| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018 |
- #include "ggml-impl.h"
- #include "ggml-backend.h"
- #include "ggml-backend-impl.h"
- #include "ggml-kompute.h"
- // These are generated at build time by cmake custom command
- #include "shaderop_scale.h"
- #include "shaderop_scale_8.h"
- #include "shaderop_add.h"
- #include "shaderop_addrow.h"
- #include "shaderop_mul.h"
- #include "shaderop_silu.h"
- #include "shaderop_relu.h"
- #include "shaderop_gelu.h"
- #include "shaderop_softmax.h"
- #include "shaderop_norm.h"
- #include "shaderop_rmsnorm.h"
- #include "shaderop_diagmask.h"
- #include "shaderop_mul_mat_f16.h"
- #include "shaderop_mul_mat_q8_0.h"
- #include "shaderop_mul_mat_q4_0.h"
- #include "shaderop_mul_mat_q4_1.h"
- #include "shaderop_mul_mat_q6_k.h"
- #include "shaderop_mul_mat_mat_f32.h"
- #include "shaderop_getrows_f32.h"
- #include "shaderop_getrows_f16.h"
- #include "shaderop_getrows_q4_0.h"
- #include "shaderop_getrows_q4_1.h"
- #include "shaderop_getrows_q6_k.h"
- #include "shaderop_rope_f16.h"
- #include "shaderop_rope_f32.h"
- #include "shaderop_cpy_f16_f16.h"
- #include "shaderop_cpy_f16_f32.h"
- #include "shaderop_cpy_f32_f16.h"
- #include "shaderop_cpy_f32_f32.h"
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <cstdint>
- #include <cstdio>
- #include <cstring>
- #include <iostream>
- #include <memory>
- #include <stdexcept>
- #include <string>
- #include <unordered_map>
- #include <utility>
- #include <vector>
- #include <kompute/Kompute.hpp>
- #include <vulkan/vulkan.hpp>
- #ifdef __linux__
- #include <cstdlib> // for setenv
- #endif
- #define QK4_0 32
- #define QR4_0 2
- #define QK4_1 32
- #define QK_NL 16
- typedef ggml_fp16_t half;
- static std::string ggml_kompute_format_name(int device) {
- return "Kompute" + std::to_string(device);
- }
- struct ggml_kompute_context {
- int device;
- std::string name;
- std::shared_ptr<vk::DescriptorPool> pool;
- ggml_kompute_context(int device)
- : device(device), name(ggml_kompute_format_name(device)) {}
- };
- // FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
- // and consolidate the init functions and simplify object lifetime management. As it currently stands,
- // we *have* to have the kompute manager no matter what for device discovery, but the kompute context
- // is only created when a device is set and vulkan is explicitly turned on.
- static ggml_kompute_context *s_kompute_context = nullptr;
- class kompute_manager {
- kp::Manager *s_mgr = nullptr;
- public:
- kp::Manager *operator()() {
- if (s_mgr && !s_mgr->hasInstance()) {
- destroy();
- }
- if (!s_mgr) {
- s_mgr = new kp::Manager;
- }
- return s_mgr;
- }
- void destroy() {
- delete s_mgr;
- s_mgr = nullptr;
- }
- };
- static kompute_manager komputeManager;
- struct ggml_vk_memory {
- void *data = nullptr;
- size_t size = 0;
- vk::DeviceMemory *primaryMemory = nullptr;
- vk::Buffer *primaryBuffer = nullptr;
- vk::DeviceMemory *stagingMemory = nullptr;
- vk::Buffer *stagingBuffer = nullptr;
- };
- #ifdef __linux__
- __attribute__((constructor))
- static void enable_sam() {
- setenv("RADV_PERFTEST", "sam", false);
- }
- #endif
- static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
- vk::PhysicalDeviceFeatures availableFeatures;
- physical_device.getFeatures(&availableFeatures);
- if (!availableFeatures.shaderInt16)
- return false;
- vk::PhysicalDeviceVulkan11Features availableFeatures11;
- vk::PhysicalDeviceVulkan12Features availableFeatures12;
- availableFeatures11.pNext = &availableFeatures12;
- availableFeatures12.pNext = nullptr;
- vk::PhysicalDeviceFeatures2 features2;
- features2.pNext = &availableFeatures11;
- physical_device.getFeatures2(&features2);
- if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
- !availableFeatures11.storageBuffer16BitAccess) {
- return false;
- }
- if (!availableFeatures12.storageBuffer8BitAccess ||
- !availableFeatures12.uniformAndStorageBuffer8BitAccess ||
- !availableFeatures12.shaderFloat16 ||
- !availableFeatures12.shaderInt8) {
- return false;
- }
- return true;
- }
- static const char * ggml_vk_getVendorName(uint32_t vendorID) {
- switch (vendorID) {
- case 0x10DE:
- return "nvidia";
- case 0x1002:
- return "amd";
- case 0x8086:
- return "intel";
- default:
- return "unknown";
- }
- }
- static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
- std::vector<ggml_vk_device> results;
- if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
- return results;
- std::vector<vk::PhysicalDevice> physical_devices;
- try {
- physical_devices = komputeManager()->listDevices();
- } catch (vk::SystemError & err) {
- std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
- return results;
- }
- uint32_t deviceCount = physical_devices.size();
- if (deviceCount == 0)
- return results;
- std::unordered_map<std::string, size_t> count_by_name;
- for (uint32_t i = 0; i < deviceCount; i++) {
- const auto & physical_device = physical_devices[i];
- VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
- VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
- const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
- const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
- if (major < 1 || minor < 2)
- continue;
- if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
- continue;
- size_t heapSize = 0;
- for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
- VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
- if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
- heapSize = heap.size;
- break;
- }
- }
- if (heapSize < memoryRequired)
- continue;
- auto ext_props = physical_device.enumerateDeviceExtensionProperties();
- bool has_maintenance4 = false;
- // Check if maintenance4 is supported
- for (const auto & properties : ext_props) {
- if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
- has_maintenance4 = true;
- }
- }
- vk::PhysicalDeviceSubgroupProperties subgroup_props;
- vk::PhysicalDeviceProperties2 dev_props2;
- vk::PhysicalDeviceMaintenance3Properties dev_props3;
- vk::PhysicalDeviceMaintenance4Properties dev_props4;
- dev_props2.pNext = &dev_props3;
- dev_props3.pNext = &subgroup_props;
- if (has_maintenance4) {
- subgroup_props.pNext = &dev_props4;
- }
- physical_device.getProperties2(&dev_props2);
- if (subgroup_props.subgroupSize < 32)
- continue;
- ggml_vk_device d;
- d.index = i;
- d.type = dev_props.deviceType;
- d.heapSize = heapSize;
- d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
- d.subgroupSize = subgroup_props.subgroupSize;
- d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
- if (has_maintenance4) {
- d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
- } else {
- d.maxAlloc = dev_props3.maxMemoryAllocationSize;
- }
- std::string name(dev_props.deviceName);
- size_t n_idx = ++count_by_name[name];
- if (n_idx > 1) {
- name += " (" + std::to_string(n_idx) + ")";
- }
- d.name = strdup(name.c_str());
- results.push_back(d);
- }
- std::stable_sort(results.begin(), results.end(),
- [](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
- if (lhs.type != rhs.type) {
- if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
- if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
- if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
- if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
- }
- return lhs.heapSize < rhs.heapSize;
- }
- );
- return results;
- }
- // public API returns a C-style array
- ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) {
- auto devices = ggml_vk_available_devices_internal(memoryRequired);
- *count = devices.size();
- if (devices.empty()) {
- return nullptr;
- }
- size_t nbytes = sizeof (ggml_vk_device) * (devices.size());
- auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes));
- memcpy(arr, devices.data(), nbytes);
- return arr;
- }
- static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
- devices.erase(
- std::remove_if(devices.begin(), devices.end(),
- [&targetVendor](const ggml_vk_device& device) {
- return device.vendor != targetVendor;
- }),
- devices.end()
- );
- }
- static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
- devices.erase(
- std::remove_if(devices.begin(), devices.end(),
- [&targetName](const ggml_vk_device& device) {
- return device.name != targetName;
- }),
- devices.end()
- );
- }
- static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
- if (name.empty())
- return false;
- auto devices = ggml_vk_available_devices_internal(memoryRequired);
- if (name == "amd" || name == "nvidia" || name == "intel") {
- ggml_vk_filterByVendor(devices, name);
- } else if (name != "gpu") {
- ggml_vk_filterByName(devices, name);
- }
- if (devices.empty())
- return false;
- *device = devices.front();
- return true;
- }
- bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
- return ggml_vk_get_device(device, memoryRequired, std::string(name));
- }
- bool ggml_vk_has_vulkan() {
- return komputeManager()->hasVulkan();
- }
- bool ggml_vk_has_device() {
- return komputeManager()->hasDevice();
- }
- ggml_vk_device ggml_vk_current_device() {
- if (!komputeManager()->hasDevice())
- return ggml_vk_device();
- auto devices = ggml_vk_available_devices_internal(0);
- ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
- GGML_ASSERT(!devices.empty());
- return devices.front();
- }
- static
- void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
- std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
- vk::DescriptorPoolSize(
- vk::DescriptorType::eStorageBuffer,
- 3 * size // Descriptor count is number of possible tensors to pass into an algorithm
- )
- };
- vk::DescriptorPoolCreateInfo descriptorPoolInfo(
- vk::DescriptorPoolCreateFlags(),
- size, // Max sets
- static_cast<uint32_t>(descriptorPoolSizes.size()),
- descriptorPoolSizes.data());
- ctx->pool = std::make_shared<vk::DescriptorPool>();
- vk::Result r = komputeManager()->device()->createDescriptorPool(
- &descriptorPoolInfo, nullptr, ctx->pool.get());
- if (r != vk::Result::eSuccess)
- std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
- }
- static
- void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
- if (ctx->pool) {
- komputeManager()->device()->destroy(
- *ctx->pool,
- (vk::Optional<const vk::AllocationCallbacks>)nullptr);
- ctx->pool = nullptr;
- }
- }
- static
- vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
- vk::BufferCreateInfo bufferCreateInfo;
- bufferCreateInfo.size = size;
- bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
- vk::BufferUsageFlagBits::eTransferSrc |
- vk::BufferUsageFlagBits::eTransferDst;
- bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
- vk::Buffer *vkBuffer = new vk::Buffer;
- vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
- if (r != vk::Result::eSuccess)
- std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
- return vkBuffer;
- }
- static
- vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
- uint32_t memoryTypeIndex = -1;
- bool memoryTypeIndexFound = false;
- vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
- for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
- const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
- const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
- if (memoryHeap.size < size) {
- continue;
- }
- if (requirements.memoryTypeBits & (1 << i)) {
- if (((memoryProperties.memoryTypes[i]).propertyFlags &
- flags) == flags) {
- memoryTypeIndex = i;
- memoryTypeIndexFound = true;
- if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
- *isHostVisible = true;
- }
- break;
- }
- }
- }
- if (!memoryTypeIndexFound) {
- throw std::runtime_error(
- "Memory type index for buffer creation not found");
- }
- vk::MemoryAllocateInfo allocInfo;
- allocInfo.allocationSize = size;
- allocInfo.memoryTypeIndex = memoryTypeIndex;
- vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory;
- vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
- if (r != vk::Result::eSuccess) {
- std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
- throw std::runtime_error("Error allocating vulkan memory.");
- }
- return vkDeviceMemory;
- }
- static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
- size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
- // If offset is already aligned, return it directly
- if (offset % minStorageBufferOffsetAlignment == 0) {
- return offset;
- }
- // Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
- return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
- }
- static ggml_vk_memory ggml_vk_allocate(size_t size) {
- ggml_vk_memory memory;
- bool isHostVisible = false;
- {
- memory.primaryBuffer = ggml_vk_allocate_buffer(size);
- vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
- vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
- memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
- komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
- if (isHostVisible) {
- vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
- if (r != vk::Result::eSuccess)
- std::cerr << "Error mapping memory" << vk::to_string(r);
- }
- }
- if (!isHostVisible) {
- memory.stagingBuffer = ggml_vk_allocate_buffer(size);
- vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
- vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
- vk::MemoryPropertyFlagBits::eHostCoherent |
- vk::MemoryPropertyFlagBits::eHostCached;
- memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
- komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
- vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
- if (r != vk::Result::eSuccess)
- std::cerr << "Error mapping memory" << vk::to_string(r);
- }
- memory.size = size;
- return memory;
- }
- static void ggml_vk_free_memory(ggml_vk_memory &memory)
- {
- komputeManager()->device()->destroy(
- *memory.primaryBuffer,
- (vk::Optional<const vk::AllocationCallbacks>)nullptr);
- if (memory.stagingBuffer) {
- komputeManager()->device()->destroy(
- *memory.stagingBuffer,
- (vk::Optional<const vk::AllocationCallbacks>)nullptr);
- }
- komputeManager()->device()->freeMemory(
- *memory.primaryMemory,
- (vk::Optional<const vk::AllocationCallbacks>)nullptr);
- if (memory.stagingMemory) {
- komputeManager()->device()->freeMemory(
- *memory.stagingMemory,
- (vk::Optional<const vk::AllocationCallbacks>)nullptr);
- }
- }
- static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
- static
- ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
- ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
- // compatibility with ggml-backend
- GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
- ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
- const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
- GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
- offset = uint64_t(ioffs);
- return buf_ctx;
- }
- static
- const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
- uint64_t originalOffset = 0;
- auto * res = ggml_vk_find_tensor(t, originalOffset);
- if (!res) {
- static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
- return nullTensor;
- }
- // Create a tensor whose memory will be composed of our buffers at the correct offset
- const size_t nelements = ggml_nelements(t);
- size_t nbytes = ggml_nbytes(t);
- size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
- if (alignedOffset) {
- *alignedOffset = originalOffset - vulkanOffset;
- nbytes += *alignedOffset;
- }
- return komputeManager()->tensor(
- t->data,
- nelements,
- nbytes, kp::Tensor::TensorDataTypes::eFloat,
- res->primaryMemory, res->primaryBuffer,
- res->stagingMemory, res->stagingBuffer,
- vulkanOffset);
- }
- static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
- if (size % sizeof(uint32_t) != 0) {
- throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
- }
- const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
- size_t count = size / sizeof(uint32_t);
- return std::vector<uint32_t>(data_ptr, data_ptr + count);
- }
- inline static
- uint32_t safe_divide(uint32_t a, uint32_t b) {
- if (b <= 1) {
- return a;
- }
- if ((a % b) != 0) {
- fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
- GGML_ABORT("safe_divide result would've had remainder");
- }
- return a / b;
- }
- static void ggml_vk_add(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
- int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
- int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
- int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
- int32_t ne0,
- int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
- ) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
- kp::shader_data::op_add_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00;
- int32_t nb00, nb01, nb02, nb03;
- int32_t ne10, ne11, ne12, ne13;
- int32_t nb10, nb11, nb12, nb13;
- int32_t ne0;
- int32_t nb0, nb1, nb2, nb3;
- } const pushConsts {
- safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00,
- nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, ne13,
- nb10, nb11, nb12, nb13,
- ne0,
- nb0, nb1, nb2, nb3
- };
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_addrow(kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- uint32_t size, uint32_t row = 0) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
- kp::shader_data::op_addrow_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- uint32_t row;
- } const pushConsts {
- safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- row
- };
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__))
- s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
- else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({size});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_mul(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
- int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
- int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
- int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
- int32_t ne0,
- int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
- ) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
- kp::shader_data::op_mul_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00;
- int32_t nb00, nb01, nb02, nb03;
- int32_t ne10, ne11, ne12, ne13;
- int32_t nb10, nb11, nb12, nb13;
- int32_t ne0;
- int32_t nb0, nb1, nb2, nb3;
- } const pushConsts {
- safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00,
- nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, ne13,
- nb10, nb11, nb12, nb13,
- ne0,
- nb0, nb1, nb2, nb3
- };
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_scale(kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& in,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inOff, uint32_t outOff,
- uint32_t size, float scale) {
- const static auto spirv_1 = getSpirvShader(
- kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
- );
- const static auto spirv_8 = getSpirvShader(
- kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
- );
- struct PushConstants {
- uint32_t inOff, outOff;
- float scale;
- } const pushConsts {
- safe_divide(inOff, 4), safe_divide(outOff, 4),
- scale
- };
- const auto * spirv = &spirv_1;
- std::string name(__func__);
- if (size % 8 == 0) {
- size /= 8;
- name += "_8";
- spirv = &spirv_8;
- }
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({in, out});
- s_algo->setWorkgroup({size});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_xxlu(
- const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& in,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inOff, uint32_t outOff,
- uint32_t size
- ) {
- struct PushConstants {
- uint32_t inOff, outOff;
- } const pushConsts {
- safe_divide(inOff, 4), safe_divide(outOff, 4),
- };
- auto name = std::string(__func__) + "_" + suffix;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({in, out});
- s_algo->setWorkgroup({size});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- template <typename... Args>
- static void ggml_vk_silu(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
- kp::shader_data::op_silu_comp_spv_len);
- ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_relu(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
- kp::shader_data::op_relu_comp_spv_len);
- ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_gelu(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
- kp::shader_data::op_gelu_comp_spv_len);
- ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
- }
- static void ggml_vk_soft_max(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
- float scale
- ) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
- kp::shader_data::op_softmax_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, ne01, ne02;
- float scale;
- int32_t mask;
- } pushConsts {
- safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, ne01, ne02,
- scale,
- bool(inB)
- };
- auto & inB_ = inB ? inB : inA;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- // FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
- const uint32_t local_x = 32;
- s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB_, out});
- s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_norm_(
- const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& in,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inOff, uint32_t outOff,
- int32_t ne00, int32_t nb01,
- int32_t nrows, float epsilon
- ) {
- GGML_ASSERT(nb01%sizeof(float) == 0);
- GGML_ASSERT(ne00%sizeof(float) == 0);
- struct PushConstants {
- uint32_t inOff, outOff;
- uint32_t ne00, nb01;
- float eps;
- } pushConsts {
- safe_divide(inOff, 4), safe_divide(outOff, 4),
- (uint32_t)ne00, (uint32_t)nb01, epsilon
- };
- auto name = std::string(__func__) + "_" + suffix;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({in, out});
- s_algo->setWorkgroup({(uint32_t)nrows});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- template <typename... Args>
- static void ggml_vk_norm(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
- kp::shader_data::op_norm_comp_spv_len);
- ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_rms_norm(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
- kp::shader_data::op_rmsnorm_comp_spv_len);
- ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
- }
- static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& in,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inOff, uint32_t outOff,
- uint32_t n_past,
- int32_t ne00, int32_t ne01, int32_t ne02) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
- kp::shader_data::op_diagmask_comp_spv_len);
- struct PushConstants {
- uint32_t inOff, outOff;
- uint32_t n_past;
- int32_t ne00, ne01;
- } pushConsts {
- safe_divide(inOff, 4), safe_divide(outOff, 4),
- n_past,
- ne00, ne01
- };
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__))
- s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
- else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({in, out});
- s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_mul_mat_f16(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02,
- uint32_t nb00, uint32_t nb01, uint32_t nb02,
- int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
- uint32_t nb10, uint32_t nb11, uint32_t nb12,
- int32_t ne0, int32_t ne1,
- uint32_t r2, uint32_t r3
- ) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
- kp::shader_data::op_mul_mat_f16_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, ne01, ne02;
- uint32_t nb00, nb01, nb02;
- int32_t ne10, ne11, ne12;
- uint32_t nb10, nb11, nb12;
- int32_t ne0, ne1;
- uint32_t r2, r3;
- } pushConsts {
- safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, ne01, ne02,
- nb00, nb01, nb02,
- ne10, ne11, ne12,
- nb10, nb11, nb12,
- ne0, ne1,
- r2, r3
- };
- const unsigned ny = unsigned((ne11 + 4 - 1)/4);
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
- s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02,
- uint32_t nb01, uint32_t nb02,
- int32_t ne11, int32_t ne12,
- uint32_t nb11, uint32_t nb12,
- uint32_t nb1, uint32_t nb2) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
- kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, ne01, ne02, ne11, ne12;
- uint32_t nb01, nb02;
- uint32_t nb11, nb12;
- uint32_t nb1, nb2;
- } pushConsts {
- safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, ne01, ne02, ne11, ne12,
- nb01, nb02, nb11, nb12,
- nb1, nb2
- };
- const uint32_t local_x = ggml_vk_current_device().subgroupSize;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
- {inA, inB, out}, spirv,
- {unsigned(ne01),
- unsigned(ne11),
- unsigned(std::max(ne12, ne02))
- },
- {local_x},
- {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned(ne01),
- unsigned(ne11),
- unsigned(std::max(ne12, ne02)),
- });
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_mul_mat_impl(
- const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02,
- int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
- int32_t ne0, int32_t ne1,
- uint32_t r2, uint32_t r3
- ) {
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, ne01, ne02;
- int32_t ne10, ne12;
- int32_t ne0, ne1;
- uint32_t r2, r3;
- } pushConsts {
- safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, ne01, ne02,
- ne10, ne12,
- ne0, ne1,
- r2, r3
- };
- auto name = std::string(__func__) + "_" + suffix;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
- s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- template <typename... Args>
- static void ggml_vk_mul_mat_q4_0(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv,
- kp::shader_data::op_mul_mat_q4_0_comp_spv_len);
- ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_mul_mat_q4_1(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv,
- kp::shader_data::op_mul_mat_q4_1_comp_spv_len);
- ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_mul_mat_q8_0(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv,
- kp::shader_data::op_mul_mat_q8_0_comp_spv_len);
- ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
- }
- static void ggml_vk_mul_mat_q6_k(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1,
- int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02
- ) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
- kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, ne10, ne0, ne1, ne01, gqa;
- } pushConsts {
- inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, ne10, ne0, ne1, ne01, ne12/ne02
- };
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(__func__)) {
- const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
- s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(__func__);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_get_rows(
- const std::vector<uint32_t>& spirv,
- const char * suffix,
- unsigned element_size, unsigned qk,
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- int32_t ne00, int32_t nb01, int32_t nb1,
- uint32_t size
- ) {
- GGML_ASSERT(nb01%element_size == 0);
- GGML_ASSERT(nb1%sizeof(float) == 0);
- if (qk) GGML_ASSERT(ne00%qk == 0);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t ne00, nb01, nb1;
- } pushConsts {
- safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
- ne00, nb01, nb1
- };
- auto name = std::string(__func__) + "_" + suffix;
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({size});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- template <typename... Args>
- static void ggml_vk_get_rows_f32(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f32_comp_spv,
- kp::shader_data::op_getrows_f32_comp_spv_len);
- ggml_vk_get_rows(spirv, "f32", sizeof(float), 0, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_get_rows_f16(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
- kp::shader_data::op_getrows_f16_comp_spv_len);
- ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_get_rows_q4_0(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv,
- kp::shader_data::op_getrows_q4_0_comp_spv_len);
- ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_get_rows_q4_1(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv,
- kp::shader_data::op_getrows_q4_1_comp_spv_len);
- ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_get_rows_q6_k(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv,
- kp::shader_data::op_getrows_q6_k_comp_spv_len);
- ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...);
- }
- static void ggml_vk_rope(
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& inA,
- const std::shared_ptr<kp::Tensor>& inB,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
- ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig,
- float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
- int32_t ne01, int32_t ne02, int32_t ne03,
- uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
- int32_t ne0,
- uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
- ) {
- GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
- static const auto spirv_f16 = getSpirvShader(
- kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len
- );
- static const auto spirv_f32 = getSpirvShader(
- kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len
- );
- int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
- GGML_ASSERT(nb03 % type_size == 0);
- GGML_ASSERT(nb02 % type_size == 0);
- GGML_ASSERT(nb01 % type_size == 0);
- GGML_ASSERT(nb00 % type_size == 0);
- GGML_ASSERT(nb3 % type_size == 0);
- GGML_ASSERT(nb2 % type_size == 0);
- GGML_ASSERT(nb1 % type_size == 0);
- GGML_ASSERT(nb0 % type_size == 0);
- struct PushConstants {
- uint32_t inAOff, inBOff, outOff;
- int32_t n_dims, mode, n_ctx_orig;
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- uint32_t nb00, nb01, nb02, nb03;
- int32_t ne0;
- uint32_t nb0, nb1, nb2, nb3;
- } pushConsts {
- safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
- n_dims, mode, n_ctx_orig,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
- nb00, nb01, nb02, nb03,
- ne0,
- nb0, nb1, nb2, nb3
- };
- auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name)) {
- s_algo = komputeManager()->algorithm<float, PushConstants>(
- name, s_kompute_context->pool.get(), {inA, inB, out},
- src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32,
- {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
- );
- } else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({inA, inB, out});
- s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- static void ggml_vk_cpy(
- const std::vector<uint32_t>& spirv,
- uint32_t in_element_size, uint32_t out_element_size,
- kp::Sequence& seq,
- const std::shared_ptr<kp::Tensor>& in,
- const std::shared_ptr<kp::Tensor>& out,
- uint32_t inOff, uint32_t outOff,
- int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
- uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
- int32_t ne0, int32_t ne1, int32_t ne2,
- uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
- ) {
- struct PushConstants {
- uint32_t inOff, outOff;
- int32_t ne00, ne01, ne02;
- uint32_t nb00, nb01, nb02, nb03;
- int32_t ne0, ne1, ne2;
- uint32_t nb0, nb1, nb2, nb3;
- } pushConsts {
- safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size),
- ne00, ne01, ne02,
- nb00, nb01, nb02, nb03,
- ne0, ne1, ne2,
- nb0, nb1, nb2, nb3
- };
- std::string name = std::string(__func__)
- + "_i_" + std::to_string(in_element_size)
- + "_o_" + std::to_string(out_element_size);
- std::shared_ptr<kp::Algorithm> s_algo = nullptr;
- if (!komputeManager()->hasAlgorithm(name))
- s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
- else {
- s_algo = komputeManager()->getAlgorithm(name);
- s_algo->setTensors({in, out});
- s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
- s_algo->setPushConstants<PushConstants>({pushConsts});
- s_algo->updateDescriptors(s_kompute_context->pool.get());
- }
- seq.record<kp::OpAlgoDispatch>(s_algo);
- }
- template <typename... Args>
- static void ggml_vk_cpy_f32_f16(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv,
- kp::shader_data::op_cpy_f32_f16_comp_spv_len);
- ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_cpy_f32_f32(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv,
- kp::shader_data::op_cpy_f32_f32_comp_spv_len);
- ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_cpy_f16_f16(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv,
- kp::shader_data::op_cpy_f16_f16_comp_spv_len);
- ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...);
- }
- template <typename... Args>
- static void ggml_vk_cpy_f16_f32(Args&&... args) {
- const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv,
- kp::shader_data::op_cpy_f16_f32_comp_spv_len);
- ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
- }
- static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- break;
- default:
- return false;
- }
- switch (op->op) {
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- return ggml_is_contiguous(op->src[0]);
- default:
- ;
- }
- break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_PERMUTE:
- case GGML_OP_ADD:
- case GGML_OP_MUL:
- case GGML_OP_SCALE:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_RMS_NORM:
- case GGML_OP_NORM:
- case GGML_OP_ROPE:
- return true;
- case GGML_OP_DUP:
- case GGML_OP_CPY:
- case GGML_OP_CONT:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- break;
- default:
- return false;
- }
- switch (op->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- break;
- default:
- return false;
- }
- return true;
- case GGML_OP_DIAG_MASK_INF:
- return op->ne[3] == 1;
- case GGML_OP_GET_ROWS:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q6_K:
- return op->ne[2] == 1 && op->ne[3] == 1;
- default:
- ;
- }
- return false;
- case GGML_OP_MUL_MAT:
- if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1]))
- return false;
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_Q6_K:
- return op->ne[3] == 1;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return true;
- default:
- ;
- }
- default:
- ;
- }
- return false;
- }
- static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
- const int n_seq = 8;
- // FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting
- // it to the size of the graph, but I think it can be made smaller?
- ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes);
- std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq);
- for (auto& sequence : sequences) {
- sequence = komputeManager()->sequence();
- }
- for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) {
- const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq;
- auto& seq = *sequences[seq_idx];
- const int node_start = (seq_idx + 0) * n_nodes_per_seq;
- const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes);
- bool any_commands_recorded = false;
- for (int i = node_start; i < node_end; ++i) {
- struct ggml_tensor * src0 = gf->nodes[i]->src[0];
- struct ggml_tensor * src1 = gf->nodes[i]->src[1];
- struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2);
- struct ggml_tensor * dst = gf->nodes[i];
- GGML_ASSERT(dst->data != nullptr);
- if (ggml_is_empty(dst)) {
- continue;
- }
- switch (dst->op) {
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_PERMUTE:
- continue; // noop -> next node
- default:
- break;
- }
- any_commands_recorded = true;
- if (!ggml_vk_supports_op(dst)) {
- fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
- GGML_ABORT("unsupported op");
- }
- const int32_t ne00 = src0 ? src0->ne[0] : 0;
- const int32_t ne01 = src0 ? src0->ne[1] : 0;
- const int32_t ne02 = src0 ? src0->ne[2] : 0;
- const int32_t ne03 = src0 ? src0->ne[3] : 0;
- const uint32_t nb00 = src0 ? src0->nb[0] : 0;
- const uint32_t nb01 = src0 ? src0->nb[1] : 0;
- const uint32_t nb02 = src0 ? src0->nb[2] : 0;
- const uint32_t nb03 = src0 ? src0->nb[3] : 0;
- const int32_t ne10 = src1 ? src1->ne[0] : 0;
- const int32_t ne11 = src1 ? src1->ne[1] : 0;
- const int32_t ne12 = src1 ? src1->ne[2] : 0;
- const int32_t ne13 = src1 ? src1->ne[3] : 0;
- const uint32_t nb10 = src1 ? src1->nb[0] : 0;
- const uint32_t nb11 = src1 ? src1->nb[1] : 0;
- const uint32_t nb12 = src1 ? src1->nb[2] : 0;
- const uint32_t nb13 = src1 ? src1->nb[3] : 0;
- const int32_t ne0 = dst ? dst->ne[0] : 0;
- const int32_t ne1 = dst ? dst->ne[1] : 0;
- const int32_t ne2 = dst ? dst->ne[2] : 0;
- // const int32_t ne3 = dst ? dst->ne[3] : 0;
- const uint32_t nb0 = dst ? dst->nb[0] : 0;
- const uint32_t nb1 = dst ? dst->nb[1] : 0;
- const uint32_t nb2 = dst ? dst->nb[2] : 0;
- const uint32_t nb3 = dst ? dst->nb[3] : 0;
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
- const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
- uint32_t off_src0 = 0;
- uint32_t off_src1 = 0;
- uint32_t off_dst = 0;
- const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
- const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
- const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor;
- switch (dst->op) {
- case GGML_OP_ADD:
- {
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- // src1 is a row
- ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00);
- } else {
- ggml_vk_add(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, ne03,
- nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, ne13,
- nb10, nb11, nb12, nb13,
- ne0,
- nb0, nb1, nb2, nb3
- );
- }
- } break;
- case GGML_OP_MUL:
- {
- ggml_vk_mul(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, ne03,
- nb00, nb01, nb02, nb03,
- ne10, ne11, ne12, ne13,
- nb10, nb11, nb12, nb13,
- ne0,
- nb0, nb1, nb2, nb3
- );
- } break;
- case GGML_OP_SCALE:
- {
- float scale; memcpy(&scale, dst->op_params, sizeof(float));
- ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale);
- } break;
- case GGML_OP_UNARY:
- {
- int64_t n = ggml_nelements(dst);
- GGML_ASSERT(n % 4 == 0);
- switch (ggml_get_unary_op(gf->nodes[i])) {
- case GGML_UNARY_OP_SILU:
- {
- ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
- } break;
- case GGML_UNARY_OP_RELU:
- {
- ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
- } break;
- case GGML_UNARY_OP_GELU:
- {
- GGML_ASSERT(n % 8 == 0);
- ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8);
- } break;
- default:
- {
- fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
- GGML_ABORT("fatal error");
- }
- }
- } break;
- case GGML_OP_SOFT_MAX:
- {
- float scale;
- float max_bias;
- memcpy(&scale, (float *)dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float));
- #pragma message("TODO: add ggml_vk_soft_max() F16 src1 support")
- #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
- GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32);
- #pragma message("TODO: add ALiBi support")
- #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192")
- GGML_ASSERT(max_bias == 0.0f);
- ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- const int n_past = ((int32_t *)(dst->op_params))[0];
- ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02);
- } break;
- case GGML_OP_NORM:
- {
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
- } break;
- case GGML_OP_RMS_NORM:
- {
- GGML_ASSERT(ne00 % 4 == 0);
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
- } break;
- case GGML_OP_MUL_MAT:
- {
- GGML_ASSERT(ne00 == ne10);
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- const uint32_t r2 = ne12/ne02;
- const uint32_t r3 = ne13/ne03;
- if (src1t != GGML_TYPE_F32) {
- fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
- goto not_implemented;
- }
- if (ggml_is_transposed(src0) ||
- ggml_is_transposed(src1)) {
- fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
- goto not_implemented;
- }
- switch (src0t) {
- case GGML_TYPE_F32:
- ggml_vk_mul_mat_mat_f32(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2
- );
- break;
- case GGML_TYPE_F16:
- ggml_vk_mul_mat_f16(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12,
- ne0, ne1, r2, r3
- );
- break;
- case GGML_TYPE_Q8_0:
- ggml_vk_mul_mat_q8_0(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
- );
- break;
- case GGML_TYPE_Q4_0:
- ggml_vk_mul_mat_q4_0(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
- );
- break;
- case GGML_TYPE_Q4_1:
- ggml_vk_mul_mat_q4_1(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
- );
- break;
- case GGML_TYPE_Q6_K:
- ggml_vk_mul_mat_q6_k(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
- ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02
- );
- break;
- default: {
- fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
- goto not_implemented;
- }
- }
- } break;
- case GGML_OP_GET_ROWS:
- {
- if (src0t == GGML_TYPE_F32) {
- ggml_vk_get_rows_f32(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
- } else if (src0t == GGML_TYPE_F16) {
- ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
- } else if (src0t == GGML_TYPE_Q4_0) {
- ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
- } else if (src0t == GGML_TYPE_Q4_1) {
- ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
- } else if (src0t == GGML_TYPE_Q6_K) {
- ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
- } else {
- fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t);
- goto not_implemented;
- }
- } break;
- case GGML_OP_ROPE:
- {
- #pragma message("TODO: implement phi3 frequency factors support")
- #pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
- GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
- #pragma message("TODO: update rope NORM mode to match NEOX mode")
- #pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
- GGML_ASSERT(ne10 == ne02);
- GGML_ASSERT(src0t == dstt);
- // const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- // skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- ggml_vk_rope(
- seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_ctx_orig,
- freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
- ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
- );
- } break;
- case GGML_OP_DUP:
- case GGML_OP_CPY:
- case GGML_OP_CONT:
- {
- switch (src0t) {
- case GGML_TYPE_F32:
- {
- switch (dstt) {
- case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
- case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
- default: goto not_implemented;
- }
- } break;
- case GGML_TYPE_F16:
- {
- switch (dstt) {
- case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
- case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
- default: goto not_implemented;
- } break;
- default: goto not_implemented;
- }
- }
- } break;
- default: goto not_implemented;
- }
- continue;
- not_implemented: {}
- fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
- //GGML_ABORT("fatal error");
- }
- // Evaluate sequence
- if (any_commands_recorded) {
- seq.evalAsync();
- }
- }
- // Wait for all sequences to finish
- for (auto& sequence : sequences) {
- if (sequence->isRunning())
- sequence->evalAwait();
- }
- ggml_vk_free_descriptor_pool(ctx);
- }
- template<>
- kp::Tensor::TensorDataTypes
- kp::TensorT<half>::dataType()
- {
- return TensorDataTypes::eFloat;
- }
- template<>
- kp::Tensor::TensorDataTypes
- kp::TensorT<uint8_t>::dataType()
- {
- return TensorDataTypes::eUnsignedInt;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // backend interface
- struct ggml_backend_kompute_buffer_type_context {
- int device;
- int device_ref = 0;
- uint64_t buffer_alignment;
- uint64_t max_alloc;
- std::string name;
- ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc)
- : device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {}
- };
- static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
- if (!ctx->device_ref) {
- komputeManager()->initializeDevice(
- ctx->device, {}, {
- "VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage",
- "VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info"
- }
- );
- }
- assert(ggml_vk_has_device());
- ctx->device_ref++;
- }
- static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
- assert(ctx->device_ref > 0);
- ctx->device_ref--;
- if (!ctx->device_ref) {
- komputeManager.destroy();
- }
- }
- static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context);
- return ctx->name.c_str();
- }
- static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- auto * memory = (ggml_vk_memory *)buffer->context;
- if (ggml_vk_has_device()) {
- ggml_vk_free_memory(*memory);
- }
- delete memory;
- }
- static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
- return ((ggml_vk_memory *)buffer->context)->data;
- }
- static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_UNUSED(buffer);
- const auto res = ggml_vk_get_tensor(tensor);
- GGML_ASSERT(res);
- memcpy((char *)tensor->data + offset, data, size);
- komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res});
- }
- static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_UNUSED(buffer);
- const auto res = ggml_vk_get_tensor(tensor);
- GGML_ASSERT(res);
- komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res});
- memcpy(data, (const char *)tensor->data + offset, size);
- }
- static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- auto * memory = (ggml_vk_memory *)buffer->context;
- memset(memory->data, value, buffer->size);
- if (memory->stagingBuffer)
- komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size);
- }
- static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
- /* .get_name = */ ggml_backend_kompute_buffer_get_name,
- /* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer,
- /* .get_base = */ ggml_backend_kompute_buffer_get_base,
- /* .init_tensor = */ NULL,
- /* .memset_tensor = */ NULL,
- /* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_kompute_buffer_clear,
- /* .reset = */ NULL,
- };
- // default buffer type
- static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
- return ctx->name.c_str();
- }
- static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- ggml_backend_kompute_device_ref(buft);
- auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size));
- return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size);
- }
- static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
- return ctx->buffer_alignment;
- }
- static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
- auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
- return ctx->max_alloc;
- }
- static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
- /* .get_name = */ ggml_backend_kompute_buffer_type_get_name,
- /* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
- /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
- /* .is_host = */ NULL,
- };
- ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
- static std::vector<ggml_backend_buffer_type> bufts = []() {
- std::vector<ggml_backend_buffer_type> vec;
- auto devices = ggml_vk_available_devices_internal(0);
- vec.reserve(devices.size());
- for (const auto & dev : devices) {
- vec.push_back({
- /* .iface = */ ggml_backend_kompute_buffer_type_interface,
- /* .device = */ nullptr,
- /* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
- });
- }
- return vec;
- }();
- auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) {
- return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device;
- });
- return it < bufts.end() ? &*it : nullptr;
- }
- // backend
- static const char * ggml_backend_kompute_name(ggml_backend_t backend) {
- auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
- return ctx->name.c_str();
- }
- static void ggml_backend_kompute_free(ggml_backend_t backend) {
- auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
- assert(ctx == s_kompute_context);
- s_kompute_context = nullptr;
- if (ctx != nullptr) {
- delete ctx;
- }
- delete backend;
- }
- static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) {
- auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
- return ggml_backend_kompute_buffer_type(ctx->device);
- }
- static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
- ggml_vk_graph_compute(ctx, cgraph);
- return GGML_STATUS_SUCCESS;
- }
- static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- GGML_UNUSED(backend);
- return ggml_vk_supports_op(op);
- }
- static bool ggml_backend_kompute_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
- GGML_UNUSED(backend);
- return buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name;
- }
- static struct ggml_backend_i kompute_backend_i = {
- /* .get_name = */ ggml_backend_kompute_name,
- /* .free = */ ggml_backend_kompute_free,
- /* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type,
- /* .set_tensor_async = */ NULL,
- /* .get_tensor_async = */ NULL,
- /* .cpy_tensor_async = */ NULL,
- /* .synchronize = */ NULL,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_kompute_graph_compute,
- /* .supports_op = */ ggml_backend_kompute_supports_op,
- /* .supports_buft = */ ggml_backend_kompute_supports_buft,
- /* .offload_op = */ NULL,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- };
- static ggml_guid_t ggml_backend_kompute_guid() {
- static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca };
- return &guid;
- }
- ggml_backend_t ggml_backend_kompute_init(int device) {
- GGML_ASSERT(s_kompute_context == nullptr);
- s_kompute_context = new ggml_kompute_context(device);
- ggml_backend_t kompute_backend = new ggml_backend {
- /* .guid = */ ggml_backend_kompute_guid(),
- /* .interface = */ kompute_backend_i,
- /* .device = */ nullptr,
- /* .context = */ s_kompute_context,
- };
- return kompute_backend;
- }
- bool ggml_backend_is_kompute(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
- }
|