ggml-rpc.cpp 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683
  1. #include "ggml-rpc.h"
  2. #include "ggml-impl.h"
  3. #include "ggml-backend-impl.h"
  4. #include "ggml-cpp.h"
  5. #include <cinttypes>
  6. #include <string>
  7. #include <vector>
  8. #include <memory>
  9. #include <mutex>
  10. #include <unordered_map>
  11. #include <unordered_set>
  12. #ifdef _WIN32
  13. # define WIN32_LEAN_AND_MEAN
  14. # ifndef NOMINMAX
  15. # define NOMINMAX
  16. # endif
  17. # include <windows.h>
  18. # include <winsock2.h>
  19. #else
  20. # include <arpa/inet.h>
  21. # include <sys/socket.h>
  22. # include <sys/types.h>
  23. # include <netinet/in.h>
  24. # include <netinet/tcp.h>
  25. # include <netdb.h>
  26. # include <unistd.h>
  27. #endif
  28. #include <cstring>
  29. #include <fstream>
  30. #include <filesystem>
  31. namespace fs = std::filesystem;
  32. #ifdef _WIN32
  33. typedef SOCKET sockfd_t;
  34. using ssize_t = __int64;
  35. #else
  36. typedef int sockfd_t;
  37. #endif
  38. // cross-platform socket
  39. struct socket_t {
  40. sockfd_t fd;
  41. socket_t(sockfd_t fd) : fd(fd) {}
  42. ~socket_t() {
  43. GGML_PRINT_DEBUG("[%s] closing socket %d\n", __func__, this->fd);
  44. #ifdef _WIN32
  45. closesocket(this->fd);
  46. #else
  47. close(this->fd);
  48. #endif
  49. }
  50. };
  51. // all RPC structures must be packed
  52. #pragma pack(push, 1)
  53. // ggml_tensor is serialized into rpc_tensor
  54. struct rpc_tensor {
  55. uint64_t id;
  56. uint32_t type;
  57. uint64_t buffer;
  58. uint32_t ne[GGML_MAX_DIMS];
  59. uint32_t nb[GGML_MAX_DIMS];
  60. uint32_t op;
  61. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  62. int32_t flags;
  63. uint64_t src[GGML_MAX_SRC];
  64. uint64_t view_src;
  65. uint64_t view_offs;
  66. uint64_t data;
  67. char name[GGML_MAX_NAME];
  68. char padding[4];
  69. };
  70. static_assert(sizeof(rpc_tensor) % 8 == 0, "rpc_tensor size must be multiple of 8");
  71. // RPC commands
  72. enum rpc_cmd {
  73. RPC_CMD_ALLOC_BUFFER = 0,
  74. RPC_CMD_GET_ALIGNMENT,
  75. RPC_CMD_GET_MAX_SIZE,
  76. RPC_CMD_BUFFER_GET_BASE,
  77. RPC_CMD_FREE_BUFFER,
  78. RPC_CMD_BUFFER_CLEAR,
  79. RPC_CMD_SET_TENSOR,
  80. RPC_CMD_SET_TENSOR_HASH,
  81. RPC_CMD_GET_TENSOR,
  82. RPC_CMD_COPY_TENSOR,
  83. RPC_CMD_GRAPH_COMPUTE,
  84. RPC_CMD_GET_DEVICE_MEMORY,
  85. RPC_CMD_INIT_TENSOR,
  86. RPC_CMD_GET_ALLOC_SIZE,
  87. RPC_CMD_COUNT,
  88. };
  89. // Try RPC_CMD_SET_TENSOR_HASH first when data size is larger than this threshold
  90. const size_t HASH_THRESHOLD = 10 * 1024 * 1024;
  91. struct rpc_msg_get_alloc_size_req {
  92. rpc_tensor tensor;
  93. };
  94. struct rpc_msg_get_alloc_size_rsp {
  95. uint64_t alloc_size;
  96. };
  97. struct rpc_msg_init_tensor_req {
  98. rpc_tensor tensor;
  99. };
  100. struct rpc_msg_alloc_buffer_req {
  101. uint64_t size;
  102. };
  103. struct rpc_msg_alloc_buffer_rsp {
  104. uint64_t remote_ptr;
  105. uint64_t remote_size;
  106. };
  107. struct rpc_msg_get_alignment_rsp {
  108. uint64_t alignment;
  109. };
  110. struct rpc_msg_get_max_size_rsp {
  111. uint64_t max_size;
  112. };
  113. struct rpc_msg_buffer_get_base_req {
  114. uint64_t remote_ptr;
  115. };
  116. struct rpc_msg_buffer_get_base_rsp {
  117. uint64_t base_ptr;
  118. };
  119. struct rpc_msg_free_buffer_req {
  120. uint64_t remote_ptr;
  121. };
  122. struct rpc_msg_buffer_clear_req {
  123. uint64_t remote_ptr;
  124. uint8_t value;
  125. };
  126. struct rpc_msg_set_tensor_hash_rsp {
  127. uint8_t result;
  128. };
  129. struct rpc_msg_get_tensor_req {
  130. rpc_tensor tensor;
  131. uint64_t offset;
  132. uint64_t size;
  133. };
  134. struct rpc_msg_copy_tensor_req {
  135. rpc_tensor src;
  136. rpc_tensor dst;
  137. };
  138. struct rpc_msg_copy_tensor_rsp {
  139. uint8_t result;
  140. };
  141. struct rpc_msg_graph_compute_rsp {
  142. uint8_t result;
  143. };
  144. struct rpc_msg_get_device_memory_rsp {
  145. uint64_t free_mem;
  146. uint64_t total_mem;
  147. };
  148. #pragma pack(pop)
  149. // RPC data structures
  150. static ggml_guid_t ggml_backend_rpc_guid() {
  151. static ggml_guid guid = {0x99, 0x68, 0x5b, 0x6c, 0xd2, 0x83, 0x3d, 0x24, 0x25, 0x36, 0x72, 0xe1, 0x5b, 0x0e, 0x14, 0x03};
  152. return &guid;
  153. }
  154. struct ggml_backend_rpc_buffer_type_context {
  155. std::string endpoint;
  156. std::string name;
  157. size_t alignment;
  158. size_t max_size;
  159. };
  160. struct ggml_backend_rpc_context {
  161. std::string endpoint;
  162. std::string name;
  163. };
  164. struct ggml_backend_rpc_buffer_context {
  165. std::shared_ptr<socket_t> sock;
  166. void * base_ptr;
  167. uint64_t remote_ptr;
  168. };
  169. // RPC helper functions
  170. // Computes FNV-1a hash of the data
  171. static uint64_t fnv_hash(const uint8_t * data, size_t len) {
  172. const uint64_t fnv_prime = 0x100000001b3ULL;
  173. uint64_t hash = 0xcbf29ce484222325ULL;
  174. for (size_t i = 0; i < len; ++i) {
  175. hash ^= data[i];
  176. hash *= fnv_prime;
  177. }
  178. return hash;
  179. }
  180. static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
  181. #ifdef _WIN32
  182. if (fd == INVALID_SOCKET) {
  183. return nullptr;
  184. }
  185. #else
  186. if (fd < 0) {
  187. return nullptr;
  188. }
  189. #endif
  190. return std::make_shared<socket_t>(fd);
  191. }
  192. static bool set_no_delay(sockfd_t sockfd) {
  193. int flag = 1;
  194. // set TCP_NODELAY to disable Nagle's algorithm
  195. int ret = setsockopt(sockfd, IPPROTO_TCP, TCP_NODELAY, (char *)&flag, sizeof(int));
  196. return ret == 0;
  197. }
  198. static bool set_reuse_addr(sockfd_t sockfd) {
  199. int flag = 1;
  200. int ret = setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&flag, sizeof(int));
  201. return ret == 0;
  202. }
  203. static std::shared_ptr<socket_t> socket_connect(const char * host, int port) {
  204. struct sockaddr_in addr;
  205. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  206. auto sock_ptr = make_socket(sockfd);
  207. if (sock_ptr == nullptr) {
  208. return nullptr;
  209. }
  210. if (!set_no_delay(sockfd)) {
  211. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  212. return nullptr;
  213. }
  214. addr.sin_family = AF_INET;
  215. addr.sin_port = htons(port);
  216. struct hostent * server = gethostbyname(host);
  217. if (server == NULL) {
  218. fprintf(stderr, "Cannot resolve host '%s'\n", host);
  219. return nullptr;
  220. }
  221. memcpy(&addr.sin_addr.s_addr, server->h_addr, server->h_length);
  222. if (connect(sock_ptr->fd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
  223. return nullptr;
  224. }
  225. return sock_ptr;
  226. }
  227. static std::shared_ptr<socket_t> socket_accept(sockfd_t srv_sockfd) {
  228. auto client_socket_fd = accept(srv_sockfd, NULL, NULL);
  229. auto client_socket = make_socket(client_socket_fd);
  230. if (client_socket == nullptr) {
  231. return nullptr;
  232. }
  233. if (!set_no_delay(client_socket_fd)) {
  234. fprintf(stderr, "Failed to set TCP_NODELAY\n");
  235. return nullptr;
  236. }
  237. return client_socket;
  238. }
  239. static std::shared_ptr<socket_t> create_server_socket(const char * host, int port) {
  240. auto sockfd = socket(AF_INET, SOCK_STREAM, 0);
  241. auto sock = make_socket(sockfd);
  242. if (sock == nullptr) {
  243. return nullptr;
  244. }
  245. if (!set_reuse_addr(sockfd)) {
  246. fprintf(stderr, "Failed to set SO_REUSEADDR\n");
  247. return nullptr;
  248. }
  249. if (inet_addr(host) == INADDR_NONE) {
  250. fprintf(stderr, "Invalid host address: %s\n", host);
  251. return nullptr;
  252. }
  253. struct sockaddr_in serv_addr;
  254. serv_addr.sin_family = AF_INET;
  255. serv_addr.sin_addr.s_addr = inet_addr(host);
  256. serv_addr.sin_port = htons(port);
  257. if (bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr)) < 0) {
  258. return nullptr;
  259. }
  260. if (listen(sockfd, 1) < 0) {
  261. return nullptr;
  262. }
  263. return sock;
  264. }
  265. static bool send_data(sockfd_t sockfd, const void * data, size_t size) {
  266. size_t bytes_sent = 0;
  267. while (bytes_sent < size) {
  268. ssize_t n = send(sockfd, (const char *)data + bytes_sent, size - bytes_sent, 0);
  269. if (n < 0) {
  270. return false;
  271. }
  272. bytes_sent += n;
  273. }
  274. return true;
  275. }
  276. static bool recv_data(sockfd_t sockfd, void * data, size_t size) {
  277. size_t bytes_recv = 0;
  278. while (bytes_recv < size) {
  279. ssize_t n = recv(sockfd, (char *)data + bytes_recv, size - bytes_recv, 0);
  280. if (n <= 0) {
  281. return false;
  282. }
  283. bytes_recv += n;
  284. }
  285. return true;
  286. }
  287. static bool send_msg(sockfd_t sockfd, const void * msg, size_t msg_size) {
  288. if (!send_data(sockfd, &msg_size, sizeof(msg_size))) {
  289. return false;
  290. }
  291. return send_data(sockfd, msg, msg_size);
  292. }
  293. static bool recv_msg(sockfd_t sockfd, void * msg, size_t msg_size) {
  294. uint64_t size;
  295. if (!recv_data(sockfd, &size, sizeof(size))) {
  296. return false;
  297. }
  298. if (size != msg_size) {
  299. return false;
  300. }
  301. return recv_data(sockfd, msg, msg_size);
  302. }
  303. static bool recv_msg(sockfd_t sockfd, std::vector<uint8_t> & input) {
  304. uint64_t size;
  305. if (!recv_data(sockfd, &size, sizeof(size))) {
  306. return false;
  307. }
  308. try {
  309. input.resize(size);
  310. } catch (const std::bad_alloc & e) {
  311. fprintf(stderr, "Failed to allocate input buffer of size %" PRIu64 "\n", size);
  312. return false;
  313. }
  314. return recv_data(sockfd, input.data(), size);
  315. }
  316. static bool parse_endpoint(const std::string & endpoint, std::string & host, int & port) {
  317. size_t pos = endpoint.find(':');
  318. if (pos == std::string::npos) {
  319. return false;
  320. }
  321. host = endpoint.substr(0, pos);
  322. port = std::stoi(endpoint.substr(pos + 1));
  323. return true;
  324. }
  325. // RPC request : | rpc_cmd (1 byte) | request_size (8 bytes) | request_data (request_size bytes) |
  326. // RPC response: | response_size (8 bytes) | response_data (response_size bytes) |
  327. static bool send_rpc_cmd(const std::shared_ptr<socket_t> & sock, enum rpc_cmd cmd, const void * input, size_t input_size, void * output, size_t output_size) {
  328. uint8_t cmd_byte = cmd;
  329. if (!send_data(sock->fd, &cmd_byte, sizeof(cmd_byte))) {
  330. return false;
  331. }
  332. if (!send_data(sock->fd, &input_size, sizeof(input_size))) {
  333. return false;
  334. }
  335. if (!send_data(sock->fd, input, input_size)) {
  336. return false;
  337. }
  338. // TODO: currently the output_size is always known, do we need support for commands with variable output size?
  339. // even if we do, we can skip sending output_size from the server for commands with known output size
  340. uint64_t out_size;
  341. if (!recv_data(sock->fd, &out_size, sizeof(out_size))) {
  342. return false;
  343. }
  344. if (out_size != output_size) {
  345. return false;
  346. }
  347. if (!recv_data(sock->fd, output, output_size)) {
  348. return false;
  349. }
  350. return true;
  351. }
  352. // RPC client-side implementation
  353. static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
  354. static std::mutex mutex;
  355. std::lock_guard<std::mutex> lock(mutex);
  356. static std::unordered_map<std::string, std::weak_ptr<socket_t>> sockets;
  357. static bool initialized = false;
  358. auto it = sockets.find(endpoint);
  359. if (it != sockets.end()) {
  360. if (auto sock = it->second.lock()) {
  361. return sock;
  362. }
  363. }
  364. std::string host;
  365. int port;
  366. if (!parse_endpoint(endpoint, host, port)) {
  367. return nullptr;
  368. }
  369. #ifdef _WIN32
  370. if (!initialized) {
  371. WSADATA wsaData;
  372. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  373. if (res != 0) {
  374. return nullptr;
  375. }
  376. initialized = true;
  377. }
  378. #else
  379. GGML_UNUSED(initialized);
  380. #endif
  381. auto sock = socket_connect(host.c_str(), port);
  382. if (sock == nullptr) {
  383. return nullptr;
  384. }
  385. GGML_PRINT_DEBUG("[%s] connected to %s, sockfd=%d\n", __func__, endpoint.c_str(), sock->fd);
  386. sockets[endpoint] = sock;
  387. return sock;
  388. }
  389. static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  390. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  391. rpc_msg_free_buffer_req request = {ctx->remote_ptr};
  392. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
  393. GGML_ASSERT(status);
  394. delete ctx;
  395. }
  396. static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
  397. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  398. if (ctx->base_ptr != nullptr) {
  399. return ctx->base_ptr;
  400. }
  401. rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
  402. rpc_msg_buffer_get_base_rsp response;
  403. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
  404. GGML_ASSERT(status);
  405. ctx->base_ptr = reinterpret_cast<void *>(response.base_ptr);
  406. return ctx->base_ptr;
  407. }
  408. static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
  409. rpc_tensor result;
  410. result.id = reinterpret_cast<uint64_t>(tensor);
  411. result.type = tensor->type;
  412. if (tensor->buffer) {
  413. ggml_backend_buffer_t buffer = tensor->buffer;
  414. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  415. result.buffer = ctx->remote_ptr;
  416. } else {
  417. result.buffer = 0;
  418. }
  419. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  420. result.ne[i] = tensor->ne[i];
  421. result.nb[i] = tensor->nb[i];
  422. }
  423. result.op = tensor->op;
  424. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  425. result.op_params[i] = tensor->op_params[i];
  426. }
  427. result.flags = tensor->flags;
  428. for (uint32_t i = 0; i < GGML_MAX_SRC; i++) {
  429. result.src[i] = reinterpret_cast<uint64_t>(tensor->src[i]);
  430. }
  431. result.view_src = reinterpret_cast<uint64_t>(tensor->view_src);
  432. result.view_offs = tensor->view_offs;
  433. result.data = reinterpret_cast<uint64_t>(tensor->data);
  434. snprintf(result.name, GGML_MAX_NAME, "%s", tensor->name);
  435. return result;
  436. }
  437. static enum ggml_status ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  438. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  439. // CUDA backend on the server pads everything to 512 due to CUDA limitations.
  440. // Due to bandwidth constraints, we only call the server init tensor functions if necessary.
  441. // In particular, only quantized tensors need padding
  442. if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
  443. rpc_msg_init_tensor_req request;
  444. request.tensor = serialize_tensor(tensor);
  445. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_INIT_TENSOR, &request, sizeof(request), nullptr, 0);
  446. GGML_ASSERT(status);
  447. }
  448. return GGML_STATUS_SUCCESS;
  449. }
  450. static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  451. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  452. rpc_tensor rpc_tensor = serialize_tensor(tensor);
  453. if (size > HASH_THRESHOLD) {
  454. // input serialization format: | rpc_tensor | offset (8 bytes) | hash (8 bytes)
  455. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + sizeof(uint64_t);
  456. std::vector<uint8_t> input(input_size, 0);
  457. uint64_t hash = fnv_hash((const uint8_t*)data, size);
  458. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  459. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  460. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &hash, sizeof(hash));
  461. rpc_msg_set_tensor_hash_rsp response;
  462. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR_HASH, input.data(), input.size(), &response, sizeof(response));
  463. GGML_ASSERT(status);
  464. if (response.result) {
  465. // the server has the same data, no need to send it
  466. return;
  467. }
  468. }
  469. // input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes)
  470. size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
  471. std::vector<uint8_t> input(input_size, 0);
  472. memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
  473. memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
  474. memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
  475. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR, input.data(), input.size(), nullptr, 0);
  476. GGML_ASSERT(status);
  477. }
  478. static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  479. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  480. rpc_msg_get_tensor_req request;
  481. request.tensor = serialize_tensor(tensor);
  482. request.offset = offset;
  483. request.size = size;
  484. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_GET_TENSOR, &request, sizeof(request), data, size);
  485. GGML_ASSERT(status);
  486. }
  487. static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  488. // check if src and dst are on the same server
  489. ggml_backend_buffer_t src_buffer = src->buffer;
  490. ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
  491. ggml_backend_buffer_t dst_buffer = dst->buffer;
  492. ggml_backend_rpc_buffer_context * dst_ctx = (ggml_backend_rpc_buffer_context *)dst_buffer->context;
  493. if (src_ctx->sock != dst_ctx->sock) {
  494. return false;
  495. }
  496. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  497. rpc_msg_copy_tensor_req request;
  498. request.src = serialize_tensor(src);
  499. request.dst = serialize_tensor(dst);
  500. rpc_msg_copy_tensor_rsp response;
  501. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_COPY_TENSOR, &request, sizeof(request), &response, sizeof(response));
  502. GGML_ASSERT(status);
  503. return response.result;
  504. }
  505. static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  506. ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
  507. rpc_msg_buffer_clear_req request = {ctx->remote_ptr, value};
  508. bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_CLEAR, &request, sizeof(request), nullptr, 0);
  509. GGML_ASSERT(status);
  510. }
  511. static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
  512. /* .free_buffer = */ ggml_backend_rpc_buffer_free_buffer,
  513. /* .get_base = */ ggml_backend_rpc_buffer_get_base,
  514. /* .init_tensor = */ ggml_backend_rpc_buffer_init_tensor,
  515. /* .memset_tensor = */ NULL,
  516. /* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
  517. /* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
  518. /* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
  519. /* .clear = */ ggml_backend_rpc_buffer_clear,
  520. /* .reset = */ NULL,
  521. };
  522. static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
  523. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  524. return buft_ctx->name.c_str();
  525. }
  526. static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  527. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  528. rpc_msg_alloc_buffer_req request = {size};
  529. rpc_msg_alloc_buffer_rsp response;
  530. auto sock = get_socket(buft_ctx->endpoint);
  531. bool status = send_rpc_cmd(sock, RPC_CMD_ALLOC_BUFFER, &request, sizeof(request), &response, sizeof(response));
  532. GGML_ASSERT(status);
  533. if (response.remote_ptr != 0) {
  534. ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
  535. ggml_backend_rpc_buffer_interface,
  536. new ggml_backend_rpc_buffer_context{sock, nullptr, response.remote_ptr},
  537. response.remote_size);
  538. return buffer;
  539. } else {
  540. return nullptr;
  541. }
  542. }
  543. static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
  544. rpc_msg_get_alignment_rsp response;
  545. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALIGNMENT, nullptr, 0, &response, sizeof(response));
  546. GGML_ASSERT(status);
  547. return response.alignment;
  548. }
  549. static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  550. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  551. return buft_ctx->alignment;
  552. }
  553. static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
  554. rpc_msg_get_max_size_rsp response;
  555. bool status = send_rpc_cmd(sock, RPC_CMD_GET_MAX_SIZE, nullptr, 0, &response, sizeof(response));
  556. GGML_ASSERT(status);
  557. return response.max_size;
  558. }
  559. static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
  560. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  561. return buft_ctx->max_size;
  562. }
  563. static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  564. // See comments in init_tensor.
  565. if (ggml_is_quantized(tensor->type) && (tensor->ne[0] % 512 != 0) && (tensor->view_src == nullptr)) {
  566. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  567. auto sock = get_socket(buft_ctx->endpoint);
  568. rpc_msg_get_alloc_size_req request;
  569. request.tensor = serialize_tensor(tensor);
  570. rpc_msg_get_alloc_size_rsp response;
  571. bool status = send_rpc_cmd(sock, RPC_CMD_GET_ALLOC_SIZE, &request, sizeof(request), &response, sizeof(response));
  572. GGML_ASSERT(status);
  573. return response.alloc_size;
  574. } else {
  575. return ggml_nbytes(tensor);
  576. }
  577. }
  578. static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
  579. /* .get_name = */ ggml_backend_rpc_buffer_type_name,
  580. /* .alloc_buffer = */ ggml_backend_rpc_buffer_type_alloc_buffer,
  581. /* .get_alignment = */ ggml_backend_rpc_buffer_type_get_alignment,
  582. /* .get_max_size = */ ggml_backend_rpc_get_max_size,
  583. /* .get_alloc_size = */ ggml_backend_rpc_buffer_type_get_alloc_size,
  584. /* .is_host = */ NULL,
  585. };
  586. static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
  587. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  588. return rpc_ctx->name.c_str();
  589. }
  590. static void ggml_backend_rpc_free(ggml_backend_t backend) {
  591. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  592. delete rpc_ctx;
  593. delete backend;
  594. }
  595. static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
  596. GGML_UNUSED(backend);
  597. // this is no-op because we don't have any async operations
  598. }
  599. static void add_tensor(ggml_tensor * tensor, std::vector<rpc_tensor> & tensors, std::unordered_set<ggml_tensor*> & visited) {
  600. if (tensor == nullptr) {
  601. return;
  602. }
  603. if (visited.find(tensor) != visited.end()) {
  604. return;
  605. }
  606. visited.insert(tensor);
  607. for (int i = 0; i < GGML_MAX_SRC; i++) {
  608. add_tensor(tensor->src[i], tensors, visited);
  609. }
  610. add_tensor(tensor->view_src, tensors, visited);
  611. tensors.push_back(serialize_tensor(tensor));
  612. }
  613. static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & output) {
  614. uint32_t n_nodes = cgraph->n_nodes;
  615. std::vector<rpc_tensor> tensors;
  616. std::unordered_set<ggml_tensor*> visited;
  617. for (uint32_t i = 0; i < n_nodes; i++) {
  618. add_tensor(cgraph->nodes[i], tensors, visited);
  619. }
  620. // serialization format:
  621. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  622. uint32_t n_tensors = tensors.size();
  623. int output_size = sizeof(uint32_t) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t) + n_tensors * sizeof(rpc_tensor);
  624. output.resize(output_size, 0);
  625. memcpy(output.data(), &n_nodes, sizeof(n_nodes));
  626. for (uint32_t i = 0; i < n_nodes; i++) {
  627. memcpy(output.data() + sizeof(n_nodes) + i * sizeof(uint64_t), &cgraph->nodes[i], sizeof(uint64_t));
  628. }
  629. uint32_t * out_ntensors = (uint32_t *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t));
  630. *out_ntensors = n_tensors;
  631. rpc_tensor * out_tensors = (rpc_tensor *)(output.data() + sizeof(n_nodes) + n_nodes * sizeof(uint64_t) + sizeof(uint32_t));
  632. memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
  633. }
  634. static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  635. ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
  636. std::vector<uint8_t> input;
  637. serialize_graph(cgraph, input);
  638. rpc_msg_graph_compute_rsp response;
  639. auto sock = get_socket(rpc_ctx->endpoint);
  640. bool status = send_rpc_cmd(sock, RPC_CMD_GRAPH_COMPUTE, input.data(), input.size(), &response, sizeof(response));
  641. GGML_ASSERT(status);
  642. return (enum ggml_status)response.result;
  643. }
  644. static ggml_backend_i ggml_backend_rpc_interface = {
  645. /* .get_name = */ ggml_backend_rpc_name,
  646. /* .free = */ ggml_backend_rpc_free,
  647. /* .set_tensor_async = */ NULL,
  648. /* .get_tensor_async = */ NULL,
  649. /* .cpy_tensor_async = */ NULL,
  650. /* .synchronize = */ ggml_backend_rpc_synchronize,
  651. /* .graph_plan_create = */ NULL,
  652. /* .graph_plan_free = */ NULL,
  653. /* .graph_plan_update = */ NULL,
  654. /* .graph_plan_compute = */ NULL,
  655. /* .graph_compute = */ ggml_backend_rpc_graph_compute,
  656. /* .event_record = */ NULL,
  657. /* .event_wait = */ NULL,
  658. };
  659. ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
  660. static std::mutex mutex;
  661. std::lock_guard<std::mutex> lock(mutex);
  662. // NOTE: buffer types are allocated and never freed; this is by design
  663. static std::unordered_map<std::string, ggml_backend_buffer_type_t> buft_map;
  664. auto it = buft_map.find(endpoint);
  665. if (it != buft_map.end()) {
  666. return it->second;
  667. }
  668. auto sock = get_socket(endpoint);
  669. if (sock == nullptr) {
  670. fprintf(stderr, "Failed to connect to %s\n", endpoint);
  671. return nullptr;
  672. }
  673. size_t alignment = get_alignment(sock);
  674. size_t max_size = get_max_size(sock);
  675. ggml_backend_rpc_buffer_type_context * buft_ctx = new ggml_backend_rpc_buffer_type_context {
  676. /* .endpoint = */ endpoint,
  677. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  678. /* .alignment = */ alignment,
  679. /* .max_size = */ max_size
  680. };
  681. ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
  682. /* .iface = */ ggml_backend_rpc_buffer_type_interface,
  683. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  684. /* .context = */ buft_ctx
  685. };
  686. buft_map[endpoint] = buft;
  687. return buft;
  688. }
  689. ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
  690. ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
  691. /* .endpoint = */ endpoint,
  692. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  693. };
  694. ggml_backend_t backend = new ggml_backend {
  695. /* .guid = */ ggml_backend_rpc_guid(),
  696. /* .interface = */ ggml_backend_rpc_interface,
  697. /* .device = */ ggml_backend_rpc_add_device(endpoint),
  698. /* .context = */ ctx
  699. };
  700. return backend;
  701. }
  702. bool ggml_backend_is_rpc(ggml_backend_t backend) {
  703. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
  704. }
  705. static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * free, size_t * total) {
  706. rpc_msg_get_device_memory_rsp response;
  707. bool status = send_rpc_cmd(sock, RPC_CMD_GET_DEVICE_MEMORY, nullptr, 0, &response, sizeof(response));
  708. GGML_ASSERT(status);
  709. *free = response.free_mem;
  710. *total = response.total_mem;
  711. }
  712. void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
  713. auto sock = get_socket(endpoint);
  714. if (sock == nullptr) {
  715. *free = 0;
  716. *total = 0;
  717. return;
  718. }
  719. get_device_memory(sock, free, total);
  720. }
  721. // RPC server-side implementation
  722. class rpc_server {
  723. public:
  724. rpc_server(ggml_backend_t backend, const char * cache_dir)
  725. : backend(backend), cache_dir(cache_dir) {
  726. }
  727. ~rpc_server();
  728. void alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
  729. void get_alignment(rpc_msg_get_alignment_rsp & response);
  730. void get_max_size(rpc_msg_get_max_size_rsp & response);
  731. bool buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response);
  732. bool free_buffer(const rpc_msg_free_buffer_req & request);
  733. bool buffer_clear(const rpc_msg_buffer_clear_req & request);
  734. bool set_tensor(const std::vector<uint8_t> & input);
  735. bool set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set_tensor_hash_rsp & response);
  736. bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
  737. bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
  738. bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
  739. bool init_tensor(const rpc_msg_init_tensor_req & request);
  740. bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response);
  741. private:
  742. bool get_cached_file(uint64_t hash, std::vector<uint8_t> & data);
  743. ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
  744. ggml_tensor * create_node(uint64_t id,
  745. struct ggml_context * ctx,
  746. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  747. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map);
  748. ggml_backend_t backend;
  749. const char * cache_dir;
  750. std::unordered_set<ggml_backend_buffer_t> buffers;
  751. };
  752. bool rpc_server::get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response) {
  753. ggml_backend_buffer_type_t buft;
  754. struct ggml_init_params params {
  755. /*.mem_size =*/ ggml_tensor_overhead(),
  756. /*.mem_buffer =*/ NULL,
  757. /*.no_alloc =*/ true,
  758. };
  759. ggml_context_ptr ctx_ptr { ggml_init(params) };
  760. GGML_ASSERT(ctx_ptr != nullptr);
  761. ggml_context * ctx = ctx_ptr.get();
  762. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  763. if (tensor == nullptr) {
  764. GGML_LOG_ERROR("Null tensor pointer passed to server get_alloc_size function.\n");
  765. return false;
  766. }
  767. if (tensor->buffer == nullptr) {
  768. //No buffer allocated.
  769. buft = ggml_backend_get_default_buffer_type(backend);
  770. } else {
  771. buft = tensor->buffer->buft;
  772. }
  773. response.alloc_size = ggml_backend_buft_get_alloc_size(buft,tensor);
  774. return true;
  775. }
  776. void rpc_server::alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response) {
  777. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  778. ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, request.size);
  779. response.remote_ptr = 0;
  780. response.remote_size = 0;
  781. if (buffer != nullptr) {
  782. response.remote_ptr = reinterpret_cast<uint64_t>(buffer);
  783. response.remote_size = buffer->size;
  784. GGML_PRINT_DEBUG("[%s] size: %" PRIu64 " -> remote_ptr: %" PRIx64 ", remote_size: %" PRIu64 "\n", __func__, request.size, response.remote_ptr, response.remote_size);
  785. buffers.insert(buffer);
  786. } else {
  787. GGML_LOG_ERROR("[%s] size: %" PRIu64 " -> failed\n", __func__, request.size);
  788. }
  789. }
  790. void rpc_server::get_alignment(rpc_msg_get_alignment_rsp & response) {
  791. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  792. size_t alignment = ggml_backend_buft_get_alignment(buft);
  793. GGML_PRINT_DEBUG("[%s] alignment: %lu\n", __func__, alignment);
  794. response.alignment = alignment;
  795. }
  796. void rpc_server::get_max_size(rpc_msg_get_max_size_rsp & response) {
  797. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(backend);
  798. size_t max_size = ggml_backend_buft_get_max_size(buft);
  799. GGML_PRINT_DEBUG("[%s] max_size: %lu\n", __func__, max_size);
  800. response.max_size = max_size;
  801. }
  802. bool rpc_server::buffer_get_base(const rpc_msg_buffer_get_base_req & request, rpc_msg_buffer_get_base_rsp & response) {
  803. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  804. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  805. if (buffers.find(buffer) == buffers.end()) {
  806. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  807. return false;
  808. }
  809. void * base = ggml_backend_buffer_get_base(buffer);
  810. response.base_ptr = reinterpret_cast<uint64_t>(base);
  811. return true;
  812. }
  813. bool rpc_server::free_buffer(const rpc_msg_free_buffer_req & request) {
  814. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 "\n", __func__, request.remote_ptr);
  815. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  816. if (buffers.find(buffer) == buffers.end()) {
  817. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  818. return false;
  819. }
  820. ggml_backend_buffer_free(buffer);
  821. buffers.erase(buffer);
  822. return true;
  823. }
  824. bool rpc_server::buffer_clear(const rpc_msg_buffer_clear_req & request) {
  825. GGML_PRINT_DEBUG("[%s] remote_ptr: %" PRIx64 ", value: %u\n", __func__, request.remote_ptr, request.value);
  826. ggml_backend_buffer_t buffer = reinterpret_cast<ggml_backend_buffer_t>(request.remote_ptr);
  827. if (buffers.find(buffer) == buffers.end()) {
  828. GGML_LOG_ERROR("[%s] buffer not found\n", __func__);
  829. return false;
  830. }
  831. ggml_backend_buffer_clear(buffer, request.value);
  832. return true;
  833. }
  834. ggml_tensor * rpc_server::deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor) {
  835. ggml_tensor * result = ggml_new_tensor_4d(ctx, (ggml_type) tensor->type,
  836. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
  837. for (uint32_t i = 0; i < GGML_MAX_DIMS; i++) {
  838. result->nb[i] = tensor->nb[i];
  839. }
  840. result->buffer = reinterpret_cast<ggml_backend_buffer_t>(tensor->buffer);
  841. if (result->buffer && buffers.find(result->buffer) == buffers.end()) {
  842. result->buffer = nullptr;
  843. }
  844. if (result->buffer) {
  845. // require that the tensor data does not go beyond the buffer end
  846. uint64_t tensor_size = (uint64_t) ggml_nbytes(result);
  847. uint64_t buffer_start = (uint64_t) ggml_backend_buffer_get_base(result->buffer);
  848. uint64_t buffer_size = (uint64_t) ggml_backend_buffer_get_size(result->buffer);
  849. GGML_ASSERT(tensor->data + tensor_size >= tensor->data); // check for overflow
  850. GGML_ASSERT(tensor->data >= buffer_start && tensor->data + tensor_size <= buffer_start + buffer_size);
  851. }
  852. result->op = (ggml_op) tensor->op;
  853. for (uint32_t i = 0; i < GGML_MAX_OP_PARAMS / sizeof(int32_t); i++) {
  854. result->op_params[i] = tensor->op_params[i];
  855. }
  856. result->flags = tensor->flags;
  857. result->data = reinterpret_cast<void *>(tensor->data);
  858. ggml_set_name(result, tensor->name);
  859. return result;
  860. }
  861. bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
  862. // serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
  863. if (input.size() < sizeof(rpc_tensor) + sizeof(uint64_t)) {
  864. return false;
  865. }
  866. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  867. uint64_t offset;
  868. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  869. const size_t size = input.size() - sizeof(rpc_tensor) - sizeof(offset);
  870. struct ggml_init_params params {
  871. /*.mem_size =*/ ggml_tensor_overhead(),
  872. /*.mem_buffer =*/ NULL,
  873. /*.no_alloc =*/ true,
  874. };
  875. ggml_context_ptr ctx_ptr { ggml_init(params) };
  876. GGML_ASSERT(ctx_ptr != nullptr);
  877. ggml_context * ctx = ctx_ptr.get();
  878. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  879. if (tensor == nullptr) {
  880. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  881. return false;
  882. }
  883. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu\n", __func__, (void*)tensor->buffer, tensor->data, offset, size);
  884. // sanitize tensor->data
  885. {
  886. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  887. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  888. if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
  889. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  890. }
  891. }
  892. const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
  893. if (cache_dir && size > HASH_THRESHOLD) {
  894. uint64_t hash = fnv_hash((const uint8_t*)data, size);
  895. char hash_str[17];
  896. snprintf(hash_str, sizeof(hash_str), "%016" PRIx64, hash);
  897. // save to cache_dir/hash_str
  898. fs::path cache_file = fs::path(cache_dir) / hash_str;
  899. std::ofstream ofs(cache_file, std::ios::binary);
  900. ofs.write((const char *)data, size);
  901. printf("[%s] saved to '%s'\n", __func__, cache_file.c_str());
  902. }
  903. ggml_backend_tensor_set(tensor, data, offset, size);
  904. return true;
  905. }
  906. bool rpc_server::get_cached_file(uint64_t hash, std::vector<uint8_t> & data) {
  907. if (!cache_dir) {
  908. return false;
  909. }
  910. char hash_str[17];
  911. snprintf(hash_str, sizeof(hash_str), "%016" PRIx64, hash);
  912. fs::path cache_file = fs::path(cache_dir) / hash_str;
  913. if (!fs::exists(cache_file)) {
  914. return false;
  915. }
  916. std::ifstream ifs(cache_file, std::ios::binary);
  917. ifs.seekg(0, std::ios::end);
  918. size_t size = ifs.tellg();
  919. ifs.seekg(0, std::ios::beg);
  920. data.resize(size);
  921. ifs.read((char *)data.data(), size);
  922. return true;
  923. }
  924. bool rpc_server::set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set_tensor_hash_rsp & response)
  925. {
  926. // serialization format: | rpc_tensor | offset (8 bytes) | hash (8 bytes) |
  927. if (input.size() != sizeof(rpc_tensor) + 16) {
  928. return false;
  929. }
  930. const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
  931. uint64_t offset;
  932. memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
  933. const uint64_t * hash = (const uint64_t *)(input.data() + sizeof(rpc_tensor) + sizeof(offset));
  934. std::vector<uint8_t> cached_file;
  935. if (!get_cached_file(*hash, cached_file)) {
  936. response.result = 0;
  937. return true;
  938. }
  939. size_t size = cached_file.size();
  940. struct ggml_init_params params {
  941. /*.mem_size =*/ ggml_tensor_overhead(),
  942. /*.mem_buffer =*/ NULL,
  943. /*.no_alloc =*/ true,
  944. };
  945. ggml_context_ptr ctx_ptr { ggml_init(params) };
  946. GGML_ASSERT(ctx_ptr != nullptr);
  947. ggml_context * ctx = ctx_ptr.get();
  948. ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
  949. if (tensor == nullptr) {
  950. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  951. return false;
  952. }
  953. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu, hash: %" PRIx64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size, *hash);
  954. // sanitize tensor->data
  955. {
  956. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  957. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  958. if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
  959. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  960. }
  961. }
  962. ggml_backend_tensor_set(tensor, cached_file.data(), offset, size);
  963. response.result = 1;
  964. return true;
  965. }
  966. bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) {
  967. struct ggml_init_params params {
  968. /*.mem_size =*/ ggml_tensor_overhead(),
  969. /*.mem_buffer =*/ NULL,
  970. /*.no_alloc =*/ true,
  971. };
  972. ggml_context_ptr ctx_ptr { ggml_init(params) };
  973. GGML_ASSERT(ctx_ptr != nullptr);
  974. ggml_context * ctx = ctx_ptr.get();
  975. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  976. if (tensor == nullptr) {
  977. GGML_LOG_ERROR("Null tensor pointer passed to server init_tensor function.\n");
  978. return false;
  979. }
  980. // Call the backend's buffer_init_tensor function
  981. ggml_backend_buffer_t buffer = tensor->buffer;
  982. if (buffer && buffer->iface.init_tensor) {
  983. buffer->iface.init_tensor(buffer, tensor);
  984. } else {
  985. GGML_LOG_ERROR("Null buffer for tensor passed to init_tensor function\n");
  986. }
  987. if (tensor->extra != nullptr) {
  988. // This pointer can either be passed around client/server, or probably better stored server-side and kept track of.
  989. // Currently unimplemented.
  990. GGML_LOG_ERROR("tensor->extra populated by the backend, this is currently unsupported.\n");
  991. return false;
  992. }
  993. return true;
  994. }
  995. bool rpc_server::get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response) {
  996. struct ggml_init_params params {
  997. /*.mem_size =*/ ggml_tensor_overhead(),
  998. /*.mem_buffer =*/ NULL,
  999. /*.no_alloc =*/ true,
  1000. };
  1001. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1002. GGML_ASSERT(ctx_ptr != nullptr);
  1003. ggml_context * ctx = ctx_ptr.get();
  1004. ggml_tensor * tensor = deserialize_tensor(ctx, &request.tensor);
  1005. if (tensor == nullptr) {
  1006. GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
  1007. return false;
  1008. }
  1009. GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %" PRIu64 "\n", __func__, (void*)tensor->buffer, tensor->data, request.offset, request.size);
  1010. // sanitize tensor->data
  1011. {
  1012. const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
  1013. const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
  1014. if (request.tensor.data + request.offset < p0 ||
  1015. request.tensor.data + request.offset >= p1 ||
  1016. request.size > (p1 - request.tensor.data - request.offset)) {
  1017. GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
  1018. }
  1019. }
  1020. response.resize(request.size, 0);
  1021. ggml_backend_tensor_get(tensor, response.data(), request.offset, request.size);
  1022. return true;
  1023. }
  1024. bool rpc_server::copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response) {
  1025. struct ggml_init_params params {
  1026. /*.mem_size =*/ 2*ggml_tensor_overhead(),
  1027. /*.mem_buffer =*/ NULL,
  1028. /*.no_alloc =*/ true,
  1029. };
  1030. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1031. GGML_ASSERT(ctx_ptr != nullptr);
  1032. ggml_context * ctx = ctx_ptr.get();
  1033. ggml_tensor * src = deserialize_tensor(ctx, &request.src);
  1034. ggml_tensor * dst = deserialize_tensor(ctx, &request.dst);
  1035. if (src == nullptr || dst == nullptr) {
  1036. GGML_LOG_ERROR("[%s] error deserializing tensors\n", __func__);
  1037. return false;
  1038. }
  1039. uint64_t src_size = (uint64_t) ggml_nbytes(src);
  1040. uint64_t dst_data = (uint64_t) dst->data;
  1041. uint64_t dst_base = (uint64_t) ggml_backend_buffer_get_base(dst->buffer);
  1042. uint64_t dst_buf_sz = (uint64_t) ggml_backend_buffer_get_size(dst->buffer);
  1043. if (dst_data + src_size > dst_base + dst_buf_sz) {
  1044. GGML_PRINT_DEBUG("[%s] out-of-bounds write in rpc_server::copy_tensor:\n"
  1045. " write range : [0x%" PRIx64 ", 0x%" PRIx64 "]\n"
  1046. " buffer base: [0x%" PRIx64 ", 0x%" PRIx64 "]\n",
  1047. __func__,
  1048. dst_data,
  1049. dst_data + src_size,
  1050. dst_base,
  1051. dst_base + dst_buf_sz);
  1052. return false;
  1053. }
  1054. GGML_PRINT_DEBUG("[%s] src->buffer: %p, dst->buffer: %p\n",
  1055. __func__, (void*) src->buffer, (void*) dst->buffer);
  1056. response.result = ggml_backend_buffer_copy_tensor(src, dst);
  1057. return true;
  1058. }
  1059. ggml_tensor * rpc_server::create_node(uint64_t id,
  1060. struct ggml_context * ctx,
  1061. const std::unordered_map<uint64_t, const rpc_tensor*> & tensor_ptrs,
  1062. std::unordered_map<uint64_t, struct ggml_tensor*> & tensor_map) {
  1063. if (id == 0) {
  1064. return nullptr;
  1065. }
  1066. if (tensor_map.find(id) != tensor_map.end()) {
  1067. return tensor_map[id];
  1068. }
  1069. const rpc_tensor * tensor = tensor_ptrs.at(id);
  1070. struct ggml_tensor * result = deserialize_tensor(ctx, tensor);
  1071. if (result == nullptr) {
  1072. return nullptr;
  1073. }
  1074. tensor_map[id] = result;
  1075. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1076. result->src[i] = create_node(tensor->src[i], ctx, tensor_ptrs, tensor_map);
  1077. }
  1078. result->view_src = create_node(tensor->view_src, ctx, tensor_ptrs, tensor_map);
  1079. result->view_offs = tensor->view_offs;
  1080. return result;
  1081. }
  1082. bool rpc_server::graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response) {
  1083. // serialization format:
  1084. // | n_nodes (4 bytes) | nodes (n_nodes * sizeof(uint64_t) | n_tensors (4 bytes) | tensors (n_tensors * sizeof(rpc_tensor)) |
  1085. if (input.size() < sizeof(uint32_t)) {
  1086. return false;
  1087. }
  1088. uint32_t n_nodes;
  1089. memcpy(&n_nodes, input.data(), sizeof(n_nodes));
  1090. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t)) {
  1091. return false;
  1092. }
  1093. const uint64_t * nodes = (const uint64_t *)(input.data() + sizeof(n_nodes));
  1094. uint32_t n_tensors;
  1095. memcpy(&n_tensors, input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t), sizeof(n_tensors));
  1096. if (input.size() < sizeof(uint32_t) + n_nodes*sizeof(uint64_t) + sizeof(uint32_t) + n_tensors*sizeof(rpc_tensor)) {
  1097. return false;
  1098. }
  1099. const rpc_tensor * tensors = (const rpc_tensor *)(input.data() + sizeof(n_nodes) + n_nodes*sizeof(uint64_t) + sizeof(n_tensors));
  1100. GGML_PRINT_DEBUG("[%s] n_nodes: %u, n_tensors: %u\n", __func__, n_nodes, n_tensors);
  1101. size_t buf_size = ggml_tensor_overhead()*(n_nodes + n_tensors) + ggml_graph_overhead_custom(n_nodes, false);
  1102. struct ggml_init_params params = {
  1103. /*.mem_size =*/ buf_size,
  1104. /*.mem_buffer =*/ NULL,
  1105. /*.no_alloc =*/ true,
  1106. };
  1107. ggml_context_ptr ctx_ptr { ggml_init(params) };
  1108. GGML_ASSERT(ctx_ptr != nullptr);
  1109. ggml_context * ctx = ctx_ptr.get();
  1110. struct ggml_cgraph * graph = ggml_new_graph_custom(ctx, n_nodes, false);
  1111. graph->n_nodes = n_nodes;
  1112. std::unordered_map<uint64_t, const rpc_tensor*> tensor_ptrs;
  1113. for (uint32_t i = 0; i < n_tensors; i++) {
  1114. tensor_ptrs[tensors[i].id] = &tensors[i];
  1115. }
  1116. std::unordered_map<uint64_t, ggml_tensor*> tensor_map;
  1117. for (uint32_t i = 0; i < n_nodes; i++) {
  1118. int64_t id;
  1119. memcpy(&id, &nodes[i], sizeof(id));
  1120. graph->nodes[i] = create_node(id, ctx, tensor_ptrs, tensor_map);
  1121. }
  1122. ggml_status status = ggml_backend_graph_compute(backend, graph);
  1123. response.result = status;
  1124. return true;
  1125. }
  1126. rpc_server::~rpc_server() {
  1127. for (auto buffer : buffers) {
  1128. ggml_backend_buffer_free(buffer);
  1129. }
  1130. }
  1131. static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
  1132. sockfd_t sockfd, size_t free_mem, size_t total_mem) {
  1133. rpc_server server(backend, cache_dir);
  1134. while (true) {
  1135. uint8_t cmd;
  1136. if (!recv_data(sockfd, &cmd, 1)) {
  1137. break;
  1138. }
  1139. if (cmd >= RPC_CMD_COUNT) {
  1140. // fail fast if the command is invalid
  1141. fprintf(stderr, "Unknown command: %d\n", cmd);
  1142. break;
  1143. }
  1144. switch (cmd) {
  1145. case RPC_CMD_ALLOC_BUFFER: {
  1146. rpc_msg_alloc_buffer_req request;
  1147. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1148. return;
  1149. }
  1150. rpc_msg_alloc_buffer_rsp response;
  1151. server.alloc_buffer(request, response);
  1152. if (!send_msg(sockfd, &response, sizeof(response))) {
  1153. return;
  1154. }
  1155. break;
  1156. }
  1157. case RPC_CMD_GET_ALLOC_SIZE: {
  1158. rpc_msg_get_alloc_size_req request;
  1159. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1160. return;
  1161. }
  1162. rpc_msg_get_alloc_size_rsp response;
  1163. server.get_alloc_size(request, response);
  1164. if (!send_msg(sockfd, &response, sizeof(response))) {
  1165. return;
  1166. }
  1167. break;
  1168. }
  1169. case RPC_CMD_GET_ALIGNMENT: {
  1170. if (!recv_msg(sockfd, nullptr, 0)) {
  1171. return;
  1172. }
  1173. rpc_msg_get_alignment_rsp response;
  1174. server.get_alignment(response);
  1175. if (!send_msg(sockfd, &response, sizeof(response))) {
  1176. return;
  1177. }
  1178. break;
  1179. }
  1180. case RPC_CMD_GET_MAX_SIZE: {
  1181. if (!recv_msg(sockfd, nullptr, 0)) {
  1182. return;
  1183. }
  1184. rpc_msg_get_max_size_rsp response;
  1185. server.get_max_size(response);
  1186. if (!send_msg(sockfd, &response, sizeof(response))) {
  1187. return;
  1188. }
  1189. break;
  1190. }
  1191. case RPC_CMD_BUFFER_GET_BASE: {
  1192. rpc_msg_buffer_get_base_req request;
  1193. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1194. return;
  1195. }
  1196. rpc_msg_buffer_get_base_rsp response;
  1197. if (!server.buffer_get_base(request, response)) {
  1198. return;
  1199. }
  1200. if (!send_msg(sockfd, &response, sizeof(response))) {
  1201. return;
  1202. }
  1203. break;
  1204. }
  1205. case RPC_CMD_FREE_BUFFER: {
  1206. rpc_msg_free_buffer_req request;
  1207. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1208. return;
  1209. }
  1210. if (!server.free_buffer(request)) {
  1211. return;
  1212. }
  1213. if (!send_msg(sockfd, nullptr, 0)) {
  1214. return;
  1215. }
  1216. break;
  1217. }
  1218. case RPC_CMD_BUFFER_CLEAR: {
  1219. rpc_msg_buffer_clear_req request;
  1220. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1221. return;
  1222. }
  1223. if (!server.buffer_clear(request)) {
  1224. return;
  1225. }
  1226. if (!send_msg(sockfd, nullptr, 0)) {
  1227. return;
  1228. }
  1229. break;
  1230. }
  1231. case RPC_CMD_SET_TENSOR: {
  1232. std::vector<uint8_t> input;
  1233. if (!recv_msg(sockfd, input)) {
  1234. return;
  1235. }
  1236. if (!server.set_tensor(input)) {
  1237. return;
  1238. }
  1239. if (!send_msg(sockfd, nullptr, 0)) {
  1240. return;
  1241. }
  1242. break;
  1243. }
  1244. case RPC_CMD_SET_TENSOR_HASH: {
  1245. std::vector<uint8_t> input;
  1246. if (!recv_msg(sockfd, input)) {
  1247. return;
  1248. }
  1249. rpc_msg_set_tensor_hash_rsp response;
  1250. if (!server.set_tensor_hash(input, response)) {
  1251. return;
  1252. }
  1253. if (!send_msg(sockfd, &response, sizeof(response))) {
  1254. return;
  1255. }
  1256. break;
  1257. }
  1258. case RPC_CMD_INIT_TENSOR: {
  1259. rpc_msg_init_tensor_req request;
  1260. if (!recv_msg(sockfd, &request,sizeof(request))) {
  1261. return;
  1262. }
  1263. if (!server.init_tensor(request)) {
  1264. return;
  1265. }
  1266. if (!send_msg(sockfd, nullptr, 0)) {
  1267. return;
  1268. }
  1269. break;
  1270. }
  1271. case RPC_CMD_GET_TENSOR: {
  1272. rpc_msg_get_tensor_req request;
  1273. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1274. return;
  1275. }
  1276. std::vector<uint8_t> response;
  1277. if (!server.get_tensor(request, response)) {
  1278. return;
  1279. }
  1280. if (!send_msg(sockfd, response.data(), response.size())) {
  1281. return;
  1282. }
  1283. break;
  1284. }
  1285. case RPC_CMD_COPY_TENSOR: {
  1286. rpc_msg_copy_tensor_req request;
  1287. if (!recv_msg(sockfd, &request, sizeof(request))) {
  1288. return;
  1289. }
  1290. rpc_msg_copy_tensor_rsp response;
  1291. if (!server.copy_tensor(request, response)) {
  1292. return;
  1293. }
  1294. if (!send_msg(sockfd, &response, sizeof(response))) {
  1295. return;
  1296. }
  1297. break;
  1298. }
  1299. case RPC_CMD_GRAPH_COMPUTE: {
  1300. std::vector<uint8_t> input;
  1301. if (!recv_msg(sockfd, input)) {
  1302. return;
  1303. }
  1304. rpc_msg_graph_compute_rsp response;
  1305. if (!server.graph_compute(input, response)) {
  1306. return;
  1307. }
  1308. if (!send_msg(sockfd, &response, sizeof(response))) {
  1309. return;
  1310. }
  1311. break;
  1312. }
  1313. case RPC_CMD_GET_DEVICE_MEMORY: {
  1314. if (!recv_msg(sockfd, nullptr, 0)) {
  1315. return;
  1316. }
  1317. rpc_msg_get_device_memory_rsp response;
  1318. response.free_mem = free_mem;
  1319. response.total_mem = total_mem;
  1320. if (!send_msg(sockfd, &response, sizeof(response))) {
  1321. return;
  1322. }
  1323. break;
  1324. }
  1325. default: {
  1326. fprintf(stderr, "Unknown command: %d\n", cmd);
  1327. return;
  1328. }
  1329. }
  1330. }
  1331. }
  1332. void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
  1333. const char * cache_dir,
  1334. size_t free_mem, size_t total_mem) {
  1335. std::string host;
  1336. int port;
  1337. if (!parse_endpoint(endpoint, host, port)) {
  1338. return;
  1339. }
  1340. #ifdef _WIN32
  1341. {
  1342. WSADATA wsaData;
  1343. int res = WSAStartup(MAKEWORD(2, 2), &wsaData);
  1344. if (res != 0) {
  1345. fprintf(stderr, "WSAStartup failed: %d\n", res);
  1346. return;
  1347. }
  1348. }
  1349. #endif
  1350. auto server_socket = create_server_socket(host.c_str(), port);
  1351. if (server_socket == nullptr) {
  1352. fprintf(stderr, "Failed to create server socket\n");
  1353. return;
  1354. }
  1355. while (true) {
  1356. auto client_socket = socket_accept(server_socket->fd);
  1357. if (client_socket == nullptr) {
  1358. fprintf(stderr, "Failed to accept client connection\n");
  1359. return;
  1360. }
  1361. printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
  1362. fflush(stdout);
  1363. rpc_serve_client(backend, cache_dir, client_socket->fd, free_mem, total_mem);
  1364. printf("Client connection closed\n");
  1365. fflush(stdout);
  1366. }
  1367. #ifdef _WIN32
  1368. WSACleanup();
  1369. #endif
  1370. }
  1371. // device interface
  1372. struct ggml_backend_rpc_device_context {
  1373. std::string endpoint;
  1374. std::string name;
  1375. };
  1376. static const char * ggml_backend_rpc_device_get_name(ggml_backend_dev_t dev) {
  1377. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1378. return ctx->name.c_str();
  1379. }
  1380. static const char * ggml_backend_rpc_device_get_description(ggml_backend_dev_t dev) {
  1381. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1382. return ctx->name.c_str();
  1383. }
  1384. static void ggml_backend_rpc_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  1385. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1386. ggml_backend_rpc_get_device_memory(ctx->endpoint.c_str(), free, total);
  1387. GGML_UNUSED(dev);
  1388. }
  1389. static enum ggml_backend_dev_type ggml_backend_rpc_device_get_type(ggml_backend_dev_t dev) {
  1390. // TODO: obtain value from the server
  1391. return GGML_BACKEND_DEVICE_TYPE_GPU;
  1392. GGML_UNUSED(dev);
  1393. }
  1394. static void ggml_backend_rpc_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  1395. props->name = ggml_backend_rpc_device_get_name(dev);
  1396. props->description = ggml_backend_rpc_device_get_description(dev);
  1397. props->type = ggml_backend_rpc_device_get_type(dev);
  1398. ggml_backend_rpc_device_get_memory(dev, &props->memory_free, &props->memory_total);
  1399. props->caps = {
  1400. /* .async = */ false,
  1401. /* .host_buffer = */ false,
  1402. /* .buffer_from_host_ptr = */ false,
  1403. /* .events = */ false,
  1404. };
  1405. }
  1406. static ggml_backend_t ggml_backend_rpc_device_init(ggml_backend_dev_t dev, const char * params) {
  1407. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1408. return ggml_backend_rpc_init(ctx->endpoint.c_str());
  1409. GGML_UNUSED(params);
  1410. }
  1411. static ggml_backend_buffer_type_t ggml_backend_rpc_device_get_buffer_type(ggml_backend_dev_t dev) {
  1412. ggml_backend_rpc_device_context * ctx = (ggml_backend_rpc_device_context *)dev->context;
  1413. return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
  1414. GGML_UNUSED(dev);
  1415. }
  1416. static bool ggml_backend_rpc_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1417. GGML_UNUSED(dev);
  1418. GGML_UNUSED(op);
  1419. //TODO: call the remote backend and cache the results
  1420. return true;
  1421. }
  1422. static bool ggml_backend_rpc_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  1423. if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
  1424. return false;
  1425. }
  1426. ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
  1427. ggml_backend_rpc_device_context * dev_ctx = (ggml_backend_rpc_device_context *)dev->context;
  1428. return buft_ctx->endpoint == dev_ctx->endpoint;
  1429. }
  1430. static const struct ggml_backend_device_i ggml_backend_rpc_device_i = {
  1431. /* .get_name = */ ggml_backend_rpc_device_get_name,
  1432. /* .get_description = */ ggml_backend_rpc_device_get_description,
  1433. /* .get_memory = */ ggml_backend_rpc_device_get_memory,
  1434. /* .get_type = */ ggml_backend_rpc_device_get_type,
  1435. /* .get_props = */ ggml_backend_rpc_device_get_props,
  1436. /* .init_backend = */ ggml_backend_rpc_device_init,
  1437. /* .get_buffer_type = */ ggml_backend_rpc_device_get_buffer_type,
  1438. /* .get_host_buffer_type = */ NULL,
  1439. /* .buffer_from_host_ptr = */ NULL,
  1440. /* .supports_op = */ ggml_backend_rpc_device_supports_op,
  1441. /* .supports_buft = */ ggml_backend_rpc_device_supports_buft,
  1442. /* .offload_op = */ NULL,
  1443. /* .event_new = */ NULL,
  1444. /* .event_free = */ NULL,
  1445. /* .event_synchronize = */ NULL,
  1446. };
  1447. // backend reg interface
  1448. static const char * ggml_backend_rpc_reg_get_name(ggml_backend_reg_t reg) {
  1449. return "RPC";
  1450. GGML_UNUSED(reg);
  1451. }
  1452. static size_t ggml_backend_rpc_reg_get_device_count(ggml_backend_reg_t reg) {
  1453. return 0;
  1454. GGML_UNUSED(reg);
  1455. }
  1456. static ggml_backend_dev_t ggml_backend_rpc_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  1457. GGML_ABORT("The RPC backend does not have enumerated devices - use ggml_backend_add_device instead");
  1458. GGML_UNUSED(reg);
  1459. GGML_UNUSED(index);
  1460. }
  1461. static void * ggml_backend_rpc_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  1462. if (std::strcmp(name, "ggml_backend_rpc_add_device") == 0) {
  1463. return (void *)ggml_backend_rpc_add_device;
  1464. }
  1465. return NULL;
  1466. GGML_UNUSED(reg);
  1467. }
  1468. static const struct ggml_backend_reg_i ggml_backend_rpc_reg_i = {
  1469. /* .get_name = */ ggml_backend_rpc_reg_get_name,
  1470. /* .get_device_count = */ ggml_backend_rpc_reg_get_device_count,
  1471. /* .get_device = */ ggml_backend_rpc_reg_get_device,
  1472. /* .get_proc_address = */ ggml_backend_rpc_get_proc_address,
  1473. };
  1474. ggml_backend_reg_t ggml_backend_rpc_reg(void) {
  1475. static struct ggml_backend_reg ggml_backend_rpc_reg = {
  1476. /* .api_version = */ GGML_BACKEND_API_VERSION,
  1477. /* .iface = */ ggml_backend_rpc_reg_i,
  1478. /* .context = */ NULL,
  1479. };
  1480. return &ggml_backend_rpc_reg;
  1481. }
  1482. ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint) {
  1483. static std::unordered_map<std::string, ggml_backend_dev_t> dev_map;
  1484. static std::mutex mutex;
  1485. std::lock_guard<std::mutex> lock(mutex);
  1486. if (dev_map.find(endpoint) != dev_map.end()) {
  1487. return dev_map[endpoint];
  1488. }
  1489. ggml_backend_rpc_device_context * ctx = new ggml_backend_rpc_device_context {
  1490. /* .endpoint = */ endpoint,
  1491. /* .name = */ "RPC[" + std::string(endpoint) + "]",
  1492. };
  1493. ggml_backend_dev_t dev = new ggml_backend_device {
  1494. /* .iface = */ ggml_backend_rpc_device_i,
  1495. /* .reg = */ ggml_backend_rpc_reg(),
  1496. /* .context = */ ctx,
  1497. };
  1498. dev_map[endpoint] = dev;
  1499. return dev;
  1500. }
  1501. GGML_BACKEND_DL_IMPL(ggml_backend_rpc_reg)