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1993. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1994. #endif
  1995. }
  1996. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) - 8 * sum8;
  1997. #elif defined(__AVX2__)
  1998. // Initialize accumulator with zeros
  1999. __m256 acc = _mm256_setzero_ps();
  2000. // Main loop
  2001. for (int i = 0; i < nb; ++i) {
  2002. /* Compute combined scale for the block */
  2003. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2004. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2005. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2006. const __m256i off = _mm256_set1_epi8( 8 );
  2007. bx = _mm256_sub_epi8( bx, off );
  2008. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2009. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2010. /* Multiply q with scale and accumulate */
  2011. acc = _mm256_fmadd_ps( d, q, acc );
  2012. }
  2013. *s = hsum_float_8(acc);
  2014. #elif defined(__AVX__)
  2015. // Initialize accumulator with zeros
  2016. __m256 acc = _mm256_setzero_ps();
  2017. // Main loop
  2018. for (int i = 0; i < nb; ++i) {
  2019. // Compute combined scale for the block
  2020. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2021. __m128i i32[2];
  2022. for (int j = 0; j < 2; ++j) {
  2023. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2024. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2025. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2026. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2027. const __m128i off = _mm_set1_epi8( 8 );
  2028. bx = _mm_sub_epi8( bx, off );
  2029. // Get absolute values of x vectors
  2030. const __m128i ax = _mm_sign_epi8(bx, bx);
  2031. // Sign the values of the y vectors
  2032. const __m128i sy = _mm_sign_epi8(by, bx);
  2033. // Perform multiplication and create 16-bit values
  2034. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2035. const __m128i ones = _mm_set1_epi16(1);
  2036. i32[j] = _mm_madd_epi16(ones, dot);
  2037. }
  2038. // Convert int32_t to float
  2039. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2040. // Apply the scale, and accumulate
  2041. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2042. }
  2043. *s = hsum_float_8(acc);
  2044. #else
  2045. // scalar
  2046. float sumf = 0.0;
  2047. for (int i = 0; i < nb; i++) {
  2048. const float d0 = x[i].d;
  2049. const float d1 = y[i].d;
  2050. const uint8_t * restrict p0 = x[i].qs;
  2051. const int8_t * restrict p1 = y[i].qs;
  2052. int sumi = 0;
  2053. for (int j = 0; j < QK8_0/2; j++) {
  2054. const uint8_t v0 = p0[j];
  2055. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2056. const int i1 = (int8_t) (v0 >> 4) - 8;
  2057. const int i2 = p1[2*j + 0];
  2058. const int i3 = p1[2*j + 1];
  2059. sumi += i0*i2 + i1*i3;
  2060. }
  2061. sumf += d0*d1*sumi;
  2062. }
  2063. *s = sumf;
  2064. #endif
  2065. }
  2066. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2067. const int nb = n / QK8_0;
  2068. assert(n % QK8_0 == 0);
  2069. assert(nb % 2 == 0);
  2070. const block_q4_1 * restrict x = vx;
  2071. const block_q8_0 * restrict y = vy;
  2072. // TODO: add AVX / WASM SIMD / etc
  2073. #if defined(__ARM_NEON)
  2074. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2075. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2076. float summs = 0;
  2077. for (int i = 0; i < nb; i += 2) {
  2078. const block_q4_1 * restrict x0 = &x[i + 0];
  2079. const block_q4_1 * restrict x1 = &x[i + 1];
  2080. const block_q8_0 * restrict y0 = &y[i + 0];
  2081. const block_q8_0 * restrict y1 = &y[i + 1];
  2082. summs += x0->m * y0->s + x1->m * y1->s;
  2083. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2084. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2085. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2086. // 4-bit -> 8-bit
  2087. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2088. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2089. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2090. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2091. // load y
  2092. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2093. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2094. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2095. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2096. // interleave
  2097. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2098. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2099. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2100. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2101. #if defined(__ARM_FEATURE_DOTPROD)
  2102. // dot product into int32x4_t
  2103. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2104. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2105. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2106. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2107. #else
  2108. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2109. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2110. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2111. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2112. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2113. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2114. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2115. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2116. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2117. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2118. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2119. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2120. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2121. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2122. #endif
  2123. }
  2124. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2125. #elif defined(__AVX2__)
  2126. // Initialize accumulator with zeros
  2127. __m256 acc = _mm256_setzero_ps();
  2128. float summs = 0;
  2129. // Main loop
  2130. for (int i = 0; i < nb; ++i) {
  2131. const float * d0 = &x[i].d;
  2132. const float * d1 = &y[i].d;
  2133. summs += x[i].m * y[i].s;
  2134. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2135. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2136. // Compute combined scales
  2137. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2138. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2139. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2140. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2141. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2142. // Accumulate d0*d1*x*y
  2143. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2144. }
  2145. *s = hsum_float_8(acc) + summs;
  2146. #else
  2147. // scalar
  2148. float sumf = 0.0;
  2149. for (int i = 0; i < nb; i++) {
  2150. const float d0 = x[i].d;
  2151. const float m0 = x[i].m;
  2152. const float d1 = y[i].d;
  2153. const uint8_t * restrict p0 = x[i].qs;
  2154. const int8_t * restrict p1 = y[i].qs;
  2155. // TODO: this is very slow ..
  2156. for (int j = 0; j < QK8_0/2; j++) {
  2157. const uint8_t v0 = p0[j];
  2158. const float f0 = d0*(v0 & 0xf) + m0;
  2159. const float f1 = d0*(v0 >> 4) + m0;
  2160. const float f2 = d1*p1[2*j + 0];
  2161. const float f3 = d1*p1[2*j + 1];
  2162. sumf += f0*f2 + f1*f3;
  2163. }
  2164. }
  2165. *s = sumf;
  2166. #endif
  2167. }
  2168. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2169. const int nb = n / QK8_0;
  2170. assert(n % QK8_0 == 0);
  2171. assert(nb % 2 == 0);
  2172. assert(QK8_0 == 2*QK4_2);
  2173. const block_q4_2 * restrict x = vx;
  2174. const block_q8_0 * restrict y = vy;
  2175. #if defined(__ARM_NEON)
  2176. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2177. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2178. for (int i = 0; i < nb; i += 2) {
  2179. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2180. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2181. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2182. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2183. const block_q8_0 * restrict y0 = &y[i + 0];
  2184. const block_q8_0 * restrict y1 = &y[i + 1];
  2185. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2186. const int8x16_t s8b = vdupq_n_s8(0x8);
  2187. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2188. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2189. // 4-bit -> 8-bit
  2190. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2191. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2192. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2193. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2194. // sub 8
  2195. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2196. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2197. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2198. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2199. // interleave
  2200. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2201. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2202. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2203. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2204. // load y
  2205. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2206. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2207. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2208. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2209. #if defined(__ARM_FEATURE_DOTPROD)
  2210. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2211. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2212. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2213. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2214. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2215. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2216. #else
  2217. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2218. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2219. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2220. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2221. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2222. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2223. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2224. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2225. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2226. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2227. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2228. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2229. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2230. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2231. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2232. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2233. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2234. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2235. #endif
  2236. }
  2237. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2238. #elif defined(__AVX2__)
  2239. // Initialize accumulator with zeros
  2240. __m256 acc = _mm256_setzero_ps();
  2241. // Main loop
  2242. for (int i = 0; i < nb; i++) {
  2243. /* Compute combined scale for the block */
  2244. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2245. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2246. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2247. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2248. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2249. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2250. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2251. const __m256i off = _mm256_set1_epi8(8);
  2252. bx = _mm256_sub_epi8(bx, off);
  2253. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2254. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2255. /* Multiply q with scale and accumulate */
  2256. acc = _mm256_fmadd_ps(d, q, acc);
  2257. }
  2258. *s = hsum_float_8(acc);
  2259. #else
  2260. // scalar
  2261. float sumf = 0.0;
  2262. for (int i = 0; i < nb; i++) {
  2263. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2264. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2265. const int8_t * restrict y0 = y[i].qs;
  2266. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2267. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2268. int sumi_0 = 0;
  2269. int sumi_1 = 0;
  2270. for (int j = 0; j < QK8_0/4; j++) {
  2271. const uint8_t v0 = x0[j];
  2272. const uint8_t v1 = x1[j];
  2273. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2274. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2275. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2276. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2277. const int i2_0 = y0[2*j + 0];
  2278. const int i3_0 = y0[2*j + 1];
  2279. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2280. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2281. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2282. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2283. }
  2284. sumf += (d0 * y[i].d) * sumi_0;
  2285. sumf += (d1 * y[i].d) * sumi_1;
  2286. }
  2287. *s = sumf;
  2288. #endif
  2289. }
  2290. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2291. const int nb = n / QK8_0;
  2292. assert(n % QK8_0 == 0);
  2293. assert(nb % 2 == 0);
  2294. assert(QK8_0 == 2*QK4_2);
  2295. const block_q4_3 * restrict x = vx;
  2296. const block_q8_0 * restrict y = vy;
  2297. #if defined(__ARM_NEON)
  2298. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2299. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2300. for (int i = 0; i < nb; i += 2) {
  2301. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2302. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2303. const block_q4_3 * restrict x1_0 = &x[2*(i + 1) + 0];
  2304. const block_q4_3 * restrict x1_1 = &x[2*(i + 1) + 1];
  2305. const block_q8_0 * restrict y0 = &y[i + 0];
  2306. const block_q8_0 * restrict y1 = &y[i + 1];
  2307. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2308. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2309. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2310. const float x1_0d = GGML_FP16_TO_FP32(x1_0->d);
  2311. const float x1_1d = GGML_FP16_TO_FP32(x1_1->d);
  2312. const float x0_0m = GGML_FP16_TO_FP32(x0_0->m);
  2313. const float x0_1m = GGML_FP16_TO_FP32(x0_1->m);
  2314. const float x1_0m = GGML_FP16_TO_FP32(x1_0->m);
  2315. const float x1_1m = GGML_FP16_TO_FP32(x1_1->m);
  2316. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2317. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2318. // 4-bit -> 8-bit
  2319. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2320. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2321. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2322. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2323. // interleave
  2324. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2325. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2326. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2327. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2328. // load y
  2329. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2330. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2331. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2332. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2333. const int16x8_t sy0_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0l)), vmovl_s8(vget_high_s8(v1_0l)));
  2334. const int16x8_t sy0_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_0h)), vmovl_s8(vget_high_s8(v1_0h)));
  2335. const int16x8_t sy1_0 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1l)), vmovl_s8(vget_high_s8(v1_1l)));
  2336. const int16x8_t sy1_1 = vaddq_s16(vmovl_s8(vget_low_s8(v1_1h)), vmovl_s8(vget_high_s8(v1_1h)));
  2337. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_0), vget_high_s16(sy0_0))), x0_0m*y0->d);
  2338. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy0_1), vget_high_s16(sy0_1))), x0_1m*y0->d);
  2339. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_0), vget_high_s16(sy1_0))), x1_0m*y1->d);
  2340. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(sy1_1), vget_high_s16(sy1_1))), x1_1m*y1->d);
  2341. #if defined(__ARM_FEATURE_DOTPROD)
  2342. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2343. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2344. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), x1_0d*y1->d);
  2345. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), x1_1d*y1->d);
  2346. #else
  2347. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2348. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2349. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2350. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2351. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2352. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2353. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2354. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2355. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2356. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2357. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2358. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2359. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2360. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2361. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(pl1), x1_0d*y1->d);
  2362. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph1), x1_1d*y1->d);
  2363. #endif
  2364. }
  2365. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2366. #elif defined(__AVX2__)
  2367. // Initialize accumulator with zeros
  2368. __m256 acc = _mm256_setzero_ps();
  2369. // Main loop
  2370. for (int i = 0; i < nb; i++) {
  2371. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2372. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2373. const __m256 dx = _mm256_set_m128(d1, d0);
  2374. const __m128 m0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].m));
  2375. const __m128 m1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].m));
  2376. const __m256 mx = _mm256_set_m128(m1, m0);
  2377. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2378. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2379. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2380. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2381. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2382. const __m256i syi = _mm256_maddubs_epi16(_mm256_set1_epi8(1), by);
  2383. const __m256 syf = sum_i16_pairs_float(syi);
  2384. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2385. const __m256 sxy = _mm256_fmadd_ps(q, dx, _mm256_mul_ps(mx, syf));
  2386. acc = _mm256_fmadd_ps(sxy, dy, acc);
  2387. }
  2388. *s = hsum_float_8(acc);
  2389. #else
  2390. // scalar
  2391. float sumf = 0.0;
  2392. for (int i = 0; i < nb; i++) {
  2393. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2394. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2395. const int8_t * restrict y0 = y[i].qs;
  2396. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2397. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2398. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2399. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2400. int sy_0 = 0;
  2401. int sy_1 = 0;
  2402. int sxy_0 = 0;
  2403. int sxy_1 = 0;
  2404. for (int j = 0; j < QK8_0/4; j++) {
  2405. const uint8_t v0 = x0[j];
  2406. const uint8_t v1 = x1[j];
  2407. const int x0_0 = v0 & 0xf;
  2408. const int x1_0 = v0 >> 4;
  2409. const int x0_1 = v1 & 0xf;
  2410. const int x1_1 = v1 >> 4;
  2411. const int y0_0 = y0[2*j + 0];
  2412. const int y1_0 = y0[2*j + 1];
  2413. const int y0_1 = y0[2*(j + QK8_0/4) + 0];
  2414. const int y1_1 = y0[2*(j + QK8_0/4) + 1];
  2415. sy_0 += y0_0 + y1_0;
  2416. sy_1 += y0_1 + y1_1;
  2417. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2418. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2419. }
  2420. sumf += (d0*sxy_0 + m0*sy_0)*y[i].d;
  2421. sumf += (d1*sxy_1 + m1*sy_1)*y[i].d;
  2422. }
  2423. *s = sumf;
  2424. #endif
  2425. }
  2426. // compute GGML_VEC_DOT_UNROLL dot products at once
  2427. // xs - x row stride in bytes
  2428. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2429. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2430. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2431. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2432. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2433. }
  2434. #if defined(GGML_SIMD)
  2435. const int np = (n & ~(GGML_F16_STEP - 1));
  2436. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2437. GGML_F16_VEC ax[GGML_F16_ARR];
  2438. GGML_F16_VEC ay[GGML_F16_ARR];
  2439. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2440. for (int j = 0; j < GGML_F16_ARR; j++) {
  2441. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2442. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2443. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2444. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2445. }
  2446. }
  2447. }
  2448. // reduce sum0..sum3 to sum0
  2449. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2450. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2451. }
  2452. // leftovers
  2453. for (int i = np; i < n; ++i) {
  2454. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2455. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2456. }
  2457. }
  2458. #else
  2459. for (int i = 0; i < n; ++i) {
  2460. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2461. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2462. }
  2463. }
  2464. #endif
  2465. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2466. s[i] = sumf[i];
  2467. }
  2468. }
  2469. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2470. #if defined(GGML_SIMD)
  2471. const int np = (n & ~(GGML_F32_STEP - 1));
  2472. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2473. GGML_F32_VEC ax[GGML_F32_ARR];
  2474. GGML_F32_VEC ay[GGML_F32_ARR];
  2475. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2476. for (int j = 0; j < GGML_F32_ARR; j++) {
  2477. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2478. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2479. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2480. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2481. }
  2482. }
  2483. // leftovers
  2484. for (int i = np; i < n; ++i) {
  2485. y[i] += x[i]*v;
  2486. }
  2487. #else
  2488. // scalar
  2489. for (int i = 0; i < n; ++i) {
  2490. y[i] += x[i]*v;
  2491. }
  2492. #endif
  2493. }
  2494. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2495. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2496. #if defined(GGML_SIMD)
  2497. const int np = (n & ~(GGML_F32_STEP - 1));
  2498. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2499. GGML_F32_VEC ay[GGML_F32_ARR];
  2500. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2501. for (int j = 0; j < GGML_F32_ARR; j++) {
  2502. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2503. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2504. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2505. }
  2506. }
  2507. // leftovers
  2508. for (int i = np; i < n; ++i) {
  2509. y[i] *= v;
  2510. }
  2511. #else
  2512. // scalar
  2513. for (int i = 0; i < n; ++i) {
  2514. y[i] *= v;
  2515. }
  2516. #endif
  2517. }
  2518. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2519. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2520. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2521. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2522. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2523. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2524. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2525. static const float GELU_COEF_A = 0.044715f;
  2526. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2527. inline static float ggml_gelu_f32(float x) {
  2528. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2529. }
  2530. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2531. const uint16_t * i16 = (const uint16_t *) x;
  2532. for (int i = 0; i < n; ++i) {
  2533. y[i] = table_gelu_f16[i16[i]];
  2534. }
  2535. }
  2536. #ifdef GGML_GELU_FP16
  2537. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2538. uint16_t t;
  2539. for (int i = 0; i < n; ++i) {
  2540. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2541. memcpy(&t, &fp16, sizeof(uint16_t));
  2542. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2543. }
  2544. }
  2545. #else
  2546. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2547. for (int i = 0; i < n; ++i) {
  2548. y[i] = ggml_gelu_f32(x[i]);
  2549. }
  2550. }
  2551. #endif
  2552. // Sigmoid Linear Unit (SiLU) function
  2553. inline static float ggml_silu_f32(float x) {
  2554. return x/(1.0f + expf(-x));
  2555. }
  2556. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2557. const uint16_t * i16 = (const uint16_t *) x;
  2558. for (int i = 0; i < n; ++i) {
  2559. y[i] = table_silu_f16[i16[i]];
  2560. }
  2561. }
  2562. #ifdef GGML_SILU_FP16
  2563. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2564. uint16_t t;
  2565. for (int i = 0; i < n; ++i) {
  2566. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2567. memcpy(&t, &fp16, sizeof(uint16_t));
  2568. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2569. }
  2570. }
  2571. #else
  2572. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2573. for (int i = 0; i < n; ++i) {
  2574. y[i] = ggml_silu_f32(x[i]);
  2575. }
  2576. }
  2577. #endif
  2578. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2579. #ifndef GGML_USE_ACCELERATE
  2580. ggml_float sum = 0.0;
  2581. for (int i = 0; i < n; ++i) {
  2582. sum += (ggml_float)x[i];
  2583. }
  2584. *s = sum;
  2585. #else
  2586. vDSP_sve(x, 1, s, n);
  2587. #endif
  2588. }
  2589. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2590. #ifndef GGML_USE_ACCELERATE
  2591. float max = -INFINITY;
  2592. for (int i = 0; i < n; ++i) {
  2593. max = MAX(max, x[i]);
  2594. }
  2595. *s = max;
  2596. #else
  2597. vDSP_maxv(x, 1, s, n);
  2598. #endif
  2599. }
  2600. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2601. ggml_vec_norm_f32(n, s, x);
  2602. *s = 1.f/(*s);
  2603. }
  2604. //
  2605. // logging
  2606. //
  2607. #if (GGML_DEBUG >= 1)
  2608. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2609. #else
  2610. #define GGML_PRINT_DEBUG(...)
  2611. #endif
  2612. #if (GGML_DEBUG >= 5)
  2613. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2614. #else
  2615. #define GGML_PRINT_DEBUG_5(...)
  2616. #endif
  2617. #if (GGML_DEBUG >= 10)
  2618. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2619. #else
  2620. #define GGML_PRINT_DEBUG_10(...)
  2621. #endif
  2622. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2623. //
  2624. // data types
  2625. //
  2626. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2627. [GGML_TYPE_F32] = 1,
  2628. [GGML_TYPE_F16] = 1,
  2629. [GGML_TYPE_Q4_0] = QK4_0,
  2630. [GGML_TYPE_Q4_1] = QK4_1,
  2631. [GGML_TYPE_Q4_2] = QK4_2,
  2632. [GGML_TYPE_Q4_3] = QK4_3,
  2633. [GGML_TYPE_Q8_0] = QK8_0,
  2634. [GGML_TYPE_I8] = 1,
  2635. [GGML_TYPE_I16] = 1,
  2636. [GGML_TYPE_I32] = 1,
  2637. };
  2638. static_assert(GGML_TYPE_COUNT == 10, "GGML_BLCK_SIZE is outdated");
  2639. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2640. [GGML_TYPE_F32] = sizeof(float),
  2641. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2642. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2643. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2644. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2645. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  2646. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2647. [GGML_TYPE_I8] = sizeof(int8_t),
  2648. [GGML_TYPE_I16] = sizeof(int16_t),
  2649. [GGML_TYPE_I32] = sizeof(int32_t),
  2650. };
  2651. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_SIZE is outdated");
  2652. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2653. [GGML_TYPE_F32] = "f32",
  2654. [GGML_TYPE_F16] = "f16",
  2655. [GGML_TYPE_Q4_0] = "q4_0",
  2656. [GGML_TYPE_Q4_1] = "q4_1",
  2657. [GGML_TYPE_Q4_2] = "q4_2",
  2658. [GGML_TYPE_Q4_3] = "q4_3",
  2659. [GGML_TYPE_Q8_0] = "q8_0",
  2660. [GGML_TYPE_I8] = "i8",
  2661. [GGML_TYPE_I16] = "i16",
  2662. [GGML_TYPE_I32] = "i32",
  2663. };
  2664. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_NAME is outdated");
  2665. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2666. [GGML_TYPE_F32] = false,
  2667. [GGML_TYPE_F16] = false,
  2668. [GGML_TYPE_Q4_0] = true,
  2669. [GGML_TYPE_Q4_1] = true,
  2670. [GGML_TYPE_Q4_2] = true,
  2671. [GGML_TYPE_Q4_3] = true,
  2672. [GGML_TYPE_Q8_0] = true,
  2673. [GGML_TYPE_I8] = false,
  2674. [GGML_TYPE_I16] = false,
  2675. [GGML_TYPE_I32] = false,
  2676. };
  2677. static_assert(GGML_TYPE_COUNT == 10, "GGML_IS_QUANTIZED is outdated");
  2678. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2679. "NONE",
  2680. "DUP",
  2681. "ADD",
  2682. "SUB",
  2683. "MUL",
  2684. "DIV",
  2685. "SQR",
  2686. "SQRT",
  2687. "SUM",
  2688. "MEAN",
  2689. "REPEAT",
  2690. "ABS",
  2691. "SGN",
  2692. "NEG",
  2693. "STEP",
  2694. "RELU",
  2695. "GELU",
  2696. "SILU",
  2697. "NORM",
  2698. "RMS_NORM",
  2699. "MUL_MAT",
  2700. "SCALE",
  2701. "CPY",
  2702. "CONT",
  2703. "RESHAPE",
  2704. "VIEW",
  2705. "PERMUTE",
  2706. "TRANSPOSE",
  2707. "GET_ROWS",
  2708. "DIAG_MASK_INF",
  2709. "SOFT_MAX",
  2710. "ROPE",
  2711. "CONV_1D_1S",
  2712. "CONV_1D_2S",
  2713. "FLASH_ATTN",
  2714. "FLASH_FF",
  2715. "MAP_UNARY",
  2716. "MAP_BINARY",
  2717. };
  2718. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2719. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2720. "none",
  2721. "x",
  2722. "x+y",
  2723. "x-y",
  2724. "x*y",
  2725. "x/y",
  2726. "x^2",
  2727. "√x",
  2728. "Σx",
  2729. "Σx/n",
  2730. "repeat(x)",
  2731. "abs(x)",
  2732. "sgn(x)",
  2733. "-x",
  2734. "step(x)",
  2735. "relu(x)",
  2736. "gelu(x)",
  2737. "silu(x)",
  2738. "norm(x)",
  2739. "rms_norm(x)",
  2740. "X*Y",
  2741. "x*v",
  2742. "x-\\>y",
  2743. "cont(x)",
  2744. "reshape(x)",
  2745. "view(x)",
  2746. "permute(x)",
  2747. "transpose(x)",
  2748. "get_rows(x)",
  2749. "diag_mask_inf(x)",
  2750. "soft_max(x)",
  2751. "rope(x)",
  2752. "conv_1d_1s(x)",
  2753. "conv_1d_2s(x)",
  2754. "flash_attn(x)",
  2755. "flash_ff(x)",
  2756. "f(x)",
  2757. "f(x,y)",
  2758. };
  2759. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2760. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2761. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2762. //
  2763. // ggml context
  2764. //
  2765. struct ggml_context {
  2766. size_t mem_size;
  2767. void * mem_buffer;
  2768. bool mem_buffer_owned;
  2769. bool no_alloc;
  2770. int n_objects;
  2771. struct ggml_object * objects_begin;
  2772. struct ggml_object * objects_end;
  2773. struct ggml_scratch scratch;
  2774. struct ggml_scratch scratch_save;
  2775. };
  2776. struct ggml_context_container {
  2777. bool used;
  2778. struct ggml_context context;
  2779. };
  2780. //
  2781. // compute types
  2782. //
  2783. enum ggml_task_type {
  2784. GGML_TASK_INIT = 0,
  2785. GGML_TASK_COMPUTE,
  2786. GGML_TASK_FINALIZE,
  2787. };
  2788. struct ggml_compute_params {
  2789. enum ggml_task_type type;
  2790. int ith, nth;
  2791. // work buffer for all threads
  2792. size_t wsize;
  2793. void * wdata;
  2794. };
  2795. //
  2796. // ggml state
  2797. //
  2798. struct ggml_state {
  2799. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2800. };
  2801. // global state
  2802. static struct ggml_state g_state;
  2803. static atomic_int g_state_barrier = 0;
  2804. // barrier via spin lock
  2805. inline static void ggml_critical_section_start(void) {
  2806. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2807. while (processing > 0) {
  2808. // wait for other threads to finish
  2809. atomic_fetch_sub(&g_state_barrier, 1);
  2810. sched_yield(); // TODO: reconsider this
  2811. processing = atomic_fetch_add(&g_state_barrier, 1);
  2812. }
  2813. }
  2814. // TODO: make this somehow automatically executed
  2815. // some sort of "sentry" mechanism
  2816. inline static void ggml_critical_section_end(void) {
  2817. atomic_fetch_sub(&g_state_barrier, 1);
  2818. }
  2819. ////////////////////////////////////////////////////////////////////////////////
  2820. void ggml_print_object(const struct ggml_object * obj) {
  2821. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2822. obj->offs, obj->size, (const void *) obj->next);
  2823. }
  2824. void ggml_print_objects(const struct ggml_context * ctx) {
  2825. struct ggml_object * obj = ctx->objects_begin;
  2826. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2827. while (obj != NULL) {
  2828. ggml_print_object(obj);
  2829. obj = obj->next;
  2830. }
  2831. GGML_PRINT("%s: --- end ---\n", __func__);
  2832. }
  2833. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2834. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2835. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2836. }
  2837. int ggml_nrows(const struct ggml_tensor * tensor) {
  2838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2839. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2840. }
  2841. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2842. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2843. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2844. }
  2845. int ggml_blck_size(enum ggml_type type) {
  2846. return GGML_BLCK_SIZE[type];
  2847. }
  2848. size_t ggml_type_size(enum ggml_type type) {
  2849. return GGML_TYPE_SIZE[type];
  2850. }
  2851. float ggml_type_sizef(enum ggml_type type) {
  2852. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2853. }
  2854. const char * ggml_type_name(enum ggml_type type) {
  2855. return GGML_TYPE_NAME[type];
  2856. }
  2857. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2858. return GGML_TYPE_SIZE[tensor->type];
  2859. }
  2860. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2861. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2862. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2863. }
  2864. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2865. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2866. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2867. }
  2868. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2869. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2870. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2871. }
  2872. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2873. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2874. return
  2875. (t0->ne[0] == t1->ne[0]) &&
  2876. (t0->ne[2] == t1->ne[2]) &&
  2877. (t0->ne[3] == t1->ne[3]);
  2878. }
  2879. bool ggml_is_quantized(enum ggml_type type) {
  2880. return GGML_IS_QUANTIZED[type];
  2881. }
  2882. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2883. return tensor->nb[0] > tensor->nb[1];
  2884. }
  2885. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2886. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2887. return
  2888. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2889. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2890. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2891. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2892. }
  2893. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2894. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2895. return
  2896. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2897. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2898. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2899. }
  2900. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2901. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2902. return
  2903. (t0->ne[0] == t1->ne[0] ) &&
  2904. (t0->ne[1] == t1->ne[1] ) &&
  2905. (t0->ne[2] == t1->ne[2] ) &&
  2906. (t0->ne[3] == t1->ne[3] );
  2907. }
  2908. // check if t1 can be represented as a repeatition of t0
  2909. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2910. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2911. return
  2912. (t1->ne[0]%t0->ne[0] == 0) &&
  2913. (t1->ne[1]%t0->ne[1] == 0) &&
  2914. (t1->ne[2]%t0->ne[2] == 0) &&
  2915. (t1->ne[3]%t0->ne[3] == 0);
  2916. }
  2917. static inline int ggml_up32(int n) {
  2918. return (n + 31) & ~31;
  2919. }
  2920. static inline int ggml_up64(int n) {
  2921. return (n + 63) & ~63;
  2922. }
  2923. static inline int ggml_up(int n, int m) {
  2924. // assert m is a power of 2
  2925. GGML_ASSERT((m & (m - 1)) == 0);
  2926. return (n + m - 1) & ~(m - 1);
  2927. }
  2928. // assert that pointer is aligned to GGML_MEM_ALIGN
  2929. #define ggml_assert_aligned(ptr) \
  2930. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2931. ////////////////////////////////////////////////////////////////////////////////
  2932. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2933. // make this function thread safe
  2934. ggml_critical_section_start();
  2935. static bool is_first_call = true;
  2936. if (is_first_call) {
  2937. // initialize time system (required on Windows)
  2938. ggml_time_init();
  2939. // initialize GELU, SILU and EXP F32 tables
  2940. {
  2941. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2942. ggml_fp16_t ii;
  2943. for (int i = 0; i < (1 << 16); ++i) {
  2944. uint16_t ui = i;
  2945. memcpy(&ii, &ui, sizeof(ii));
  2946. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2947. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2948. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2949. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2950. }
  2951. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2952. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2953. }
  2954. // initialize g_state
  2955. {
  2956. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2957. g_state = (struct ggml_state) {
  2958. /*.contexts =*/ { { 0 } },
  2959. };
  2960. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2961. g_state.contexts[i].used = false;
  2962. }
  2963. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2964. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2965. }
  2966. // initialize cuBLAS
  2967. #if defined(GGML_USE_CUBLAS)
  2968. ggml_init_cublas();
  2969. #endif
  2970. is_first_call = false;
  2971. }
  2972. // find non-used context in g_state
  2973. struct ggml_context * ctx = NULL;
  2974. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2975. if (!g_state.contexts[i].used) {
  2976. g_state.contexts[i].used = true;
  2977. ctx = &g_state.contexts[i].context;
  2978. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2979. break;
  2980. }
  2981. }
  2982. if (ctx == NULL) {
  2983. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2984. ggml_critical_section_end();
  2985. return NULL;
  2986. }
  2987. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2988. *ctx = (struct ggml_context) {
  2989. /*.mem_size =*/ mem_size,
  2990. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2991. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2992. /*.no_alloc =*/ params.no_alloc,
  2993. /*.n_objects =*/ 0,
  2994. /*.objects_begin =*/ NULL,
  2995. /*.objects_end =*/ NULL,
  2996. /*.scratch =*/ { 0, 0, NULL, },
  2997. /*.scratch_save =*/ { 0, 0, NULL, },
  2998. };
  2999. GGML_ASSERT(ctx->mem_buffer != NULL);
  3000. ggml_assert_aligned(ctx->mem_buffer);
  3001. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3002. ggml_critical_section_end();
  3003. return ctx;
  3004. }
  3005. void ggml_free(struct ggml_context * ctx) {
  3006. // make this function thread safe
  3007. ggml_critical_section_start();
  3008. bool found = false;
  3009. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3010. if (&g_state.contexts[i].context == ctx) {
  3011. g_state.contexts[i].used = false;
  3012. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3013. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3014. if (ctx->mem_buffer_owned) {
  3015. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3016. }
  3017. found = true;
  3018. break;
  3019. }
  3020. }
  3021. if (!found) {
  3022. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3023. }
  3024. ggml_critical_section_end();
  3025. }
  3026. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3027. return ctx->objects_end->offs + ctx->objects_end->size;
  3028. }
  3029. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3030. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3031. ctx->scratch = scratch;
  3032. return result;
  3033. }
  3034. ////////////////////////////////////////////////////////////////////////////////
  3035. struct ggml_tensor * ggml_new_tensor_impl(
  3036. struct ggml_context * ctx,
  3037. enum ggml_type type,
  3038. int n_dims,
  3039. const int64_t* ne,
  3040. void* data) {
  3041. // always insert objects at the end of the context's memory pool
  3042. struct ggml_object * obj_cur = ctx->objects_end;
  3043. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3044. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3045. const size_t cur_end = cur_offs + cur_size;
  3046. size_t size_needed = 0;
  3047. if (data == NULL && !ctx->no_alloc) {
  3048. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3049. for (int i = 1; i < n_dims; i++) {
  3050. size_needed *= ne[i];
  3051. }
  3052. // align to GGML_MEM_ALIGN
  3053. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3054. }
  3055. char * const mem_buffer = ctx->mem_buffer;
  3056. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3057. if (ctx->scratch.data == NULL || data != NULL) {
  3058. size_needed += sizeof(struct ggml_tensor);
  3059. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3060. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3061. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3062. assert(false);
  3063. return NULL;
  3064. }
  3065. *obj_new = (struct ggml_object) {
  3066. .offs = cur_end + GGML_OBJECT_SIZE,
  3067. .size = size_needed,
  3068. .next = NULL,
  3069. };
  3070. } else {
  3071. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3072. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3073. assert(false);
  3074. return NULL;
  3075. }
  3076. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3077. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3078. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3079. assert(false);
  3080. return NULL;
  3081. }
  3082. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3083. *obj_new = (struct ggml_object) {
  3084. .offs = cur_end + GGML_OBJECT_SIZE,
  3085. .size = sizeof(struct ggml_tensor),
  3086. .next = NULL,
  3087. };
  3088. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3089. ctx->scratch.offs += size_needed;
  3090. }
  3091. if (obj_cur != NULL) {
  3092. obj_cur->next = obj_new;
  3093. } else {
  3094. // this is the first object in this context
  3095. ctx->objects_begin = obj_new;
  3096. }
  3097. ctx->objects_end = obj_new;
  3098. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3099. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3100. ggml_assert_aligned(result);
  3101. *result = (struct ggml_tensor) {
  3102. /*.type =*/ type,
  3103. /*.n_dims =*/ n_dims,
  3104. /*.ne =*/ { 1, 1, 1, 1 },
  3105. /*.nb =*/ { 0, 0, 0, 0 },
  3106. /*.op =*/ GGML_OP_NONE,
  3107. /*.is_param =*/ false,
  3108. /*.grad =*/ NULL,
  3109. /*.src0 =*/ NULL,
  3110. /*.src1 =*/ NULL,
  3111. /*.opt =*/ { NULL },
  3112. /*.n_tasks =*/ 0,
  3113. /*.perf_runs =*/ 0,
  3114. /*.perf_cycles =*/ 0,
  3115. /*.perf_time_us =*/ 0,
  3116. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3117. /*.pad =*/ { 0 },
  3118. };
  3119. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3120. //ggml_assert_aligned(result->data);
  3121. for (int i = 0; i < n_dims; i++) {
  3122. result->ne[i] = ne[i];
  3123. }
  3124. result->nb[0] = GGML_TYPE_SIZE[type];
  3125. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3126. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3127. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3128. }
  3129. ctx->n_objects++;
  3130. return result;
  3131. }
  3132. struct ggml_tensor * ggml_new_tensor(
  3133. struct ggml_context * ctx,
  3134. enum ggml_type type,
  3135. int n_dims,
  3136. const int64_t * ne) {
  3137. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3138. }
  3139. struct ggml_tensor * ggml_new_tensor_1d(
  3140. struct ggml_context * ctx,
  3141. enum ggml_type type,
  3142. int64_t ne0) {
  3143. return ggml_new_tensor(ctx, type, 1, &ne0);
  3144. }
  3145. struct ggml_tensor * ggml_new_tensor_2d(
  3146. struct ggml_context * ctx,
  3147. enum ggml_type type,
  3148. int64_t ne0,
  3149. int64_t ne1) {
  3150. const int64_t ne[2] = { ne0, ne1 };
  3151. return ggml_new_tensor(ctx, type, 2, ne);
  3152. }
  3153. struct ggml_tensor * ggml_new_tensor_3d(
  3154. struct ggml_context * ctx,
  3155. enum ggml_type type,
  3156. int64_t ne0,
  3157. int64_t ne1,
  3158. int64_t ne2) {
  3159. const int64_t ne[3] = { ne0, ne1, ne2 };
  3160. return ggml_new_tensor(ctx, type, 3, ne);
  3161. }
  3162. struct ggml_tensor * ggml_new_tensor_4d(
  3163. struct ggml_context * ctx,
  3164. enum ggml_type type,
  3165. int64_t ne0,
  3166. int64_t ne1,
  3167. int64_t ne2,
  3168. int64_t ne3) {
  3169. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3170. return ggml_new_tensor(ctx, type, 4, ne);
  3171. }
  3172. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3173. ctx->scratch_save = ctx->scratch;
  3174. ctx->scratch.data = NULL;
  3175. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3176. ctx->scratch = ctx->scratch_save;
  3177. ggml_set_i32(result, value);
  3178. return result;
  3179. }
  3180. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3181. ctx->scratch_save = ctx->scratch;
  3182. ctx->scratch.data = NULL;
  3183. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3184. ctx->scratch = ctx->scratch_save;
  3185. ggml_set_f32(result, value);
  3186. return result;
  3187. }
  3188. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3189. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3190. }
  3191. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3192. memset(tensor->data, 0, ggml_nbytes(tensor));
  3193. return tensor;
  3194. }
  3195. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3196. const int n = ggml_nrows(tensor);
  3197. const int nc = tensor->ne[0];
  3198. const size_t n1 = tensor->nb[1];
  3199. char * const data = tensor->data;
  3200. switch (tensor->type) {
  3201. case GGML_TYPE_I8:
  3202. {
  3203. assert(tensor->nb[0] == sizeof(int8_t));
  3204. for (int i = 0; i < n; i++) {
  3205. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3206. }
  3207. } break;
  3208. case GGML_TYPE_I16:
  3209. {
  3210. assert(tensor->nb[0] == sizeof(int16_t));
  3211. for (int i = 0; i < n; i++) {
  3212. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3213. }
  3214. } break;
  3215. case GGML_TYPE_I32:
  3216. {
  3217. assert(tensor->nb[0] == sizeof(int32_t));
  3218. for (int i = 0; i < n; i++) {
  3219. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3220. }
  3221. } break;
  3222. case GGML_TYPE_F16:
  3223. {
  3224. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3225. for (int i = 0; i < n; i++) {
  3226. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3227. }
  3228. } break;
  3229. case GGML_TYPE_F32:
  3230. {
  3231. assert(tensor->nb[0] == sizeof(float));
  3232. for (int i = 0; i < n; i++) {
  3233. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3234. }
  3235. } break;
  3236. default:
  3237. {
  3238. GGML_ASSERT(false);
  3239. } break;
  3240. }
  3241. return tensor;
  3242. }
  3243. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3244. const int n = ggml_nrows(tensor);
  3245. const int nc = tensor->ne[0];
  3246. const size_t n1 = tensor->nb[1];
  3247. char * const data = tensor->data;
  3248. switch (tensor->type) {
  3249. case GGML_TYPE_I8:
  3250. {
  3251. assert(tensor->nb[0] == sizeof(int8_t));
  3252. for (int i = 0; i < n; i++) {
  3253. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3254. }
  3255. } break;
  3256. case GGML_TYPE_I16:
  3257. {
  3258. assert(tensor->nb[0] == sizeof(int16_t));
  3259. for (int i = 0; i < n; i++) {
  3260. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3261. }
  3262. } break;
  3263. case GGML_TYPE_I32:
  3264. {
  3265. assert(tensor->nb[0] == sizeof(int32_t));
  3266. for (int i = 0; i < n; i++) {
  3267. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3268. }
  3269. } break;
  3270. case GGML_TYPE_F16:
  3271. {
  3272. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3273. for (int i = 0; i < n; i++) {
  3274. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3275. }
  3276. } break;
  3277. case GGML_TYPE_F32:
  3278. {
  3279. assert(tensor->nb[0] == sizeof(float));
  3280. for (int i = 0; i < n; i++) {
  3281. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3282. }
  3283. } break;
  3284. default:
  3285. {
  3286. GGML_ASSERT(false);
  3287. } break;
  3288. }
  3289. return tensor;
  3290. }
  3291. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3292. switch (tensor->type) {
  3293. case GGML_TYPE_I8:
  3294. {
  3295. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3296. return ((int8_t *)(tensor->data))[i];
  3297. } break;
  3298. case GGML_TYPE_I16:
  3299. {
  3300. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3301. return ((int16_t *)(tensor->data))[i];
  3302. } break;
  3303. case GGML_TYPE_I32:
  3304. {
  3305. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3306. return ((int32_t *)(tensor->data))[i];
  3307. } break;
  3308. case GGML_TYPE_F16:
  3309. {
  3310. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3311. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3312. } break;
  3313. case GGML_TYPE_F32:
  3314. {
  3315. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3316. return ((float *)(tensor->data))[i];
  3317. } break;
  3318. default:
  3319. {
  3320. GGML_ASSERT(false);
  3321. } break;
  3322. }
  3323. return 0.0f;
  3324. }
  3325. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3326. switch (tensor->type) {
  3327. case GGML_TYPE_I8:
  3328. {
  3329. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3330. ((int8_t *)(tensor->data))[i] = value;
  3331. } break;
  3332. case GGML_TYPE_I16:
  3333. {
  3334. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3335. ((int16_t *)(tensor->data))[i] = value;
  3336. } break;
  3337. case GGML_TYPE_I32:
  3338. {
  3339. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3340. ((int32_t *)(tensor->data))[i] = value;
  3341. } break;
  3342. case GGML_TYPE_F16:
  3343. {
  3344. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3345. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3346. } break;
  3347. case GGML_TYPE_F32:
  3348. {
  3349. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3350. ((float *)(tensor->data))[i] = value;
  3351. } break;
  3352. default:
  3353. {
  3354. GGML_ASSERT(false);
  3355. } break;
  3356. }
  3357. }
  3358. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3359. switch (tensor->type) {
  3360. case GGML_TYPE_I8:
  3361. {
  3362. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3363. return ((int8_t *)(tensor->data))[i];
  3364. } break;
  3365. case GGML_TYPE_I16:
  3366. {
  3367. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3368. return ((int16_t *)(tensor->data))[i];
  3369. } break;
  3370. case GGML_TYPE_I32:
  3371. {
  3372. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3373. return ((int32_t *)(tensor->data))[i];
  3374. } break;
  3375. case GGML_TYPE_F16:
  3376. {
  3377. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3378. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3379. } break;
  3380. case GGML_TYPE_F32:
  3381. {
  3382. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3383. return ((float *)(tensor->data))[i];
  3384. } break;
  3385. default:
  3386. {
  3387. GGML_ASSERT(false);
  3388. } break;
  3389. }
  3390. return 0.0f;
  3391. }
  3392. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3393. switch (tensor->type) {
  3394. case GGML_TYPE_I8:
  3395. {
  3396. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3397. ((int8_t *)(tensor->data))[i] = value;
  3398. } break;
  3399. case GGML_TYPE_I16:
  3400. {
  3401. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3402. ((int16_t *)(tensor->data))[i] = value;
  3403. } break;
  3404. case GGML_TYPE_I32:
  3405. {
  3406. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3407. ((int32_t *)(tensor->data))[i] = value;
  3408. } break;
  3409. case GGML_TYPE_F16:
  3410. {
  3411. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3412. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3413. } break;
  3414. case GGML_TYPE_F32:
  3415. {
  3416. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3417. ((float *)(tensor->data))[i] = value;
  3418. } break;
  3419. default:
  3420. {
  3421. GGML_ASSERT(false);
  3422. } break;
  3423. }
  3424. }
  3425. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3426. return tensor->data;
  3427. }
  3428. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3429. assert(tensor->type == GGML_TYPE_F32);
  3430. return (float *)(tensor->data);
  3431. }
  3432. struct ggml_tensor * ggml_view_tensor(
  3433. struct ggml_context * ctx,
  3434. const struct ggml_tensor * src) {
  3435. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3436. result->nb[0] = src->nb[0];
  3437. result->nb[1] = src->nb[1];
  3438. result->nb[2] = src->nb[2];
  3439. result->nb[3] = src->nb[3];
  3440. return result;
  3441. }
  3442. ////////////////////////////////////////////////////////////////////////////////
  3443. // ggml_dup
  3444. struct ggml_tensor * ggml_dup_impl(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a,
  3447. bool inplace) {
  3448. bool is_node = false;
  3449. if (!inplace && (a->grad)) {
  3450. is_node = true;
  3451. }
  3452. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3453. result->op = GGML_OP_DUP;
  3454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3455. result->src0 = a;
  3456. result->src1 = NULL;
  3457. return result;
  3458. }
  3459. struct ggml_tensor * ggml_dup(
  3460. struct ggml_context * ctx,
  3461. struct ggml_tensor * a) {
  3462. return ggml_dup_impl(ctx, a, false);
  3463. }
  3464. struct ggml_tensor * ggml_dup_inplace(
  3465. struct ggml_context * ctx,
  3466. struct ggml_tensor * a) {
  3467. return ggml_dup_impl(ctx, a, true);
  3468. }
  3469. // ggml_add
  3470. struct ggml_tensor * ggml_add_impl(
  3471. struct ggml_context * ctx,
  3472. struct ggml_tensor * a,
  3473. struct ggml_tensor * b,
  3474. bool inplace) {
  3475. GGML_ASSERT(ggml_are_same_shape(a, b));
  3476. bool is_node = false;
  3477. if (!inplace && (a->grad || b->grad)) {
  3478. is_node = true;
  3479. }
  3480. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3481. result->op = GGML_OP_ADD;
  3482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3483. result->src0 = a;
  3484. result->src1 = b;
  3485. return result;
  3486. }
  3487. struct ggml_tensor * ggml_add(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b) {
  3491. return ggml_add_impl(ctx, a, b, false);
  3492. }
  3493. struct ggml_tensor * ggml_add_inplace(
  3494. struct ggml_context * ctx,
  3495. struct ggml_tensor * a,
  3496. struct ggml_tensor * b) {
  3497. return ggml_add_impl(ctx, a, b, true);
  3498. }
  3499. // ggml_sub
  3500. struct ggml_tensor * ggml_sub_impl(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a,
  3503. struct ggml_tensor * b,
  3504. bool inplace) {
  3505. GGML_ASSERT(ggml_are_same_shape(a, b));
  3506. bool is_node = false;
  3507. if (!inplace && (a->grad || b->grad)) {
  3508. is_node = true;
  3509. }
  3510. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3511. result->op = GGML_OP_SUB;
  3512. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3513. result->src0 = a;
  3514. result->src1 = b;
  3515. return result;
  3516. }
  3517. struct ggml_tensor * ggml_sub(
  3518. struct ggml_context * ctx,
  3519. struct ggml_tensor * a,
  3520. struct ggml_tensor * b) {
  3521. return ggml_sub_impl(ctx, a, b, false);
  3522. }
  3523. struct ggml_tensor * ggml_sub_inplace(
  3524. struct ggml_context * ctx,
  3525. struct ggml_tensor * a,
  3526. struct ggml_tensor * b) {
  3527. return ggml_sub_impl(ctx, a, b, true);
  3528. }
  3529. // ggml_mul
  3530. struct ggml_tensor * ggml_mul_impl(
  3531. struct ggml_context * ctx,
  3532. struct ggml_tensor * a,
  3533. struct ggml_tensor * b,
  3534. bool inplace) {
  3535. GGML_ASSERT(ggml_are_same_shape(a, b));
  3536. bool is_node = false;
  3537. if (!inplace && (a->grad || b->grad)) {
  3538. is_node = true;
  3539. }
  3540. if (inplace) {
  3541. GGML_ASSERT(is_node == false);
  3542. }
  3543. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3544. result->op = GGML_OP_MUL;
  3545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3546. result->src0 = a;
  3547. result->src1 = b;
  3548. return result;
  3549. }
  3550. struct ggml_tensor * ggml_mul(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. struct ggml_tensor * b) {
  3554. return ggml_mul_impl(ctx, a, b, false);
  3555. }
  3556. struct ggml_tensor * ggml_mul_inplace(
  3557. struct ggml_context * ctx,
  3558. struct ggml_tensor * a,
  3559. struct ggml_tensor * b) {
  3560. return ggml_mul_impl(ctx, a, b, true);
  3561. }
  3562. // ggml_div
  3563. struct ggml_tensor * ggml_div_impl(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a,
  3566. struct ggml_tensor * b,
  3567. bool inplace) {
  3568. GGML_ASSERT(ggml_are_same_shape(a, b));
  3569. bool is_node = false;
  3570. if (!inplace && (a->grad || b->grad)) {
  3571. is_node = true;
  3572. }
  3573. if (inplace) {
  3574. GGML_ASSERT(is_node == false);
  3575. }
  3576. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3577. result->op = GGML_OP_DIV;
  3578. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3579. result->src0 = a;
  3580. result->src1 = b;
  3581. return result;
  3582. }
  3583. struct ggml_tensor * ggml_div(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. struct ggml_tensor * b) {
  3587. return ggml_div_impl(ctx, a, b, false);
  3588. }
  3589. struct ggml_tensor * ggml_div_inplace(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a,
  3592. struct ggml_tensor * b) {
  3593. return ggml_div_impl(ctx, a, b, true);
  3594. }
  3595. // ggml_sqr
  3596. struct ggml_tensor * ggml_sqr_impl(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a,
  3599. bool inplace) {
  3600. bool is_node = false;
  3601. if (!inplace && (a->grad)) {
  3602. is_node = true;
  3603. }
  3604. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3605. result->op = GGML_OP_SQR;
  3606. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3607. result->src0 = a;
  3608. result->src1 = NULL;
  3609. return result;
  3610. }
  3611. struct ggml_tensor * ggml_sqr(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a) {
  3614. return ggml_sqr_impl(ctx, a, false);
  3615. }
  3616. struct ggml_tensor * ggml_sqr_inplace(
  3617. struct ggml_context * ctx,
  3618. struct ggml_tensor * a) {
  3619. return ggml_sqr_impl(ctx, a, true);
  3620. }
  3621. // ggml_sqrt
  3622. struct ggml_tensor * ggml_sqrt_impl(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a,
  3625. bool inplace) {
  3626. bool is_node = false;
  3627. if (!inplace && (a->grad)) {
  3628. is_node = true;
  3629. }
  3630. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3631. result->op = GGML_OP_SQRT;
  3632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3633. result->src0 = a;
  3634. result->src1 = NULL;
  3635. return result;
  3636. }
  3637. struct ggml_tensor * ggml_sqrt(
  3638. struct ggml_context * ctx,
  3639. struct ggml_tensor * a) {
  3640. return ggml_sqrt_impl(ctx, a, false);
  3641. }
  3642. struct ggml_tensor * ggml_sqrt_inplace(
  3643. struct ggml_context * ctx,
  3644. struct ggml_tensor * a) {
  3645. return ggml_sqrt_impl(ctx, a, true);
  3646. }
  3647. // ggml_sum
  3648. struct ggml_tensor * ggml_sum(
  3649. struct ggml_context * ctx,
  3650. struct ggml_tensor * a) {
  3651. bool is_node = false;
  3652. if (a->grad) {
  3653. is_node = true;
  3654. }
  3655. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3656. result->op = GGML_OP_SUM;
  3657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3658. result->src0 = a;
  3659. result->src1 = NULL;
  3660. return result;
  3661. }
  3662. // ggml_mean
  3663. struct ggml_tensor * ggml_mean(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a) {
  3666. bool is_node = false;
  3667. if (a->grad) {
  3668. GGML_ASSERT(false); // TODO: implement
  3669. is_node = true;
  3670. }
  3671. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3672. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3673. result->op = GGML_OP_MEAN;
  3674. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3675. result->src0 = a;
  3676. result->src1 = NULL;
  3677. return result;
  3678. }
  3679. // ggml_repeat
  3680. struct ggml_tensor * ggml_repeat(
  3681. struct ggml_context * ctx,
  3682. struct ggml_tensor * a,
  3683. struct ggml_tensor * b) {
  3684. GGML_ASSERT(ggml_can_repeat(a, b));
  3685. bool is_node = false;
  3686. if (a->grad) {
  3687. is_node = true;
  3688. }
  3689. if (ggml_are_same_shape(a, b) && !is_node) {
  3690. return a;
  3691. }
  3692. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3693. result->op = GGML_OP_REPEAT;
  3694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3695. result->src0 = a;
  3696. result->src1 = b;
  3697. return result;
  3698. }
  3699. // ggml_abs
  3700. struct ggml_tensor * ggml_abs_impl(
  3701. struct ggml_context * ctx,
  3702. struct ggml_tensor * a,
  3703. bool inplace) {
  3704. bool is_node = false;
  3705. if (!inplace && (a->grad)) {
  3706. is_node = true;
  3707. }
  3708. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3709. result->op = GGML_OP_ABS;
  3710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3711. result->src0 = a;
  3712. result->src1 = NULL;
  3713. return result;
  3714. }
  3715. struct ggml_tensor * ggml_abs(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a) {
  3718. return ggml_abs_impl(ctx, a, false);
  3719. }
  3720. struct ggml_tensor * ggml_abs_inplace(
  3721. struct ggml_context * ctx,
  3722. struct ggml_tensor * a) {
  3723. return ggml_abs_impl(ctx, a, true);
  3724. }
  3725. // ggml_sgn
  3726. struct ggml_tensor * ggml_sgn_impl(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a,
  3729. bool inplace) {
  3730. bool is_node = false;
  3731. if (!inplace && (a->grad)) {
  3732. is_node = true;
  3733. }
  3734. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3735. result->op = GGML_OP_SGN;
  3736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3737. result->src0 = a;
  3738. result->src1 = NULL;
  3739. return result;
  3740. }
  3741. struct ggml_tensor * ggml_sgn(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a) {
  3744. return ggml_sgn_impl(ctx, a, false);
  3745. }
  3746. struct ggml_tensor * ggml_sgn_inplace(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a) {
  3749. return ggml_sgn_impl(ctx, a, true);
  3750. }
  3751. // ggml_neg
  3752. struct ggml_tensor * ggml_neg_impl(
  3753. struct ggml_context * ctx,
  3754. struct ggml_tensor * a,
  3755. bool inplace) {
  3756. bool is_node = false;
  3757. if (!inplace && (a->grad)) {
  3758. is_node = true;
  3759. }
  3760. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3761. result->op = GGML_OP_NEG;
  3762. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3763. result->src0 = a;
  3764. result->src1 = NULL;
  3765. return result;
  3766. }
  3767. struct ggml_tensor * ggml_neg(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a) {
  3770. return ggml_neg_impl(ctx, a, false);
  3771. }
  3772. struct ggml_tensor * ggml_neg_inplace(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a) {
  3775. return ggml_neg_impl(ctx, a, true);
  3776. }
  3777. // ggml_step
  3778. struct ggml_tensor * ggml_step_impl(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a,
  3781. bool inplace) {
  3782. bool is_node = false;
  3783. if (!inplace && (a->grad)) {
  3784. is_node = true;
  3785. }
  3786. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3787. result->op = GGML_OP_STEP;
  3788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3789. result->src0 = a;
  3790. result->src1 = NULL;
  3791. return result;
  3792. }
  3793. struct ggml_tensor * ggml_step(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a) {
  3796. return ggml_step_impl(ctx, a, false);
  3797. }
  3798. struct ggml_tensor * ggml_step_inplace(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a) {
  3801. return ggml_step_impl(ctx, a, true);
  3802. }
  3803. // ggml_relu
  3804. struct ggml_tensor * ggml_relu_impl(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a,
  3807. bool inplace) {
  3808. bool is_node = false;
  3809. if (!inplace && (a->grad)) {
  3810. is_node = true;
  3811. }
  3812. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3813. result->op = GGML_OP_RELU;
  3814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3815. result->src0 = a;
  3816. result->src1 = NULL;
  3817. return result;
  3818. }
  3819. struct ggml_tensor * ggml_relu(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a) {
  3822. return ggml_relu_impl(ctx, a, false);
  3823. }
  3824. struct ggml_tensor * ggml_relu_inplace(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a) {
  3827. return ggml_relu_impl(ctx, a, true);
  3828. }
  3829. // ggml_gelu
  3830. struct ggml_tensor * ggml_gelu_impl(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a,
  3833. bool inplace) {
  3834. bool is_node = false;
  3835. if (!inplace && (a->grad)) {
  3836. is_node = true;
  3837. }
  3838. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3839. result->op = GGML_OP_GELU;
  3840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3841. result->src0 = a;
  3842. result->src1 = NULL;
  3843. return result;
  3844. }
  3845. struct ggml_tensor * ggml_gelu(
  3846. struct ggml_context * ctx,
  3847. struct ggml_tensor * a) {
  3848. return ggml_gelu_impl(ctx, a, false);
  3849. }
  3850. struct ggml_tensor * ggml_gelu_inplace(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a) {
  3853. return ggml_gelu_impl(ctx, a, true);
  3854. }
  3855. // ggml_silu
  3856. struct ggml_tensor * ggml_silu_impl(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a,
  3859. bool inplace) {
  3860. bool is_node = false;
  3861. if (!inplace && (a->grad)) {
  3862. is_node = true;
  3863. }
  3864. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3865. result->op = GGML_OP_SILU;
  3866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3867. result->src0 = a;
  3868. result->src1 = NULL;
  3869. return result;
  3870. }
  3871. struct ggml_tensor * ggml_silu(
  3872. struct ggml_context * ctx,
  3873. struct ggml_tensor * a) {
  3874. return ggml_silu_impl(ctx, a, false);
  3875. }
  3876. struct ggml_tensor * ggml_silu_inplace(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a) {
  3879. return ggml_silu_impl(ctx, a, true);
  3880. }
  3881. // ggml_norm
  3882. struct ggml_tensor * ggml_norm_impl(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. bool inplace) {
  3886. bool is_node = false;
  3887. if (!inplace && (a->grad)) {
  3888. GGML_ASSERT(false); // TODO: implement backward
  3889. is_node = true;
  3890. }
  3891. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3892. result->op = GGML_OP_NORM;
  3893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3894. result->src0 = a;
  3895. result->src1 = NULL; // TODO: maybe store epsilon here?
  3896. return result;
  3897. }
  3898. struct ggml_tensor * ggml_norm(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a) {
  3901. return ggml_norm_impl(ctx, a, false);
  3902. }
  3903. struct ggml_tensor * ggml_norm_inplace(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a) {
  3906. return ggml_norm_impl(ctx, a, true);
  3907. }
  3908. struct ggml_tensor * ggml_rms_norm_impl(
  3909. struct ggml_context * ctx,
  3910. struct ggml_tensor * a,
  3911. bool inplace) {
  3912. bool is_node = false;
  3913. if (!inplace && (a->grad)) {
  3914. GGML_ASSERT(false); // TODO: implement backward
  3915. is_node = true;
  3916. }
  3917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3918. result->op = GGML_OP_RMS_NORM;
  3919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3920. result->src0 = a;
  3921. result->src1 = NULL; // TODO: maybe store epsilon here?
  3922. return result;
  3923. }
  3924. struct ggml_tensor * ggml_rms_norm(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a) {
  3927. return ggml_rms_norm_impl(ctx, a, false);
  3928. }
  3929. struct ggml_tensor * ggml_rms_norm_inplace(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a) {
  3932. return ggml_rms_norm_impl(ctx, a, true);
  3933. }
  3934. // ggml_mul_mat
  3935. struct ggml_tensor * ggml_mul_mat(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. struct ggml_tensor * b) {
  3939. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3940. GGML_ASSERT(!ggml_is_transposed(a));
  3941. bool is_node = false;
  3942. if (a->grad || b->grad) {
  3943. is_node = true;
  3944. }
  3945. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3946. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3947. result->op = GGML_OP_MUL_MAT;
  3948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3949. result->src0 = a;
  3950. result->src1 = b;
  3951. return result;
  3952. }
  3953. // ggml_scale
  3954. struct ggml_tensor * ggml_scale_impl(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a,
  3957. struct ggml_tensor * b,
  3958. bool inplace) {
  3959. GGML_ASSERT(ggml_is_scalar(b));
  3960. GGML_ASSERT(ggml_is_padded_1d(a));
  3961. bool is_node = false;
  3962. if (!inplace && (a->grad || b->grad)) {
  3963. GGML_ASSERT(false); // TODO: implement backward
  3964. is_node = true;
  3965. }
  3966. // TODO: when implement backward, fix this:
  3967. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3968. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3969. result->op = GGML_OP_SCALE;
  3970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3971. result->src0 = a;
  3972. result->src1 = b;
  3973. return result;
  3974. }
  3975. struct ggml_tensor * ggml_scale(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. struct ggml_tensor * b) {
  3979. return ggml_scale_impl(ctx, a, b, false);
  3980. }
  3981. struct ggml_tensor * ggml_scale_inplace(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b) {
  3985. return ggml_scale_impl(ctx, a, b, true);
  3986. }
  3987. // ggml_cpy
  3988. struct ggml_tensor * ggml_cpy_impl(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. struct ggml_tensor * b,
  3992. bool inplace) {
  3993. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3994. bool is_node = false;
  3995. if (!inplace && (a->grad || b->grad)) {
  3996. GGML_ASSERT(false); // TODO: implement backward
  3997. is_node = true;
  3998. }
  3999. // make a view of the destination
  4000. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4001. result->op = GGML_OP_CPY;
  4002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4003. result->src0 = a;
  4004. result->src1 = b;
  4005. return result;
  4006. }
  4007. struct ggml_tensor * ggml_cpy(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. struct ggml_tensor * b) {
  4011. return ggml_cpy_impl(ctx, a, b, false);
  4012. }
  4013. struct ggml_tensor * ggml_cpy_inplace(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a,
  4016. struct ggml_tensor * b) {
  4017. return ggml_cpy_impl(ctx, a, b, true);
  4018. }
  4019. // ggml_cont
  4020. struct ggml_tensor * ggml_cont_impl(
  4021. struct ggml_context * ctx,
  4022. struct ggml_tensor * a,
  4023. bool inplace) {
  4024. bool is_node = false;
  4025. if (!inplace && a->grad) {
  4026. GGML_ASSERT(false); // TODO: implement backward
  4027. is_node = true;
  4028. }
  4029. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4030. result->op = GGML_OP_CONT;
  4031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4032. result->src0 = a;
  4033. result->src1 = NULL;
  4034. return result;
  4035. }
  4036. struct ggml_tensor * ggml_cont(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a) {
  4039. return ggml_cont_impl(ctx, a, false);
  4040. }
  4041. struct ggml_tensor * ggml_cont_inplace(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a) {
  4044. return ggml_cont_impl(ctx, a, true);
  4045. }
  4046. // ggml_reshape
  4047. struct ggml_tensor * ggml_reshape(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. struct ggml_tensor * b) {
  4051. GGML_ASSERT(ggml_is_contiguous(a));
  4052. GGML_ASSERT(ggml_is_contiguous(b));
  4053. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4054. bool is_node = false;
  4055. if (a->grad || b->grad) {
  4056. GGML_ASSERT(false); // TODO: implement backward
  4057. is_node = true;
  4058. }
  4059. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4060. result->op = GGML_OP_RESHAPE;
  4061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4062. result->src0 = a;
  4063. result->src1 = NULL;
  4064. return result;
  4065. }
  4066. struct ggml_tensor * ggml_reshape_2d(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. int64_t ne0,
  4070. int64_t ne1) {
  4071. GGML_ASSERT(ggml_is_contiguous(a));
  4072. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4073. bool is_node = false;
  4074. if (a->grad) {
  4075. GGML_ASSERT(false); // TODO: implement backward
  4076. is_node = true;
  4077. }
  4078. const int64_t ne[2] = { ne0, ne1 };
  4079. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4080. result->op = GGML_OP_RESHAPE;
  4081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4082. result->src0 = a;
  4083. result->src1 = NULL;
  4084. return result;
  4085. }
  4086. struct ggml_tensor * ggml_reshape_3d(
  4087. struct ggml_context * ctx,
  4088. struct ggml_tensor * a,
  4089. int64_t ne0,
  4090. int64_t ne1,
  4091. int64_t ne2) {
  4092. GGML_ASSERT(ggml_is_contiguous(a));
  4093. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4094. bool is_node = false;
  4095. if (a->grad) {
  4096. GGML_ASSERT(false); // TODO: implement backward
  4097. is_node = true;
  4098. }
  4099. const int64_t ne[3] = { ne0, ne1, ne2 };
  4100. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4101. result->op = GGML_OP_RESHAPE;
  4102. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4103. result->src0 = a;
  4104. result->src1 = NULL;
  4105. return result;
  4106. }
  4107. // ggml_view_1d
  4108. struct ggml_tensor * ggml_view_1d(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. int64_t ne0,
  4112. size_t offset) {
  4113. if (a->grad) {
  4114. GGML_ASSERT(false); // gradient propagation is not supported
  4115. }
  4116. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4117. result->op = GGML_OP_VIEW;
  4118. result->grad = NULL;
  4119. result->src0 = a;
  4120. result->src1 = NULL; // TODO: maybe store the offset here?
  4121. return result;
  4122. }
  4123. // ggml_view_2d
  4124. struct ggml_tensor * ggml_view_2d(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. int64_t ne0,
  4128. int64_t ne1,
  4129. size_t nb1,
  4130. size_t offset) {
  4131. if (a->grad) {
  4132. GGML_ASSERT(false); // gradient propagation is not supported
  4133. }
  4134. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4135. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4136. result->nb[1] = nb1;
  4137. result->nb[2] = result->nb[1]*ne1;
  4138. result->nb[3] = result->nb[2];
  4139. result->op = GGML_OP_VIEW;
  4140. result->grad = NULL;
  4141. result->src0 = a;
  4142. result->src1 = NULL; // TODO: maybe store the offset here?
  4143. return result;
  4144. }
  4145. // ggml_view_3d
  4146. struct ggml_tensor * ggml_view_3d(
  4147. struct ggml_context * ctx,
  4148. struct ggml_tensor * a,
  4149. int64_t ne0,
  4150. int64_t ne1,
  4151. int64_t ne2,
  4152. size_t nb1,
  4153. size_t nb2,
  4154. size_t offset) {
  4155. if (a->grad) {
  4156. GGML_ASSERT(false); // gradient propagation is not supported
  4157. }
  4158. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4159. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4160. result->nb[1] = nb1;
  4161. result->nb[2] = nb2;
  4162. result->nb[3] = result->nb[2]*ne2;
  4163. result->op = GGML_OP_VIEW;
  4164. result->grad = NULL;
  4165. result->src0 = a;
  4166. result->src1 = NULL; // TODO: maybe store the offset here?
  4167. return result;
  4168. }
  4169. // ggml_permute
  4170. struct ggml_tensor * ggml_permute(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. int axis0,
  4174. int axis1,
  4175. int axis2,
  4176. int axis3) {
  4177. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4178. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4179. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4180. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4181. GGML_ASSERT(axis0 != axis1);
  4182. GGML_ASSERT(axis0 != axis2);
  4183. GGML_ASSERT(axis0 != axis3);
  4184. GGML_ASSERT(axis1 != axis2);
  4185. GGML_ASSERT(axis1 != axis3);
  4186. GGML_ASSERT(axis2 != axis3);
  4187. bool is_node = false;
  4188. if (a->grad) {
  4189. GGML_ASSERT(false); // TODO: implement backward
  4190. is_node = true;
  4191. }
  4192. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4193. int ne[GGML_MAX_DIMS];
  4194. int nb[GGML_MAX_DIMS];
  4195. ne[axis0] = a->ne[0];
  4196. ne[axis1] = a->ne[1];
  4197. ne[axis2] = a->ne[2];
  4198. ne[axis3] = a->ne[3];
  4199. nb[axis0] = a->nb[0];
  4200. nb[axis1] = a->nb[1];
  4201. nb[axis2] = a->nb[2];
  4202. nb[axis3] = a->nb[3];
  4203. result->ne[0] = ne[0];
  4204. result->ne[1] = ne[1];
  4205. result->ne[2] = ne[2];
  4206. result->ne[3] = ne[3];
  4207. result->nb[0] = nb[0];
  4208. result->nb[1] = nb[1];
  4209. result->nb[2] = nb[2];
  4210. result->nb[3] = nb[3];
  4211. result->op = GGML_OP_PERMUTE;
  4212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4213. result->src0 = a;
  4214. result->src1 = NULL; // TODO: maybe store the permutation here?
  4215. return result;
  4216. }
  4217. // ggml_transpose
  4218. struct ggml_tensor * ggml_transpose(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. bool is_node = false;
  4222. if (a->grad) {
  4223. GGML_ASSERT(false); // TODO: implement backward
  4224. is_node = true;
  4225. }
  4226. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4227. result->ne[0] = a->ne[1];
  4228. result->ne[1] = a->ne[0];
  4229. result->nb[0] = a->nb[1];
  4230. result->nb[1] = a->nb[0];
  4231. result->op = GGML_OP_TRANSPOSE;
  4232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4233. result->src0 = a;
  4234. result->src1 = NULL;
  4235. return result;
  4236. }
  4237. // ggml_get_rows
  4238. struct ggml_tensor * ggml_get_rows(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a,
  4241. struct ggml_tensor * b) {
  4242. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4243. bool is_node = false;
  4244. if (a->grad || b->grad) {
  4245. GGML_ASSERT(false); // TODO: implement backward
  4246. is_node = true;
  4247. }
  4248. // TODO: implement non F32 return
  4249. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4250. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4251. result->op = GGML_OP_GET_ROWS;
  4252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4253. result->src0 = a;
  4254. result->src1 = b;
  4255. return result;
  4256. }
  4257. // ggml_diag_mask_inf
  4258. struct ggml_tensor * ggml_diag_mask_inf(
  4259. struct ggml_context * ctx,
  4260. struct ggml_tensor * a,
  4261. int n_past) {
  4262. bool is_node = false;
  4263. if (a->grad) {
  4264. GGML_ASSERT(false); // TODO: implement backward
  4265. is_node = true;
  4266. }
  4267. // TODO: when implement backward, fix this:
  4268. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4269. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4270. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4271. result->op = GGML_OP_DIAG_MASK_INF;
  4272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4273. result->src0 = a;
  4274. result->src1 = b;
  4275. return result;
  4276. }
  4277. // ggml_soft_max
  4278. struct ggml_tensor * ggml_soft_max(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a) {
  4281. bool is_node = false;
  4282. if (a->grad) {
  4283. GGML_ASSERT(false); // TODO: implement backward
  4284. is_node = true;
  4285. }
  4286. // TODO: when implement backward, fix this:
  4287. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4288. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4289. result->op = GGML_OP_SOFT_MAX;
  4290. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4291. result->src0 = a;
  4292. result->src1 = NULL;
  4293. return result;
  4294. }
  4295. // ggml_rope
  4296. struct ggml_tensor * ggml_rope(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. int n_past,
  4300. int n_dims,
  4301. int mode) {
  4302. GGML_ASSERT(n_past >= 0);
  4303. bool is_node = false;
  4304. if (a->grad) {
  4305. GGML_ASSERT(false); // TODO: implement backward
  4306. is_node = true;
  4307. }
  4308. // TODO: when implement backward, fix this:
  4309. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4310. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4311. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4312. ((int32_t *) b->data)[0] = n_past;
  4313. ((int32_t *) b->data)[1] = n_dims;
  4314. ((int32_t *) b->data)[2] = mode;
  4315. result->op = GGML_OP_ROPE;
  4316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4317. result->src0 = a;
  4318. result->src1 = b;
  4319. return result;
  4320. }
  4321. // ggml_conv_1d_1s
  4322. struct ggml_tensor * ggml_conv_1d_1s(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. struct ggml_tensor * b) {
  4326. GGML_ASSERT(ggml_is_matrix(b));
  4327. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4328. GGML_ASSERT(a->ne[3] == 1);
  4329. bool is_node = false;
  4330. if (a->grad || b->grad) {
  4331. GGML_ASSERT(false); // TODO: implement backward
  4332. is_node = true;
  4333. }
  4334. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4335. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4336. result->op = GGML_OP_CONV_1D_1S;
  4337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4338. result->src0 = a;
  4339. result->src1 = b;
  4340. return result;
  4341. }
  4342. // ggml_conv_1d_2s
  4343. struct ggml_tensor * ggml_conv_1d_2s(
  4344. struct ggml_context * ctx,
  4345. struct ggml_tensor * a,
  4346. struct ggml_tensor * b) {
  4347. GGML_ASSERT(ggml_is_matrix(b));
  4348. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4349. GGML_ASSERT(a->ne[3] == 1);
  4350. bool is_node = false;
  4351. if (a->grad || b->grad) {
  4352. GGML_ASSERT(false); // TODO: implement backward
  4353. is_node = true;
  4354. }
  4355. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4356. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4357. result->op = GGML_OP_CONV_1D_2S;
  4358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4359. result->src0 = a;
  4360. result->src1 = b;
  4361. return result;
  4362. }
  4363. // ggml_flash_attn
  4364. struct ggml_tensor * ggml_flash_attn(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * q,
  4367. struct ggml_tensor * k,
  4368. struct ggml_tensor * v,
  4369. bool masked) {
  4370. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4371. // TODO: check if vT can be multiplied by (k*qT)
  4372. bool is_node = false;
  4373. if (q->grad || k->grad || v->grad) {
  4374. GGML_ASSERT(false); // TODO: implement backward
  4375. is_node = true;
  4376. }
  4377. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4378. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4379. result->op = GGML_OP_FLASH_ATTN;
  4380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4381. result->src0 = q;
  4382. result->src1 = k;
  4383. result->opt[0] = v;
  4384. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4385. return result;
  4386. }
  4387. // ggml_flash_ff
  4388. struct ggml_tensor * ggml_flash_ff(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. struct ggml_tensor * b0,
  4392. struct ggml_tensor * b1,
  4393. struct ggml_tensor * c0,
  4394. struct ggml_tensor * c1) {
  4395. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4396. // TODO: more checks
  4397. bool is_node = false;
  4398. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4399. GGML_ASSERT(false); // TODO: implement backward
  4400. is_node = true;
  4401. }
  4402. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4403. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4404. result->op = GGML_OP_FLASH_FF;
  4405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4406. result->src0 = a;
  4407. result->src1 = b0;
  4408. result->opt[0] = b1;
  4409. result->opt[1] = c0;
  4410. result->opt[2] = c1;
  4411. return result;
  4412. }
  4413. // ggml_map_unary
  4414. struct ggml_tensor * ggml_map_unary_impl_f32(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a,
  4417. const ggml_unary_op_f32_t fun,
  4418. bool inplace) {
  4419. bool is_node = false;
  4420. if (!inplace && a->grad) {
  4421. is_node = true;
  4422. }
  4423. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4424. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4425. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4426. result->op = GGML_OP_MAP_UNARY;
  4427. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4428. result->src0 = a;
  4429. result->opt[0] = addr_tensor;
  4430. return result;
  4431. }
  4432. struct ggml_tensor * ggml_map_unary_f32(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. const ggml_unary_op_f32_t fun) {
  4436. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4437. }
  4438. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. const ggml_unary_op_f32_t fun) {
  4442. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4443. }
  4444. // ggml_map_binary
  4445. struct ggml_tensor * ggml_map_binary_impl_f32(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a,
  4448. struct ggml_tensor * b,
  4449. const ggml_binary_op_f32_t fun,
  4450. bool inplace) {
  4451. GGML_ASSERT(ggml_are_same_shape(a, b));
  4452. bool is_node = false;
  4453. if (!inplace && (a->grad || b->grad)) {
  4454. is_node = true;
  4455. }
  4456. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4457. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4458. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4459. result->op = GGML_OP_MAP_BINARY;
  4460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4461. result->src0 = a;
  4462. result->src1 = b;
  4463. result->opt[0] = addr_tensor;
  4464. return result;
  4465. }
  4466. struct ggml_tensor * ggml_map_binary_f32(
  4467. struct ggml_context * ctx,
  4468. struct ggml_tensor * a,
  4469. struct ggml_tensor * b,
  4470. const ggml_binary_op_f32_t fun) {
  4471. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4472. }
  4473. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a,
  4476. struct ggml_tensor * b,
  4477. const ggml_binary_op_f32_t fun) {
  4478. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4479. }
  4480. ////////////////////////////////////////////////////////////////////////////////
  4481. void ggml_set_param(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * tensor) {
  4484. tensor->is_param = true;
  4485. GGML_ASSERT(tensor->grad == NULL);
  4486. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4487. }
  4488. // ggml_compute_forward_dup
  4489. static void ggml_compute_forward_dup_f16(
  4490. const struct ggml_compute_params * params,
  4491. const struct ggml_tensor * src0,
  4492. struct ggml_tensor * dst) {
  4493. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4494. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4495. return;
  4496. }
  4497. const int64_t ne00 = src0->ne[0];
  4498. const int64_t ne01 = src0->ne[1];
  4499. const int64_t ne02 = src0->ne[2];
  4500. const int64_t ne03 = src0->ne[3];
  4501. const int64_t ne0 = dst->ne[0];
  4502. const int64_t ne1 = dst->ne[1];
  4503. const int64_t ne2 = dst->ne[2];
  4504. const int64_t ne3 = dst->ne[3];
  4505. const size_t nb00 = src0->nb[0];
  4506. const size_t nb01 = src0->nb[1];
  4507. const size_t nb02 = src0->nb[2];
  4508. const size_t nb03 = src0->nb[3];
  4509. const size_t nb0 = dst->nb[0];
  4510. const size_t nb1 = dst->nb[1];
  4511. const size_t nb2 = dst->nb[2];
  4512. const size_t nb3 = dst->nb[3];
  4513. const int ith = params->ith; // thread index
  4514. const int nth = params->nth; // number of threads
  4515. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4516. // parallelize by elements
  4517. const int ne = ggml_nelements(dst);
  4518. const int dr = (ne + nth - 1) / nth;
  4519. const int ie0 = dr * ith;
  4520. const int ie1 = MIN(ie0 + dr, ne);
  4521. memcpy(
  4522. ((char *) dst->data + ie0*nb0),
  4523. ((char *) src0->data + ie0*nb00),
  4524. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4525. return;
  4526. }
  4527. // parallelize by rows
  4528. const int nr = ne01;
  4529. // number of rows per thread
  4530. const int dr = (nr + nth - 1) / nth;
  4531. // row range for this thread
  4532. const int ir0 = dr * ith;
  4533. const int ir1 = MIN(ir0 + dr, nr);
  4534. if (src0->type == dst->type &&
  4535. ne00 == ne0 &&
  4536. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4537. // copy by rows
  4538. const size_t rs = ne00*nb00;
  4539. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4540. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4541. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4542. memcpy(
  4543. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4544. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4545. rs);
  4546. }
  4547. }
  4548. }
  4549. return;
  4550. }
  4551. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4552. if (ggml_is_contiguous(dst)) {
  4553. if (nb00 == sizeof(ggml_fp16_t)) {
  4554. if (dst->type == GGML_TYPE_F16) {
  4555. size_t id = 0;
  4556. const size_t rs = ne00 * nb00;
  4557. char * dst_ptr = (char *) dst->data;
  4558. for (int i03 = 0; i03 < ne03; i03++) {
  4559. for (int i02 = 0; i02 < ne02; i02++) {
  4560. id += rs * ir0;
  4561. for (int i01 = ir0; i01 < ir1; i01++) {
  4562. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4563. memcpy(dst_ptr + id, src0_ptr, rs);
  4564. id += rs;
  4565. }
  4566. id += rs * (ne01 - ir1);
  4567. }
  4568. }
  4569. } else if (dst->type == GGML_TYPE_F32) {
  4570. size_t id = 0;
  4571. float * dst_ptr = (float *) dst->data;
  4572. for (int i03 = 0; i03 < ne03; i03++) {
  4573. for (int i02 = 0; i02 < ne02; i02++) {
  4574. id += ne00 * ir0;
  4575. for (int i01 = ir0; i01 < ir1; i01++) {
  4576. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4577. for (int i00 = 0; i00 < ne00; i00++) {
  4578. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4579. id++;
  4580. }
  4581. }
  4582. id += ne00 * (ne01 - ir1);
  4583. }
  4584. }
  4585. } else if (ggml_is_quantized(dst->type)) {
  4586. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4587. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4588. size_t id = 0;
  4589. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4590. char * dst_ptr = (char *) dst->data;
  4591. for (int i03 = 0; i03 < ne03; i03++) {
  4592. for (int i02 = 0; i02 < ne02; i02++) {
  4593. id += rs * ir0;
  4594. for (int i01 = ir0; i01 < ir1; i01++) {
  4595. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4596. for (int i00 = 0; i00 < ne00; i00++) {
  4597. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4598. }
  4599. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4600. id += rs;
  4601. }
  4602. id += rs * (ne01 - ir1);
  4603. }
  4604. }
  4605. } else {
  4606. GGML_ASSERT(false); // TODO: implement
  4607. }
  4608. } else {
  4609. //printf("%s: this is not optimal - fix me\n", __func__);
  4610. if (dst->type == GGML_TYPE_F32) {
  4611. size_t id = 0;
  4612. float * dst_ptr = (float *) dst->data;
  4613. for (int i03 = 0; i03 < ne03; i03++) {
  4614. for (int i02 = 0; i02 < ne02; i02++) {
  4615. id += ne00 * ir0;
  4616. for (int i01 = ir0; i01 < ir1; i01++) {
  4617. for (int i00 = 0; i00 < ne00; i00++) {
  4618. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4619. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4620. id++;
  4621. }
  4622. }
  4623. id += ne00 * (ne01 - ir1);
  4624. }
  4625. }
  4626. } else if (dst->type == GGML_TYPE_F16) {
  4627. size_t id = 0;
  4628. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4629. for (int i03 = 0; i03 < ne03; i03++) {
  4630. for (int i02 = 0; i02 < ne02; i02++) {
  4631. id += ne00 * ir0;
  4632. for (int i01 = ir0; i01 < ir1; i01++) {
  4633. for (int i00 = 0; i00 < ne00; i00++) {
  4634. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4635. dst_ptr[id] = *src0_ptr;
  4636. id++;
  4637. }
  4638. }
  4639. id += ne00 * (ne01 - ir1);
  4640. }
  4641. }
  4642. } else {
  4643. GGML_ASSERT(false); // TODO: implement
  4644. }
  4645. }
  4646. return;
  4647. }
  4648. // dst counters
  4649. int64_t i10 = 0;
  4650. int64_t i11 = 0;
  4651. int64_t i12 = 0;
  4652. int64_t i13 = 0;
  4653. if (dst->type == GGML_TYPE_F16) {
  4654. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4655. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4656. i10 += ne00 * ir0;
  4657. while (i10 >= ne0) {
  4658. i10 -= ne0;
  4659. if (++i11 == ne1) {
  4660. i11 = 0;
  4661. if (++i12 == ne2) {
  4662. i12 = 0;
  4663. if (++i13 == ne3) {
  4664. i13 = 0;
  4665. }
  4666. }
  4667. }
  4668. }
  4669. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4670. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4671. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4672. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4673. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4674. if (++i10 == ne00) {
  4675. i10 = 0;
  4676. if (++i11 == ne01) {
  4677. i11 = 0;
  4678. if (++i12 == ne02) {
  4679. i12 = 0;
  4680. if (++i13 == ne03) {
  4681. i13 = 0;
  4682. }
  4683. }
  4684. }
  4685. }
  4686. }
  4687. }
  4688. i10 += ne00 * (ne01 - ir1);
  4689. while (i10 >= ne0) {
  4690. i10 -= ne0;
  4691. if (++i11 == ne1) {
  4692. i11 = 0;
  4693. if (++i12 == ne2) {
  4694. i12 = 0;
  4695. if (++i13 == ne3) {
  4696. i13 = 0;
  4697. }
  4698. }
  4699. }
  4700. }
  4701. }
  4702. }
  4703. } else if (dst->type == GGML_TYPE_F32) {
  4704. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4705. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4706. i10 += ne00 * ir0;
  4707. while (i10 >= ne0) {
  4708. i10 -= ne0;
  4709. if (++i11 == ne1) {
  4710. i11 = 0;
  4711. if (++i12 == ne2) {
  4712. i12 = 0;
  4713. if (++i13 == ne3) {
  4714. i13 = 0;
  4715. }
  4716. }
  4717. }
  4718. }
  4719. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4720. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4721. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4722. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4723. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4724. if (++i10 == ne0) {
  4725. i10 = 0;
  4726. if (++i11 == ne1) {
  4727. i11 = 0;
  4728. if (++i12 == ne2) {
  4729. i12 = 0;
  4730. if (++i13 == ne3) {
  4731. i13 = 0;
  4732. }
  4733. }
  4734. }
  4735. }
  4736. }
  4737. }
  4738. i10 += ne00 * (ne01 - ir1);
  4739. while (i10 >= ne0) {
  4740. i10 -= ne0;
  4741. if (++i11 == ne1) {
  4742. i11 = 0;
  4743. if (++i12 == ne2) {
  4744. i12 = 0;
  4745. if (++i13 == ne3) {
  4746. i13 = 0;
  4747. }
  4748. }
  4749. }
  4750. }
  4751. }
  4752. }
  4753. } else {
  4754. GGML_ASSERT(false); // TODO: implement
  4755. }
  4756. }
  4757. static void ggml_compute_forward_dup_f32(
  4758. const struct ggml_compute_params * params,
  4759. const struct ggml_tensor * src0,
  4760. struct ggml_tensor * dst) {
  4761. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4762. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4763. return;
  4764. }
  4765. const int64_t ne00 = src0->ne[0];
  4766. const int64_t ne01 = src0->ne[1];
  4767. const int64_t ne02 = src0->ne[2];
  4768. const int64_t ne03 = src0->ne[3];
  4769. const int64_t ne0 = dst->ne[0];
  4770. const int64_t ne1 = dst->ne[1];
  4771. const int64_t ne2 = dst->ne[2];
  4772. const int64_t ne3 = dst->ne[3];
  4773. const size_t nb00 = src0->nb[0];
  4774. const size_t nb01 = src0->nb[1];
  4775. const size_t nb02 = src0->nb[2];
  4776. const size_t nb03 = src0->nb[3];
  4777. const size_t nb0 = dst->nb[0];
  4778. const size_t nb1 = dst->nb[1];
  4779. const size_t nb2 = dst->nb[2];
  4780. const size_t nb3 = dst->nb[3];
  4781. const int ith = params->ith; // thread index
  4782. const int nth = params->nth; // number of threads
  4783. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4784. // parallelize by elements
  4785. const int ne = ggml_nelements(dst);
  4786. const int dr = (ne + nth - 1) / nth;
  4787. const int ie0 = dr * ith;
  4788. const int ie1 = MIN(ie0 + dr, ne);
  4789. memcpy(
  4790. ((char *) dst->data + ie0*nb0),
  4791. ((char *) src0->data + ie0*nb00),
  4792. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4793. return;
  4794. }
  4795. // parallelize by rows
  4796. const int nr = ne01;
  4797. // number of rows per thread
  4798. const int dr = (nr + nth - 1) / nth;
  4799. // row range for this thread
  4800. const int ir0 = dr * ith;
  4801. const int ir1 = MIN(ir0 + dr, nr);
  4802. if (src0->type == dst->type &&
  4803. ne00 == ne0 &&
  4804. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4805. // copy by rows
  4806. const size_t rs = ne00*nb00;
  4807. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4808. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4809. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4810. memcpy(
  4811. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4812. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4813. rs);
  4814. }
  4815. }
  4816. }
  4817. return;
  4818. }
  4819. if (ggml_is_contiguous(dst)) {
  4820. // TODO: simplify
  4821. if (nb00 == sizeof(float)) {
  4822. if (dst->type == GGML_TYPE_F32) {
  4823. size_t id = 0;
  4824. const size_t rs = ne00 * nb00;
  4825. char * dst_ptr = (char *) dst->data;
  4826. for (int i03 = 0; i03 < ne03; i03++) {
  4827. for (int i02 = 0; i02 < ne02; i02++) {
  4828. id += rs * ir0;
  4829. for (int i01 = ir0; i01 < ir1; i01++) {
  4830. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4831. memcpy(dst_ptr + id, src0_ptr, rs);
  4832. id += rs;
  4833. }
  4834. id += rs * (ne01 - ir1);
  4835. }
  4836. }
  4837. } else if (dst->type == GGML_TYPE_F16) {
  4838. size_t id = 0;
  4839. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4840. for (int i03 = 0; i03 < ne03; i03++) {
  4841. for (int i02 = 0; i02 < ne02; i02++) {
  4842. id += ne00 * ir0;
  4843. for (int i01 = ir0; i01 < ir1; i01++) {
  4844. for (int i00 = 0; i00 < ne00; i00++) {
  4845. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4846. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4847. id++;
  4848. }
  4849. }
  4850. id += ne00 * (ne01 - ir1);
  4851. }
  4852. }
  4853. } else if (ggml_is_quantized(dst->type)) {
  4854. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4855. size_t id = 0;
  4856. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4857. char * dst_ptr = (char *) dst->data;
  4858. for (int i03 = 0; i03 < ne03; i03++) {
  4859. for (int i02 = 0; i02 < ne02; i02++) {
  4860. id += rs * ir0;
  4861. for (int i01 = ir0; i01 < ir1; i01++) {
  4862. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4863. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4864. id += rs;
  4865. }
  4866. id += rs * (ne01 - ir1);
  4867. }
  4868. }
  4869. } else {
  4870. GGML_ASSERT(false); // TODO: implement
  4871. }
  4872. } else {
  4873. //printf("%s: this is not optimal - fix me\n", __func__);
  4874. if (dst->type == GGML_TYPE_F32) {
  4875. size_t id = 0;
  4876. float * dst_ptr = (float *) dst->data;
  4877. for (int i03 = 0; i03 < ne03; i03++) {
  4878. for (int i02 = 0; i02 < ne02; i02++) {
  4879. id += ne00 * ir0;
  4880. for (int i01 = ir0; i01 < ir1; i01++) {
  4881. for (int i00 = 0; i00 < ne00; i00++) {
  4882. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4883. dst_ptr[id] = *src0_ptr;
  4884. id++;
  4885. }
  4886. }
  4887. id += ne00 * (ne01 - ir1);
  4888. }
  4889. }
  4890. } else if (dst->type == GGML_TYPE_F16) {
  4891. size_t id = 0;
  4892. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4893. for (int i03 = 0; i03 < ne03; i03++) {
  4894. for (int i02 = 0; i02 < ne02; i02++) {
  4895. id += ne00 * ir0;
  4896. for (int i01 = ir0; i01 < ir1; i01++) {
  4897. for (int i00 = 0; i00 < ne00; i00++) {
  4898. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4899. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4900. id++;
  4901. }
  4902. }
  4903. id += ne00 * (ne01 - ir1);
  4904. }
  4905. }
  4906. } else {
  4907. GGML_ASSERT(false); // TODO: implement
  4908. }
  4909. }
  4910. return;
  4911. }
  4912. // dst counters
  4913. int64_t i10 = 0;
  4914. int64_t i11 = 0;
  4915. int64_t i12 = 0;
  4916. int64_t i13 = 0;
  4917. if (dst->type == GGML_TYPE_F32) {
  4918. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4919. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4920. i10 += ne00 * ir0;
  4921. while (i10 >= ne0) {
  4922. i10 -= ne0;
  4923. if (++i11 == ne1) {
  4924. i11 = 0;
  4925. if (++i12 == ne2) {
  4926. i12 = 0;
  4927. if (++i13 == ne3) {
  4928. i13 = 0;
  4929. }
  4930. }
  4931. }
  4932. }
  4933. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4934. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4935. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4936. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4937. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4938. if (++i10 == ne0) {
  4939. i10 = 0;
  4940. if (++i11 == ne1) {
  4941. i11 = 0;
  4942. if (++i12 == ne2) {
  4943. i12 = 0;
  4944. if (++i13 == ne3) {
  4945. i13 = 0;
  4946. }
  4947. }
  4948. }
  4949. }
  4950. }
  4951. }
  4952. i10 += ne00 * (ne01 - ir1);
  4953. while (i10 >= ne0) {
  4954. i10 -= ne0;
  4955. if (++i11 == ne1) {
  4956. i11 = 0;
  4957. if (++i12 == ne2) {
  4958. i12 = 0;
  4959. if (++i13 == ne3) {
  4960. i13 = 0;
  4961. }
  4962. }
  4963. }
  4964. }
  4965. }
  4966. }
  4967. } else if (dst->type == GGML_TYPE_F16) {
  4968. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4969. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4970. i10 += ne00 * ir0;
  4971. while (i10 >= ne0) {
  4972. i10 -= ne0;
  4973. if (++i11 == ne1) {
  4974. i11 = 0;
  4975. if (++i12 == ne2) {
  4976. i12 = 0;
  4977. if (++i13 == ne3) {
  4978. i13 = 0;
  4979. }
  4980. }
  4981. }
  4982. }
  4983. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4984. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4985. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4986. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4987. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4988. if (++i10 == ne0) {
  4989. i10 = 0;
  4990. if (++i11 == ne1) {
  4991. i11 = 0;
  4992. if (++i12 == ne2) {
  4993. i12 = 0;
  4994. if (++i13 == ne3) {
  4995. i13 = 0;
  4996. }
  4997. }
  4998. }
  4999. }
  5000. }
  5001. }
  5002. i10 += ne00 * (ne01 - ir1);
  5003. while (i10 >= ne0) {
  5004. i10 -= ne0;
  5005. if (++i11 == ne1) {
  5006. i11 = 0;
  5007. if (++i12 == ne2) {
  5008. i12 = 0;
  5009. if (++i13 == ne3) {
  5010. i13 = 0;
  5011. }
  5012. }
  5013. }
  5014. }
  5015. }
  5016. }
  5017. } else {
  5018. GGML_ASSERT(false); // TODO: implement
  5019. }
  5020. }
  5021. static void ggml_compute_forward_dup(
  5022. const struct ggml_compute_params * params,
  5023. const struct ggml_tensor * src0,
  5024. struct ggml_tensor * dst) {
  5025. switch (src0->type) {
  5026. case GGML_TYPE_F16:
  5027. {
  5028. ggml_compute_forward_dup_f16(params, src0, dst);
  5029. } break;
  5030. case GGML_TYPE_F32:
  5031. {
  5032. ggml_compute_forward_dup_f32(params, src0, dst);
  5033. } break;
  5034. default:
  5035. {
  5036. GGML_ASSERT(false);
  5037. } break;
  5038. }
  5039. }
  5040. // ggml_compute_forward_add
  5041. static void ggml_compute_forward_add_f32(
  5042. const struct ggml_compute_params * params,
  5043. const struct ggml_tensor * src0,
  5044. const struct ggml_tensor * src1,
  5045. struct ggml_tensor * dst) {
  5046. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5047. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5048. return;
  5049. }
  5050. const int ith = params->ith;
  5051. const int nth = params->nth;
  5052. const int n = ggml_nrows(src0);
  5053. const int nc = src0->ne[0];
  5054. const size_t nb00 = src0->nb[0];
  5055. const size_t nb01 = src0->nb[1];
  5056. const size_t nb10 = src1->nb[0];
  5057. const size_t nb11 = src1->nb[1];
  5058. const size_t nb0 = dst->nb[0];
  5059. const size_t nb1 = dst->nb[1];
  5060. GGML_ASSERT( nb0 == sizeof(float));
  5061. GGML_ASSERT(nb00 == sizeof(float));
  5062. if (nb10 == sizeof(float)) {
  5063. for (int j = ith; j < n; j += nth) {
  5064. #ifdef GGML_USE_ACCELERATE
  5065. vDSP_vadd(
  5066. (float *) ((char *) src0->data + j*nb01), 1,
  5067. (float *) ((char *) src1->data + j*nb11), 1,
  5068. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5069. #else
  5070. ggml_vec_add_f32(nc,
  5071. (float *) ((char *) dst->data + j*nb1),
  5072. (float *) ((char *) src0->data + j*nb01),
  5073. (float *) ((char *) src1->data + j*nb11));
  5074. #endif
  5075. }
  5076. } else {
  5077. // src1 is not contiguous
  5078. for (int j = ith; j < n; j += nth) {
  5079. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5080. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5081. for (int i = 0; i < nc; i++) {
  5082. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5083. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5084. }
  5085. }
  5086. }
  5087. }
  5088. static void ggml_compute_forward_add_f16_f32(
  5089. const struct ggml_compute_params * params,
  5090. const struct ggml_tensor * src0,
  5091. const struct ggml_tensor * src1,
  5092. struct ggml_tensor * dst) {
  5093. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5094. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5095. return;
  5096. }
  5097. const int ith = params->ith;
  5098. const int nth = params->nth;
  5099. const int n = ggml_nrows(src0);
  5100. const int nc = src0->ne[0];
  5101. const size_t nb00 = src0->nb[0];
  5102. const size_t nb01 = src0->nb[1];
  5103. const size_t nb10 = src1->nb[0];
  5104. const size_t nb11 = src1->nb[1];
  5105. const size_t nb0 = dst->nb[0];
  5106. const size_t nb1 = dst->nb[1];
  5107. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5108. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5109. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5110. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5111. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5112. if (nb10 == sizeof(float)) {
  5113. for (int j = ith; j < n; j += nth) {
  5114. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5115. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5116. for (int i = 0; i < nc; i++) {
  5117. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5118. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5119. }
  5120. }
  5121. }
  5122. else {
  5123. // src1 is not contiguous
  5124. GGML_ASSERT(false);
  5125. }
  5126. }
  5127. static void ggml_compute_forward_add_f16_f16(
  5128. const struct ggml_compute_params * params,
  5129. const struct ggml_tensor * src0,
  5130. const struct ggml_tensor * src1,
  5131. struct ggml_tensor * dst) {
  5132. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5133. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5134. return;
  5135. }
  5136. const int ith = params->ith;
  5137. const int nth = params->nth;
  5138. const int n = ggml_nrows(src0);
  5139. const int nc = src0->ne[0];
  5140. const size_t nb00 = src0->nb[0];
  5141. const size_t nb01 = src0->nb[1];
  5142. const size_t nb10 = src1->nb[0];
  5143. const size_t nb11 = src1->nb[1];
  5144. const size_t nb0 = dst->nb[0];
  5145. const size_t nb1 = dst->nb[1];
  5146. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5147. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5148. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5149. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5150. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5151. if (nb10 == sizeof(ggml_fp16_t)) {
  5152. for (int j = ith; j < n; j += nth) {
  5153. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5154. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5155. for (int i = 0; i < nc; i++) {
  5156. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5157. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5158. }
  5159. }
  5160. }
  5161. else {
  5162. // src1 is not contiguous
  5163. GGML_ASSERT(false);
  5164. }
  5165. }
  5166. static void ggml_compute_forward_add_q_f32(
  5167. const struct ggml_compute_params * params,
  5168. const struct ggml_tensor * src0,
  5169. const struct ggml_tensor * src1,
  5170. struct ggml_tensor * dst) {
  5171. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5172. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5173. return;
  5174. }
  5175. const int64_t ne00 = src0->ne[0];
  5176. const int64_t ne01 = src0->ne[1];
  5177. const int64_t ne02 = src0->ne[2];
  5178. const int64_t ne03 = src0->ne[3];
  5179. //const int64_t ne10 = src1->ne[0];
  5180. //const int64_t ne11 = src1->ne[1];
  5181. const int64_t ne12 = src1->ne[2];
  5182. const int64_t ne13 = src1->ne[3];
  5183. //const int64_t ne0 = dst->ne[0];
  5184. //const int64_t ne1 = dst->ne[1];
  5185. const int64_t ne2 = dst->ne[2];
  5186. const int64_t ne3 = dst->ne[3];
  5187. const int nb00 = src0->nb[0];
  5188. const int nb01 = src0->nb[1];
  5189. const int nb02 = src0->nb[2];
  5190. const int nb03 = src0->nb[3];
  5191. const int nb10 = src1->nb[0];
  5192. const int nb11 = src1->nb[1];
  5193. const int nb12 = src1->nb[2];
  5194. const int nb13 = src1->nb[3];
  5195. const int nb0 = dst->nb[0];
  5196. const int nb1 = dst->nb[1];
  5197. const int nb2 = dst->nb[2];
  5198. const int nb3 = dst->nb[3];
  5199. const int ith = params->ith;
  5200. const int nth = params->nth;
  5201. GGML_ASSERT(ne02 == ne12);
  5202. GGML_ASSERT(ne03 == ne13);
  5203. GGML_ASSERT(ne2 == ne12);
  5204. GGML_ASSERT(ne3 == ne13);
  5205. const enum ggml_type type = src0->type;
  5206. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5207. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5208. // we don't support permuted src0 or src1
  5209. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5210. GGML_ASSERT(nb10 == sizeof(float));
  5211. // dst cannot be transposed or permuted
  5212. GGML_ASSERT(nb0 <= nb1);
  5213. GGML_ASSERT(nb1 <= nb2);
  5214. GGML_ASSERT(nb2 <= nb3);
  5215. GGML_ASSERT(ggml_is_quantized(src0->type));
  5216. GGML_ASSERT(dst->type == src0->type);
  5217. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5218. // total rows in src0
  5219. const int nr = ne01*ne02*ne03;
  5220. // rows per thread
  5221. const int dr = (nr + nth - 1)/nth;
  5222. // row range for this thread
  5223. const int ir0 = dr*ith;
  5224. const int ir1 = MIN(ir0 + dr, nr);
  5225. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5226. for (int ir = ir0; ir < ir1; ++ir) {
  5227. // src0 indices
  5228. const int i03 = ir/(ne02*ne01);
  5229. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5230. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5231. // src1 and dst are same shape as src0 => same indices
  5232. const int i13 = i03;
  5233. const int i12 = i02;
  5234. const int i11 = i01;
  5235. const int i3 = i03;
  5236. const int i2 = i02;
  5237. const int i1 = i01;
  5238. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5239. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5240. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5241. assert(ne00 % 32 == 0);
  5242. // unquantize row from src0 to temp buffer
  5243. dequantize_row_q(src0_row, wdata, ne00);
  5244. // add src1
  5245. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5246. // quantize row to dst
  5247. quantize_row_q(wdata, dst_row, ne00);
  5248. }
  5249. }
  5250. static void ggml_compute_forward_add(
  5251. const struct ggml_compute_params * params,
  5252. const struct ggml_tensor * src0,
  5253. const struct ggml_tensor * src1,
  5254. struct ggml_tensor * dst) {
  5255. switch (src0->type) {
  5256. case GGML_TYPE_F32:
  5257. {
  5258. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5259. } break;
  5260. case GGML_TYPE_F16:
  5261. {
  5262. if (src1->type == GGML_TYPE_F16) {
  5263. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5264. }
  5265. else if (src1->type == GGML_TYPE_F32) {
  5266. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5267. }
  5268. else {
  5269. GGML_ASSERT(false);
  5270. }
  5271. } break;
  5272. case GGML_TYPE_Q4_0:
  5273. case GGML_TYPE_Q4_1:
  5274. case GGML_TYPE_Q4_2:
  5275. case GGML_TYPE_Q4_3:
  5276. {
  5277. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5278. } break;
  5279. default:
  5280. {
  5281. GGML_ASSERT(false);
  5282. } break;
  5283. }
  5284. }
  5285. // ggml_compute_forward_sub
  5286. static void ggml_compute_forward_sub_f32(
  5287. const struct ggml_compute_params * params,
  5288. const struct ggml_tensor * src0,
  5289. const struct ggml_tensor * src1,
  5290. struct ggml_tensor * dst) {
  5291. assert(params->ith == 0);
  5292. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5293. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5294. return;
  5295. }
  5296. const int n = ggml_nrows(src0);
  5297. const int nc = src0->ne[0];
  5298. assert( dst->nb[0] == sizeof(float));
  5299. assert(src0->nb[0] == sizeof(float));
  5300. assert(src1->nb[0] == sizeof(float));
  5301. for (int i = 0; i < n; i++) {
  5302. ggml_vec_sub_f32(nc,
  5303. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5304. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5305. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5306. }
  5307. }
  5308. static void ggml_compute_forward_sub(
  5309. const struct ggml_compute_params * params,
  5310. const struct ggml_tensor * src0,
  5311. const struct ggml_tensor * src1,
  5312. struct ggml_tensor * dst) {
  5313. switch (src0->type) {
  5314. case GGML_TYPE_F32:
  5315. {
  5316. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5317. } break;
  5318. default:
  5319. {
  5320. GGML_ASSERT(false);
  5321. } break;
  5322. }
  5323. }
  5324. // ggml_compute_forward_mul
  5325. static void ggml_compute_forward_mul_f32(
  5326. const struct ggml_compute_params * params,
  5327. const struct ggml_tensor * src0,
  5328. const struct ggml_tensor * src1,
  5329. struct ggml_tensor * dst) {
  5330. assert(params->ith == 0);
  5331. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5332. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5333. return;
  5334. }
  5335. const int n = ggml_nrows(src0);
  5336. const int nc = src0->ne[0];
  5337. assert( dst->nb[0] == sizeof(float));
  5338. assert(src0->nb[0] == sizeof(float));
  5339. assert(src1->nb[0] == sizeof(float));
  5340. for (int i = 0; i < n; i++) {
  5341. ggml_vec_mul_f32(nc,
  5342. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5343. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5344. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5345. }
  5346. }
  5347. static void ggml_compute_forward_mul(
  5348. const struct ggml_compute_params * params,
  5349. const struct ggml_tensor * src0,
  5350. const struct ggml_tensor * src1,
  5351. struct ggml_tensor * dst) {
  5352. switch (src0->type) {
  5353. case GGML_TYPE_F32:
  5354. {
  5355. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5356. } break;
  5357. default:
  5358. {
  5359. GGML_ASSERT(false);
  5360. } break;
  5361. }
  5362. }
  5363. // ggml_compute_forward_div
  5364. static void ggml_compute_forward_div_f32(
  5365. const struct ggml_compute_params * params,
  5366. const struct ggml_tensor * src0,
  5367. const struct ggml_tensor * src1,
  5368. struct ggml_tensor * dst) {
  5369. assert(params->ith == 0);
  5370. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5371. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5372. return;
  5373. }
  5374. const int n = ggml_nrows(src0);
  5375. const int nc = src0->ne[0];
  5376. assert( dst->nb[0] == sizeof(float));
  5377. assert(src0->nb[0] == sizeof(float));
  5378. assert(src1->nb[0] == sizeof(float));
  5379. for (int i = 0; i < n; i++) {
  5380. ggml_vec_div_f32(nc,
  5381. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5382. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5383. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5384. }
  5385. }
  5386. static void ggml_compute_forward_div(
  5387. const struct ggml_compute_params * params,
  5388. const struct ggml_tensor * src0,
  5389. const struct ggml_tensor * src1,
  5390. struct ggml_tensor * dst) {
  5391. switch (src0->type) {
  5392. case GGML_TYPE_F32:
  5393. {
  5394. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5395. } break;
  5396. default:
  5397. {
  5398. GGML_ASSERT(false);
  5399. } break;
  5400. }
  5401. }
  5402. // ggml_compute_forward_sqr
  5403. static void ggml_compute_forward_sqr_f32(
  5404. const struct ggml_compute_params * params,
  5405. const struct ggml_tensor * src0,
  5406. struct ggml_tensor * dst) {
  5407. assert(params->ith == 0);
  5408. assert(ggml_are_same_shape(src0, dst));
  5409. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5410. return;
  5411. }
  5412. const int n = ggml_nrows(src0);
  5413. const int nc = src0->ne[0];
  5414. assert( dst->nb[0] == sizeof(float));
  5415. assert(src0->nb[0] == sizeof(float));
  5416. for (int i = 0; i < n; i++) {
  5417. ggml_vec_sqr_f32(nc,
  5418. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5419. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5420. }
  5421. }
  5422. static void ggml_compute_forward_sqr(
  5423. const struct ggml_compute_params * params,
  5424. const struct ggml_tensor * src0,
  5425. struct ggml_tensor * dst) {
  5426. switch (src0->type) {
  5427. case GGML_TYPE_F32:
  5428. {
  5429. ggml_compute_forward_sqr_f32(params, src0, dst);
  5430. } break;
  5431. default:
  5432. {
  5433. GGML_ASSERT(false);
  5434. } break;
  5435. }
  5436. }
  5437. // ggml_compute_forward_sqrt
  5438. static void ggml_compute_forward_sqrt_f32(
  5439. const struct ggml_compute_params * params,
  5440. const struct ggml_tensor * src0,
  5441. struct ggml_tensor * dst) {
  5442. assert(params->ith == 0);
  5443. assert(ggml_are_same_shape(src0, dst));
  5444. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5445. return;
  5446. }
  5447. const int n = ggml_nrows(src0);
  5448. const int nc = src0->ne[0];
  5449. assert( dst->nb[0] == sizeof(float));
  5450. assert(src0->nb[0] == sizeof(float));
  5451. for (int i = 0; i < n; i++) {
  5452. ggml_vec_sqrt_f32(nc,
  5453. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5454. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5455. }
  5456. }
  5457. static void ggml_compute_forward_sqrt(
  5458. const struct ggml_compute_params * params,
  5459. const struct ggml_tensor * src0,
  5460. struct ggml_tensor * dst) {
  5461. switch (src0->type) {
  5462. case GGML_TYPE_F32:
  5463. {
  5464. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5465. } break;
  5466. default:
  5467. {
  5468. GGML_ASSERT(false);
  5469. } break;
  5470. }
  5471. }
  5472. // ggml_compute_forward_sum
  5473. static void ggml_compute_forward_sum_f32(
  5474. const struct ggml_compute_params * params,
  5475. const struct ggml_tensor * src0,
  5476. struct ggml_tensor * dst) {
  5477. assert(params->ith == 0);
  5478. assert(ggml_is_scalar(dst));
  5479. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5480. return;
  5481. }
  5482. assert(ggml_is_scalar(dst));
  5483. assert(src0->nb[0] == sizeof(float));
  5484. const int64_t ne00 = src0->ne[0];
  5485. const int64_t ne01 = src0->ne[1];
  5486. const int64_t ne02 = src0->ne[2];
  5487. const int64_t ne03 = src0->ne[3];
  5488. const size_t nb01 = src0->nb[1];
  5489. const size_t nb02 = src0->nb[2];
  5490. const size_t nb03 = src0->nb[3];
  5491. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5492. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5493. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5494. ggml_vec_sum_f32(ne00,
  5495. (float *) (dst->data),
  5496. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5497. }
  5498. }
  5499. }
  5500. }
  5501. static void ggml_compute_forward_sum(
  5502. const struct ggml_compute_params * params,
  5503. const struct ggml_tensor * src0,
  5504. struct ggml_tensor * dst) {
  5505. switch (src0->type) {
  5506. case GGML_TYPE_F32:
  5507. {
  5508. ggml_compute_forward_sum_f32(params, src0, dst);
  5509. } break;
  5510. default:
  5511. {
  5512. GGML_ASSERT(false);
  5513. } break;
  5514. }
  5515. }
  5516. // ggml_compute_forward_mean
  5517. static void ggml_compute_forward_mean_f32(
  5518. const struct ggml_compute_params * params,
  5519. const struct ggml_tensor * src0,
  5520. struct ggml_tensor * dst) {
  5521. assert(params->ith == 0);
  5522. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5523. return;
  5524. }
  5525. assert(src0->nb[0] == sizeof(float));
  5526. const int64_t ne00 = src0->ne[0];
  5527. const int64_t ne01 = src0->ne[1];
  5528. const int64_t ne02 = src0->ne[2];
  5529. const int64_t ne03 = src0->ne[3];
  5530. const size_t nb01 = src0->nb[1];
  5531. const size_t nb02 = src0->nb[2];
  5532. const size_t nb03 = src0->nb[3];
  5533. const int64_t ne0 = dst->ne[0];
  5534. const int64_t ne1 = dst->ne[1];
  5535. const int64_t ne2 = dst->ne[2];
  5536. const int64_t ne3 = dst->ne[3];
  5537. assert(ne0 == 1);
  5538. assert(ne1 == ne01);
  5539. assert(ne2 == ne02);
  5540. assert(ne3 == ne03);
  5541. UNUSED(ne0);
  5542. UNUSED(ne1);
  5543. UNUSED(ne2);
  5544. UNUSED(ne3);
  5545. const size_t nb1 = dst->nb[1];
  5546. const size_t nb2 = dst->nb[2];
  5547. const size_t nb3 = dst->nb[3];
  5548. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5549. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5550. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5551. ggml_vec_sum_f32(ne00,
  5552. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5553. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5554. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5555. }
  5556. }
  5557. }
  5558. }
  5559. static void ggml_compute_forward_mean(
  5560. const struct ggml_compute_params * params,
  5561. const struct ggml_tensor * src0,
  5562. struct ggml_tensor * dst) {
  5563. switch (src0->type) {
  5564. case GGML_TYPE_F32:
  5565. {
  5566. ggml_compute_forward_mean_f32(params, src0, dst);
  5567. } break;
  5568. default:
  5569. {
  5570. GGML_ASSERT(false);
  5571. } break;
  5572. }
  5573. }
  5574. // ggml_compute_forward_repeat
  5575. static void ggml_compute_forward_repeat_f32(
  5576. const struct ggml_compute_params * params,
  5577. const struct ggml_tensor * src0,
  5578. struct ggml_tensor * dst) {
  5579. assert(params->ith == 0);
  5580. assert(ggml_can_repeat(src0, dst));
  5581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5582. return;
  5583. }
  5584. // TODO: implement support for rank > 2 tensors
  5585. assert(src0->ne[2] == 1);
  5586. assert(src0->ne[3] == 1);
  5587. assert( dst->ne[2] == 1);
  5588. assert( dst->ne[3] == 1);
  5589. const int nc = dst->ne[0];
  5590. const int nr = dst->ne[1];
  5591. const int nc0 = src0->ne[0];
  5592. const int nr0 = src0->ne[1];
  5593. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5594. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5595. // TODO: support for transposed / permuted tensors
  5596. assert( dst->nb[0] == sizeof(float));
  5597. assert(src0->nb[0] == sizeof(float));
  5598. // TODO: maybe this is not optimal?
  5599. for (int i = 0; i < nrr; i++) {
  5600. for (int j = 0; j < ncr; j++) {
  5601. for (int k = 0; k < nr0; k++) {
  5602. ggml_vec_cpy_f32(nc0,
  5603. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5604. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5605. }
  5606. }
  5607. }
  5608. }
  5609. static void ggml_compute_forward_repeat(
  5610. const struct ggml_compute_params * params,
  5611. const struct ggml_tensor * src0,
  5612. struct ggml_tensor * dst) {
  5613. switch (src0->type) {
  5614. case GGML_TYPE_F32:
  5615. {
  5616. ggml_compute_forward_repeat_f32(params, src0, dst);
  5617. } break;
  5618. default:
  5619. {
  5620. GGML_ASSERT(false);
  5621. } break;
  5622. }
  5623. }
  5624. // ggml_compute_forward_abs
  5625. static void ggml_compute_forward_abs_f32(
  5626. const struct ggml_compute_params * params,
  5627. const struct ggml_tensor * src0,
  5628. struct ggml_tensor * dst) {
  5629. assert(params->ith == 0);
  5630. assert(ggml_are_same_shape(src0, dst));
  5631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5632. return;
  5633. }
  5634. const int n = ggml_nrows(src0);
  5635. const int nc = src0->ne[0];
  5636. assert(dst->nb[0] == sizeof(float));
  5637. assert(src0->nb[0] == sizeof(float));
  5638. for (int i = 0; i < n; i++) {
  5639. ggml_vec_abs_f32(nc,
  5640. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5641. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5642. }
  5643. }
  5644. static void ggml_compute_forward_abs(
  5645. const struct ggml_compute_params * params,
  5646. const struct ggml_tensor * src0,
  5647. struct ggml_tensor * dst) {
  5648. switch (src0->type) {
  5649. case GGML_TYPE_F32:
  5650. {
  5651. ggml_compute_forward_abs_f32(params, src0, dst);
  5652. } break;
  5653. default:
  5654. {
  5655. GGML_ASSERT(false);
  5656. } break;
  5657. }
  5658. }
  5659. // ggml_compute_forward_sgn
  5660. static void ggml_compute_forward_sgn_f32(
  5661. const struct ggml_compute_params * params,
  5662. const struct ggml_tensor * src0,
  5663. struct ggml_tensor * dst) {
  5664. assert(params->ith == 0);
  5665. assert(ggml_are_same_shape(src0, dst));
  5666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5667. return;
  5668. }
  5669. const int n = ggml_nrows(src0);
  5670. const int nc = src0->ne[0];
  5671. assert(dst->nb[0] == sizeof(float));
  5672. assert(src0->nb[0] == sizeof(float));
  5673. for (int i = 0; i < n; i++) {
  5674. ggml_vec_sgn_f32(nc,
  5675. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5676. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5677. }
  5678. }
  5679. static void ggml_compute_forward_sgn(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. struct ggml_tensor * dst) {
  5683. switch (src0->type) {
  5684. case GGML_TYPE_F32:
  5685. {
  5686. ggml_compute_forward_sgn_f32(params, src0, dst);
  5687. } break;
  5688. default:
  5689. {
  5690. GGML_ASSERT(false);
  5691. } break;
  5692. }
  5693. }
  5694. // ggml_compute_forward_neg
  5695. static void ggml_compute_forward_neg_f32(
  5696. const struct ggml_compute_params * params,
  5697. const struct ggml_tensor * src0,
  5698. struct ggml_tensor * dst) {
  5699. assert(params->ith == 0);
  5700. assert(ggml_are_same_shape(src0, dst));
  5701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5702. return;
  5703. }
  5704. const int n = ggml_nrows(src0);
  5705. const int nc = src0->ne[0];
  5706. assert(dst->nb[0] == sizeof(float));
  5707. assert(src0->nb[0] == sizeof(float));
  5708. for (int i = 0; i < n; i++) {
  5709. ggml_vec_neg_f32(nc,
  5710. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5711. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5712. }
  5713. }
  5714. static void ggml_compute_forward_neg(
  5715. const struct ggml_compute_params * params,
  5716. const struct ggml_tensor * src0,
  5717. struct ggml_tensor * dst) {
  5718. switch (src0->type) {
  5719. case GGML_TYPE_F32:
  5720. {
  5721. ggml_compute_forward_neg_f32(params, src0, dst);
  5722. } break;
  5723. default:
  5724. {
  5725. GGML_ASSERT(false);
  5726. } break;
  5727. }
  5728. }
  5729. // ggml_compute_forward_step
  5730. static void ggml_compute_forward_step_f32(
  5731. const struct ggml_compute_params * params,
  5732. const struct ggml_tensor * src0,
  5733. struct ggml_tensor * dst) {
  5734. assert(params->ith == 0);
  5735. assert(ggml_are_same_shape(src0, dst));
  5736. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5737. return;
  5738. }
  5739. const int n = ggml_nrows(src0);
  5740. const int nc = src0->ne[0];
  5741. assert(dst->nb[0] == sizeof(float));
  5742. assert(src0->nb[0] == sizeof(float));
  5743. for (int i = 0; i < n; i++) {
  5744. ggml_vec_step_f32(nc,
  5745. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5746. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5747. }
  5748. }
  5749. static void ggml_compute_forward_step(
  5750. const struct ggml_compute_params * params,
  5751. const struct ggml_tensor * src0,
  5752. struct ggml_tensor * dst) {
  5753. switch (src0->type) {
  5754. case GGML_TYPE_F32:
  5755. {
  5756. ggml_compute_forward_step_f32(params, src0, dst);
  5757. } break;
  5758. default:
  5759. {
  5760. GGML_ASSERT(false);
  5761. } break;
  5762. }
  5763. }
  5764. // ggml_compute_forward_relu
  5765. static void ggml_compute_forward_relu_f32(
  5766. const struct ggml_compute_params * params,
  5767. const struct ggml_tensor * src0,
  5768. struct ggml_tensor * dst) {
  5769. assert(params->ith == 0);
  5770. assert(ggml_are_same_shape(src0, dst));
  5771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5772. return;
  5773. }
  5774. const int n = ggml_nrows(src0);
  5775. const int nc = src0->ne[0];
  5776. assert(dst->nb[0] == sizeof(float));
  5777. assert(src0->nb[0] == sizeof(float));
  5778. for (int i = 0; i < n; i++) {
  5779. ggml_vec_relu_f32(nc,
  5780. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5781. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5782. }
  5783. }
  5784. static void ggml_compute_forward_relu(
  5785. const struct ggml_compute_params * params,
  5786. const struct ggml_tensor * src0,
  5787. struct ggml_tensor * dst) {
  5788. switch (src0->type) {
  5789. case GGML_TYPE_F32:
  5790. {
  5791. ggml_compute_forward_relu_f32(params, src0, dst);
  5792. } break;
  5793. default:
  5794. {
  5795. GGML_ASSERT(false);
  5796. } break;
  5797. }
  5798. }
  5799. // ggml_compute_forward_gelu
  5800. static void ggml_compute_forward_gelu_f32(
  5801. const struct ggml_compute_params * params,
  5802. const struct ggml_tensor * src0,
  5803. struct ggml_tensor * dst) {
  5804. GGML_ASSERT(ggml_is_contiguous(src0));
  5805. GGML_ASSERT(ggml_is_contiguous(dst));
  5806. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5808. return;
  5809. }
  5810. const int ith = params->ith;
  5811. const int nth = params->nth;
  5812. const int nc = src0->ne[0];
  5813. const int nr = ggml_nrows(src0);
  5814. // rows per thread
  5815. const int dr = (nr + nth - 1)/nth;
  5816. // row range for this thread
  5817. const int ir0 = dr*ith;
  5818. const int ir1 = MIN(ir0 + dr, nr);
  5819. for (int i1 = ir0; i1 < ir1; i1++) {
  5820. ggml_vec_gelu_f32(nc,
  5821. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5822. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5823. #ifndef NDEBUG
  5824. for (int k = 0; k < nc; k++) {
  5825. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5826. UNUSED(x);
  5827. assert(!isnan(x));
  5828. assert(!isinf(x));
  5829. }
  5830. #endif
  5831. }
  5832. }
  5833. static void ggml_compute_forward_gelu(
  5834. const struct ggml_compute_params * params,
  5835. const struct ggml_tensor * src0,
  5836. struct ggml_tensor * dst) {
  5837. switch (src0->type) {
  5838. case GGML_TYPE_F32:
  5839. {
  5840. ggml_compute_forward_gelu_f32(params, src0, dst);
  5841. } break;
  5842. default:
  5843. {
  5844. GGML_ASSERT(false);
  5845. } break;
  5846. }
  5847. //printf("XXXXXXXX gelu\n");
  5848. }
  5849. // ggml_compute_forward_silu
  5850. static void ggml_compute_forward_silu_f32(
  5851. const struct ggml_compute_params * params,
  5852. const struct ggml_tensor * src0,
  5853. struct ggml_tensor * dst) {
  5854. GGML_ASSERT(ggml_is_contiguous(src0));
  5855. GGML_ASSERT(ggml_is_contiguous(dst));
  5856. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5857. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5858. return;
  5859. }
  5860. const int ith = params->ith;
  5861. const int nth = params->nth;
  5862. const int nc = src0->ne[0];
  5863. const int nr = ggml_nrows(src0);
  5864. // rows per thread
  5865. const int dr = (nr + nth - 1)/nth;
  5866. // row range for this thread
  5867. const int ir0 = dr*ith;
  5868. const int ir1 = MIN(ir0 + dr, nr);
  5869. for (int i1 = ir0; i1 < ir1; i1++) {
  5870. ggml_vec_silu_f32(nc,
  5871. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5872. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5873. #ifndef NDEBUG
  5874. for (int k = 0; k < nc; k++) {
  5875. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5876. UNUSED(x);
  5877. assert(!isnan(x));
  5878. assert(!isinf(x));
  5879. }
  5880. #endif
  5881. }
  5882. }
  5883. static void ggml_compute_forward_silu(
  5884. const struct ggml_compute_params * params,
  5885. const struct ggml_tensor * src0,
  5886. struct ggml_tensor * dst) {
  5887. switch (src0->type) {
  5888. case GGML_TYPE_F32:
  5889. {
  5890. ggml_compute_forward_silu_f32(params, src0, dst);
  5891. } break;
  5892. default:
  5893. {
  5894. GGML_ASSERT(false);
  5895. } break;
  5896. }
  5897. }
  5898. // ggml_compute_forward_norm
  5899. static void ggml_compute_forward_norm_f32(
  5900. const struct ggml_compute_params * params,
  5901. const struct ggml_tensor * src0,
  5902. struct ggml_tensor * dst) {
  5903. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5904. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5905. return;
  5906. }
  5907. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5908. const int ith = params->ith;
  5909. const int nth = params->nth;
  5910. const int64_t ne00 = src0->ne[0];
  5911. const int64_t ne01 = src0->ne[1];
  5912. const int64_t ne02 = src0->ne[2];
  5913. const int64_t ne03 = src0->ne[3];
  5914. const size_t nb01 = src0->nb[1];
  5915. const size_t nb02 = src0->nb[2];
  5916. const size_t nb03 = src0->nb[3];
  5917. const size_t nb1 = dst->nb[1];
  5918. const size_t nb2 = dst->nb[2];
  5919. const size_t nb3 = dst->nb[3];
  5920. const float eps = 1e-5f; // TODO: make this a parameter
  5921. // TODO: optimize
  5922. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5923. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5924. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5925. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5926. ggml_float sum = 0.0;
  5927. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5928. sum += (ggml_float)x[i00];
  5929. }
  5930. float mean = sum/ne00;
  5931. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5932. ggml_float sum2 = 0.0;
  5933. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5934. float v = x[i00] - mean;
  5935. y[i00] = v;
  5936. sum2 += (ggml_float)(v*v);
  5937. }
  5938. float variance = sum2/ne00;
  5939. const float scale = 1.0f/sqrtf(variance + eps);
  5940. ggml_vec_scale_f32(ne00, y, scale);
  5941. }
  5942. }
  5943. }
  5944. }
  5945. static void ggml_compute_forward_norm(
  5946. const struct ggml_compute_params * params,
  5947. const struct ggml_tensor * src0,
  5948. struct ggml_tensor * dst) {
  5949. switch (src0->type) {
  5950. case GGML_TYPE_F32:
  5951. {
  5952. ggml_compute_forward_norm_f32(params, src0, dst);
  5953. } break;
  5954. default:
  5955. {
  5956. GGML_ASSERT(false);
  5957. } break;
  5958. }
  5959. }
  5960. static void ggml_compute_forward_rms_norm_f32(
  5961. const struct ggml_compute_params * params,
  5962. const struct ggml_tensor * src0,
  5963. struct ggml_tensor * dst) {
  5964. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5965. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5966. return;
  5967. }
  5968. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5969. const int ith = params->ith;
  5970. const int nth = params->nth;
  5971. const int64_t ne00 = src0->ne[0];
  5972. const int64_t ne01 = src0->ne[1];
  5973. const int64_t ne02 = src0->ne[2];
  5974. const int64_t ne03 = src0->ne[3];
  5975. const size_t nb01 = src0->nb[1];
  5976. const size_t nb02 = src0->nb[2];
  5977. const size_t nb03 = src0->nb[3];
  5978. const size_t nb1 = dst->nb[1];
  5979. const size_t nb2 = dst->nb[2];
  5980. const size_t nb3 = dst->nb[3];
  5981. const float eps = 1e-6f; // TODO: make this a parameter
  5982. // TODO: optimize
  5983. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5984. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5985. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5986. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5987. ggml_float sum = 0.0;
  5988. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5989. sum += (ggml_float)(x[i00] * x[i00]);
  5990. }
  5991. float mean = sum/ne00;
  5992. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5993. memcpy(y, x, ne00 * sizeof(float));
  5994. // for (int i00 = 0; i00 < ne00; i00++) {
  5995. // y[i00] = x[i00];
  5996. // }
  5997. const float scale = 1.0f/sqrtf(mean + eps);
  5998. ggml_vec_scale_f32(ne00, y, scale);
  5999. }
  6000. }
  6001. }
  6002. }
  6003. static void ggml_compute_forward_rms_norm(
  6004. const struct ggml_compute_params * params,
  6005. const struct ggml_tensor * src0,
  6006. struct ggml_tensor * dst) {
  6007. switch (src0->type) {
  6008. case GGML_TYPE_F32:
  6009. {
  6010. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6011. } break;
  6012. default:
  6013. {
  6014. GGML_ASSERT(false);
  6015. } break;
  6016. }
  6017. }
  6018. // ggml_compute_forward_mul_mat
  6019. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6020. // helper function to determine if it is better to use BLAS or not
  6021. // for large matrices, BLAS is faster
  6022. static bool ggml_compute_forward_mul_mat_use_blas(
  6023. const struct ggml_tensor * src0,
  6024. const struct ggml_tensor * src1,
  6025. struct ggml_tensor * dst) {
  6026. //const int64_t ne00 = src0->ne[0];
  6027. //const int64_t ne01 = src0->ne[1];
  6028. const int64_t ne10 = src1->ne[0];
  6029. const int64_t ne0 = dst->ne[0];
  6030. const int64_t ne1 = dst->ne[1];
  6031. // TODO: find the optimal values for these
  6032. if (ggml_is_contiguous(src0) &&
  6033. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6034. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6035. return true;
  6036. }
  6037. return false;
  6038. }
  6039. #endif
  6040. static void ggml_compute_forward_mul_mat_f32(
  6041. const struct ggml_compute_params * params,
  6042. const struct ggml_tensor * src0,
  6043. const struct ggml_tensor * src1,
  6044. struct ggml_tensor * dst) {
  6045. int64_t t0 = ggml_perf_time_us();
  6046. UNUSED(t0);
  6047. const int64_t ne00 = src0->ne[0];
  6048. const int64_t ne01 = src0->ne[1];
  6049. const int64_t ne02 = src0->ne[2];
  6050. const int64_t ne03 = src0->ne[3];
  6051. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6052. const int64_t ne10 = src1->ne[0];
  6053. #endif
  6054. const int64_t ne11 = src1->ne[1];
  6055. #ifndef NDEBUG
  6056. const int64_t ne12 = src1->ne[2];
  6057. const int64_t ne13 = src1->ne[3];
  6058. const int64_t ne0 = dst->ne[0];
  6059. const int64_t ne1 = dst->ne[1];
  6060. const int64_t ne2 = dst->ne[2];
  6061. const int64_t ne3 = dst->ne[3];
  6062. const int nb00 = src0->nb[0];
  6063. #endif
  6064. const int nb01 = src0->nb[1];
  6065. const int nb02 = src0->nb[2];
  6066. const int nb03 = src0->nb[3];
  6067. #ifndef NDEBUG
  6068. const int nb10 = src1->nb[0];
  6069. #endif
  6070. const int nb11 = src1->nb[1];
  6071. const int nb12 = src1->nb[2];
  6072. const int nb13 = src1->nb[3];
  6073. const int nb0 = dst->nb[0];
  6074. const int nb1 = dst->nb[1];
  6075. const int nb2 = dst->nb[2];
  6076. const int nb3 = dst->nb[3];
  6077. const int ith = params->ith;
  6078. const int nth = params->nth;
  6079. assert(ne02 == ne12);
  6080. assert(ne03 == ne13);
  6081. assert(ne2 == ne12);
  6082. assert(ne3 == ne13);
  6083. // we don't support permuted src0 or src1
  6084. assert(nb00 == sizeof(float));
  6085. assert(nb10 == sizeof(float));
  6086. // dst cannot be transposed or permuted
  6087. assert(nb0 == sizeof(float));
  6088. assert(nb0 <= nb1);
  6089. assert(nb1 <= nb2);
  6090. assert(nb2 <= nb3);
  6091. assert(ne0 == ne01);
  6092. assert(ne1 == ne11);
  6093. assert(ne2 == ne02);
  6094. assert(ne3 == ne03);
  6095. // nb01 >= nb00 - src0 is not transposed
  6096. // compute by src0 rows
  6097. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6098. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6099. if (params->ith != 0) {
  6100. return;
  6101. }
  6102. if (params->type == GGML_TASK_INIT) {
  6103. return;
  6104. }
  6105. if (params->type == GGML_TASK_FINALIZE) {
  6106. return;
  6107. }
  6108. #if defined(GGML_USE_CUBLAS)
  6109. const float alpha = 1.0f;
  6110. const float beta = 0.0f;
  6111. const int x_ne = ne01 * ne10;
  6112. const int y_ne = ne11 * ne10;
  6113. const int d_ne = ne11 * ne01;
  6114. size_t x_size, y_size, d_size;
  6115. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6116. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6117. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6118. #endif
  6119. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6120. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6121. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6122. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6123. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6124. #if defined(GGML_USE_CUBLAS)
  6125. // copy data to device
  6126. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6127. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6128. // compute
  6129. CUBLAS_CHECK(
  6130. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6131. ne01, ne11, ne10,
  6132. &alpha, d_X, ne00,
  6133. d_Y, ne10,
  6134. &beta, d_D, ne01));
  6135. // copy data to host
  6136. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6137. #else
  6138. // zT = y * xT
  6139. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6140. ne11, ne01, ne10,
  6141. 1.0f, y, ne10,
  6142. x, ne00,
  6143. 0.0f, d, ne01);
  6144. #endif
  6145. }
  6146. }
  6147. #if defined(GGML_USE_CUBLAS)
  6148. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6149. ggml_cuda_pool_free(d_X, x_size);
  6150. ggml_cuda_pool_free(d_Y, y_size);
  6151. ggml_cuda_pool_free(d_D, d_size);
  6152. #endif
  6153. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6154. return;
  6155. }
  6156. #endif
  6157. if (params->type == GGML_TASK_INIT) {
  6158. return;
  6159. }
  6160. if (params->type == GGML_TASK_FINALIZE) {
  6161. return;
  6162. }
  6163. // parallelize by src0 rows using ggml_vec_dot_f32
  6164. // total rows in src0
  6165. const int nr = ne01*ne02*ne03;
  6166. // rows per thread
  6167. const int dr = (nr + nth - 1)/nth;
  6168. // row range for this thread
  6169. const int ir0 = dr*ith;
  6170. const int ir1 = MIN(ir0 + dr, nr);
  6171. for (int ir = ir0; ir < ir1; ++ir) {
  6172. // src0 indices
  6173. const int i03 = ir/(ne02*ne01);
  6174. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6175. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6176. for (int64_t ic = 0; ic < ne11; ++ic) {
  6177. // src1 indices
  6178. const int i13 = i03;
  6179. const int i12 = i02;
  6180. const int i11 = ic;
  6181. // dst indices
  6182. const int i0 = i01;
  6183. const int i1 = i11;
  6184. const int i2 = i02;
  6185. const int i3 = i03;
  6186. ggml_vec_dot_f32(ne00,
  6187. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6188. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6189. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6190. }
  6191. }
  6192. //int64_t t1 = ggml_perf_time_us();
  6193. //static int64_t acc = 0;
  6194. //acc += t1 - t0;
  6195. //if (t1 - t0 > 10) {
  6196. // printf("\n");
  6197. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6198. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6199. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6200. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6201. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6202. //}
  6203. }
  6204. static void ggml_compute_forward_mul_mat_f16_f32(
  6205. const struct ggml_compute_params * params,
  6206. const struct ggml_tensor * src0,
  6207. const struct ggml_tensor * src1,
  6208. struct ggml_tensor * dst) {
  6209. int64_t t0 = ggml_perf_time_us();
  6210. UNUSED(t0);
  6211. const int64_t ne00 = src0->ne[0];
  6212. const int64_t ne01 = src0->ne[1];
  6213. const int64_t ne02 = src0->ne[2];
  6214. const int64_t ne03 = src0->ne[3];
  6215. const int64_t ne10 = src1->ne[0];
  6216. const int64_t ne11 = src1->ne[1];
  6217. const int64_t ne12 = src1->ne[2];
  6218. const int64_t ne13 = src1->ne[3];
  6219. const int64_t ne0 = dst->ne[0];
  6220. const int64_t ne1 = dst->ne[1];
  6221. const int64_t ne2 = dst->ne[2];
  6222. const int64_t ne3 = dst->ne[3];
  6223. //const int64_t ne = ne0*ne1*ne2*ne3;
  6224. const int nb00 = src0->nb[0];
  6225. const int nb01 = src0->nb[1];
  6226. const int nb02 = src0->nb[2];
  6227. const int nb03 = src0->nb[3];
  6228. const int nb10 = src1->nb[0];
  6229. const int nb11 = src1->nb[1];
  6230. const int nb12 = src1->nb[2];
  6231. const int nb13 = src1->nb[3];
  6232. const int nb0 = dst->nb[0];
  6233. const int nb1 = dst->nb[1];
  6234. const int nb2 = dst->nb[2];
  6235. const int nb3 = dst->nb[3];
  6236. const int ith = params->ith;
  6237. const int nth = params->nth;
  6238. GGML_ASSERT(ne02 == ne12);
  6239. GGML_ASSERT(ne03 == ne13);
  6240. GGML_ASSERT(ne2 == ne12);
  6241. GGML_ASSERT(ne3 == ne13);
  6242. // TODO: we don't support permuted src0
  6243. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6244. // dst cannot be transposed or permuted
  6245. GGML_ASSERT(nb0 == sizeof(float));
  6246. GGML_ASSERT(nb0 <= nb1);
  6247. GGML_ASSERT(nb1 <= nb2);
  6248. GGML_ASSERT(nb2 <= nb3);
  6249. GGML_ASSERT(ne0 == ne01);
  6250. GGML_ASSERT(ne1 == ne11);
  6251. GGML_ASSERT(ne2 == ne02);
  6252. GGML_ASSERT(ne3 == ne03);
  6253. // nb01 >= nb00 - src0 is not transposed
  6254. // compute by src0 rows
  6255. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6256. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6257. GGML_ASSERT(nb10 == sizeof(float));
  6258. if (params->ith != 0) {
  6259. return;
  6260. }
  6261. if (params->type == GGML_TASK_INIT) {
  6262. return;
  6263. }
  6264. if (params->type == GGML_TASK_FINALIZE) {
  6265. return;
  6266. }
  6267. #if defined(GGML_USE_CUBLAS)
  6268. ggml_fp16_t * const wdata = params->wdata;
  6269. const float alpha = 1.0f;
  6270. const float beta = 0.0f;
  6271. const int x_ne = ne01 * ne10;
  6272. const int y_ne = ne11 * ne10;
  6273. const int d_ne = ne11 * ne01;
  6274. size_t x_size, y_size, d_size;
  6275. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6276. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6277. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6278. #else
  6279. float * const wdata = params->wdata;
  6280. #endif
  6281. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6282. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6283. #if defined(GGML_USE_CUBLAS)
  6284. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6285. {
  6286. size_t id = 0;
  6287. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6288. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6289. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6290. }
  6291. }
  6292. }
  6293. #else
  6294. {
  6295. size_t id = 0;
  6296. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6297. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6298. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6299. }
  6300. }
  6301. }
  6302. #endif
  6303. #if defined(GGML_USE_CUBLAS)
  6304. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6305. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6306. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6307. // copy data to device
  6308. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6309. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6310. // compute
  6311. CUBLAS_CHECK(
  6312. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6313. ne01, ne11, ne10,
  6314. &alpha, d_X, CUDA_R_16F, ne00,
  6315. d_Y, CUDA_R_16F, ne10,
  6316. &beta, d_D, CUDA_R_32F, ne01,
  6317. CUBLAS_COMPUTE_32F,
  6318. CUBLAS_GEMM_DEFAULT));
  6319. // copy data to host
  6320. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6321. #else
  6322. const float * x = wdata;
  6323. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6324. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6325. // zT = y * xT
  6326. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6327. ne11, ne01, ne10,
  6328. 1.0f, y, ne10,
  6329. x, ne00,
  6330. 0.0f, d, ne01);
  6331. #endif
  6332. }
  6333. }
  6334. #if defined(GGML_USE_CUBLAS)
  6335. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6336. ggml_cuda_pool_free(d_X, x_size);
  6337. ggml_cuda_pool_free(d_Y, y_size);
  6338. ggml_cuda_pool_free(d_D, d_size);
  6339. #endif
  6340. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6341. return;
  6342. }
  6343. #endif
  6344. if (params->type == GGML_TASK_INIT) {
  6345. ggml_fp16_t * const wdata = params->wdata;
  6346. size_t id = 0;
  6347. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6348. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6349. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6350. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6351. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6352. }
  6353. }
  6354. }
  6355. }
  6356. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6357. return;
  6358. }
  6359. if (params->type == GGML_TASK_FINALIZE) {
  6360. return;
  6361. }
  6362. // fp16 -> half the size, so divide by 2
  6363. // TODO: do not support transposed src1
  6364. assert(nb10/2 == sizeof(ggml_fp16_t));
  6365. // parallelize by src0 rows using ggml_vec_dot_f16
  6366. // total rows in src0
  6367. const int nr = ne01*ne02*ne03;
  6368. // rows per thread
  6369. const int dr = (nr + nth - 1)/nth;
  6370. // row range for this thread
  6371. const int ir0 = dr*ith;
  6372. const int ir1 = MIN(ir0 + dr, nr);
  6373. ggml_fp16_t * wdata = params->wdata;
  6374. for (int ir = ir0; ir < ir1; ++ir) {
  6375. // src0 indices
  6376. const int i03 = ir/(ne02*ne01);
  6377. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6378. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6379. const int i13 = i03;
  6380. const int i12 = i02;
  6381. const int i0 = i01;
  6382. const int i2 = i02;
  6383. const int i3 = i03;
  6384. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6385. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6386. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6387. for (int64_t ic = 0; ic < ne11; ++ic) {
  6388. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6389. }
  6390. }
  6391. //int64_t t1 = ggml_time_us();
  6392. //static int64_t acc = 0;
  6393. //acc += t1 - t0;
  6394. //if (t1 - t0 > 10) {
  6395. // printf("\n");
  6396. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6397. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6398. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6399. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6400. //}
  6401. }
  6402. static void ggml_compute_forward_mul_mat_q_f32(
  6403. const struct ggml_compute_params * params,
  6404. const struct ggml_tensor * src0,
  6405. const struct ggml_tensor * src1,
  6406. struct ggml_tensor * dst) {
  6407. int64_t t0 = ggml_perf_time_us();
  6408. UNUSED(t0);
  6409. const int64_t ne00 = src0->ne[0];
  6410. const int64_t ne01 = src0->ne[1];
  6411. const int64_t ne02 = src0->ne[2];
  6412. const int64_t ne03 = src0->ne[3];
  6413. const int64_t ne10 = src1->ne[0];
  6414. const int64_t ne11 = src1->ne[1];
  6415. const int64_t ne12 = src1->ne[2];
  6416. const int64_t ne13 = src1->ne[3];
  6417. const int64_t ne0 = dst->ne[0];
  6418. const int64_t ne1 = dst->ne[1];
  6419. const int64_t ne2 = dst->ne[2];
  6420. const int64_t ne3 = dst->ne[3];
  6421. const int nb00 = src0->nb[0];
  6422. const int nb01 = src0->nb[1];
  6423. const int nb02 = src0->nb[2];
  6424. const int nb03 = src0->nb[3];
  6425. const int nb10 = src1->nb[0];
  6426. const int nb11 = src1->nb[1];
  6427. const int nb12 = src1->nb[2];
  6428. const int nb13 = src1->nb[3];
  6429. const int nb0 = dst->nb[0];
  6430. const int nb1 = dst->nb[1];
  6431. const int nb2 = dst->nb[2];
  6432. const int nb3 = dst->nb[3];
  6433. const int ith = params->ith;
  6434. const int nth = params->nth;
  6435. GGML_ASSERT(ne02 == ne12);
  6436. GGML_ASSERT(ne03 == ne13);
  6437. GGML_ASSERT(ne2 == ne12);
  6438. GGML_ASSERT(ne3 == ne13);
  6439. const enum ggml_type type = src0->type;
  6440. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6441. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6442. // we don't support permuted src0 or src1
  6443. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6444. GGML_ASSERT(nb10 == sizeof(float));
  6445. // dst cannot be transposed or permuted
  6446. GGML_ASSERT(nb0 == sizeof(float));
  6447. GGML_ASSERT(nb0 <= nb1);
  6448. GGML_ASSERT(nb1 <= nb2);
  6449. GGML_ASSERT(nb2 <= nb3);
  6450. GGML_ASSERT(ne0 == ne01);
  6451. GGML_ASSERT(ne1 == ne11);
  6452. GGML_ASSERT(ne2 == ne02);
  6453. GGML_ASSERT(ne3 == ne03);
  6454. // nb01 >= nb00 - src0 is not transposed
  6455. // compute by src0 rows
  6456. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6457. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6458. if (params->ith != 0) {
  6459. return;
  6460. }
  6461. if (params->type == GGML_TASK_INIT) {
  6462. return;
  6463. }
  6464. if (params->type == GGML_TASK_FINALIZE) {
  6465. return;
  6466. }
  6467. #if defined(GGML_USE_CUBLAS)
  6468. const float alpha = 1.0f;
  6469. const float beta = 0.0f;
  6470. const int x_ne = ne01 * ne10;
  6471. const int y_ne = ne11 * ne10;
  6472. const int d_ne = ne11 * ne01;
  6473. size_t x_size, y_size, d_size, q_size;
  6474. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6475. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6476. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6477. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6478. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6479. if (type == GGML_TYPE_Q4_0) {
  6480. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6481. }
  6482. else if (type == GGML_TYPE_Q4_1) {
  6483. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6484. }
  6485. else if (type == GGML_TYPE_Q4_2) {
  6486. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6487. }
  6488. else {
  6489. GGML_ASSERT(false);
  6490. }
  6491. #else
  6492. float * const wdata = params->wdata;
  6493. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6494. #endif
  6495. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6496. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6497. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6498. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6499. #if defined(GGML_USE_CUBLAS)
  6500. // copy and dequantize on device
  6501. CUDA_CHECK(
  6502. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6503. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  6504. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  6505. CUDA_CHECK(cudaGetLastError());
  6506. #else
  6507. {
  6508. size_t id = 0;
  6509. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6510. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6511. id += ne00;
  6512. }
  6513. }
  6514. const float * x = wdata;
  6515. #endif
  6516. #if defined(GGML_USE_CUBLAS)
  6517. // copy data to device
  6518. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6519. // compute
  6520. CUBLAS_CHECK(
  6521. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6522. ne01, ne11, ne10,
  6523. &alpha, d_X, ne00,
  6524. d_Y, ne10,
  6525. &beta, d_D, ne01));
  6526. // copy data to host
  6527. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6528. #else
  6529. // zT = y * xT
  6530. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6531. ne11, ne01, ne10,
  6532. 1.0f, y, ne10,
  6533. x, ne00,
  6534. 0.0f, d, ne01);
  6535. #endif
  6536. }
  6537. }
  6538. #if defined(GGML_USE_CUBLAS)
  6539. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6540. ggml_cuda_pool_free(d_X, x_size);
  6541. ggml_cuda_pool_free(d_Y, y_size);
  6542. ggml_cuda_pool_free(d_D, d_size);
  6543. ggml_cuda_pool_free(d_Q, q_size);
  6544. #endif
  6545. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6546. return;
  6547. }
  6548. #endif
  6549. if (params->type == GGML_TASK_INIT) {
  6550. char * wdata = params->wdata;
  6551. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6552. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6553. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6554. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6555. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6556. wdata += row_size;
  6557. }
  6558. }
  6559. }
  6560. return;
  6561. }
  6562. if (params->type == GGML_TASK_FINALIZE) {
  6563. return;
  6564. }
  6565. // parallelize by src0 rows using ggml_vec_dot_q
  6566. // total rows in src0
  6567. const int nr = ne01*ne02*ne03;
  6568. // rows per thread
  6569. const int dr = (nr + nth - 1)/nth;
  6570. // row range for this thread
  6571. const int ir0 = dr*ith;
  6572. const int ir1 = MIN(ir0 + dr, nr);
  6573. void * wdata = params->wdata;
  6574. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6575. for (int ir = ir0; ir < ir1; ++ir) {
  6576. // src0 indices
  6577. const int i03 = ir/(ne02*ne01);
  6578. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6579. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6580. const int i13 = i03;
  6581. const int i12 = i02;
  6582. const int i0 = i01;
  6583. const int i2 = i02;
  6584. const int i3 = i03;
  6585. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6586. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6587. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6588. assert(ne00 % 32 == 0);
  6589. for (int64_t ic = 0; ic < ne11; ++ic) {
  6590. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6591. }
  6592. }
  6593. //int64_t t1 = ggml_time_us();
  6594. //static int64_t acc = 0;
  6595. //acc += t1 - t0;
  6596. //if (t1 - t0 > 10) {
  6597. // printf("\n");
  6598. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6599. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6600. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6601. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6602. //}
  6603. }
  6604. static void ggml_compute_forward_mul_mat(
  6605. const struct ggml_compute_params * params,
  6606. const struct ggml_tensor * src0,
  6607. const struct ggml_tensor * src1,
  6608. struct ggml_tensor * dst) {
  6609. switch (src0->type) {
  6610. case GGML_TYPE_Q4_0:
  6611. case GGML_TYPE_Q4_1:
  6612. case GGML_TYPE_Q4_2:
  6613. case GGML_TYPE_Q4_3:
  6614. case GGML_TYPE_Q8_0:
  6615. {
  6616. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6617. } break;
  6618. case GGML_TYPE_F16:
  6619. {
  6620. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6621. } break;
  6622. case GGML_TYPE_F32:
  6623. {
  6624. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6625. } break;
  6626. default:
  6627. {
  6628. GGML_ASSERT(false);
  6629. } break;
  6630. }
  6631. }
  6632. // ggml_compute_forward_scale
  6633. static void ggml_compute_forward_scale_f32(
  6634. const struct ggml_compute_params * params,
  6635. const struct ggml_tensor * src0,
  6636. const struct ggml_tensor * src1,
  6637. struct ggml_tensor * dst) {
  6638. GGML_ASSERT(ggml_is_contiguous(src0));
  6639. GGML_ASSERT(ggml_is_contiguous(dst));
  6640. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6641. GGML_ASSERT(ggml_is_scalar(src1));
  6642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6643. return;
  6644. }
  6645. // scale factor
  6646. const float v = *(float *) src1->data;
  6647. const int ith = params->ith;
  6648. const int nth = params->nth;
  6649. const int nc = src0->ne[0];
  6650. const int nr = ggml_nrows(src0);
  6651. // rows per thread
  6652. const int dr = (nr + nth - 1)/nth;
  6653. // row range for this thread
  6654. const int ir0 = dr*ith;
  6655. const int ir1 = MIN(ir0 + dr, nr);
  6656. for (int i1 = ir0; i1 < ir1; i1++) {
  6657. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6658. }
  6659. }
  6660. static void ggml_compute_forward_scale(
  6661. const struct ggml_compute_params * params,
  6662. const struct ggml_tensor * src0,
  6663. const struct ggml_tensor * src1,
  6664. struct ggml_tensor * dst) {
  6665. switch (src0->type) {
  6666. case GGML_TYPE_F32:
  6667. {
  6668. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6669. } break;
  6670. default:
  6671. {
  6672. GGML_ASSERT(false);
  6673. } break;
  6674. }
  6675. }
  6676. // ggml_compute_forward_cpy
  6677. static void ggml_compute_forward_cpy(
  6678. const struct ggml_compute_params * params,
  6679. const struct ggml_tensor * src0,
  6680. struct ggml_tensor * dst) {
  6681. ggml_compute_forward_dup(params, src0, dst);
  6682. }
  6683. // ggml_compute_forward_cont
  6684. static void ggml_compute_forward_cont(
  6685. const struct ggml_compute_params * params,
  6686. const struct ggml_tensor * src0,
  6687. struct ggml_tensor * dst) {
  6688. ggml_compute_forward_dup(params, src0, dst);
  6689. }
  6690. // ggml_compute_forward_reshape
  6691. static void ggml_compute_forward_reshape(
  6692. const struct ggml_compute_params * params,
  6693. const struct ggml_tensor * src0,
  6694. struct ggml_tensor * dst) {
  6695. // NOP
  6696. UNUSED(params);
  6697. UNUSED(src0);
  6698. UNUSED(dst);
  6699. }
  6700. // ggml_compute_forward_view
  6701. static void ggml_compute_forward_view(
  6702. const struct ggml_compute_params * params,
  6703. const struct ggml_tensor * src0) {
  6704. // NOP
  6705. UNUSED(params);
  6706. UNUSED(src0);
  6707. }
  6708. // ggml_compute_forward_permute
  6709. static void ggml_compute_forward_permute(
  6710. const struct ggml_compute_params * params,
  6711. const struct ggml_tensor * src0) {
  6712. // NOP
  6713. UNUSED(params);
  6714. UNUSED(src0);
  6715. }
  6716. // ggml_compute_forward_transpose
  6717. static void ggml_compute_forward_transpose(
  6718. const struct ggml_compute_params * params,
  6719. const struct ggml_tensor * src0) {
  6720. // NOP
  6721. UNUSED(params);
  6722. UNUSED(src0);
  6723. }
  6724. // ggml_compute_forward_get_rows
  6725. static void ggml_compute_forward_get_rows_q(
  6726. const struct ggml_compute_params * params,
  6727. const struct ggml_tensor * src0,
  6728. const struct ggml_tensor * src1,
  6729. struct ggml_tensor * dst) {
  6730. assert(params->ith == 0);
  6731. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6732. return;
  6733. }
  6734. const int nc = src0->ne[0];
  6735. const int nr = ggml_nelements(src1);
  6736. const enum ggml_type type = src0->type;
  6737. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6738. assert( dst->ne[0] == nc);
  6739. assert( dst->ne[1] == nr);
  6740. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6741. for (int i = 0; i < nr; ++i) {
  6742. const int r = ((int32_t *) src1->data)[i];
  6743. dequantize_row_q(
  6744. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6745. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6746. }
  6747. }
  6748. static void ggml_compute_forward_get_rows_f16(
  6749. const struct ggml_compute_params * params,
  6750. const struct ggml_tensor * src0,
  6751. const struct ggml_tensor * src1,
  6752. struct ggml_tensor * dst) {
  6753. assert(params->ith == 0);
  6754. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6755. return;
  6756. }
  6757. const int nc = src0->ne[0];
  6758. const int nr = ggml_nelements(src1);
  6759. assert( dst->ne[0] == nc);
  6760. assert( dst->ne[1] == nr);
  6761. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6762. for (int i = 0; i < nr; ++i) {
  6763. const int r = ((int32_t *) src1->data)[i];
  6764. for (int j = 0; j < nc; ++j) {
  6765. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6766. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6767. }
  6768. }
  6769. }
  6770. static void ggml_compute_forward_get_rows_f32(
  6771. const struct ggml_compute_params * params,
  6772. const struct ggml_tensor * src0,
  6773. const struct ggml_tensor * src1,
  6774. struct ggml_tensor * dst) {
  6775. assert(params->ith == 0);
  6776. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6777. return;
  6778. }
  6779. const int nc = src0->ne[0];
  6780. const int nr = ggml_nelements(src1);
  6781. assert( dst->ne[0] == nc);
  6782. assert( dst->ne[1] == nr);
  6783. assert(src0->nb[0] == sizeof(float));
  6784. for (int i = 0; i < nr; ++i) {
  6785. const int r = ((int32_t *) src1->data)[i];
  6786. ggml_vec_cpy_f32(nc,
  6787. (float *) ((char *) dst->data + i*dst->nb[1]),
  6788. (float *) ((char *) src0->data + r*src0->nb[1]));
  6789. }
  6790. }
  6791. static void ggml_compute_forward_get_rows(
  6792. const struct ggml_compute_params * params,
  6793. const struct ggml_tensor * src0,
  6794. const struct ggml_tensor * src1,
  6795. struct ggml_tensor * dst) {
  6796. switch (src0->type) {
  6797. case GGML_TYPE_Q4_0:
  6798. case GGML_TYPE_Q4_1:
  6799. case GGML_TYPE_Q4_2:
  6800. case GGML_TYPE_Q4_3:
  6801. case GGML_TYPE_Q8_0:
  6802. {
  6803. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6804. } break;
  6805. case GGML_TYPE_F16:
  6806. {
  6807. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6808. } break;
  6809. case GGML_TYPE_F32:
  6810. {
  6811. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6812. } break;
  6813. default:
  6814. {
  6815. GGML_ASSERT(false);
  6816. } break;
  6817. }
  6818. //static bool first = true;
  6819. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6820. //if (first) {
  6821. // first = false;
  6822. //} else {
  6823. // for (int k = 0; k < dst->ne[1]; ++k) {
  6824. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6825. // for (int i = 0; i < 16; ++i) {
  6826. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6827. // }
  6828. // printf("\n");
  6829. // }
  6830. // printf("\n");
  6831. // }
  6832. // printf("\n");
  6833. // exit(0);
  6834. //}
  6835. }
  6836. // ggml_compute_forward_diag_mask_inf
  6837. static void ggml_compute_forward_diag_mask_inf_f32(
  6838. const struct ggml_compute_params * params,
  6839. const struct ggml_tensor * src0,
  6840. const struct ggml_tensor * src1,
  6841. struct ggml_tensor * dst) {
  6842. assert(params->ith == 0);
  6843. assert(src1->type == GGML_TYPE_I32);
  6844. assert(ggml_nelements(src1) == 1);
  6845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6846. return;
  6847. }
  6848. const int n_past = ((int32_t *) src1->data)[0];
  6849. // TODO: handle transposed/permuted matrices
  6850. const int n = ggml_nrows(src0);
  6851. const int nc = src0->ne[0];
  6852. const int nr = src0->ne[1];
  6853. const int nz = n/nr;
  6854. assert( dst->nb[0] == sizeof(float));
  6855. assert(src0->nb[0] == sizeof(float));
  6856. for (int k = 0; k < nz; k++) {
  6857. for (int j = 0; j < nr; j++) {
  6858. for (int i = n_past; i < nc; i++) {
  6859. if (i > n_past + j) {
  6860. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6861. }
  6862. }
  6863. }
  6864. }
  6865. }
  6866. static void ggml_compute_forward_diag_mask_inf(
  6867. const struct ggml_compute_params * params,
  6868. const struct ggml_tensor * src0,
  6869. const struct ggml_tensor * src1,
  6870. struct ggml_tensor * dst) {
  6871. switch (src0->type) {
  6872. case GGML_TYPE_F32:
  6873. {
  6874. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6875. } break;
  6876. default:
  6877. {
  6878. GGML_ASSERT(false);
  6879. } break;
  6880. }
  6881. }
  6882. // ggml_compute_forward_soft_max
  6883. static void ggml_compute_forward_soft_max_f32(
  6884. const struct ggml_compute_params * params,
  6885. const struct ggml_tensor * src0,
  6886. struct ggml_tensor * dst) {
  6887. GGML_ASSERT(ggml_is_contiguous(src0));
  6888. GGML_ASSERT(ggml_is_contiguous(dst));
  6889. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6890. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6891. return;
  6892. }
  6893. // TODO: handle transposed/permuted matrices
  6894. const int ith = params->ith;
  6895. const int nth = params->nth;
  6896. const int nc = src0->ne[0];
  6897. const int nr = ggml_nrows(src0);
  6898. // rows per thread
  6899. const int dr = (nr + nth - 1)/nth;
  6900. // row range for this thread
  6901. const int ir0 = dr*ith;
  6902. const int ir1 = MIN(ir0 + dr, nr);
  6903. for (int i1 = ir0; i1 < ir1; i1++) {
  6904. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6905. #ifndef NDEBUG
  6906. for (int i = 0; i < nc; ++i) {
  6907. //printf("p[%d] = %f\n", i, p[i]);
  6908. assert(!isnan(p[i]));
  6909. }
  6910. #endif
  6911. float max = -INFINITY;
  6912. ggml_vec_max_f32(nc, &max, p);
  6913. ggml_float sum = 0.0;
  6914. uint16_t scvt;
  6915. for (int i = 0; i < nc; i++) {
  6916. if (p[i] == -INFINITY) {
  6917. p[i] = 0.0f;
  6918. } else {
  6919. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6920. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6921. memcpy(&scvt, &s, sizeof(scvt));
  6922. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6923. sum += (ggml_float)val;
  6924. p[i] = val;
  6925. }
  6926. }
  6927. assert(sum > 0.0);
  6928. sum = 1.0/sum;
  6929. ggml_vec_scale_f32(nc, p, sum);
  6930. #ifndef NDEBUG
  6931. for (int i = 0; i < nc; ++i) {
  6932. assert(!isnan(p[i]));
  6933. assert(!isinf(p[i]));
  6934. }
  6935. #endif
  6936. }
  6937. }
  6938. static void ggml_compute_forward_soft_max(
  6939. const struct ggml_compute_params * params,
  6940. const struct ggml_tensor * src0,
  6941. struct ggml_tensor * dst) {
  6942. switch (src0->type) {
  6943. case GGML_TYPE_F32:
  6944. {
  6945. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6946. } break;
  6947. default:
  6948. {
  6949. GGML_ASSERT(false);
  6950. } break;
  6951. }
  6952. }
  6953. // ggml_compute_forward_rope
  6954. static void ggml_compute_forward_rope_f32(
  6955. const struct ggml_compute_params * params,
  6956. const struct ggml_tensor * src0,
  6957. const struct ggml_tensor * src1,
  6958. struct ggml_tensor * dst) {
  6959. assert(src1->type == GGML_TYPE_I32);
  6960. assert(ggml_nelements(src1) == 3);
  6961. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6962. return;
  6963. }
  6964. const int n_past = ((int32_t *) src1->data)[0];
  6965. const int n_dims = ((int32_t *) src1->data)[1];
  6966. const int mode = ((int32_t *) src1->data)[2];
  6967. //const int64_t ne0 = src0->ne[0];
  6968. const int64_t ne1 = src0->ne[1];
  6969. const int64_t ne2 = src0->ne[2];
  6970. const int64_t ne3 = src0->ne[3];
  6971. const int nb0 = src0->nb[0];
  6972. const int nb1 = src0->nb[1];
  6973. const int nb2 = src0->nb[2];
  6974. const int nb3 = src0->nb[3];
  6975. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6976. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6977. assert(nb0 == sizeof(float));
  6978. const int ith = params->ith;
  6979. const int nth = params->nth;
  6980. const int nr = ggml_nrows(src0);
  6981. // rows per thread
  6982. const int dr = (nr + nth - 1)/nth;
  6983. // row range for this thread
  6984. const int ir0 = dr*ith;
  6985. const int ir1 = MIN(ir0 + dr, nr);
  6986. // row index used to determine which thread to use
  6987. int ir = 0;
  6988. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6989. const bool is_neox = mode & 2;
  6990. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6991. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6992. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  6993. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6994. if (ir++ < ir0) continue;
  6995. if (ir > ir1) break;
  6996. float theta = (float)p;
  6997. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6998. const float cos_theta = cosf(theta);
  6999. const float sin_theta = sinf(theta);
  7000. theta *= theta_scale;
  7001. if (!is_neox) {
  7002. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7003. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7004. const float x0 = src[0];
  7005. const float x1 = src[1];
  7006. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7007. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7008. } else {
  7009. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7010. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7011. const float x0 = src[0];
  7012. const float x1 = src[n_dims/2];
  7013. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7014. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7015. }
  7016. }
  7017. }
  7018. }
  7019. }
  7020. }
  7021. static void ggml_compute_forward_rope_f16(
  7022. const struct ggml_compute_params * params,
  7023. const struct ggml_tensor * src0,
  7024. const struct ggml_tensor * src1,
  7025. struct ggml_tensor * dst) {
  7026. assert(src1->type == GGML_TYPE_I32);
  7027. assert(ggml_nelements(src1) == 3);
  7028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7029. return;
  7030. }
  7031. const int n_past = ((int32_t *) src1->data)[0];
  7032. const int n_dims = ((int32_t *) src1->data)[1];
  7033. const int mode = ((int32_t *) src1->data)[2];
  7034. //const int64_t ne0 = src0->ne[0];
  7035. const int64_t ne1 = src0->ne[1];
  7036. const int64_t ne2 = src0->ne[2];
  7037. const int64_t ne3 = src0->ne[3];
  7038. const int nb0 = src0->nb[0];
  7039. const int nb1 = src0->nb[1];
  7040. const int nb2 = src0->nb[2];
  7041. const int nb3 = src0->nb[3];
  7042. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7043. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7044. assert(nb0 == sizeof(ggml_fp16_t));
  7045. const int ith = params->ith;
  7046. const int nth = params->nth;
  7047. const int nr = ggml_nrows(src0);
  7048. // rows per thread
  7049. const int dr = (nr + nth - 1)/nth;
  7050. // row range for this thread
  7051. const int ir0 = dr*ith;
  7052. const int ir1 = MIN(ir0 + dr, nr);
  7053. // row index used to determine which thread to use
  7054. int ir = 0;
  7055. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7056. const bool is_neox = mode & 2;
  7057. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7058. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7059. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7060. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7061. if (ir++ < ir0) continue;
  7062. if (ir > ir1) break;
  7063. float theta = (float)p;
  7064. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7065. const float cos_theta = cosf(theta);
  7066. const float sin_theta = sinf(theta);
  7067. theta *= theta_scale;
  7068. if (!is_neox) {
  7069. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7070. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7071. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7072. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7073. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7074. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7075. } else {
  7076. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7077. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7078. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7079. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7080. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7081. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7082. }
  7083. }
  7084. }
  7085. }
  7086. }
  7087. }
  7088. static void ggml_compute_forward_rope(
  7089. const struct ggml_compute_params * params,
  7090. const struct ggml_tensor * src0,
  7091. const struct ggml_tensor * src1,
  7092. struct ggml_tensor * dst) {
  7093. switch (src0->type) {
  7094. case GGML_TYPE_F16:
  7095. {
  7096. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7097. } break;
  7098. case GGML_TYPE_F32:
  7099. {
  7100. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7101. } break;
  7102. default:
  7103. {
  7104. GGML_ASSERT(false);
  7105. } break;
  7106. }
  7107. }
  7108. // ggml_compute_forward_conv_1d_1s
  7109. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7110. const struct ggml_compute_params * params,
  7111. const struct ggml_tensor * src0,
  7112. const struct ggml_tensor * src1,
  7113. struct ggml_tensor * dst) {
  7114. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7115. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7116. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7117. int64_t t0 = ggml_perf_time_us();
  7118. UNUSED(t0);
  7119. const int64_t ne00 = src0->ne[0];
  7120. const int64_t ne01 = src0->ne[1];
  7121. const int64_t ne02 = src0->ne[2];
  7122. //const int64_t ne03 = src0->ne[3];
  7123. const int64_t ne10 = src1->ne[0];
  7124. const int64_t ne11 = src1->ne[1];
  7125. //const int64_t ne12 = src1->ne[2];
  7126. //const int64_t ne13 = src1->ne[3];
  7127. //const int64_t ne0 = dst->ne[0];
  7128. //const int64_t ne1 = dst->ne[1];
  7129. //const int64_t ne2 = dst->ne[2];
  7130. //const int64_t ne3 = dst->ne[3];
  7131. //const int64_t ne = ne0*ne1*ne2*ne3;
  7132. const int nb00 = src0->nb[0];
  7133. const int nb01 = src0->nb[1];
  7134. const int nb02 = src0->nb[2];
  7135. //const int nb03 = src0->nb[3];
  7136. const int nb10 = src1->nb[0];
  7137. const int nb11 = src1->nb[1];
  7138. //const int nb12 = src1->nb[2];
  7139. //const int nb13 = src1->nb[3];
  7140. //const int nb0 = dst->nb[0];
  7141. const int nb1 = dst->nb[1];
  7142. //const int nb2 = dst->nb[2];
  7143. //const int nb3 = dst->nb[3];
  7144. const int ith = params->ith;
  7145. const int nth = params->nth;
  7146. const int nk = ne00;
  7147. const int nh = nk/2;
  7148. const int ew0 = ggml_up32(ne01);
  7149. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7150. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7151. GGML_ASSERT(nb10 == sizeof(float));
  7152. if (params->type == GGML_TASK_INIT) {
  7153. // TODO: fix this memset (wsize is overestimated)
  7154. memset(params->wdata, 0, params->wsize);
  7155. // prepare kernel data (src0)
  7156. {
  7157. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7158. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7159. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7160. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7161. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7162. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7163. dst_data[i00*ew0 + i01] = src[i00];
  7164. }
  7165. }
  7166. }
  7167. }
  7168. // prepare source data (src1)
  7169. {
  7170. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7171. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7172. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7173. ggml_fp16_t * dst_data = wdata;
  7174. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7175. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7176. }
  7177. }
  7178. }
  7179. return;
  7180. }
  7181. if (params->type == GGML_TASK_FINALIZE) {
  7182. return;
  7183. }
  7184. // total rows in dst
  7185. const int nr = ne02;
  7186. // rows per thread
  7187. const int dr = (nr + nth - 1)/nth;
  7188. // row range for this thread
  7189. const int ir0 = dr*ith;
  7190. const int ir1 = MIN(ir0 + dr, nr);
  7191. for (int i1 = ir0; i1 < ir1; i1++) {
  7192. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7193. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7194. dst_data[i0] = 0;
  7195. for (int k = -nh; k <= nh; k++) {
  7196. float v = 0.0f;
  7197. ggml_vec_dot_f16(ew0, &v,
  7198. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7199. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7200. dst_data[i0] += v;
  7201. }
  7202. }
  7203. }
  7204. }
  7205. static void ggml_compute_forward_conv_1d_1s_f32(
  7206. const struct ggml_compute_params * params,
  7207. const struct ggml_tensor * src0,
  7208. const struct ggml_tensor * src1,
  7209. struct ggml_tensor * dst) {
  7210. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7211. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7212. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7213. int64_t t0 = ggml_perf_time_us();
  7214. UNUSED(t0);
  7215. const int64_t ne00 = src0->ne[0];
  7216. const int64_t ne01 = src0->ne[1];
  7217. const int64_t ne02 = src0->ne[2];
  7218. //const int64_t ne03 = src0->ne[3];
  7219. const int64_t ne10 = src1->ne[0];
  7220. const int64_t ne11 = src1->ne[1];
  7221. //const int64_t ne12 = src1->ne[2];
  7222. //const int64_t ne13 = src1->ne[3];
  7223. //const int64_t ne0 = dst->ne[0];
  7224. //const int64_t ne1 = dst->ne[1];
  7225. //const int64_t ne2 = dst->ne[2];
  7226. //const int64_t ne3 = dst->ne[3];
  7227. //const int64_t ne = ne0*ne1*ne2*ne3;
  7228. const int nb00 = src0->nb[0];
  7229. const int nb01 = src0->nb[1];
  7230. const int nb02 = src0->nb[2];
  7231. //const int nb03 = src0->nb[3];
  7232. const int nb10 = src1->nb[0];
  7233. const int nb11 = src1->nb[1];
  7234. //const int nb12 = src1->nb[2];
  7235. //const int nb13 = src1->nb[3];
  7236. //const int nb0 = dst->nb[0];
  7237. const int nb1 = dst->nb[1];
  7238. //const int nb2 = dst->nb[2];
  7239. //const int nb3 = dst->nb[3];
  7240. const int ith = params->ith;
  7241. const int nth = params->nth;
  7242. const int nk = ne00;
  7243. const int nh = nk/2;
  7244. const int ew0 = ggml_up32(ne01);
  7245. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7246. GGML_ASSERT(nb00 == sizeof(float));
  7247. GGML_ASSERT(nb10 == sizeof(float));
  7248. if (params->type == GGML_TASK_INIT) {
  7249. // TODO: fix this memset (wsize is overestimated)
  7250. memset(params->wdata, 0, params->wsize);
  7251. // prepare kernel data (src0)
  7252. {
  7253. float * const wdata = (float *) params->wdata + 0;
  7254. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7255. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7256. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7257. float * dst_data = wdata + i02*ew0*ne00;
  7258. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7259. dst_data[i00*ew0 + i01] = src[i00];
  7260. }
  7261. }
  7262. }
  7263. }
  7264. // prepare source data (src1)
  7265. {
  7266. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7267. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7268. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7269. float * dst_data = wdata;
  7270. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7271. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7272. }
  7273. }
  7274. }
  7275. return;
  7276. }
  7277. if (params->type == GGML_TASK_FINALIZE) {
  7278. return;
  7279. }
  7280. // total rows in dst
  7281. const int nr = ne02;
  7282. // rows per thread
  7283. const int dr = (nr + nth - 1)/nth;
  7284. // row range for this thread
  7285. const int ir0 = dr*ith;
  7286. const int ir1 = MIN(ir0 + dr, nr);
  7287. for (int i1 = ir0; i1 < ir1; i1++) {
  7288. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7289. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7290. dst_data[i0] = 0;
  7291. for (int k = -nh; k <= nh; k++) {
  7292. float v = 0.0f;
  7293. ggml_vec_dot_f32(ew0, &v,
  7294. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7295. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7296. dst_data[i0] += v;
  7297. }
  7298. }
  7299. }
  7300. }
  7301. static void ggml_compute_forward_conv_1d_1s(
  7302. const struct ggml_compute_params * params,
  7303. const struct ggml_tensor * src0,
  7304. const struct ggml_tensor * src1,
  7305. struct ggml_tensor * dst) {
  7306. switch (src0->type) {
  7307. case GGML_TYPE_F16:
  7308. {
  7309. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7310. } break;
  7311. case GGML_TYPE_F32:
  7312. {
  7313. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7314. } break;
  7315. default:
  7316. {
  7317. GGML_ASSERT(false);
  7318. } break;
  7319. }
  7320. }
  7321. // ggml_compute_forward_conv_1d_2s
  7322. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7323. const struct ggml_compute_params * params,
  7324. const struct ggml_tensor * src0,
  7325. const struct ggml_tensor * src1,
  7326. struct ggml_tensor * dst) {
  7327. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7328. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7329. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7330. int64_t t0 = ggml_perf_time_us();
  7331. UNUSED(t0);
  7332. const int64_t ne00 = src0->ne[0];
  7333. const int64_t ne01 = src0->ne[1];
  7334. const int64_t ne02 = src0->ne[2];
  7335. //const int64_t ne03 = src0->ne[3];
  7336. const int64_t ne10 = src1->ne[0];
  7337. const int64_t ne11 = src1->ne[1];
  7338. //const int64_t ne12 = src1->ne[2];
  7339. //const int64_t ne13 = src1->ne[3];
  7340. //const int64_t ne0 = dst->ne[0];
  7341. //const int64_t ne1 = dst->ne[1];
  7342. //const int64_t ne2 = dst->ne[2];
  7343. //const int64_t ne3 = dst->ne[3];
  7344. //const int64_t ne = ne0*ne1*ne2*ne3;
  7345. const int nb00 = src0->nb[0];
  7346. const int nb01 = src0->nb[1];
  7347. const int nb02 = src0->nb[2];
  7348. //const int nb03 = src0->nb[3];
  7349. const int nb10 = src1->nb[0];
  7350. const int nb11 = src1->nb[1];
  7351. //const int nb12 = src1->nb[2];
  7352. //const int nb13 = src1->nb[3];
  7353. //const int nb0 = dst->nb[0];
  7354. const int nb1 = dst->nb[1];
  7355. //const int nb2 = dst->nb[2];
  7356. //const int nb3 = dst->nb[3];
  7357. const int ith = params->ith;
  7358. const int nth = params->nth;
  7359. const int nk = ne00;
  7360. const int nh = nk/2;
  7361. const int ew0 = ggml_up32(ne01);
  7362. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7363. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7364. GGML_ASSERT(nb10 == sizeof(float));
  7365. if (params->type == GGML_TASK_INIT) {
  7366. // TODO: fix this memset (wsize is overestimated)
  7367. memset(params->wdata, 0, params->wsize);
  7368. // prepare kernel data (src0)
  7369. {
  7370. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7371. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7372. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7373. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7374. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7375. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7376. dst_data[i00*ew0 + i01] = src[i00];
  7377. }
  7378. }
  7379. }
  7380. }
  7381. // prepare source data (src1)
  7382. {
  7383. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7384. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7385. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7386. ggml_fp16_t * dst_data = wdata;
  7387. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7388. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7389. }
  7390. }
  7391. }
  7392. return;
  7393. }
  7394. if (params->type == GGML_TASK_FINALIZE) {
  7395. return;
  7396. }
  7397. // total rows in dst
  7398. const int nr = ne02;
  7399. // rows per thread
  7400. const int dr = (nr + nth - 1)/nth;
  7401. // row range for this thread
  7402. const int ir0 = dr*ith;
  7403. const int ir1 = MIN(ir0 + dr, nr);
  7404. for (int i1 = ir0; i1 < ir1; i1++) {
  7405. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7406. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7407. dst_data[i0/2] = 0;
  7408. for (int k = -nh; k <= nh; k++) {
  7409. float v = 0.0f;
  7410. ggml_vec_dot_f16(ew0, &v,
  7411. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7412. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7413. dst_data[i0/2] += v;
  7414. }
  7415. }
  7416. }
  7417. }
  7418. static void ggml_compute_forward_conv_1d_2s_f32(
  7419. const struct ggml_compute_params * params,
  7420. const struct ggml_tensor * src0,
  7421. const struct ggml_tensor * src1,
  7422. struct ggml_tensor * dst) {
  7423. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7424. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7425. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7426. int64_t t0 = ggml_perf_time_us();
  7427. UNUSED(t0);
  7428. const int64_t ne00 = src0->ne[0];
  7429. const int64_t ne01 = src0->ne[1];
  7430. const int64_t ne02 = src0->ne[2];
  7431. //const int64_t ne03 = src0->ne[3];
  7432. const int64_t ne10 = src1->ne[0];
  7433. const int64_t ne11 = src1->ne[1];
  7434. //const int64_t ne12 = src1->ne[2];
  7435. //const int64_t ne13 = src1->ne[3];
  7436. //const int64_t ne0 = dst->ne[0];
  7437. //const int64_t ne1 = dst->ne[1];
  7438. //const int64_t ne2 = dst->ne[2];
  7439. //const int64_t ne3 = dst->ne[3];
  7440. //const int64_t ne = ne0*ne1*ne2*ne3;
  7441. const int nb00 = src0->nb[0];
  7442. const int nb01 = src0->nb[1];
  7443. const int nb02 = src0->nb[2];
  7444. //const int nb03 = src0->nb[3];
  7445. const int nb10 = src1->nb[0];
  7446. const int nb11 = src1->nb[1];
  7447. //const int nb12 = src1->nb[2];
  7448. //const int nb13 = src1->nb[3];
  7449. //const int nb0 = dst->nb[0];
  7450. const int nb1 = dst->nb[1];
  7451. //const int nb2 = dst->nb[2];
  7452. //const int nb3 = dst->nb[3];
  7453. const int ith = params->ith;
  7454. const int nth = params->nth;
  7455. const int nk = ne00;
  7456. const int nh = nk/2;
  7457. const int ew0 = ggml_up32(ne01);
  7458. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7459. GGML_ASSERT(nb00 == sizeof(float));
  7460. GGML_ASSERT(nb10 == sizeof(float));
  7461. if (params->type == GGML_TASK_INIT) {
  7462. // TODO: fix this memset (wsize is overestimated)
  7463. memset(params->wdata, 0, params->wsize);
  7464. // prepare kernel data (src0)
  7465. {
  7466. float * const wdata = (float *) params->wdata + 0;
  7467. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7468. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7469. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7470. float * dst_data = wdata + i02*ew0*ne00;
  7471. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7472. dst_data[i00*ew0 + i01] = src[i00];
  7473. }
  7474. }
  7475. }
  7476. }
  7477. // prepare source data (src1)
  7478. {
  7479. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7480. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7481. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7482. float * dst_data = wdata;
  7483. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7484. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7485. }
  7486. }
  7487. }
  7488. return;
  7489. }
  7490. if (params->type == GGML_TASK_FINALIZE) {
  7491. return;
  7492. }
  7493. // total rows in dst
  7494. const int nr = ne02;
  7495. // rows per thread
  7496. const int dr = (nr + nth - 1)/nth;
  7497. // row range for this thread
  7498. const int ir0 = dr*ith;
  7499. const int ir1 = MIN(ir0 + dr, nr);
  7500. for (int i1 = ir0; i1 < ir1; i1++) {
  7501. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7502. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7503. dst_data[i0/2] = 0;
  7504. for (int k = -nh; k <= nh; k++) {
  7505. float v = 0.0f;
  7506. ggml_vec_dot_f32(ew0, &v,
  7507. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7508. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7509. dst_data[i0/2] += v;
  7510. }
  7511. }
  7512. }
  7513. }
  7514. static void ggml_compute_forward_conv_1d_2s(
  7515. const struct ggml_compute_params * params,
  7516. const struct ggml_tensor * src0,
  7517. const struct ggml_tensor * src1,
  7518. struct ggml_tensor * dst) {
  7519. switch (src0->type) {
  7520. case GGML_TYPE_F16:
  7521. {
  7522. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7523. } break;
  7524. case GGML_TYPE_F32:
  7525. {
  7526. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7527. } break;
  7528. default:
  7529. {
  7530. GGML_ASSERT(false);
  7531. } break;
  7532. }
  7533. }
  7534. // ggml_compute_forward_flash_attn
  7535. static void ggml_compute_forward_flash_attn_f32(
  7536. const struct ggml_compute_params * params,
  7537. const struct ggml_tensor * q,
  7538. const struct ggml_tensor * k,
  7539. const struct ggml_tensor * v,
  7540. const bool masked,
  7541. struct ggml_tensor * dst) {
  7542. int64_t t0 = ggml_perf_time_us();
  7543. UNUSED(t0);
  7544. const int64_t neq0 = q->ne[0];
  7545. const int64_t neq1 = q->ne[1];
  7546. const int64_t neq2 = q->ne[2];
  7547. const int64_t neq3 = q->ne[3];
  7548. const int64_t nek0 = k->ne[0];
  7549. const int64_t nek1 = k->ne[1];
  7550. //const int64_t nek2 = k->ne[2];
  7551. //const int64_t nek3 = k->ne[3];
  7552. //const int64_t nev0 = v->ne[0];
  7553. const int64_t nev1 = v->ne[1];
  7554. //const int64_t nev2 = v->ne[2];
  7555. //const int64_t nev3 = v->ne[3];
  7556. const int64_t ne0 = dst->ne[0];
  7557. const int64_t ne1 = dst->ne[1];
  7558. //const int64_t ne2 = dst->ne[2];
  7559. //const int64_t ne3 = dst->ne[3];
  7560. const int nbk0 = k->nb[0];
  7561. const int nbk1 = k->nb[1];
  7562. const int nbk2 = k->nb[2];
  7563. const int nbk3 = k->nb[3];
  7564. const int nbq0 = q->nb[0];
  7565. const int nbq1 = q->nb[1];
  7566. const int nbq2 = q->nb[2];
  7567. const int nbq3 = q->nb[3];
  7568. const int nbv0 = v->nb[0];
  7569. const int nbv1 = v->nb[1];
  7570. const int nbv2 = v->nb[2];
  7571. const int nbv3 = v->nb[3];
  7572. const int nb0 = dst->nb[0];
  7573. const int nb1 = dst->nb[1];
  7574. const int nb2 = dst->nb[2];
  7575. const int nb3 = dst->nb[3];
  7576. const int ith = params->ith;
  7577. const int nth = params->nth;
  7578. const int64_t D = neq0;
  7579. const int64_t N = neq1;
  7580. const int64_t P = nek1 - N;
  7581. const int64_t M = P + N;
  7582. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7583. GGML_ASSERT(ne0 == D);
  7584. GGML_ASSERT(ne1 == N);
  7585. GGML_ASSERT(P >= 0);
  7586. GGML_ASSERT(nbq0 == sizeof(float));
  7587. GGML_ASSERT(nbk0 == sizeof(float));
  7588. GGML_ASSERT(nbv0 == sizeof(float));
  7589. GGML_ASSERT(neq0 == D);
  7590. GGML_ASSERT(nek0 == D);
  7591. GGML_ASSERT(nev1 == D);
  7592. GGML_ASSERT(neq1 == N);
  7593. GGML_ASSERT(nek1 == N + P);
  7594. GGML_ASSERT(nev1 == D);
  7595. // dst cannot be transposed or permuted
  7596. GGML_ASSERT(nb0 == sizeof(float));
  7597. GGML_ASSERT(nb0 <= nb1);
  7598. GGML_ASSERT(nb1 <= nb2);
  7599. GGML_ASSERT(nb2 <= nb3);
  7600. if (params->type == GGML_TASK_INIT) {
  7601. return;
  7602. }
  7603. if (params->type == GGML_TASK_FINALIZE) {
  7604. return;
  7605. }
  7606. // parallelize by q rows using ggml_vec_dot_f32
  7607. // total rows in q
  7608. const int nr = neq1*neq2*neq3;
  7609. // rows per thread
  7610. const int dr = (nr + nth - 1)/nth;
  7611. // row range for this thread
  7612. const int ir0 = dr*ith;
  7613. const int ir1 = MIN(ir0 + dr, nr);
  7614. const float scale = 1.0f/sqrtf(D);
  7615. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7616. for (int ir = ir0; ir < ir1; ++ir) {
  7617. // q indices
  7618. const int iq3 = ir/(neq2*neq1);
  7619. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7620. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7621. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7622. for (int i = M; i < Mup; ++i) {
  7623. S[i] = -INFINITY;
  7624. }
  7625. for (int64_t ic = 0; ic < nek1; ++ic) {
  7626. // k indices
  7627. const int ik3 = iq3;
  7628. const int ik2 = iq2;
  7629. const int ik1 = ic;
  7630. // S indices
  7631. const int i1 = ik1;
  7632. ggml_vec_dot_f32(neq0,
  7633. S + i1,
  7634. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7635. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7636. }
  7637. // scale
  7638. ggml_vec_scale_f32(nek1, S, scale);
  7639. if (masked) {
  7640. for (int64_t i = P; i < M; i++) {
  7641. if (i > P + iq1) {
  7642. S[i] = -INFINITY;
  7643. }
  7644. }
  7645. }
  7646. // softmax
  7647. {
  7648. float max = -INFINITY;
  7649. ggml_vec_max_f32(M, &max, S);
  7650. ggml_float sum = 0.0;
  7651. {
  7652. #ifdef GGML_SOFT_MAX_ACCELERATE
  7653. max = -max;
  7654. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7655. vvexpf(S, S, &Mup);
  7656. ggml_vec_sum_f32(Mup, &sum, S);
  7657. #else
  7658. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7659. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7660. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7661. float * SS = S + i;
  7662. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7663. if (SS[j] == -INFINITY) {
  7664. SS[j] = 0.0f;
  7665. } else {
  7666. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7667. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7668. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7669. sump[j] += (ggml_float)val;
  7670. SS[j] = val;
  7671. }
  7672. }
  7673. }
  7674. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7675. sum += sump[i];
  7676. }
  7677. #endif
  7678. }
  7679. assert(sum > 0.0);
  7680. sum = 1.0/sum;
  7681. ggml_vec_scale_f32(M, S, sum);
  7682. #ifndef NDEBUG
  7683. for (int i = 0; i < M; ++i) {
  7684. assert(!isnan(S[i]));
  7685. assert(!isinf(S[i]));
  7686. }
  7687. #endif
  7688. }
  7689. for (int64_t ic = 0; ic < nev1; ++ic) {
  7690. // dst indices
  7691. const int i1 = iq1;
  7692. const int i2 = iq2;
  7693. const int i3 = iq3;
  7694. ggml_vec_dot_f32(nek1,
  7695. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7696. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7697. S);
  7698. }
  7699. }
  7700. }
  7701. static void ggml_compute_forward_flash_attn_f16(
  7702. const struct ggml_compute_params * params,
  7703. const struct ggml_tensor * q,
  7704. const struct ggml_tensor * k,
  7705. const struct ggml_tensor * v,
  7706. const bool masked,
  7707. struct ggml_tensor * dst) {
  7708. int64_t t0 = ggml_perf_time_us();
  7709. UNUSED(t0);
  7710. const int64_t neq0 = q->ne[0];
  7711. const int64_t neq1 = q->ne[1];
  7712. const int64_t neq2 = q->ne[2];
  7713. const int64_t neq3 = q->ne[3];
  7714. const int64_t nek0 = k->ne[0];
  7715. const int64_t nek1 = k->ne[1];
  7716. //const int64_t nek2 = k->ne[2];
  7717. //const int64_t nek3 = k->ne[3];
  7718. //const int64_t nev0 = v->ne[0];
  7719. const int64_t nev1 = v->ne[1];
  7720. //const int64_t nev2 = v->ne[2];
  7721. //const int64_t nev3 = v->ne[3];
  7722. const int64_t ne0 = dst->ne[0];
  7723. const int64_t ne1 = dst->ne[1];
  7724. //const int64_t ne2 = dst->ne[2];
  7725. //const int64_t ne3 = dst->ne[3];
  7726. const int nbk0 = k->nb[0];
  7727. const int nbk1 = k->nb[1];
  7728. const int nbk2 = k->nb[2];
  7729. const int nbk3 = k->nb[3];
  7730. const int nbq0 = q->nb[0];
  7731. const int nbq1 = q->nb[1];
  7732. const int nbq2 = q->nb[2];
  7733. const int nbq3 = q->nb[3];
  7734. const int nbv0 = v->nb[0];
  7735. const int nbv1 = v->nb[1];
  7736. const int nbv2 = v->nb[2];
  7737. const int nbv3 = v->nb[3];
  7738. const int nb0 = dst->nb[0];
  7739. const int nb1 = dst->nb[1];
  7740. const int nb2 = dst->nb[2];
  7741. const int nb3 = dst->nb[3];
  7742. const int ith = params->ith;
  7743. const int nth = params->nth;
  7744. const int64_t D = neq0;
  7745. const int64_t N = neq1;
  7746. const int64_t P = nek1 - N;
  7747. const int64_t M = P + N;
  7748. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7749. GGML_ASSERT(ne0 == D);
  7750. GGML_ASSERT(ne1 == N);
  7751. GGML_ASSERT(P >= 0);
  7752. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7753. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7754. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7755. GGML_ASSERT(neq0 == D);
  7756. GGML_ASSERT(nek0 == D);
  7757. GGML_ASSERT(nev1 == D);
  7758. GGML_ASSERT(neq1 == N);
  7759. GGML_ASSERT(nek1 == N + P);
  7760. GGML_ASSERT(nev1 == D);
  7761. // dst cannot be transposed or permuted
  7762. GGML_ASSERT(nb0 == sizeof(float));
  7763. GGML_ASSERT(nb0 <= nb1);
  7764. GGML_ASSERT(nb1 <= nb2);
  7765. GGML_ASSERT(nb2 <= nb3);
  7766. if (params->type == GGML_TASK_INIT) {
  7767. return;
  7768. }
  7769. if (params->type == GGML_TASK_FINALIZE) {
  7770. return;
  7771. }
  7772. // parallelize by q rows using ggml_vec_dot_f32
  7773. // total rows in q
  7774. const int nr = neq1*neq2*neq3;
  7775. // rows per thread
  7776. const int dr = (nr + nth - 1)/nth;
  7777. // row range for this thread
  7778. const int ir0 = dr*ith;
  7779. const int ir1 = MIN(ir0 + dr, nr);
  7780. const float scale = 1.0f/sqrtf(D);
  7781. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7782. for (int ir = ir0; ir < ir1; ++ir) {
  7783. // q indices
  7784. const int iq3 = ir/(neq2*neq1);
  7785. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7786. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7787. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7788. for (int i = M; i < Mup; ++i) {
  7789. S[i] = -INFINITY;
  7790. }
  7791. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7792. for (int64_t ic = 0; ic < nek1; ++ic) {
  7793. // k indices
  7794. const int ik3 = iq3;
  7795. const int ik2 = iq2;
  7796. const int ik1 = ic;
  7797. // S indices
  7798. const int i1 = ik1;
  7799. ggml_vec_dot_f16(neq0,
  7800. S + i1,
  7801. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7802. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7803. }
  7804. } else {
  7805. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7806. // k indices
  7807. const int ik3 = iq3;
  7808. const int ik2 = iq2;
  7809. const int ik1 = ic;
  7810. // S indices
  7811. const int i1 = ik1;
  7812. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7813. S + i1,
  7814. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7815. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7816. }
  7817. }
  7818. // scale
  7819. ggml_vec_scale_f32(nek1, S, scale);
  7820. if (masked) {
  7821. for (int64_t i = P; i < M; i++) {
  7822. if (i > P + iq1) {
  7823. S[i] = -INFINITY;
  7824. }
  7825. }
  7826. }
  7827. // softmax
  7828. {
  7829. float max = -INFINITY;
  7830. ggml_vec_max_f32(M, &max, S);
  7831. ggml_float sum = 0.0;
  7832. {
  7833. #ifdef GGML_SOFT_MAX_ACCELERATE
  7834. max = -max;
  7835. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7836. vvexpf(S, S, &Mup);
  7837. ggml_vec_sum_f32(Mup, &sum, S);
  7838. #else
  7839. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7840. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7841. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7842. float * SS = S + i;
  7843. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7844. if (SS[j] == -INFINITY) {
  7845. SS[j] = 0.0f;
  7846. } else {
  7847. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7848. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7849. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7850. sump[j] += (ggml_float)val;
  7851. SS[j] = val;
  7852. }
  7853. }
  7854. }
  7855. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7856. sum += sump[i];
  7857. }
  7858. #endif
  7859. }
  7860. assert(sum > 0.0);
  7861. sum = 1.0/sum;
  7862. ggml_vec_scale_f32(M, S, sum);
  7863. #ifndef NDEBUG
  7864. for (int i = 0; i < M; ++i) {
  7865. assert(!isnan(S[i]));
  7866. assert(!isinf(S[i]));
  7867. }
  7868. #endif
  7869. }
  7870. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7871. for (int64_t i = 0; i < M; i++) {
  7872. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7873. }
  7874. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7875. for (int64_t ic = 0; ic < nev1; ++ic) {
  7876. // dst indices
  7877. const int i1 = iq1;
  7878. const int i2 = iq2;
  7879. const int i3 = iq3;
  7880. ggml_vec_dot_f16(nek1,
  7881. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7882. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7883. S16);
  7884. }
  7885. } else {
  7886. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7887. // dst indices
  7888. const int i1 = iq1;
  7889. const int i2 = iq2;
  7890. const int i3 = iq3;
  7891. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7892. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7893. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7894. S16);
  7895. }
  7896. }
  7897. }
  7898. }
  7899. static void ggml_compute_forward_flash_attn(
  7900. const struct ggml_compute_params * params,
  7901. const struct ggml_tensor * q,
  7902. const struct ggml_tensor * k,
  7903. const struct ggml_tensor * v,
  7904. const bool masked,
  7905. struct ggml_tensor * dst) {
  7906. switch (q->type) {
  7907. case GGML_TYPE_F16:
  7908. {
  7909. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7910. } break;
  7911. case GGML_TYPE_F32:
  7912. {
  7913. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7914. } break;
  7915. default:
  7916. {
  7917. GGML_ASSERT(false);
  7918. } break;
  7919. }
  7920. }
  7921. // ggml_compute_forward_flash_ff
  7922. static void ggml_compute_forward_flash_ff_f16(
  7923. const struct ggml_compute_params * params,
  7924. const struct ggml_tensor * a, // F16
  7925. const struct ggml_tensor * b0, // F16 fc_w
  7926. const struct ggml_tensor * b1, // F32 fc_b
  7927. const struct ggml_tensor * c0, // F16 proj_w
  7928. const struct ggml_tensor * c1, // F32 proj_b
  7929. struct ggml_tensor * dst) {
  7930. int64_t t0 = ggml_perf_time_us();
  7931. UNUSED(t0);
  7932. const int64_t nea0 = a->ne[0];
  7933. const int64_t nea1 = a->ne[1];
  7934. const int64_t nea2 = a->ne[2];
  7935. const int64_t nea3 = a->ne[3];
  7936. const int64_t neb00 = b0->ne[0];
  7937. const int64_t neb01 = b0->ne[1];
  7938. //const int64_t neb02 = b0->ne[2];
  7939. //const int64_t neb03 = b0->ne[3];
  7940. const int64_t neb10 = b1->ne[0];
  7941. const int64_t neb11 = b1->ne[1];
  7942. //const int64_t neb12 = b1->ne[2];
  7943. //const int64_t neb13 = b1->ne[3];
  7944. const int64_t nec00 = c0->ne[0];
  7945. const int64_t nec01 = c0->ne[1];
  7946. //const int64_t nec02 = c0->ne[2];
  7947. //const int64_t nec03 = c0->ne[3];
  7948. const int64_t nec10 = c1->ne[0];
  7949. const int64_t nec11 = c1->ne[1];
  7950. //const int64_t nec12 = c1->ne[2];
  7951. //const int64_t nec13 = c1->ne[3];
  7952. const int64_t ne0 = dst->ne[0];
  7953. const int64_t ne1 = dst->ne[1];
  7954. const int64_t ne2 = dst->ne[2];
  7955. //const int64_t ne3 = dst->ne[3];
  7956. const int nba0 = a->nb[0];
  7957. const int nba1 = a->nb[1];
  7958. const int nba2 = a->nb[2];
  7959. const int nba3 = a->nb[3];
  7960. const int nbb00 = b0->nb[0];
  7961. const int nbb01 = b0->nb[1];
  7962. const int nbb02 = b0->nb[2];
  7963. const int nbb03 = b0->nb[3];
  7964. const int nbb10 = b1->nb[0];
  7965. //const int nbb11 = b1->nb[1];
  7966. //const int nbb12 = b1->nb[2];
  7967. //const int nbb13 = b1->nb[3];
  7968. const int nbc00 = c0->nb[0];
  7969. const int nbc01 = c0->nb[1];
  7970. const int nbc02 = c0->nb[2];
  7971. const int nbc03 = c0->nb[3];
  7972. const int nbc10 = c1->nb[0];
  7973. //const int nbc11 = c1->nb[1];
  7974. //const int nbc12 = c1->nb[2];
  7975. //const int nbc13 = c1->nb[3];
  7976. const int nb0 = dst->nb[0];
  7977. const int nb1 = dst->nb[1];
  7978. const int nb2 = dst->nb[2];
  7979. const int nb3 = dst->nb[3];
  7980. const int ith = params->ith;
  7981. const int nth = params->nth;
  7982. const int64_t D = nea0;
  7983. //const int64_t N = nea1;
  7984. const int64_t M = neb01;
  7985. GGML_ASSERT(ne0 == nea0);
  7986. GGML_ASSERT(ne1 == nea1);
  7987. GGML_ASSERT(ne2 == nea2);
  7988. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7989. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7990. GGML_ASSERT(nbb10 == sizeof(float));
  7991. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7992. GGML_ASSERT(nbc10 == sizeof(float));
  7993. GGML_ASSERT(neb00 == D);
  7994. GGML_ASSERT(neb01 == M);
  7995. GGML_ASSERT(neb10 == M);
  7996. GGML_ASSERT(neb11 == 1);
  7997. GGML_ASSERT(nec00 == M);
  7998. GGML_ASSERT(nec01 == D);
  7999. GGML_ASSERT(nec10 == D);
  8000. GGML_ASSERT(nec11 == 1);
  8001. // dst cannot be transposed or permuted
  8002. GGML_ASSERT(nb0 == sizeof(float));
  8003. GGML_ASSERT(nb0 <= nb1);
  8004. GGML_ASSERT(nb1 <= nb2);
  8005. GGML_ASSERT(nb2 <= nb3);
  8006. if (params->type == GGML_TASK_INIT) {
  8007. return;
  8008. }
  8009. if (params->type == GGML_TASK_FINALIZE) {
  8010. return;
  8011. }
  8012. // parallelize by a rows using ggml_vec_dot_f32
  8013. // total rows in a
  8014. const int nr = nea1*nea2*nea3;
  8015. // rows per thread
  8016. const int dr = (nr + nth - 1)/nth;
  8017. // row range for this thread
  8018. const int ir0 = dr*ith;
  8019. const int ir1 = MIN(ir0 + dr, nr);
  8020. for (int ir = ir0; ir < ir1; ++ir) {
  8021. // a indices
  8022. const int ia3 = ir/(nea2*nea1);
  8023. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8024. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8025. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8026. for (int64_t ic = 0; ic < neb01; ++ic) {
  8027. // b0 indices
  8028. const int ib03 = ia3;
  8029. const int ib02 = ia2;
  8030. const int ib01 = ic;
  8031. // S indices
  8032. const int i1 = ib01;
  8033. ggml_vec_dot_f16(nea0,
  8034. S + i1,
  8035. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8036. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8037. }
  8038. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8039. //ggml_vec_gelu_f32(neb01, S, S);
  8040. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8041. for (int64_t i = 0; i < M; i++) {
  8042. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8043. }
  8044. ggml_vec_gelu_f16(neb01, S16, S16);
  8045. {
  8046. // dst indices
  8047. const int i1 = ia1;
  8048. const int i2 = ia2;
  8049. const int i3 = ia3;
  8050. for (int64_t ic = 0; ic < nec01; ++ic) {
  8051. ggml_vec_dot_f16(neb01,
  8052. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8053. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8054. S16);
  8055. }
  8056. ggml_vec_add_f32(nec01,
  8057. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8058. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8059. (float *) c1->data);
  8060. }
  8061. }
  8062. }
  8063. static void ggml_compute_forward_flash_ff(
  8064. const struct ggml_compute_params * params,
  8065. const struct ggml_tensor * a,
  8066. const struct ggml_tensor * b0,
  8067. const struct ggml_tensor * b1,
  8068. const struct ggml_tensor * c0,
  8069. const struct ggml_tensor * c1,
  8070. struct ggml_tensor * dst) {
  8071. switch (b0->type) {
  8072. case GGML_TYPE_F16:
  8073. {
  8074. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8075. } break;
  8076. case GGML_TYPE_F32:
  8077. {
  8078. GGML_ASSERT(false); // TODO
  8079. } break;
  8080. default:
  8081. {
  8082. GGML_ASSERT(false);
  8083. } break;
  8084. }
  8085. }
  8086. // ggml_compute_forward_map_unary
  8087. static void ggml_compute_forward_map_unary_f32(
  8088. const struct ggml_compute_params * params,
  8089. const struct ggml_tensor * src0,
  8090. struct ggml_tensor * dst,
  8091. const ggml_unary_op_f32_t fun) {
  8092. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8093. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8094. return;
  8095. }
  8096. const int n = ggml_nrows(src0);
  8097. const int nc = src0->ne[0];
  8098. assert( dst->nb[0] == sizeof(float));
  8099. assert(src0->nb[0] == sizeof(float));
  8100. for (int i = 0; i < n; i++) {
  8101. fun(nc,
  8102. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8103. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8104. }
  8105. }
  8106. static void ggml_compute_forward_map_unary(
  8107. const struct ggml_compute_params * params,
  8108. const struct ggml_tensor * src0,
  8109. struct ggml_tensor * dst,
  8110. const ggml_unary_op_f32_t fun) {
  8111. switch (src0->type) {
  8112. case GGML_TYPE_F32:
  8113. {
  8114. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8115. } break;
  8116. default:
  8117. {
  8118. GGML_ASSERT(false);
  8119. } break;
  8120. }
  8121. }
  8122. // ggml_compute_forward_map_binary
  8123. static void ggml_compute_forward_map_binary_f32(
  8124. const struct ggml_compute_params * params,
  8125. const struct ggml_tensor * src0,
  8126. const struct ggml_tensor * src1,
  8127. struct ggml_tensor * dst,
  8128. const ggml_binary_op_f32_t fun) {
  8129. assert(params->ith == 0);
  8130. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8131. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8132. return;
  8133. }
  8134. const int n = ggml_nrows(src0);
  8135. const int nc = src0->ne[0];
  8136. assert( dst->nb[0] == sizeof(float));
  8137. assert(src0->nb[0] == sizeof(float));
  8138. assert(src1->nb[0] == sizeof(float));
  8139. for (int i = 0; i < n; i++) {
  8140. fun(nc,
  8141. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8142. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8143. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8144. }
  8145. }
  8146. static void ggml_compute_forward_map_binary(
  8147. const struct ggml_compute_params * params,
  8148. const struct ggml_tensor * src0,
  8149. const struct ggml_tensor * src1,
  8150. struct ggml_tensor * dst,
  8151. const ggml_binary_op_f32_t fun) {
  8152. switch (src0->type) {
  8153. case GGML_TYPE_F32:
  8154. {
  8155. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8156. } break;
  8157. default:
  8158. {
  8159. GGML_ASSERT(false);
  8160. } break;
  8161. }
  8162. }
  8163. /////////////////////////////////
  8164. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8165. GGML_ASSERT(params);
  8166. switch (tensor->op) {
  8167. case GGML_OP_DUP:
  8168. {
  8169. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8170. } break;
  8171. case GGML_OP_ADD:
  8172. {
  8173. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8174. } break;
  8175. case GGML_OP_SUB:
  8176. {
  8177. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8178. } break;
  8179. case GGML_OP_MUL:
  8180. {
  8181. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8182. } break;
  8183. case GGML_OP_DIV:
  8184. {
  8185. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8186. } break;
  8187. case GGML_OP_SQR:
  8188. {
  8189. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8190. } break;
  8191. case GGML_OP_SQRT:
  8192. {
  8193. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8194. } break;
  8195. case GGML_OP_SUM:
  8196. {
  8197. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8198. } break;
  8199. case GGML_OP_MEAN:
  8200. {
  8201. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8202. } break;
  8203. case GGML_OP_REPEAT:
  8204. {
  8205. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8206. } break;
  8207. case GGML_OP_ABS:
  8208. {
  8209. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8210. } break;
  8211. case GGML_OP_SGN:
  8212. {
  8213. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8214. } break;
  8215. case GGML_OP_NEG:
  8216. {
  8217. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8218. } break;
  8219. case GGML_OP_STEP:
  8220. {
  8221. ggml_compute_forward_step(params, tensor->src0, tensor);
  8222. } break;
  8223. case GGML_OP_RELU:
  8224. {
  8225. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8226. } break;
  8227. case GGML_OP_GELU:
  8228. {
  8229. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8230. } break;
  8231. case GGML_OP_SILU:
  8232. {
  8233. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8234. } break;
  8235. case GGML_OP_NORM:
  8236. {
  8237. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8238. } break;
  8239. case GGML_OP_RMS_NORM:
  8240. {
  8241. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8242. } break;
  8243. case GGML_OP_MUL_MAT:
  8244. {
  8245. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8246. } break;
  8247. case GGML_OP_SCALE:
  8248. {
  8249. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8250. } break;
  8251. case GGML_OP_CPY:
  8252. {
  8253. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8254. } break;
  8255. case GGML_OP_CONT:
  8256. {
  8257. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8258. } break;
  8259. case GGML_OP_RESHAPE:
  8260. {
  8261. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8262. } break;
  8263. case GGML_OP_VIEW:
  8264. {
  8265. ggml_compute_forward_view(params, tensor->src0);
  8266. } break;
  8267. case GGML_OP_PERMUTE:
  8268. {
  8269. ggml_compute_forward_permute(params, tensor->src0);
  8270. } break;
  8271. case GGML_OP_TRANSPOSE:
  8272. {
  8273. ggml_compute_forward_transpose(params, tensor->src0);
  8274. } break;
  8275. case GGML_OP_GET_ROWS:
  8276. {
  8277. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8278. } break;
  8279. case GGML_OP_DIAG_MASK_INF:
  8280. {
  8281. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8282. } break;
  8283. case GGML_OP_SOFT_MAX:
  8284. {
  8285. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8286. } break;
  8287. case GGML_OP_ROPE:
  8288. {
  8289. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8290. } break;
  8291. case GGML_OP_CONV_1D_1S:
  8292. {
  8293. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8294. } break;
  8295. case GGML_OP_CONV_1D_2S:
  8296. {
  8297. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8298. } break;
  8299. case GGML_OP_FLASH_ATTN:
  8300. {
  8301. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8302. GGML_ASSERT(t == 0 || t == 1);
  8303. bool masked = t != 0;
  8304. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8305. } break;
  8306. case GGML_OP_FLASH_FF:
  8307. {
  8308. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8309. } break;
  8310. case GGML_OP_MAP_UNARY:
  8311. {
  8312. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8313. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8314. }
  8315. break;
  8316. case GGML_OP_MAP_BINARY:
  8317. {
  8318. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8319. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8320. }
  8321. break;
  8322. case GGML_OP_NONE:
  8323. {
  8324. // nop
  8325. } break;
  8326. case GGML_OP_COUNT:
  8327. {
  8328. GGML_ASSERT(false);
  8329. } break;
  8330. }
  8331. }
  8332. ////////////////////////////////////////////////////////////////////////////////
  8333. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8334. struct ggml_tensor * src0 = tensor->src0;
  8335. struct ggml_tensor * src1 = tensor->src1;
  8336. switch (tensor->op) {
  8337. case GGML_OP_DUP:
  8338. {
  8339. if (src0->grad) {
  8340. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8341. }
  8342. } break;
  8343. case GGML_OP_ADD:
  8344. {
  8345. if (src0->grad) {
  8346. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8347. }
  8348. if (src1->grad) {
  8349. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8350. }
  8351. } break;
  8352. case GGML_OP_SUB:
  8353. {
  8354. if (src0->grad) {
  8355. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8356. }
  8357. if (src1->grad) {
  8358. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8359. }
  8360. } break;
  8361. case GGML_OP_MUL:
  8362. {
  8363. if (src0->grad) {
  8364. src0->grad =
  8365. ggml_add_impl(ctx,
  8366. src0->grad,
  8367. ggml_mul(ctx, src1, tensor->grad),
  8368. inplace);
  8369. }
  8370. if (src1->grad) {
  8371. src1->grad =
  8372. ggml_add_impl(ctx,
  8373. src1->grad,
  8374. ggml_mul(ctx, src0, tensor->grad),
  8375. inplace);
  8376. }
  8377. } break;
  8378. case GGML_OP_DIV:
  8379. {
  8380. if (src0->grad) {
  8381. src0->grad =
  8382. ggml_add_impl(ctx,
  8383. src0->grad,
  8384. ggml_div(ctx, tensor->grad, src1),
  8385. inplace);
  8386. }
  8387. if (src1->grad) {
  8388. src1->grad =
  8389. ggml_sub_impl(ctx,
  8390. src1->grad,
  8391. ggml_mul(ctx,
  8392. tensor->grad,
  8393. ggml_div(ctx, tensor, src1)),
  8394. inplace);
  8395. }
  8396. } break;
  8397. case GGML_OP_SQR:
  8398. {
  8399. if (src0->grad) {
  8400. src0->grad =
  8401. ggml_add_impl(ctx,
  8402. src0->grad,
  8403. ggml_mul(ctx,
  8404. ggml_mul(ctx, src0, tensor->grad),
  8405. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8406. inplace);
  8407. }
  8408. } break;
  8409. case GGML_OP_SQRT:
  8410. {
  8411. if (src0->grad) {
  8412. src0->grad =
  8413. ggml_add_impl(ctx,
  8414. src0->grad,
  8415. ggml_div(ctx,
  8416. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8417. tensor),
  8418. inplace);
  8419. }
  8420. } break;
  8421. case GGML_OP_SUM:
  8422. {
  8423. if (src0->grad) {
  8424. src0->grad =
  8425. ggml_add_impl(ctx,
  8426. src0->grad,
  8427. ggml_repeat(ctx, tensor->grad, src0->grad),
  8428. inplace);
  8429. }
  8430. } break;
  8431. case GGML_OP_MEAN:
  8432. {
  8433. GGML_ASSERT(false); // TODO: implement
  8434. } break;
  8435. case GGML_OP_REPEAT:
  8436. {
  8437. if (src0->grad) {
  8438. src0->grad =
  8439. ggml_add_impl(ctx,
  8440. src0->grad,
  8441. ggml_sum(ctx, tensor->grad),
  8442. inplace);
  8443. }
  8444. } break;
  8445. case GGML_OP_ABS:
  8446. {
  8447. if (src0->grad) {
  8448. src0->grad =
  8449. ggml_add_impl(ctx,
  8450. src0->grad,
  8451. ggml_mul(ctx,
  8452. ggml_sgn(ctx, src0),
  8453. tensor->grad),
  8454. inplace);
  8455. }
  8456. } break;
  8457. case GGML_OP_SGN:
  8458. {
  8459. if (src0->grad) {
  8460. // noop
  8461. }
  8462. } break;
  8463. case GGML_OP_NEG:
  8464. {
  8465. if (src0->grad) {
  8466. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8467. }
  8468. } break;
  8469. case GGML_OP_STEP:
  8470. {
  8471. if (src0->grad) {
  8472. // noop
  8473. }
  8474. } break;
  8475. case GGML_OP_RELU:
  8476. {
  8477. if (src0->grad) {
  8478. src0->grad = ggml_sub_impl(ctx,
  8479. src0->grad,
  8480. ggml_mul(ctx,
  8481. ggml_step(ctx, src0),
  8482. tensor->grad),
  8483. inplace);
  8484. }
  8485. } break;
  8486. case GGML_OP_GELU:
  8487. {
  8488. GGML_ASSERT(false); // TODO: not implemented
  8489. } break;
  8490. case GGML_OP_SILU:
  8491. {
  8492. GGML_ASSERT(false); // TODO: not implemented
  8493. } break;
  8494. case GGML_OP_NORM:
  8495. {
  8496. GGML_ASSERT(false); // TODO: not implemented
  8497. } break;
  8498. case GGML_OP_RMS_NORM:
  8499. {
  8500. GGML_ASSERT(false); // TODO: not implemented
  8501. } break;
  8502. case GGML_OP_MUL_MAT:
  8503. {
  8504. if (src0->grad) {
  8505. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8506. GGML_ASSERT(false);
  8507. }
  8508. if (src1->grad) {
  8509. src1->grad =
  8510. ggml_add_impl(ctx,
  8511. src1->grad,
  8512. ggml_mul_mat(ctx,
  8513. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8514. tensor->grad),
  8515. inplace);
  8516. }
  8517. } break;
  8518. case GGML_OP_SCALE:
  8519. {
  8520. GGML_ASSERT(false); // TODO: not implemented
  8521. } break;
  8522. case GGML_OP_CPY:
  8523. {
  8524. GGML_ASSERT(false); // TODO: not implemented
  8525. } break;
  8526. case GGML_OP_CONT:
  8527. {
  8528. GGML_ASSERT(false); // TODO: not implemented
  8529. } break;
  8530. case GGML_OP_RESHAPE:
  8531. {
  8532. GGML_ASSERT(false); // TODO: not implemented
  8533. } break;
  8534. case GGML_OP_VIEW:
  8535. {
  8536. GGML_ASSERT(false); // not supported
  8537. } break;
  8538. case GGML_OP_PERMUTE:
  8539. {
  8540. GGML_ASSERT(false); // TODO: not implemented
  8541. } break;
  8542. case GGML_OP_TRANSPOSE:
  8543. {
  8544. GGML_ASSERT(false); // TODO: not implemented
  8545. } break;
  8546. case GGML_OP_GET_ROWS:
  8547. {
  8548. GGML_ASSERT(false); // TODO: not implemented
  8549. } break;
  8550. case GGML_OP_DIAG_MASK_INF:
  8551. {
  8552. GGML_ASSERT(false); // TODO: not implemented
  8553. } break;
  8554. case GGML_OP_SOFT_MAX:
  8555. {
  8556. GGML_ASSERT(false); // TODO: not implemented
  8557. } break;
  8558. case GGML_OP_ROPE:
  8559. {
  8560. GGML_ASSERT(false); // TODO: not implemented
  8561. } break;
  8562. case GGML_OP_CONV_1D_1S:
  8563. {
  8564. GGML_ASSERT(false); // TODO: not implemented
  8565. } break;
  8566. case GGML_OP_CONV_1D_2S:
  8567. {
  8568. GGML_ASSERT(false); // TODO: not implemented
  8569. } break;
  8570. case GGML_OP_FLASH_ATTN:
  8571. {
  8572. GGML_ASSERT(false); // not supported
  8573. } break;
  8574. case GGML_OP_FLASH_FF:
  8575. {
  8576. GGML_ASSERT(false); // not supported
  8577. } break;
  8578. case GGML_OP_MAP_UNARY:
  8579. case GGML_OP_MAP_BINARY:
  8580. {
  8581. GGML_ASSERT(false); // not supported
  8582. } break;
  8583. case GGML_OP_NONE:
  8584. {
  8585. // nop
  8586. } break;
  8587. case GGML_OP_COUNT:
  8588. {
  8589. GGML_ASSERT(false);
  8590. } break;
  8591. }
  8592. }
  8593. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8594. if (node->grad == NULL) {
  8595. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8596. // it can also happen during forward pass, if the user performs computations with constants
  8597. if (node->op != GGML_OP_NONE) {
  8598. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8599. }
  8600. }
  8601. // check if already visited
  8602. for (int i = 0; i < cgraph->n_nodes; i++) {
  8603. if (cgraph->nodes[i] == node) {
  8604. return;
  8605. }
  8606. }
  8607. for (int i = 0; i < cgraph->n_leafs; i++) {
  8608. if (cgraph->leafs[i] == node) {
  8609. return;
  8610. }
  8611. }
  8612. if (node->src0) {
  8613. ggml_visit_parents(cgraph, node->src0);
  8614. }
  8615. if (node->src1) {
  8616. ggml_visit_parents(cgraph, node->src1);
  8617. }
  8618. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8619. if (node->opt[i]) {
  8620. ggml_visit_parents(cgraph, node->opt[i]);
  8621. }
  8622. }
  8623. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8624. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8625. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8626. cgraph->leafs[cgraph->n_leafs] = node;
  8627. cgraph->n_leafs++;
  8628. } else {
  8629. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8630. cgraph->nodes[cgraph->n_nodes] = node;
  8631. cgraph->grads[cgraph->n_nodes] = node->grad;
  8632. cgraph->n_nodes++;
  8633. }
  8634. }
  8635. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8636. if (!expand) {
  8637. cgraph->n_nodes = 0;
  8638. cgraph->n_leafs = 0;
  8639. }
  8640. const int n0 = cgraph->n_nodes;
  8641. UNUSED(n0);
  8642. ggml_visit_parents(cgraph, tensor);
  8643. const int n_new = cgraph->n_nodes - n0;
  8644. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8645. if (n_new > 0) {
  8646. // the last added node should always be starting point
  8647. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8648. }
  8649. }
  8650. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8651. ggml_build_forward_impl(cgraph, tensor, true);
  8652. }
  8653. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8654. struct ggml_cgraph result = {
  8655. /*.n_nodes =*/ 0,
  8656. /*.n_leafs =*/ 0,
  8657. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8658. /*.work_size =*/ 0,
  8659. /*.work =*/ NULL,
  8660. /*.nodes =*/ { NULL },
  8661. /*.grads =*/ { NULL },
  8662. /*.leafs =*/ { NULL },
  8663. /*.perf_runs =*/ 0,
  8664. /*.perf_cycles =*/ 0,
  8665. /*.perf_time_us =*/ 0,
  8666. };
  8667. ggml_build_forward_impl(&result, tensor, false);
  8668. return result;
  8669. }
  8670. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8671. struct ggml_cgraph result = *gf;
  8672. GGML_ASSERT(gf->n_nodes > 0);
  8673. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8674. if (keep) {
  8675. for (int i = 0; i < gf->n_nodes; i++) {
  8676. struct ggml_tensor * node = gf->nodes[i];
  8677. if (node->grad) {
  8678. node->grad = ggml_dup_tensor(ctx, node);
  8679. gf->grads[i] = node->grad;
  8680. }
  8681. }
  8682. }
  8683. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8684. struct ggml_tensor * node = gf->nodes[i];
  8685. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8686. if (node->grad) {
  8687. ggml_compute_backward(ctx, node, keep);
  8688. }
  8689. }
  8690. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8691. struct ggml_tensor * node = gf->nodes[i];
  8692. if (node->is_param) {
  8693. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8694. ggml_build_forward_impl(&result, node->grad, true);
  8695. }
  8696. }
  8697. return result;
  8698. }
  8699. //
  8700. // thread data
  8701. //
  8702. // synchronization is done via busy loops
  8703. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8704. //
  8705. #ifdef __APPLE__
  8706. //#include <os/lock.h>
  8707. //
  8708. //typedef os_unfair_lock ggml_lock_t;
  8709. //
  8710. //#define ggml_lock_init(x) UNUSED(x)
  8711. //#define ggml_lock_destroy(x) UNUSED(x)
  8712. //#define ggml_lock_lock os_unfair_lock_lock
  8713. //#define ggml_lock_unlock os_unfair_lock_unlock
  8714. //
  8715. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8716. typedef int ggml_lock_t;
  8717. #define ggml_lock_init(x) UNUSED(x)
  8718. #define ggml_lock_destroy(x) UNUSED(x)
  8719. #define ggml_lock_lock(x) UNUSED(x)
  8720. #define ggml_lock_unlock(x) UNUSED(x)
  8721. #define GGML_LOCK_INITIALIZER 0
  8722. typedef pthread_t ggml_thread_t;
  8723. #define ggml_thread_create pthread_create
  8724. #define ggml_thread_join pthread_join
  8725. #else
  8726. //typedef pthread_spinlock_t ggml_lock_t;
  8727. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8728. //#define ggml_lock_destroy pthread_spin_destroy
  8729. //#define ggml_lock_lock pthread_spin_lock
  8730. //#define ggml_lock_unlock pthread_spin_unlock
  8731. typedef int ggml_lock_t;
  8732. #define ggml_lock_init(x) UNUSED(x)
  8733. #define ggml_lock_destroy(x) UNUSED(x)
  8734. #define ggml_lock_lock(x) UNUSED(x)
  8735. #define ggml_lock_unlock(x) UNUSED(x)
  8736. #define GGML_LOCK_INITIALIZER 0
  8737. typedef pthread_t ggml_thread_t;
  8738. #define ggml_thread_create pthread_create
  8739. #define ggml_thread_join pthread_join
  8740. #endif
  8741. struct ggml_compute_state_shared {
  8742. ggml_lock_t spin;
  8743. int n_threads;
  8744. // synchronization primitives
  8745. atomic_int n_ready;
  8746. atomic_bool has_work;
  8747. atomic_bool stop; // stop all threads
  8748. };
  8749. struct ggml_compute_state {
  8750. ggml_thread_t thrd;
  8751. struct ggml_compute_params params;
  8752. struct ggml_tensor * node;
  8753. struct ggml_compute_state_shared * shared;
  8754. };
  8755. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8756. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8757. const int n_threads = state->shared->n_threads;
  8758. while (true) {
  8759. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8760. atomic_store(&state->shared->has_work, false);
  8761. } else {
  8762. while (atomic_load(&state->shared->has_work)) {
  8763. if (atomic_load(&state->shared->stop)) {
  8764. return 0;
  8765. }
  8766. ggml_lock_lock (&state->shared->spin);
  8767. ggml_lock_unlock(&state->shared->spin);
  8768. }
  8769. }
  8770. atomic_fetch_sub(&state->shared->n_ready, 1);
  8771. // wait for work
  8772. while (!atomic_load(&state->shared->has_work)) {
  8773. if (atomic_load(&state->shared->stop)) {
  8774. return 0;
  8775. }
  8776. ggml_lock_lock (&state->shared->spin);
  8777. ggml_lock_unlock(&state->shared->spin);
  8778. }
  8779. // check if we should stop
  8780. if (atomic_load(&state->shared->stop)) {
  8781. break;
  8782. }
  8783. if (state->node) {
  8784. if (state->params.ith < state->params.nth) {
  8785. ggml_compute_forward(&state->params, state->node);
  8786. }
  8787. state->node = NULL;
  8788. } else {
  8789. break;
  8790. }
  8791. }
  8792. return 0;
  8793. }
  8794. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8795. const int n_threads = cgraph->n_threads;
  8796. struct ggml_compute_state_shared state_shared = {
  8797. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8798. /*.n_threads =*/ n_threads,
  8799. /*.n_ready =*/ 0,
  8800. /*.has_work =*/ false,
  8801. /*.stop =*/ false,
  8802. };
  8803. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8804. // create thread pool
  8805. if (n_threads > 1) {
  8806. ggml_lock_init(&state_shared.spin);
  8807. atomic_store(&state_shared.has_work, true);
  8808. for (int j = 0; j < n_threads - 1; j++) {
  8809. workers[j] = (struct ggml_compute_state) {
  8810. .thrd = 0,
  8811. .params = {
  8812. .type = GGML_TASK_COMPUTE,
  8813. .ith = j + 1,
  8814. .nth = n_threads,
  8815. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8816. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8817. },
  8818. .node = NULL,
  8819. .shared = &state_shared,
  8820. };
  8821. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8822. GGML_ASSERT(rc == 0);
  8823. UNUSED(rc);
  8824. }
  8825. }
  8826. // initialize tasks + work buffer
  8827. {
  8828. size_t work_size = 0;
  8829. // thread scheduling for the different operations
  8830. for (int i = 0; i < cgraph->n_nodes; i++) {
  8831. struct ggml_tensor * node = cgraph->nodes[i];
  8832. switch (node->op) {
  8833. case GGML_OP_CPY:
  8834. case GGML_OP_DUP:
  8835. {
  8836. node->n_tasks = n_threads;
  8837. size_t cur = 0;
  8838. if (ggml_is_quantized(node->type)) {
  8839. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8840. }
  8841. work_size = MAX(work_size, cur);
  8842. } break;
  8843. case GGML_OP_ADD:
  8844. {
  8845. node->n_tasks = n_threads;
  8846. size_t cur = 0;
  8847. if (ggml_is_quantized(node->src0->type)) {
  8848. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8849. }
  8850. work_size = MAX(work_size, cur);
  8851. } break;
  8852. case GGML_OP_SUB:
  8853. case GGML_OP_MUL:
  8854. case GGML_OP_DIV:
  8855. case GGML_OP_SQR:
  8856. case GGML_OP_SQRT:
  8857. case GGML_OP_SUM:
  8858. case GGML_OP_MEAN:
  8859. case GGML_OP_REPEAT:
  8860. case GGML_OP_ABS:
  8861. case GGML_OP_SGN:
  8862. case GGML_OP_NEG:
  8863. case GGML_OP_STEP:
  8864. case GGML_OP_RELU:
  8865. {
  8866. node->n_tasks = 1;
  8867. } break;
  8868. case GGML_OP_GELU:
  8869. {
  8870. node->n_tasks = n_threads;
  8871. } break;
  8872. case GGML_OP_SILU:
  8873. {
  8874. node->n_tasks = n_threads;
  8875. } break;
  8876. case GGML_OP_NORM:
  8877. case GGML_OP_RMS_NORM:
  8878. {
  8879. node->n_tasks = n_threads;
  8880. } break;
  8881. case GGML_OP_MUL_MAT:
  8882. {
  8883. node->n_tasks = n_threads;
  8884. // TODO: use different scheduling for different matrix sizes
  8885. //const int nr0 = ggml_nrows(node->src0);
  8886. //const int nr1 = ggml_nrows(node->src1);
  8887. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8888. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8889. size_t cur = 0;
  8890. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8891. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8892. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8893. node->n_tasks = 1; // TODO: this actually is doing nothing
  8894. // the threads are still spinning
  8895. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8896. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8897. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8898. //printf("cur = %zu\n", cur);
  8899. } else {
  8900. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8901. }
  8902. #else
  8903. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8904. #endif
  8905. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8906. cur = 0;
  8907. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8908. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8909. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8910. node->n_tasks = 1;
  8911. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8912. } else
  8913. #endif
  8914. {
  8915. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8916. }
  8917. } else {
  8918. GGML_ASSERT(false);
  8919. }
  8920. work_size = MAX(work_size, cur);
  8921. } break;
  8922. case GGML_OP_SCALE:
  8923. {
  8924. node->n_tasks = n_threads;
  8925. } break;
  8926. case GGML_OP_CONT:
  8927. case GGML_OP_RESHAPE:
  8928. case GGML_OP_VIEW:
  8929. case GGML_OP_PERMUTE:
  8930. case GGML_OP_TRANSPOSE:
  8931. case GGML_OP_GET_ROWS:
  8932. case GGML_OP_DIAG_MASK_INF:
  8933. {
  8934. node->n_tasks = 1;
  8935. } break;
  8936. case GGML_OP_SOFT_MAX:
  8937. {
  8938. node->n_tasks = n_threads;
  8939. } break;
  8940. case GGML_OP_ROPE:
  8941. {
  8942. node->n_tasks = n_threads;
  8943. } break;
  8944. case GGML_OP_CONV_1D_1S:
  8945. case GGML_OP_CONV_1D_2S:
  8946. {
  8947. node->n_tasks = n_threads;
  8948. GGML_ASSERT(node->src0->ne[3] == 1);
  8949. GGML_ASSERT(node->src1->ne[2] == 1);
  8950. GGML_ASSERT(node->src1->ne[3] == 1);
  8951. size_t cur = 0;
  8952. const int nk = node->src0->ne[0];
  8953. if (node->src0->type == GGML_TYPE_F16 &&
  8954. node->src1->type == GGML_TYPE_F32) {
  8955. cur = sizeof(ggml_fp16_t)*(
  8956. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8957. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8958. );
  8959. } else if (node->src0->type == GGML_TYPE_F32 &&
  8960. node->src1->type == GGML_TYPE_F32) {
  8961. cur = sizeof(float)*(
  8962. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8963. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8964. );
  8965. } else {
  8966. GGML_ASSERT(false);
  8967. }
  8968. work_size = MAX(work_size, cur);
  8969. } break;
  8970. case GGML_OP_FLASH_ATTN:
  8971. {
  8972. node->n_tasks = n_threads;
  8973. size_t cur = 0;
  8974. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8975. if (node->src1->type == GGML_TYPE_F32) {
  8976. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8977. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8978. }
  8979. if (node->src1->type == GGML_TYPE_F16) {
  8980. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8981. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8982. }
  8983. work_size = MAX(work_size, cur);
  8984. } break;
  8985. case GGML_OP_FLASH_FF:
  8986. {
  8987. node->n_tasks = n_threads;
  8988. size_t cur = 0;
  8989. if (node->src1->type == GGML_TYPE_F32) {
  8990. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8991. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8992. }
  8993. if (node->src1->type == GGML_TYPE_F16) {
  8994. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8995. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8996. }
  8997. work_size = MAX(work_size, cur);
  8998. } break;
  8999. case GGML_OP_MAP_UNARY:
  9000. case GGML_OP_MAP_BINARY:
  9001. {
  9002. node->n_tasks = 1;
  9003. } break;
  9004. case GGML_OP_NONE:
  9005. {
  9006. node->n_tasks = 1;
  9007. } break;
  9008. case GGML_OP_COUNT:
  9009. {
  9010. GGML_ASSERT(false);
  9011. } break;
  9012. }
  9013. }
  9014. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9015. GGML_ASSERT(false); // TODO: better handling
  9016. }
  9017. if (work_size > 0 && cgraph->work == NULL) {
  9018. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9019. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9020. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9021. }
  9022. }
  9023. const int64_t perf_start_cycles = ggml_perf_cycles();
  9024. const int64_t perf_start_time_us = ggml_perf_time_us();
  9025. for (int i = 0; i < cgraph->n_nodes; i++) {
  9026. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9027. struct ggml_tensor * node = cgraph->nodes[i];
  9028. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9029. //if (node->grad == NULL && node->perf_runs > 0) {
  9030. // continue;
  9031. //}
  9032. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9033. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9034. // INIT
  9035. struct ggml_compute_params params = {
  9036. /*.type =*/ GGML_TASK_INIT,
  9037. /*.ith =*/ 0,
  9038. /*.nth =*/ node->n_tasks,
  9039. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9040. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9041. };
  9042. ggml_compute_forward(&params, node);
  9043. // COMPUTE
  9044. if (node->n_tasks > 1) {
  9045. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9046. atomic_store(&state_shared.has_work, false);
  9047. }
  9048. while (atomic_load(&state_shared.has_work)) {
  9049. ggml_lock_lock (&state_shared.spin);
  9050. ggml_lock_unlock(&state_shared.spin);
  9051. }
  9052. // launch thread pool
  9053. for (int j = 0; j < n_threads - 1; j++) {
  9054. workers[j].params = (struct ggml_compute_params) {
  9055. .type = GGML_TASK_COMPUTE,
  9056. .ith = j + 1,
  9057. .nth = node->n_tasks,
  9058. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9059. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9060. };
  9061. workers[j].node = node;
  9062. }
  9063. atomic_fetch_sub(&state_shared.n_ready, 1);
  9064. while (atomic_load(&state_shared.n_ready) > 0) {
  9065. ggml_lock_lock (&state_shared.spin);
  9066. ggml_lock_unlock(&state_shared.spin);
  9067. }
  9068. atomic_store(&state_shared.has_work, true);
  9069. }
  9070. params.type = GGML_TASK_COMPUTE;
  9071. ggml_compute_forward(&params, node);
  9072. // wait for thread pool
  9073. if (node->n_tasks > 1) {
  9074. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9075. atomic_store(&state_shared.has_work, false);
  9076. }
  9077. while (atomic_load(&state_shared.has_work)) {
  9078. ggml_lock_lock (&state_shared.spin);
  9079. ggml_lock_unlock(&state_shared.spin);
  9080. }
  9081. atomic_fetch_sub(&state_shared.n_ready, 1);
  9082. while (atomic_load(&state_shared.n_ready) != 0) {
  9083. ggml_lock_lock (&state_shared.spin);
  9084. ggml_lock_unlock(&state_shared.spin);
  9085. }
  9086. }
  9087. // FINALIZE
  9088. if (node->n_tasks > 1) {
  9089. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9090. atomic_store(&state_shared.has_work, false);
  9091. }
  9092. while (atomic_load(&state_shared.has_work)) {
  9093. ggml_lock_lock (&state_shared.spin);
  9094. ggml_lock_unlock(&state_shared.spin);
  9095. }
  9096. // launch thread pool
  9097. for (int j = 0; j < n_threads - 1; j++) {
  9098. workers[j].params = (struct ggml_compute_params) {
  9099. .type = GGML_TASK_FINALIZE,
  9100. .ith = j + 1,
  9101. .nth = node->n_tasks,
  9102. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9103. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9104. };
  9105. workers[j].node = node;
  9106. }
  9107. atomic_fetch_sub(&state_shared.n_ready, 1);
  9108. while (atomic_load(&state_shared.n_ready) > 0) {
  9109. ggml_lock_lock (&state_shared.spin);
  9110. ggml_lock_unlock(&state_shared.spin);
  9111. }
  9112. atomic_store(&state_shared.has_work, true);
  9113. }
  9114. params.type = GGML_TASK_FINALIZE;
  9115. ggml_compute_forward(&params, node);
  9116. // wait for thread pool
  9117. if (node->n_tasks > 1) {
  9118. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9119. atomic_store(&state_shared.has_work, false);
  9120. }
  9121. while (atomic_load(&state_shared.has_work)) {
  9122. ggml_lock_lock (&state_shared.spin);
  9123. ggml_lock_unlock(&state_shared.spin);
  9124. }
  9125. atomic_fetch_sub(&state_shared.n_ready, 1);
  9126. while (atomic_load(&state_shared.n_ready) != 0) {
  9127. ggml_lock_lock (&state_shared.spin);
  9128. ggml_lock_unlock(&state_shared.spin);
  9129. }
  9130. }
  9131. // performance stats (node)
  9132. {
  9133. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9134. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9135. node->perf_runs++;
  9136. node->perf_cycles += perf_cycles_cur;
  9137. node->perf_time_us += perf_time_us_cur;
  9138. }
  9139. }
  9140. // join thread pool
  9141. if (n_threads > 1) {
  9142. atomic_store(&state_shared.stop, true);
  9143. atomic_store(&state_shared.has_work, true);
  9144. for (int j = 0; j < n_threads - 1; j++) {
  9145. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9146. GGML_ASSERT(rc == 0);
  9147. UNUSED(rc);
  9148. }
  9149. ggml_lock_destroy(&state_shared.spin);
  9150. }
  9151. // performance stats (graph)
  9152. {
  9153. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9154. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9155. cgraph->perf_runs++;
  9156. cgraph->perf_cycles += perf_cycles_cur;
  9157. cgraph->perf_time_us += perf_time_us_cur;
  9158. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9159. __func__, cgraph->perf_runs,
  9160. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9161. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9162. (double) perf_time_us_cur / 1000.0,
  9163. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9164. }
  9165. }
  9166. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9167. for (int i = 0; i < cgraph->n_nodes; i++) {
  9168. struct ggml_tensor * grad = cgraph->grads[i];
  9169. if (grad) {
  9170. ggml_set_zero(grad);
  9171. }
  9172. }
  9173. }
  9174. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9175. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9176. GGML_PRINT("=== GRAPH ===\n");
  9177. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9178. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9179. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9180. for (int i = 0; i < cgraph->n_nodes; i++) {
  9181. struct ggml_tensor * node = cgraph->nodes[i];
  9182. perf_total_per_op_us[node->op] += node->perf_time_us;
  9183. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9184. i,
  9185. node->ne[0], node->ne[1], node->ne[2],
  9186. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9187. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9188. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9189. (double) node->perf_time_us / 1000.0,
  9190. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9191. }
  9192. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9193. for (int i = 0; i < cgraph->n_leafs; i++) {
  9194. struct ggml_tensor * node = cgraph->leafs[i];
  9195. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  9196. i,
  9197. node->ne[0], node->ne[1],
  9198. GGML_OP_LABEL[node->op]);
  9199. }
  9200. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9201. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9202. }
  9203. GGML_PRINT("========================================\n");
  9204. }
  9205. // check if node is part of the graph
  9206. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9207. if (cgraph == NULL) {
  9208. return true;
  9209. }
  9210. for (int i = 0; i < cgraph->n_nodes; i++) {
  9211. if (cgraph->nodes[i] == node) {
  9212. return true;
  9213. }
  9214. }
  9215. return false;
  9216. }
  9217. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9218. for (int i = 0; i < cgraph->n_nodes; i++) {
  9219. struct ggml_tensor * parent = cgraph->nodes[i];
  9220. if (parent->grad == node) {
  9221. return parent;
  9222. }
  9223. }
  9224. return NULL;
  9225. }
  9226. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9227. char color[16];
  9228. FILE * fp = fopen(filename, "w");
  9229. GGML_ASSERT(fp);
  9230. fprintf(fp, "digraph G {\n");
  9231. fprintf(fp, " newrank = true;\n");
  9232. fprintf(fp, " rankdir = LR;\n");
  9233. for (int i = 0; i < gb->n_nodes; i++) {
  9234. struct ggml_tensor * node = gb->nodes[i];
  9235. if (ggml_graph_get_parent(gb, node) != NULL) {
  9236. continue;
  9237. }
  9238. if (node->is_param) {
  9239. snprintf(color, sizeof(color), "yellow");
  9240. } else if (node->grad) {
  9241. if (ggml_graph_find(gf, node)) {
  9242. snprintf(color, sizeof(color), "green");
  9243. } else {
  9244. snprintf(color, sizeof(color), "lightblue");
  9245. }
  9246. } else {
  9247. snprintf(color, sizeof(color), "white");
  9248. }
  9249. fprintf(fp, " \"%p\" [ \
  9250. style = filled; fillcolor = %s; shape = record; \
  9251. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9252. (void *) node, color,
  9253. i, node->ne[0], node->ne[1],
  9254. GGML_OP_SYMBOL[node->op]);
  9255. if (node->grad) {
  9256. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9257. } else {
  9258. fprintf(fp, "\"; ]\n");
  9259. }
  9260. }
  9261. for (int i = 0; i < gb->n_leafs; i++) {
  9262. struct ggml_tensor * node = gb->leafs[i];
  9263. snprintf(color, sizeof(color), "pink");
  9264. if (ggml_nelements(node) == 1) {
  9265. fprintf(fp, " \"%p\" [ \
  9266. style = filled; fillcolor = %s; shape = record; \
  9267. label=\"<x>%.1e\"; ]\n",
  9268. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9269. } else {
  9270. fprintf(fp, " \"%p\" [ \
  9271. style = filled; fillcolor = %s; shape = record; \
  9272. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9273. (void *) node, color,
  9274. i, node->ne[0], node->ne[1]);
  9275. }
  9276. }
  9277. for (int i = 0; i < gb->n_nodes; i++) {
  9278. struct ggml_tensor * node = gb->nodes[i];
  9279. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9280. if (node->src0) {
  9281. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9282. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9283. parent0 ? (void *) parent0 : (void *) node->src0,
  9284. parent0 ? "g" : "x",
  9285. parent ? (void *) parent : (void *) node,
  9286. parent ? "g" : "x",
  9287. parent ? "empty" : "vee",
  9288. parent ? "dashed" : "solid");
  9289. }
  9290. if (node->src1) {
  9291. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9292. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9293. parent1 ? (void *) parent1 : (void *) node->src1,
  9294. parent1 ? "g" : "x",
  9295. parent ? (void *) parent : (void *) node,
  9296. parent ? "g" : "x",
  9297. parent ? "empty" : "vee",
  9298. parent ? "dashed" : "solid");
  9299. }
  9300. }
  9301. for (int i = 0; i < gb->n_leafs; i++) {
  9302. struct ggml_tensor * node = gb->leafs[i];
  9303. if (node->src0) {
  9304. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9305. (void *) node->src0, "x",
  9306. (void *) node, "x");
  9307. }
  9308. if (node->src1) {
  9309. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9310. (void *) node->src1, "x",
  9311. (void *) node, "x");
  9312. }
  9313. }
  9314. fprintf(fp, "}\n");
  9315. fclose(fp);
  9316. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9317. }
  9318. ////////////////////////////////////////////////////////////////////////////////
  9319. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9320. int i = 0;
  9321. for (int p = 0; p < np; ++p) {
  9322. const int64_t ne = ggml_nelements(ps[p]) ;
  9323. // TODO: add function to set tensor from array
  9324. for (int64_t j = 0; j < ne; ++j) {
  9325. ggml_set_f32_1d(ps[p], j, x[i++]);
  9326. }
  9327. }
  9328. }
  9329. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9330. int i = 0;
  9331. for (int p = 0; p < np; ++p) {
  9332. const int64_t ne = ggml_nelements(ps[p]) ;
  9333. // TODO: add function to get all elements at once
  9334. for (int64_t j = 0; j < ne; ++j) {
  9335. x[i++] = ggml_get_f32_1d(ps[p], j);
  9336. }
  9337. }
  9338. }
  9339. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9340. int i = 0;
  9341. for (int p = 0; p < np; ++p) {
  9342. const int64_t ne = ggml_nelements(ps[p]) ;
  9343. // TODO: add function to get all elements at once
  9344. for (int64_t j = 0; j < ne; ++j) {
  9345. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9346. }
  9347. }
  9348. }
  9349. //
  9350. // ADAM
  9351. //
  9352. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9353. //
  9354. static enum ggml_opt_result ggml_opt_adam(
  9355. struct ggml_context * ctx,
  9356. struct ggml_opt_params params,
  9357. struct ggml_tensor * f,
  9358. struct ggml_cgraph * gf,
  9359. struct ggml_cgraph * gb) {
  9360. GGML_ASSERT(ggml_is_scalar(f));
  9361. gf->n_threads = params.n_threads;
  9362. gb->n_threads = params.n_threads;
  9363. // these will store the parameters we want to optimize
  9364. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9365. int np = 0;
  9366. int nx = 0;
  9367. for (int i = 0; i < gf->n_nodes; ++i) {
  9368. if (gf->nodes[i]->is_param) {
  9369. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9370. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9371. ps[np++] = gf->nodes[i];
  9372. nx += ggml_nelements(gf->nodes[i]);
  9373. }
  9374. }
  9375. // constants
  9376. const float alpha = params.adam.alpha;
  9377. const float beta1 = params.adam.beta1;
  9378. const float beta2 = params.adam.beta2;
  9379. const float eps = params.adam.eps;
  9380. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9381. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9382. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9383. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9384. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9385. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9386. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9387. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9388. // initialize
  9389. ggml_vec_set_f32(nx, m, 0.0f);
  9390. ggml_vec_set_f32(nx, v, 0.0f);
  9391. // update view
  9392. ggml_opt_get_params(np, ps, x);
  9393. // compute the function value
  9394. ggml_graph_reset (gf);
  9395. ggml_set_f32 (f->grad, 1.0f);
  9396. ggml_graph_compute(ctx, gb);
  9397. float fx_prev = ggml_get_f32_1d(f, 0);
  9398. if (pf) {
  9399. pf[0] = fx_prev;
  9400. }
  9401. int n_no_improvement = 0;
  9402. float fx_best = fx_prev;
  9403. // run the optimizer
  9404. for (int t = 0; t < params.adam.n_iter; ++t) {
  9405. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9406. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9407. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9408. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9409. for (int i = 0; i < np; ++i) {
  9410. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9411. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9412. }
  9413. const int64_t t_start_wall = ggml_time_us();
  9414. const int64_t t_start_cpu = ggml_cycles();
  9415. UNUSED(t_start_wall);
  9416. UNUSED(t_start_cpu);
  9417. {
  9418. // update the gradient
  9419. ggml_opt_get_grad(np, ps, g1);
  9420. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9421. ggml_vec_scale_f32(nx, m, beta1);
  9422. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9423. // g2 = g1^2
  9424. ggml_vec_sqr_f32 (nx, g2, g1);
  9425. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9426. ggml_vec_scale_f32(nx, v, beta2);
  9427. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9428. // m^hat = m_t / (1 - beta1^t)
  9429. // v^hat = v_t / (1 - beta2^t)
  9430. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9431. ggml_vec_cpy_f32 (nx, mh, m);
  9432. ggml_vec_cpy_f32 (nx, vh, v);
  9433. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9434. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9435. ggml_vec_sqrt_f32 (nx, vh, vh);
  9436. ggml_vec_acc1_f32 (nx, vh, eps);
  9437. ggml_vec_div_f32 (nx, mh, mh, vh);
  9438. ggml_vec_sub_f32 (nx, x, x, mh);
  9439. // update the parameters
  9440. ggml_opt_set_params(np, ps, x);
  9441. }
  9442. ggml_graph_reset (gf);
  9443. ggml_set_f32 (f->grad, 1.0f);
  9444. ggml_graph_compute(ctx, gb);
  9445. const float fx = ggml_get_f32_1d(f, 0);
  9446. // check convergence
  9447. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9448. GGML_PRINT_DEBUG("converged\n");
  9449. return GGML_OPT_OK;
  9450. }
  9451. // delta-based convergence test
  9452. if (pf != NULL) {
  9453. // need at least params.past iterations to start checking for convergence
  9454. if (params.past <= t) {
  9455. const float rate = (pf[t%params.past] - fx)/fx;
  9456. if (fabsf(rate) < params.delta) {
  9457. return GGML_OPT_OK;
  9458. }
  9459. }
  9460. pf[t%params.past] = fx;
  9461. }
  9462. // check for improvement
  9463. if (params.max_no_improvement > 0) {
  9464. if (fx_best > fx) {
  9465. fx_best = fx;
  9466. n_no_improvement = 0;
  9467. } else {
  9468. ++n_no_improvement;
  9469. if (n_no_improvement >= params.max_no_improvement) {
  9470. return GGML_OPT_OK;
  9471. }
  9472. }
  9473. }
  9474. fx_prev = fx;
  9475. {
  9476. const int64_t t_end_cpu = ggml_cycles();
  9477. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9478. UNUSED(t_end_cpu);
  9479. const int64_t t_end_wall = ggml_time_us();
  9480. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9481. UNUSED(t_end_wall);
  9482. }
  9483. }
  9484. return GGML_OPT_DID_NOT_CONVERGE;
  9485. }
  9486. //
  9487. // L-BFGS
  9488. //
  9489. // the L-BFGS implementation below is based on the following implementation:
  9490. //
  9491. // https://github.com/chokkan/liblbfgs
  9492. //
  9493. struct ggml_lbfgs_iteration_data {
  9494. float alpha;
  9495. float ys;
  9496. float * s;
  9497. float * y;
  9498. };
  9499. static enum ggml_opt_result linesearch_backtracking(
  9500. struct ggml_context * ctx,
  9501. const struct ggml_opt_params * params,
  9502. int nx,
  9503. float * x,
  9504. float * fx,
  9505. float * g,
  9506. float * d,
  9507. float * step,
  9508. const float * xp,
  9509. struct ggml_tensor * f,
  9510. struct ggml_cgraph * gf,
  9511. struct ggml_cgraph * gb,
  9512. const int np,
  9513. struct ggml_tensor * ps[]) {
  9514. int count = 0;
  9515. float width = 0.0f;
  9516. float dg = 0.0f;
  9517. float finit = 0.0f;
  9518. float dginit = 0.0f;
  9519. float dgtest = 0.0f;
  9520. const float dec = 0.5f;
  9521. const float inc = 2.1f;
  9522. if (*step <= 0.f) {
  9523. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9524. }
  9525. // compute the initial gradient in the search direction
  9526. ggml_vec_dot_f32(nx, &dginit, g, d);
  9527. // make sure that d points to a descent direction
  9528. if (0 < dginit) {
  9529. return GGML_LINESEARCH_FAIL;
  9530. }
  9531. // initialize local variables
  9532. finit = *fx;
  9533. dgtest = params->lbfgs.ftol*dginit;
  9534. while (true) {
  9535. ggml_vec_cpy_f32(nx, x, xp);
  9536. ggml_vec_mad_f32(nx, x, d, *step);
  9537. // evaluate the function and gradient values
  9538. {
  9539. ggml_opt_set_params(np, ps, x);
  9540. ggml_graph_reset (gf);
  9541. ggml_set_f32 (f->grad, 1.0f);
  9542. ggml_graph_compute(ctx, gb);
  9543. ggml_opt_get_grad(np, ps, g);
  9544. *fx = ggml_get_f32_1d(f, 0);
  9545. }
  9546. ++count;
  9547. if (*fx > finit + (*step)*dgtest) {
  9548. width = dec;
  9549. } else {
  9550. // Armijo condition is satisfied
  9551. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9552. return count;
  9553. }
  9554. ggml_vec_dot_f32(nx, &dg, g, d);
  9555. // check the Wolfe condition
  9556. if (dg < params->lbfgs.wolfe * dginit) {
  9557. width = inc;
  9558. } else {
  9559. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9560. // regular Wolfe conditions
  9561. return count;
  9562. }
  9563. if(dg > -params->lbfgs.wolfe*dginit) {
  9564. width = dec;
  9565. } else {
  9566. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9567. return count;
  9568. }
  9569. return count;
  9570. }
  9571. }
  9572. if (*step < params->lbfgs.min_step) {
  9573. return GGML_LINESEARCH_MINIMUM_STEP;
  9574. }
  9575. if (*step > params->lbfgs.max_step) {
  9576. return GGML_LINESEARCH_MAXIMUM_STEP;
  9577. }
  9578. if (params->lbfgs.max_linesearch <= count) {
  9579. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9580. }
  9581. (*step) *= width;
  9582. }
  9583. return GGML_LINESEARCH_FAIL;
  9584. }
  9585. static enum ggml_opt_result ggml_opt_lbfgs(
  9586. struct ggml_context * ctx,
  9587. struct ggml_opt_params params,
  9588. struct ggml_tensor * f,
  9589. struct ggml_cgraph * gf,
  9590. struct ggml_cgraph * gb) {
  9591. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9592. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9593. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9594. return GGML_OPT_INVALID_WOLFE;
  9595. }
  9596. }
  9597. gf->n_threads = params.n_threads;
  9598. gb->n_threads = params.n_threads;
  9599. const int m = params.lbfgs.m;
  9600. // these will store the parameters we want to optimize
  9601. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9602. int np = 0;
  9603. int nx = 0;
  9604. for (int i = 0; i < gf->n_nodes; ++i) {
  9605. if (gf->nodes[i]->is_param) {
  9606. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9607. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9608. ps[np++] = gf->nodes[i];
  9609. nx += ggml_nelements(gf->nodes[i]);
  9610. }
  9611. }
  9612. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9613. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9614. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9615. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9616. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9617. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9618. float fx = 0.0f; // cost function value
  9619. float xnorm = 0.0f; // ||x||
  9620. float gnorm = 0.0f; // ||g||
  9621. float step = 0.0f;
  9622. // initialize x from the graph nodes
  9623. ggml_opt_get_params(np, ps, x);
  9624. // the L-BFGS memory
  9625. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9626. for (int i = 0; i < m; ++i) {
  9627. lm[i].alpha = 0.0f;
  9628. lm[i].ys = 0.0f;
  9629. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9630. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9631. }
  9632. // evaluate the function value and its gradient
  9633. {
  9634. ggml_opt_set_params(np, ps, x);
  9635. ggml_graph_reset (gf);
  9636. ggml_set_f32 (f->grad, 1.0f);
  9637. ggml_graph_compute(ctx, gb);
  9638. ggml_opt_get_grad(np, ps, g);
  9639. fx = ggml_get_f32_1d(f, 0);
  9640. }
  9641. if (pf) {
  9642. pf[0] = fx;
  9643. }
  9644. float fx_best = fx;
  9645. // search direction = -gradient
  9646. ggml_vec_neg_f32(nx, d, g);
  9647. // ||x||, ||g||
  9648. ggml_vec_norm_f32(nx, &xnorm, x);
  9649. ggml_vec_norm_f32(nx, &gnorm, g);
  9650. if (xnorm < 1.0f) {
  9651. xnorm = 1.0f;
  9652. }
  9653. // already optimized
  9654. if (gnorm/xnorm <= params.lbfgs.eps) {
  9655. return GGML_OPT_OK;
  9656. }
  9657. // initial step
  9658. ggml_vec_norm_inv_f32(nx, &step, d);
  9659. int j = 0;
  9660. int k = 1;
  9661. int ls = 0;
  9662. int end = 0;
  9663. int bound = 0;
  9664. int n_no_improvement = 0;
  9665. float ys = 0.0f;
  9666. float yy = 0.0f;
  9667. float beta = 0.0f;
  9668. while (true) {
  9669. // store the current position and gradient vectors
  9670. ggml_vec_cpy_f32(nx, xp, x);
  9671. ggml_vec_cpy_f32(nx, gp, g);
  9672. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9673. if (ls < 0) {
  9674. // linesearch failed - go back to the previous point and return
  9675. ggml_vec_cpy_f32(nx, x, xp);
  9676. ggml_vec_cpy_f32(nx, g, gp);
  9677. return ls;
  9678. }
  9679. ggml_vec_norm_f32(nx, &xnorm, x);
  9680. ggml_vec_norm_f32(nx, &gnorm, g);
  9681. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9682. if (xnorm < 1.0f) {
  9683. xnorm = 1.0f;
  9684. }
  9685. if (gnorm/xnorm <= params.lbfgs.eps) {
  9686. // converged
  9687. return GGML_OPT_OK;
  9688. }
  9689. // delta-based convergence test
  9690. if (pf != NULL) {
  9691. // need at least params.past iterations to start checking for convergence
  9692. if (params.past <= k) {
  9693. const float rate = (pf[k%params.past] - fx)/fx;
  9694. if (fabsf(rate) < params.delta) {
  9695. return GGML_OPT_OK;
  9696. }
  9697. }
  9698. pf[k%params.past] = fx;
  9699. }
  9700. // check for improvement
  9701. if (params.max_no_improvement > 0) {
  9702. if (fx < fx_best) {
  9703. fx_best = fx;
  9704. n_no_improvement = 0;
  9705. } else {
  9706. n_no_improvement++;
  9707. if (n_no_improvement >= params.max_no_improvement) {
  9708. return GGML_OPT_OK;
  9709. }
  9710. }
  9711. }
  9712. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9713. // reached the maximum number of iterations
  9714. return GGML_OPT_DID_NOT_CONVERGE;
  9715. }
  9716. // update vectors s and y:
  9717. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9718. // y_{k+1} = g_{k+1} - g_{k}.
  9719. //
  9720. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9721. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9722. // compute scalars ys and yy:
  9723. // ys = y^t \cdot s -> 1 / \rho.
  9724. // yy = y^t \cdot y.
  9725. //
  9726. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9727. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9728. lm[end].ys = ys;
  9729. // find new search direction
  9730. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9731. bound = (m <= k) ? m : k;
  9732. k++;
  9733. end = (end + 1)%m;
  9734. // initialize search direction with -g
  9735. ggml_vec_neg_f32(nx, d, g);
  9736. j = end;
  9737. for (int i = 0; i < bound; ++i) {
  9738. j = (j + m - 1) % m;
  9739. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9740. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9741. lm[j].alpha /= lm[j].ys;
  9742. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9743. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9744. }
  9745. ggml_vec_scale_f32(nx, d, ys/yy);
  9746. for (int i = 0; i < bound; ++i) {
  9747. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9748. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9749. beta /= lm[j].ys;
  9750. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9751. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9752. j = (j + 1)%m;
  9753. }
  9754. step = 1.0;
  9755. }
  9756. return GGML_OPT_DID_NOT_CONVERGE;
  9757. }
  9758. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9759. struct ggml_opt_params result;
  9760. switch (type) {
  9761. case GGML_OPT_ADAM:
  9762. {
  9763. result = (struct ggml_opt_params) {
  9764. .type = GGML_OPT_ADAM,
  9765. .n_threads = 1,
  9766. .past = 0,
  9767. .delta = 1e-5f,
  9768. .max_no_improvement = 100,
  9769. .print_forward_graph = true,
  9770. .print_backward_graph = true,
  9771. .adam = {
  9772. .n_iter = 10000,
  9773. .alpha = 0.001f,
  9774. .beta1 = 0.9f,
  9775. .beta2 = 0.999f,
  9776. .eps = 1e-8f,
  9777. .eps_f = 1e-5f,
  9778. .eps_g = 1e-3f,
  9779. },
  9780. };
  9781. } break;
  9782. case GGML_OPT_LBFGS:
  9783. {
  9784. result = (struct ggml_opt_params) {
  9785. .type = GGML_OPT_LBFGS,
  9786. .n_threads = 1,
  9787. .past = 0,
  9788. .delta = 1e-5f,
  9789. .max_no_improvement = 0,
  9790. .print_forward_graph = true,
  9791. .print_backward_graph = true,
  9792. .lbfgs = {
  9793. .m = 6,
  9794. .n_iter = 100,
  9795. .max_linesearch = 20,
  9796. .eps = 1e-5f,
  9797. .ftol = 1e-4f,
  9798. .wolfe = 0.9f,
  9799. .min_step = 1e-20f,
  9800. .max_step = 1e+20f,
  9801. .linesearch = GGML_LINESEARCH_DEFAULT,
  9802. },
  9803. };
  9804. } break;
  9805. }
  9806. return result;
  9807. }
  9808. enum ggml_opt_result ggml_opt(
  9809. struct ggml_context * ctx,
  9810. struct ggml_opt_params params,
  9811. struct ggml_tensor * f) {
  9812. bool free_ctx = false;
  9813. if (ctx == NULL) {
  9814. struct ggml_init_params params_ctx = {
  9815. .mem_size = 16*1024*1024,
  9816. .mem_buffer = NULL,
  9817. .no_alloc = false,
  9818. };
  9819. ctx = ggml_init(params_ctx);
  9820. if (ctx == NULL) {
  9821. return GGML_OPT_NO_CONTEXT;
  9822. }
  9823. free_ctx = true;
  9824. }
  9825. enum ggml_opt_result result = GGML_OPT_OK;
  9826. // build forward + backward compute graphs
  9827. struct ggml_cgraph gf = ggml_build_forward (f);
  9828. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9829. switch (params.type) {
  9830. case GGML_OPT_ADAM:
  9831. {
  9832. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9833. } break;
  9834. case GGML_OPT_LBFGS:
  9835. {
  9836. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9837. } break;
  9838. }
  9839. if (params.print_forward_graph) {
  9840. ggml_graph_print (&gf);
  9841. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9842. }
  9843. if (params.print_backward_graph) {
  9844. ggml_graph_print (&gb);
  9845. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9846. }
  9847. if (free_ctx) {
  9848. ggml_free(ctx);
  9849. }
  9850. return result;
  9851. }
  9852. ////////////////////////////////////////////////////////////////////////////////
  9853. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9854. assert(k % QK4_0 == 0);
  9855. const int nb = k / QK4_0;
  9856. for (int j = 0; j < n; j += k) {
  9857. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9858. quantize_row_q4_0_reference(src + j, y, k);
  9859. for (int i = 0; i < nb; i++) {
  9860. for (int l = 0; l < QK4_0; l += 2) {
  9861. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9862. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9863. hist[vi0]++;
  9864. hist[vi1]++;
  9865. }
  9866. }
  9867. }
  9868. return (n/QK4_0*sizeof(block_q4_0));
  9869. }
  9870. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9871. assert(k % QK4_1 == 0);
  9872. const int nb = k / QK4_1;
  9873. for (int j = 0; j < n; j += k) {
  9874. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9875. quantize_row_q4_1_reference(src + j, y, k);
  9876. for (int i = 0; i < nb; i++) {
  9877. for (int l = 0; l < QK4_1; l += 2) {
  9878. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9879. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9880. hist[vi0]++;
  9881. hist[vi1]++;
  9882. }
  9883. }
  9884. }
  9885. return (n/QK4_1*sizeof(block_q4_1));
  9886. }
  9887. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9888. assert(k % QK4_2 == 0);
  9889. const int nb = k / QK4_2;
  9890. for (int j = 0; j < n; j += k) {
  9891. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9892. //quantize_row_q4_2_reference(src + j, y, k);
  9893. quantize_row_q4_2_rmse(src + j, y, k);
  9894. for (int i = 0; i < nb; i++) {
  9895. for (int l = 0; l < QK4_2; l += 2) {
  9896. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9897. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9898. hist[vi0]++;
  9899. hist[vi1]++;
  9900. }
  9901. }
  9902. }
  9903. return (n/QK4_2*sizeof(block_q4_2));
  9904. }
  9905. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  9906. assert(k % QK4_3 == 0);
  9907. const int nb = k / QK4_3;
  9908. for (int j = 0; j < n; j += k) {
  9909. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  9910. quantize_row_q4_3_reference(src + j, y, k);
  9911. for (int i = 0; i < nb; i++) {
  9912. for (int l = 0; l < QK4_3; l += 2) {
  9913. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9914. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9915. hist[vi0]++;
  9916. hist[vi1]++;
  9917. }
  9918. }
  9919. }
  9920. return (n/QK4_3*sizeof(block_q4_3));
  9921. }
  9922. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  9923. size_t result = 0;
  9924. switch (type) {
  9925. case GGML_TYPE_Q4_0:
  9926. {
  9927. GGML_ASSERT(start % QK4_0 == 0);
  9928. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  9929. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  9930. } break;
  9931. case GGML_TYPE_Q4_1:
  9932. {
  9933. GGML_ASSERT(start % QK4_1 == 0);
  9934. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  9935. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  9936. } break;
  9937. case GGML_TYPE_Q4_2:
  9938. {
  9939. GGML_ASSERT(start % QK4_2 == 0);
  9940. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  9941. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  9942. } break;
  9943. case GGML_TYPE_Q4_3:
  9944. {
  9945. GGML_ASSERT(start % QK4_3 == 0);
  9946. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  9947. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  9948. } break;
  9949. default:
  9950. assert(false);
  9951. }
  9952. return result;
  9953. }
  9954. ////////////////////////////////////////////////////////////////////////////////
  9955. int ggml_cpu_has_avx(void) {
  9956. #if defined(__AVX__)
  9957. return 1;
  9958. #else
  9959. return 0;
  9960. #endif
  9961. }
  9962. int ggml_cpu_has_avx2(void) {
  9963. #if defined(__AVX2__)
  9964. return 1;
  9965. #else
  9966. return 0;
  9967. #endif
  9968. }
  9969. int ggml_cpu_has_avx512(void) {
  9970. #if defined(__AVX512F__)
  9971. return 1;
  9972. #else
  9973. return 0;
  9974. #endif
  9975. }
  9976. int ggml_cpu_has_avx512_vbmi(void) {
  9977. #if defined(__AVX512VBMI__)
  9978. return 1;
  9979. #else
  9980. return 0;
  9981. #endif
  9982. }
  9983. int ggml_cpu_has_avx512_vnni(void) {
  9984. #if defined(__AVX512VNNI__)
  9985. return 1;
  9986. #else
  9987. return 0;
  9988. #endif
  9989. }
  9990. int ggml_cpu_has_fma(void) {
  9991. #if defined(__FMA__)
  9992. return 1;
  9993. #else
  9994. return 0;
  9995. #endif
  9996. }
  9997. int ggml_cpu_has_neon(void) {
  9998. #if defined(__ARM_NEON)
  9999. return 1;
  10000. #else
  10001. return 0;
  10002. #endif
  10003. }
  10004. int ggml_cpu_has_arm_fma(void) {
  10005. #if defined(__ARM_FEATURE_FMA)
  10006. return 1;
  10007. #else
  10008. return 0;
  10009. #endif
  10010. }
  10011. int ggml_cpu_has_f16c(void) {
  10012. #if defined(__F16C__)
  10013. return 1;
  10014. #else
  10015. return 0;
  10016. #endif
  10017. }
  10018. int ggml_cpu_has_fp16_va(void) {
  10019. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10020. return 1;
  10021. #else
  10022. return 0;
  10023. #endif
  10024. }
  10025. int ggml_cpu_has_wasm_simd(void) {
  10026. #if defined(__wasm_simd128__)
  10027. return 1;
  10028. #else
  10029. return 0;
  10030. #endif
  10031. }
  10032. int ggml_cpu_has_blas(void) {
  10033. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10034. return 1;
  10035. #else
  10036. return 0;
  10037. #endif
  10038. }
  10039. int ggml_cpu_has_cublas(void) {
  10040. #if defined(GGML_USE_CUBLAS)
  10041. return 1;
  10042. #else
  10043. return 0;
  10044. #endif
  10045. }
  10046. int ggml_cpu_has_sse3(void) {
  10047. #if defined(__SSE3__)
  10048. return 1;
  10049. #else
  10050. return 0;
  10051. #endif
  10052. }
  10053. int ggml_cpu_has_vsx(void) {
  10054. #if defined(__POWER9_VECTOR__)
  10055. return 1;
  10056. #else
  10057. return 0;
  10058. #endif
  10059. }
  10060. ////////////////////////////////////////////////////////////////////////////////