| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418 |
- #define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
- #define _USE_MATH_DEFINES // For M_PI on MSVC
- #include "ggml-backend-impl.h"
- #include "ggml-backend.h"
- #include "ggml-cpu-traits.h"
- #include "ggml-cpu-impl.h"
- #include "ggml-cpu.h"
- #include "ggml-impl.h"
- #include "ggml-cpu-quants.h"
- #include "ggml-threading.h"
- #include "unary-ops.h"
- #include "binary-ops.h"
- #include "vec.h"
- #include "ops.h"
- #include "ggml.h"
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #include <malloc.h> // using malloc.h with MSC/MINGW
- #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
- #include <alloca.h>
- #endif
- #include <assert.h>
- #include <errno.h>
- #include <time.h>
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdint.h>
- #include <inttypes.h>
- #include <stdio.h>
- #include <float.h>
- #include <limits.h>
- #include <stdarg.h>
- #include <signal.h>
- #if defined(__gnu_linux__)
- #include <syscall.h>
- #endif
- #ifdef GGML_USE_OPENMP
- #include <omp.h>
- #endif
- #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
- #undef GGML_USE_LLAMAFILE
- #endif
- #ifdef GGML_USE_LLAMAFILE
- #include "llamafile/sgemm.h"
- #endif
- #if defined(_MSC_VER)
- // disable "possible loss of data" to avoid hundreds of casts
- // we should just be careful :)
- #pragma warning(disable: 4244 4267)
- // disable POSIX deprecation warnings
- // these functions are never going away, anyway
- #pragma warning(disable: 4996)
- // unreachable code because of multiple instances of code after GGML_ABORT
- #pragma warning(disable: 4702)
- #endif
- // Note: once we move threading into a separate C++ file
- // will use std::hardware_destructive_interference_size instead of hardcoding it here
- // and we'll use C++ attribute syntax.
- #define GGML_CACHE_LINE 64
- #if defined(__clang__) || defined(__GNUC__)
- #define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE)))
- #endif
- #if defined(__has_feature)
- #if __has_feature(thread_sanitizer)
- #define GGML_TSAN_ENABLED 1
- #endif
- #else // __has_feature
- #if defined(__SANITIZE_THREAD__)
- #define GGML_TSAN_ENABLED 1
- #endif
- #endif // __has_feature
- #define UNUSED GGML_UNUSED
- #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
- #if defined(__ARM_ARCH)
- struct ggml_arm_arch_features_type {
- int has_neon;
- int has_dotprod;
- int has_i8mm;
- int has_sve;
- int sve_cnt;
- int has_sme;
- } ggml_arm_arch_features = {-1, -1, -1, -1, 0, -1};
- #endif
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #if defined(_MSC_VER) && !defined(__clang__)
- #define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
- typedef volatile LONG atomic_int;
- typedef atomic_int atomic_bool;
- typedef atomic_int atomic_flag;
- #define ATOMIC_FLAG_INIT 0
- typedef enum {
- memory_order_relaxed,
- memory_order_consume,
- memory_order_acquire,
- memory_order_release,
- memory_order_acq_rel,
- memory_order_seq_cst
- } memory_order;
- static void atomic_store(atomic_int * ptr, LONG val) {
- InterlockedExchange(ptr, val);
- }
- static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
- // TODO: add support for explicit memory order
- InterlockedExchange(ptr, val);
- }
- static LONG atomic_load(atomic_int * ptr) {
- return InterlockedCompareExchange(ptr, 0, 0);
- }
- static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
- // TODO: add support for explicit memory order
- return InterlockedCompareExchange(ptr, 0, 0);
- }
- static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
- return InterlockedExchangeAdd(ptr, inc);
- }
- static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
- // TODO: add support for explicit memory order
- return InterlockedExchangeAdd(ptr, inc);
- }
- static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
- return InterlockedExchange(ptr, 1);
- }
- static void atomic_flag_clear(atomic_flag * ptr) {
- InterlockedExchange(ptr, 0);
- }
- static void atomic_thread_fence(memory_order mo) {
- MemoryBarrier();
- }
- #else // clang
- #include <stdatomic.h>
- #endif
- typedef HANDLE pthread_t;
- typedef DWORD thread_ret_t;
- static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
- (void) unused;
- HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
- if (handle == NULL)
- {
- return EAGAIN;
- }
- *out = handle;
- return 0;
- }
- static int pthread_join(pthread_t thread, void * unused) {
- (void) unused;
- int ret = (int) WaitForSingleObject(thread, INFINITE);
- CloseHandle(thread);
- return ret;
- }
- static int sched_yield (void) {
- Sleep (0);
- return 0;
- }
- #else
- #include <pthread.h>
- #include <stdatomic.h>
- #include <sched.h>
- #if defined(__FreeBSD__)
- #include <pthread_np.h>
- #endif
- typedef void * thread_ret_t;
- #include <sys/types.h>
- #include <sys/stat.h>
- #include <unistd.h>
- #endif
- typedef pthread_t ggml_thread_t;
- #if defined(__APPLE__)
- #include <unistd.h>
- #include <mach/mach.h>
- #include <TargetConditionals.h>
- #endif
- static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
- [GGML_TYPE_F32] = {
- .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
- .vec_dot_type = GGML_TYPE_F32,
- .nrows = 1,
- },
- [GGML_TYPE_F16] = {
- .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
- .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
- .vec_dot_type = GGML_TYPE_F16,
- .nrows = 1,
- },
- [GGML_TYPE_Q4_0] = {
- .from_float = quantize_row_q4_0,
- .vec_dot = ggml_vec_dot_q4_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- #if defined (__ARM_FEATURE_MATMUL_INT8)
- .nrows = 2,
- #else
- .nrows = 1,
- #endif
- },
- [GGML_TYPE_Q4_1] = {
- .from_float = quantize_row_q4_1,
- .vec_dot = ggml_vec_dot_q4_1_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- #if defined (__ARM_FEATURE_MATMUL_INT8)
- .nrows = 2,
- #else
- .nrows = 1,
- #endif
- },
- [GGML_TYPE_Q5_0] = {
- .from_float = quantize_row_q5_0,
- .vec_dot = ggml_vec_dot_q5_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- .nrows = 1,
- },
- [GGML_TYPE_Q5_1] = {
- .from_float = quantize_row_q5_1,
- .vec_dot = ggml_vec_dot_q5_1_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- .nrows = 1,
- },
- [GGML_TYPE_Q8_0] = {
- .from_float = quantize_row_q8_0,
- .vec_dot = ggml_vec_dot_q8_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- #if defined (__ARM_FEATURE_MATMUL_INT8)
- .nrows = 2,
- #else
- .nrows = 1,
- #endif
- },
- [GGML_TYPE_Q8_1] = {
- .from_float = quantize_row_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- .nrows = 1,
- },
- [GGML_TYPE_Q2_K] = {
- .from_float = quantize_row_q2_K,
- .vec_dot = ggml_vec_dot_q2_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q3_K] = {
- .from_float = quantize_row_q3_K,
- .vec_dot = ggml_vec_dot_q3_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q4_K] = {
- .from_float = quantize_row_q4_K,
- .vec_dot = ggml_vec_dot_q4_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q5_K] = {
- .from_float = quantize_row_q5_K,
- .vec_dot = ggml_vec_dot_q5_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q6_K] = {
- .from_float = quantize_row_q6_K,
- .vec_dot = ggml_vec_dot_q6_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ2_XXS] = {
- .from_float = NULL,
- .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ2_XS] = {
- .from_float = NULL,
- .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ3_XXS] = {
- // NOTE: from_float for iq3 and iq2_s was removed because these quants require initialization in ggml_quantize_init
- //.from_float = quantize_row_iq3_xxs,
- .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ3_S] = {
- //.from_float = quantize_row_iq3_s,
- .vec_dot = ggml_vec_dot_iq3_s_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ2_S] = {
- //.from_float = quantize_row_iq2_s,
- .vec_dot = ggml_vec_dot_iq2_s_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ1_S] = {
- .from_float = NULL,
- .vec_dot = ggml_vec_dot_iq1_s_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ1_M] = {
- .from_float = NULL,
- .vec_dot = ggml_vec_dot_iq1_m_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ4_NL] = {
- .from_float = quantize_row_iq4_nl,
- .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- .nrows = 1,
- },
- [GGML_TYPE_IQ4_XS] = {
- .from_float = quantize_row_iq4_xs,
- .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q8_K] = {
- .from_float = quantize_row_q8_K,
- },
- [GGML_TYPE_BF16] = {
- .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
- .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
- .vec_dot_type = GGML_TYPE_BF16,
- .nrows = 1,
- },
- [GGML_TYPE_TQ1_0] = {
- .from_float = quantize_row_tq1_0,
- .vec_dot = ggml_vec_dot_tq1_0_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_TQ2_0] = {
- .from_float = quantize_row_tq2_0,
- .vec_dot = ggml_vec_dot_tq2_0_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- };
- const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
- return &type_traits_cpu[type];
- }
- //
- // Threading defs
- //
- typedef pthread_t ggml_thread_t;
- #if defined(_WIN32)
- typedef CONDITION_VARIABLE ggml_cond_t;
- typedef SRWLOCK ggml_mutex_t;
- #define ggml_mutex_init(m) InitializeSRWLock(m)
- #define ggml_mutex_destroy(m)
- #define ggml_mutex_lock(m) AcquireSRWLockExclusive(m)
- #define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
- #define ggml_mutex_lock_shared(m) AcquireSRWLockShared(m)
- #define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
- #define ggml_cond_init(c) InitializeConditionVariable(c)
- #define ggml_cond_destroy(c)
- #define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
- #define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
- #define ggml_thread_create pthread_create
- #define ggml_thread_join pthread_join
- #else
- typedef pthread_cond_t ggml_cond_t;
- typedef pthread_mutex_t ggml_mutex_t;
- #define ggml_mutex_init(m) pthread_mutex_init(m, NULL)
- #define ggml_mutex_destroy(m) pthread_mutex_destroy(m)
- #define ggml_mutex_lock(m) pthread_mutex_lock(m)
- #define ggml_mutex_unlock(m) pthread_mutex_unlock(m)
- #define ggml_mutex_lock_shared(m) pthread_mutex_lock(m)
- #define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
- #define ggml_lock_init(x) UNUSED(x)
- #define ggml_lock_destroy(x) UNUSED(x)
- #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
- #define ggml_lock_lock(x) _mm_pause()
- #else
- #define ggml_lock_lock(x) UNUSED(x)
- #endif
- #define ggml_lock_unlock(x) UNUSED(x)
- #define GGML_LOCK_INITIALIZER 0
- #define ggml_cond_init(c) pthread_cond_init(c, NULL)
- #define ggml_cond_destroy(c) pthread_cond_destroy(c)
- #define ggml_cond_wait(c, m) pthread_cond_wait(c, m)
- #define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
- #define ggml_thread_create pthread_create
- #define ggml_thread_join pthread_join
- #endif
- // Threadpool def
- struct ggml_threadpool {
- ggml_mutex_t mutex; // mutex for cond.var
- ggml_cond_t cond; // cond.var for waiting for new work
- struct ggml_cgraph * cgraph;
- struct ggml_cplan * cplan;
- // synchronization primitives
- atomic_int n_graph; // incremented when there is work to be done (i.e each graph)
- atomic_int GGML_CACHE_ALIGN n_barrier;
- atomic_int GGML_CACHE_ALIGN n_barrier_passed;
- atomic_int GGML_CACHE_ALIGN current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
- // these are atomic as an annotation for thread-sanitizer
- atomic_bool stop; // Used for stopping the threadpool altogether
- atomic_bool pause; // Used for pausing the threadpool or individual threads
- atomic_int abort; // Used for aborting processing of a graph
- struct ggml_compute_state * workers; // per thread state
- int n_threads_max; // number of threads in the pool
- atomic_int n_threads_cur; // number of threads used in the current graph
- int32_t prio; // Scheduling priority
- uint32_t poll; // Polling level (0 - no polling)
- enum ggml_status ec;
- };
- // Per-thread state
- struct ggml_compute_state {
- #ifndef GGML_USE_OPENMP
- ggml_thread_t thrd;
- bool cpumask[GGML_MAX_N_THREADS];
- int last_graph;
- bool pending;
- #endif
- struct ggml_threadpool * threadpool;
- int ith;
- };
- // Helpers for polling loops
- #if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
- static inline void ggml_thread_cpu_relax(void) {
- __asm__ volatile("yield" ::: "memory");
- }
- #elif defined(__x86_64__)
- static inline void ggml_thread_cpu_relax(void) {
- _mm_pause();
- }
- #else
- static inline void ggml_thread_cpu_relax(void) {;}
- #endif
- //
- // NUMA support
- //
- #define GGML_NUMA_MAX_NODES 8
- #define GGML_NUMA_MAX_CPUS 512
- struct ggml_numa_node {
- uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
- uint32_t n_cpus;
- };
- struct ggml_numa_nodes {
- enum ggml_numa_strategy numa_strategy;
- struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
- uint32_t n_nodes;
- uint32_t total_cpus; // hardware threads on system
- uint32_t current_node; // node on which main process is execting
- #if defined(__gnu_linux__)
- cpu_set_t cpuset; // cpuset from numactl
- #else
- uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
- #endif
- };
- //
- // ggml state
- //
- struct ggml_state {
- struct ggml_numa_nodes numa;
- };
- static struct ggml_state g_state = {0};
- void ggml_barrier(struct ggml_threadpool * tp) {
- int n_threads = atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed);
- if (n_threads == 1) {
- return;
- }
- #ifdef GGML_USE_OPENMP
- #pragma omp barrier
- #else
- int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
- // enter barrier (full seq-cst fence)
- int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
- if (n_barrier == (n_threads - 1)) {
- // last thread
- atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
- // exit barrier (fill seq-cst fence)
- atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
- return;
- }
- // wait for other threads
- while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
- ggml_thread_cpu_relax();
- }
- // exit barrier (full seq-cst fence)
- // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
- #ifdef GGML_TSAN_ENABLED
- atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
- #else
- atomic_thread_fence(memory_order_seq_cst);
- #endif
- #endif
- }
- #if defined(__gnu_linux__)
- static cpu_set_t ggml_get_numa_affinity(void) {
- cpu_set_t cpuset;
- pthread_t thread;
- thread = pthread_self();
- CPU_ZERO(&cpuset);
- pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
- return cpuset;
- }
- #else
- static uint32_t ggml_get_numa_affinity(void) {
- return 0; // no NUMA support
- }
- #endif
- void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
- if (g_state.numa.n_nodes > 0) {
- fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
- return;
- }
- #if defined(__gnu_linux__)
- struct stat st;
- char path[256];
- int rv;
- // set numa scheme
- g_state.numa.numa_strategy = numa_flag;
- GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
- g_state.numa.cpuset = ggml_get_numa_affinity();
- // enumerate nodes
- while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) != 0) { break; }
- ++g_state.numa.n_nodes;
- }
- // enumerate CPUs
- while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) != 0) { break; }
- ++g_state.numa.total_cpus;
- }
- GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
- // figure out which node we're on
- uint current_cpu;
- int getcpu_ret = 0;
- #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 33) || defined(__COSMOPOLITAN__)
- getcpu_ret = getcpu(¤t_cpu, &g_state.numa.current_node);
- #else
- // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
- # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
- # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
- # endif
- getcpu_ret = syscall(SYS_getcpu, ¤t_cpu, &g_state.numa.current_node);
- #endif
- if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
- g_state.numa.n_nodes = 0;
- return;
- }
- GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
- for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
- struct ggml_numa_node * node = &g_state.numa.nodes[n];
- GGML_PRINT_DEBUG("CPUs on node %u:", n);
- node->n_cpus = 0;
- for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) == 0) {
- node->cpus[node->n_cpus++] = c;
- GGML_PRINT_DEBUG(" %u", c);
- }
- }
- GGML_PRINT_DEBUG("\n");
- }
- if (ggml_is_numa()) {
- FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
- if (fptr != NULL) {
- char buf[42];
- if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
- GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
- }
- fclose(fptr);
- }
- }
- #else
- UNUSED(numa_flag);
- // TODO
- #endif
- }
- bool ggml_is_numa(void) {
- return g_state.numa.n_nodes > 1;
- }
- #if defined(__ARM_ARCH)
- #if defined(__linux__) && defined(__aarch64__)
- #include <sys/auxv.h>
- #elif defined(__APPLE__)
- #include <sys/sysctl.h>
- #endif
- #if !defined(HWCAP2_I8MM)
- #define HWCAP2_I8MM (1 << 13)
- #endif
- #if !defined(HWCAP2_SME)
- #define HWCAP2_SME (1 << 23)
- #endif
- static void ggml_init_arm_arch_features(void) {
- #if defined(__linux__) && defined(__aarch64__)
- uint32_t hwcap = getauxval(AT_HWCAP);
- uint32_t hwcap2 = getauxval(AT_HWCAP2);
- ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
- ggml_arm_arch_features.has_dotprod = !!(hwcap & HWCAP_ASIMDDP);
- ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
- ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
- ggml_arm_arch_features.has_sme = !!(hwcap2 & HWCAP2_SME);
- #if defined(__ARM_FEATURE_SVE)
- ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
- #endif
- #elif defined(__APPLE__)
- int oldp = 0;
- size_t size = sizeof(oldp);
- if (sysctlbyname("hw.optional.AdvSIMD", &oldp, &size, NULL, 0) != 0) {
- oldp = 0;
- }
- ggml_arm_arch_features.has_neon = oldp;
- if (sysctlbyname("hw.optional.arm.FEAT_DotProd", &oldp, &size, NULL, 0) != 0) {
- oldp = 0;
- }
- ggml_arm_arch_features.has_dotprod = oldp;
- if (sysctlbyname("hw.optional.arm.FEAT_I8MM", &oldp, &size, NULL, 0) != 0) {
- oldp = 0;
- }
- ggml_arm_arch_features.has_i8mm = oldp;
- if (sysctlbyname("hw.optional.arm.FEAT_SME", &oldp, &size, NULL, 0) != 0) {
- oldp = 0;
- }
- ggml_arm_arch_features.has_sme = oldp;
- ggml_arm_arch_features.has_sve = 0;
- ggml_arm_arch_features.sve_cnt = 0;
- #else
- // Run-time CPU feature detection not implemented for this platform, fallback to compile time
- #if defined(__ARM_NEON)
- ggml_arm_arch_features.has_neon = 1;
- #else
- ggml_arm_arch_features.has_neon = 0;
- #endif
- #if defined(__ARM_FEATURE_MATMUL_INT8)
- ggml_arm_arch_features.has_i8mm = 1;
- #else
- ggml_arm_arch_features.has_i8mm = 0;
- #endif
- #if defined(__ARM_FEATURE_SVE)
- ggml_arm_arch_features.has_sve = 1;
- ggml_arm_arch_features.sve_cnt = 16;
- #else
- ggml_arm_arch_features.has_sve = 0;
- ggml_arm_arch_features.sve_cnt = 0;
- #endif
- #if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_SME2)
- ggml_arm_arch_features.has_sme = 1;
- #else
- ggml_arm_arch_features.has_sme = 0;
- #endif
- #endif
- }
- #endif
- struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
- GGML_ASSERT(!ggml_get_no_alloc(ctx));
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
- ggml_set_i32(result, value);
- return result;
- }
- struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
- GGML_ASSERT(!ggml_get_no_alloc(ctx));
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_set_f32(result, value);
- return result;
- }
- struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
- char * const data = tensor->data;
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
- }
- } break;
- case GGML_TYPE_BF16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- return tensor;
- }
- struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
- char * const data = tensor->data;
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
- }
- } break;
- case GGML_TYPE_BF16:
- {
- assert(tensor->nb[0] == sizeof(ggml_bf16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- return tensor;
- }
- int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- }
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_BF16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
- return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- }
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
- return;
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
- ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- return ((int8_t *) data)[0];
- case GGML_TYPE_I16:
- return ((int16_t *) data)[0];
- case GGML_TYPE_I32:
- return ((int32_t *) data)[0];
- case GGML_TYPE_F16:
- return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
- case GGML_TYPE_BF16:
- return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
- case GGML_TYPE_F32:
- return ((float *) data)[0];
- default:
- GGML_ABORT("fatal error");
- }
- }
- void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(data))[0] = value;
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- return ((int8_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I16:
- {
- return ((int16_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I32:
- {
- return ((int32_t *)(tensor->data))[i];
- }
- case GGML_TYPE_F16:
- {
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_BF16:
- {
- return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_F32:
- {
- return ((float *)(tensor->data))[i];
- }
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
- return;
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- return ((int8_t *) data)[0];
- case GGML_TYPE_I16:
- return ((int16_t *) data)[0];
- case GGML_TYPE_I32:
- return ((int32_t *) data)[0];
- case GGML_TYPE_F16:
- return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
- case GGML_TYPE_BF16:
- return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
- case GGML_TYPE_F32:
- return ((float *) data)[0];
- default:
- GGML_ABORT("fatal error");
- }
- }
- void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_BF16:
- {
- ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(data))[0] = value;
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- ////////////////////////////////////////////////////////////////////////////////
- // ggml_compute_forward_mul_mat
- static void ggml_compute_forward_mul_mat_one_chunk(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst,
- const enum ggml_type type,
- const int64_t num_rows_per_vec_dot,
- const int64_t ir0_start,
- const int64_t ir0_end,
- const int64_t ir1_start,
- const int64_t ir1_end) {
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- const bool src1_cont = ggml_is_contiguous(src1);
- ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
- enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
- // broadcast factors
- const int64_t r2 = ne12 / ne02;
- const int64_t r3 = ne13 / ne03;
- //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
- // threads with no work simply yield (not sure if it helps)
- if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
- return;
- }
- const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- assert(ne12 % ne02 == 0);
- assert(ne13 % ne03 == 0);
- // block-tiling attempt
- const int64_t blck_0 = 16;
- const int64_t blck_1 = 16;
- const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
- // attempt to reduce false-sharing (does not seem to make a difference)
- // 16 * 2, accounting for mmla kernels
- float tmp[32];
- for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
- for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
- for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
- const int64_t i13 = (ir1 / (ne12 * ne1));
- const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
- const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
- // broadcast src0 into src1
- const int64_t i03 = i13 / r3;
- const int64_t i02 = i12 / r2;
- const int64_t i1 = i11;
- const int64_t i2 = i12;
- const int64_t i3 = i13;
- const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
- // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
- // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
- // the original src1 data pointer, so we should index using the indices directly
- // TODO: this is a bit of a hack, we should probably have a better way to handle this
- const char * src1_col = (const char*)wdata +
- (src1_cont || src1->type != vec_dot_type
- ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
- : (i11 * nb11 + i12 * nb12 + i13 * nb13));
- float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
- //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
- // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
- //}
- for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
- vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
- }
- for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
- memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
- }
- }
- }
- }
- }
- static void ggml_compute_forward_mul_mat(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- enum ggml_type const vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
- ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
- int64_t const vec_dot_num_rows = type_traits_cpu[src0->type].nrows;
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(src0->type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- // TODO: extract to "extra_op"
- #if GGML_USE_LLAMAFILE
- // broadcast factors
- const int64_t r2 = ne12 / ne02;
- const int64_t r3 = ne13 / ne03;
- const bool src1_cont = ggml_is_contiguous(src1);
- if (src1_cont) {
- for (int64_t i13 = 0; i13 < ne13; i13++)
- for (int64_t i12 = 0; i12 < ne12; i12++)
- if (!llamafile_sgemm(params,
- ne01, ne11, ne00/ggml_blck_size(src0->type),
- (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
- nb01/ggml_type_size(src0->type),
- (const char *)src1->data + i12*nb12 + i13*nb13,
- nb11/ggml_type_size(src1->type),
- (char *)dst->data + i12*nb2 + i13*nb3,
- nb1/ggml_type_size(dst->type),
- src0->type,
- src1->type,
- dst->type))
- goto UseGgmlGemm1;
- return;
- }
- UseGgmlGemm1:;
- #endif
- if (src1->type != vec_dot_type) {
- char * wdata = params->wdata;
- const size_t nbw0 = ggml_type_size(vec_dot_type);
- const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
- const size_t nbw2 = nbw1*ne11;
- const size_t nbw3 = nbw2*ne12;
- assert(params->wsize >= ne13*nbw3);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- #if 0
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
- from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
- (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
- ne10);
- }
- }
- }
- #else
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- size_t bs = ggml_blck_size(vec_dot_type);
- int64_t ne10_block_start = (ith * ne10/bs) / nth;
- int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth;
- from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
- (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
- (ne10_block_end - ne10_block_start) * bs);
- }
- }
- }
- #endif
- }
- if (ith == 0) {
- // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
- atomic_store_explicit(¶ms->threadpool->current_chunk, nth, memory_order_relaxed);
- }
- ggml_barrier(params->threadpool);
- #if GGML_USE_LLAMAFILE
- if (src1->type != vec_dot_type) {
- const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- for (int64_t i13 = 0; i13 < ne13; i13++)
- for (int64_t i12 = 0; i12 < ne12; i12++)
- if (!llamafile_sgemm(params,
- ne01, ne11, ne00/ggml_blck_size(src0->type),
- (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
- nb01/ggml_type_size(src0->type),
- (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
- row_size/ggml_type_size(vec_dot_type),
- (char *)dst->data + i12*nb2 + i13*nb3,
- nb1/ggml_type_size(dst->type),
- src0->type,
- vec_dot_type,
- dst->type))
- goto UseGgmlGemm2;
- return;
- }
- UseGgmlGemm2:;
- #endif
- // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
- const int64_t nr0 = ne0;
- // This is the size of the rest of the dimensions of the result
- const int64_t nr1 = ne1 * ne2 * ne3;
- // Now select a reasonable chunk size.
- int chunk_size = 16;
- // We need to step up the size if it's small
- if (nr0 == 1 || nr1 == 1) {
- chunk_size = 64;
- }
- // distribute the work across the inner or outer loop based on which one is larger
- // The number of chunks in the 0/1 dim.
- // CEIL(nr0/chunk_size)
- int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
- int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
- // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
- // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggml-org/llama.cpp/pull/6915
- // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
- if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
- // distribute the thread work across the inner or outer loop based on which one is larger
- nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
- nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
- }
- // The number of elements in each chunk
- const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
- const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
- // The first chunk comes from our thread_id, the rest will get auto-assigned.
- int current_chunk = ith;
- while (current_chunk < nchunk0 * nchunk1) {
- const int64_t ith0 = current_chunk % nchunk0;
- const int64_t ith1 = current_chunk / nchunk0;
- const int64_t ir0_start = dr0 * ith0;
- const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
- const int64_t ir1_start = dr1 * ith1;
- const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
- // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
- int64_t num_rows_per_vec_dot = vec_dot_num_rows;
- // these checks are needed to avoid crossing dim1 boundaries
- // can be optimized, but the logic would become more complicated, so keeping it like this for simplicity
- if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) {
- num_rows_per_vec_dot = 1;
- }
- ggml_compute_forward_mul_mat_one_chunk(params, dst, src0->type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
- if (nth >= nchunk0 * nchunk1) {
- break;
- }
- current_chunk = atomic_fetch_add_explicit(¶ms->threadpool->current_chunk, 1, memory_order_relaxed);
- }
- }
- // ggml_compute_forward_mul_mat_id
- #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ids->ne[0]*ids->ne[1] + (i1)]
- struct mmid_row_mapping {
- int32_t i1;
- int32_t i2;
- };
- static void ggml_compute_forward_mul_mat_id_one_chunk(
- struct ggml_tensor * dst,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * ids,
- const int64_t cur_a,
- const int64_t ir0_start,
- const int64_t ir0_end,
- const int64_t ir1_start,
- const int64_t ir1_end,
- const char * src0_cur,
- const struct mmid_row_mapping * matrix_rows,
- const size_t row_size,
- const bool src1_cont,
- const void * wdata) {
- GGML_TENSOR_BINARY_OP_LOCALS
- const enum ggml_type type = src0->type;
- ggml_vec_dot_t const vec_dot = type_traits_cpu[type].vec_dot;
- enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
- const int64_t blck_0 = 16;
- const int64_t blck_1 = 16;
- float tmp[16];
- for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
- for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
- for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ++ir1) {
- const int64_t _i12 = ir1; // logical row index for this expert
- struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
- const int id = row_mapping.i1; // selected expert index
- const int64_t i11 = id % ne11;
- const int64_t i12 = row_mapping.i2; // row index in src1
- const int64_t i1 = id; // selected expert index
- const int64_t i2 = i12; // row
- // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
- // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
- // the original src1 data pointer, so we should index using the indices directly
- // TODO: this is a bit of a hack, we should probably have a better way to handle this
- const char * src1_col = (const char *) wdata +
- (src1_cont || src1->type != vec_dot_type
- ? (i11 + i12*ne11)*row_size
- : (i11*nb11 + i12*nb12));
- float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
- for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
- vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
- }
- memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir0_end) - iir0)*sizeof(float));
- }
- }
- }
- }
- static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
- void * ptr = *p;
- ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
- *p = (void *) ((char *) ptr + size);
- return ptr;
- }
- static void ggml_compute_forward_mul_mat_id(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * ids = dst->src[2];
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const enum ggml_type type = src0->type;
- const bool src1_cont = ggml_is_contiguous(src1);
- enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
- ggml_from_float_t const from_float = type_traits_cpu[vec_dot_type].from_float;
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- // row groups
- const int n_ids = ids->ne[0]; // n_expert_used
- const int n_as = ne02; // n_expert
- void * wdata_cur = params->wdata;
- if (src1->type != vec_dot_type) {
- incr_ptr_aligned(&wdata_cur, ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
- }
- int64_t * matrix_row_counts = // [n_as]
- incr_ptr_aligned(&wdata_cur, n_as*sizeof(int64_t), sizeof(int64_t));
- struct mmid_row_mapping * matrix_rows = // [n_as][ids->ne[0]*ids->ne[1]]
- incr_ptr_aligned(&wdata_cur, n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping), sizeof(int64_t));
- char (*atomic_current_chunk)[CACHE_LINE_SIZE] = // [n_as]
- incr_ptr_aligned(&wdata_cur, CACHE_LINE_SIZE * n_as, CACHE_LINE_SIZE);
- GGML_ASSERT(params->wsize >= (size_t)((char *) wdata_cur - (char *) params->wdata));
- if (src1->type != vec_dot_type) {
- char * wdata = params->wdata;
- const size_t nbw0 = ggml_type_size(vec_dot_type);
- const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
- const size_t nbw2 = nbw1*ne11;
- const size_t nbw3 = nbw2*ne12;
- assert(params->wsize >= ne13*nbw3);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- #if 0
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = ith; i12 < ne12; i12 += nth) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
- (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
- ne10);
- }
- }
- }
- #else
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- size_t bs = ggml_blck_size(vec_dot_type);
- int64_t ne10_block_start = (ith * ne10/bs) / nth;
- int64_t ne10_block_end = ((ith + 1) * ne10/bs) / nth;
- from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
- (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
- (ne10_block_end - ne10_block_start) * bs);
- }
- }
- }
- #endif
- }
- if (ith == 0) {
- // initialize matrix_row_counts
- memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
- // group rows by src0 matrix
- for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
- for (int id = 0; id < n_ids; ++id) {
- const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
- assert(i02 >= 0 && i02 < n_as);
- MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
- matrix_row_counts[i02] += 1;
- }
- }
- }
- // reset current_chunk
- for (int cur_a = ith; cur_a < n_as; cur_a += nth) {
- atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
- *current_chunk_ctr = nth;
- }
- ggml_barrier(params->threadpool);
- for (int cur_a = 0; cur_a < n_as; ++cur_a) {
- const int64_t cne1 = matrix_row_counts[cur_a];
- if (cne1 == 0) {
- continue;
- }
- const char * src0_cur = (const char *) src0->data + cur_a * nb02;
- const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- const int64_t nr0 = ne01;
- const int64_t nr1 = cne1;
- int chunk_size = 16;
- if (nr0 == 1 || nr1 == 1) {
- chunk_size = 64;
- }
- #if defined(__aarch64__)
- // disable for ARM
- const bool disable_chunking = true;
- #else
- // disable for NUMA
- const bool disable_chunking = ggml_is_numa();
- #endif // defined(__aarch64__)
- int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
- int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
- if (nchunk0 * nchunk1 < nth * 4 || disable_chunking) {
- nchunk0 = nr0 > nr1 ? nth : 1;
- nchunk1 = nr0 > nr1 ? 1 : nth;
- }
- const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
- const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
- int current_chunk = ith;
- atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
- while (current_chunk < nchunk0 * nchunk1) {
- const int64_t ith0 = current_chunk % nchunk0;
- const int64_t ith1 = current_chunk / nchunk0;
- const int64_t ir0_start = dr0 * ith0;
- const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
- const int64_t ir1_start = dr1 * ith1;
- const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
- ggml_compute_forward_mul_mat_id_one_chunk(
- dst, src0, src1, ids, cur_a,
- ir0_start, ir0_end, ir1_start, ir1_end,
- src0_cur, matrix_rows, row_size, src1_cont, wdata
- );
- if (nth >= nchunk0 * nchunk1) {
- break;
- }
- current_chunk = atomic_fetch_add_explicit(current_chunk_ctr, 1, memory_order_relaxed);
- }
- }
- }
- /////////////////////////////////
- static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
- GGML_ASSERT(params);
- if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
- return;
- }
- // extra_buffer op?
- if (ggml_cpu_extra_compute_forward(params, tensor)) {
- return;
- }
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- ggml_compute_forward_dup(params, tensor);
- } break;
- case GGML_OP_ADD:
- {
- ggml_compute_forward_add(params, tensor);
- } break;
- case GGML_OP_ADD1:
- {
- ggml_compute_forward_add1(params, tensor);
- } break;
- case GGML_OP_ACC:
- {
- ggml_compute_forward_acc(params, tensor);
- } break;
- case GGML_OP_SUB:
- {
- ggml_compute_forward_sub(params, tensor);
- } break;
- case GGML_OP_MUL:
- {
- ggml_compute_forward_mul(params, tensor);
- } break;
- case GGML_OP_DIV:
- {
- ggml_compute_forward_div(params, tensor);
- } break;
- case GGML_OP_SQR:
- {
- ggml_compute_forward_sqr(params, tensor);
- } break;
- case GGML_OP_SQRT:
- {
- ggml_compute_forward_sqrt(params, tensor);
- } break;
- case GGML_OP_LOG:
- {
- ggml_compute_forward_log(params, tensor);
- } break;
- case GGML_OP_SIN:
- {
- ggml_compute_forward_sin(params, tensor);
- } break;
- case GGML_OP_COS:
- {
- ggml_compute_forward_cos(params, tensor);
- } break;
- case GGML_OP_SUM:
- {
- ggml_compute_forward_sum(params, tensor);
- } break;
- case GGML_OP_SUM_ROWS:
- {
- ggml_compute_forward_sum_rows(params, tensor);
- } break;
- case GGML_OP_MEAN:
- {
- ggml_compute_forward_mean(params, tensor);
- } break;
- case GGML_OP_ARGMAX:
- {
- ggml_compute_forward_argmax(params, tensor);
- } break;
- case GGML_OP_COUNT_EQUAL:
- {
- ggml_compute_forward_count_equal(params, tensor);
- } break;
- case GGML_OP_REPEAT:
- {
- ggml_compute_forward_repeat(params, tensor);
- } break;
- case GGML_OP_REPEAT_BACK:
- {
- ggml_compute_forward_repeat_back(params, tensor);
- } break;
- case GGML_OP_CONCAT:
- {
- ggml_compute_forward_concat(params, tensor);
- } break;
- case GGML_OP_SILU_BACK:
- {
- ggml_compute_forward_silu_back(params, tensor);
- } break;
- case GGML_OP_NORM:
- {
- ggml_compute_forward_norm(params, tensor);
- } break;
- case GGML_OP_RMS_NORM:
- {
- ggml_compute_forward_rms_norm(params, tensor);
- } break;
- case GGML_OP_RMS_NORM_BACK:
- {
- ggml_compute_forward_rms_norm_back(params, tensor);
- } break;
- case GGML_OP_GROUP_NORM:
- {
- ggml_compute_forward_group_norm(params, tensor);
- } break;
- case GGML_OP_L2_NORM:
- {
- ggml_compute_forward_l2_norm(params, tensor);
- } break;
- case GGML_OP_MUL_MAT:
- {
- ggml_compute_forward_mul_mat(params, tensor);
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- ggml_compute_forward_mul_mat_id(params, tensor);
- } break;
- case GGML_OP_OUT_PROD:
- {
- ggml_compute_forward_out_prod(params, tensor);
- } break;
- case GGML_OP_SCALE:
- {
- ggml_compute_forward_scale(params, tensor);
- } break;
- case GGML_OP_SET:
- {
- ggml_compute_forward_set(params, tensor);
- } break;
- case GGML_OP_CPY:
- {
- ggml_compute_forward_cpy(params, tensor);
- } break;
- case GGML_OP_CONT:
- {
- ggml_compute_forward_cont(params, tensor);
- } break;
- case GGML_OP_RESHAPE:
- {
- ggml_compute_forward_reshape(params, tensor);
- } break;
- case GGML_OP_VIEW:
- {
- ggml_compute_forward_view(params, tensor);
- } break;
- case GGML_OP_PERMUTE:
- {
- ggml_compute_forward_permute(params, tensor);
- } break;
- case GGML_OP_TRANSPOSE:
- {
- ggml_compute_forward_transpose(params, tensor);
- } break;
- case GGML_OP_GET_ROWS:
- {
- ggml_compute_forward_get_rows(params, tensor);
- } break;
- case GGML_OP_GET_ROWS_BACK:
- {
- ggml_compute_forward_get_rows_back(params, tensor);
- } break;
- case GGML_OP_DIAG:
- {
- ggml_compute_forward_diag(params, tensor);
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- ggml_compute_forward_diag_mask_inf(params, tensor);
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- {
- ggml_compute_forward_diag_mask_zero(params, tensor);
- } break;
- case GGML_OP_SOFT_MAX:
- {
- ggml_compute_forward_soft_max(params, tensor);
- } break;
- case GGML_OP_SOFT_MAX_BACK:
- {
- ggml_compute_forward_soft_max_ext_back(params, tensor);
- } break;
- case GGML_OP_ROPE:
- {
- ggml_compute_forward_rope(params, tensor);
- } break;
- case GGML_OP_ROPE_BACK:
- {
- ggml_compute_forward_rope_back(params, tensor);
- } break;
- case GGML_OP_CLAMP:
- {
- ggml_compute_forward_clamp(params, tensor);
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- ggml_compute_forward_conv_transpose_1d(params, tensor);
- } break;
- case GGML_OP_IM2COL:
- {
- ggml_compute_forward_im2col(params, tensor);
- } break;
- case GGML_OP_IM2COL_BACK:
- {
- ggml_compute_forward_im2col_back_f32(params, tensor);
- } break;
- case GGML_OP_CONV_2D_DW:
- {
- ggml_compute_forward_conv_2d_dw(params, tensor);
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- ggml_compute_forward_conv_transpose_2d(params, tensor);
- } break;
- case GGML_OP_POOL_1D:
- {
- ggml_compute_forward_pool_1d(params, tensor);
- } break;
- case GGML_OP_POOL_2D:
- {
- ggml_compute_forward_pool_2d(params, tensor);
- } break;
- case GGML_OP_POOL_2D_BACK:
- {
- ggml_compute_forward_pool_2d_back(params, tensor);
- } break;
- case GGML_OP_UPSCALE:
- {
- ggml_compute_forward_upscale(params, tensor);
- } break;
- case GGML_OP_PAD:
- {
- ggml_compute_forward_pad(params, tensor);
- } break;
- case GGML_OP_PAD_REFLECT_1D:
- {
- ggml_compute_forward_pad_reflect_1d(params, tensor);
- } break;
- case GGML_OP_ARANGE:
- {
- ggml_compute_forward_arange(params, tensor);
- } break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- {
- ggml_compute_forward_timestep_embedding(params, tensor);
- } break;
- case GGML_OP_ARGSORT:
- {
- ggml_compute_forward_argsort(params, tensor);
- } break;
- case GGML_OP_LEAKY_RELU:
- {
- ggml_compute_forward_leaky_relu(params, tensor);
- } break;
- case GGML_OP_FLASH_ATTN_EXT:
- {
- ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- int32_t t = ggml_get_op_params_i32(tensor, 0);
- GGML_ASSERT(t == 0 || t == 1);
- bool masked = t != 0;
- ggml_compute_forward_flash_attn_back(params, masked, tensor);
- } break;
- case GGML_OP_SSM_CONV:
- {
- ggml_compute_forward_ssm_conv(params, tensor);
- } break;
- case GGML_OP_SSM_SCAN:
- {
- ggml_compute_forward_ssm_scan(params, tensor);
- } break;
- case GGML_OP_WIN_PART:
- {
- ggml_compute_forward_win_part(params, tensor);
- } break;
- case GGML_OP_WIN_UNPART:
- {
- ggml_compute_forward_win_unpart(params, tensor);
- } break;
- case GGML_OP_UNARY:
- {
- ggml_compute_forward_unary(params, tensor);
- } break;
- case GGML_OP_GET_REL_POS:
- {
- ggml_compute_forward_get_rel_pos(params, tensor);
- } break;
- case GGML_OP_ADD_REL_POS:
- {
- ggml_compute_forward_add_rel_pos(params, tensor);
- } break;
- case GGML_OP_RWKV_WKV6:
- {
- ggml_compute_forward_rwkv_wkv6(params, tensor);
- } break;
- case GGML_OP_GATED_LINEAR_ATTN:
- {
- ggml_compute_forward_gla(params, tensor);
- } break;
- case GGML_OP_RWKV_WKV7:
- {
- ggml_compute_forward_rwkv_wkv7(params, tensor);
- } break;
- case GGML_OP_MAP_CUSTOM1:
- {
- ggml_compute_forward_map_custom1(params, tensor);
- }
- break;
- case GGML_OP_MAP_CUSTOM2:
- {
- ggml_compute_forward_map_custom2(params, tensor);
- }
- break;
- case GGML_OP_MAP_CUSTOM3:
- {
- ggml_compute_forward_map_custom3(params, tensor);
- }
- break;
- case GGML_OP_CUSTOM:
- {
- ggml_compute_forward_custom(params, tensor);
- }
- break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- ggml_compute_forward_cross_entropy_loss(params, tensor);
- }
- break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- ggml_compute_forward_cross_entropy_loss_back(params, tensor);
- }
- break;
- case GGML_OP_OPT_STEP_ADAMW:
- {
- ggml_compute_forward_opt_step_adamw(params, tensor);
- }
- break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // Android's libc implementation "bionic" does not support setting affinity
- #if defined(__gnu_linux__)
- static void set_numa_thread_affinity(int thread_n) {
- if (!ggml_is_numa()) {
- return;
- }
- int node_num;
- int rv;
- size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
- switch(g_state.numa.numa_strategy) {
- case GGML_NUMA_STRATEGY_DISTRIBUTE:
- // run thread on node_num thread_n / (threads per node)
- node_num = thread_n % g_state.numa.n_nodes;
- break;
- case GGML_NUMA_STRATEGY_ISOLATE:
- // run thread on current_node
- node_num = g_state.numa.current_node;
- break;
- case GGML_NUMA_STRATEGY_NUMACTL:
- // use the cpuset that numactl gave us
- rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
- if (rv) {
- fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
- }
- return;
- default:
- return;
- }
- struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
- cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
- CPU_ZERO_S(setsize, cpus);
- for (size_t i = 0; i < node->n_cpus; ++i) {
- CPU_SET_S(node->cpus[i], setsize, cpus);
- }
- rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
- if (rv) {
- fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
- }
- CPU_FREE(cpus);
- }
- static void clear_numa_thread_affinity(void) {
- if (!ggml_is_numa()) {
- return;
- }
- size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
- cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
- CPU_ZERO_S(setsize, cpus);
- for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
- CPU_SET_S(i, setsize, cpus);
- }
- int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
- if (rv) {
- fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
- }
- CPU_FREE(cpus);
- }
- #else
- // TODO: Windows etc.
- // (the linux implementation may also work on BSD, someone should test)
- static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
- static void clear_numa_thread_affinity(void) {}
- #endif
- static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
- int n_tasks = 0;
- if (ggml_is_empty(node)) {
- // no need to multi-thread a no-op
- n_tasks = 1;
- return n_tasks;
- }
- switch (node->op) {
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- case GGML_OP_ADD:
- case GGML_OP_ADD1:
- case GGML_OP_ACC:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_SUB:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_LOG:
- case GGML_OP_SIN:
- case GGML_OP_COS:
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_COUNT_EQUAL:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_REPEAT:
- case GGML_OP_REPEAT_BACK:
- case GGML_OP_LEAKY_RELU:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(node)) {
- case GGML_UNARY_OP_ABS:
- case GGML_UNARY_OP_SGN:
- case GGML_UNARY_OP_NEG:
- case GGML_UNARY_OP_STEP:
- case GGML_UNARY_OP_TANH:
- case GGML_UNARY_OP_ELU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_SIGMOID:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_EXP:
- {
- n_tasks = 1;
- } break;
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_SILU:
- {
- n_tasks = n_threads;
- } break;
- default:
- GGML_ABORT("fatal error");
- }
- break;
- case GGML_OP_SILU_BACK:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM:
- case GGML_OP_RMS_NORM_BACK:
- case GGML_OP_L2_NORM:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_CONCAT:
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- case GGML_OP_OUT_PROD:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_GET_ROWS:
- {
- // FIXME: get_rows can use additional threads, but the cost of launching additional threads
- // decreases performance with GPU offloading
- //n_tasks = n_threads;
- n_tasks = 1;
- } break;
- case GGML_OP_SCALE:
- case GGML_OP_SET:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_GET_ROWS_BACK:
- case GGML_OP_DIAG:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX_BACK:
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- case GGML_OP_ADD_REL_POS:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CLAMP:
- {
- n_tasks = 1; //TODO
- } break;
- case GGML_OP_SOFT_MAX:
- {
- n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
- } break;
- case GGML_OP_IM2COL:
- case GGML_OP_IM2COL_BACK:
- case GGML_OP_CONV_2D_DW:
- case GGML_OP_CONV_TRANSPOSE_1D:
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_POOL_1D:
- case GGML_OP_POOL_2D:
- case GGML_OP_POOL_2D_BACK:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_UPSCALE:
- case GGML_OP_PAD:
- case GGML_OP_PAD_REFLECT_1D:
- case GGML_OP_ARANGE:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_ARGSORT:
- case GGML_OP_FLASH_ATTN_EXT:
- case GGML_OP_FLASH_ATTN_BACK:
- case GGML_OP_SSM_CONV:
- case GGML_OP_SSM_SCAN:
- case GGML_OP_RWKV_WKV6:
- case GGML_OP_GATED_LINEAR_ATTN:
- case GGML_OP_RWKV_WKV7:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_WIN_PART:
- case GGML_OP_WIN_UNPART:
- case GGML_OP_GET_REL_POS:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_MAP_CUSTOM1:
- {
- struct ggml_map_custom1_op_params p;
- memcpy(&p, node->op_params, sizeof(p));
- if (p.n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p.n_tasks, n_threads);
- }
- } break;
- case GGML_OP_MAP_CUSTOM2:
- {
- struct ggml_map_custom2_op_params p;
- memcpy(&p, node->op_params, sizeof(p));
- if (p.n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p.n_tasks, n_threads);
- }
- } break;
- case GGML_OP_MAP_CUSTOM3:
- {
- struct ggml_map_custom3_op_params p;
- memcpy(&p, node->op_params, sizeof(p));
- if (p.n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p.n_tasks, n_threads);
- }
- } break;
- case GGML_OP_CUSTOM:
- {
- struct ggml_custom_op_params p;
- memcpy(&p, node->op_params, sizeof(p));
- if (p.n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p.n_tasks, n_threads);
- }
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- case GGML_OP_OPT_STEP_ADAMW:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_NONE:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ABORT("fatal error");
- }
- default:
- {
- fprintf(stderr, "%s: op not implemented: ", __func__);
- if (node->op < GGML_OP_COUNT) {
- fprintf(stderr, "%s\n", ggml_op_name(node->op));
- } else {
- fprintf(stderr, "%d\n", node->op);
- }
- GGML_ABORT("fatal error");
- }
- }
- assert(n_tasks > 0);
- return n_tasks;
- }
- static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
- #if defined(_WIN32)
- #include "windows.h"
- // TODO: support > 64 CPUs
- static bool ggml_thread_apply_affinity(bool * mask) {
- HANDLE h = GetCurrentThread();
- uint64_t bitmask = 0ULL;
- assert(GGML_MAX_N_THREADS >= 64);
- for (int32_t i = 0; i < 8; i++) {
- int32_t idx = i * 8;
- uint8_t val = 0;
- val |= mask[idx + 0] << 0;
- val |= mask[idx + 1] << 1;
- val |= mask[idx + 2] << 2;
- val |= mask[idx + 3] << 3;
- val |= mask[idx + 4] << 4;
- val |= mask[idx + 5] << 5;
- val |= mask[idx + 6] << 6;
- val |= mask[idx + 7] << 7;
- bitmask |= (uint64_t)val << idx;
- }
- for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
- if (mask[i]) {
- fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
- break;
- }
- }
- DWORD_PTR m = (DWORD_PTR)bitmask;
- m = SetThreadAffinityMask(h, m);
- return m != 0;
- }
- static bool ggml_thread_apply_priority(int32_t prio) {
- // Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
- // This is up to the applications.
- DWORD p = THREAD_PRIORITY_NORMAL;
- switch (prio) {
- case GGML_SCHED_PRIO_NORMAL: p = THREAD_PRIORITY_NORMAL; break;
- case GGML_SCHED_PRIO_MEDIUM: p = THREAD_PRIORITY_ABOVE_NORMAL; break;
- case GGML_SCHED_PRIO_HIGH: p = THREAD_PRIORITY_HIGHEST; break;
- case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
- }
- if (prio == GGML_SCHED_PRIO_NORMAL) {
- // Keep inherited policy/priority
- return true;
- }
- if (!SetThreadPriority(GetCurrentThread(), p)) {
- fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
- return false;
- }
- return true;
- }
- #elif defined(__APPLE__)
- #include <sys/types.h>
- #include <sys/resource.h>
- static bool ggml_thread_apply_affinity(const bool * mask) {
- // Not supported on Apple platforms
- UNUSED(mask);
- return true;
- }
- static bool ggml_thread_apply_priority(int32_t prio) {
- struct sched_param p;
- int32_t policy = SCHED_OTHER;
- switch (prio) {
- case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
- case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
- case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
- case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
- }
- if (prio == GGML_SCHED_PRIO_NORMAL) {
- // Keep inherited policy/priority
- return true;
- }
- int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
- if (err != 0) {
- fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
- return false;
- }
- return true;
- }
- #elif defined(__gnu_linux__)
- // TODO: this may not work on BSD, to be verified
- static bool ggml_thread_apply_affinity(const bool * mask) {
- cpu_set_t cpuset;
- int err;
- CPU_ZERO(&cpuset);
- for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
- if (mask[i]) {
- GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
- CPU_SET(i, &cpuset);
- }
- }
- #ifdef __ANDROID__
- err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
- if (err < 0) {
- err = errno;
- }
- #else
- err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
- #endif
- if (err != 0) {
- fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
- return false;
- }
- return true;
- }
- static bool ggml_thread_apply_priority(int32_t prio) {
- struct sched_param p;
- int32_t policy = SCHED_OTHER;
- switch (prio) {
- case GGML_SCHED_PRIO_NORMAL: policy = SCHED_OTHER; p.sched_priority = 0; break;
- case GGML_SCHED_PRIO_MEDIUM: policy = SCHED_FIFO; p.sched_priority = 40; break;
- case GGML_SCHED_PRIO_HIGH: policy = SCHED_FIFO; p.sched_priority = 80; break;
- case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO; p.sched_priority = 90; break;
- }
- if (prio == GGML_SCHED_PRIO_NORMAL) {
- // Keep inherited policy/priority
- return true;
- }
- int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
- if (err != 0) {
- fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
- return false;
- }
- return true;
- }
- #else // unsupported platforms
- static bool ggml_thread_apply_affinity(const bool * mask) {
- UNUSED(mask);
- return true;
- }
- static bool ggml_thread_apply_priority(int32_t prio) {
- UNUSED(prio);
- return true;
- }
- #endif
- static bool ggml_thread_cpumask_is_valid(const bool * mask) {
- for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
- if (mask[i]) { return true; }
- }
- return false;
- }
- static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
- if (!strict) {
- memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
- return;
- } else {
- memset(local_mask, 0, GGML_MAX_N_THREADS);
- int32_t base_idx = *iter;
- for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
- int32_t idx = base_idx + i;
- if (idx >= GGML_MAX_N_THREADS) {
- // Just a cheaper modulo
- idx -= GGML_MAX_N_THREADS;
- }
- if (global_mask[idx]) {
- local_mask[idx] = 1;
- *iter = idx + 1;
- return;
- }
- }
- }
- }
- void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
- if (!threadpool) return;
- const int n_threads = threadpool->n_threads_max;
- #ifndef GGML_USE_OPENMP
- struct ggml_compute_state* workers = threadpool->workers;
- ggml_mutex_lock(&threadpool->mutex);
- threadpool->stop = true;
- threadpool->pause = false;
- ggml_cond_broadcast(&threadpool->cond);
- ggml_mutex_unlock(&threadpool->mutex);
- for (int j = 1; j < n_threads; j++) {
- int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
- GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
- UNUSED(rc);
- }
- ggml_mutex_destroy(&threadpool->mutex);
- ggml_cond_destroy(&threadpool->cond);
- #endif // GGML_USE_OPENMP
- const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads;
- ggml_aligned_free(threadpool->workers, workers_size);
- ggml_aligned_free(threadpool, sizeof(struct ggml_threadpool));
- }
- #ifndef GGML_USE_OPENMP
- // pause/resume must be called under mutex
- static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
- GGML_PRINT_DEBUG("Pausing threadpool\n");
- threadpool->pause = true;
- ggml_cond_broadcast(&threadpool->cond);
- }
- static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
- GGML_PRINT_DEBUG("Resuming threadpool\n");
- threadpool->pause = false;
- ggml_cond_broadcast(&threadpool->cond);
- }
- #endif
- void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
- #ifndef GGML_USE_OPENMP
- ggml_mutex_lock(&threadpool->mutex);
- if (!threadpool->pause) {
- ggml_threadpool_pause_locked(threadpool);
- }
- ggml_mutex_unlock(&threadpool->mutex);
- #else
- UNUSED(threadpool);
- #endif
- }
- void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
- #ifndef GGML_USE_OPENMP
- ggml_mutex_lock(&threadpool->mutex);
- if (threadpool->pause) {
- ggml_threadpool_resume_locked(threadpool);
- }
- ggml_mutex_unlock(&threadpool->mutex);
- #else
- UNUSED(threadpool);
- #endif
- }
- struct ggml_cplan ggml_graph_plan(
- const struct ggml_cgraph * cgraph,
- int n_threads,
- struct ggml_threadpool * threadpool) {
- if (threadpool == NULL) {
- //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
- }
- if (n_threads <= 0) {
- n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
- }
- size_t work_size = 0;
- struct ggml_cplan cplan;
- memset(&cplan, 0, sizeof(struct ggml_cplan));
- int max_tasks = 1;
- // thread scheduling for the different operations + work buffer size estimation
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- const int n_tasks = ggml_get_n_tasks(node, n_threads);
- max_tasks = MAX(max_tasks, n_tasks);
- size_t cur = 0;
- if (!ggml_cpu_extra_work_size(n_threads, node, &cur)) {
- switch (node->op) {
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- {
- if (ggml_is_quantized(node->type) ||
- // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
- (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
- (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_ADD:
- case GGML_OP_ADD1:
- {
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_ACC:
- {
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_COUNT_EQUAL:
- {
- cur = ggml_type_size(node->type)*n_tasks;
- } break;
- case GGML_OP_MUL_MAT:
- {
- const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type;
- if (node->src[1]->type != vec_dot_type) {
- cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
- }
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- cur = 0;
- const struct ggml_tensor * src0 = node->src[0];
- const struct ggml_tensor * src1 = node->src[1];
- const struct ggml_tensor * ids = node->src[2];
- const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
- const int n_as = src0->ne[2];
- // src1
- if (src1->type != vec_dot_type) {
- cur += ggml_row_size(vec_dot_type, ggml_nelements(src1)) + sizeof(int64_t);
- }
- // matrix_row_counts
- cur += n_as * sizeof(int64_t) + sizeof(int64_t);
- // matrix_rows
- cur += n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping) + sizeof(int64_t);
- // atomic_current_chunk
- cur += CACHE_LINE_SIZE*n_as + CACHE_LINE_SIZE;
- } break;
- case GGML_OP_OUT_PROD:
- {
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_SOFT_MAX:
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- {
- cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- GGML_ASSERT(node->src[0]->ne[3] == 1);
- GGML_ASSERT(node->src[1]->ne[2] == 1);
- GGML_ASSERT(node->src[1]->ne[3] == 1);
- const int64_t ne00 = node->src[0]->ne[0]; // K
- const int64_t ne01 = node->src[0]->ne[1]; // Cout
- const int64_t ne02 = node->src[0]->ne[2]; // Cin
- const int64_t ne10 = node->src[1]->ne[0]; // L
- const int64_t ne11 = node->src[1]->ne[1]; // Cin
- if ((node->src[0]->type == GGML_TYPE_F16 ||
- node->src[0]->type == GGML_TYPE_BF16) &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
- cur += sizeof(ggml_fp16_t)*ne10*ne11;
- } else if (node->src[0]->type == GGML_TYPE_F32 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur += sizeof(float)*ne00*ne01*ne02;
- cur += sizeof(float)*ne10*ne11;
- } else {
- GGML_ABORT("fatal error");
- }
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- const int64_t ne00 = node->src[0]->ne[0]; // W
- const int64_t ne01 = node->src[0]->ne[1]; // H
- const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
- const int64_t ne03 = node->src[0]->ne[3]; // Channels In
- const int64_t ne10 = node->src[1]->ne[0]; // W
- const int64_t ne11 = node->src[1]->ne[1]; // H
- const int64_t ne12 = node->src[1]->ne[2]; // Channels In
- cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
- cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
- } break;
- case GGML_OP_FLASH_ATTN_EXT:
- {
- const int64_t ne10 = node->src[1]->ne[0]; // DK
- const int64_t ne20 = node->src[2]->ne[0]; // DV
- cur = sizeof(float)*(1*ne10 + 2*ne20)*n_tasks; // 1x head size K + 2x head size V (per thread)
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- const int64_t D = node->src[0]->ne[0];
- const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
- const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
- if (node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
- } else if (node->src[1]->type == GGML_TYPE_F16) {
- cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
- } else if (node->src[1]->type == GGML_TYPE_BF16) {
- cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
- }
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ABORT("fatal error");
- }
- default:
- break;
- }
- }
- work_size = MAX(work_size, cur);
- }
- if (work_size > 0) {
- work_size += CACHE_LINE_SIZE*(n_threads);
- }
- cplan.threadpool = threadpool;
- cplan.n_threads = MIN(max_tasks, n_threads);
- cplan.work_size = work_size;
- cplan.work_data = NULL;
- return cplan;
- }
- static thread_ret_t ggml_graph_compute_thread(void * data) {
- struct ggml_compute_state * state = (struct ggml_compute_state *) data;
- struct ggml_threadpool * tp = state->threadpool;
- const struct ggml_cgraph * cgraph = tp->cgraph;
- const struct ggml_cplan * cplan = tp->cplan;
- set_numa_thread_affinity(state->ith);
- struct ggml_compute_params params = {
- /*.ith =*/ state->ith,
- /*.nth =*/ atomic_load_explicit(&tp->n_threads_cur, memory_order_relaxed),
- /*.wsize =*/ cplan->work_size,
- /*.wdata =*/ cplan->work_data,
- /*.threadpool=*/ tp,
- };
- for (int node_n = 0; node_n < cgraph->n_nodes && atomic_load_explicit(&tp->abort, memory_order_relaxed) != node_n; node_n++) {
- struct ggml_tensor * node = cgraph->nodes[node_n];
- ggml_compute_forward(¶ms, node);
- if (state->ith == 0 && cplan->abort_callback &&
- cplan->abort_callback(cplan->abort_callback_data)) {
- atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);
- tp->ec = GGML_STATUS_ABORTED;
- }
- if (node_n + 1 < cgraph->n_nodes) {
- ggml_barrier(state->threadpool);
- }
- }
- ggml_barrier(state->threadpool);
- return 0;
- }
- #ifndef GGML_USE_OPENMP
- // check if thread is active
- static inline bool ggml_graph_compute_thread_active(struct ggml_compute_state * state) {
- struct ggml_threadpool * threadpool = state->threadpool;
- int n_threads = atomic_load_explicit(&threadpool->n_threads_cur, memory_order_relaxed);
- return (state->ith < n_threads);
- }
- // check if thread is ready to proceed (exit from polling or sleeping)
- static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) {
- struct ggml_threadpool * threadpool = state->threadpool;
- if (state->pending || threadpool->stop || threadpool->pause) { return true; }
- // check for new graph/work
- int new_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
- if (new_graph != state->last_graph) {
- state->pending = ggml_graph_compute_thread_active(state);
- state->last_graph = new_graph;
- }
- return state->pending;
- }
- // sync thread state after polling
- static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) {
- // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
- #ifdef GGML_TSAN_ENABLED
- atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst);
- #else
- atomic_thread_fence(memory_order_seq_cst);
- #endif
- UNUSED(state);
- }
- static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
- struct ggml_threadpool * threadpool = state->threadpool;
- // Skip polling for unused threads
- if (!ggml_graph_compute_thread_active(state)) {
- return state->pending;
- }
- // This seems to make 0 ... 100 a decent range for polling level across modern processors.
- // Perhaps, we can adjust it dynamically based on load and things.
- const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
- for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) {
- // No new work. Keep polling.
- ggml_thread_cpu_relax();
- }
- return state->pending;
- }
- static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
- struct ggml_threadpool * threadpool = state->threadpool;
- if (ggml_graph_compute_poll_for_work(state)) {
- ggml_graph_compute_thread_sync(state);
- return state->pending;
- }
- ggml_mutex_lock_shared(&threadpool->mutex);
- while (!ggml_graph_compute_thread_ready(state)) {
- // No new work. Wait for the signal.
- GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith);
- ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
- }
- ggml_mutex_unlock_shared(&threadpool->mutex);
- return state->pending;
- }
- static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
- struct ggml_compute_state * state = (struct ggml_compute_state *) data;
- struct ggml_threadpool * threadpool = state->threadpool;
- ggml_thread_apply_priority(threadpool->prio);
- if (ggml_thread_cpumask_is_valid(state->cpumask)) {
- ggml_thread_apply_affinity(state->cpumask);
- }
- while (true) {
- // Check if we need to sleep
- while (threadpool->pause) {
- GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
- ggml_mutex_lock_shared(&threadpool->mutex);
- if (threadpool->pause) {
- ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
- }
- GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
- ggml_mutex_unlock_shared(&threadpool->mutex);
- }
- // This needs to be checked for after the cond_wait
- if (threadpool->stop) break;
- // Check if there is new work
- // The main thread is the only one that can dispatch new work
- ggml_graph_compute_check_for_work(state);
- if (state->pending) {
- state->pending = false;
- ggml_graph_compute_thread(state);
- }
- }
- return (thread_ret_t) 0;
- }
- // Start processing new graph
- static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads)
- {
- // Always take the mutex here because the worker threads are doing hybrid poll/wait
- ggml_mutex_lock(&threadpool->mutex);
- GGML_PRINT_DEBUG("threadpool: n_threads_cur %d n_threads %d\n", threadpool->n_threads_cur, n_threads);
- // Update the number of active threads
- atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
- // Indicate the graph is ready to be processed
- // We need the full seq-cst fence here because of the polling threads (used in thread_sync)
- atomic_fetch_add_explicit(&threadpool->n_graph, 1, memory_order_seq_cst);
- if (threadpool->pause) {
- // Update main thread prio and affinity to match the threadpool settings
- ggml_thread_apply_priority(threadpool->prio);
- if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
- ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
- }
- // resume does cond broadcast
- ggml_threadpool_resume_locked(threadpool);
- } else {
- ggml_cond_broadcast(&threadpool->cond);
- }
- ggml_mutex_unlock(&threadpool->mutex);
- }
- #endif // GGML_USE_OPENMP
- static struct ggml_threadpool * ggml_threadpool_new_impl(
- struct ggml_threadpool_params * tpp,
- struct ggml_cgraph * cgraph,
- struct ggml_cplan * cplan) {
- struct ggml_threadpool * threadpool =
- ggml_aligned_malloc(sizeof(struct ggml_threadpool));
- {
- threadpool->cgraph = cgraph;
- threadpool->cplan = cplan;
- threadpool->n_graph = 0;
- threadpool->n_barrier = 0;
- threadpool->n_barrier_passed = 0;
- threadpool->current_chunk = 0;
- threadpool->stop = false;
- threadpool->pause = tpp->paused;
- threadpool->abort = -1;
- threadpool->workers = NULL;
- threadpool->n_threads_max = tpp->n_threads;
- threadpool->n_threads_cur = tpp->n_threads;
- threadpool->poll = tpp->poll;
- threadpool->prio = tpp->prio;
- threadpool->ec = GGML_STATUS_SUCCESS;
- }
- // Allocate and init workers state
- const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
- struct ggml_compute_state * workers = ggml_aligned_malloc(workers_size);
- memset(workers, 0, workers_size);
- for (int j = 0; j < tpp->n_threads; j++) {
- workers[j].threadpool = threadpool;
- workers[j].ith = j;
- }
- threadpool->workers = workers;
- #ifndef GGML_USE_OPENMP
- ggml_mutex_init(&threadpool->mutex);
- ggml_cond_init(&threadpool->cond);
- // Spin the threads for all workers, and update CPU placements.
- // Place the main thread last (towards the higher numbered CPU cores).
- int32_t cpumask_iter = 0;
- for (int j = 1; j < tpp->n_threads; j++) {
- ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
- int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
- GGML_ASSERT(rc == 0);
- }
- ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
- if (!threadpool->pause) {
- // Update main thread prio and affinity at the start, otherwise we'll do it in resume
- ggml_thread_apply_priority(threadpool->prio);
- if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
- ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
- }
- }
- #endif // GGML_USE_OPENMP
- return threadpool;
- }
- struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
- return ggml_threadpool_new_impl(tpp, NULL, NULL);
- }
- enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
- ggml_cpu_init();
- GGML_ASSERT(cplan);
- GGML_ASSERT(cplan->n_threads > 0);
- GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
- int n_threads = cplan->n_threads;
- struct ggml_threadpool * threadpool = cplan->threadpool;
- bool disposable_threadpool = false;
- if (threadpool == NULL) {
- //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
- disposable_threadpool = true;
- struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
- threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
- } else {
- // Reset some of the parameters that need resetting
- // No worker threads should be accessing the parameters below at this stage
- threadpool->cgraph = cgraph;
- threadpool->cplan = cplan;
- threadpool->current_chunk = 0;
- threadpool->abort = -1;
- threadpool->ec = GGML_STATUS_SUCCESS;
- }
- #ifdef GGML_USE_OPENMP
- if (n_threads > 1) {
- #pragma omp parallel num_threads(n_threads)
- {
- #pragma omp single
- {
- // update the number of threads from the actual number of threads that we got from OpenMP
- n_threads = omp_get_num_threads();
- atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
- }
- ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
- }
- } else {
- atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);
- ggml_graph_compute_thread(&threadpool->workers[0]);
- }
- #else
- if (n_threads > threadpool->n_threads_max) {
- GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads_max);
- n_threads = threadpool->n_threads_max;
- }
- // Kick all threads to start the new graph
- ggml_graph_compute_kickoff(threadpool, n_threads);
- // This is a work thread too
- ggml_graph_compute_thread(&threadpool->workers[0]);
- #endif
- // don't leave affinity set on the main thread
- clear_numa_thread_affinity();
- enum ggml_status ret = threadpool->ec;
- if (disposable_threadpool) {
- ggml_threadpool_free(threadpool);
- }
- return ret;
- }
- enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
- struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
- cplan.work_data = (uint8_t *)ggml_new_buffer(ctx, cplan.work_size);
- return ggml_graph_compute(cgraph, &cplan);
- }
- int ggml_cpu_has_avx(void) {
- #if defined(__AVX__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx_vnni(void) {
- #if defined(__AVXVNNI__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx2(void) {
- #if defined(__AVX2__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512(void) {
- #if defined(__AVX512F__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512_vbmi(void) {
- #if defined(__AVX512VBMI__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512_vnni(void) {
- #if defined(__AVX512VNNI__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512_bf16(void) {
- #if defined(__AVX512BF16__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_amx_int8(void) {
- #if defined(__AMX_INT8__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_bmi2(void) {
- #if defined(__BMI2__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_fma(void) {
- #if defined(__FMA__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_arm_fma(void) {
- #if defined(__ARM_FEATURE_FMA)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_riscv_v(void) {
- #if defined(__riscv_v_intrinsic)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_f16c(void) {
- #if defined(__F16C__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_fp16_va(void) {
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_wasm_simd(void) {
- #if defined(__wasm_simd128__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_llamafile(void) {
- #if defined(GGML_USE_LLAMAFILE)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_sse3(void) {
- #if defined(__SSE3__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_ssse3(void) {
- #if defined(__SSSE3__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_vsx(void) {
- #if defined(__POWER9_VECTOR__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_vxe(void) {
- #if defined(__VXE__) || defined(__VXE2__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_neon(void) {
- #if defined(__ARM_ARCH) && defined(__ARM_NEON)
- return ggml_arm_arch_features.has_neon;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_dotprod(void) {
- #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_DOTPROD)
- return ggml_arm_arch_features.has_dotprod;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_sve(void) {
- #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
- return ggml_arm_arch_features.has_sve;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_matmul_int8(void) {
- #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_MATMUL_INT8)
- return ggml_arm_arch_features.has_i8mm;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_get_sve_cnt(void) {
- #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
- return ggml_arm_arch_features.sve_cnt;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_sme(void) {
- #if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SME)
- return ggml_arm_arch_features.has_sme;
- #else
- return 0;
- #endif
- }
- void ggml_cpu_init(void) {
- // needed to initialize f16 tables
- {
- struct ggml_init_params params = { 0, NULL, false };
- struct ggml_context * ctx = ggml_init(params);
- ggml_free(ctx);
- }
- ggml_critical_section_start();
- static bool is_first_call = true;
- if (is_first_call) {
- // initialize GELU, Quick GELU, SILU and EXP F32 tables
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
- for (int i = 0; i < (1 << 16); ++i) {
- union {
- uint16_t u16;
- ggml_fp16_t fp16;
- } u = {i};
- float f = GGML_FP16_TO_FP32(u.fp16);
- ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
- ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
- }
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
- GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
- }
- #if defined(__ARM_ARCH)
- ggml_init_arm_arch_features();
- #endif
- is_first_call = false;
- }
- ggml_critical_section_end();
- }
|