speculative.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "sampling.h"
  4. #include "log.h"
  5. #include "llama.h"
  6. #include <algorithm>
  7. #include <cstdio>
  8. #include <cstring>
  9. #include <random>
  10. #include <set>
  11. #include <string>
  12. #include <vector>
  13. #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
  14. #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
  15. struct seq_draft {
  16. bool active = false;
  17. bool drafting = false;
  18. bool skip = false;
  19. int i_batch_dft = 0;
  20. std::vector<int> i_batch_tgt;
  21. std::vector<llama_token> tokens;
  22. std::vector<std::vector<llama_token_data>> dists;
  23. struct common_sampler * smpl = nullptr;
  24. };
  25. int main(int argc, char ** argv) {
  26. common_params params;
  27. // needed to get candidate probs even for temp <= 0.0
  28. params.sampling.n_probs = 128;
  29. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
  30. return 1;
  31. }
  32. if (params.n_predict < -1) {
  33. LOG_ERR("%s: --n-predict must be >= -1\n", __func__);
  34. return 1;
  35. }
  36. common_init();
  37. if (params.speculative.model.empty()) {
  38. LOG_ERR("%s: --model-draft is required\n", __func__);
  39. return 1;
  40. }
  41. // max number of parallel drafting sequences (i.e. tree branches)
  42. const int n_seq_dft = params.n_parallel;
  43. // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
  44. const float p_draft_split = params.speculative.p_split;
  45. std::default_random_engine rng(params.sampling.seed == LLAMA_DEFAULT_SEED ? std::random_device()() : params.sampling.seed);
  46. std::uniform_real_distribution<> u_dist;
  47. // init llama.cpp
  48. llama_backend_init();
  49. llama_numa_init(params.numa);
  50. llama_model * model_tgt = NULL;
  51. llama_model * model_dft = NULL;
  52. llama_context * ctx_tgt = NULL;
  53. llama_context * ctx_dft = NULL;
  54. // load the target model
  55. common_init_result llama_init_tgt = common_init_from_params(params);
  56. model_tgt = llama_init_tgt.model.get();
  57. ctx_tgt = llama_init_tgt.context.get();
  58. // load the draft model
  59. params.devices = params.speculative.devices;
  60. params.model = params.speculative.model;
  61. params.n_gpu_layers = params.speculative.n_gpu_layers;
  62. if (params.speculative.cpuparams.n_threads > 0) {
  63. params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
  64. }
  65. params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
  66. common_init_result llama_init_dft = common_init_from_params(params);
  67. model_dft = llama_init_dft.model.get();
  68. ctx_dft = llama_init_dft.context.get();
  69. const llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
  70. const llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
  71. const bool vocab_type_tgt = llama_vocab_type(vocab_tgt);
  72. LOG_DBG("vocab_type tgt: %d\n", vocab_type_tgt);
  73. const bool vocab_type_dft = llama_vocab_type(vocab_dft);
  74. LOG_DBG("vocab_type dft: %d\n", vocab_type_dft);
  75. if (vocab_type_tgt != vocab_type_dft) {
  76. LOG_ERR("%s: draft model vocab type must match target model to use speculation but ", __func__);
  77. LOG_ERR("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
  78. return 1;
  79. }
  80. if (
  81. llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
  82. llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
  83. llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
  84. llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
  85. ) {
  86. LOG_ERR("%s: draft model special tokens must match target model to use speculation\n", __func__);
  87. return 1;
  88. }
  89. {
  90. const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
  91. const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
  92. const int vocab_diff = n_vocab_tgt > n_vocab_dft
  93. ? n_vocab_tgt - n_vocab_dft
  94. : n_vocab_dft - n_vocab_tgt;
  95. if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
  96. LOG_ERR("%s: draft model vocab must closely match target model to use speculation but ", __func__);
  97. LOG_ERR("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
  98. n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
  99. return 1;
  100. }
  101. for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
  102. const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
  103. const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
  104. if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
  105. LOG_ERR("%s: draft model vocab must match target model to use speculation but ", __func__);
  106. LOG_ERR("token %d content differs - target '%s', draft '%s'\n", i,
  107. common_token_to_piece(ctx_tgt, i).c_str(),
  108. common_token_to_piece(ctx_dft, i).c_str());
  109. return 1;
  110. }
  111. }
  112. }
  113. // Tokenize the prompt
  114. std::vector<llama_token> inp;
  115. inp = common_tokenize(ctx_tgt, params.prompt, true, true);
  116. const int max_context_size = llama_n_ctx(ctx_tgt);
  117. const int max_tokens_list_size = max_context_size - 4;
  118. if ((int) inp.size() > max_tokens_list_size) {
  119. LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
  120. return 1;
  121. }
  122. LOG("\n\n");
  123. for (auto id : inp) {
  124. LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
  125. }
  126. const int n_input = inp.size();
  127. const auto t_enc_start = ggml_time_us();
  128. // eval the prompt with both models
  129. llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1));
  130. llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1));
  131. llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input));
  132. const auto t_enc_end = ggml_time_us();
  133. // the 2 models should have the same vocab
  134. //GGML_ASSERT(n_vocab == llama_vocab_n_tokens(model_dft));
  135. // how many tokens to draft each time
  136. int n_draft = params.speculative.n_max;
  137. int n_predict = 0;
  138. int n_drafted = 0;
  139. int n_accept = 0;
  140. int n_past_tgt = inp.size();
  141. int n_past_dft = inp.size();
  142. // used to determine end of generation
  143. bool has_eos = false;
  144. // target model sampling context (reuse the llama_context's sampling instance)
  145. struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
  146. // draft sequence data
  147. std::vector<seq_draft> drafts(n_seq_dft);
  148. for (int s = 0; s < n_seq_dft; ++s) {
  149. // allocate llama_sampler for each draft sequence
  150. drafts[s].smpl = common_sampler_init(model_dft, params.sampling);
  151. }
  152. llama_batch batch_dft = llama_batch_init(llama_n_batch(ctx_dft), 0, 1);
  153. llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, n_seq_dft);
  154. const auto t_dec_start = ggml_time_us();
  155. // sample from the last token of the prompt
  156. drafts[0].i_batch_tgt.resize(1);
  157. drafts[0].i_batch_tgt[0] = 0;
  158. while (true) {
  159. std::set<int> active_seqs = {};
  160. // print current draft sequences
  161. for (int s = 0; s < n_seq_dft; ++s) {
  162. if (!drafts[s].active) {
  163. continue;
  164. }
  165. active_seqs.insert(s);
  166. const auto & tokens = drafts[s].tokens;
  167. LOG_DBG("draft %d: %s\n", s, string_from(ctx_dft, tokens).c_str());
  168. }
  169. int i_dft = 0;
  170. int s_keep = 0;
  171. llama_token token_id;
  172. std::string token_str;
  173. // loop until we fail to accept a drafted token or we run out of drafted tokens
  174. while (true) {
  175. // check if the target token matches any of the drafts
  176. // for stochastic sampling, attempt to match the token with the drafted tokens
  177. {
  178. bool accept = false;
  179. if (params.sampling.temp > 0) {
  180. // stochastic verification
  181. common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
  182. auto & dist_tgt = *common_sampler_get_candidates(smpl);
  183. float p_tgt = 0.0f;
  184. float p_dft = 0.0f;
  185. while (active_seqs.size() > 0) {
  186. // randomly select a sequence to verify from active sequences
  187. std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1);
  188. int s = *std::next(active_seqs.begin(), u_int_dist(rng));
  189. if (i_dft >= (int) drafts[s].tokens.size()) {
  190. drafts[s].active = false;
  191. active_seqs.erase(s);
  192. continue;
  193. }
  194. if (accept) {
  195. // if we already accepted a token, we can skip the rest
  196. if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
  197. drafts[s].active = false;
  198. active_seqs.erase(s);
  199. }
  200. continue;
  201. }
  202. LOG_DBG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
  203. float r = u_dist(rng);
  204. llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), LLAMA_TOKEN_NULL, true };
  205. //GGML_ASSERT(dist_tgt.size <= dist_dft.size);
  206. // acquire the token probabilities assigned by the draft and target models
  207. for (size_t i = 0; i < dist_tgt.size; i++) {
  208. if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
  209. p_tgt = dist_tgt.data[i].p;
  210. break;
  211. }
  212. }
  213. for (size_t i = 0; i < dist_dft.size; i++) {
  214. if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
  215. p_dft = dist_dft.data[i].p;
  216. break;
  217. }
  218. }
  219. LOG_DBG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
  220. if (r <= p_tgt / p_dft) {
  221. s_keep = s;
  222. accept = true;
  223. token_id = drafts[s].tokens[i_dft];
  224. token_str = common_token_to_piece(ctx_tgt, token_id);
  225. common_sampler_accept(smpl, token_id, true);
  226. LOG_DBG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
  227. break;
  228. } else {
  229. LOG_DBG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], common_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
  230. drafts[s].active = false;
  231. // calculate residual probability
  232. GGML_ASSERT(dist_tgt.sorted);
  233. GGML_ASSERT(dist_dft.sorted);
  234. // sort dist by id
  235. std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
  236. return a.id < b.id;
  237. });
  238. std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
  239. return a.id < b.id;
  240. });
  241. float sum_probs = 0.0f;
  242. for (size_t i = 0; i < dist_tgt.size; i++) {
  243. if (i < dist_dft.size) {
  244. dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
  245. } else {
  246. dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p);
  247. }
  248. sum_probs += dist_tgt.data[i].p;
  249. }
  250. for (size_t i = 0; i < dist_tgt.size; i++) {
  251. dist_tgt.data[i].p /= sum_probs;
  252. }
  253. // sort dist_tgt by p desc
  254. std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
  255. return a.p > b.p;
  256. });
  257. }
  258. active_seqs.erase(s);
  259. for (int i = 0; i < n_seq_dft; i++) {
  260. if (i == s) {
  261. continue;
  262. }
  263. if (drafts[i].active && drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
  264. // synchronize active status for sequences with the same drafted token
  265. drafts[i].active = drafts[i].active && accept;
  266. if (!drafts[i].active) {
  267. active_seqs.erase(s);
  268. }
  269. }
  270. }
  271. }
  272. if (!accept) {
  273. // all drafted tokens were rejected
  274. // sample from the target model
  275. LOG_DBG("all drafted tokens were rejected, sampling from residual distribution\n");
  276. std::vector<float> probs(dist_tgt.size);
  277. for (size_t i = 0; i < dist_tgt.size; ++i) {
  278. probs[i] = dist_tgt.data[i].p;
  279. }
  280. std::discrete_distribution<> dist(probs.begin(), probs.end());
  281. const int idx = dist(rng);
  282. token_id = dist_tgt.data[idx].id;
  283. common_sampler_accept(smpl, token_id, true);
  284. token_str = common_token_to_piece(ctx_tgt, token_id);
  285. }
  286. } else {
  287. // greedy verification
  288. // sample from the target model
  289. LOG_DBG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
  290. token_id = common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
  291. common_sampler_accept(smpl, token_id, true);
  292. token_str = common_token_to_piece(ctx_tgt, token_id);
  293. for (int s = 0; s < n_seq_dft; ++s) {
  294. if (!drafts[s].active) {
  295. continue;
  296. }
  297. if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
  298. LOG_DBG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
  299. s_keep = s;
  300. accept = true;
  301. } else {
  302. drafts[s].active = false;
  303. }
  304. }
  305. }
  306. if (llama_vocab_is_eog(vocab_tgt, token_id)) {
  307. has_eos = true;
  308. }
  309. ++n_predict;
  310. if (accept) {
  311. ++n_accept;
  312. ++n_past_tgt;
  313. ++n_past_dft;
  314. ++i_dft;
  315. if (params.use_color) {
  316. // Color token according to its origin sequence
  317. LOG("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
  318. } else {
  319. LOG("%s", token_str.c_str());
  320. }
  321. continue;
  322. } else {
  323. LOG("%s", token_str.c_str());
  324. break;
  325. }
  326. }
  327. }
  328. {
  329. LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
  330. // TODO: simplify
  331. {
  332. LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
  333. llama_kv_self_seq_keep(ctx_dft, s_keep);
  334. llama_kv_self_seq_cp (ctx_dft, s_keep, 0, -1, -1);
  335. llama_kv_self_seq_keep(ctx_dft, 0);
  336. llama_kv_self_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
  337. llama_kv_self_seq_keep(ctx_tgt, s_keep);
  338. llama_kv_self_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
  339. llama_kv_self_seq_keep(ctx_tgt, 0);
  340. }
  341. for (int s = 0; s < n_seq_dft; ++s) {
  342. drafts[s].active = false;
  343. drafts[s].tokens.clear();
  344. drafts[s].i_batch_tgt.clear();
  345. drafts[s].dists.clear();
  346. }
  347. // note: will be erased after the speculation phase
  348. drafts[0].tokens.push_back(token_id);
  349. drafts[0].dists.push_back(std::vector<llama_token_data>());
  350. drafts[0].i_batch_tgt.push_back(0);
  351. common_batch_clear(batch_dft);
  352. common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
  353. llama_kv_self_seq_rm(ctx_dft, 0, n_past_dft, -1);
  354. // LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
  355. llama_decode(ctx_dft, batch_dft);
  356. ++n_past_dft;
  357. }
  358. if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
  359. break;
  360. }
  361. if (drafts[0].smpl) {
  362. common_sampler_free(drafts[0].smpl);
  363. }
  364. drafts[0].smpl = common_sampler_clone(smpl);
  365. int n_seq_cur = 1;
  366. int n_past_cur = n_past_dft;
  367. for (int s = 0; s < n_seq_dft; ++s) {
  368. drafts[s].active = false;
  369. drafts[s].drafting = false;
  370. }
  371. drafts[0].active = true;
  372. drafts[0].drafting = true;
  373. drafts[0].i_batch_dft = 0;
  374. common_batch_clear(batch_tgt);
  375. common_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
  376. // sample n_draft tokens from the draft model using tree-based sampling
  377. for (int i = 0; i < n_draft; ++i) {
  378. batch_dft.n_tokens = 0;
  379. for (int s = 0; s < n_seq_dft; ++s) {
  380. drafts[s].skip = false;
  381. }
  382. for (int s = 0; s < n_seq_dft; ++s) {
  383. if (!drafts[s].drafting || drafts[s].skip) {
  384. continue;
  385. }
  386. common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
  387. const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl);
  388. for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p->size); ++k) {
  389. LOG_DBG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
  390. k, s, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
  391. }
  392. std::vector<int> sa(1, s);
  393. // attempt to split the branch if the probability is high enough
  394. for (int f = 1; f < 8; ++f) {
  395. if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
  396. LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
  397. llama_kv_self_seq_rm(ctx_dft, n_seq_cur, -1, -1);
  398. llama_kv_self_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
  399. // all previous tokens from this branch are now also part of the new branch
  400. for (int t = 0; t < batch_tgt.n_tokens; ++t) {
  401. for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
  402. if (batch_tgt.seq_id[t][p] == s) {
  403. batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
  404. batch_tgt.n_seq_id[t]++;
  405. break;
  406. }
  407. }
  408. }
  409. // copy the draft state
  410. drafts[n_seq_cur].active = true;
  411. drafts[n_seq_cur].drafting = true;
  412. drafts[n_seq_cur].skip = true;
  413. drafts[n_seq_cur].tokens = drafts[s].tokens;
  414. drafts[n_seq_cur].dists = drafts[s].dists;
  415. drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
  416. drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
  417. if (drafts[n_seq_cur].smpl) {
  418. common_sampler_free(drafts[n_seq_cur].smpl);
  419. }
  420. drafts[n_seq_cur].smpl = common_sampler_clone(drafts[s].smpl);
  421. sa.push_back(n_seq_cur);
  422. n_seq_cur++;
  423. } else {
  424. break;
  425. }
  426. }
  427. // add drafted token for each sequence
  428. for (int is = 0; is < (int) sa.size(); ++is) {
  429. const llama_token id = cur_p->data[is].id;
  430. const int s = sa[is];
  431. common_sampler_accept(drafts[s].smpl, id, true);
  432. drafts[s].tokens.push_back(id);
  433. // save cur_p.data into drafts[s].dists
  434. drafts[s].dists.push_back({cur_p->data, cur_p->data + cur_p->size});
  435. // add unique drafted tokens to the target batch
  436. drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
  437. common_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
  438. // add the token to the batch for batched decoding with the draft model
  439. drafts[s].i_batch_dft = batch_dft.n_tokens;
  440. common_batch_add(batch_dft, id, n_past_cur, { s }, true);
  441. if (batch_tgt.n_tokens > n_draft) {
  442. drafts[s].drafting = false;
  443. }
  444. }
  445. }
  446. // no sequence is drafting anymore
  447. if (batch_dft.n_tokens == 0) {
  448. break;
  449. }
  450. // evaluate the drafted tokens on the draft model
  451. llama_decode(ctx_dft, batch_dft);
  452. ++n_past_cur;
  453. ++n_drafted;
  454. if (batch_tgt.n_tokens > n_draft) {
  455. break;
  456. }
  457. }
  458. // evaluate the target model on the drafted tokens
  459. {
  460. llama_kv_self_seq_keep(ctx_tgt, 0);
  461. for (int s = 1; s < n_seq_dft; ++s) {
  462. llama_kv_self_seq_cp(ctx_tgt, 0, s, -1, -1);
  463. }
  464. // LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
  465. llama_decode(ctx_tgt, batch_tgt);
  466. ++n_past_tgt;
  467. }
  468. // the first token is always proposed by the target model before the speculation loop so we erase it here
  469. for (int s = 0; s < n_seq_dft; ++s) {
  470. if (!drafts[s].active) {
  471. continue;
  472. }
  473. drafts[s].tokens.erase(drafts[s].tokens.begin());
  474. drafts[s].dists.erase(drafts[s].dists.begin());
  475. }
  476. }
  477. auto t_dec_end = ggml_time_us();
  478. LOG("\n\n");
  479. LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
  480. LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
  481. LOG_INF("\n");
  482. LOG_INF("n_draft = %d\n", n_draft);
  483. LOG_INF("n_predict = %d\n", n_predict);
  484. LOG_INF("n_drafted = %d\n", n_drafted);
  485. LOG_INF("n_accept = %d\n", n_accept);
  486. LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
  487. LOG_INF("\n");
  488. LOG_INF("draft:\n\n");
  489. // TODO: print sampling/grammar timings for all drafts
  490. llama_perf_context_print(ctx_dft);
  491. LOG_INF("\n");
  492. LOG_INF("target:\n\n");
  493. common_perf_print(ctx_tgt, smpl);
  494. common_sampler_free(smpl);
  495. for (int s = 0; s < n_seq_dft; ++s) {
  496. common_sampler_free(drafts[s].smpl);
  497. }
  498. llama_batch_free(batch_dft);
  499. llama_backend_free();
  500. LOG("\n\n");
  501. return 0;
  502. }