llama-memory-hybrid.cpp 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. #include "llama-memory-hybrid.h"
  2. #include "llama-impl.h"
  3. #include "llama-model.h"
  4. #include "llama-context.h"
  5. //
  6. // llama_memory_hybrid
  7. //
  8. llama_memory_hybrid::llama_memory_hybrid(
  9. const llama_model & model,
  10. /* attn */
  11. ggml_type type_k,
  12. ggml_type type_v,
  13. bool v_trans,
  14. uint32_t kv_size,
  15. uint32_t n_pad,
  16. uint32_t n_swa,
  17. llama_swa_type swa_type,
  18. /* recurrent */
  19. ggml_type type_r,
  20. ggml_type type_s,
  21. uint32_t rs_size,
  22. /* common */
  23. uint32_t n_seq_max,
  24. bool offload,
  25. /* layer filters */
  26. layer_filter_cb && filter_attn,
  27. layer_filter_cb && filter_recr) :
  28. hparams(model.hparams),
  29. mem_attn(new llama_kv_cache_unified(
  30. model,
  31. filter_attn == nullptr ?
  32. [&](int32_t il) { return !hparams.is_recurrent(il); }
  33. : filter_attn,
  34. type_k,
  35. type_v,
  36. v_trans,
  37. offload,
  38. kv_size,
  39. n_seq_max,
  40. n_pad,
  41. n_swa,
  42. swa_type
  43. )),
  44. mem_recr(new llama_memory_recurrent(
  45. model,
  46. filter_recr == nullptr ?
  47. [&](int32_t il) { return hparams.is_recurrent(il); }
  48. : filter_recr,
  49. type_r,
  50. type_s,
  51. offload,
  52. rs_size,
  53. n_seq_max
  54. )) {}
  55. llama_memory_context_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
  56. do {
  57. balloc.split_reset();
  58. // follow the recurrent pattern for creating the ubatch splits
  59. std::vector<llama_ubatch> ubatches;
  60. while (true) {
  61. llama_ubatch ubatch;
  62. if (embd_all) {
  63. // if all tokens are output, split by sequence
  64. ubatch = balloc.split_seq(n_ubatch);
  65. } else {
  66. ubatch = balloc.split_equal(n_ubatch);
  67. }
  68. if (ubatch.n_tokens == 0) {
  69. break;
  70. }
  71. ubatches.push_back(std::move(ubatch)); // NOLINT
  72. }
  73. if (balloc.get_n_used() < balloc.get_n_tokens()) {
  74. // failed to find a suitable split
  75. break;
  76. }
  77. // prepare the recurrent batches first
  78. if (!mem_recr->prepare(ubatches)) {
  79. // TODO: will the recurrent cache be in an undefined context at this point?
  80. LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
  81. return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
  82. }
  83. // prepare the attention cache
  84. auto heads_attn = mem_attn->prepare(ubatches);
  85. if (heads_attn.empty()) {
  86. LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
  87. return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
  88. }
  89. return std::make_unique<llama_memory_hybrid_context>(
  90. this, std::move(heads_attn), std::move(ubatches));
  91. } while(false);
  92. return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
  93. }
  94. llama_memory_context_ptr llama_memory_hybrid::init_full() {
  95. return std::make_unique<llama_memory_hybrid_context>(this);
  96. }
  97. llama_memory_context_ptr llama_memory_hybrid::init_update(llama_context * lctx, bool optimize) {
  98. return std::make_unique<llama_memory_hybrid_context>(this, lctx, optimize);
  99. }
  100. bool llama_memory_hybrid::get_can_shift() const {
  101. // Shifting is trivially supported for recurrent
  102. return mem_attn->get_can_shift();
  103. }
  104. void llama_memory_hybrid::clear(bool data) {
  105. mem_attn->clear(data);
  106. mem_recr->clear(data);
  107. }
  108. bool llama_memory_hybrid::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  109. // Try removing from the recurrent cache first since it may fail. If it does
  110. // fail, the cache will not have been mutated.
  111. if (!mem_recr->seq_rm(seq_id, p0, p1)) {
  112. return false;
  113. }
  114. return mem_attn->seq_rm(seq_id, p0, p1);
  115. }
  116. void llama_memory_hybrid::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  117. mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1);
  118. mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1);
  119. }
  120. void llama_memory_hybrid::seq_keep(llama_seq_id seq_id) {
  121. mem_attn->seq_keep(seq_id);
  122. mem_recr->seq_keep(seq_id);
  123. }
  124. void llama_memory_hybrid::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
  125. mem_attn->seq_add(seq_id, p0, p1, shift);
  126. mem_recr->seq_add(seq_id, p0, p1, shift);
  127. }
  128. void llama_memory_hybrid::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  129. mem_attn->seq_div(seq_id, p0, p1, d);
  130. mem_recr->seq_div(seq_id, p0, p1, d);
  131. }
  132. llama_pos llama_memory_hybrid::seq_pos_min(llama_seq_id seq_id) const {
  133. // the min of the total cache is the max of the two caches' min values
  134. return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id));
  135. }
  136. llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const {
  137. // the max of the total cache is the min of the two caches' max values
  138. return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
  139. }
  140. void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
  141. mem_attn->state_write(io, seq_id);
  142. mem_recr->state_write(io, seq_id);
  143. }
  144. void llama_memory_hybrid::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
  145. mem_attn->state_read(io, seq_id);
  146. mem_recr->state_read(io, seq_id);
  147. }
  148. llama_kv_cache_unified * llama_memory_hybrid::get_mem_attn() const {
  149. return mem_attn.get();
  150. }
  151. llama_memory_recurrent * llama_memory_hybrid::get_mem_recr() const {
  152. return mem_recr.get();
  153. }
  154. llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_status status) : status(status) {}
  155. llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_hybrid * mem) :
  156. ctx_attn(mem->get_mem_attn()->init_full()),
  157. ctx_recr(mem->get_mem_recr()->init_full()),
  158. status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
  159. }
  160. llama_memory_hybrid_context::llama_memory_hybrid_context(
  161. llama_memory_hybrid * mem,
  162. llama_context * lctx,
  163. bool optimize) :
  164. ctx_attn(mem->get_mem_attn()->init_update(lctx, optimize)),
  165. ctx_recr(mem->get_mem_recr()->init_update(lctx, optimize)),
  166. status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
  167. }
  168. llama_memory_hybrid_context::llama_memory_hybrid_context(
  169. llama_memory_hybrid * mem,
  170. slot_info_vec_t sinfos_attn,
  171. std::vector<llama_ubatch> ubatches) :
  172. ubatches(std::move(ubatches)),
  173. // note: here we copy the ubatches. not sure if this is ideal
  174. ctx_attn(new llama_kv_cache_unified_context(mem->get_mem_attn(), std::move(sinfos_attn), this->ubatches)),
  175. ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(), this->ubatches)),
  176. status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
  177. }
  178. bool llama_memory_hybrid_context::next() {
  179. assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
  180. ctx_attn->next();
  181. ctx_recr->next();
  182. if (++i_next >= ubatches.size()) {
  183. return false;
  184. }
  185. return true;
  186. }
  187. bool llama_memory_hybrid_context::apply() {
  188. assert(!llama_memory_status_is_fail(status));
  189. bool res = true;
  190. res = res & ctx_attn->apply();
  191. res = res & ctx_recr->apply();
  192. return res;
  193. }
  194. llama_memory_status llama_memory_hybrid_context::get_status() const {
  195. return status;
  196. }
  197. const llama_ubatch & llama_memory_hybrid_context::get_ubatch() const {
  198. assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
  199. return ubatches[i_next];
  200. }
  201. const llama_kv_cache_unified_context * llama_memory_hybrid_context::get_attn() const {
  202. return static_cast<const llama_kv_cache_unified_context *>(ctx_attn.get());
  203. }
  204. const llama_memory_recurrent_context * llama_memory_hybrid_context::get_recr() const {
  205. return static_cast<const llama_memory_recurrent_context *>(ctx_recr.get());
  206. }