| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- #include "speculative.h"
- #include "log.h"
- #include "common.h"
- #include "sampling.h"
- #include <cstring>
- #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
- #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
- struct common_speculative {
- struct llama_context * ctx;
- struct common_sampler * smpl;
- llama_batch batch;
- llama_tokens prompt;
- };
- struct common_speculative * common_speculative_init(
- struct llama_context * ctx_dft) {
- auto * result = new common_speculative {
- /* .ctx = */ ctx_dft,
- /* .smpl = */ nullptr,
- /* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
- /* .prompt = */ {},
- };
- // TODO: optimize or pass from outside?
- #if 0
- {
- common_params_sampling params;
- params.no_perf = false;
- params.top_k = 40;
- params.top_p = 0.9;
- params.samplers = {
- COMMON_SAMPLER_TYPE_TOP_K,
- COMMON_SAMPLER_TYPE_TOP_P,
- COMMON_SAMPLER_TYPE_INFILL,
- };
- result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
- }
- #else
- {
- common_params_sampling params;
- params.no_perf = false;
- params.top_k = 10;
- params.samplers = {
- COMMON_SAMPLER_TYPE_TOP_K,
- };
- result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
- }
- #endif
- return result;
- }
- void common_speculative_free(struct common_speculative * spec) {
- if (spec == nullptr) {
- return;
- }
- common_sampler_free(spec->smpl);
- llama_batch_free(spec->batch);
- delete spec;
- }
- bool common_speculative_are_compatible(
- const struct llama_context * ctx_tgt,
- const struct llama_context * ctx_dft) {
- const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
- const struct llama_model * model_dft = llama_get_model(ctx_dft);
- const bool vocab_type_tgt = llama_vocab_type(model_tgt);
- LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
- const bool vocab_type_dft = llama_vocab_type(model_dft);
- LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
- if (vocab_type_tgt != vocab_type_dft) {
- LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
- "vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
- return false;
- }
- if (llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
- llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
- llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
- llama_token_eos(model_tgt) != llama_token_eos(model_dft)) {
- LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
- LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_tgt), llama_add_bos_token(model_tgt), llama_token_eos(model_tgt), llama_add_eos_token(model_tgt));
- LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_token_bos(model_dft), llama_add_bos_token(model_dft), llama_token_eos(model_dft), llama_add_eos_token(model_dft));
- return false;
- }
- {
- const int n_vocab_tgt = llama_n_vocab(model_tgt);
- const int n_vocab_dft = llama_n_vocab(model_dft);
- const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
- if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
- LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
- "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
- __func__, n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
- return false;
- }
- for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
- const char * token_text_tgt = llama_token_get_text(model_tgt, i);
- const char * token_text_dft = llama_token_get_text(model_dft, i);
- if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
- LOG_ERR("%s: draft model vocab must match target model to use speculation but "
- "token %d content differs - target '%s', draft '%s'\n", __func__, i,
- common_token_to_piece(ctx_tgt, i).c_str(),
- common_token_to_piece(ctx_dft, i).c_str());
- return false;
- }
- }
- }
- return true;
- }
- llama_tokens common_speculative_gen_draft(
- struct common_speculative * spec,
- struct common_speculative_params params,
- const llama_tokens & prompt_tgt,
- llama_token id_last) {
- auto & batch = spec->batch;
- auto & ctx = spec->ctx;
- auto & smpl = spec->smpl;
- auto & prompt = spec->prompt;
- int reuse_i = 0;
- int reuse_n = 0;
- const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
- const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
- // reuse as much as possible from the old draft context
- // ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
- for (int i = 0; i < (int) prompt.size(); ++i) {
- int cur = 0;
- while (i_start + cur < (int) prompt_tgt.size() &&
- i + cur < (int) prompt.size() &&
- prompt_tgt[i_start + cur] == prompt[i + cur]) {
- cur++;
- }
- if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
- reuse_i = i;
- reuse_n = cur;
- }
- }
- LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
- llama_tokens result;
- result.reserve(params.n_draft);
- if (reuse_n == 0) {
- llama_kv_cache_clear(ctx);
- prompt.clear();
- } else {
- // this happens when a previous draft has been discarded (for example, due to being too small), but the
- // target model agreed with it. in this case, we simply pass back the previous results to save compute
- if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
- for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
- result.push_back(prompt[i]);
- if (params.n_draft <= (int) result.size()) {
- break;
- }
- }
- return result;
- }
- if (reuse_i > 0) {
- llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
- llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
- prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
- }
- if (reuse_n < (int) prompt.size()) {
- llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
- prompt.erase(prompt.begin() + reuse_n, prompt.end());
- }
- }
- // prepare a batch to evaluate any new tokens in the prompt
- common_batch_clear(batch);
- for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
- //LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
- common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
- prompt.push_back(prompt_tgt[i]);
- }
- // we should rarely end-up here during normal decoding
- if (batch.n_tokens > 0) {
- //LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
- llama_decode(ctx, batch);
- }
- const llama_pos n_past = prompt.size();
- LOG_DBG("%s: n_past = %d\n", __func__, n_past);
- common_batch_clear(batch);
- common_batch_add (batch, id_last, n_past, { 0 }, true);
- prompt.push_back(id_last);
- //LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
- llama_decode(ctx, batch);
- common_sampler_reset(smpl);
- // sample n_draft tokens from the draft model
- for (int i = 0; i < params.n_draft; ++i) {
- common_batch_clear(batch);
- common_sampler_sample(smpl, ctx, 0, true);
- const auto * cur_p = common_sampler_get_candidates(smpl);
- for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
- LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
- k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
- }
- // add drafted token for each sequence
- const llama_token id = cur_p->data[0].id;
- // only collect very high-confidence draft tokens
- if (cur_p->data[0].p < params.p_min) {
- break;
- }
- common_sampler_accept(smpl, id, true);
- result.push_back(id);
- if (params.n_draft <= (int) result.size()) {
- break;
- }
- common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
- // evaluate the drafted tokens on the draft model
- llama_decode(ctx, batch);
- prompt.push_back(id);
- }
- return result;
- }
|