test-backend-ops.cpp 169 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdint>
  23. #include <cstdio>
  24. #include <cstdlib>
  25. #include <cstring>
  26. #include <future>
  27. #include <memory>
  28. #include <random>
  29. #include <regex>
  30. #include <string>
  31. #include <thread>
  32. #include <vector>
  33. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  34. size_t nels = ggml_nelements(tensor);
  35. std::vector<float> data(nels);
  36. {
  37. // parallel initialization
  38. static const size_t n_threads = std::thread::hardware_concurrency();
  39. // static RNG initialization (revisit if n_threads stops being constant)
  40. static std::vector<std::default_random_engine> generators = []() {
  41. std::random_device rd;
  42. std::vector<std::default_random_engine> vec;
  43. vec.reserve(n_threads);
  44. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  45. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  46. return vec;
  47. }();
  48. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  49. std::uniform_real_distribution<float> distribution(min, max);
  50. auto & gen = generators[ith];
  51. for (size_t i = start; i < end; i++) {
  52. data[i] = distribution(gen);
  53. }
  54. };
  55. std::vector<std::future<void>> tasks;
  56. tasks.reserve(n_threads);
  57. for (size_t i = 0; i < n_threads; i++) {
  58. size_t start = i*nels/n_threads;
  59. size_t end = (i+1)*nels/n_threads;
  60. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  61. }
  62. for (auto & t : tasks) {
  63. t.get();
  64. }
  65. }
  66. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  67. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  68. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  69. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  70. // dummy importance matrix
  71. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  72. const float * im = imatrix.data();
  73. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  74. // when the imatrix is optional, we want to test both quantization with and without imatrix
  75. // use one of the random numbers to decide
  76. if (data[0] > 0.5f*(min + max)) {
  77. im = nullptr;
  78. }
  79. }
  80. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  81. {
  82. // parallel quantization by block
  83. size_t blck_size = ggml_blck_size(tensor->type);
  84. size_t n_blocks = nels / blck_size;
  85. auto quantize_thread = [&](size_t start, size_t end) {
  86. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  87. start * blck_size, end - start, blck_size, im);
  88. };
  89. const size_t min_blocks_per_thread = 1;
  90. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  91. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  92. std::vector<std::future<void>> tasks;
  93. tasks.reserve(n_threads);
  94. for (size_t i = 0; i < n_threads; i++) {
  95. size_t start = i*n_blocks/n_threads;
  96. size_t end = (i+1)*n_blocks/n_threads;
  97. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  98. }
  99. for (auto & t : tasks) {
  100. t.get();
  101. }
  102. }
  103. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  104. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  105. // This is going to create some weird integers though.
  106. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  107. } else if (tensor->type == GGML_TYPE_I64) {
  108. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  109. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  110. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  111. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  112. } else {
  113. GGML_ABORT("fatal error");
  114. }
  115. }
  116. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  117. std::vector<float> tv;
  118. tv.reserve(ggml_nelements(t));
  119. std::vector<uint8_t> buf(ggml_nbytes(t));
  120. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  121. const auto * tt = ggml_get_type_traits(t->type);
  122. size_t bs = ggml_blck_size(t->type);
  123. std::vector<float> vq(ggml_blck_size(t->type));
  124. bool quantized = ggml_is_quantized(t->type);
  125. // access elements by index to avoid gaps in views
  126. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  127. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  128. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  129. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  130. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  131. if (t->type == GGML_TYPE_F16) {
  132. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  133. } else if (t->type == GGML_TYPE_BF16) {
  134. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  135. } else if (t->type == GGML_TYPE_F32) {
  136. tv.push_back(*(float *) &buf[i]);
  137. } else if (t->type == GGML_TYPE_I64) {
  138. tv.push_back((float)*(int64_t *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I32) {
  140. tv.push_back((float)*(int32_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I16) {
  142. tv.push_back((float)*(int16_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I8) {
  144. tv.push_back((float)*(int8_t *) &buf[i]);
  145. } else if (quantized) {
  146. tt->to_float(&buf[i], vq.data(), bs);
  147. tv.insert(tv.end(), vq.begin(), vq.end());
  148. } else {
  149. GGML_ABORT("fatal error");
  150. }
  151. }
  152. }
  153. }
  154. }
  155. return tv;
  156. }
  157. // normalized mean squared error = mse(a, b) / mse(a, 0)
  158. static double nmse(const float * a, const float * b, size_t n) {
  159. double mse_a_b = 0.0;
  160. double mse_a_0 = 0.0;
  161. for (size_t i = 0; i < n; i++) {
  162. float a_i = a[i];
  163. float b_i = b[i];
  164. mse_a_b += (a_i - b_i) * (a_i - b_i);
  165. mse_a_0 += a_i * a_i;
  166. }
  167. return mse_a_b / mse_a_0;
  168. }
  169. // maximum absolute asymmetry between a and b
  170. // asymmetry: (a - b) / (a + b)
  171. // This is more stable than relative error if one of the values fluctuates towards zero.
  172. // n: number of values to compare.
  173. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  174. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  175. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  176. double sum = 0.0f;
  177. size_t nvalid = 0;
  178. for (size_t i = 0; i < n; i++) {
  179. if (!expected_vals.empty()) {
  180. bool matches_any = false;
  181. for (const float & ev : expected_vals) {
  182. if (fabsf(a[i] - ev) < 1e-3f) {
  183. matches_any = true;
  184. break;
  185. }
  186. }
  187. if (!matches_any) {
  188. continue;
  189. }
  190. }
  191. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  192. sum += fabsf(asymm);
  193. nvalid++;
  194. }
  195. return sum/nvalid;
  196. }
  197. // utils for printing the variables of the test cases
  198. template<typename T>
  199. static std::string var_to_str(const T & x) {
  200. return std::to_string(x);
  201. }
  202. template<typename T, size_t N>
  203. static std::string var_to_str(const T (&x)[N]) {
  204. std::string s = "[";
  205. for (size_t i = 0; i < N; i++) {
  206. if (i > 0) {
  207. s += ",";
  208. }
  209. s += var_to_str(x[i]);
  210. }
  211. s += "]";
  212. return s;
  213. }
  214. template<typename T, size_t N>
  215. static std::string var_to_str(const std::array<T, N> & x) {
  216. std::string s = "[";
  217. for (size_t i = 0; i < N; i++) {
  218. if (i > 0) {
  219. s += ",";
  220. }
  221. s += var_to_str(x[i]);
  222. }
  223. s += "]";
  224. return s;
  225. }
  226. static std::string var_to_str(ggml_type type) {
  227. return ggml_type_name(type);
  228. }
  229. static std::string var_to_str(ggml_op_pool pool) {
  230. switch (pool) {
  231. case GGML_OP_POOL_AVG: return "avg";
  232. case GGML_OP_POOL_MAX: return "max";
  233. default: return std::to_string(pool);
  234. }
  235. }
  236. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  237. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  238. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  239. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  240. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  241. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  242. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  243. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  244. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  245. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  246. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  247. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  248. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  249. #ifdef GGML_USE_SYCL
  250. static bool inline _isinf(float f) {
  251. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  252. }
  253. #else
  254. static bool inline _isinf(float f) { return std::isinf(f); }
  255. #endif
  256. // accept FLT_MAX as infinity
  257. static bool isinf_or_max(float f) {
  258. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  259. }
  260. static bool ggml_is_view_op(enum ggml_op op) {
  261. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  262. }
  263. enum test_mode {
  264. MODE_TEST,
  265. MODE_PERF,
  266. MODE_GRAD,
  267. };
  268. struct test_case {
  269. virtual ~test_case() {}
  270. virtual std::string op_desc(ggml_tensor * t) {
  271. return ggml_op_desc(t);
  272. }
  273. virtual std::string vars() {
  274. return "";
  275. }
  276. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  277. virtual double max_nmse_err() {
  278. return 1e-7;
  279. }
  280. virtual double max_maa_err() {
  281. return 1e-4;
  282. }
  283. virtual float grad_eps() {
  284. return 1e-1f;
  285. }
  286. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  287. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  288. virtual bool grad_precise() {
  289. return false;
  290. }
  291. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  292. virtual int64_t grad_nmax() {
  293. return 10000;
  294. }
  295. // No effect if empty.
  296. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  297. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  298. virtual std::vector<float> grad_expect() {
  299. return {};
  300. }
  301. virtual void initialize_tensors(ggml_context * ctx) {
  302. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  303. init_tensor_uniform(t);
  304. }
  305. }
  306. virtual size_t op_size(ggml_tensor * t) {
  307. size_t size = ggml_nbytes(t);
  308. // add source tensors
  309. for (int i = 0; i < GGML_MAX_SRC; i++) {
  310. if (t->src[i] != NULL) {
  311. size += ggml_nbytes(t->src[i]);
  312. }
  313. }
  314. return size;
  315. }
  316. virtual uint64_t op_flops(ggml_tensor * t) {
  317. GGML_UNUSED(t);
  318. return 0;
  319. }
  320. ggml_cgraph * gf = nullptr;
  321. ggml_cgraph * gb = nullptr;
  322. static const int sentinel_size = 1024;
  323. test_mode mode;
  324. std::vector<ggml_tensor *> sentinels;
  325. void add_sentinel(ggml_context * ctx) {
  326. if (mode == MODE_PERF || mode == MODE_GRAD) {
  327. return;
  328. }
  329. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  330. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  331. sentinels.push_back(sentinel);
  332. }
  333. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  334. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  335. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  336. add_sentinel(ctx);
  337. return t;
  338. }
  339. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  340. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  341. add_sentinel(ctx);
  342. return t;
  343. }
  344. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  345. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  346. add_sentinel(ctx);
  347. return t;
  348. }
  349. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  350. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  351. add_sentinel(ctx);
  352. return t;
  353. }
  354. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  355. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  356. add_sentinel(ctx);
  357. return t;
  358. }
  359. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  360. mode = MODE_TEST;
  361. ggml_init_params params = {
  362. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  363. /* .mem_base = */ NULL,
  364. /* .no_alloc = */ true,
  365. };
  366. ggml_context * ctx = ggml_init(params);
  367. GGML_ASSERT(ctx);
  368. gf = ggml_new_graph(ctx);
  369. // pre-graph sentinel
  370. add_sentinel(ctx);
  371. ggml_tensor * out = build_graph(ctx);
  372. if (op_name != nullptr && op_desc(out) != op_name) {
  373. //printf(" %s: skipping\n", op_desc(out).c_str());
  374. ggml_free(ctx);
  375. return true;
  376. }
  377. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  378. fflush(stdout);
  379. // check if the backends support the ops
  380. bool supported = true;
  381. for (ggml_backend_t backend : {backend1, backend2}) {
  382. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  383. if (!ggml_backend_supports_op(backend, t)) {
  384. printf("not supported [%s] ", ggml_backend_name(backend));
  385. supported = false;
  386. break;
  387. }
  388. }
  389. }
  390. if (!supported) {
  391. printf("\n");
  392. ggml_free(ctx);
  393. return true;
  394. }
  395. // post-graph sentinel
  396. add_sentinel(ctx);
  397. // allocate
  398. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  399. if (buf == NULL) {
  400. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  401. ggml_free(ctx);
  402. return false;
  403. }
  404. // build graph
  405. ggml_build_forward_expand(gf, out);
  406. // add sentinels as graph nodes so that they are checked in the callback
  407. for (ggml_tensor * sentinel : sentinels) {
  408. ggml_graph_add_node(gf, sentinel);
  409. }
  410. // randomize tensors
  411. initialize_tensors(ctx);
  412. // compare
  413. struct callback_userdata {
  414. bool ok;
  415. double max_err;
  416. ggml_backend_t backend1;
  417. ggml_backend_t backend2;
  418. };
  419. callback_userdata ud {
  420. true,
  421. max_nmse_err(),
  422. backend1,
  423. backend2
  424. };
  425. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  426. callback_userdata * ud = (callback_userdata *) user_data;
  427. const char * bn1 = ggml_backend_name(ud->backend1);
  428. const char * bn2 = ggml_backend_name(ud->backend2);
  429. if (t1->op == GGML_OP_NONE) {
  430. // sentinels must be unchanged
  431. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  432. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  433. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  434. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  435. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  436. printf("sentinel mismatch: %s ", t1->name);
  437. ud->ok = false;
  438. return true;
  439. }
  440. }
  441. std::vector<float> f1 = tensor_to_float(t1);
  442. std::vector<float> f2 = tensor_to_float(t2);
  443. for (size_t i = 0; i < f1.size(); i++) {
  444. // check for nans
  445. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  446. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  447. ud->ok = false;
  448. return true;
  449. }
  450. // check for infs: both must be inf of the same sign, or both must be finite
  451. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  452. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  453. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  454. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  455. ud->ok = false;
  456. return true;
  457. }
  458. } else {
  459. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  460. ud->ok = false;
  461. return true;
  462. }
  463. }
  464. }
  465. double err = nmse(f1.data(), f2.data(), f1.size());
  466. if (err > ud->max_err) {
  467. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  468. //for (int i = 0; i < (int) f1.size(); i++) {
  469. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  470. //}
  471. //printf("\n");
  472. //exit(1);
  473. ud->ok = false;
  474. }
  475. return true;
  476. GGML_UNUSED(index);
  477. };
  478. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  479. if (!cmp_ok) {
  480. printf("compare failed ");
  481. }
  482. ggml_backend_buffer_free(buf);
  483. ggml_free(ctx);
  484. if (ud.ok && cmp_ok) {
  485. printf("\033[1;32mOK\033[0m\n");
  486. return true;
  487. }
  488. printf("\033[1;31mFAIL\033[0m\n");
  489. return false;
  490. }
  491. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  492. mode = MODE_PERF;
  493. static const size_t graph_nodes = 8192;
  494. ggml_init_params params = {
  495. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  496. /* .mem_base = */ NULL,
  497. /* .no_alloc = */ true,
  498. };
  499. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  500. GGML_ASSERT(ctx);
  501. ggml_tensor * out = build_graph(ctx.get());
  502. if (op_name != nullptr && op_desc(out) != op_name) {
  503. //printf(" %s: skipping\n", op_desc(out).c_str());
  504. return true;
  505. }
  506. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  507. fflush(stdout);
  508. // check if backends support op
  509. if (!ggml_backend_supports_op(backend, out)) {
  510. printf("not supported\n");
  511. return true;
  512. }
  513. // align while also leaving some margin for variations in parameters
  514. int align = 8;
  515. int last = (len + align - 1) / align * align;
  516. if (last - len < 5) {
  517. last += align;
  518. }
  519. printf("%*s", last - len, "");
  520. // allocate
  521. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  522. if (buf == NULL) {
  523. printf("failed to allocate tensors\n");
  524. return false;
  525. }
  526. // randomize tensors
  527. initialize_tensors(ctx.get());
  528. // build graph
  529. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  530. ggml_build_forward_expand(gf, out);
  531. // warmup run
  532. ggml_status status = ggml_backend_graph_compute(backend, gf);
  533. if (status != GGML_STATUS_SUCCESS) {
  534. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  535. return false;
  536. }
  537. // determine number of runs
  538. int n_runs;
  539. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  540. if (op_flops(out) > 0) {
  541. // based on flops
  542. const uint64_t GFLOP = 1000 * 1000 * 1000;
  543. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  544. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  545. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  546. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  547. } else {
  548. // based on memory size
  549. const size_t GB = 1ULL << 30;
  550. const size_t target_size_cpu = 8 * GB;
  551. const size_t target_size_gpu = 32 * GB;
  552. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  553. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  554. }
  555. // duplicate the op
  556. for (int i = 1; i < n_runs; i++) {
  557. ggml_graph_add_node(gf, out);
  558. }
  559. // calculate memory
  560. size_t mem = n_runs * op_size(out);
  561. auto tensor_op_size = [](ggml_tensor * t) {
  562. size_t size = ggml_nbytes(t);
  563. // add source tensors
  564. for (int i = 0; i < GGML_MAX_SRC; i++) {
  565. if (t->src[i] != NULL) {
  566. size += ggml_nbytes(t->src[i]);
  567. }
  568. }
  569. return size;
  570. };
  571. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  572. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  573. continue;
  574. }
  575. mem += tensor_op_size(ggml_graph_node(gf, i));
  576. }
  577. // run
  578. int64_t total_time_us = 0;
  579. int64_t total_mem = 0;
  580. int total_runs = 0;
  581. do {
  582. int64_t start_time = ggml_time_us();
  583. ggml_status status = ggml_backend_graph_compute(backend, gf);
  584. if (status != GGML_STATUS_SUCCESS) {
  585. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  586. return false;
  587. }
  588. int64_t end_time = ggml_time_us();
  589. total_time_us += end_time - start_time;
  590. total_mem += mem;
  591. total_runs += n_runs;
  592. } while (total_time_us < 1000*1000); // run for at least 1 second
  593. printf(" %8d runs - %8.2f us/run - ",
  594. total_runs,
  595. (double)total_time_us / total_runs);
  596. if (op_flops(out) > 0) {
  597. double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
  598. auto format_flops = [](double flops) -> std::string {
  599. char buf[256];
  600. if (flops >= 1e12) {
  601. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  602. } else if (flops >= 1e9) {
  603. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  604. } else if (flops >= 1e6) {
  605. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  606. } else {
  607. snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
  608. }
  609. return buf;
  610. };
  611. printf("%s/run - \033[1;34m%sS\033[0m",
  612. format_flops(op_flops(out)).c_str(),
  613. format_flops(flops_per_sec).c_str());
  614. } else {
  615. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
  616. op_size(out) / 1024,
  617. total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
  618. }
  619. printf("\n");
  620. return true;
  621. }
  622. bool eval_grad(ggml_backend_t backend, const char * op_name) {
  623. mode = MODE_GRAD;
  624. const std::vector<float> expect = grad_expect();
  625. ggml_init_params params = {
  626. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  627. /* .mem_base = */ NULL,
  628. /* .no_alloc = */ true,
  629. };
  630. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  631. GGML_ASSERT(ctx);
  632. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  633. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  634. ggml_tensor * out = build_graph(ctx.get());
  635. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  636. //printf(" %s: skipping\n", op_desc(out).c_str());
  637. return true;
  638. }
  639. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  640. fflush(stdout);
  641. if (out->type != GGML_TYPE_F32) {
  642. printf("not supported [%s->type != FP32]\n", out->name);
  643. return true;
  644. }
  645. // check if the backend supports the ops
  646. bool supported = true;
  647. bool any_params = false;
  648. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  649. if (!ggml_backend_supports_op(backend, t)) {
  650. printf("not supported [%s] ", ggml_backend_name(backend));
  651. supported = false;
  652. break;
  653. }
  654. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  655. any_params = true;
  656. if (t->type != GGML_TYPE_F32) {
  657. printf("not supported [%s->type != FP32] ", t->name);
  658. supported = false;
  659. break;
  660. }
  661. }
  662. }
  663. if (!any_params) {
  664. printf("not supported [%s] \n", op_desc(out).c_str());
  665. supported = false;
  666. }
  667. if (!supported) {
  668. printf("\n");
  669. return true;
  670. }
  671. int64_t ngrads = 0;
  672. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  673. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  674. ngrads += ggml_nelements(t);
  675. }
  676. }
  677. if (ngrads > grad_nmax()) {
  678. printf("skipping large tensors for speed \n");
  679. return true;
  680. }
  681. if (!ggml_is_scalar(out)) {
  682. out = ggml_sum(ctx.get(), out);
  683. ggml_set_name(out, "sum_of_out");
  684. }
  685. ggml_set_loss(out);
  686. ggml_build_forward_expand(gf, out);
  687. ggml_graph_cpy(gf, gb);
  688. ggml_build_backward_expand(ctx.get(), ctx.get(), gb, false);
  689. if (expect.size() != 1 || expect[0] != 0.0f) {
  690. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  691. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  692. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  693. }
  694. }
  695. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  696. if (!ggml_backend_supports_op(backend, t)) {
  697. printf("not supported [%s] ", ggml_backend_name(backend));
  698. supported = false;
  699. break;
  700. }
  701. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  702. printf("not supported [%s->type != FP32] ", t->name);
  703. supported = false;
  704. break;
  705. }
  706. }
  707. if (!supported) {
  708. printf("\n");
  709. return true;
  710. }
  711. // allocate
  712. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  713. if (buf == NULL) {
  714. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
  715. return false;
  716. }
  717. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  718. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  719. ggml_status status = ggml_backend_graph_compute(backend, gf);
  720. if (status != GGML_STATUS_SUCCESS) {
  721. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  722. return false;
  723. }
  724. status = ggml_backend_graph_compute(backend, gb);
  725. if (status != GGML_STATUS_SUCCESS) {
  726. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  727. return false;
  728. }
  729. bool ok = true;
  730. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  731. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  732. continue;
  733. }
  734. const char * bn = ggml_backend_name(backend);
  735. const int64_t ne = ggml_nelements(t);
  736. std::vector<float> ga;
  737. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  738. if (grad) {
  739. ga = tensor_to_float(grad);
  740. } else {
  741. ga.resize(ne); // default value is 0.0f
  742. }
  743. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  744. // check for nans
  745. if (!std::isfinite(ga[i])) {
  746. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
  747. ok = false;
  748. break;
  749. }
  750. }
  751. if (!ok) {
  752. break;
  753. }
  754. std::vector<float> gn(ne); // gradient numeric
  755. GGML_ASSERT(ga.size() == gn.size());
  756. std::vector<float> x0 = tensor_to_float(t); // original t data
  757. GGML_ASSERT(ggml_is_scalar(out));
  758. GGML_ASSERT(out->type == GGML_TYPE_F32);
  759. const float eps = grad_eps();
  760. for (int64_t i = 0; i < ne; ++i) {
  761. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  762. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  763. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  764. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  765. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  766. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  767. status = ggml_backend_graph_compute(backend, gf);
  768. if (status != GGML_STATUS_SUCCESS) {
  769. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  770. return false;
  771. }
  772. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  773. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  774. status = ggml_backend_graph_compute(backend, gf);
  775. if (status != GGML_STATUS_SUCCESS) {
  776. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  777. return false;
  778. }
  779. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  780. if (grad_precise()) {
  781. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  782. status = ggml_backend_graph_compute(backend, gf);
  783. if (status != GGML_STATUS_SUCCESS) {
  784. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  785. return false;
  786. }
  787. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  788. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  789. status = ggml_backend_graph_compute(backend, gf);
  790. if (status != GGML_STATUS_SUCCESS) {
  791. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  792. return false;
  793. }
  794. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  795. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  796. } else {
  797. gn[i] = (fu - fd) / (2.0f*eps);
  798. }
  799. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  800. }
  801. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  802. if (err > max_maa_err()) {
  803. printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
  804. ok = false;
  805. break;
  806. }
  807. if (!ok) {
  808. break;
  809. }
  810. }
  811. if (!ok) {
  812. printf("compare failed ");
  813. }
  814. if (ok) {
  815. printf("\033[1;32mOK\033[0m\n");
  816. return true;
  817. }
  818. printf("\033[1;31mFAIL\033[0m\n");
  819. return false;
  820. }
  821. };
  822. // ###################################
  823. // ## Section 2: GGML Op Defintions ##
  824. // ###################################
  825. // The following is an example showing the bare minimum for creating a test for a GGML op.
  826. // GGML_OP_EXAMPLE
  827. struct test_example : public test_case {
  828. // Always define these 2 or variants thereof:
  829. const ggml_type type; // The type of the input tensors.
  830. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  831. // For some ops it's necessary to define multiple types or shapes for the inputs.
  832. // Or they may need additional parameters.
  833. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  834. // In most cases these are just the properties of the struct that you defined above.
  835. // This is needed for info prints.
  836. std::string vars() override {
  837. return VARS_TO_STR2(type, ne);
  838. }
  839. // Define a constructor for the struct.
  840. // In most cases it will be sufficient to have the same arguments as the struct has properties
  841. // and just use initializer lists.
  842. test_example(ggml_type type = GGML_TYPE_F32,
  843. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  844. : type(type), ne(ne) {}
  845. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  846. ggml_tensor * build_graph(ggml_context * ctx) override {
  847. // Step 1: create input tensors that don't depend on any other tensors:
  848. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  849. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  850. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  851. ggml_set_name(b, "b");
  852. // Step 2: use the op that you want to test in the GGML compute graph.
  853. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  854. ggml_set_name(out, "out");
  855. // Step 3: return the output tensor.
  856. return out;
  857. }
  858. // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
  859. // immediately after you create the tensors.
  860. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  861. };
  862. // GGML_OP_UNARY
  863. struct test_unary : public test_case {
  864. const ggml_unary_op op;
  865. const ggml_type type;
  866. const std::array<int64_t, 4> ne_a;
  867. int v; // view (1 : non-contiguous a)
  868. std::string vars() override {
  869. return VARS_TO_STR3(type, ne_a, v);
  870. }
  871. test_unary(ggml_unary_op op,
  872. ggml_type type = GGML_TYPE_F32,
  873. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  874. int v = 0)
  875. : op(op), type(type), ne_a(ne_a), v(v) {}
  876. ggml_tensor * build_graph(ggml_context * ctx) override {
  877. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  878. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  879. ggml_tensor * a;
  880. if (v & 1) {
  881. auto ne = ne_a; ne[0] *= 3;
  882. a = ggml_new_tensor(ctx, type, 4, ne.data());
  883. if (grad_supported) {
  884. ggml_set_param(ctx, a);
  885. }
  886. ggml_set_name(a, "a");
  887. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  888. ggml_set_name(a, "view_of_a");
  889. } else {
  890. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  891. if (grad_supported) {
  892. ggml_set_param(ctx, a);
  893. }
  894. ggml_set_name(a, "a");
  895. }
  896. ggml_tensor * out = ggml_unary(ctx, a, op);
  897. ggml_set_name(out, "out");
  898. return out;
  899. }
  900. void initialize_tensors(ggml_context * ctx) override {
  901. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  902. // test extended range of values to check for NaNs in GELU
  903. init_tensor_uniform(t, -150.f, 150.f);
  904. }
  905. }
  906. float grad_eps() override {
  907. return 15.0f;
  908. }
  909. std::vector<float> grad_expect() override {
  910. if (op == GGML_UNARY_OP_ABS) {
  911. return {-1.0f, 1.0f};
  912. }
  913. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  914. return {0.0f};
  915. }
  916. if (op == GGML_UNARY_OP_RELU) {
  917. return {0.0f, 1.0f};
  918. }
  919. return {};
  920. }
  921. };
  922. // GGML_OP_GET_ROWS
  923. struct test_get_rows : public test_case {
  924. const ggml_type type;
  925. const int n; // cols
  926. const int m; // rows
  927. const int r; // rows to get
  928. const int b; // batch size
  929. const bool v; // view (non-contiguous src1)
  930. std::string vars() override {
  931. return VARS_TO_STR6(type, n, m, r, b, v);
  932. }
  933. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  934. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  935. ggml_tensor * build_graph(ggml_context * ctx) override {
  936. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  937. ggml_set_name(in, "in");
  938. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  939. ggml_set_name(rows, "rows");
  940. if (v) {
  941. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  942. ggml_set_name(rows, "view_of_rows");
  943. }
  944. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  945. if (grad_supported) {
  946. ggml_set_param(ctx, in);
  947. // rows is a constant input -> no gradients
  948. }
  949. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  950. ggml_set_name(out, "out");
  951. return out;
  952. }
  953. void initialize_tensors(ggml_context * ctx) override {
  954. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  955. if (t->type == GGML_TYPE_I32) {
  956. if (ggml_is_view_op(t->op)) { continue; }
  957. // rows
  958. std::vector<int> data(r*b);
  959. for (int i = 0; i < r*b; i++) {
  960. data[i] = rand() % m;
  961. }
  962. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  963. } else {
  964. init_tensor_uniform(t);
  965. }
  966. }
  967. }
  968. };
  969. // GGML_OP_GET_ROWS_BACK
  970. struct test_get_rows_back : public test_case {
  971. const ggml_type type;
  972. const int n; // cols
  973. const int m; // rows
  974. const int r; // rows to get
  975. const int b; // batch size
  976. const bool v; // view (non-contiguous src1)
  977. std::string vars() override {
  978. return VARS_TO_STR6(type, n, m, r, b, v);
  979. }
  980. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  981. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  982. ggml_tensor * build_graph(ggml_context * ctx) override {
  983. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  984. ggml_set_name(in_forward, "in_forward");
  985. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  986. ggml_set_name(rows, "rows");
  987. if (v) {
  988. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  989. ggml_set_name(rows, "view_of_rows");
  990. }
  991. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  992. ggml_set_name(grad, "grad");
  993. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  994. ggml_set_name(out, "out");
  995. return out;
  996. }
  997. void initialize_tensors(ggml_context * ctx) override {
  998. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  999. if (t->type == GGML_TYPE_I32) {
  1000. if (ggml_is_view_op(t->op)) { continue; }
  1001. // rows
  1002. std::vector<int> data(r*b);
  1003. for (int i = 0; i < r*b; i++) {
  1004. data[i] = rand() % m;
  1005. }
  1006. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1007. } else {
  1008. init_tensor_uniform(t);
  1009. }
  1010. }
  1011. }
  1012. };
  1013. // GGML_OP_ARGMAX
  1014. struct test_argmax : public test_case {
  1015. const ggml_type type;
  1016. const std::array<int64_t, 4> ne;
  1017. std::string vars() override {
  1018. return VARS_TO_STR2(type, ne);
  1019. }
  1020. test_argmax(ggml_type type = GGML_TYPE_F32,
  1021. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1022. : type(type), ne(ne) {}
  1023. ggml_tensor * build_graph(ggml_context * ctx) override {
  1024. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1025. ggml_set_name(a, "a");
  1026. ggml_tensor * out = ggml_argmax(ctx, a);
  1027. ggml_set_name(out, "out");
  1028. return out;
  1029. }
  1030. void initialize_tensors(ggml_context * ctx) override {
  1031. std::random_device rd;
  1032. std::default_random_engine rng(rd());
  1033. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1034. if (t->type == GGML_TYPE_F32) {
  1035. // initialize with unique values to avoid ties
  1036. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1037. std::vector<float> data(t->ne[0]);
  1038. for (int i = 0; i < t->ne[0]; i++) {
  1039. data[i] = i;
  1040. }
  1041. std::shuffle(data.begin(), data.end(), rng);
  1042. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1043. }
  1044. } else {
  1045. init_tensor_uniform(t);
  1046. }
  1047. }
  1048. }
  1049. double max_nmse_err() override {
  1050. return 0.0;
  1051. }
  1052. };
  1053. // GGML_OP_COUNT_EQUAL
  1054. struct test_count_equal : public test_case {
  1055. const ggml_type type;
  1056. const std::array<int64_t, 4> ne;
  1057. std::string vars() override {
  1058. return VARS_TO_STR2(type, ne);
  1059. }
  1060. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1061. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1062. : type(type), ne(ne) {}
  1063. ggml_tensor * build_graph(ggml_context * ctx) override {
  1064. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1065. ggml_set_name(a, "a");
  1066. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1067. ggml_set_name(a_argmax, "a_argmax");
  1068. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1069. ggml_set_name(b, "b");
  1070. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1071. ggml_set_name(b_argmax, "b_argmax");
  1072. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1073. ggml_set_name(out, "out");
  1074. return out;
  1075. }
  1076. double max_nmse_err() override {
  1077. return 0.0;
  1078. }
  1079. };
  1080. // GGML_OP_REPEAT
  1081. struct test_repeat : public test_case {
  1082. const ggml_type type;
  1083. const std::array<int64_t, 4> ne;
  1084. const std::array<int, 4> nr;
  1085. std::string vars() override {
  1086. return VARS_TO_STR3(type, ne, nr);
  1087. }
  1088. size_t op_size(ggml_tensor * t) override {
  1089. return ggml_nbytes(t) * 2;
  1090. }
  1091. test_repeat(ggml_type type = GGML_TYPE_F32,
  1092. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1093. std::array<int, 4> nr = {2, 2, 2, 2})
  1094. : type(type), ne(ne), nr(nr) {}
  1095. ggml_tensor * build_graph(ggml_context * ctx) override {
  1096. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1097. ggml_set_name(target, "target");
  1098. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1099. ggml_set_param(ctx, src);
  1100. ggml_set_name(src, "src");
  1101. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1102. ggml_set_name(out, "out");
  1103. return out;
  1104. }
  1105. };
  1106. // GGML_OP_REPEAT_BACK
  1107. struct test_repeat_back : public test_case {
  1108. const ggml_type type;
  1109. const std::array<int64_t, 4> ne;
  1110. const std::array<int, 4> nr;
  1111. const bool v; // whether src is a noncontiguous view
  1112. std::string vars() override {
  1113. return VARS_TO_STR4(type, ne, nr, v);
  1114. }
  1115. size_t op_size(ggml_tensor * t) override {
  1116. return ggml_nbytes(t) * 2;
  1117. }
  1118. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1119. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1120. std::array<int, 4> nr = {2, 2, 2, 2},
  1121. bool v = false)
  1122. : type(type), ne(ne), nr(nr), v(v) {}
  1123. ggml_tensor * build_graph(ggml_context * ctx) override {
  1124. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1125. ggml_set_name(src, "src");
  1126. if (v) {
  1127. GGML_ASSERT(ne[0] % 2 == 0);
  1128. GGML_ASSERT(ne[1] % 2 == 0);
  1129. GGML_ASSERT(ne[2] % 2 == 0);
  1130. GGML_ASSERT(ne[3] % 2 == 0);
  1131. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1132. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1133. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1134. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1135. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1136. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1137. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1138. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1139. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1140. }
  1141. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1142. ggml_set_name(target, "target");
  1143. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1144. ggml_set_name(out, "out");
  1145. return out;
  1146. }
  1147. };
  1148. // GGML_OP_DUP
  1149. struct test_dup : public test_case {
  1150. const ggml_type type;
  1151. const std::array<int64_t, 4> ne;
  1152. const std::array<int64_t, 4> permute;
  1153. bool _use_permute;
  1154. std::string vars() override {
  1155. std::string v = VARS_TO_STR2(type, ne);
  1156. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1157. return v;
  1158. }
  1159. test_dup(ggml_type type = GGML_TYPE_F32,
  1160. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1161. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1162. : type(type), ne(ne), permute(permute),
  1163. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1164. ggml_tensor * build_graph(ggml_context * ctx) override {
  1165. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1166. ggml_set_param(ctx, src);
  1167. ggml_set_name(src, "src");
  1168. if (_use_permute) {
  1169. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1170. ggml_set_name(src, "src_permuted");
  1171. }
  1172. ggml_tensor * out = ggml_dup(ctx, src);
  1173. ggml_set_name(out, "out");
  1174. return out;
  1175. }
  1176. };
  1177. // GGML_OP_SET
  1178. struct test_set : public test_case {
  1179. const ggml_type type_src;
  1180. const ggml_type type_dst;
  1181. const std::array<int64_t, 4> ne;
  1182. const int dim;
  1183. std::string vars() override {
  1184. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1185. }
  1186. size_t op_size(ggml_tensor * t) override {
  1187. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1188. }
  1189. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1190. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1191. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1192. ggml_tensor * build_graph(ggml_context * ctx) override {
  1193. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1194. ggml_set_param(ctx, src);
  1195. ggml_set_name(src, "src");
  1196. auto ne_dst = ne;
  1197. for (int i = 0; i < dim; ++i) {
  1198. ne_dst[i] *= 2;
  1199. }
  1200. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1201. ggml_set_param(ctx, dst);
  1202. ggml_set_name(dst, "dst");
  1203. size_t offset = 0;
  1204. for (int i = 0; i < dim; ++i) {
  1205. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1206. }
  1207. ggml_tensor * out = ggml_set(ctx, dst, src,
  1208. // The backward pass requires setting a contiguous region:
  1209. src->nb[1], src->nb[2], src->nb[3], offset);
  1210. ggml_set_name(out, "out");
  1211. return out;
  1212. }
  1213. };
  1214. // GGML_OP_CPY
  1215. struct test_cpy : public test_case {
  1216. const ggml_type type_src;
  1217. const ggml_type type_dst;
  1218. const std::array<int64_t, 4> ne;
  1219. const std::array<int64_t, 4> permute;
  1220. bool _src_use_permute;
  1221. std::string vars() override {
  1222. return VARS_TO_STR4(type_src, type_dst, ne, permute);
  1223. }
  1224. double max_nmse_err() override {
  1225. return 1e-6;
  1226. }
  1227. size_t op_size(ggml_tensor * t) override {
  1228. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1229. }
  1230. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1231. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1232. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1233. : type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
  1234. _src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1235. ggml_tensor * build_graph(ggml_context * ctx) override {
  1236. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1237. ggml_set_param(ctx, src);
  1238. ggml_set_name(src, "src");
  1239. if (_src_use_permute) {
  1240. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1241. ggml_set_name(src, "src_permuted");
  1242. }
  1243. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1244. ggml_set_name(dst, "dst");
  1245. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1246. ggml_set_name(out, "out");
  1247. return out;
  1248. }
  1249. };
  1250. // GGML_OP_CONT
  1251. struct test_cont : public test_case {
  1252. const ggml_type type;
  1253. const std::array<int64_t, 4> ne;
  1254. std::string vars() override {
  1255. return VARS_TO_STR2(type, ne);
  1256. }
  1257. test_cont(ggml_type type = GGML_TYPE_F32,
  1258. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1259. : type(type), ne(ne) {}
  1260. ggml_tensor * build_graph(ggml_context * ctx) override {
  1261. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1262. ggml_set_param(ctx, src);
  1263. ggml_set_name(src, "src");
  1264. src = ggml_transpose(ctx, src);
  1265. ggml_set_name(src, "src_transposed");
  1266. ggml_tensor * out = ggml_cont(ctx, src);
  1267. ggml_set_name(out, "out");
  1268. return out;
  1269. }
  1270. };
  1271. // GGML_OP_ADD
  1272. // GGML_OP_SUB
  1273. // GGML_OP_MUL
  1274. // GGML_OP_DIV
  1275. struct test_bin_bcast : public test_case {
  1276. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1277. op_t op;
  1278. const ggml_type type;
  1279. const std::array<int64_t, 4> ne;
  1280. const std::array<int, 4> nr;
  1281. std::string vars() override {
  1282. return VARS_TO_STR3(type, ne, nr);
  1283. }
  1284. size_t op_size(ggml_tensor * t) override {
  1285. return ggml_nbytes(t) * 3;
  1286. }
  1287. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1288. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1289. std::array<int, 4> nr = {1, 2, 1, 1})
  1290. : op(op), type(type), ne(ne), nr(nr) {}
  1291. ggml_tensor * build_graph(ggml_context * ctx) override {
  1292. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1293. ggml_set_name(a, "a");
  1294. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1295. ggml_set_name(b, "b");
  1296. // The backward pass supports broadcasting only for GGML_ADD:
  1297. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1298. if (grad_supported) {
  1299. ggml_set_param(ctx, a);
  1300. ggml_set_param(ctx, b);
  1301. }
  1302. ggml_tensor * out = op(ctx, a, b);
  1303. ggml_set_name(out, "out");
  1304. return out;
  1305. }
  1306. void initialize_tensors(ggml_context * ctx) override {
  1307. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1308. if (op == ggml_mul || op == ggml_div) {
  1309. // MUL and DIV have numerical issues around zero:
  1310. init_tensor_uniform(t, 0.9f, 1.1f);
  1311. } else {
  1312. init_tensor_uniform(t);
  1313. }
  1314. }
  1315. }
  1316. float grad_eps() override {
  1317. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1318. }
  1319. bool grad_precise() override {
  1320. return op == ggml_div;
  1321. }
  1322. double max_maa_err() override {
  1323. return op == ggml_add ? 1e-4 : 1e-3;
  1324. }
  1325. };
  1326. // GGML_OP_ADD1
  1327. struct test_add1 : public test_case {
  1328. const ggml_type type;
  1329. const std::array<int64_t, 4> ne;
  1330. std::string vars() override {
  1331. return VARS_TO_STR2(type, ne);
  1332. }
  1333. test_add1(ggml_type type = GGML_TYPE_F32,
  1334. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1335. : type(type), ne(ne) {}
  1336. ggml_tensor * build_graph(ggml_context * ctx) override {
  1337. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1338. ggml_set_param(ctx, a);
  1339. ggml_set_name(a, "a");
  1340. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1341. // ggml_set_param(ctx, b); // TODO: implement
  1342. ggml_set_name(b, "b");
  1343. ggml_tensor * out = ggml_add1(ctx, a, b);
  1344. ggml_set_name(out, "out");
  1345. return out;
  1346. }
  1347. float grad_eps() override {
  1348. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1349. }
  1350. };
  1351. // GGML_OP_SCALE
  1352. struct test_scale : public test_case {
  1353. const ggml_type type;
  1354. const std::array<int64_t, 4> ne;
  1355. float scale;
  1356. std::string vars() override {
  1357. return VARS_TO_STR3(type, ne, scale);
  1358. }
  1359. test_scale(ggml_type type = GGML_TYPE_F32,
  1360. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1361. float scale = 2.0f)
  1362. : type(type), ne(ne), scale(scale) {}
  1363. ggml_tensor * build_graph(ggml_context * ctx) override {
  1364. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1365. ggml_set_param(ctx, a);
  1366. ggml_set_name(a, "a");
  1367. ggml_tensor * out = ggml_scale(ctx, a, scale);
  1368. ggml_set_name(out, "out");
  1369. return out;
  1370. }
  1371. };
  1372. // GGML_OP_SILU_BACK
  1373. struct test_silu_back : public test_case {
  1374. const ggml_type type;
  1375. const std::array<int64_t, 4> ne;
  1376. float eps;
  1377. std::string vars() override {
  1378. return VARS_TO_STR3(type, ne, eps);
  1379. }
  1380. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1381. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1382. float eps = 1e-6f)
  1383. : type(type), ne(ne), eps(eps) {}
  1384. ggml_tensor * build_graph(ggml_context * ctx) override {
  1385. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1386. ggml_set_name(a, "a");
  1387. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  1388. ggml_set_name(grad, "grad");
  1389. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  1390. ggml_set_name(out, "out");
  1391. return out;
  1392. }
  1393. bool grad_precise() override {
  1394. return true;
  1395. }
  1396. };
  1397. // GGML_OP_NORM
  1398. struct test_norm : public test_case {
  1399. const ggml_type type;
  1400. const std::array<int64_t, 4> ne;
  1401. const bool v; // whether a is a non-contiguous view
  1402. const float eps;
  1403. std::string vars() override {
  1404. return VARS_TO_STR4(type, ne, v, eps);
  1405. }
  1406. test_norm(ggml_type type = GGML_TYPE_F32,
  1407. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1408. bool v = false,
  1409. float eps = 1e-6f)
  1410. : type(type), ne(ne), v(v), eps(eps) {}
  1411. ggml_tensor * build_graph(ggml_context * ctx) override {
  1412. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1413. ggml_set_name(a, "a");
  1414. if (v) {
  1415. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1416. ggml_set_name(a, "view of a");
  1417. }
  1418. ggml_tensor * out = ggml_norm(ctx, a, eps);
  1419. ggml_set_name(out, "out");
  1420. return out;
  1421. }
  1422. };
  1423. // GGML_OP_RMS_NORM
  1424. struct test_rms_norm : public test_case {
  1425. const ggml_type type;
  1426. const std::array<int64_t, 4> ne;
  1427. const bool v; // whether a is a non-contiguous view
  1428. const float eps;
  1429. std::string vars() override {
  1430. return VARS_TO_STR4(type, ne, v, eps);
  1431. }
  1432. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  1433. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1434. bool v = false,
  1435. float eps = 1e-6f)
  1436. : type(type), ne(ne), v(v), eps(eps) {}
  1437. ggml_tensor * build_graph(ggml_context * ctx) override {
  1438. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1439. ggml_set_param(ctx, a);
  1440. ggml_set_name(a, "a");
  1441. if (v) {
  1442. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1443. ggml_set_name(a, "view of a");
  1444. }
  1445. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  1446. ggml_set_name(out, "out");
  1447. return out;
  1448. }
  1449. void initialize_tensors(ggml_context * ctx) override {
  1450. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1451. init_tensor_uniform(t, -10.f, 10.f);
  1452. }
  1453. }
  1454. float grad_eps() override {
  1455. return 1.0f;
  1456. }
  1457. bool grad_precise() override {
  1458. return true;
  1459. }
  1460. };
  1461. // GGML_OP_RMS_NORM_BACK
  1462. struct test_rms_norm_back : public test_case {
  1463. const ggml_type type;
  1464. const std::array<int64_t, 4> ne;
  1465. const float eps;
  1466. std::string vars() override {
  1467. return VARS_TO_STR3(type, ne, eps);
  1468. }
  1469. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  1470. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1471. float eps = 1e-6f)
  1472. : type(type), ne(ne), eps(eps) {}
  1473. ggml_tensor * build_graph(ggml_context * ctx) override {
  1474. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1475. ggml_set_name(a, "a");
  1476. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1477. ggml_set_name(b, "b");
  1478. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  1479. ggml_set_name(out, "out");
  1480. return out;
  1481. }
  1482. void initialize_tensors(ggml_context * ctx) override {
  1483. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1484. init_tensor_uniform(t, -10.f, 10.f);
  1485. }
  1486. }
  1487. };
  1488. // GGML_OP_SSM_CONV
  1489. struct test_ssm_conv : public test_case {
  1490. const ggml_type type;
  1491. const std::array<int64_t, 4> ne_a;
  1492. const std::array<int64_t, 4> ne_b;
  1493. std::string vars() override {
  1494. return VARS_TO_STR3(type, ne_a, ne_b);
  1495. }
  1496. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  1497. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  1498. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  1499. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1500. ggml_tensor * build_graph(ggml_context * ctx) override {
  1501. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1502. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1503. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  1504. return out;
  1505. }
  1506. };
  1507. // GGML_OP_SSM_SCAN
  1508. struct test_ssm_scan : public test_case {
  1509. const ggml_type type;
  1510. const int64_t d_state;
  1511. const int64_t d_inner;
  1512. const int64_t n_seq_tokens;
  1513. const int64_t n_seqs;
  1514. std::string vars() override {
  1515. return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
  1516. }
  1517. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  1518. int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1519. : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1520. ggml_tensor * build_graph(ggml_context * ctx) override {
  1521. ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
  1522. ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1523. ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1524. ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
  1525. ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1526. ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1527. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
  1528. return out;
  1529. }
  1530. };
  1531. // GGML_OP_RWKV_WKV6
  1532. struct test_rwkv_wkv6 : public test_case {
  1533. const ggml_type type;
  1534. const int64_t head_count;
  1535. const int64_t head_size;
  1536. const int64_t n_seq_tokens;
  1537. const int64_t n_seqs;
  1538. std::string vars() override {
  1539. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1540. }
  1541. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  1542. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1543. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1544. ggml_tensor * build_graph(ggml_context * ctx) override {
  1545. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1546. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1547. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1548. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1549. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  1550. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1551. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1552. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  1553. return out;
  1554. }
  1555. };
  1556. // GGML_OP_GATED_LINEAR_ATTN
  1557. struct test_gla : public test_case {
  1558. const ggml_type type;
  1559. const int64_t head_count;
  1560. const int64_t head_size;
  1561. const int64_t n_seq_tokens;
  1562. const int64_t n_seqs;
  1563. std::string vars() override {
  1564. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1565. }
  1566. test_gla(ggml_type type = GGML_TYPE_F32,
  1567. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1568. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1569. ggml_tensor * build_graph(ggml_context * ctx) override {
  1570. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1571. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1572. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1573. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1574. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1575. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1576. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  1577. return out;
  1578. }
  1579. };
  1580. // GGML_OP_RWKV_WKV7
  1581. struct test_rwkv_wkv7 : public test_case {
  1582. const ggml_type type;
  1583. const int64_t head_count;
  1584. const int64_t head_size;
  1585. const int64_t n_seq_tokens;
  1586. const int64_t n_seqs;
  1587. std::string vars() override {
  1588. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1589. }
  1590. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  1591. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1592. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1593. ggml_tensor * build_graph(ggml_context * ctx) override {
  1594. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1595. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1596. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1597. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1598. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1599. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1600. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1601. // Outputs may become NaN with long seqlen without these normalization
  1602. a = ggml_l2_norm(ctx, a, 1e-7F);
  1603. b = ggml_l2_norm(ctx, b, 1e-7F);
  1604. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1605. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  1606. return out;
  1607. }
  1608. };
  1609. // GGML_OP_MUL_MAT
  1610. struct test_mul_mat : public test_case {
  1611. const ggml_type type_a;
  1612. const ggml_type type_b;
  1613. const int64_t m;
  1614. const int64_t n;
  1615. const int64_t k;
  1616. const std::array<int64_t, 2> bs; // dims 3 and 4
  1617. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1618. const std::array<int64_t, 4> per; // permutation of dimensions
  1619. std::string vars() override {
  1620. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
  1621. }
  1622. double max_nmse_err() override {
  1623. return 5e-4;
  1624. }
  1625. int64_t grad_nmax() override {
  1626. return 20000;
  1627. }
  1628. uint64_t op_flops(ggml_tensor * t) override {
  1629. GGML_UNUSED(t);
  1630. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  1631. }
  1632. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1633. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1634. std::array<int64_t, 2> bs = {10, 10},
  1635. std::array<int64_t, 2> nr = {2, 2},
  1636. std::array<int64_t, 4> per = {0, 1, 2, 3})
  1637. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
  1638. ggml_tensor * build_graph(ggml_context * ctx) override {
  1639. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1640. ggml_tensor * a;
  1641. ggml_tensor * b;
  1642. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  1643. if (npermuted > 0) {
  1644. GGML_ASSERT(npermuted == 2);
  1645. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  1646. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  1647. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  1648. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  1649. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  1650. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  1651. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  1652. if (!ggml_is_quantized(type_a)) {
  1653. if (bs[1] == 1 && nr[1] == 1) {
  1654. ggml_set_param(ctx, a);
  1655. }
  1656. ggml_set_param(ctx, b);
  1657. }
  1658. ggml_set_name(a, "a");
  1659. ggml_set_name(b, "b");
  1660. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  1661. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  1662. ggml_set_name(a, "a_permuted");
  1663. ggml_set_name(b, "b_permuted");
  1664. } else {
  1665. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  1666. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1667. if (!ggml_is_quantized(type_a)) {
  1668. if (bs[1] == 1 && nr[1] == 1) {
  1669. ggml_set_param(ctx, a);
  1670. }
  1671. ggml_set_param(ctx, b);
  1672. }
  1673. ggml_set_name(a, "a");
  1674. ggml_set_name(b, "b");
  1675. }
  1676. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  1677. ggml_set_name(out, "out");
  1678. return out;
  1679. }
  1680. };
  1681. // GGML_OP_MUL_MAT_ID
  1682. struct test_mul_mat_id : public test_case {
  1683. const ggml_type type_a;
  1684. const ggml_type type_b;
  1685. const int n_mats;
  1686. const int n_used;
  1687. const bool b; // brodcast b matrix
  1688. const int64_t m;
  1689. const int64_t n;
  1690. const int64_t k;
  1691. std::string vars() override {
  1692. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  1693. }
  1694. double max_nmse_err() override {
  1695. return 5e-4;
  1696. }
  1697. uint64_t op_flops(ggml_tensor * t) override {
  1698. GGML_UNUSED(t);
  1699. return 2 * m * k * n * n_used;
  1700. }
  1701. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1702. int n_mats = 8, int n_used = 2, bool b = false,
  1703. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  1704. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  1705. m(m), n(n), k(k) {
  1706. GGML_ASSERT(n_used <= n_mats);
  1707. }
  1708. ggml_tensor * build_graph(ggml_context * ctx) override {
  1709. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1710. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  1711. ggml_set_name(as, "as");
  1712. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  1713. ggml_set_name(ids, "ids");
  1714. if (n_used != n_mats) {
  1715. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  1716. ggml_set_name(ids, "view_of_ids");
  1717. }
  1718. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  1719. ggml_set_name(b, "b");
  1720. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  1721. ggml_set_name(out, "out");
  1722. return out;
  1723. }
  1724. void initialize_tensors(ggml_context * ctx) override {
  1725. std::random_device rd;
  1726. std::default_random_engine rng(rd());
  1727. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1728. if (t->type == GGML_TYPE_I32) {
  1729. if (ggml_is_view_op(t->op)) { continue; }
  1730. // ids
  1731. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1732. std::vector<int32_t> data(t->ne[0]);
  1733. for (int i = 0; i < t->ne[0]; i++) {
  1734. data[i] = i % n_mats;
  1735. }
  1736. std::shuffle(data.begin(), data.end(), rng);
  1737. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  1738. }
  1739. } else {
  1740. init_tensor_uniform(t);
  1741. }
  1742. }
  1743. }
  1744. };
  1745. // GGML_OP_OUT_PROD
  1746. struct test_out_prod : public test_case {
  1747. const ggml_type type_a;
  1748. const ggml_type type_b;
  1749. const int64_t m;
  1750. const int64_t n;
  1751. const int64_t k;
  1752. const std::array<int64_t, 2> bs; // dims 3 and 4
  1753. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1754. const bool trans_b;
  1755. std::string vars() override {
  1756. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  1757. }
  1758. double max_nmse_err() override {
  1759. return 5e-4;
  1760. }
  1761. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1762. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1763. std::array<int64_t, 2> bs = {10, 10},
  1764. std::array<int64_t, 2> nr = {2, 2},
  1765. bool trans_b = false)
  1766. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  1767. ggml_tensor * build_graph(ggml_context * ctx) override {
  1768. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  1769. ggml_set_name(a, "a");
  1770. ggml_tensor * b;
  1771. if (trans_b) {
  1772. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1773. b = ggml_transpose(ctx, b);
  1774. } else {
  1775. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  1776. }
  1777. ggml_set_name(b, "b");
  1778. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  1779. ggml_set_name(out, "out");
  1780. return out;
  1781. }
  1782. };
  1783. // GGML_OP_SQR
  1784. struct test_sqr : public test_case {
  1785. const ggml_type type;
  1786. const std::array<int64_t, 4> ne;
  1787. std::string vars() override {
  1788. return VARS_TO_STR2(type, ne);
  1789. }
  1790. test_sqr(ggml_type type = GGML_TYPE_F32,
  1791. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1792. : type(type), ne(ne) {}
  1793. ggml_tensor * build_graph(ggml_context * ctx) override {
  1794. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1795. ggml_set_param(ctx, a);
  1796. ggml_set_name(a, "a");
  1797. ggml_tensor * out = ggml_sqr(ctx, a);
  1798. ggml_set_name(out, "out");
  1799. return out;
  1800. }
  1801. float grad_eps() override {
  1802. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  1803. }
  1804. };
  1805. // GGML_OP_SQRT
  1806. struct test_sqrt : public test_case {
  1807. const ggml_type type;
  1808. const std::array<int64_t, 4> ne;
  1809. std::string vars() override {
  1810. return VARS_TO_STR2(type, ne);
  1811. }
  1812. test_sqrt(ggml_type type = GGML_TYPE_F32,
  1813. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  1814. : type(type), ne(ne) {}
  1815. ggml_tensor * build_graph(ggml_context * ctx) override {
  1816. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1817. ggml_set_param(ctx, a);
  1818. ggml_set_name(a, "a");
  1819. ggml_tensor * out = ggml_sqrt(ctx, a);
  1820. ggml_set_name(out, "out");
  1821. return out;
  1822. }
  1823. void initialize_tensors(ggml_context * ctx) override {
  1824. // fill with positive values
  1825. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1826. init_tensor_uniform(t, 50.0f, 100.0f);
  1827. }
  1828. }
  1829. float grad_eps() override {
  1830. return 20.0f;
  1831. }
  1832. bool grad_precise() override {
  1833. return true;
  1834. }
  1835. };
  1836. // GGML_OP_LOG
  1837. struct test_log : public test_case {
  1838. const ggml_type type;
  1839. const std::array<int64_t, 4> ne;
  1840. std::string vars() override {
  1841. return VARS_TO_STR2(type, ne);
  1842. }
  1843. test_log(ggml_type type = GGML_TYPE_F32,
  1844. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1845. : type(type), ne(ne) {}
  1846. ggml_tensor * build_graph(ggml_context * ctx) override {
  1847. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1848. ggml_set_param(ctx, a);
  1849. ggml_set_name(a, "a");
  1850. ggml_tensor * out = ggml_log(ctx, a);
  1851. ggml_set_name(out, "out");
  1852. return out;
  1853. }
  1854. void initialize_tensors(ggml_context * ctx) override {
  1855. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1856. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  1857. init_tensor_uniform(t, 0.9f, 1.1f);
  1858. }
  1859. }
  1860. bool grad_precise() override {
  1861. return true;
  1862. }
  1863. };
  1864. // GGML_OP_SIN
  1865. struct test_sin : public test_case {
  1866. const ggml_type type;
  1867. const std::array<int64_t, 4> ne;
  1868. std::string vars() override {
  1869. return VARS_TO_STR2(type, ne);
  1870. }
  1871. test_sin(ggml_type type = GGML_TYPE_F32,
  1872. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1873. : type(type), ne(ne) {}
  1874. ggml_tensor * build_graph(ggml_context * ctx) override {
  1875. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1876. ggml_set_param(ctx, a);
  1877. ggml_set_name(a, "a");
  1878. ggml_tensor * out = ggml_sin(ctx, a);
  1879. ggml_set_name(out, "out");
  1880. return out;
  1881. }
  1882. void initialize_tensors(ggml_context * ctx) override {
  1883. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1884. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1885. }
  1886. }
  1887. double max_maa_err() override {
  1888. return 1e-3;
  1889. }
  1890. float grad_eps() override {
  1891. return 0.2f;
  1892. }
  1893. bool grad_precise() override {
  1894. return true;
  1895. }
  1896. };
  1897. // GGML_OP_COS
  1898. struct test_cos : public test_case {
  1899. const ggml_type type;
  1900. const std::array<int64_t, 4> ne;
  1901. std::string vars() override {
  1902. return VARS_TO_STR2(type, ne);
  1903. }
  1904. test_cos(ggml_type type = GGML_TYPE_F32,
  1905. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1906. : type(type), ne(ne) {}
  1907. ggml_tensor * build_graph(ggml_context * ctx) override {
  1908. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1909. ggml_set_param(ctx, a);
  1910. ggml_set_name(a, "a");
  1911. ggml_tensor * out = ggml_cos(ctx, a);
  1912. ggml_set_name(out, "out");
  1913. return out;
  1914. }
  1915. void initialize_tensors(ggml_context * ctx) override {
  1916. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1917. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1918. }
  1919. }
  1920. double max_maa_err() override {
  1921. return 1e-3;
  1922. }
  1923. float grad_eps() override {
  1924. return 0.2f;
  1925. }
  1926. bool grad_precise() override {
  1927. return true;
  1928. }
  1929. };
  1930. // GGML_OP_CLAMP
  1931. struct test_clamp : public test_case {
  1932. const ggml_type type;
  1933. const std::array<int64_t, 4> ne;
  1934. float min;
  1935. float max;
  1936. std::string vars() override {
  1937. return VARS_TO_STR4(type, ne, min, max);
  1938. }
  1939. test_clamp(ggml_type type = GGML_TYPE_F32,
  1940. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1941. float min = -0.5f, float max = 0.5f)
  1942. : type(type), ne(ne), min(min), max(max) {}
  1943. ggml_tensor * build_graph(ggml_context * ctx) override {
  1944. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1945. ggml_set_name(a, "a");
  1946. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  1947. ggml_set_name(out, "out");
  1948. return out;
  1949. }
  1950. float grad_eps() override {
  1951. return 1e-2f;
  1952. }
  1953. std::vector<float> grad_expect() override {
  1954. return {0.0f, 1.0f};
  1955. }
  1956. };
  1957. // GGML_OP_DIAG_MASK_INF
  1958. struct test_diag_mask_inf : public test_case {
  1959. const ggml_type type;
  1960. const std::array<int64_t, 4> ne;
  1961. const int n_past;
  1962. std::string vars() override {
  1963. return VARS_TO_STR3(type, ne, n_past);
  1964. }
  1965. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  1966. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  1967. int n_past = 5)
  1968. : type(type), ne(ne), n_past(n_past) {}
  1969. ggml_tensor * build_graph(ggml_context * ctx) override {
  1970. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1971. ggml_set_param(ctx, a);
  1972. ggml_set_name(a, "a");
  1973. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  1974. ggml_set_name(out, "out");
  1975. return out;
  1976. }
  1977. };
  1978. // GGML_OP_SOFT_MAX
  1979. struct test_soft_max : public test_case {
  1980. const ggml_type type;
  1981. const std::array<int64_t, 4> ne;
  1982. const bool mask;
  1983. const ggml_type m_prec;
  1984. const float scale;
  1985. const float max_bias;
  1986. std::string vars() override {
  1987. return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
  1988. }
  1989. // the 1024 test with bias occasionally fails:
  1990. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  1991. virtual double max_nmse_err() override {
  1992. return 1e-6;
  1993. }
  1994. test_soft_max(ggml_type type = GGML_TYPE_F32,
  1995. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1996. bool mask = false,
  1997. ggml_type m_prec = GGML_TYPE_F32,
  1998. float scale = 1.0f,
  1999. float max_bias = 0.0f)
  2000. : type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
  2001. ggml_tensor * build_graph(ggml_context * ctx) override {
  2002. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2003. ggml_set_param(ctx, a);
  2004. ggml_set_name(a, "a");
  2005. ggml_tensor * mask = nullptr;
  2006. if (this->mask) {
  2007. mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
  2008. ggml_set_name(mask, "mask");
  2009. }
  2010. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  2011. ggml_set_name(out, "out");
  2012. return out;
  2013. }
  2014. bool grad_precise() override {
  2015. return true;
  2016. }
  2017. };
  2018. // GGML_OP_SOFT_MAX_BACK
  2019. struct test_soft_max_back : public test_case {
  2020. const ggml_type type;
  2021. const std::array<int64_t, 4> ne;
  2022. const float scale;
  2023. const float max_bias;
  2024. std::string vars() override {
  2025. return VARS_TO_STR4(type, ne, scale, max_bias);
  2026. }
  2027. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  2028. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2029. float scale = 1.0f,
  2030. float max_bias = 0.0f)
  2031. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  2032. ggml_tensor * build_graph(ggml_context * ctx) override {
  2033. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2034. ggml_set_name(a, "a");
  2035. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2036. ggml_set_name(a, "a");
  2037. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  2038. ggml_set_name(out, "out");
  2039. return out;
  2040. }
  2041. };
  2042. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  2043. struct test_rope : public test_case {
  2044. const ggml_type type;
  2045. const std::array<int64_t, 4> ne_a;
  2046. int n_dims;
  2047. int mode;
  2048. int n_ctx; // used to generate positions
  2049. float fs; // freq_scale
  2050. float ef; // ext_factor
  2051. float af; // attn_factor
  2052. bool ff;
  2053. int v; // view (1 : non-contiguous a)
  2054. bool forward;
  2055. std::string vars() override {
  2056. // forward can be inferred from the op, does not need to be printed
  2057. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  2058. }
  2059. test_rope(ggml_type type = GGML_TYPE_F32,
  2060. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  2061. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  2062. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2063. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2064. ggml_tensor * build_graph(ggml_context * ctx) override {
  2065. ggml_tensor * a;
  2066. if (v & 1) {
  2067. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2068. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2069. if (forward) {
  2070. ggml_set_param(ctx, a);
  2071. }
  2072. ggml_set_name(a, "a");
  2073. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2074. ggml_set_name(a, "view_of_a");
  2075. } else {
  2076. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2077. if (forward) {
  2078. ggml_set_param(ctx, a);
  2079. }
  2080. ggml_set_name(a, "a");
  2081. }
  2082. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2083. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2084. ggml_tensor * pos;
  2085. if (is_mrope || is_vision) {
  2086. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2087. } else {
  2088. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2089. }
  2090. ggml_set_name(pos, "pos");
  2091. ggml_tensor * freq = nullptr;
  2092. if (ff) {
  2093. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2094. ggml_set_name(freq, "freq");
  2095. }
  2096. ggml_tensor * out;
  2097. if (is_mrope) {
  2098. if (is_vision) {
  2099. GGML_ASSERT(n_dims/4 > 0);
  2100. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2101. if (forward) {
  2102. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2103. } else {
  2104. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2105. }
  2106. } else {
  2107. GGML_ASSERT(n_dims/3 > 0);
  2108. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2109. if (forward) {
  2110. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2111. } else {
  2112. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2113. }
  2114. }
  2115. } else {
  2116. if (forward) {
  2117. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2118. } else {
  2119. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2120. }
  2121. }
  2122. ggml_set_name(out, "out");
  2123. return out;
  2124. }
  2125. void initialize_tensors(ggml_context * ctx) override {
  2126. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2127. if (t->type == GGML_TYPE_I32) {
  2128. // pos
  2129. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2130. std::vector<int> data(num_pos_ids);
  2131. for (int i = 0; i < num_pos_ids; i++) {
  2132. data[i] = rand() % n_ctx;
  2133. }
  2134. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2135. } else {
  2136. if (t->ne[0] == n_dims/2) {
  2137. // frequency factors in the range [0.9f, 1.1f]
  2138. init_tensor_uniform(t, 0.9f, 1.1f);
  2139. } else {
  2140. init_tensor_uniform(t);
  2141. }
  2142. }
  2143. }
  2144. }
  2145. double max_maa_err() override {
  2146. return 1e-3;
  2147. }
  2148. bool grad_precise() override {
  2149. return true;
  2150. }
  2151. };
  2152. // GGML_OP_POOL2D
  2153. struct test_pool2d : public test_case {
  2154. enum ggml_op_pool pool_type;
  2155. const ggml_type type_input;
  2156. const std::array<int64_t, 4> ne_input;
  2157. // kernel size
  2158. const int k0;
  2159. const int k1;
  2160. // stride
  2161. const int s0;
  2162. const int s1;
  2163. // padding
  2164. const int p0;
  2165. const int p1;
  2166. std::string vars() override {
  2167. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2168. }
  2169. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2170. ggml_type type_input = GGML_TYPE_F32,
  2171. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2172. int k0 = 3, int k1 = 3,
  2173. int s0 = 1, int s1 = 1,
  2174. int p0 = 1, int p1 = 1)
  2175. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2176. ggml_tensor * build_graph(ggml_context * ctx) override {
  2177. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2178. ggml_set_param(ctx, input);
  2179. ggml_set_name(input, "input");
  2180. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2181. ggml_set_name(out, "out");
  2182. return out;
  2183. }
  2184. };
  2185. // GGML_OP_CONV_TRANSPOSE_1D
  2186. struct test_conv_transpose_1d : public test_case {
  2187. const std::array<int64_t, 4> ne_input;
  2188. const std::array<int64_t, 4> ne_kernel;
  2189. const int s0; // stride
  2190. const int p0; // padding
  2191. const int d0; // dilation
  2192. std::string vars() override {
  2193. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2194. }
  2195. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
  2196. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2197. int s0 = 1, int p0 = 0, int d0 = 1)
  2198. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2199. ggml_tensor * build_graph(ggml_context * ctx) override {
  2200. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2201. ggml_set_name(input, "input");
  2202. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2203. ggml_set_name(kernel, "kernel");
  2204. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2205. ggml_set_name(out, "out");
  2206. return out;
  2207. }
  2208. };
  2209. // GGML_OP_IM2COL
  2210. struct test_im2col : public test_case {
  2211. const ggml_type type_input;
  2212. const ggml_type type_kernel;
  2213. const ggml_type dst_type;
  2214. const std::array<int64_t, 4> ne_input;
  2215. const std::array<int64_t, 4> ne_kernel;
  2216. // stride
  2217. const int s0;
  2218. const int s1;
  2219. // padding
  2220. const int p0;
  2221. const int p1;
  2222. // dilation
  2223. const int d0;
  2224. const int d1;
  2225. // mode
  2226. const bool is_2D;
  2227. std::string vars() override {
  2228. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2229. }
  2230. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2231. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2232. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2233. int s0 = 1, int s1 = 1,
  2234. int p0 = 1, int p1 = 1,
  2235. int d0 = 1, int d1 = 1,
  2236. bool is_2D = true)
  2237. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2238. ggml_tensor * build_graph(ggml_context * ctx) override {
  2239. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2240. ggml_set_param(ctx, input);
  2241. ggml_set_name(input, "input");
  2242. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2243. ggml_set_name(kernel, "kernel");
  2244. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2245. ggml_set_name(out, "out");
  2246. return out;
  2247. }
  2248. };
  2249. // GGML_OP_CONCAT
  2250. struct test_concat : public test_case {
  2251. const ggml_type type;
  2252. const std::array<int64_t, 4> ne_a;
  2253. const int64_t ne_b_d;
  2254. const int dim;
  2255. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  2256. std::string vars() override {
  2257. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  2258. }
  2259. test_concat(ggml_type type = GGML_TYPE_F32,
  2260. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  2261. int64_t ne_b_d = 5,
  2262. int dim = 2, int v = 0)
  2263. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  2264. ggml_tensor * build_graph(ggml_context * ctx) override {
  2265. auto ne_b = ne_a;
  2266. ne_b[dim] = ne_b_d;
  2267. ggml_tensor * a;
  2268. if (v & 1) {
  2269. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2270. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2271. ggml_set_name(a, "a");
  2272. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2273. ggml_set_name(a, "view_of_a");
  2274. } else {
  2275. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2276. ggml_set_name(a, "a");
  2277. }
  2278. ggml_tensor * b;
  2279. if (v & 2) {
  2280. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  2281. b = ggml_new_tensor(ctx, type, 4, ne.data());
  2282. ggml_set_name(b, "b");
  2283. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  2284. ggml_set_name(b, "view_of_b");
  2285. } else {
  2286. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2287. ggml_set_name(b, "b");
  2288. }
  2289. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  2290. ggml_set_name(out, "out");
  2291. return out;
  2292. }
  2293. };
  2294. // GGML_OP_ARGSORT
  2295. struct test_argsort : public test_case {
  2296. const ggml_type type;
  2297. const std::array<int64_t, 4> ne;
  2298. ggml_sort_order order;
  2299. std::string vars() override {
  2300. return VARS_TO_STR3(type, ne, order);
  2301. }
  2302. test_argsort(ggml_type type = GGML_TYPE_F32,
  2303. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  2304. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  2305. : type(type), ne(ne), order(order) {}
  2306. ggml_tensor * build_graph(ggml_context * ctx) override {
  2307. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2308. ggml_set_name(a, "a");
  2309. ggml_tensor * out = ggml_argsort(ctx, a, order);
  2310. ggml_set_name(out, "out");
  2311. return out;
  2312. }
  2313. void initialize_tensors(ggml_context * ctx) override {
  2314. std::random_device rd;
  2315. std::default_random_engine rng(rd());
  2316. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2317. if (t->type == GGML_TYPE_I32) {
  2318. // indices
  2319. std::vector<int> data(ggml_nelements(t));
  2320. for (int i = 0; i < ggml_nelements(t); i++) {
  2321. data[i] = rand();
  2322. }
  2323. std::shuffle(data.begin(), data.end(), rng);
  2324. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  2325. } else if (t->type == GGML_TYPE_F32) {
  2326. // initialize with unique values to avoid ties
  2327. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2328. std::vector<float> data(t->ne[0]);
  2329. for (int i = 0; i < t->ne[0]; i++) {
  2330. data[i] = i;
  2331. }
  2332. std::shuffle(data.begin(), data.end(), rng);
  2333. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2334. }
  2335. } else {
  2336. GGML_ABORT("fatal error");
  2337. }
  2338. }
  2339. }
  2340. };
  2341. // GGML_OP_SUM
  2342. struct test_sum : public test_case {
  2343. const ggml_type type;
  2344. const std::array<int64_t, 4> ne;
  2345. std::string vars() override {
  2346. return VARS_TO_STR2(type, ne);
  2347. }
  2348. test_sum(ggml_type type = GGML_TYPE_F32,
  2349. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2350. : type(type), ne(ne) {}
  2351. ggml_tensor * build_graph(ggml_context * ctx) override {
  2352. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2353. ggml_set_param(ctx, a);
  2354. ggml_set_name(a, "a");
  2355. ggml_tensor * out = ggml_sum(ctx, a);
  2356. ggml_set_name(out, "out");
  2357. return out;
  2358. }
  2359. float grad_eps() override {
  2360. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  2361. }
  2362. };
  2363. // GGML_OP_SUM_ROWS
  2364. struct test_sum_rows : public test_case {
  2365. const ggml_type type;
  2366. const std::array<int64_t, 4> ne;
  2367. std::string vars() override {
  2368. return VARS_TO_STR2(type, ne);
  2369. }
  2370. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  2371. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2372. : type(type), ne(ne) {}
  2373. ggml_tensor * build_graph(ggml_context * ctx) override {
  2374. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2375. ggml_set_param(ctx, a);
  2376. ggml_set_name(a, "a");
  2377. ggml_tensor * out = ggml_sum_rows(ctx, a);
  2378. ggml_set_name(out, "out");
  2379. return out;
  2380. }
  2381. };
  2382. // GGML_OP_MEAN
  2383. struct test_mean : public test_case {
  2384. const ggml_type type;
  2385. const std::array<int64_t, 4> ne;
  2386. std::string vars() override {
  2387. return VARS_TO_STR2(type, ne);
  2388. }
  2389. test_mean(ggml_type type = GGML_TYPE_F32,
  2390. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2391. : type(type), ne(ne) {}
  2392. ggml_tensor * build_graph(ggml_context * ctx) override {
  2393. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2394. ggml_set_param(ctx, a);
  2395. ggml_set_name(a, "a");
  2396. ggml_tensor * out = ggml_mean(ctx, a);
  2397. ggml_set_name(out, "out");
  2398. return out;
  2399. }
  2400. float grad_eps() override {
  2401. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2402. }
  2403. };
  2404. // GGML_OP_UPSCALE
  2405. struct test_upscale : public test_case {
  2406. const ggml_type type;
  2407. const std::array<int64_t, 4> ne;
  2408. const int32_t scale_factor;
  2409. const bool transpose;
  2410. std::string vars() override {
  2411. return VARS_TO_STR4(type, ne, scale_factor, transpose);
  2412. }
  2413. test_upscale(ggml_type type = GGML_TYPE_F32,
  2414. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  2415. int32_t scale_factor = 2, bool transpose = false)
  2416. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
  2417. ggml_tensor * build_graph(ggml_context * ctx) override {
  2418. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2419. ggml_set_name(a, "a");
  2420. if (transpose) {
  2421. a = ggml_transpose(ctx, a);
  2422. ggml_set_name(a, "a_transposed");
  2423. }
  2424. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  2425. ggml_set_name(out, "out");
  2426. return out;
  2427. }
  2428. };
  2429. // GGML_OP_UPSCALE (ext)
  2430. struct test_upscale_ext : public test_case {
  2431. const ggml_type type;
  2432. const std::array<int64_t, 4> ne;
  2433. const std::array<int64_t, 4> ne_tgt;
  2434. std::string vars() override {
  2435. return VARS_TO_STR3(type, ne, ne_tgt);
  2436. }
  2437. test_upscale_ext(ggml_type type = GGML_TYPE_F32,
  2438. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  2439. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
  2440. : type(type), ne(ne), ne_tgt(ne_tgt) {}
  2441. ggml_tensor * build_graph(ggml_context * ctx) override {
  2442. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2443. ggml_set_name(a, "a");
  2444. ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
  2445. ggml_set_name(out, "out");
  2446. return out;
  2447. }
  2448. };
  2449. // GGML_OP_GROUP_NORM
  2450. struct test_group_norm : public test_case {
  2451. const ggml_type type;
  2452. const std::array<int64_t, 4> ne;
  2453. const int32_t num_groups;
  2454. const float eps;
  2455. std::string vars() override {
  2456. return VARS_TO_STR4(type, ne, num_groups, eps);
  2457. }
  2458. test_group_norm(ggml_type type = GGML_TYPE_F32,
  2459. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2460. int32_t num_groups = 32,
  2461. float eps = 1e-6f)
  2462. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  2463. ggml_tensor * build_graph(ggml_context * ctx) override {
  2464. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2465. ggml_set_name(a, "a");
  2466. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  2467. ggml_set_name(out, "out");
  2468. return out;
  2469. }
  2470. };
  2471. // GGML_OP_L2_NORM
  2472. struct test_l2_norm : public test_case {
  2473. const ggml_type type;
  2474. const std::array<int64_t, 4> ne;
  2475. const float eps;
  2476. std::string vars() override {
  2477. return VARS_TO_STR2(type, ne);
  2478. }
  2479. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  2480. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2481. float eps = 1e-12f)
  2482. : type(type), ne(ne), eps(eps) {}
  2483. ggml_tensor * build_graph(ggml_context * ctx) override {
  2484. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2485. ggml_set_name(a, "a");
  2486. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  2487. ggml_set_name(out, "out");
  2488. return out;
  2489. }
  2490. };
  2491. // GGML_OP_ACC
  2492. struct test_acc : public test_case {
  2493. const ggml_type type;
  2494. const std::array<int64_t, 4> ne_a;
  2495. const std::array<int64_t, 4> ne_b;
  2496. std::string vars() override {
  2497. return VARS_TO_STR3(type, ne_a, ne_b);
  2498. }
  2499. test_acc(ggml_type type = GGML_TYPE_F32,
  2500. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  2501. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  2502. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2503. ggml_tensor * build_graph(ggml_context * ctx) override {
  2504. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2505. ggml_set_param(ctx, a);
  2506. ggml_set_name(a, "a");
  2507. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2508. ggml_set_param(ctx, b);
  2509. ggml_set_name(b, "b");
  2510. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  2511. ggml_set_name(out, "out");
  2512. return out;
  2513. }
  2514. };
  2515. // GGML_OP_PAD
  2516. struct test_pad : public test_case {
  2517. const ggml_type type;
  2518. const std::array<int64_t, 4> ne_a;
  2519. const int pad_0;
  2520. const int pad_1;
  2521. std::string vars() override {
  2522. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2523. }
  2524. test_pad(ggml_type type = GGML_TYPE_F32,
  2525. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  2526. int pad_0 = 1, int pad_1 = 1)
  2527. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2528. ggml_tensor * build_graph(ggml_context * ctx) override {
  2529. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2530. ggml_set_name(a, "a");
  2531. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  2532. ggml_set_name(out, "out");
  2533. return out;
  2534. }
  2535. };
  2536. // GGML_OP_PAD_REFLECT_1D
  2537. struct test_pad_reflect_1d : public test_case {
  2538. const ggml_type type;
  2539. const std::array<int64_t, 4> ne_a;
  2540. const int pad_0;
  2541. const int pad_1;
  2542. std::string vars() override {
  2543. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2544. }
  2545. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  2546. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  2547. int pad_0 = 10, int pad_1 = 9)
  2548. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2549. ggml_tensor * build_graph(ggml_context * ctx) override {
  2550. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  2551. ggml_set_name(a, "a");
  2552. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  2553. ggml_set_name(out, "out");
  2554. return out;
  2555. }
  2556. };
  2557. // GGML_OP_ARANGE
  2558. struct test_arange : public test_case {
  2559. const ggml_type type;
  2560. const float start;
  2561. const float stop;
  2562. const float step;
  2563. std::string vars() override {
  2564. return VARS_TO_STR4(type, start, stop, step);
  2565. }
  2566. test_arange(ggml_type type = GGML_TYPE_F32,
  2567. float start = 0.f, float stop = 10.f, float step = 1.f)
  2568. : type(type), start(start), stop(stop), step(step) {}
  2569. ggml_tensor * build_graph(ggml_context * ctx) override {
  2570. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  2571. ggml_set_name(out, "out");
  2572. return out;
  2573. }
  2574. };
  2575. // GGML_OP_TIMESTEP_EMBEDDING
  2576. struct test_timestep_embedding : public test_case {
  2577. const ggml_type type;
  2578. const std::array<int64_t, 4> ne_a;
  2579. const int dim;
  2580. const int max_period;
  2581. std::string vars() override {
  2582. return VARS_TO_STR4(type, ne_a, dim, max_period);
  2583. }
  2584. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  2585. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  2586. int dim = 320, int max_period=10000)
  2587. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  2588. ggml_tensor * build_graph(ggml_context * ctx) override {
  2589. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2590. ggml_set_name(a, "a");
  2591. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  2592. ggml_set_name(out, "out");
  2593. return out;
  2594. }
  2595. };
  2596. // GGML_OP_LEAKY_RELU
  2597. struct test_leaky_relu : public test_case {
  2598. const ggml_type type;
  2599. const std::array<int64_t, 4> ne_a;
  2600. const float negative_slope;
  2601. std::string vars() override {
  2602. return VARS_TO_STR3(type, ne_a, negative_slope);
  2603. }
  2604. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  2605. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  2606. float negative_slope = 0.1f)
  2607. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  2608. ggml_tensor * build_graph(ggml_context * ctx) override {
  2609. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2610. ggml_set_name(a, "a");
  2611. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  2612. ggml_set_name(out, "out");
  2613. return out;
  2614. }
  2615. };
  2616. // GGML_OP_FLASH_ATTN_EXT
  2617. struct test_flash_attn_ext : public test_case {
  2618. const int64_t hs; // head size
  2619. const int64_t nh; // num heads
  2620. const int64_t nr; // repeat in Q, tests for grouped-query attention
  2621. const int64_t kv; // kv size
  2622. const int64_t nb; // batch size
  2623. const bool mask; // use mask
  2624. const float max_bias; // ALiBi
  2625. const float logit_softcap; // Gemma 2
  2626. const ggml_type type_KV;
  2627. std::array<int32_t, 4> permute;
  2628. std::string vars() override {
  2629. return VARS_TO_STR10(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, type_KV, permute);
  2630. }
  2631. double max_nmse_err() override {
  2632. return 5e-4;
  2633. }
  2634. uint64_t op_flops(ggml_tensor * t) override {
  2635. GGML_UNUSED(t);
  2636. // Just counting matmul costs:
  2637. // Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
  2638. return 2 * 2 * nh*nr * nb * hs * kv;
  2639. }
  2640. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t nr = 1, int64_t kv = 96, int64_t nb = 8,
  2641. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16,
  2642. std::array<int32_t, 4> permute = {0, 1, 2, 3})
  2643. : hs(hs), nh(nh), nr(nr), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV), permute(permute) {}
  2644. ggml_tensor * build_graph(ggml_context * ctx) override {
  2645. const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
  2646. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
  2647. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  2648. int64_t ne_perm[4];
  2649. for (int i = 0; i < 4; ++i) {
  2650. ne_perm[permute[i]] = ne[i];
  2651. }
  2652. ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  2653. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  2654. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  2655. }
  2656. return t;
  2657. };
  2658. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hs_padded, nb, nh*nr, 1);
  2659. ggml_set_name(q, "q");
  2660. ggml_tensor * k = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2661. ggml_set_name(k, "k");
  2662. ggml_tensor * v = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2663. ggml_set_name(v, "v");
  2664. ggml_tensor * m = nullptr;
  2665. if (mask) {
  2666. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
  2667. ggml_set_name(m, "m");
  2668. }
  2669. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
  2670. ggml_set_name(out, "out");
  2671. return out;
  2672. }
  2673. bool grad_precise() override {
  2674. return true;
  2675. }
  2676. };
  2677. // GGML_OP_CROSS_ENTROPY_LOSS
  2678. struct test_cross_entropy_loss : public test_case {
  2679. const ggml_type type;
  2680. const std::array<int64_t, 4> ne;
  2681. std::string vars() override {
  2682. return VARS_TO_STR2(type, ne);
  2683. }
  2684. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  2685. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2686. : type(type), ne(ne) {}
  2687. ggml_tensor * build_graph(ggml_context * ctx) override {
  2688. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2689. ggml_set_param(ctx, logits);
  2690. ggml_set_name(logits, "logits");
  2691. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2692. // The labels are assumed to be constant -> no gradients.
  2693. ggml_set_name(labels, "labels");
  2694. // Ensure labels add up to 1:
  2695. labels = ggml_soft_max(ctx, labels);
  2696. ggml_set_name(labels, "labels_normalized");
  2697. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  2698. ggml_set_name(out, "out");
  2699. return out;
  2700. }
  2701. void initialize_tensors(ggml_context * ctx) override {
  2702. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  2703. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2704. init_tensor_uniform(t, -100.0f, 100.0f);
  2705. }
  2706. }
  2707. float grad_eps() override {
  2708. return 1.0f;
  2709. }
  2710. bool grad_precise() override {
  2711. return true;
  2712. }
  2713. };
  2714. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  2715. struct test_cross_entropy_loss_back : public test_case {
  2716. const ggml_type type;
  2717. const std::array<int64_t, 4> ne;
  2718. std::string vars() override {
  2719. return VARS_TO_STR2(type, ne);
  2720. }
  2721. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  2722. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2723. : type(type), ne(ne) {}
  2724. ggml_tensor * build_graph(ggml_context * ctx) override {
  2725. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2726. ggml_set_name(grad, "grad");
  2727. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2728. ggml_set_name(logits, "logits");
  2729. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2730. ggml_set_name(labels, "labels");
  2731. // Ensure labels add up to 1:
  2732. labels = ggml_soft_max(ctx, labels);
  2733. ggml_set_name(labels, "labels_normalized");
  2734. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  2735. ggml_set_name(out, "out");
  2736. return out;
  2737. }
  2738. };
  2739. // GGML_OP_OPT_STEP_ADAMW
  2740. struct test_opt_step_adamw : public test_case {
  2741. const ggml_type type;
  2742. const std::array<int64_t, 4> ne;
  2743. std::string vars() override {
  2744. return VARS_TO_STR2(type, ne);
  2745. }
  2746. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  2747. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2748. : type(type), ne(ne) {}
  2749. ggml_tensor * build_graph(ggml_context * ctx) override {
  2750. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2751. ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
  2752. ggml_set_name(a, "a");
  2753. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2754. ggml_set_name(grad, "grad");
  2755. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2756. ggml_set_name(grad_m, "grad_m");
  2757. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2758. ggml_set_name(grad_v, "grad_v");
  2759. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  2760. ggml_set_name(adamw_params, "adamw_params");
  2761. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  2762. ggml_set_name(out, "out");
  2763. return out;
  2764. }
  2765. void initialize_tensors(ggml_context * ctx) override {
  2766. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2767. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  2768. }
  2769. }
  2770. bool grad_precise() override {
  2771. return true;
  2772. }
  2773. };
  2774. enum llm_norm_type {
  2775. LLM_NORM,
  2776. LLM_NORM_RMS,
  2777. };
  2778. struct llama_hparams {
  2779. uint32_t n_vocab;
  2780. uint32_t n_embd;
  2781. uint32_t n_head;
  2782. uint32_t n_head_kv;
  2783. static constexpr uint32_t n_layer = 1;
  2784. uint32_t n_rot;
  2785. uint32_t n_embd_head; // dimension of values (d_v)
  2786. uint32_t n_ff;
  2787. float f_norm_eps;
  2788. float f_norm_rms_eps;
  2789. // cparams
  2790. static constexpr uint32_t n_ctx = 512; // user-specified context size
  2791. static constexpr uint32_t n_ctx_orig = n_ctx;
  2792. // batch
  2793. int32_t n_tokens;
  2794. // llm_build_context
  2795. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  2796. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  2797. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  2798. return n_embd_head * n_head_kv;
  2799. }
  2800. };
  2801. // LLM base class
  2802. struct test_llm : public test_case {
  2803. llama_hparams hp;
  2804. protected:
  2805. test_llm(llama_hparams hp)
  2806. : hp(std::move(hp)) {
  2807. }
  2808. public:
  2809. struct ggml_tensor * llm_build_norm(
  2810. struct ggml_context * ctx,
  2811. struct ggml_tensor * cur,
  2812. struct ggml_tensor * mw,
  2813. struct ggml_tensor * mb,
  2814. llm_norm_type type) {
  2815. switch (type) {
  2816. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  2817. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  2818. }
  2819. cur = ggml_mul(ctx, cur, mw);
  2820. if (mb) {
  2821. cur = ggml_add(ctx, cur, mb);
  2822. }
  2823. return cur;
  2824. }
  2825. void llm_build_kv_store(
  2826. struct ggml_context * ctx,
  2827. struct ggml_tensor * k_l,
  2828. struct ggml_tensor * v_l,
  2829. struct ggml_tensor * k_cur,
  2830. struct ggml_tensor * v_cur) {
  2831. // compute the transposed [n_tokens, n_embd] V matrix
  2832. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  2833. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  2834. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  2835. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  2836. ( hp.n_ctx)*ggml_element_size(v_l),
  2837. (hp.kv_head)*ggml_element_size(v_l));
  2838. // important: storing RoPE-ed version of K in the KV cache!
  2839. ggml_cpy(ctx, k_cur, k_cache_view);
  2840. ggml_cpy(ctx, v_cur_t, v_cache_view);
  2841. }
  2842. struct ggml_tensor * llm_build_kqv(
  2843. struct ggml_context * ctx,
  2844. struct ggml_tensor * k_l,
  2845. struct ggml_tensor * v_l,
  2846. struct ggml_tensor * q_cur,
  2847. struct ggml_tensor * kq_mask,
  2848. float kq_scale) {
  2849. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  2850. struct ggml_tensor * k =
  2851. ggml_view_3d(ctx, k_l,
  2852. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  2853. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  2854. ggml_row_size(k_l->type, hp.n_embd_head),
  2855. 0);
  2856. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  2857. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  2858. // split cached v into n_head heads
  2859. struct ggml_tensor * v =
  2860. ggml_view_3d(ctx, v_l,
  2861. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  2862. ggml_element_size(v_l)*hp.n_ctx,
  2863. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  2864. 0);
  2865. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  2866. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  2867. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  2868. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2869. cur = ggml_mul_mat(ctx, wo, cur);
  2870. return cur;
  2871. }
  2872. void initialize_tensors(ggml_context * ctx) override {
  2873. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2874. if (t->type == GGML_TYPE_I32) {
  2875. // pos
  2876. std::vector<int> data(hp.n_tokens);
  2877. for (int i = 0; i < hp.n_tokens; i++) {
  2878. data[i] = rand() % hp.n_ctx;
  2879. }
  2880. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  2881. } else {
  2882. init_tensor_uniform(t);
  2883. }
  2884. }
  2885. }
  2886. };
  2887. // Llama
  2888. struct test_llama : public test_llm {
  2889. static constexpr float freq_base = 10000.0f;
  2890. static constexpr float freq_scale = 1.0f;
  2891. static constexpr float ext_factor = 0.0f;
  2892. static constexpr float attn_factor = 1.0f;
  2893. static constexpr float beta_fast = 32.0f;
  2894. static constexpr float beta_slow = 1.0f;
  2895. std::string op_desc(ggml_tensor * t) override {
  2896. GGML_UNUSED(t);
  2897. return "LLAMA";
  2898. }
  2899. std::string vars() override {
  2900. auto n_tokens = hp.n_tokens;
  2901. return VARS_TO_STR1(n_tokens);
  2902. }
  2903. double max_nmse_err() override {
  2904. return 2e-3;
  2905. }
  2906. test_llama(int n_tokens = 1)
  2907. : test_llm({
  2908. /*n_vocab =*/ 32000,
  2909. /*n_embd =*/ 3200,
  2910. /*n_head =*/ 32,
  2911. /*n_head_kv =*/ 32,
  2912. /*n_rot =*/ 100,
  2913. /*n_embd_head =*/ 100,
  2914. /*n_ff =*/ 8640,
  2915. /*f_norm_eps =*/ 0.f,
  2916. /*f_norm_rms_eps =*/ 1e-5f,
  2917. /*n_tokens =*/ n_tokens,
  2918. }) {
  2919. }
  2920. ggml_tensor * build_graph(ggml_context * ctx) override {
  2921. struct ggml_tensor * cur;
  2922. struct ggml_tensor * inpL;
  2923. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2924. // inp_pos - contains the positions
  2925. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2926. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2927. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2928. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2929. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2930. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  2931. struct ggml_tensor * inpSA = inpL;
  2932. // norm
  2933. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2934. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  2935. // self-attention
  2936. {
  2937. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2938. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2939. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2940. // compute Q and K and RoPE them
  2941. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  2942. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  2943. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  2944. Qcur = ggml_rope_ext(
  2945. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  2946. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2947. ext_factor, attn_factor, beta_fast, beta_slow
  2948. );
  2949. Kcur = ggml_rope_ext(
  2950. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  2951. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2952. ext_factor, attn_factor, beta_fast, beta_slow
  2953. );
  2954. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  2955. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  2956. }
  2957. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  2958. // feed-forward network
  2959. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2960. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  2961. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2962. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  2963. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2964. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  2965. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  2966. cur = ggml_silu(ctx, cur);
  2967. cur = ggml_mul(ctx, cur, tmp);
  2968. cur = ggml_mul_mat(ctx, ffn_down, cur);
  2969. cur = ggml_add(ctx, cur, ffn_inp);
  2970. // input for next layer
  2971. inpL = cur;
  2972. }
  2973. cur = inpL;
  2974. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2975. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  2976. // lm_head
  2977. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  2978. cur = ggml_mul_mat(ctx, output, cur);
  2979. return cur;
  2980. }
  2981. };
  2982. // Falcon
  2983. struct test_falcon : public test_llm {
  2984. static constexpr float freq_base = 10000.0f;
  2985. static constexpr float freq_scale = 1.0f;
  2986. static constexpr float ext_factor = 0.0f;
  2987. static constexpr float attn_factor = 1.0f;
  2988. static constexpr float beta_fast = 32.0f;
  2989. static constexpr float beta_slow = 1.0f;
  2990. std::string op_desc(ggml_tensor * t) override {
  2991. GGML_UNUSED(t);
  2992. return "FALCON";
  2993. }
  2994. std::string vars() override {
  2995. auto n_tokens = hp.n_tokens;
  2996. return VARS_TO_STR1(n_tokens);
  2997. }
  2998. double max_nmse_err() override {
  2999. return 2e-3;
  3000. }
  3001. test_falcon(int n_tokens = 1)
  3002. : test_llm({
  3003. /*n_vocab =*/ 32000,
  3004. /*n_embd =*/ 3200,
  3005. /*n_head =*/ 50,
  3006. /*n_head_kv =*/ 1,
  3007. /*n_rot =*/ 64,
  3008. /*n_embd_head =*/ 64,
  3009. /*n_ff =*/ 8640,
  3010. /*f_norm_eps =*/ 1e-5f,
  3011. /*f_norm_rms_eps =*/ 0.f,
  3012. /*n_tokens =*/ n_tokens,
  3013. }) {
  3014. }
  3015. ggml_tensor * build_graph(ggml_context * ctx) override {
  3016. struct ggml_tensor * cur;
  3017. struct ggml_tensor * inpL;
  3018. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3019. // inp_pos - contains the positions
  3020. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3021. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3022. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3023. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3024. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3025. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3026. // norm
  3027. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3028. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3029. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  3030. // self-attention
  3031. {
  3032. cur = attn_norm;
  3033. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  3034. cur = ggml_mul_mat(ctx, wqkv, cur);
  3035. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  3036. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  3037. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  3038. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  3039. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  3040. // using mode = 2 for neox mode
  3041. Qcur = ggml_rope_ext(
  3042. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3043. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3044. );
  3045. Kcur = ggml_rope_ext(
  3046. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3047. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3048. );
  3049. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3050. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3051. }
  3052. struct ggml_tensor * ffn_inp = cur;
  3053. // feed forward
  3054. {
  3055. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3056. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3057. cur = attn_norm;
  3058. cur = ggml_mul_mat(ctx, ffn_up, cur);
  3059. cur = ggml_gelu(ctx, cur);
  3060. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3061. }
  3062. cur = ggml_add(ctx, cur, ffn_inp);
  3063. cur = ggml_add(ctx, cur, inpL);
  3064. // input for next layer
  3065. inpL = cur;
  3066. }
  3067. cur = inpL;
  3068. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3069. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3070. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  3071. // lm_head
  3072. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  3073. cur = ggml_mul_mat(ctx, output, cur);
  3074. return cur;
  3075. }
  3076. };
  3077. // ###########################################
  3078. // ## Section 3: GGML Op Test Instantiation ##
  3079. // ###########################################
  3080. static const ggml_type all_types[] = {
  3081. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  3082. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  3083. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3084. GGML_TYPE_Q8_0,
  3085. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3086. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  3087. GGML_TYPE_Q6_K,
  3088. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3089. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3090. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3091. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3092. };
  3093. static const ggml_type base_types[] = {
  3094. GGML_TYPE_F32, GGML_TYPE_F16,
  3095. GGML_TYPE_Q8_0, // for I8MM tests
  3096. GGML_TYPE_Q4_0,
  3097. GGML_TYPE_Q4_1, // for I8MM tests
  3098. GGML_TYPE_Q4_K,
  3099. GGML_TYPE_IQ2_XXS
  3100. };
  3101. static const ggml_type other_types[] = {
  3102. GGML_TYPE_Q4_1,
  3103. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3104. GGML_TYPE_Q8_0,
  3105. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3106. GGML_TYPE_Q5_K,
  3107. GGML_TYPE_Q6_K,
  3108. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3109. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3110. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3111. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3112. GGML_TYPE_BF16,
  3113. };
  3114. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  3115. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  3116. std::vector<std::unique_ptr<test_case>> test_cases;
  3117. std::default_random_engine rng(0);
  3118. // unary ops
  3119. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3120. for (int v : {0, 1}) {
  3121. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  3122. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  3123. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  3124. }
  3125. }
  3126. }
  3127. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3128. for (ggml_type type : all_types) {
  3129. for (int b : {1, 7}) {
  3130. for (bool v : {false, true}) {
  3131. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  3132. }
  3133. }
  3134. }
  3135. for (int b : {1, 7}) {
  3136. for (bool v : {false, true}) {
  3137. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  3138. }
  3139. }
  3140. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3141. for (ggml_type type : all_types) {
  3142. for (bool v : {false, true}) {
  3143. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  3144. }
  3145. }
  3146. for (bool v : {false, true}) {
  3147. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  3148. }
  3149. for (ggml_type type_input : {GGML_TYPE_F32}) {
  3150. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  3151. for (int k0 : {1, 3}) {
  3152. for (int k1 : {1, 3}) {
  3153. for (int s0 : {1, 2}) {
  3154. for (int s1 : {1, 2}) {
  3155. for (int p0 : {0, 1}) {
  3156. for (int p1 : {0, 1}) {
  3157. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3158. }
  3159. }
  3160. }
  3161. }
  3162. }
  3163. }
  3164. }
  3165. }
  3166. // im2col 1D
  3167. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3168. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3169. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3170. for (int s0 : {1, 3}) {
  3171. for (int p0 : {0, 3}) {
  3172. for (int d0 : {1, 3}) {
  3173. test_cases.emplace_back(new test_im2col(
  3174. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3175. s0, 0, p0, 0, d0, 0, false));
  3176. }
  3177. }
  3178. }
  3179. // im2col 2D
  3180. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3181. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3182. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3183. for (int s0 : {1, 3}) {
  3184. for (int s1 : {1, 3}) {
  3185. for (int p0 : {0, 3}) {
  3186. for (int p1 : {0, 3}) {
  3187. for (int d0 : {1, 3}) {
  3188. for (int d1 : {1, 3}) {
  3189. test_cases.emplace_back(new test_im2col(
  3190. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3191. s0, s1, p0, p1, d0, d1, true));
  3192. }
  3193. }
  3194. }
  3195. }
  3196. }
  3197. }
  3198. // extra tests for im2col 2D
  3199. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  3200. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  3201. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  3202. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  3203. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  3204. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  3205. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  3206. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  3207. // sycl backend will limit task global_range < MAX_INT
  3208. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  3209. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3210. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3211. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3212. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3213. test_cases.emplace_back(new test_conv_transpose_1d());
  3214. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  3215. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  3216. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  3217. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  3218. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  3219. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  3220. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  3221. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  3222. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  3223. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  3224. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  3225. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3226. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  3227. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  3228. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  3229. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  3230. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  3231. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3232. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  3233. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  3234. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3235. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3236. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3237. }
  3238. for (bool view : {false, true}) {
  3239. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  3240. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  3241. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  3242. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  3243. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  3244. }
  3245. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  3246. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  3247. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  3248. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  3249. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  3250. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  3251. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  3252. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  3253. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  3254. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  3255. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3256. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  3257. }
  3258. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3259. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  3260. }
  3261. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3262. for (ggml_type type_dst : all_types) {
  3263. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3264. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3265. }
  3266. }
  3267. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  3268. for (ggml_type type_src : all_types) {
  3269. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3270. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3271. }
  3272. }
  3273. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3274. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3275. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  3276. }
  3277. }
  3278. test_cases.emplace_back(new test_cont());
  3279. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  3280. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  3281. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  3282. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  3283. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  3284. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  3285. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  3286. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  3287. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  3288. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  3289. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  3290. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  3291. }
  3292. };
  3293. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3294. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  3295. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  3296. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  3297. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  3298. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  3299. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  3300. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  3301. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  3302. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  3303. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  3304. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  3305. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  3306. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  3307. // stable diffusion
  3308. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  3309. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  3310. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  3311. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  3312. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  3313. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  3314. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  3315. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  3316. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  3317. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  3318. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  3319. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  3320. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  3321. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  3322. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  3323. }
  3324. test_cases.emplace_back(new test_add1());
  3325. test_cases.emplace_back(new test_scale());
  3326. test_cases.emplace_back(new test_silu_back());
  3327. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  3328. for (bool v : {false, true}) {
  3329. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3330. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3331. }
  3332. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3333. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3334. }
  3335. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  3336. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  3337. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  3338. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  3339. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
  3340. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  3341. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  3342. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  3343. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  3344. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  3345. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  3346. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  3347. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  3348. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  3349. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  3350. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  3351. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  3352. for (ggml_type type_a : all_types) {
  3353. for (int i = 1; i < 10; ++i) {
  3354. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3355. }
  3356. }
  3357. #if 1
  3358. for (ggml_type type_a : base_types) {
  3359. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3360. // test cases without permutation
  3361. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3362. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {2, 1}));
  3363. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 2}));
  3364. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {1, 1}));
  3365. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {2, 1}));
  3366. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 1}));
  3367. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 1}));
  3368. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 2}));
  3369. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 2}));
  3370. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 1}));
  3371. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {2, 1}));
  3372. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 2}));
  3373. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {1, 1}));
  3374. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {2, 1}));
  3375. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 1}));
  3376. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 1}));
  3377. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 2}));
  3378. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 2}));
  3379. // test cases with permutation
  3380. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3381. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3382. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3383. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3384. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3385. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3386. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3387. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3388. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3389. }
  3390. }
  3391. for (ggml_type type_a : other_types) {
  3392. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3393. if (ggml_blck_size(type_a) != 256) {
  3394. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  3395. }
  3396. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3397. }
  3398. }
  3399. #else
  3400. // m = a rows
  3401. // n = b rows
  3402. // k = cols
  3403. std::uniform_int_distribution<> dist_m(1, 128);
  3404. std::uniform_int_distribution<> dist_n(16, 128);
  3405. std::uniform_int_distribution<> dist_k(1, 16);
  3406. for (int i = 0; i < 1000; i++) {
  3407. for (ggml_type type_a : all_types) {
  3408. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3409. int m = dist_m(rng);
  3410. int n = dist_n(rng);
  3411. int k = dist_k(rng) * ggml_blck_size(type_a);
  3412. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  3413. }
  3414. }
  3415. }
  3416. #endif
  3417. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  3418. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  3419. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  3420. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  3421. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  3422. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  3423. // sycl backend will limit task global_range < MAX_INT
  3424. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  3425. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3426. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3427. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  3428. for (ggml_type type_a : base_types) {
  3429. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3430. for (int n_mats : {4, 8}) {
  3431. for (int n_used : {1, 2, 4}) {
  3432. for (bool b : {false, true}) {
  3433. for (int n : {1, 32, 129}) {
  3434. int m = 512;
  3435. int k = 256;
  3436. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3437. }
  3438. }
  3439. }
  3440. }
  3441. }
  3442. }
  3443. for (ggml_type type_a : other_types) {
  3444. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3445. for (int n_mats : {4}) {
  3446. for (int n_used : {2}) {
  3447. for (bool b : {false}) {
  3448. for (int n : {1, 32}) {
  3449. int m = 512;
  3450. int k = 256;
  3451. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3452. }
  3453. }
  3454. }
  3455. }
  3456. }
  3457. }
  3458. for (ggml_type type_a : base_types) {
  3459. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3460. for (int n : {1, 16}) {
  3461. for (int k : {1, 16}) {
  3462. for (int bs2 : {1, 3}) {
  3463. for (int bs3 : {1, 3}) {
  3464. for (int nr2 : {1, 2}) {
  3465. for (int nr3 : {1, 2}) {
  3466. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  3467. }
  3468. }
  3469. }
  3470. }
  3471. }
  3472. }
  3473. }
  3474. }
  3475. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3476. test_cases.emplace_back(new test_sqr(type));
  3477. test_cases.emplace_back(new test_sqrt(type));
  3478. test_cases.emplace_back(new test_log(type));
  3479. test_cases.emplace_back(new test_sin(type));
  3480. test_cases.emplace_back(new test_cos(type));
  3481. test_cases.emplace_back(new test_clamp(type));
  3482. }
  3483. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  3484. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  3485. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  3486. #if 0
  3487. std::uniform_int_distribution<> dist_ne1(1, 50);
  3488. int exponent = 1;
  3489. while (exponent < (1 << 17)) {
  3490. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  3491. for (int n = 0; n < 10; ++n) {
  3492. int64_t ne0 = dist_ne0(rng);
  3493. int64_t ne1 = dist_ne1(rng);
  3494. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  3495. }
  3496. exponent <<= 1;
  3497. }
  3498. #endif
  3499. for (bool mask : {false, true}) {
  3500. for (float max_bias : {0.0f, 8.0f}) {
  3501. if (!mask && max_bias > 0.0f) continue;
  3502. for (float scale : {1.0f, 0.1f}) {
  3503. for (int64_t ne0 : {16, 1024}) {
  3504. for (int64_t ne1 : {16, 1024}) {
  3505. if (mask) {
  3506. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3507. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
  3508. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
  3509. }
  3510. } else {
  3511. /* The precision of mask here doesn't matter as boolean mask is false */
  3512. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3513. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3514. }
  3515. }
  3516. }
  3517. }
  3518. }
  3519. }
  3520. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3521. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3522. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
  3523. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3524. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3525. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
  3526. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
  3527. for (float max_bias : {0.0f, 8.0f}) {
  3528. for (float scale : {1.0f, 0.1f}) {
  3529. for (int64_t ne0 : {16, 1024}) {
  3530. for (int64_t ne1 : {16, 1024}) {
  3531. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  3532. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  3533. }
  3534. }
  3535. }
  3536. }
  3537. for (bool fw : {true, false}) { // fw == forward
  3538. bool all = true;
  3539. for (float v : { 0, 1 }) {
  3540. for (float fs : { 1.0f, 1.4245f }) {
  3541. for (float ef : { 0.0f, 0.7465f }) {
  3542. for (float af : { 1.0f, 1.4245f }) {
  3543. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3544. for (bool ff : {false, true}) { // freq_factors
  3545. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  3546. if (all) {
  3547. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  3548. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  3549. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  3550. }
  3551. if (all) {
  3552. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3553. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3554. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3555. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  3556. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  3557. }
  3558. if (all) {
  3559. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  3560. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  3561. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  3562. }
  3563. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3564. }
  3565. }
  3566. all = false;
  3567. }
  3568. }
  3569. }
  3570. }
  3571. }
  3572. for (int v : { 0, 1, 2, 3 }) {
  3573. for (int dim : { 0, 1, 2, 3, }) {
  3574. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  3575. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  3576. }
  3577. }
  3578. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  3579. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  3580. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  3581. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  3582. }
  3583. test_cases.emplace_back(new test_sum());
  3584. test_cases.emplace_back(new test_sum_rows());
  3585. test_cases.emplace_back(new test_mean());
  3586. test_cases.emplace_back(new test_upscale());
  3587. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
  3588. test_cases.emplace_back(new test_upscale_ext());
  3589. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  3590. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  3591. test_cases.emplace_back(new test_acc());
  3592. test_cases.emplace_back(new test_pad());
  3593. test_cases.emplace_back(new test_pad_reflect_1d());
  3594. test_cases.emplace_back(new test_arange());
  3595. test_cases.emplace_back(new test_timestep_embedding());
  3596. test_cases.emplace_back(new test_leaky_relu());
  3597. for (int hs : { 64, 80, 128, 256, }) {
  3598. for (bool mask : { true, false } ) {
  3599. for (float max_bias : { 0.0f, 8.0f }) {
  3600. if (!mask && max_bias > 0.0f) continue;
  3601. for (float logit_softcap : {0.0f, 10.0f}) {
  3602. if (hs != 128 && logit_softcap != 0.0f) continue;
  3603. for (int nh : { 4, }) {
  3604. for (int nr : { 1, 4, 16 }) {
  3605. if (nr == 16 && hs != 128) continue;
  3606. for (int kv : { 512, 1024, }) {
  3607. if (nr != 1 && kv != 512) continue;
  3608. for (int nb : { 1, 3, 32, 35, }) {
  3609. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  3610. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, type_KV));
  3611. // run fewer test cases permuted
  3612. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  3613. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, type_KV, {0, 2, 1, 3}));
  3614. }
  3615. }
  3616. }
  3617. }
  3618. }
  3619. }
  3620. }
  3621. }
  3622. }
  3623. }
  3624. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  3625. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  3626. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  3627. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  3628. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  3629. // these tests are disabled to save execution time, but they can be handy for debugging
  3630. #if 0
  3631. test_cases.emplace_back(new test_llama(1));
  3632. test_cases.emplace_back(new test_llama(2));
  3633. test_cases.emplace_back(new test_falcon(1));
  3634. test_cases.emplace_back(new test_falcon(2));
  3635. #endif
  3636. return test_cases;
  3637. }
  3638. // Test cases for performance evaluation: should be representative of real-world use cases
  3639. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  3640. std::vector<std::unique_ptr<test_case>> test_cases;
  3641. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  3642. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  3643. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  3644. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  3645. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  3646. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3647. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3648. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3649. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3650. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3651. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3652. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3653. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  3654. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3655. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  3656. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  3657. for (ggml_type type_a : all_types) {
  3658. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3659. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  3660. }
  3661. }
  3662. }
  3663. for (int K : {3, 5}) {
  3664. for (int IC : {256, 2560}) {
  3665. for (int IW_IH : {32, 64, 256}) {
  3666. if (IC == 2560 && IW_IH == 256) {
  3667. // too big
  3668. continue;
  3669. }
  3670. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  3671. }
  3672. }
  3673. }
  3674. return test_cases;
  3675. }
  3676. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter) {
  3677. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  3678. if (params_filter == nullptr) {
  3679. return;
  3680. }
  3681. std::regex params_filter_regex(params_filter);
  3682. for (auto it = test_cases.begin(); it != test_cases.end();) {
  3683. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  3684. it = test_cases.erase(it);
  3685. continue;
  3686. }
  3687. it++;
  3688. }
  3689. };
  3690. if (mode == MODE_TEST) {
  3691. auto test_cases = make_test_cases_eval();
  3692. filter_test_cases(test_cases, params_filter);
  3693. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  3694. if (backend_cpu == NULL) {
  3695. printf(" Failed to initialize CPU backend\n");
  3696. return false;
  3697. }
  3698. size_t n_ok = 0;
  3699. for (auto & test : test_cases) {
  3700. if (test->eval(backend, backend_cpu, op_name)) {
  3701. n_ok++;
  3702. }
  3703. }
  3704. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3705. ggml_backend_free(backend_cpu);
  3706. return n_ok == test_cases.size();
  3707. }
  3708. if (mode == MODE_GRAD) {
  3709. auto test_cases = make_test_cases_eval();
  3710. filter_test_cases(test_cases, params_filter);
  3711. size_t n_ok = 0;
  3712. for (auto & test : test_cases) {
  3713. if (test->eval_grad(backend, op_name)) {
  3714. n_ok++;
  3715. }
  3716. }
  3717. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3718. return n_ok == test_cases.size();
  3719. }
  3720. if (mode == MODE_PERF) {
  3721. auto test_cases = make_test_cases_perf();
  3722. filter_test_cases(test_cases, params_filter);
  3723. for (auto & test : test_cases) {
  3724. test->eval_perf(backend, op_name);
  3725. }
  3726. return true;
  3727. }
  3728. GGML_ABORT("fatal error");
  3729. }
  3730. static void usage(char ** argv) {
  3731. printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>]\n", argv[0]);
  3732. printf(" valid modes:\n");
  3733. printf(" - test (default, compare with CPU backend for correctness)\n");
  3734. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  3735. printf(" - perf (performance evaluation)\n");
  3736. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  3737. }
  3738. int main(int argc, char ** argv) {
  3739. test_mode mode = MODE_TEST;
  3740. const char * op_name_filter = nullptr;
  3741. const char * backend_filter = nullptr;
  3742. const char * params_filter = nullptr;
  3743. for (int i = 1; i < argc; i++) {
  3744. if (strcmp(argv[i], "test") == 0) {
  3745. mode = MODE_TEST;
  3746. } else if (strcmp(argv[i], "perf") == 0) {
  3747. mode = MODE_PERF;
  3748. } else if (strcmp(argv[i], "grad") == 0) {
  3749. mode = MODE_GRAD;
  3750. } else if (strcmp(argv[i], "-o") == 0) {
  3751. if (i + 1 < argc) {
  3752. op_name_filter = argv[++i];
  3753. } else {
  3754. usage(argv);
  3755. return 1;
  3756. }
  3757. } else if (strcmp(argv[i], "-b") == 0) {
  3758. if (i + 1 < argc) {
  3759. backend_filter = argv[++i];
  3760. } else {
  3761. usage(argv);
  3762. return 1;
  3763. }
  3764. } else if (strcmp(argv[i], "-p") == 0) {
  3765. if (i + 1 < argc) {
  3766. params_filter = argv[++i];
  3767. } else {
  3768. usage(argv);
  3769. return 1;
  3770. }
  3771. } else {
  3772. usage(argv);
  3773. return 1;
  3774. }
  3775. }
  3776. // load and enumerate backends
  3777. ggml_backend_load_all();
  3778. printf("Testing %zu devices\n\n", ggml_backend_dev_count());
  3779. size_t n_ok = 0;
  3780. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  3781. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  3782. printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
  3783. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  3784. printf(" Skipping\n");
  3785. n_ok++;
  3786. continue;
  3787. }
  3788. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  3789. printf(" Skipping CPU backend\n");
  3790. n_ok++;
  3791. continue;
  3792. }
  3793. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  3794. GGML_ASSERT(backend != NULL);
  3795. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  3796. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3797. if (ggml_backend_set_n_threads_fn) {
  3798. // TODO: better value for n_threads
  3799. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  3800. }
  3801. printf(" Device description: %s\n", ggml_backend_dev_description(dev));
  3802. size_t free, total; // NOLINT
  3803. ggml_backend_dev_memory(dev, &free, &total);
  3804. printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
  3805. printf("\n");
  3806. bool ok = test_backend(backend, mode, op_name_filter, params_filter);
  3807. printf(" Backend %s: ", ggml_backend_name(backend));
  3808. if (ok) {
  3809. printf("\033[1;32mOK\033[0m\n");
  3810. n_ok++;
  3811. } else {
  3812. printf("\033[1;31mFAIL\033[0m\n");
  3813. }
  3814. printf("\n");
  3815. ggml_backend_free(backend);
  3816. }
  3817. ggml_quantize_free();
  3818. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
  3819. if (n_ok != ggml_backend_dev_count()) {
  3820. printf("\033[1;31mFAIL\033[0m\n");
  3821. return 1;
  3822. }
  3823. printf("\033[1;32mOK\033[0m\n");
  3824. return 0;
  3825. }