ggml.c 375 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include <cublas_v2.h>
  128. #include <cuda_runtime.h>
  129. #include "ggml-cuda.h"
  130. #define CUDA_CHECK(err) \
  131. do { \
  132. cudaError_t err_ = (err); \
  133. if (err_ != cudaSuccess) { \
  134. printf("CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
  135. cudaGetErrorString(err_)); \
  136. exit(1); \
  137. } \
  138. } while (0)
  139. #define CUBLAS_CHECK(err) \
  140. do { \
  141. cublasStatus_t err_ = (err); \
  142. if (err_ != CUBLAS_STATUS_SUCCESS) { \
  143. printf("cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
  144. exit(1); \
  145. } \
  146. } while (0)
  147. static cublasHandle_t cublasH = NULL;
  148. static cudaStream_t cudaStream = NULL;
  149. static void init_cublas(void) {
  150. if (cublasH == NULL) {
  151. // create cublas handle, bind a stream
  152. CUBLAS_CHECK(cublasCreate(&cublasH));
  153. CUDA_CHECK(cudaStreamCreateWithFlags(&cudaStream, cudaStreamNonBlocking));
  154. CUBLAS_CHECK(cublasSetStream(cublasH, cudaStream));
  155. // configure logging to stdout
  156. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
  157. }
  158. }
  159. #endif
  160. #undef MIN
  161. #undef MAX
  162. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  163. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  164. // floating point type used to accumulate sums
  165. typedef double ggml_float;
  166. // 16-bit float
  167. // on Arm, we use __fp16
  168. // on x86, we use uint16_t
  169. #ifdef __ARM_NEON
  170. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  171. //
  172. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  173. //
  174. #include <arm_neon.h>
  175. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  176. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  177. #define GGML_FP16_TO_FP32(x) ((float) (x))
  178. #define GGML_FP32_TO_FP16(x) (x)
  179. #else
  180. #ifdef __wasm_simd128__
  181. #include <wasm_simd128.h>
  182. #else
  183. #ifdef __POWER9_VECTOR__
  184. #include <altivec.h>
  185. #undef bool
  186. #define bool _Bool
  187. #else
  188. #include <immintrin.h>
  189. #endif
  190. #endif
  191. #ifdef __F16C__
  192. #ifdef _MSC_VER
  193. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  194. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  195. #else
  196. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  197. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  198. #endif
  199. #elif defined(__POWER9_VECTOR__)
  200. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  201. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  202. /* the inline asm below is about 12% faster than the lookup method */
  203. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  204. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  205. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  206. register float f;
  207. register double d;
  208. __asm__(
  209. "mtfprd %0,%2\n"
  210. "xscvhpdp %0,%0\n"
  211. "frsp %1,%0\n" :
  212. /* temp */ "=d"(d),
  213. /* out */ "=f"(f):
  214. /* in */ "r"(h));
  215. return f;
  216. }
  217. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  218. register double d;
  219. register ggml_fp16_t r;
  220. __asm__( /* xscvdphp can work on double or single precision */
  221. "xscvdphp %0,%2\n"
  222. "mffprd %1,%0\n" :
  223. /* temp */ "=d"(d),
  224. /* out */ "=r"(r):
  225. /* in */ "f"(f));
  226. return r;
  227. }
  228. #else
  229. // FP16 <-> FP32
  230. // ref: https://github.com/Maratyszcza/FP16
  231. static inline float fp32_from_bits(uint32_t w) {
  232. union {
  233. uint32_t as_bits;
  234. float as_value;
  235. } fp32;
  236. fp32.as_bits = w;
  237. return fp32.as_value;
  238. }
  239. static inline uint32_t fp32_to_bits(float f) {
  240. union {
  241. float as_value;
  242. uint32_t as_bits;
  243. } fp32;
  244. fp32.as_value = f;
  245. return fp32.as_bits;
  246. }
  247. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  248. const uint32_t w = (uint32_t) h << 16;
  249. const uint32_t sign = w & UINT32_C(0x80000000);
  250. const uint32_t two_w = w + w;
  251. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  252. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  253. const float exp_scale = 0x1.0p-112f;
  254. #else
  255. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  256. #endif
  257. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  258. const uint32_t magic_mask = UINT32_C(126) << 23;
  259. const float magic_bias = 0.5f;
  260. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  261. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  262. const uint32_t result = sign |
  263. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  264. return fp32_from_bits(result);
  265. }
  266. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  267. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  268. const float scale_to_inf = 0x1.0p+112f;
  269. const float scale_to_zero = 0x1.0p-110f;
  270. #else
  271. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  272. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  273. #endif
  274. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  275. const uint32_t w = fp32_to_bits(f);
  276. const uint32_t shl1_w = w + w;
  277. const uint32_t sign = w & UINT32_C(0x80000000);
  278. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  279. if (bias < UINT32_C(0x71000000)) {
  280. bias = UINT32_C(0x71000000);
  281. }
  282. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  283. const uint32_t bits = fp32_to_bits(base);
  284. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  285. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  286. const uint32_t nonsign = exp_bits + mantissa_bits;
  287. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  288. }
  289. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  290. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  291. #endif // __F16C__
  292. #endif // __ARM_NEON
  293. //
  294. // global data
  295. //
  296. // precomputed gelu table for f16 (128 KB)
  297. static ggml_fp16_t table_gelu_f16[1 << 16];
  298. // precomputed silu table for f16 (128 KB)
  299. static ggml_fp16_t table_silu_f16[1 << 16];
  300. // precomputed exp table for f16 (128 KB)
  301. static ggml_fp16_t table_exp_f16[1 << 16];
  302. // precomputed f32 table for f16 (256 KB)
  303. static float table_f32_f16[1 << 16];
  304. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  305. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  306. // This is also true for POWER9.
  307. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  308. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  309. uint16_t s;
  310. memcpy(&s, &f, sizeof(uint16_t));
  311. return table_f32_f16[s];
  312. }
  313. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  314. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  315. #endif
  316. // note: do not use these inside ggml.c
  317. // these are meant to be used via the ggml.h API
  318. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  319. return (float) GGML_FP16_TO_FP32(x);
  320. }
  321. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  322. return GGML_FP32_TO_FP16(x);
  323. }
  324. //
  325. // timing
  326. //
  327. #if defined(_MSC_VER) || defined(__MINGW32__)
  328. static int64_t timer_freq;
  329. void ggml_time_init(void) {
  330. LARGE_INTEGER frequency;
  331. QueryPerformanceFrequency(&frequency);
  332. timer_freq = frequency.QuadPart;
  333. }
  334. int64_t ggml_time_ms(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return (t.QuadPart * 1000) / timer_freq;
  338. }
  339. int64_t ggml_time_us(void) {
  340. LARGE_INTEGER t;
  341. QueryPerformanceCounter(&t);
  342. return (t.QuadPart * 1000000) / timer_freq;
  343. }
  344. #else
  345. void ggml_time_init(void) {}
  346. int64_t ggml_time_ms(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  350. }
  351. int64_t ggml_time_us(void) {
  352. struct timespec ts;
  353. clock_gettime(CLOCK_MONOTONIC, &ts);
  354. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  355. }
  356. #endif
  357. int64_t ggml_cycles(void) {
  358. return clock();
  359. }
  360. int64_t ggml_cycles_per_ms(void) {
  361. return CLOCKS_PER_SEC/1000;
  362. }
  363. #ifdef GGML_PERF
  364. #define ggml_perf_time_ms() ggml_time_ms()
  365. #define ggml_perf_time_us() ggml_time_us()
  366. #define ggml_perf_cycles() ggml_cycles()
  367. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  368. #else
  369. #define ggml_perf_time_ms() 0
  370. #define ggml_perf_time_us() 0
  371. #define ggml_perf_cycles() 0
  372. #define ggml_perf_cycles_per_ms() 0
  373. #endif
  374. //
  375. // cache line
  376. //
  377. #if defined(__cpp_lib_hardware_interference_size)
  378. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  379. #else
  380. #if defined(__POWER9_VECTOR__)
  381. #define CACHE_LINE_SIZE 128
  382. #else
  383. #define CACHE_LINE_SIZE 64
  384. #endif
  385. #endif
  386. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  387. //
  388. // quantization
  389. //
  390. #if __AVX__ || __AVX2__ || __AVX512F__
  391. // Unpack 16 4-bit fields into 16 bytes
  392. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  393. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  394. {
  395. // Load 8 bytes from memory
  396. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  397. // Expand bytes into uint16_t values
  398. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  399. // Unpack values into individual bytes
  400. const __m128i lowMask = _mm_set1_epi8( 0xF );
  401. __m128i high = _mm_andnot_si128( lowMask, bytes );
  402. __m128i low = _mm_and_si128( lowMask, bytes );
  403. high = _mm_slli_epi16( high, 4 );
  404. bytes = _mm_or_si128( low, high );
  405. return bytes;
  406. }
  407. #if __AVX2__ || __AVX512F__
  408. // Unpack 32 4-bit fields into 32 bytes
  409. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  410. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  411. {
  412. // Load 16 bytes from memory
  413. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  414. // Expand bytes into uint16_t values
  415. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  416. // Unpack values into individual bytes
  417. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  418. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  419. __m256i low = _mm256_and_si256( lowMask, bytes );
  420. high = _mm256_slli_epi16( high, 4 );
  421. bytes = _mm256_or_si256( low, high );
  422. return bytes;
  423. }
  424. static inline __m128i packNibbles( __m256i bytes )
  425. {
  426. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  427. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  428. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  429. __m256i low = _mm256_and_si256( lowByte, bytes );
  430. high = _mm256_srli_epi16( high, 4 );
  431. bytes = _mm256_or_si256( low, high );
  432. // Compress uint16_t lanes into bytes
  433. __m128i r0 = _mm256_castsi256_si128( bytes );
  434. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  435. return _mm_packus_epi16( r0, r1 );
  436. }
  437. #else
  438. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  439. {
  440. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  441. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  442. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  443. __m128i low = _mm_and_si128( lowByte, bytes1 );
  444. high = _mm_srli_epi16( high, 4 );
  445. bytes1 = _mm_or_si128( low, high );
  446. high = _mm_andnot_si128( lowByte, bytes2 );
  447. low = _mm_and_si128( lowByte, bytes2 );
  448. high = _mm_srli_epi16( high, 4 );
  449. bytes2 = _mm_or_si128( low, high );
  450. return _mm_packus_epi16( bytes1, bytes2);
  451. }
  452. #endif
  453. #endif // __AVX__ || __AVX2__ || __AVX512F__
  454. #if __ARM_NEON
  455. #if !defined(__aarch64__)
  456. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  457. return
  458. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  459. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  460. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  461. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  462. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  463. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  464. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  465. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  466. }
  467. inline static int16_t vaddvq_s8(int8x16_t v) {
  468. return
  469. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  470. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  471. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  472. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  473. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  474. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  475. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  476. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  477. }
  478. inline static int32_t vaddvq_s16(int16x8_t v) {
  479. return
  480. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  481. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  482. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  483. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  484. }
  485. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  486. return
  487. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  488. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  489. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  490. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  491. }
  492. inline static int32_t vaddvq_s32(int32x4_t v) {
  493. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  494. }
  495. inline static float vaddvq_f32(float32x4_t v) {
  496. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  497. }
  498. float vminvq_f32(float32x4_t v) {
  499. return
  500. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  501. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  502. }
  503. float vmaxvq_f32(float32x4_t v) {
  504. return
  505. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  506. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  507. }
  508. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  509. return vget_low_s8(vcombine_s8(a, b));
  510. }
  511. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  512. return vget_high_s8(vcombine_s8(a, b));
  513. }
  514. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  515. return vget_low_u8(vcombine_u8(a, b));
  516. }
  517. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  518. return vget_high_u8(vcombine_u8(a, b));
  519. }
  520. #endif
  521. #endif
  522. #define QK4_0 32
  523. typedef struct {
  524. float d; // delta
  525. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  526. } block_q4_0;
  527. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  528. #define QK4_1 32
  529. typedef struct {
  530. float d; // delta
  531. float m; // min
  532. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  533. } block_q4_1;
  534. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
  535. #define QK4_2 16
  536. typedef struct {
  537. ggml_fp16_t d; // delta
  538. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  539. } block_q4_2;
  540. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  541. #define QK8_0 32
  542. typedef struct {
  543. float d; // delta
  544. int8_t qs[QK8_0]; // quants
  545. } block_q8_0;
  546. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  547. // reference implementation for deterministic creation of model files
  548. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  549. assert(k % QK4_0 == 0);
  550. const int nb = k / QK4_0;
  551. uint8_t pp[QK4_0/2];
  552. for (int i = 0; i < nb; i++) {
  553. float amax = 0.0f; // absolute max
  554. for (int l = 0; l < QK4_0; l++) {
  555. const float v = x[i*QK4_0 + l];
  556. amax = MAX(amax, fabsf(v));
  557. }
  558. const float d = amax / ((1 << 3) - 1);
  559. const float id = d ? 1.0f/d : 0.0f;
  560. y[i].d = d;
  561. for (int l = 0; l < QK4_0; l += 2) {
  562. const float v0 = x[i*QK4_0 + l + 0]*id;
  563. const float v1 = x[i*QK4_0 + l + 1]*id;
  564. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  565. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  566. assert(vi0 < 16);
  567. assert(vi1 < 16);
  568. pp[l/2] = vi0 | (vi1 << 4);
  569. }
  570. memcpy(y[i].qs, pp, sizeof(pp));
  571. }
  572. }
  573. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  574. assert(k % QK4_0 == 0);
  575. const int nb = k / QK4_0;
  576. block_q4_0 * restrict y = vy;
  577. #if defined(__POWER9_VECTOR__)
  578. const vector float v85 = vec_splats(8.5f);
  579. for (int i = 0; i < nb; i++) {
  580. float amax = 0.0f; // absolute max
  581. vector float srcv [8];
  582. vector float asrcv[8];
  583. vector float amaxv[8];
  584. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  585. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  586. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  587. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  588. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  589. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  590. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  591. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  592. amax = MAX(
  593. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  594. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  595. const float d = amax / ((1 << 3) - 1);
  596. const float id = d ? 1.0/d : 0.0;
  597. y[i].d = d;
  598. const vector float vid = vec_splats(id);
  599. uint8_t * restrict pb = y[i].qs;
  600. for (int l = 0; l < 8; l++) {
  601. const vector float vf = vec_madd(srcv[l], vid, v85);
  602. const vector signed int vi = vec_signed(vf);
  603. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  604. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  605. }
  606. }
  607. #elif __ARM_NEON
  608. for (int i = 0; i < nb; i++) {
  609. float32x4_t srcv [8];
  610. float32x4_t asrcv[8];
  611. float32x4_t amaxv[8];
  612. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  613. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  614. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  615. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  616. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  617. const float amax = vmaxvq_f32(amaxv[0]);
  618. const float d = amax / ((1 << 3) - 1);
  619. const float id = d ? 1.0f/d : 0.0f;
  620. y[i].d = d;
  621. for (int l = 0; l < 8; l++) {
  622. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  623. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  624. const int32x4_t vi = vcvtq_s32_f32(vf);
  625. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  626. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  627. }
  628. }
  629. #elif defined(__AVX2__)
  630. for (int i = 0; i < nb; i++) {
  631. // Load elements into 4 AVX vectors
  632. __m256 v0 = _mm256_loadu_ps( x );
  633. __m256 v1 = _mm256_loadu_ps( x + 8 );
  634. __m256 v2 = _mm256_loadu_ps( x + 16 );
  635. __m256 v3 = _mm256_loadu_ps( x + 24 );
  636. x += 32;
  637. // Compute max(abs(e)) for the block
  638. const __m256 signBit = _mm256_set1_ps( -0.0f );
  639. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  640. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  641. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  642. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  643. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  644. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  645. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  646. const float maxScalar = _mm_cvtss_f32( max4 );
  647. // Quantize these floats
  648. const float d = maxScalar / 7.0f;
  649. y[i].d = d;
  650. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  651. const __m256 mul = _mm256_set1_ps( id );
  652. // Apply the multiplier
  653. v0 = _mm256_mul_ps( v0, mul );
  654. v1 = _mm256_mul_ps( v1, mul );
  655. v2 = _mm256_mul_ps( v2, mul );
  656. v3 = _mm256_mul_ps( v3, mul );
  657. // Round to nearest integer
  658. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  659. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  660. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  661. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  662. // Convert floats to integers
  663. __m256i i0 = _mm256_cvtps_epi32( v0 );
  664. __m256i i1 = _mm256_cvtps_epi32( v1 );
  665. __m256i i2 = _mm256_cvtps_epi32( v2 );
  666. __m256i i3 = _mm256_cvtps_epi32( v3 );
  667. // Convert int32 to int16
  668. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  669. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  670. // Convert int16 to int8
  671. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  672. // We got our precious signed bytes, but the order is now wrong
  673. // These AVX2 pack instructions process 16-byte pieces independently
  674. // The following instruction is fixing the order
  675. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  676. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  677. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  678. const __m256i off = _mm256_set1_epi8( 8 );
  679. i0 = _mm256_add_epi8( i0, off );
  680. // Compress the vector into 4 bit/value, and store
  681. __m128i res = packNibbles( i0 );
  682. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  683. }
  684. #elif defined(__AVX__)
  685. for (int i = 0; i < nb; i++) {
  686. // Load elements into 4 AVX vectors
  687. __m256 v0 = _mm256_loadu_ps( x );
  688. __m256 v1 = _mm256_loadu_ps( x + 8 );
  689. __m256 v2 = _mm256_loadu_ps( x + 16 );
  690. __m256 v3 = _mm256_loadu_ps( x + 24 );
  691. x += 32;
  692. // Compute max(abs(e)) for the block
  693. const __m256 signBit = _mm256_set1_ps( -0.0f );
  694. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  695. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  696. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  697. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  698. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  699. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  700. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  701. const float maxScalar = _mm_cvtss_f32( max4 );
  702. // Quantize these floats
  703. const float d = maxScalar / 7.0f;
  704. y[i].d = d;
  705. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  706. const __m256 mul = _mm256_set1_ps( id );
  707. // Apply the multiplier
  708. v0 = _mm256_mul_ps( v0, mul );
  709. v1 = _mm256_mul_ps( v1, mul );
  710. v2 = _mm256_mul_ps( v2, mul );
  711. v3 = _mm256_mul_ps( v3, mul );
  712. // Round to nearest integer
  713. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  714. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  715. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  716. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  717. // Convert floats to integers
  718. __m256i i0 = _mm256_cvtps_epi32( v0 );
  719. __m256i i1 = _mm256_cvtps_epi32( v1 );
  720. __m256i i2 = _mm256_cvtps_epi32( v2 );
  721. __m256i i3 = _mm256_cvtps_epi32( v3 );
  722. // Since we don't have in AVX some necessary functions,
  723. // we split the registers in half and call AVX2 analogs from SSE
  724. __m128i ni0 = _mm256_castsi256_si128( i0 );
  725. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  726. __m128i ni2 = _mm256_castsi256_si128( i1 );
  727. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  728. __m128i ni4 = _mm256_castsi256_si128( i2 );
  729. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  730. __m128i ni6 = _mm256_castsi256_si128( i3 );
  731. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  732. // Convert int32 to int16
  733. ni0 = _mm_packs_epi32( ni0, ni1 );
  734. ni2 = _mm_packs_epi32( ni2, ni3 );
  735. ni4 = _mm_packs_epi32( ni4, ni5 );
  736. ni6 = _mm_packs_epi32( ni6, ni7 );
  737. // Convert int16 to int8
  738. ni0 = _mm_packs_epi16( ni0, ni2 );
  739. ni4 = _mm_packs_epi16( ni4, ni6 );
  740. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  741. const __m128i off = _mm_set1_epi8( 8);
  742. ni0 = _mm_add_epi8( ni0, off );
  743. ni4 = _mm_add_epi8( ni4, off );
  744. // Compress the vector into 4 bit/value, and store
  745. __m128i res = packNibbles( ni0, ni4 );
  746. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  747. }
  748. #elif defined(__wasm_simd128__)
  749. for (int i = 0; i < nb; i++) {
  750. float amax = 0.0f; // absolute max
  751. v128_t srcv [8];
  752. v128_t asrcv[8];
  753. v128_t amaxv[8];
  754. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  755. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  756. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  757. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  758. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  759. amax = MAX(
  760. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  761. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  762. const float d = amax / ((1 << 3) - 1);
  763. const float id = d ? 1.0/d : 0.0;
  764. y[i].d = d;
  765. for (int l = 0; l < 8; l++) {
  766. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  767. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  768. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  769. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  770. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  771. }
  772. }
  773. #else
  774. // scalar
  775. quantize_row_q4_0_reference(x, y, k);
  776. #endif
  777. }
  778. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  779. assert(k % QK4_1 == 0);
  780. const int nb = k / QK4_1;
  781. block_q4_1 * restrict y = vy;
  782. uint8_t pp[QK4_1/2];
  783. for (int i = 0; i < nb; i++) {
  784. float min = FLT_MAX;
  785. float max = -FLT_MAX;
  786. for (int l = 0; l < QK4_1; l++) {
  787. const float v = x[i*QK4_1 + l];
  788. if (v < min) min = v;
  789. if (v > max) max = v;
  790. }
  791. const float d = (max - min) / ((1 << 4) - 1);
  792. const float id = d ? 1.0f/d : 0.0f;
  793. y[i].d = d;
  794. y[i].m = min;
  795. for (int l = 0; l < QK4_1; l += 2) {
  796. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  797. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  798. const uint8_t vi0 = roundf(v0);
  799. const uint8_t vi1 = roundf(v1);
  800. assert(vi0 < 16);
  801. assert(vi1 < 16);
  802. pp[l/2] = vi0 | (vi1 << 4);
  803. }
  804. memcpy(y[i].qs, pp, sizeof(pp));
  805. }
  806. }
  807. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  808. assert(k % QK4_1 == 0);
  809. const int nb = k / QK4_1;
  810. block_q4_1 * restrict y = vy;
  811. #if defined(__AVX2__)
  812. for (int i = 0; i < nb; i++) {
  813. // Load elements into 4 AVX vectors
  814. __m256 v0 = _mm256_loadu_ps( x );
  815. __m256 v1 = _mm256_loadu_ps( x + 8 );
  816. __m256 v2 = _mm256_loadu_ps( x + 16 );
  817. __m256 v3 = _mm256_loadu_ps( x + 24 );
  818. x += 32;
  819. // Compute max for the block
  820. __m256 vmax;
  821. vmax = _mm256_max_ps( v0, v1 );
  822. vmax = _mm256_max_ps( vmax, v2 );
  823. vmax = _mm256_max_ps( vmax, v3 );
  824. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  825. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  826. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  827. const float maxScalar = _mm_cvtss_f32( max4 );
  828. // Compute min for the block
  829. __m256 vmin;
  830. vmin = _mm256_min_ps( v0, v1 );
  831. vmin = _mm256_min_ps( vmin, v2 );
  832. vmin = _mm256_min_ps( vmin, v3 );
  833. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  834. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  835. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  836. const float minScalar = _mm_cvtss_f32( min4 );
  837. // Quantize these floats
  838. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  839. const float id = d ? 1.0f/d : 0.0f;
  840. y[i].m = minScalar;
  841. y[i].d = d;
  842. // x = (x-min)*id
  843. const __m256 mul = _mm256_set1_ps( id );
  844. const __m256 off = _mm256_set1_ps( minScalar );
  845. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  846. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  847. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  848. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  849. // Round to nearest integer
  850. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  851. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  852. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  853. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  854. // Convert floats to integers
  855. __m256i i0 = _mm256_cvtps_epi32( v0 );
  856. __m256i i1 = _mm256_cvtps_epi32( v1 );
  857. __m256i i2 = _mm256_cvtps_epi32( v2 );
  858. __m256i i3 = _mm256_cvtps_epi32( v3 );
  859. // Convert int32 to int16
  860. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  861. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  862. // Convert int16 to int8
  863. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  864. // We got our precious signed bytes, but the order is now wrong
  865. // These AVX2 pack instructions process 16-byte pieces independently
  866. // The following instruction is fixing the order
  867. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  868. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  869. // Compress the vector into 4 bit/value, and store
  870. __m128i res = packNibbles( i0 );
  871. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  872. }
  873. #elif __ARM_NEON
  874. for (int i = 0; i < nb; i++) {
  875. float32x4_t srcv[8];
  876. float32x4_t minv[8];
  877. float32x4_t maxv[8];
  878. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  879. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  880. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  881. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  882. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  883. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  884. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  885. const float min = vminvq_f32(minv[0]);
  886. const float max = vmaxvq_f32(maxv[0]);
  887. const float d = (max - min) / ((1 << 4) - 1);
  888. const float id = d ? 1.0f/d : 0.0f;
  889. y[i].d = d;
  890. y[i].m = min;
  891. const float32x4_t minv0 = vdupq_n_f32(min);
  892. for (int l = 0; l < 8; l++) {
  893. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  894. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  895. const int32x4_t vi = vcvtq_s32_f32(vf);
  896. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  897. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  898. }
  899. }
  900. #else
  901. // scalar
  902. quantize_row_q4_1_reference(x, vy, k);
  903. #endif
  904. }
  905. // reference implementation for deterministic creation of model files
  906. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  907. assert(k % QK4_2 == 0);
  908. const int nb = k / QK4_2;
  909. for (int i = 0; i < nb; i++) {
  910. float amax = 0.0f; // absolute max
  911. for (int l = 0; l < QK4_2; l++) {
  912. const float v = x[i*QK4_2 + l];
  913. amax = MAX(amax, fabsf(v));
  914. }
  915. const float d = amax / ((1 << 3) - 1);
  916. const float id = d ? 1.0f/d : 0.0f;
  917. y[i].d = GGML_FP32_TO_FP16(d);
  918. for (int l = 0; l < QK4_2; l += 2) {
  919. const float v0 = x[i*QK4_2 + l + 0]*id;
  920. const float v1 = x[i*QK4_2 + l + 1]*id;
  921. const uint8_t vi0 = (uint8_t)(v0 + 8.5f);
  922. const uint8_t vi1 = (uint8_t)(v1 + 8.5f);
  923. assert(vi0 < 16);
  924. assert(vi1 < 16);
  925. y[i].qs[l/2] = vi0 | (vi1 << 4);
  926. }
  927. }
  928. }
  929. static inline int nearest_int(float fval) {
  930. assert(fval <= 4194303.f);
  931. float val = fval + 12582912.f;
  932. int i; memcpy(&i, &val, sizeof(int));
  933. return (i & 0x007fffff) - 0x00400000;
  934. }
  935. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  936. const float * restrict candidates, int8_t * restrict L) {
  937. assert (nmin >= INT8_MIN);
  938. assert (nmax <= INT8_MAX);
  939. float amax = 0;
  940. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  941. if (!amax) { // all zero
  942. for (int i=0; i<n; ++i) L[i] = 0;
  943. return 1.f;
  944. }
  945. float best = 0, bestScale = 0;
  946. for (int si=0; si<nCandidates; ++si) {
  947. float iscale = candidates[si]/amax;
  948. float sumlxP = 0; int suml2P = 0;
  949. float sumlxM = 0; int suml2M = 0;
  950. for (int i=0; i<n; ++i) {
  951. int l = nearest_int(iscale*X[i]);
  952. int lp = MAX(nmin, MIN(nmax, +l));
  953. int lm = MAX(nmin, MIN(nmax, -l));
  954. sumlxP += X[i]*lp; suml2P += lp*lp;
  955. sumlxM += X[i]*lm; suml2M += lm*lm;
  956. }
  957. float sumlxP2 = sumlxP*sumlxP;
  958. float sumlxM2 = sumlxM*sumlxM;
  959. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  960. if (sumlxP2 > best*suml2P) {
  961. best = sumlxP2/suml2P; bestScale = iscale;
  962. }
  963. } else {
  964. if (sumlxM2 > best*suml2M) {
  965. best = sumlxM2/suml2M; bestScale = -iscale;
  966. }
  967. }
  968. }
  969. float sumlx = 0; int suml2 = 0;
  970. for (int i=0; i<n; ++i) {
  971. int l = nearest_int(bestScale*X[i]);
  972. l = MAX(nmin, MIN(nmax, l));
  973. sumlx += X[i]*l; suml2 += l*l;
  974. L[i] = l;
  975. }
  976. float scale = sumlx/suml2;
  977. return scale;
  978. }
  979. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  980. #define CANDIDATE_COUNT 8
  981. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  982. assert(k % QK4_2 == 0);
  983. int8_t L[QK4_2];
  984. const int nb = k / QK4_2;
  985. for (int i = 0; i < nb; i++) {
  986. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  987. y[i].d = GGML_FP32_TO_FP16(scale);
  988. for (int l = 0; l < QK4_2; l += 2) {
  989. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  990. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  991. assert(vi0 < 16);
  992. assert(vi1 < 16);
  993. y[i].qs[l/2] = vi0 | (vi1 << 4);
  994. }
  995. x += QK4_2;
  996. }
  997. }
  998. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  999. assert(k % QK4_2 == 0);
  1000. block_q4_2 * restrict y = vy;
  1001. //quantize_row_q4_2_reference(x, y, k);
  1002. // This produces the exact same format, just better match to the input floats ("better" as measured by RMSE)
  1003. quantize_row_q4_2_rmse(x, y, k);
  1004. }
  1005. // reference implementation for deterministic creation of model files
  1006. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1007. assert(k % QK8_0 == 0);
  1008. const int nb = k / QK8_0;
  1009. for (int i = 0; i < nb; i++) {
  1010. float amax = 0.0f; // absolute max
  1011. for (int l = 0; l < QK8_0; l++) {
  1012. const float v = x[i*QK8_0 + l];
  1013. amax = MAX(amax, fabsf(v));
  1014. }
  1015. const float d = amax / ((1 << 7) - 1);
  1016. const float id = d ? 1.0f/d : 0.0f;
  1017. y[i].d = d;
  1018. for (int l = 0; l < QK8_0; ++l) {
  1019. const float v = x[i*QK8_0 + l]*id;
  1020. y[i].qs[l] = roundf(v);
  1021. }
  1022. }
  1023. }
  1024. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1025. assert(k % QK8_0 == 0);
  1026. const int nb = k / QK8_0;
  1027. block_q8_0 * restrict y = vy;
  1028. #if defined(__ARM_NEON)
  1029. for (int i = 0; i < nb; i++) {
  1030. float32x4_t srcv [8];
  1031. float32x4_t asrcv[8];
  1032. float32x4_t amaxv[8];
  1033. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1034. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1035. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1036. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1037. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1038. const float amax = vmaxvq_f32(amaxv[0]);
  1039. const float d = amax / ((1 << 7) - 1);
  1040. const float id = d ? 1.0f/d : 0.0f;
  1041. y[i].d = d;
  1042. for (int l = 0; l < 8; l++) {
  1043. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1044. const int32x4_t vi = vcvtnq_s32_f32(v);
  1045. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1046. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1047. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1048. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1049. }
  1050. }
  1051. #elif defined(__AVX2__) || defined(__AVX__)
  1052. for (int i = 0; i < nb; i++) {
  1053. // Load elements into 4 AVX vectors
  1054. __m256 v0 = _mm256_loadu_ps( x );
  1055. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1056. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1057. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1058. x += 32;
  1059. // Compute max(abs(e)) for the block
  1060. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1061. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1062. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1063. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1064. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1065. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1066. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1067. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1068. const float maxScalar = _mm_cvtss_f32( max4 );
  1069. // Quantize these floats
  1070. const float d = maxScalar / 127.f;
  1071. y[i].d = d;
  1072. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1073. const __m256 mul = _mm256_set1_ps( id );
  1074. // Apply the multiplier
  1075. v0 = _mm256_mul_ps( v0, mul );
  1076. v1 = _mm256_mul_ps( v1, mul );
  1077. v2 = _mm256_mul_ps( v2, mul );
  1078. v3 = _mm256_mul_ps( v3, mul );
  1079. // Round to nearest integer
  1080. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1081. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1082. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1083. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1084. // Convert floats to integers
  1085. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1086. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1087. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1088. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1089. #if defined(__AVX2__)
  1090. // Convert int32 to int16
  1091. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1092. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1093. // Convert int16 to int8
  1094. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1095. // We got our precious signed bytes, but the order is now wrong
  1096. // These AVX2 pack instructions process 16-byte pieces independently
  1097. // The following instruction is fixing the order
  1098. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1099. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1100. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1101. #else
  1102. // Since we don't have in AVX some necessary functions,
  1103. // we split the registers in half and call AVX2 analogs from SSE
  1104. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1105. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1106. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1107. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1108. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1109. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1110. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1111. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1112. // Convert int32 to int16
  1113. ni0 = _mm_packs_epi32( ni0, ni1 );
  1114. ni2 = _mm_packs_epi32( ni2, ni3 );
  1115. ni4 = _mm_packs_epi32( ni4, ni5 );
  1116. ni6 = _mm_packs_epi32( ni6, ni7 );
  1117. // Convert int16 to int8
  1118. ni0 = _mm_packs_epi16( ni0, ni2 );
  1119. ni4 = _mm_packs_epi16( ni4, ni6 );
  1120. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1121. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1122. #endif
  1123. }
  1124. #else
  1125. // scalar
  1126. quantize_row_q8_0_reference(x, y, k);
  1127. #endif
  1128. }
  1129. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1130. assert(k % QK4_0 == 0);
  1131. const int nb = k / QK4_0;
  1132. const block_q4_0 * restrict x = vx;
  1133. #if defined(__AVX2__)
  1134. for (int i = 0; i < nb; i++) {
  1135. // scale factor
  1136. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1137. const uint8_t * restrict pp = x[i].qs;
  1138. for (int l = 0; l < QK4_0; l += 32) {
  1139. // Load 32x4-bit integers into 32x8-bit integers
  1140. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1141. // Subtract 8 from the integers
  1142. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1143. // Convert to 16-bit int
  1144. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1145. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1146. // Convert to 32-bit int -> float 32
  1147. const __m256 vf[4] = {
  1148. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1149. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1150. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1151. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1152. };
  1153. // Scale and store
  1154. for (int j = 0; j < 4; j++) {
  1155. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1156. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1157. }
  1158. }
  1159. }
  1160. #elif defined(__ARM_NEON)
  1161. for (int i = 0; i < nb; i++) {
  1162. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1163. const uint8_t * restrict pp = x[i].qs;
  1164. for (int l = 0; l < QK4_0; l += 16) {
  1165. // Load 16x4-bit integers into 8x8-bit integers
  1166. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1167. // Expand 4-bit qs to 8-bit bytes
  1168. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1169. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1170. // Convert to signed 8-bit integers
  1171. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1172. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1173. // Subtract 8 from each byte
  1174. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1175. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1176. // Interleave and combine
  1177. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1178. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1179. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1180. // convert to 2x int16x8_t
  1181. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1182. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1183. // convert to 4x float32x4_t
  1184. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1185. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1186. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1187. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1188. // Multiply by d
  1189. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1190. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1191. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1192. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1193. // Store
  1194. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1195. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1196. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1197. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1198. }
  1199. }
  1200. #else
  1201. // scalar
  1202. for (int i = 0; i < nb; i++) {
  1203. const float d = x[i].d;
  1204. const uint8_t * restrict pp = x[i].qs;
  1205. for (int l = 0; l < QK4_0; l += 2) {
  1206. const uint8_t vi = pp[l/2];
  1207. const int8_t vi0 = vi & 0xf;
  1208. const int8_t vi1 = vi >> 4;
  1209. const float v0 = (vi0 - 8)*d;
  1210. const float v1 = (vi1 - 8)*d;
  1211. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1212. y[i*QK4_0 + l + 0] = v0;
  1213. y[i*QK4_0 + l + 1] = v1;
  1214. assert(!isnan(y[i*QK4_0 + l + 0]));
  1215. assert(!isnan(y[i*QK4_0 + l + 1]));
  1216. }
  1217. }
  1218. #endif
  1219. }
  1220. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1221. assert(k % QK4_1 == 0);
  1222. const int nb = k / QK4_1;
  1223. const block_q4_1 * restrict x = vx;
  1224. #if defined(__AVX2__)
  1225. for (int i = 0; i < nb; i++) {
  1226. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1227. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1228. const uint8_t * restrict pp = x[i].qs;
  1229. for (int l = 0; l < QK4_1; l += 32) {
  1230. // Load 32x4-bit integers into 32x8-bit integers
  1231. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1232. // Convert to 16-bit int
  1233. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1234. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1235. // Convert to 32-bit int -> float 32
  1236. const __m256 vf[4] = {
  1237. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1238. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1239. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1240. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1241. };
  1242. // Scale, add m and store
  1243. for (int j = 0; j < 4; j++) {
  1244. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1245. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1246. }
  1247. }
  1248. }
  1249. #elif defined(__ARM_NEON)
  1250. for (int i = 0; i < nb; i++) {
  1251. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1252. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1253. const uint8_t * restrict pp = x[i].qs;
  1254. for (int l = 0; l < QK4_1; l += 16) {
  1255. // Load 16x4-bit integers into 8x8-bit integers
  1256. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1257. // Expand 4-bit qs to 8-bit bytes
  1258. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1259. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1260. // Interleave and combine
  1261. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1262. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1263. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1264. // convert to 2x uint16x8_t
  1265. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1266. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1267. // convert to 4x float32x4_t
  1268. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1269. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1270. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1271. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1272. // multiply by d and add m
  1273. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1274. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1275. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1276. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1277. // Store
  1278. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1279. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1280. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1281. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1282. }
  1283. }
  1284. #else
  1285. for (int i = 0; i < nb; i++) {
  1286. const float d = x[i].d;
  1287. const float m = x[i].m;
  1288. const uint8_t * restrict pp = x[i].qs;
  1289. for (int l = 0; l < QK4_1; l += 2) {
  1290. const uint8_t vi = pp[l/2];
  1291. const int8_t vi0 = vi & 0xf;
  1292. const int8_t vi1 = vi >> 4;
  1293. const float v0 = vi0*d + m;
  1294. const float v1 = vi1*d + m;
  1295. y[i*QK4_1 + l + 0] = v0;
  1296. y[i*QK4_1 + l + 1] = v1;
  1297. assert(!isnan(y[i*QK4_1 + l + 0]));
  1298. assert(!isnan(y[i*QK4_1 + l + 1]));
  1299. }
  1300. }
  1301. #endif
  1302. }
  1303. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1304. assert(k % QK4_2 == 0);
  1305. const int nb = k / QK4_2;
  1306. const block_q4_2 * restrict x = vx;
  1307. for (int i = 0; i < nb; i++) {
  1308. const float d = GGML_FP16_TO_FP32(x[i].d);
  1309. const uint8_t * restrict pp = x[i].qs;
  1310. for (int l = 0; l < QK4_2; l += 2) {
  1311. const uint8_t vi = pp[l/2];
  1312. const int8_t vi0 = vi & 0xf;
  1313. const int8_t vi1 = vi >> 4;
  1314. const float v0 = (vi0 - 8)*d;
  1315. const float v1 = (vi1 - 8)*d;
  1316. y[i*QK4_2 + l + 0] = v0;
  1317. y[i*QK4_2 + l + 1] = v1;
  1318. assert(!isnan(y[i*QK4_2 + l + 0]));
  1319. assert(!isnan(y[i*QK4_2 + l + 1]));
  1320. }
  1321. }
  1322. }
  1323. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1324. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1325. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1326. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1327. [GGML_TYPE_Q4_0] = {
  1328. .dequantize_row_q = dequantize_row_q4_0,
  1329. .quantize_row_q = quantize_row_q4_0,
  1330. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1331. .quantize_row_q_dot = quantize_row_q8_0,
  1332. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1333. },
  1334. [GGML_TYPE_Q4_1] = {
  1335. .dequantize_row_q = dequantize_row_q4_1,
  1336. .quantize_row_q = quantize_row_q4_1,
  1337. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1338. .quantize_row_q_dot = quantize_row_q8_0,
  1339. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1340. },
  1341. [GGML_TYPE_Q4_2] = {
  1342. .dequantize_row_q = dequantize_row_q4_2,
  1343. .quantize_row_q = quantize_row_q4_2,
  1344. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_rmse, //quantize_row_q4_2_reference,
  1345. .quantize_row_q_dot = quantize_row_q8_0,
  1346. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1347. },
  1348. [GGML_TYPE_Q8_0] = {
  1349. .dequantize_row_q = NULL, // TODO
  1350. .quantize_row_q = quantize_row_q8_0,
  1351. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1352. .quantize_row_q_dot = quantize_row_q8_0,
  1353. .vec_dot_q = NULL, // TODO
  1354. },
  1355. };
  1356. // For internal test use
  1357. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1358. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1359. return quantize_fns[i];
  1360. }
  1361. //
  1362. // simd mappings
  1363. //
  1364. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1365. // we then implement the fundamental computation operations below using only these macros
  1366. // adding support for new architectures requires to define the corresponding SIMD macros
  1367. //
  1368. // GGML_F32_STEP / GGML_F16_STEP
  1369. // number of elements to process in a single step
  1370. //
  1371. // GGML_F32_EPR / GGML_F16_EPR
  1372. // number of elements to fit in a single register
  1373. //
  1374. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1375. #define GGML_SIMD
  1376. // F32 NEON
  1377. #define GGML_F32_STEP 16
  1378. #define GGML_F32_EPR 4
  1379. #define GGML_F32x4 float32x4_t
  1380. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1381. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1382. #define GGML_F32x4_LOAD vld1q_f32
  1383. #define GGML_F32x4_STORE vst1q_f32
  1384. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1385. #define GGML_F32x4_ADD vaddq_f32
  1386. #define GGML_F32x4_MUL vmulq_f32
  1387. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1388. #define GGML_F32x4_REDUCE(res, x) \
  1389. { \
  1390. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1391. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1392. } \
  1393. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1394. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1395. } \
  1396. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1397. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1398. } \
  1399. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1400. }
  1401. #define GGML_F32_VEC GGML_F32x4
  1402. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1403. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1404. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1405. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1406. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1407. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1408. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1409. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1410. // F16 NEON
  1411. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1412. #define GGML_F16_STEP 32
  1413. #define GGML_F16_EPR 8
  1414. #define GGML_F16x8 float16x8_t
  1415. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1416. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1417. #define GGML_F16x8_LOAD vld1q_f16
  1418. #define GGML_F16x8_STORE vst1q_f16
  1419. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1420. #define GGML_F16x8_ADD vaddq_f16
  1421. #define GGML_F16x8_MUL vmulq_f16
  1422. #define GGML_F16x8_REDUCE(res, x) \
  1423. { \
  1424. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1425. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1426. } \
  1427. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1428. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1429. } \
  1430. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1431. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1432. } \
  1433. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1434. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1435. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1436. }
  1437. #define GGML_F16_VEC GGML_F16x8
  1438. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1439. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1440. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1441. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1442. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1443. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1444. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1445. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1446. #else
  1447. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1448. // and take advantage of the vcvt_ functions to convert to/from FP16
  1449. #define GGML_F16_STEP 16
  1450. #define GGML_F16_EPR 4
  1451. #define GGML_F32Cx4 float32x4_t
  1452. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1453. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1454. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1455. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1456. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1457. #define GGML_F32Cx4_ADD vaddq_f32
  1458. #define GGML_F32Cx4_MUL vmulq_f32
  1459. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1460. #define GGML_F16_VEC GGML_F32Cx4
  1461. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1462. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1463. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1464. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1465. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1466. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1467. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1468. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1469. #endif
  1470. #elif defined(__AVX__)
  1471. #define GGML_SIMD
  1472. // F32 AVX
  1473. #define GGML_F32_STEP 32
  1474. #define GGML_F32_EPR 8
  1475. #define GGML_F32x8 __m256
  1476. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1477. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1478. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1479. #define GGML_F32x8_STORE _mm256_storeu_ps
  1480. #if defined(__FMA__)
  1481. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1482. #else
  1483. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1484. #endif
  1485. #define GGML_F32x8_ADD _mm256_add_ps
  1486. #define GGML_F32x8_MUL _mm256_mul_ps
  1487. #define GGML_F32x8_REDUCE(res, x) \
  1488. { \
  1489. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1490. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1491. } \
  1492. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1493. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1494. } \
  1495. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1496. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1497. } \
  1498. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1499. _mm256_extractf128_ps(x[0], 1)); \
  1500. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1501. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1502. }
  1503. // TODO: is this optimal ?
  1504. #define GGML_F32_VEC GGML_F32x8
  1505. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1506. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1507. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1508. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1509. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1510. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1511. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1512. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1513. // F16 AVX
  1514. #define GGML_F16_STEP 32
  1515. #define GGML_F16_EPR 8
  1516. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1517. #define GGML_F32Cx8 __m256
  1518. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1519. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1520. #if defined(__F16C__)
  1521. // the _mm256_cvt intrinsics require F16C
  1522. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1523. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1524. #else
  1525. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1526. float tmp[8];
  1527. for (int i = 0; i < 8; i++)
  1528. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1529. return _mm256_loadu_ps(tmp);
  1530. }
  1531. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1532. float arr[8];
  1533. _mm256_storeu_ps(arr, y);
  1534. for (int i = 0; i < 8; i++)
  1535. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1536. }
  1537. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1538. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1539. #endif
  1540. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1541. #define GGML_F32Cx8_ADD _mm256_add_ps
  1542. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1543. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1544. #define GGML_F16_VEC GGML_F32Cx8
  1545. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1546. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1547. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1548. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1549. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1550. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1551. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1552. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1553. #elif defined(__POWER9_VECTOR__)
  1554. #define GGML_SIMD
  1555. // F32 POWER9
  1556. #define GGML_F32_STEP 32
  1557. #define GGML_F32_EPR 4
  1558. #define GGML_F32x4 vector float
  1559. #define GGML_F32x4_ZERO 0.0f
  1560. #define GGML_F32x4_SET1 vec_splats
  1561. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1562. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1563. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1564. #define GGML_F32x4_ADD vec_add
  1565. #define GGML_F32x4_MUL vec_mul
  1566. #define GGML_F32x4_REDUCE(res, x) \
  1567. { \
  1568. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1569. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1570. } \
  1571. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1572. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1573. } \
  1574. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1575. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1576. } \
  1577. res = vec_extract(x[0], 0) + \
  1578. vec_extract(x[0], 1) + \
  1579. vec_extract(x[0], 2) + \
  1580. vec_extract(x[0], 3); \
  1581. }
  1582. #define GGML_F32_VEC GGML_F32x4
  1583. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1584. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1585. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1586. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1587. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1588. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1589. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1590. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1591. // F16 POWER9
  1592. #define GGML_F16_STEP GGML_F32_STEP
  1593. #define GGML_F16_EPR GGML_F32_EPR
  1594. #define GGML_F16_VEC GGML_F32x4
  1595. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1596. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1597. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1598. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1599. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1600. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1601. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1602. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1603. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1604. #define GGML_F16_VEC_STORE(p, r, i) \
  1605. if (i & 0x1) \
  1606. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1607. r[i - GGML_ENDIAN_BYTE(0)]), \
  1608. 0, p - GGML_F16_EPR)
  1609. #elif defined(__wasm_simd128__)
  1610. #define GGML_SIMD
  1611. // F32 WASM
  1612. #define GGML_F32_STEP 16
  1613. #define GGML_F32_EPR 4
  1614. #define GGML_F32x4 v128_t
  1615. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1616. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1617. #define GGML_F32x4_LOAD wasm_v128_load
  1618. #define GGML_F32x4_STORE wasm_v128_store
  1619. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1620. #define GGML_F32x4_ADD wasm_f32x4_add
  1621. #define GGML_F32x4_MUL wasm_f32x4_mul
  1622. #define GGML_F32x4_REDUCE(res, x) \
  1623. { \
  1624. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1625. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1626. } \
  1627. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1628. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1629. } \
  1630. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1631. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1632. } \
  1633. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1634. wasm_f32x4_extract_lane(x[0], 1) + \
  1635. wasm_f32x4_extract_lane(x[0], 2) + \
  1636. wasm_f32x4_extract_lane(x[0], 3); \
  1637. }
  1638. #define GGML_F32_VEC GGML_F32x4
  1639. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1640. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1641. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1642. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1643. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1644. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1645. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1646. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1647. // F16 WASM
  1648. #define GGML_F16_STEP 16
  1649. #define GGML_F16_EPR 4
  1650. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1651. float tmp[4];
  1652. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1653. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1654. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1655. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1656. return wasm_v128_load(tmp);
  1657. }
  1658. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1659. float tmp[4];
  1660. wasm_v128_store(tmp, x);
  1661. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1662. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1663. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1664. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1665. }
  1666. #define GGML_F16x4 v128_t
  1667. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1668. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1669. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1670. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1671. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1672. #define GGML_F16x4_ADD wasm_f32x4_add
  1673. #define GGML_F16x4_MUL wasm_f32x4_mul
  1674. #define GGML_F16x4_REDUCE(res, x) \
  1675. { \
  1676. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1677. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1678. } \
  1679. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1680. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1681. } \
  1682. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1683. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1684. } \
  1685. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1686. wasm_f32x4_extract_lane(x[0], 1) + \
  1687. wasm_f32x4_extract_lane(x[0], 2) + \
  1688. wasm_f32x4_extract_lane(x[0], 3); \
  1689. }
  1690. #define GGML_F16_VEC GGML_F16x4
  1691. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1692. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1693. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1694. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1695. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1696. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1697. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1698. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1699. #elif defined(__SSE3__)
  1700. #define GGML_SIMD
  1701. // F32 SSE
  1702. #define GGML_F32_STEP 32
  1703. #define GGML_F32_EPR 4
  1704. #define GGML_F32x4 __m128
  1705. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1706. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1707. #define GGML_F32x4_LOAD _mm_loadu_ps
  1708. #define GGML_F32x4_STORE _mm_storeu_ps
  1709. #if defined(__FMA__)
  1710. // TODO: Does this work?
  1711. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1712. #else
  1713. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1714. #endif
  1715. #define GGML_F32x4_ADD _mm_add_ps
  1716. #define GGML_F32x4_MUL _mm_mul_ps
  1717. #define GGML_F32x4_REDUCE(res, x) \
  1718. { \
  1719. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1720. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1721. } \
  1722. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1723. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1724. } \
  1725. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1726. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1727. } \
  1728. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1729. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1730. }
  1731. // TODO: is this optimal ?
  1732. #define GGML_F32_VEC GGML_F32x4
  1733. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1734. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1735. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1736. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1737. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1738. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1739. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1740. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1741. // F16 SSE
  1742. #define GGML_F16_STEP 32
  1743. #define GGML_F16_EPR 4
  1744. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1745. float tmp[4];
  1746. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1747. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1748. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1749. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1750. return _mm_loadu_ps(tmp);
  1751. }
  1752. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1753. float arr[4];
  1754. _mm_storeu_ps(arr, y);
  1755. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1756. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1757. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1758. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1759. }
  1760. #define GGML_F32Cx4 __m128
  1761. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1762. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1763. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1764. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1765. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1766. #define GGML_F32Cx4_ADD _mm_add_ps
  1767. #define GGML_F32Cx4_MUL _mm_mul_ps
  1768. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1769. #define GGML_F16_VEC GGML_F32Cx4
  1770. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1771. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1772. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1773. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1774. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1775. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1776. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1777. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1778. #endif
  1779. // GGML_F32_ARR / GGML_F16_ARR
  1780. // number of registers to use per step
  1781. #ifdef GGML_SIMD
  1782. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1783. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1784. #endif
  1785. //
  1786. // fundamental operations
  1787. //
  1788. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1789. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1790. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1791. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1792. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1793. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1794. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1795. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1796. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1797. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1798. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1799. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1800. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1801. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1802. #ifdef GGML_SIMD
  1803. float sumf = 0.0f;
  1804. const int np = (n & ~(GGML_F32_STEP - 1));
  1805. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1806. GGML_F32_VEC ax[GGML_F32_ARR];
  1807. GGML_F32_VEC ay[GGML_F32_ARR];
  1808. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1809. for (int j = 0; j < GGML_F32_ARR; j++) {
  1810. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1811. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1812. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1813. }
  1814. }
  1815. // reduce sum0..sum3 to sum0
  1816. GGML_F32_VEC_REDUCE(sumf, sum);
  1817. // leftovers
  1818. for (int i = np; i < n; ++i) {
  1819. sumf += x[i]*y[i];
  1820. }
  1821. #else
  1822. // scalar
  1823. ggml_float sumf = 0.0;
  1824. for (int i = 0; i < n; ++i) {
  1825. sumf += (ggml_float)(x[i]*y[i]);
  1826. }
  1827. #endif
  1828. *s = sumf;
  1829. }
  1830. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1831. ggml_float sumf = 0.0;
  1832. #if defined(GGML_SIMD)
  1833. const int np = (n & ~(GGML_F16_STEP - 1));
  1834. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1835. GGML_F16_VEC ax[GGML_F16_ARR];
  1836. GGML_F16_VEC ay[GGML_F16_ARR];
  1837. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1838. for (int j = 0; j < GGML_F16_ARR; j++) {
  1839. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1840. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1841. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1842. }
  1843. }
  1844. // reduce sum0..sum3 to sum0
  1845. GGML_F16_VEC_REDUCE(sumf, sum);
  1846. // leftovers
  1847. for (int i = np; i < n; ++i) {
  1848. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1849. }
  1850. #else
  1851. for (int i = 0; i < n; ++i) {
  1852. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1853. }
  1854. #endif
  1855. *s = sumf;
  1856. }
  1857. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1858. const int nb = n / QK8_0;
  1859. assert(n % QK8_0 == 0);
  1860. assert(nb % 2 == 0);
  1861. const block_q4_0 * restrict x = vx;
  1862. const block_q8_0 * restrict y = vy;
  1863. float sumf = 0.0;
  1864. #if defined(__ARM_NEON)
  1865. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1866. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1867. for (int i = 0; i < nb; i += 2) {
  1868. const block_q4_0 * restrict x0 = &x[i + 0];
  1869. const block_q4_0 * restrict x1 = &x[i + 1];
  1870. const block_q8_0 * restrict y0 = &y[i + 0];
  1871. const block_q8_0 * restrict y1 = &y[i + 1];
  1872. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1873. const int8x16_t s8b = vdupq_n_s8(0x8);
  1874. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1875. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1876. // 4-bit -> 8-bit
  1877. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1878. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1879. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1880. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1881. // sub 8
  1882. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1883. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1884. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1885. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1886. // load y
  1887. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1888. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1889. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1890. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1891. // interleave
  1892. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  1893. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  1894. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  1895. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  1896. #if defined(__ARM_FEATURE_DOTPROD)
  1897. // dot product into int32x4_t
  1898. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls), v0_0hs, v1_0hs);
  1899. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls), v0_1hs, v1_1hs);
  1900. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1901. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1902. #else
  1903. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1904. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1905. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1906. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1907. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1908. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1909. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1910. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1911. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1912. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1913. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1914. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1915. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1916. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1917. #endif
  1918. }
  1919. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1920. #elif defined(__AVX2__)
  1921. // Initialize accumulator with zeros
  1922. __m256 acc = _mm256_setzero_ps();
  1923. // Main loop
  1924. for (int i = 0; i < nb; ++i) {
  1925. /* Compute combined scale for the block */
  1926. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1927. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1928. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1929. const __m256i off = _mm256_set1_epi8( 8 );
  1930. bx = _mm256_sub_epi8( bx, off );
  1931. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1932. // Get absolute values of x vectors
  1933. const __m256i ax = _mm256_sign_epi8(bx, bx);
  1934. // Sign the values of the y vectors
  1935. const __m256i sy = _mm256_sign_epi8(by, bx);
  1936. // Perform multiplication and create 16-bit values
  1937. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  1938. const __m256i ones = _mm256_set1_epi16(1);
  1939. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  1940. /* Convert to vectore of 8 int32_t to 8 floats */
  1941. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1942. /* Multiply q with scale and accumulate */
  1943. acc = _mm256_fmadd_ps( d, q, acc );
  1944. }
  1945. // Return horizontal sum of the acc vector
  1946. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1947. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1948. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1949. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1950. sumf = _mm_cvtss_f32( res );
  1951. #elif defined(__AVX__)
  1952. // Initialize accumulator with zeros
  1953. __m256 acc = _mm256_setzero_ps();
  1954. // Main loop
  1955. for (int i = 0; i < nb; ++i) {
  1956. // Compute combined scale for the block
  1957. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1958. __m128i i32[2];
  1959. for (int j = 0; j < 2; ++j) {
  1960. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1961. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  1962. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  1963. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1964. const __m128i off = _mm_set1_epi8( 8 );
  1965. bx = _mm_sub_epi8( bx, off );
  1966. // Get absolute values of x vectors
  1967. const __m128i ax = _mm_sign_epi8(bx, bx);
  1968. // Sign the values of the y vectors
  1969. const __m128i sy = _mm_sign_epi8(by, bx);
  1970. // Perform multiplication and create 16-bit values
  1971. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1972. const __m128i ones = _mm_set1_epi16(1);
  1973. i32[j] = _mm_madd_epi16(ones, dot);
  1974. }
  1975. // Convert int32_t to float
  1976. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1977. // Apply the scale, and accumulate
  1978. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1979. }
  1980. // Return horizontal sum of the acc vector
  1981. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1982. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1983. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1984. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1985. sumf = _mm_cvtss_f32( res );
  1986. #else
  1987. // scalar
  1988. for (int i = 0; i < nb; i++) {
  1989. const float d0 = x[i].d;
  1990. const float d1 = y[i].d;
  1991. const uint8_t * restrict p0 = x[i].qs;
  1992. const int8_t * restrict p1 = y[i].qs;
  1993. int sumi = 0;
  1994. for (int j = 0; j < QK8_0/2; j++) {
  1995. const uint8_t v0 = p0[j];
  1996. const int i0 = (int8_t) (v0 & 0xf) - 8;
  1997. const int i1 = (int8_t) (v0 >> 4) - 8;
  1998. const int i2 = p1[2*j + 0];
  1999. const int i3 = p1[2*j + 1];
  2000. sumi += i0*i2 + i1*i3;
  2001. }
  2002. sumf += d0*d1*sumi;
  2003. }
  2004. #endif
  2005. *s = sumf;
  2006. }
  2007. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2008. const int nb = n / QK8_0;
  2009. assert(n % QK8_0 == 0);
  2010. assert(nb % 2 == 0);
  2011. const block_q4_1 * restrict x = vx;
  2012. const block_q8_0 * restrict y = vy;
  2013. float sumf = 0.0;
  2014. // TODO: add AVX / WASM SIMD / etc
  2015. #if defined(__ARM_NEON)
  2016. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2017. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2018. for (int i = 0; i < nb; i += 2) {
  2019. const block_q4_1 * restrict x0 = &x[i + 0];
  2020. const block_q4_1 * restrict x1 = &x[i + 1];
  2021. const block_q8_0 * restrict y0 = &y[i + 0];
  2022. const block_q8_0 * restrict y1 = &y[i + 1];
  2023. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2024. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2025. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2026. // 4-bit -> 8-bit
  2027. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2028. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2029. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2030. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2031. // load y
  2032. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2033. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2034. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2035. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2036. // interleave
  2037. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2038. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2039. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2040. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2041. const int16x8_t s0i = vaddq_s16(
  2042. vaddq_s16(vmovl_s8(vget_low_s8(v1_0ls)), vmovl_s8(vget_high_s8(v1_0ls))),
  2043. vaddq_s16(vmovl_s8(vget_low_s8(v1_0hs)), vmovl_s8(vget_high_s8(v1_0hs))));
  2044. const int16x8_t s1i = vaddq_s16(
  2045. vaddq_s16(vmovl_s8(vget_low_s8(v1_1ls)), vmovl_s8(vget_high_s8(v1_1ls))),
  2046. vaddq_s16(vmovl_s8(vget_low_s8(v1_1hs)), vmovl_s8(vget_high_s8(v1_1hs))));
  2047. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s0i), vget_high_s16(s0i))), x0->m*y0->d);
  2048. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddl_s16(vget_low_s16(s1i), vget_high_s16(s1i))), x1->m*y1->d);
  2049. #if defined(__ARM_FEATURE_DOTPROD)
  2050. // dot product into int32x4_t
  2051. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2052. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2053. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2054. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2055. #else
  2056. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2057. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2058. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2059. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2060. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2061. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2062. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2063. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2064. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2065. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2066. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2067. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2068. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2069. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2070. #endif
  2071. }
  2072. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2073. #elif defined(__AVX2__)
  2074. // Initialize accumulator with zeros
  2075. __m256 acc = _mm256_setzero_ps();
  2076. // Main loop
  2077. for (int i = 0; i < nb; ++i) {
  2078. const float * d0 = &x[i].d;
  2079. const float * d1 = &y[i].d;
  2080. const float * m0 = &x[i].m;
  2081. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2082. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2083. const __m256 m0v = _mm256_broadcast_ss( m0 );
  2084. // Compute combined scales
  2085. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2086. const __m256 d1m0 = _mm256_mul_ps( d1v, m0v );
  2087. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2088. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2089. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2090. // Get absolute values of x vectors
  2091. const __m256i ax = _mm256_sign_epi8( bx, bx );
  2092. // Sign the values of the y vectors
  2093. const __m256i sy = _mm256_sign_epi8( by, bx );
  2094. // Perform multiplication and create 16-bit values
  2095. const __m256i dot = _mm256_maddubs_epi16( ax, sy );
  2096. const __m256i ones = _mm256_set1_epi16( 1 );
  2097. const __m256i xy_q = _mm256_madd_epi16( ones, dot );
  2098. // Convert to vector of 8 int32_t to 8 floats
  2099. const __m256 xy = _mm256_cvtepi32_ps( xy_q );
  2100. // Accumulate d0*d1*x*y
  2101. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2102. // Compute sum of y values
  2103. const __m256i y16_l = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  2104. const __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  2105. const __m256i ysumi = _mm256_madd_epi16( _mm256_add_epi16(y16_l, y16_h), ones );
  2106. const __m256 ysum = _mm256_cvtepi32_ps( ysumi );
  2107. // Accumulate d1*m0*y
  2108. acc = _mm256_fmadd_ps( d1m0, ysum, acc );
  2109. }
  2110. // Return horizontal sum of the acc vector
  2111. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2112. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2113. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2114. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2115. sumf = _mm_cvtss_f32( res );
  2116. #else
  2117. // scalar
  2118. for (int i = 0; i < nb; i++) {
  2119. const float d0 = x[i].d;
  2120. const float m0 = x[i].m;
  2121. const float d1 = y[i].d;
  2122. const uint8_t * restrict p0 = x[i].qs;
  2123. const int8_t * restrict p1 = y[i].qs;
  2124. // TODO: this is very slow ..
  2125. for (int j = 0; j < QK8_0/2; j++) {
  2126. const uint8_t v0 = p0[j];
  2127. const float f0 = d0*(v0 & 0xf) + m0;
  2128. const float f1 = d0*(v0 >> 4) + m0;
  2129. const float f2 = d1*p1[2*j + 0];
  2130. const float f3 = d1*p1[2*j + 1];
  2131. sumf += f0*f2 + f1*f3;
  2132. }
  2133. }
  2134. #endif
  2135. *s = sumf;
  2136. }
  2137. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2138. const int nb = n / QK8_0;
  2139. assert(n % QK8_0 == 0);
  2140. assert(nb % 2 == 0);
  2141. assert(QK8_0 == 2*QK4_2);
  2142. const block_q4_2 * restrict x = vx;
  2143. const block_q8_0 * restrict y = vy;
  2144. float sumf = 0.0;
  2145. #if defined(__ARM_NEON)
  2146. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2147. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2148. for (int i = 0; i < nb; i += 2) {
  2149. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2150. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2151. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2152. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2153. const block_q8_0 * restrict y0 = &y[i + 0];
  2154. const block_q8_0 * restrict y1 = &y[i + 1];
  2155. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2156. const int8x16_t s8b = vdupq_n_s8(0x8);
  2157. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2158. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2159. // 4-bit -> 8-bit
  2160. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2161. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2162. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2163. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2164. // sub 8
  2165. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2166. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2167. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2168. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2169. // interleave
  2170. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2171. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2172. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2173. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2174. // load y
  2175. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2176. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2177. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2178. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2179. #if defined(__ARM_FEATURE_DOTPROD)
  2180. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2181. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2182. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2183. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2184. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2185. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2186. #else
  2187. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2188. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2189. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2190. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2191. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2192. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2193. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2194. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2195. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2196. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2197. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2198. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2199. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2200. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2201. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2202. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2203. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2204. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2205. #endif
  2206. }
  2207. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2208. #elif defined(__AVX2__)
  2209. // Initialize accumulator with zeros
  2210. __m256 acc = _mm256_setzero_ps();
  2211. // Main loop
  2212. for (int i = 0; i < nb; i++) {
  2213. /* Compute combined scale for the block */
  2214. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2215. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2216. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2217. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2218. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2219. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2220. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2221. const __m256i off = _mm256_set1_epi8(8);
  2222. bx = _mm256_sub_epi8(bx, off);
  2223. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2224. // Get absolute values of x vectors
  2225. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2226. // Sign the values of the y vectors
  2227. const __m256i sy = _mm256_sign_epi8(by, bx);
  2228. // Perform multiplication and create 16-bit values
  2229. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2230. const __m256i ones = _mm256_set1_epi16(1);
  2231. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2232. /* Convert to vectore of 8 int32_t to 8 floats */
  2233. __m256 q = _mm256_cvtepi32_ps(xy_q);
  2234. /* Multiply q with scale and accumulate */
  2235. acc = _mm256_fmadd_ps(d, q, acc);
  2236. }
  2237. // Return horizontal sum of the acc vector
  2238. __m128 res = _mm256_extractf128_ps(acc, 1);
  2239. res = _mm_add_ps(res, _mm256_castps256_ps128(acc));
  2240. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  2241. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  2242. sumf = _mm_cvtss_f32(res);
  2243. #else
  2244. // scalar
  2245. for (int i = 0; i < nb; i++) {
  2246. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2247. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2248. const int8_t * restrict y0 = y[i].qs;
  2249. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2250. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2251. int sumi_0 = 0;
  2252. int sumi_1 = 0;
  2253. for (int j = 0; j < QK8_0/4; j++) {
  2254. const uint8_t v0 = x0[j];
  2255. const uint8_t v1 = x1[j];
  2256. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2257. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2258. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2259. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2260. const int i2_0 = y0[2*j + 0];
  2261. const int i3_0 = y0[2*j + 1];
  2262. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2263. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2264. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2265. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2266. }
  2267. sumf += (d0 * y[i].d) * sumi_0;
  2268. sumf += (d1 * y[i].d) * sumi_1;
  2269. }
  2270. #endif
  2271. *s = sumf;
  2272. }
  2273. // compute GGML_VEC_DOT_UNROLL dot products at once
  2274. // xs - x row stride in bytes
  2275. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2276. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2277. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2278. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2279. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2280. }
  2281. #if defined(GGML_SIMD)
  2282. const int np = (n & ~(GGML_F16_STEP - 1));
  2283. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2284. GGML_F16_VEC ax[GGML_F16_ARR];
  2285. GGML_F16_VEC ay[GGML_F16_ARR];
  2286. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2287. for (int j = 0; j < GGML_F16_ARR; j++) {
  2288. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2289. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2290. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2291. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2292. }
  2293. }
  2294. }
  2295. // reduce sum0..sum3 to sum0
  2296. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2297. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2298. }
  2299. // leftovers
  2300. for (int i = np; i < n; ++i) {
  2301. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2302. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2303. }
  2304. }
  2305. #else
  2306. for (int i = 0; i < n; ++i) {
  2307. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2308. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2309. }
  2310. }
  2311. #endif
  2312. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2313. s[i] = sumf[i];
  2314. }
  2315. }
  2316. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2317. #if defined(GGML_SIMD)
  2318. const int np = (n & ~(GGML_F32_STEP - 1));
  2319. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2320. GGML_F32_VEC ax[GGML_F32_ARR];
  2321. GGML_F32_VEC ay[GGML_F32_ARR];
  2322. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2323. for (int j = 0; j < GGML_F32_ARR; j++) {
  2324. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2325. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2326. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2327. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2328. }
  2329. }
  2330. // leftovers
  2331. for (int i = np; i < n; ++i) {
  2332. y[i] += x[i]*v;
  2333. }
  2334. #else
  2335. // scalar
  2336. for (int i = 0; i < n; ++i) {
  2337. y[i] += x[i]*v;
  2338. }
  2339. #endif
  2340. }
  2341. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2342. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2343. #if defined(GGML_SIMD)
  2344. const int np = (n & ~(GGML_F32_STEP - 1));
  2345. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2346. GGML_F32_VEC ay[GGML_F32_ARR];
  2347. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2348. for (int j = 0; j < GGML_F32_ARR; j++) {
  2349. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2350. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2351. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2352. }
  2353. }
  2354. // leftovers
  2355. for (int i = np; i < n; ++i) {
  2356. y[i] *= v;
  2357. }
  2358. #else
  2359. // scalar
  2360. for (int i = 0; i < n; ++i) {
  2361. y[i] *= v;
  2362. }
  2363. #endif
  2364. }
  2365. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2366. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2367. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2368. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2369. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2370. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2371. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2372. static const float GELU_COEF_A = 0.044715f;
  2373. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2374. inline static float ggml_gelu_f32(float x) {
  2375. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2376. }
  2377. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2378. const uint16_t * i16 = (const uint16_t *) x;
  2379. for (int i = 0; i < n; ++i) {
  2380. y[i] = table_gelu_f16[i16[i]];
  2381. }
  2382. }
  2383. #ifdef GGML_GELU_FP16
  2384. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2385. uint16_t t;
  2386. for (int i = 0; i < n; ++i) {
  2387. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2388. memcpy(&t, &fp16, sizeof(uint16_t));
  2389. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2390. }
  2391. }
  2392. #else
  2393. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2394. for (int i = 0; i < n; ++i) {
  2395. y[i] = ggml_gelu_f32(x[i]);
  2396. }
  2397. }
  2398. #endif
  2399. // Sigmoid Linear Unit (SiLU) function
  2400. inline static float ggml_silu_f32(float x) {
  2401. return x/(1.0f + expf(-x));
  2402. }
  2403. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2404. const uint16_t * i16 = (const uint16_t *) x;
  2405. for (int i = 0; i < n; ++i) {
  2406. y[i] = table_silu_f16[i16[i]];
  2407. }
  2408. }
  2409. #ifdef GGML_SILU_FP16
  2410. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2411. uint16_t t;
  2412. for (int i = 0; i < n; ++i) {
  2413. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2414. memcpy(&t, &fp16, sizeof(uint16_t));
  2415. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2416. }
  2417. }
  2418. #else
  2419. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2420. for (int i = 0; i < n; ++i) {
  2421. y[i] = ggml_silu_f32(x[i]);
  2422. }
  2423. }
  2424. #endif
  2425. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2426. #ifndef GGML_USE_ACCELERATE
  2427. ggml_float sum = 0.0;
  2428. for (int i = 0; i < n; ++i) {
  2429. sum += (ggml_float)x[i];
  2430. }
  2431. *s = sum;
  2432. #else
  2433. vDSP_sve(x, 1, s, n);
  2434. #endif
  2435. }
  2436. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2437. #ifndef GGML_USE_ACCELERATE
  2438. float max = -INFINITY;
  2439. for (int i = 0; i < n; ++i) {
  2440. max = MAX(max, x[i]);
  2441. }
  2442. *s = max;
  2443. #else
  2444. vDSP_maxv(x, 1, s, n);
  2445. #endif
  2446. }
  2447. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2448. ggml_vec_norm_f32(n, s, x);
  2449. *s = 1.f/(*s);
  2450. }
  2451. //
  2452. // logging
  2453. //
  2454. #if (GGML_DEBUG >= 1)
  2455. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2456. #else
  2457. #define GGML_PRINT_DEBUG(...)
  2458. #endif
  2459. #if (GGML_DEBUG >= 5)
  2460. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2461. #else
  2462. #define GGML_PRINT_DEBUG_5(...)
  2463. #endif
  2464. #if (GGML_DEBUG >= 10)
  2465. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2466. #else
  2467. #define GGML_PRINT_DEBUG_10(...)
  2468. #endif
  2469. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2470. //
  2471. // data types
  2472. //
  2473. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2474. [GGML_TYPE_F32] = 1,
  2475. [GGML_TYPE_F16] = 1,
  2476. [GGML_TYPE_Q4_0] = QK4_0,
  2477. [GGML_TYPE_Q4_1] = QK4_1,
  2478. [GGML_TYPE_Q4_2] = QK4_2,
  2479. [GGML_TYPE_Q8_0] = QK8_0,
  2480. [GGML_TYPE_I8] = 1,
  2481. [GGML_TYPE_I16] = 1,
  2482. [GGML_TYPE_I32] = 1,
  2483. };
  2484. static_assert(GGML_TYPE_COUNT == 9, "GGML_BLCK_SIZE is outdated");
  2485. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2486. [GGML_TYPE_F32] = sizeof(float),
  2487. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2488. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2489. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2490. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2491. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2492. [GGML_TYPE_I8] = sizeof(int8_t),
  2493. [GGML_TYPE_I16] = sizeof(int16_t),
  2494. [GGML_TYPE_I32] = sizeof(int32_t),
  2495. };
  2496. static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_SIZE is outdated");
  2497. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2498. [GGML_TYPE_F32] = "f32",
  2499. [GGML_TYPE_F16] = "f16",
  2500. [GGML_TYPE_Q4_0] = "q4_0",
  2501. [GGML_TYPE_Q4_1] = "q4_1",
  2502. [GGML_TYPE_Q4_2] = "q4_2",
  2503. [GGML_TYPE_Q8_0] = "q8_0",
  2504. [GGML_TYPE_I8] = "i8",
  2505. [GGML_TYPE_I16] = "i16",
  2506. [GGML_TYPE_I32] = "i32",
  2507. };
  2508. static_assert(GGML_TYPE_COUNT == 9, "GGML_TYPE_NAME is outdated");
  2509. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2510. [GGML_TYPE_F32] = false,
  2511. [GGML_TYPE_F16] = false,
  2512. [GGML_TYPE_Q4_0] = true,
  2513. [GGML_TYPE_Q4_1] = true,
  2514. [GGML_TYPE_Q4_2] = true,
  2515. [GGML_TYPE_Q8_0] = true,
  2516. [GGML_TYPE_I8] = false,
  2517. [GGML_TYPE_I16] = false,
  2518. [GGML_TYPE_I32] = false,
  2519. };
  2520. static_assert(GGML_TYPE_COUNT == 9, "GGML_IS_QUANTIZED is outdated");
  2521. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2522. "NONE",
  2523. "DUP",
  2524. "ADD",
  2525. "SUB",
  2526. "MUL",
  2527. "DIV",
  2528. "SQR",
  2529. "SQRT",
  2530. "SUM",
  2531. "MEAN",
  2532. "REPEAT",
  2533. "ABS",
  2534. "SGN",
  2535. "NEG",
  2536. "STEP",
  2537. "RELU",
  2538. "GELU",
  2539. "SILU",
  2540. "NORM",
  2541. "RMS_NORM",
  2542. "MUL_MAT",
  2543. "SCALE",
  2544. "CPY",
  2545. "CONT",
  2546. "RESHAPE",
  2547. "VIEW",
  2548. "PERMUTE",
  2549. "TRANSPOSE",
  2550. "GET_ROWS",
  2551. "DIAG_MASK_INF",
  2552. "SOFT_MAX",
  2553. "ROPE",
  2554. "CONV_1D_1S",
  2555. "CONV_1D_2S",
  2556. "FLASH_ATTN",
  2557. "FLASH_FF",
  2558. "MAP_UNARY",
  2559. "MAP_BINARY",
  2560. };
  2561. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2562. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2563. "none",
  2564. "x",
  2565. "x+y",
  2566. "x-y",
  2567. "x*y",
  2568. "x/y",
  2569. "x^2",
  2570. "√x",
  2571. "Σx",
  2572. "Σx/n",
  2573. "repeat(x)",
  2574. "abs(x)",
  2575. "sgn(x)",
  2576. "-x",
  2577. "step(x)",
  2578. "relu(x)",
  2579. "gelu(x)",
  2580. "silu(x)",
  2581. "norm(x)",
  2582. "rms_norm(x)",
  2583. "X*Y",
  2584. "x*v",
  2585. "x-\\>y",
  2586. "cont(x)",
  2587. "reshape(x)",
  2588. "view(x)",
  2589. "permute(x)",
  2590. "transpose(x)",
  2591. "get_rows(x)",
  2592. "diag_mask_inf(x)",
  2593. "soft_max(x)",
  2594. "rope(x)",
  2595. "conv_1d_1s(x)",
  2596. "conv_1d_2s(x)",
  2597. "flash_attn(x)",
  2598. "flash_ff(x)",
  2599. "f(x)",
  2600. "f(x,y)",
  2601. };
  2602. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2603. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2604. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2605. //
  2606. // ggml context
  2607. //
  2608. struct ggml_context {
  2609. size_t mem_size;
  2610. void * mem_buffer;
  2611. bool mem_buffer_owned;
  2612. bool no_alloc;
  2613. int n_objects;
  2614. struct ggml_object * objects_begin;
  2615. struct ggml_object * objects_end;
  2616. struct ggml_scratch scratch;
  2617. struct ggml_scratch scratch_save;
  2618. };
  2619. struct ggml_context_container {
  2620. bool used;
  2621. struct ggml_context context;
  2622. };
  2623. //
  2624. // compute types
  2625. //
  2626. enum ggml_task_type {
  2627. GGML_TASK_INIT = 0,
  2628. GGML_TASK_COMPUTE,
  2629. GGML_TASK_FINALIZE,
  2630. };
  2631. struct ggml_compute_params {
  2632. enum ggml_task_type type;
  2633. int ith, nth;
  2634. // work buffer for all threads
  2635. size_t wsize;
  2636. void * wdata;
  2637. };
  2638. //
  2639. // ggml state
  2640. //
  2641. struct ggml_state {
  2642. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2643. };
  2644. // global state
  2645. static struct ggml_state g_state;
  2646. static atomic_int g_state_barrier = 0;
  2647. // barrier via spin lock
  2648. inline static void ggml_critical_section_start(void) {
  2649. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2650. while (processing > 0) {
  2651. // wait for other threads to finish
  2652. atomic_fetch_sub(&g_state_barrier, 1);
  2653. sched_yield(); // TODO: reconsider this
  2654. processing = atomic_fetch_add(&g_state_barrier, 1);
  2655. }
  2656. }
  2657. // TODO: make this somehow automatically executed
  2658. // some sort of "sentry" mechanism
  2659. inline static void ggml_critical_section_end(void) {
  2660. atomic_fetch_sub(&g_state_barrier, 1);
  2661. }
  2662. ////////////////////////////////////////////////////////////////////////////////
  2663. void ggml_print_object(const struct ggml_object * obj) {
  2664. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2665. obj->offs, obj->size, (const void *) obj->next);
  2666. }
  2667. void ggml_print_objects(const struct ggml_context * ctx) {
  2668. struct ggml_object * obj = ctx->objects_begin;
  2669. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2670. while (obj != NULL) {
  2671. ggml_print_object(obj);
  2672. obj = obj->next;
  2673. }
  2674. GGML_PRINT("%s: --- end ---\n", __func__);
  2675. }
  2676. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2677. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2678. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2679. }
  2680. int ggml_nrows(const struct ggml_tensor * tensor) {
  2681. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2682. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2683. }
  2684. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2685. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2686. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2687. }
  2688. int ggml_blck_size(enum ggml_type type) {
  2689. return GGML_BLCK_SIZE[type];
  2690. }
  2691. size_t ggml_type_size(enum ggml_type type) {
  2692. return GGML_TYPE_SIZE[type];
  2693. }
  2694. float ggml_type_sizef(enum ggml_type type) {
  2695. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2696. }
  2697. const char * ggml_type_name(enum ggml_type type) {
  2698. return GGML_TYPE_NAME[type];
  2699. }
  2700. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2701. return GGML_TYPE_SIZE[tensor->type];
  2702. }
  2703. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2704. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2705. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2706. }
  2707. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2708. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2709. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2710. }
  2711. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2712. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2713. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2714. }
  2715. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2716. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2717. return
  2718. (t0->ne[0] == t1->ne[0]) &&
  2719. (t0->ne[2] == t1->ne[2]) &&
  2720. (t0->ne[3] == t1->ne[3]);
  2721. }
  2722. static inline bool ggml_is_quantized(enum ggml_type type) {
  2723. return GGML_IS_QUANTIZED[type];
  2724. }
  2725. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2726. return tensor->nb[0] > tensor->nb[1];
  2727. }
  2728. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2729. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2730. return
  2731. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2732. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2733. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2734. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2735. }
  2736. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2737. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2738. return
  2739. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2740. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2741. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2742. }
  2743. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2744. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2745. return
  2746. (t0->ne[0] == t1->ne[0] ) &&
  2747. (t0->ne[1] == t1->ne[1] ) &&
  2748. (t0->ne[2] == t1->ne[2] ) &&
  2749. (t0->ne[3] == t1->ne[3] );
  2750. }
  2751. // check if t1 can be represented as a repeatition of t0
  2752. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2753. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2754. return
  2755. (t1->ne[0]%t0->ne[0] == 0) &&
  2756. (t1->ne[1]%t0->ne[1] == 0) &&
  2757. (t1->ne[2]%t0->ne[2] == 0) &&
  2758. (t1->ne[3]%t0->ne[3] == 0);
  2759. }
  2760. static inline int ggml_up32(int n) {
  2761. return (n + 31) & ~31;
  2762. }
  2763. static inline int ggml_up64(int n) {
  2764. return (n + 63) & ~63;
  2765. }
  2766. static inline int ggml_up(int n, int m) {
  2767. // assert m is a power of 2
  2768. GGML_ASSERT((m & (m - 1)) == 0);
  2769. return (n + m - 1) & ~(m - 1);
  2770. }
  2771. // assert that pointer is aligned to GGML_MEM_ALIGN
  2772. #define ggml_assert_aligned(ptr) \
  2773. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2774. ////////////////////////////////////////////////////////////////////////////////
  2775. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2776. // make this function thread safe
  2777. ggml_critical_section_start();
  2778. static bool is_first_call = true;
  2779. if (is_first_call) {
  2780. // initialize time system (required on Windows)
  2781. ggml_time_init();
  2782. // initialize GELU, SILU and EXP F32 tables
  2783. {
  2784. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2785. ggml_fp16_t ii;
  2786. for (int i = 0; i < (1 << 16); ++i) {
  2787. uint16_t ui = i;
  2788. memcpy(&ii, &ui, sizeof(ii));
  2789. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2790. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2791. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2792. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2793. }
  2794. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2795. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2796. }
  2797. // initialize g_state
  2798. {
  2799. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2800. g_state = (struct ggml_state) {
  2801. /*.contexts =*/ { { 0 } },
  2802. };
  2803. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2804. g_state.contexts[i].used = false;
  2805. }
  2806. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2807. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2808. }
  2809. // initialize cuBLAS
  2810. #if defined(GGML_USE_CUBLAS)
  2811. init_cublas();
  2812. #endif
  2813. is_first_call = false;
  2814. }
  2815. // find non-used context in g_state
  2816. struct ggml_context * ctx = NULL;
  2817. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2818. if (!g_state.contexts[i].used) {
  2819. g_state.contexts[i].used = true;
  2820. ctx = &g_state.contexts[i].context;
  2821. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2822. break;
  2823. }
  2824. }
  2825. if (ctx == NULL) {
  2826. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2827. ggml_critical_section_end();
  2828. return NULL;
  2829. }
  2830. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2831. *ctx = (struct ggml_context) {
  2832. /*.mem_size =*/ mem_size,
  2833. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2834. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2835. /*.no_alloc =*/ params.no_alloc,
  2836. /*.n_objects =*/ 0,
  2837. /*.objects_begin =*/ NULL,
  2838. /*.objects_end =*/ NULL,
  2839. /*.scratch =*/ { 0, 0, NULL, },
  2840. /*.scratch_save =*/ { 0, 0, NULL, },
  2841. };
  2842. GGML_ASSERT(ctx->mem_buffer != NULL);
  2843. ggml_assert_aligned(ctx->mem_buffer);
  2844. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2845. ggml_critical_section_end();
  2846. return ctx;
  2847. }
  2848. void ggml_free(struct ggml_context * ctx) {
  2849. // make this function thread safe
  2850. ggml_critical_section_start();
  2851. bool found = false;
  2852. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2853. if (&g_state.contexts[i].context == ctx) {
  2854. g_state.contexts[i].used = false;
  2855. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2856. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2857. if (ctx->mem_buffer_owned) {
  2858. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2859. }
  2860. found = true;
  2861. break;
  2862. }
  2863. }
  2864. if (!found) {
  2865. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2866. }
  2867. ggml_critical_section_end();
  2868. }
  2869. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2870. return ctx->objects_end->offs + ctx->objects_end->size;
  2871. }
  2872. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2873. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2874. ctx->scratch = scratch;
  2875. return result;
  2876. }
  2877. ////////////////////////////////////////////////////////////////////////////////
  2878. struct ggml_tensor * ggml_new_tensor_impl(
  2879. struct ggml_context * ctx,
  2880. enum ggml_type type,
  2881. int n_dims,
  2882. const int64_t* ne,
  2883. void* data) {
  2884. // always insert objects at the end of the context's memory pool
  2885. struct ggml_object * obj_cur = ctx->objects_end;
  2886. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2887. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2888. const size_t cur_end = cur_offs + cur_size;
  2889. size_t size_needed = 0;
  2890. if (data == NULL && !ctx->no_alloc) {
  2891. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2892. for (int i = 1; i < n_dims; i++) {
  2893. size_needed *= ne[i];
  2894. }
  2895. // align to GGML_MEM_ALIGN
  2896. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2897. }
  2898. char * const mem_buffer = ctx->mem_buffer;
  2899. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2900. if (ctx->scratch.data == NULL || data != NULL) {
  2901. size_needed += sizeof(struct ggml_tensor);
  2902. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2903. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2904. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2905. assert(false);
  2906. return NULL;
  2907. }
  2908. *obj_new = (struct ggml_object) {
  2909. .offs = cur_end + GGML_OBJECT_SIZE,
  2910. .size = size_needed,
  2911. .next = NULL,
  2912. };
  2913. } else {
  2914. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2915. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2916. assert(false);
  2917. return NULL;
  2918. }
  2919. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2920. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2921. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2922. assert(false);
  2923. return NULL;
  2924. }
  2925. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2926. *obj_new = (struct ggml_object) {
  2927. .offs = cur_end + GGML_OBJECT_SIZE,
  2928. .size = sizeof(struct ggml_tensor),
  2929. .next = NULL,
  2930. };
  2931. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2932. ctx->scratch.offs += size_needed;
  2933. }
  2934. if (obj_cur != NULL) {
  2935. obj_cur->next = obj_new;
  2936. } else {
  2937. // this is the first object in this context
  2938. ctx->objects_begin = obj_new;
  2939. }
  2940. ctx->objects_end = obj_new;
  2941. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2942. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2943. ggml_assert_aligned(result);
  2944. *result = (struct ggml_tensor) {
  2945. /*.type =*/ type,
  2946. /*.n_dims =*/ n_dims,
  2947. /*.ne =*/ { 1, 1, 1, 1 },
  2948. /*.nb =*/ { 0, 0, 0, 0 },
  2949. /*.op =*/ GGML_OP_NONE,
  2950. /*.is_param =*/ false,
  2951. /*.grad =*/ NULL,
  2952. /*.src0 =*/ NULL,
  2953. /*.src1 =*/ NULL,
  2954. /*.opt =*/ { NULL },
  2955. /*.n_tasks =*/ 0,
  2956. /*.perf_runs =*/ 0,
  2957. /*.perf_cycles =*/ 0,
  2958. /*.perf_time_us =*/ 0,
  2959. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2960. /*.pad =*/ { 0 },
  2961. };
  2962. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2963. //ggml_assert_aligned(result->data);
  2964. for (int i = 0; i < n_dims; i++) {
  2965. result->ne[i] = ne[i];
  2966. }
  2967. result->nb[0] = GGML_TYPE_SIZE[type];
  2968. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2969. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2970. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2971. }
  2972. ctx->n_objects++;
  2973. return result;
  2974. }
  2975. struct ggml_tensor * ggml_new_tensor(
  2976. struct ggml_context * ctx,
  2977. enum ggml_type type,
  2978. int n_dims,
  2979. const int64_t * ne) {
  2980. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2981. }
  2982. struct ggml_tensor * ggml_new_tensor_1d(
  2983. struct ggml_context * ctx,
  2984. enum ggml_type type,
  2985. int64_t ne0) {
  2986. return ggml_new_tensor(ctx, type, 1, &ne0);
  2987. }
  2988. struct ggml_tensor * ggml_new_tensor_2d(
  2989. struct ggml_context * ctx,
  2990. enum ggml_type type,
  2991. int64_t ne0,
  2992. int64_t ne1) {
  2993. const int64_t ne[2] = { ne0, ne1 };
  2994. return ggml_new_tensor(ctx, type, 2, ne);
  2995. }
  2996. struct ggml_tensor * ggml_new_tensor_3d(
  2997. struct ggml_context * ctx,
  2998. enum ggml_type type,
  2999. int64_t ne0,
  3000. int64_t ne1,
  3001. int64_t ne2) {
  3002. const int64_t ne[3] = { ne0, ne1, ne2 };
  3003. return ggml_new_tensor(ctx, type, 3, ne);
  3004. }
  3005. struct ggml_tensor * ggml_new_tensor_4d(
  3006. struct ggml_context * ctx,
  3007. enum ggml_type type,
  3008. int64_t ne0,
  3009. int64_t ne1,
  3010. int64_t ne2,
  3011. int64_t ne3) {
  3012. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3013. return ggml_new_tensor(ctx, type, 4, ne);
  3014. }
  3015. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3016. ctx->scratch_save = ctx->scratch;
  3017. ctx->scratch.data = NULL;
  3018. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3019. ctx->scratch = ctx->scratch_save;
  3020. ggml_set_i32(result, value);
  3021. return result;
  3022. }
  3023. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3024. ctx->scratch_save = ctx->scratch;
  3025. ctx->scratch.data = NULL;
  3026. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3027. ctx->scratch = ctx->scratch_save;
  3028. ggml_set_f32(result, value);
  3029. return result;
  3030. }
  3031. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3032. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3033. }
  3034. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3035. memset(tensor->data, 0, ggml_nbytes(tensor));
  3036. return tensor;
  3037. }
  3038. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3039. const int n = ggml_nrows(tensor);
  3040. const int nc = tensor->ne[0];
  3041. const size_t n1 = tensor->nb[1];
  3042. char * const data = tensor->data;
  3043. switch (tensor->type) {
  3044. case GGML_TYPE_I8:
  3045. {
  3046. assert(tensor->nb[0] == sizeof(int8_t));
  3047. for (int i = 0; i < n; i++) {
  3048. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3049. }
  3050. } break;
  3051. case GGML_TYPE_I16:
  3052. {
  3053. assert(tensor->nb[0] == sizeof(int16_t));
  3054. for (int i = 0; i < n; i++) {
  3055. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3056. }
  3057. } break;
  3058. case GGML_TYPE_I32:
  3059. {
  3060. assert(tensor->nb[0] == sizeof(int32_t));
  3061. for (int i = 0; i < n; i++) {
  3062. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3063. }
  3064. } break;
  3065. case GGML_TYPE_F16:
  3066. {
  3067. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3068. for (int i = 0; i < n; i++) {
  3069. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3070. }
  3071. } break;
  3072. case GGML_TYPE_F32:
  3073. {
  3074. assert(tensor->nb[0] == sizeof(float));
  3075. for (int i = 0; i < n; i++) {
  3076. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3077. }
  3078. } break;
  3079. default:
  3080. {
  3081. GGML_ASSERT(false);
  3082. } break;
  3083. }
  3084. return tensor;
  3085. }
  3086. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3087. const int n = ggml_nrows(tensor);
  3088. const int nc = tensor->ne[0];
  3089. const size_t n1 = tensor->nb[1];
  3090. char * const data = tensor->data;
  3091. switch (tensor->type) {
  3092. case GGML_TYPE_I8:
  3093. {
  3094. assert(tensor->nb[0] == sizeof(int8_t));
  3095. for (int i = 0; i < n; i++) {
  3096. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3097. }
  3098. } break;
  3099. case GGML_TYPE_I16:
  3100. {
  3101. assert(tensor->nb[0] == sizeof(int16_t));
  3102. for (int i = 0; i < n; i++) {
  3103. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3104. }
  3105. } break;
  3106. case GGML_TYPE_I32:
  3107. {
  3108. assert(tensor->nb[0] == sizeof(int32_t));
  3109. for (int i = 0; i < n; i++) {
  3110. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3111. }
  3112. } break;
  3113. case GGML_TYPE_F16:
  3114. {
  3115. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3116. for (int i = 0; i < n; i++) {
  3117. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3118. }
  3119. } break;
  3120. case GGML_TYPE_F32:
  3121. {
  3122. assert(tensor->nb[0] == sizeof(float));
  3123. for (int i = 0; i < n; i++) {
  3124. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3125. }
  3126. } break;
  3127. default:
  3128. {
  3129. GGML_ASSERT(false);
  3130. } break;
  3131. }
  3132. return tensor;
  3133. }
  3134. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3135. switch (tensor->type) {
  3136. case GGML_TYPE_I8:
  3137. {
  3138. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3139. return ((int8_t *)(tensor->data))[i];
  3140. } break;
  3141. case GGML_TYPE_I16:
  3142. {
  3143. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3144. return ((int16_t *)(tensor->data))[i];
  3145. } break;
  3146. case GGML_TYPE_I32:
  3147. {
  3148. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3149. return ((int32_t *)(tensor->data))[i];
  3150. } break;
  3151. case GGML_TYPE_F16:
  3152. {
  3153. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3154. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3155. } break;
  3156. case GGML_TYPE_F32:
  3157. {
  3158. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3159. return ((float *)(tensor->data))[i];
  3160. } break;
  3161. default:
  3162. {
  3163. GGML_ASSERT(false);
  3164. } break;
  3165. }
  3166. return 0.0f;
  3167. }
  3168. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3169. switch (tensor->type) {
  3170. case GGML_TYPE_I8:
  3171. {
  3172. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3173. ((int8_t *)(tensor->data))[i] = value;
  3174. } break;
  3175. case GGML_TYPE_I16:
  3176. {
  3177. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3178. ((int16_t *)(tensor->data))[i] = value;
  3179. } break;
  3180. case GGML_TYPE_I32:
  3181. {
  3182. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3183. ((int32_t *)(tensor->data))[i] = value;
  3184. } break;
  3185. case GGML_TYPE_F16:
  3186. {
  3187. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3188. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3189. } break;
  3190. case GGML_TYPE_F32:
  3191. {
  3192. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3193. ((float *)(tensor->data))[i] = value;
  3194. } break;
  3195. default:
  3196. {
  3197. GGML_ASSERT(false);
  3198. } break;
  3199. }
  3200. }
  3201. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3202. switch (tensor->type) {
  3203. case GGML_TYPE_I8:
  3204. {
  3205. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3206. return ((int8_t *)(tensor->data))[i];
  3207. } break;
  3208. case GGML_TYPE_I16:
  3209. {
  3210. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3211. return ((int16_t *)(tensor->data))[i];
  3212. } break;
  3213. case GGML_TYPE_I32:
  3214. {
  3215. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3216. return ((int32_t *)(tensor->data))[i];
  3217. } break;
  3218. case GGML_TYPE_F16:
  3219. {
  3220. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3221. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3222. } break;
  3223. case GGML_TYPE_F32:
  3224. {
  3225. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3226. return ((float *)(tensor->data))[i];
  3227. } break;
  3228. default:
  3229. {
  3230. GGML_ASSERT(false);
  3231. } break;
  3232. }
  3233. return 0.0f;
  3234. }
  3235. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3236. switch (tensor->type) {
  3237. case GGML_TYPE_I8:
  3238. {
  3239. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3240. ((int8_t *)(tensor->data))[i] = value;
  3241. } break;
  3242. case GGML_TYPE_I16:
  3243. {
  3244. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3245. ((int16_t *)(tensor->data))[i] = value;
  3246. } break;
  3247. case GGML_TYPE_I32:
  3248. {
  3249. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3250. ((int32_t *)(tensor->data))[i] = value;
  3251. } break;
  3252. case GGML_TYPE_F16:
  3253. {
  3254. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3255. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3256. } break;
  3257. case GGML_TYPE_F32:
  3258. {
  3259. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3260. ((float *)(tensor->data))[i] = value;
  3261. } break;
  3262. default:
  3263. {
  3264. GGML_ASSERT(false);
  3265. } break;
  3266. }
  3267. }
  3268. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3269. return tensor->data;
  3270. }
  3271. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3272. assert(tensor->type == GGML_TYPE_F32);
  3273. return (float *)(tensor->data);
  3274. }
  3275. struct ggml_tensor * ggml_view_tensor(
  3276. struct ggml_context * ctx,
  3277. const struct ggml_tensor * src) {
  3278. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3279. result->nb[0] = src->nb[0];
  3280. result->nb[1] = src->nb[1];
  3281. result->nb[2] = src->nb[2];
  3282. result->nb[3] = src->nb[3];
  3283. return result;
  3284. }
  3285. ////////////////////////////////////////////////////////////////////////////////
  3286. // ggml_dup
  3287. struct ggml_tensor * ggml_dup_impl(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a,
  3290. bool inplace) {
  3291. bool is_node = false;
  3292. if (!inplace && (a->grad)) {
  3293. is_node = true;
  3294. }
  3295. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3296. result->op = GGML_OP_DUP;
  3297. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3298. result->src0 = a;
  3299. result->src1 = NULL;
  3300. return result;
  3301. }
  3302. struct ggml_tensor * ggml_dup(
  3303. struct ggml_context * ctx,
  3304. struct ggml_tensor * a) {
  3305. return ggml_dup_impl(ctx, a, false);
  3306. }
  3307. struct ggml_tensor * ggml_dup_inplace(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a) {
  3310. return ggml_dup_impl(ctx, a, true);
  3311. }
  3312. // ggml_add
  3313. struct ggml_tensor * ggml_add_impl(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a,
  3316. struct ggml_tensor * b,
  3317. bool inplace) {
  3318. GGML_ASSERT(ggml_are_same_shape(a, b));
  3319. bool is_node = false;
  3320. if (!inplace && (a->grad || b->grad)) {
  3321. is_node = true;
  3322. }
  3323. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3324. result->op = GGML_OP_ADD;
  3325. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3326. result->src0 = a;
  3327. result->src1 = b;
  3328. return result;
  3329. }
  3330. struct ggml_tensor * ggml_add(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a,
  3333. struct ggml_tensor * b) {
  3334. return ggml_add_impl(ctx, a, b, false);
  3335. }
  3336. struct ggml_tensor * ggml_add_inplace(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a,
  3339. struct ggml_tensor * b) {
  3340. return ggml_add_impl(ctx, a, b, true);
  3341. }
  3342. // ggml_sub
  3343. struct ggml_tensor * ggml_sub_impl(
  3344. struct ggml_context * ctx,
  3345. struct ggml_tensor * a,
  3346. struct ggml_tensor * b,
  3347. bool inplace) {
  3348. GGML_ASSERT(ggml_are_same_shape(a, b));
  3349. bool is_node = false;
  3350. if (!inplace && (a->grad || b->grad)) {
  3351. is_node = true;
  3352. }
  3353. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3354. result->op = GGML_OP_SUB;
  3355. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3356. result->src0 = a;
  3357. result->src1 = b;
  3358. return result;
  3359. }
  3360. struct ggml_tensor * ggml_sub(
  3361. struct ggml_context * ctx,
  3362. struct ggml_tensor * a,
  3363. struct ggml_tensor * b) {
  3364. return ggml_sub_impl(ctx, a, b, false);
  3365. }
  3366. struct ggml_tensor * ggml_sub_inplace(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a,
  3369. struct ggml_tensor * b) {
  3370. return ggml_sub_impl(ctx, a, b, true);
  3371. }
  3372. // ggml_mul
  3373. struct ggml_tensor * ggml_mul_impl(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a,
  3376. struct ggml_tensor * b,
  3377. bool inplace) {
  3378. GGML_ASSERT(ggml_are_same_shape(a, b));
  3379. bool is_node = false;
  3380. if (!inplace && (a->grad || b->grad)) {
  3381. is_node = true;
  3382. }
  3383. if (inplace) {
  3384. GGML_ASSERT(is_node == false);
  3385. }
  3386. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3387. result->op = GGML_OP_MUL;
  3388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3389. result->src0 = a;
  3390. result->src1 = b;
  3391. return result;
  3392. }
  3393. struct ggml_tensor * ggml_mul(
  3394. struct ggml_context * ctx,
  3395. struct ggml_tensor * a,
  3396. struct ggml_tensor * b) {
  3397. return ggml_mul_impl(ctx, a, b, false);
  3398. }
  3399. struct ggml_tensor * ggml_mul_inplace(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a,
  3402. struct ggml_tensor * b) {
  3403. return ggml_mul_impl(ctx, a, b, true);
  3404. }
  3405. // ggml_div
  3406. struct ggml_tensor * ggml_div_impl(
  3407. struct ggml_context * ctx,
  3408. struct ggml_tensor * a,
  3409. struct ggml_tensor * b,
  3410. bool inplace) {
  3411. GGML_ASSERT(ggml_are_same_shape(a, b));
  3412. bool is_node = false;
  3413. if (!inplace && (a->grad || b->grad)) {
  3414. is_node = true;
  3415. }
  3416. if (inplace) {
  3417. GGML_ASSERT(is_node == false);
  3418. }
  3419. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3420. result->op = GGML_OP_DIV;
  3421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3422. result->src0 = a;
  3423. result->src1 = b;
  3424. return result;
  3425. }
  3426. struct ggml_tensor * ggml_div(
  3427. struct ggml_context * ctx,
  3428. struct ggml_tensor * a,
  3429. struct ggml_tensor * b) {
  3430. return ggml_div_impl(ctx, a, b, false);
  3431. }
  3432. struct ggml_tensor * ggml_div_inplace(
  3433. struct ggml_context * ctx,
  3434. struct ggml_tensor * a,
  3435. struct ggml_tensor * b) {
  3436. return ggml_div_impl(ctx, a, b, true);
  3437. }
  3438. // ggml_sqr
  3439. struct ggml_tensor * ggml_sqr_impl(
  3440. struct ggml_context * ctx,
  3441. struct ggml_tensor * a,
  3442. bool inplace) {
  3443. bool is_node = false;
  3444. if (!inplace && (a->grad)) {
  3445. is_node = true;
  3446. }
  3447. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3448. result->op = GGML_OP_SQR;
  3449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3450. result->src0 = a;
  3451. result->src1 = NULL;
  3452. return result;
  3453. }
  3454. struct ggml_tensor * ggml_sqr(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a) {
  3457. return ggml_sqr_impl(ctx, a, false);
  3458. }
  3459. struct ggml_tensor * ggml_sqr_inplace(
  3460. struct ggml_context * ctx,
  3461. struct ggml_tensor * a) {
  3462. return ggml_sqr_impl(ctx, a, true);
  3463. }
  3464. // ggml_sqrt
  3465. struct ggml_tensor * ggml_sqrt_impl(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a,
  3468. bool inplace) {
  3469. bool is_node = false;
  3470. if (!inplace && (a->grad)) {
  3471. is_node = true;
  3472. }
  3473. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3474. result->op = GGML_OP_SQRT;
  3475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3476. result->src0 = a;
  3477. result->src1 = NULL;
  3478. return result;
  3479. }
  3480. struct ggml_tensor * ggml_sqrt(
  3481. struct ggml_context * ctx,
  3482. struct ggml_tensor * a) {
  3483. return ggml_sqrt_impl(ctx, a, false);
  3484. }
  3485. struct ggml_tensor * ggml_sqrt_inplace(
  3486. struct ggml_context * ctx,
  3487. struct ggml_tensor * a) {
  3488. return ggml_sqrt_impl(ctx, a, true);
  3489. }
  3490. // ggml_sum
  3491. struct ggml_tensor * ggml_sum(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a) {
  3494. bool is_node = false;
  3495. if (a->grad) {
  3496. is_node = true;
  3497. }
  3498. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3499. result->op = GGML_OP_SUM;
  3500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3501. result->src0 = a;
  3502. result->src1 = NULL;
  3503. return result;
  3504. }
  3505. // ggml_mean
  3506. struct ggml_tensor * ggml_mean(
  3507. struct ggml_context * ctx,
  3508. struct ggml_tensor * a) {
  3509. bool is_node = false;
  3510. if (a->grad) {
  3511. GGML_ASSERT(false); // TODO: implement
  3512. is_node = true;
  3513. }
  3514. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3515. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3516. result->op = GGML_OP_MEAN;
  3517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3518. result->src0 = a;
  3519. result->src1 = NULL;
  3520. return result;
  3521. }
  3522. // ggml_repeat
  3523. struct ggml_tensor * ggml_repeat(
  3524. struct ggml_context * ctx,
  3525. struct ggml_tensor * a,
  3526. struct ggml_tensor * b) {
  3527. GGML_ASSERT(ggml_can_repeat(a, b));
  3528. bool is_node = false;
  3529. if (a->grad) {
  3530. is_node = true;
  3531. }
  3532. if (ggml_are_same_shape(a, b) && !is_node) {
  3533. return a;
  3534. }
  3535. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3536. result->op = GGML_OP_REPEAT;
  3537. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3538. result->src0 = a;
  3539. result->src1 = b;
  3540. return result;
  3541. }
  3542. // ggml_abs
  3543. struct ggml_tensor * ggml_abs_impl(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a,
  3546. bool inplace) {
  3547. bool is_node = false;
  3548. if (!inplace && (a->grad)) {
  3549. is_node = true;
  3550. }
  3551. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3552. result->op = GGML_OP_ABS;
  3553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3554. result->src0 = a;
  3555. result->src1 = NULL;
  3556. return result;
  3557. }
  3558. struct ggml_tensor * ggml_abs(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a) {
  3561. return ggml_abs_impl(ctx, a, false);
  3562. }
  3563. struct ggml_tensor * ggml_abs_inplace(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a) {
  3566. return ggml_abs_impl(ctx, a, true);
  3567. }
  3568. // ggml_sgn
  3569. struct ggml_tensor * ggml_sgn_impl(
  3570. struct ggml_context * ctx,
  3571. struct ggml_tensor * a,
  3572. bool inplace) {
  3573. bool is_node = false;
  3574. if (!inplace && (a->grad)) {
  3575. is_node = true;
  3576. }
  3577. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3578. result->op = GGML_OP_SGN;
  3579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3580. result->src0 = a;
  3581. result->src1 = NULL;
  3582. return result;
  3583. }
  3584. struct ggml_tensor * ggml_sgn(
  3585. struct ggml_context * ctx,
  3586. struct ggml_tensor * a) {
  3587. return ggml_sgn_impl(ctx, a, false);
  3588. }
  3589. struct ggml_tensor * ggml_sgn_inplace(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a) {
  3592. return ggml_sgn_impl(ctx, a, true);
  3593. }
  3594. // ggml_neg
  3595. struct ggml_tensor * ggml_neg_impl(
  3596. struct ggml_context * ctx,
  3597. struct ggml_tensor * a,
  3598. bool inplace) {
  3599. bool is_node = false;
  3600. if (!inplace && (a->grad)) {
  3601. is_node = true;
  3602. }
  3603. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3604. result->op = GGML_OP_NEG;
  3605. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3606. result->src0 = a;
  3607. result->src1 = NULL;
  3608. return result;
  3609. }
  3610. struct ggml_tensor * ggml_neg(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a) {
  3613. return ggml_neg_impl(ctx, a, false);
  3614. }
  3615. struct ggml_tensor * ggml_neg_inplace(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a) {
  3618. return ggml_neg_impl(ctx, a, true);
  3619. }
  3620. // ggml_step
  3621. struct ggml_tensor * ggml_step_impl(
  3622. struct ggml_context * ctx,
  3623. struct ggml_tensor * a,
  3624. bool inplace) {
  3625. bool is_node = false;
  3626. if (!inplace && (a->grad)) {
  3627. is_node = true;
  3628. }
  3629. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3630. result->op = GGML_OP_STEP;
  3631. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3632. result->src0 = a;
  3633. result->src1 = NULL;
  3634. return result;
  3635. }
  3636. struct ggml_tensor * ggml_step(
  3637. struct ggml_context * ctx,
  3638. struct ggml_tensor * a) {
  3639. return ggml_step_impl(ctx, a, false);
  3640. }
  3641. struct ggml_tensor * ggml_step_inplace(
  3642. struct ggml_context * ctx,
  3643. struct ggml_tensor * a) {
  3644. return ggml_step_impl(ctx, a, true);
  3645. }
  3646. // ggml_relu
  3647. struct ggml_tensor * ggml_relu_impl(
  3648. struct ggml_context * ctx,
  3649. struct ggml_tensor * a,
  3650. bool inplace) {
  3651. bool is_node = false;
  3652. if (!inplace && (a->grad)) {
  3653. is_node = true;
  3654. }
  3655. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3656. result->op = GGML_OP_RELU;
  3657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3658. result->src0 = a;
  3659. result->src1 = NULL;
  3660. return result;
  3661. }
  3662. struct ggml_tensor * ggml_relu(
  3663. struct ggml_context * ctx,
  3664. struct ggml_tensor * a) {
  3665. return ggml_relu_impl(ctx, a, false);
  3666. }
  3667. struct ggml_tensor * ggml_relu_inplace(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a) {
  3670. return ggml_relu_impl(ctx, a, true);
  3671. }
  3672. // ggml_gelu
  3673. struct ggml_tensor * ggml_gelu_impl(
  3674. struct ggml_context * ctx,
  3675. struct ggml_tensor * a,
  3676. bool inplace) {
  3677. bool is_node = false;
  3678. if (!inplace && (a->grad)) {
  3679. is_node = true;
  3680. }
  3681. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3682. result->op = GGML_OP_GELU;
  3683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3684. result->src0 = a;
  3685. result->src1 = NULL;
  3686. return result;
  3687. }
  3688. struct ggml_tensor * ggml_gelu(
  3689. struct ggml_context * ctx,
  3690. struct ggml_tensor * a) {
  3691. return ggml_gelu_impl(ctx, a, false);
  3692. }
  3693. struct ggml_tensor * ggml_gelu_inplace(
  3694. struct ggml_context * ctx,
  3695. struct ggml_tensor * a) {
  3696. return ggml_gelu_impl(ctx, a, true);
  3697. }
  3698. // ggml_silu
  3699. struct ggml_tensor * ggml_silu_impl(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. bool inplace) {
  3703. bool is_node = false;
  3704. if (!inplace && (a->grad)) {
  3705. is_node = true;
  3706. }
  3707. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3708. result->op = GGML_OP_SILU;
  3709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3710. result->src0 = a;
  3711. result->src1 = NULL;
  3712. return result;
  3713. }
  3714. struct ggml_tensor * ggml_silu(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a) {
  3717. return ggml_silu_impl(ctx, a, false);
  3718. }
  3719. struct ggml_tensor * ggml_silu_inplace(
  3720. struct ggml_context * ctx,
  3721. struct ggml_tensor * a) {
  3722. return ggml_silu_impl(ctx, a, true);
  3723. }
  3724. // ggml_norm
  3725. struct ggml_tensor * ggml_norm_impl(
  3726. struct ggml_context * ctx,
  3727. struct ggml_tensor * a,
  3728. bool inplace) {
  3729. bool is_node = false;
  3730. if (!inplace && (a->grad)) {
  3731. GGML_ASSERT(false); // TODO: implement backward
  3732. is_node = true;
  3733. }
  3734. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3735. result->op = GGML_OP_NORM;
  3736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3737. result->src0 = a;
  3738. result->src1 = NULL; // TODO: maybe store epsilon here?
  3739. return result;
  3740. }
  3741. struct ggml_tensor * ggml_norm(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a) {
  3744. return ggml_norm_impl(ctx, a, false);
  3745. }
  3746. struct ggml_tensor * ggml_norm_inplace(
  3747. struct ggml_context * ctx,
  3748. struct ggml_tensor * a) {
  3749. return ggml_norm_impl(ctx, a, true);
  3750. }
  3751. struct ggml_tensor * ggml_rms_norm_impl(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. bool inplace) {
  3755. bool is_node = false;
  3756. if (!inplace && (a->grad)) {
  3757. GGML_ASSERT(false); // TODO: implement backward
  3758. is_node = true;
  3759. }
  3760. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3761. result->op = GGML_OP_RMS_NORM;
  3762. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3763. result->src0 = a;
  3764. result->src1 = NULL; // TODO: maybe store epsilon here?
  3765. return result;
  3766. }
  3767. struct ggml_tensor * ggml_rms_norm(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a) {
  3770. return ggml_rms_norm_impl(ctx, a, false);
  3771. }
  3772. struct ggml_tensor * ggml_rms_norm_inplace(
  3773. struct ggml_context * ctx,
  3774. struct ggml_tensor * a) {
  3775. return ggml_rms_norm_impl(ctx, a, true);
  3776. }
  3777. // ggml_mul_mat
  3778. struct ggml_tensor * ggml_mul_mat(
  3779. struct ggml_context * ctx,
  3780. struct ggml_tensor * a,
  3781. struct ggml_tensor * b) {
  3782. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3783. GGML_ASSERT(!ggml_is_transposed(a));
  3784. bool is_node = false;
  3785. if (a->grad || b->grad) {
  3786. is_node = true;
  3787. }
  3788. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3789. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3790. result->op = GGML_OP_MUL_MAT;
  3791. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3792. result->src0 = a;
  3793. result->src1 = b;
  3794. return result;
  3795. }
  3796. // ggml_scale
  3797. struct ggml_tensor * ggml_scale_impl(
  3798. struct ggml_context * ctx,
  3799. struct ggml_tensor * a,
  3800. struct ggml_tensor * b,
  3801. bool inplace) {
  3802. GGML_ASSERT(ggml_is_scalar(b));
  3803. GGML_ASSERT(ggml_is_padded_1d(a));
  3804. bool is_node = false;
  3805. if (!inplace && (a->grad || b->grad)) {
  3806. GGML_ASSERT(false); // TODO: implement backward
  3807. is_node = true;
  3808. }
  3809. // TODO: when implement backward, fix this:
  3810. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3811. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3812. result->op = GGML_OP_SCALE;
  3813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3814. result->src0 = a;
  3815. result->src1 = b;
  3816. return result;
  3817. }
  3818. struct ggml_tensor * ggml_scale(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a,
  3821. struct ggml_tensor * b) {
  3822. return ggml_scale_impl(ctx, a, b, false);
  3823. }
  3824. struct ggml_tensor * ggml_scale_inplace(
  3825. struct ggml_context * ctx,
  3826. struct ggml_tensor * a,
  3827. struct ggml_tensor * b) {
  3828. return ggml_scale_impl(ctx, a, b, true);
  3829. }
  3830. // ggml_cpy
  3831. struct ggml_tensor * ggml_cpy_impl(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a,
  3834. struct ggml_tensor * b,
  3835. bool inplace) {
  3836. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3837. bool is_node = false;
  3838. if (!inplace && (a->grad || b->grad)) {
  3839. GGML_ASSERT(false); // TODO: implement backward
  3840. is_node = true;
  3841. }
  3842. // make a view of the destination
  3843. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3844. result->op = GGML_OP_CPY;
  3845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3846. result->src0 = a;
  3847. result->src1 = b;
  3848. return result;
  3849. }
  3850. struct ggml_tensor * ggml_cpy(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a,
  3853. struct ggml_tensor * b) {
  3854. return ggml_cpy_impl(ctx, a, b, false);
  3855. }
  3856. struct ggml_tensor * ggml_cpy_inplace(
  3857. struct ggml_context * ctx,
  3858. struct ggml_tensor * a,
  3859. struct ggml_tensor * b) {
  3860. return ggml_cpy_impl(ctx, a, b, true);
  3861. }
  3862. // ggml_cont
  3863. struct ggml_tensor * ggml_cont_impl(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a,
  3866. bool inplace) {
  3867. bool is_node = false;
  3868. if (!inplace && a->grad) {
  3869. GGML_ASSERT(false); // TODO: implement backward
  3870. is_node = true;
  3871. }
  3872. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3873. result->op = GGML_OP_CONT;
  3874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3875. result->src0 = a;
  3876. result->src1 = NULL;
  3877. return result;
  3878. }
  3879. struct ggml_tensor * ggml_cont(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a) {
  3882. return ggml_cont_impl(ctx, a, false);
  3883. }
  3884. struct ggml_tensor * ggml_cont_inplace(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a) {
  3887. return ggml_cont_impl(ctx, a, true);
  3888. }
  3889. // ggml_reshape
  3890. struct ggml_tensor * ggml_reshape(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a,
  3893. struct ggml_tensor * b) {
  3894. GGML_ASSERT(ggml_is_contiguous(a));
  3895. GGML_ASSERT(ggml_is_contiguous(b));
  3896. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3897. bool is_node = false;
  3898. if (a->grad || b->grad) {
  3899. GGML_ASSERT(false); // TODO: implement backward
  3900. is_node = true;
  3901. }
  3902. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3903. result->op = GGML_OP_RESHAPE;
  3904. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3905. result->src0 = a;
  3906. result->src1 = NULL;
  3907. return result;
  3908. }
  3909. struct ggml_tensor * ggml_reshape_2d(
  3910. struct ggml_context * ctx,
  3911. struct ggml_tensor * a,
  3912. int64_t ne0,
  3913. int64_t ne1) {
  3914. GGML_ASSERT(ggml_is_contiguous(a));
  3915. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3916. bool is_node = false;
  3917. if (a->grad) {
  3918. GGML_ASSERT(false); // TODO: implement backward
  3919. is_node = true;
  3920. }
  3921. const int64_t ne[2] = { ne0, ne1 };
  3922. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3923. result->op = GGML_OP_RESHAPE;
  3924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3925. result->src0 = a;
  3926. result->src1 = NULL;
  3927. return result;
  3928. }
  3929. struct ggml_tensor * ggml_reshape_3d(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. int64_t ne0,
  3933. int64_t ne1,
  3934. int64_t ne2) {
  3935. GGML_ASSERT(ggml_is_contiguous(a));
  3936. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3937. bool is_node = false;
  3938. if (a->grad) {
  3939. GGML_ASSERT(false); // TODO: implement backward
  3940. is_node = true;
  3941. }
  3942. const int64_t ne[3] = { ne0, ne1, ne2 };
  3943. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3944. result->op = GGML_OP_RESHAPE;
  3945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3946. result->src0 = a;
  3947. result->src1 = NULL;
  3948. return result;
  3949. }
  3950. // ggml_view_1d
  3951. struct ggml_tensor * ggml_view_1d(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a,
  3954. int64_t ne0,
  3955. size_t offset) {
  3956. if (a->grad) {
  3957. GGML_ASSERT(false); // gradient propagation is not supported
  3958. }
  3959. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3960. result->op = GGML_OP_VIEW;
  3961. result->grad = NULL;
  3962. result->src0 = a;
  3963. result->src1 = NULL; // TODO: maybe store the offset here?
  3964. return result;
  3965. }
  3966. // ggml_view_2d
  3967. struct ggml_tensor * ggml_view_2d(
  3968. struct ggml_context * ctx,
  3969. struct ggml_tensor * a,
  3970. int64_t ne0,
  3971. int64_t ne1,
  3972. size_t nb1,
  3973. size_t offset) {
  3974. if (a->grad) {
  3975. GGML_ASSERT(false); // gradient propagation is not supported
  3976. }
  3977. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3978. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3979. result->nb[1] = nb1;
  3980. result->nb[2] = result->nb[1]*ne1;
  3981. result->nb[3] = result->nb[2];
  3982. result->op = GGML_OP_VIEW;
  3983. result->grad = NULL;
  3984. result->src0 = a;
  3985. result->src1 = NULL; // TODO: maybe store the offset here?
  3986. return result;
  3987. }
  3988. // ggml_view_3d
  3989. struct ggml_tensor * ggml_view_3d(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. int64_t ne0,
  3993. int64_t ne1,
  3994. int64_t ne2,
  3995. size_t nb1,
  3996. size_t nb2,
  3997. size_t offset) {
  3998. if (a->grad) {
  3999. GGML_ASSERT(false); // gradient propagation is not supported
  4000. }
  4001. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4002. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4003. result->nb[1] = nb1;
  4004. result->nb[2] = nb2;
  4005. result->nb[3] = result->nb[2]*ne2;
  4006. result->op = GGML_OP_VIEW;
  4007. result->grad = NULL;
  4008. result->src0 = a;
  4009. result->src1 = NULL; // TODO: maybe store the offset here?
  4010. return result;
  4011. }
  4012. // ggml_permute
  4013. struct ggml_tensor * ggml_permute(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a,
  4016. int axis0,
  4017. int axis1,
  4018. int axis2,
  4019. int axis3) {
  4020. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4021. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4022. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4023. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4024. GGML_ASSERT(axis0 != axis1);
  4025. GGML_ASSERT(axis0 != axis2);
  4026. GGML_ASSERT(axis0 != axis3);
  4027. GGML_ASSERT(axis1 != axis2);
  4028. GGML_ASSERT(axis1 != axis3);
  4029. GGML_ASSERT(axis2 != axis3);
  4030. bool is_node = false;
  4031. if (a->grad) {
  4032. GGML_ASSERT(false); // TODO: implement backward
  4033. is_node = true;
  4034. }
  4035. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4036. int ne[GGML_MAX_DIMS];
  4037. int nb[GGML_MAX_DIMS];
  4038. ne[axis0] = a->ne[0];
  4039. ne[axis1] = a->ne[1];
  4040. ne[axis2] = a->ne[2];
  4041. ne[axis3] = a->ne[3];
  4042. nb[axis0] = a->nb[0];
  4043. nb[axis1] = a->nb[1];
  4044. nb[axis2] = a->nb[2];
  4045. nb[axis3] = a->nb[3];
  4046. result->ne[0] = ne[0];
  4047. result->ne[1] = ne[1];
  4048. result->ne[2] = ne[2];
  4049. result->ne[3] = ne[3];
  4050. result->nb[0] = nb[0];
  4051. result->nb[1] = nb[1];
  4052. result->nb[2] = nb[2];
  4053. result->nb[3] = nb[3];
  4054. result->op = GGML_OP_PERMUTE;
  4055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4056. result->src0 = a;
  4057. result->src1 = NULL; // TODO: maybe store the permutation here?
  4058. return result;
  4059. }
  4060. // ggml_transpose
  4061. struct ggml_tensor * ggml_transpose(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a) {
  4064. bool is_node = false;
  4065. if (a->grad) {
  4066. GGML_ASSERT(false); // TODO: implement backward
  4067. is_node = true;
  4068. }
  4069. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4070. result->ne[0] = a->ne[1];
  4071. result->ne[1] = a->ne[0];
  4072. result->nb[0] = a->nb[1];
  4073. result->nb[1] = a->nb[0];
  4074. result->op = GGML_OP_TRANSPOSE;
  4075. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4076. result->src0 = a;
  4077. result->src1 = NULL;
  4078. return result;
  4079. }
  4080. // ggml_get_rows
  4081. struct ggml_tensor * ggml_get_rows(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a,
  4084. struct ggml_tensor * b) {
  4085. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4086. bool is_node = false;
  4087. if (a->grad || b->grad) {
  4088. GGML_ASSERT(false); // TODO: implement backward
  4089. is_node = true;
  4090. }
  4091. // TODO: implement non F32 return
  4092. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4093. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4094. result->op = GGML_OP_GET_ROWS;
  4095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4096. result->src0 = a;
  4097. result->src1 = b;
  4098. return result;
  4099. }
  4100. // ggml_diag_mask_inf
  4101. struct ggml_tensor * ggml_diag_mask_inf(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. int n_past) {
  4105. bool is_node = false;
  4106. if (a->grad) {
  4107. GGML_ASSERT(false); // TODO: implement backward
  4108. is_node = true;
  4109. }
  4110. // TODO: when implement backward, fix this:
  4111. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4112. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4113. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4114. result->op = GGML_OP_DIAG_MASK_INF;
  4115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4116. result->src0 = a;
  4117. result->src1 = b;
  4118. return result;
  4119. }
  4120. // ggml_soft_max
  4121. struct ggml_tensor * ggml_soft_max(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a) {
  4124. bool is_node = false;
  4125. if (a->grad) {
  4126. GGML_ASSERT(false); // TODO: implement backward
  4127. is_node = true;
  4128. }
  4129. // TODO: when implement backward, fix this:
  4130. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4131. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4132. result->op = GGML_OP_SOFT_MAX;
  4133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4134. result->src0 = a;
  4135. result->src1 = NULL;
  4136. return result;
  4137. }
  4138. // ggml_rope
  4139. struct ggml_tensor * ggml_rope(
  4140. struct ggml_context * ctx,
  4141. struct ggml_tensor * a,
  4142. int n_past,
  4143. int n_dims,
  4144. int mode) {
  4145. GGML_ASSERT(n_past >= 0);
  4146. bool is_node = false;
  4147. if (a->grad) {
  4148. GGML_ASSERT(false); // TODO: implement backward
  4149. is_node = true;
  4150. }
  4151. // TODO: when implement backward, fix this:
  4152. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4153. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4154. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4155. ((int32_t *) b->data)[0] = n_past;
  4156. ((int32_t *) b->data)[1] = n_dims;
  4157. ((int32_t *) b->data)[2] = mode;
  4158. result->op = GGML_OP_ROPE;
  4159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4160. result->src0 = a;
  4161. result->src1 = b;
  4162. return result;
  4163. }
  4164. // ggml_conv_1d_1s
  4165. struct ggml_tensor * ggml_conv_1d_1s(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a,
  4168. struct ggml_tensor * b) {
  4169. GGML_ASSERT(ggml_is_matrix(b));
  4170. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4171. GGML_ASSERT(a->ne[3] == 1);
  4172. bool is_node = false;
  4173. if (a->grad || b->grad) {
  4174. GGML_ASSERT(false); // TODO: implement backward
  4175. is_node = true;
  4176. }
  4177. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4178. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4179. result->op = GGML_OP_CONV_1D_1S;
  4180. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4181. result->src0 = a;
  4182. result->src1 = b;
  4183. return result;
  4184. }
  4185. // ggml_conv_1d_2s
  4186. struct ggml_tensor * ggml_conv_1d_2s(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. struct ggml_tensor * b) {
  4190. GGML_ASSERT(ggml_is_matrix(b));
  4191. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4192. GGML_ASSERT(a->ne[3] == 1);
  4193. bool is_node = false;
  4194. if (a->grad || b->grad) {
  4195. GGML_ASSERT(false); // TODO: implement backward
  4196. is_node = true;
  4197. }
  4198. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4199. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4200. result->op = GGML_OP_CONV_1D_2S;
  4201. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4202. result->src0 = a;
  4203. result->src1 = b;
  4204. return result;
  4205. }
  4206. // ggml_flash_attn
  4207. struct ggml_tensor * ggml_flash_attn(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * q,
  4210. struct ggml_tensor * k,
  4211. struct ggml_tensor * v,
  4212. bool masked) {
  4213. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4214. // TODO: check if vT can be multiplied by (k*qT)
  4215. bool is_node = false;
  4216. if (q->grad || k->grad || v->grad) {
  4217. GGML_ASSERT(false); // TODO: implement backward
  4218. is_node = true;
  4219. }
  4220. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4221. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4222. result->op = GGML_OP_FLASH_ATTN;
  4223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4224. result->src0 = q;
  4225. result->src1 = k;
  4226. result->opt[0] = v;
  4227. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4228. return result;
  4229. }
  4230. // ggml_flash_ff
  4231. struct ggml_tensor * ggml_flash_ff(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a,
  4234. struct ggml_tensor * b0,
  4235. struct ggml_tensor * b1,
  4236. struct ggml_tensor * c0,
  4237. struct ggml_tensor * c1) {
  4238. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4239. // TODO: more checks
  4240. bool is_node = false;
  4241. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4242. GGML_ASSERT(false); // TODO: implement backward
  4243. is_node = true;
  4244. }
  4245. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4246. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4247. result->op = GGML_OP_FLASH_FF;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src0 = a;
  4250. result->src1 = b0;
  4251. result->opt[0] = b1;
  4252. result->opt[1] = c0;
  4253. result->opt[2] = c1;
  4254. return result;
  4255. }
  4256. // ggml_map_unary
  4257. struct ggml_tensor * ggml_map_unary_impl_f32(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a,
  4260. const ggml_unary_op_f32_t fun,
  4261. bool inplace) {
  4262. bool is_node = false;
  4263. if (!inplace && a->grad) {
  4264. is_node = true;
  4265. }
  4266. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4267. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4268. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4269. result->op = GGML_OP_MAP_UNARY;
  4270. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4271. result->src0 = a;
  4272. result->opt[0] = addr_tensor;
  4273. return result;
  4274. }
  4275. struct ggml_tensor * ggml_map_unary_f32(
  4276. struct ggml_context * ctx,
  4277. struct ggml_tensor * a,
  4278. const ggml_unary_op_f32_t fun) {
  4279. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4280. }
  4281. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a,
  4284. const ggml_unary_op_f32_t fun) {
  4285. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4286. }
  4287. // ggml_map_binary
  4288. struct ggml_tensor * ggml_map_binary_impl_f32(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. struct ggml_tensor * b,
  4292. const ggml_binary_op_f32_t fun,
  4293. bool inplace) {
  4294. GGML_ASSERT(ggml_are_same_shape(a, b));
  4295. bool is_node = false;
  4296. if (!inplace && (a->grad || b->grad)) {
  4297. is_node = true;
  4298. }
  4299. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4300. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4301. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4302. result->op = GGML_OP_MAP_BINARY;
  4303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4304. result->src0 = a;
  4305. result->src1 = b;
  4306. result->opt[0] = addr_tensor;
  4307. return result;
  4308. }
  4309. struct ggml_tensor * ggml_map_binary_f32(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b,
  4313. const ggml_binary_op_f32_t fun) {
  4314. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4315. }
  4316. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b,
  4320. const ggml_binary_op_f32_t fun) {
  4321. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4322. }
  4323. ////////////////////////////////////////////////////////////////////////////////
  4324. void ggml_set_param(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * tensor) {
  4327. tensor->is_param = true;
  4328. GGML_ASSERT(tensor->grad == NULL);
  4329. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4330. }
  4331. // ggml_compute_forward_dup
  4332. static void ggml_compute_forward_dup_f16(
  4333. const struct ggml_compute_params * params,
  4334. const struct ggml_tensor * src0,
  4335. struct ggml_tensor * dst) {
  4336. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4338. return;
  4339. }
  4340. const int64_t ne00 = src0->ne[0];
  4341. const int64_t ne01 = src0->ne[1];
  4342. const int64_t ne02 = src0->ne[2];
  4343. const int64_t ne03 = src0->ne[3];
  4344. const int64_t ne0 = dst->ne[0];
  4345. const int64_t ne1 = dst->ne[1];
  4346. const int64_t ne2 = dst->ne[2];
  4347. const int64_t ne3 = dst->ne[3];
  4348. const size_t nb00 = src0->nb[0];
  4349. const size_t nb01 = src0->nb[1];
  4350. const size_t nb02 = src0->nb[2];
  4351. const size_t nb03 = src0->nb[3];
  4352. const size_t nb0 = dst->nb[0];
  4353. const size_t nb1 = dst->nb[1];
  4354. const size_t nb2 = dst->nb[2];
  4355. const size_t nb3 = dst->nb[3];
  4356. const int ith = params->ith; // thread index
  4357. const int nth = params->nth; // number of threads
  4358. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4359. // parallelize by elements
  4360. const int ne = ggml_nelements(dst);
  4361. const int dr = (ne + nth - 1) / nth;
  4362. const int ie0 = dr * ith;
  4363. const int ie1 = MIN(ie0 + dr, ne);
  4364. memcpy(
  4365. ((char *) dst->data + ie0*nb0),
  4366. ((char *) src0->data + ie0*nb00),
  4367. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4368. return;
  4369. }
  4370. // parallelize by rows
  4371. const int nr = ne01;
  4372. // number of rows per thread
  4373. const int dr = (nr + nth - 1) / nth;
  4374. // row range for this thread
  4375. const int ir0 = dr * ith;
  4376. const int ir1 = MIN(ir0 + dr, nr);
  4377. if (src0->type == dst->type &&
  4378. ne00 == ne0 &&
  4379. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4380. // copy by rows
  4381. const size_t rs = ne00*nb00;
  4382. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4383. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4384. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4385. memcpy(
  4386. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4387. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4388. rs);
  4389. }
  4390. }
  4391. }
  4392. return;
  4393. }
  4394. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4395. if (ggml_is_contiguous(dst)) {
  4396. if (nb00 == sizeof(ggml_fp16_t)) {
  4397. if (dst->type == GGML_TYPE_F16) {
  4398. size_t id = 0;
  4399. const size_t rs = ne00 * nb00;
  4400. char * dst_ptr = (char *) dst->data;
  4401. for (int i03 = 0; i03 < ne03; i03++) {
  4402. for (int i02 = 0; i02 < ne02; i02++) {
  4403. id += rs * ir0;
  4404. for (int i01 = ir0; i01 < ir1; i01++) {
  4405. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4406. memcpy(dst_ptr + id, src0_ptr, rs);
  4407. id += rs;
  4408. }
  4409. id += rs * (ne01 - ir1);
  4410. }
  4411. }
  4412. } else if (dst->type == GGML_TYPE_F32) {
  4413. size_t id = 0;
  4414. float * dst_ptr = (float *) dst->data;
  4415. for (int i03 = 0; i03 < ne03; i03++) {
  4416. for (int i02 = 0; i02 < ne02; i02++) {
  4417. id += ne00 * ir0;
  4418. for (int i01 = ir0; i01 < ir1; i01++) {
  4419. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4420. for (int i00 = 0; i00 < ne00; i00++) {
  4421. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4422. id++;
  4423. }
  4424. }
  4425. id += ne00 * (ne01 - ir1);
  4426. }
  4427. }
  4428. } else if (ggml_is_quantized(dst->type)) {
  4429. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4430. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4431. size_t id = 0;
  4432. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4433. char * dst_ptr = (char *) dst->data;
  4434. for (int i03 = 0; i03 < ne03; i03++) {
  4435. for (int i02 = 0; i02 < ne02; i02++) {
  4436. id += rs * ir0;
  4437. for (int i01 = ir0; i01 < ir1; i01++) {
  4438. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4439. for (int i00 = 0; i00 < ne00; i00++) {
  4440. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4441. }
  4442. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4443. id += rs;
  4444. }
  4445. id += rs * (ne01 - ir1);
  4446. }
  4447. }
  4448. } else {
  4449. GGML_ASSERT(false); // TODO: implement
  4450. }
  4451. } else {
  4452. //printf("%s: this is not optimal - fix me\n", __func__);
  4453. if (dst->type == GGML_TYPE_F32) {
  4454. size_t id = 0;
  4455. float * dst_ptr = (float *) dst->data;
  4456. for (int i03 = 0; i03 < ne03; i03++) {
  4457. for (int i02 = 0; i02 < ne02; i02++) {
  4458. id += ne00 * ir0;
  4459. for (int i01 = ir0; i01 < ir1; i01++) {
  4460. for (int i00 = 0; i00 < ne00; i00++) {
  4461. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4462. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4463. id++;
  4464. }
  4465. }
  4466. id += ne00 * (ne01 - ir1);
  4467. }
  4468. }
  4469. } else if (dst->type == GGML_TYPE_F16) {
  4470. size_t id = 0;
  4471. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4472. for (int i03 = 0; i03 < ne03; i03++) {
  4473. for (int i02 = 0; i02 < ne02; i02++) {
  4474. id += ne00 * ir0;
  4475. for (int i01 = ir0; i01 < ir1; i01++) {
  4476. for (int i00 = 0; i00 < ne00; i00++) {
  4477. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4478. dst_ptr[id] = *src0_ptr;
  4479. id++;
  4480. }
  4481. }
  4482. id += ne00 * (ne01 - ir1);
  4483. }
  4484. }
  4485. } else {
  4486. GGML_ASSERT(false); // TODO: implement
  4487. }
  4488. }
  4489. return;
  4490. }
  4491. // dst counters
  4492. int64_t i10 = 0;
  4493. int64_t i11 = 0;
  4494. int64_t i12 = 0;
  4495. int64_t i13 = 0;
  4496. if (dst->type == GGML_TYPE_F16) {
  4497. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4498. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4499. i10 += ne00 * ir0;
  4500. while (i10 >= ne0) {
  4501. i10 -= ne0;
  4502. if (++i11 == ne1) {
  4503. i11 = 0;
  4504. if (++i12 == ne2) {
  4505. i12 = 0;
  4506. if (++i13 == ne3) {
  4507. i13 = 0;
  4508. }
  4509. }
  4510. }
  4511. }
  4512. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4513. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4514. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4515. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4516. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4517. if (++i10 == ne00) {
  4518. i10 = 0;
  4519. if (++i11 == ne01) {
  4520. i11 = 0;
  4521. if (++i12 == ne02) {
  4522. i12 = 0;
  4523. if (++i13 == ne03) {
  4524. i13 = 0;
  4525. }
  4526. }
  4527. }
  4528. }
  4529. }
  4530. }
  4531. i10 += ne00 * (ne01 - ir1);
  4532. while (i10 >= ne0) {
  4533. i10 -= ne0;
  4534. if (++i11 == ne1) {
  4535. i11 = 0;
  4536. if (++i12 == ne2) {
  4537. i12 = 0;
  4538. if (++i13 == ne3) {
  4539. i13 = 0;
  4540. }
  4541. }
  4542. }
  4543. }
  4544. }
  4545. }
  4546. } else if (dst->type == GGML_TYPE_F32) {
  4547. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4548. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4549. i10 += ne00 * ir0;
  4550. while (i10 >= ne0) {
  4551. i10 -= ne0;
  4552. if (++i11 == ne1) {
  4553. i11 = 0;
  4554. if (++i12 == ne2) {
  4555. i12 = 0;
  4556. if (++i13 == ne3) {
  4557. i13 = 0;
  4558. }
  4559. }
  4560. }
  4561. }
  4562. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4563. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4564. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4565. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4566. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4567. if (++i10 == ne0) {
  4568. i10 = 0;
  4569. if (++i11 == ne1) {
  4570. i11 = 0;
  4571. if (++i12 == ne2) {
  4572. i12 = 0;
  4573. if (++i13 == ne3) {
  4574. i13 = 0;
  4575. }
  4576. }
  4577. }
  4578. }
  4579. }
  4580. }
  4581. i10 += ne00 * (ne01 - ir1);
  4582. while (i10 >= ne0) {
  4583. i10 -= ne0;
  4584. if (++i11 == ne1) {
  4585. i11 = 0;
  4586. if (++i12 == ne2) {
  4587. i12 = 0;
  4588. if (++i13 == ne3) {
  4589. i13 = 0;
  4590. }
  4591. }
  4592. }
  4593. }
  4594. }
  4595. }
  4596. } else {
  4597. GGML_ASSERT(false); // TODO: implement
  4598. }
  4599. }
  4600. static void ggml_compute_forward_dup_f32(
  4601. const struct ggml_compute_params * params,
  4602. const struct ggml_tensor * src0,
  4603. struct ggml_tensor * dst) {
  4604. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4605. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4606. return;
  4607. }
  4608. const int64_t ne00 = src0->ne[0];
  4609. const int64_t ne01 = src0->ne[1];
  4610. const int64_t ne02 = src0->ne[2];
  4611. const int64_t ne03 = src0->ne[3];
  4612. const int64_t ne0 = dst->ne[0];
  4613. const int64_t ne1 = dst->ne[1];
  4614. const int64_t ne2 = dst->ne[2];
  4615. const int64_t ne3 = dst->ne[3];
  4616. const size_t nb00 = src0->nb[0];
  4617. const size_t nb01 = src0->nb[1];
  4618. const size_t nb02 = src0->nb[2];
  4619. const size_t nb03 = src0->nb[3];
  4620. const size_t nb0 = dst->nb[0];
  4621. const size_t nb1 = dst->nb[1];
  4622. const size_t nb2 = dst->nb[2];
  4623. const size_t nb3 = dst->nb[3];
  4624. const int ith = params->ith; // thread index
  4625. const int nth = params->nth; // number of threads
  4626. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4627. // parallelize by elements
  4628. const int ne = ggml_nelements(dst);
  4629. const int dr = (ne + nth - 1) / nth;
  4630. const int ie0 = dr * ith;
  4631. const int ie1 = MIN(ie0 + dr, ne);
  4632. memcpy(
  4633. ((char *) dst->data + ie0*nb0),
  4634. ((char *) src0->data + ie0*nb00),
  4635. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4636. return;
  4637. }
  4638. // parallelize by rows
  4639. const int nr = ne01;
  4640. // number of rows per thread
  4641. const int dr = (nr + nth - 1) / nth;
  4642. // row range for this thread
  4643. const int ir0 = dr * ith;
  4644. const int ir1 = MIN(ir0 + dr, nr);
  4645. if (src0->type == dst->type &&
  4646. ne00 == ne0 &&
  4647. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4648. // copy by rows
  4649. const size_t rs = ne00*nb00;
  4650. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4651. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4652. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4653. memcpy(
  4654. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4655. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4656. rs);
  4657. }
  4658. }
  4659. }
  4660. return;
  4661. }
  4662. if (ggml_is_contiguous(dst)) {
  4663. // TODO: simplify
  4664. if (nb00 == sizeof(float)) {
  4665. if (dst->type == GGML_TYPE_F32) {
  4666. size_t id = 0;
  4667. const size_t rs = ne00 * nb00;
  4668. char * dst_ptr = (char *) dst->data;
  4669. for (int i03 = 0; i03 < ne03; i03++) {
  4670. for (int i02 = 0; i02 < ne02; i02++) {
  4671. id += rs * ir0;
  4672. for (int i01 = ir0; i01 < ir1; i01++) {
  4673. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4674. memcpy(dst_ptr + id, src0_ptr, rs);
  4675. id += rs;
  4676. }
  4677. id += rs * (ne01 - ir1);
  4678. }
  4679. }
  4680. } else if (dst->type == GGML_TYPE_F16) {
  4681. size_t id = 0;
  4682. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4683. for (int i03 = 0; i03 < ne03; i03++) {
  4684. for (int i02 = 0; i02 < ne02; i02++) {
  4685. id += ne00 * ir0;
  4686. for (int i01 = ir0; i01 < ir1; i01++) {
  4687. for (int i00 = 0; i00 < ne00; i00++) {
  4688. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4689. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4690. id++;
  4691. }
  4692. }
  4693. id += ne00 * (ne01 - ir1);
  4694. }
  4695. }
  4696. } else if (ggml_is_quantized(dst->type)) {
  4697. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4698. size_t id = 0;
  4699. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4700. char * dst_ptr = (char *) dst->data;
  4701. for (int i03 = 0; i03 < ne03; i03++) {
  4702. for (int i02 = 0; i02 < ne02; i02++) {
  4703. id += rs * ir0;
  4704. for (int i01 = ir0; i01 < ir1; i01++) {
  4705. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4706. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4707. id += rs;
  4708. }
  4709. id += rs * (ne01 - ir1);
  4710. }
  4711. }
  4712. } else {
  4713. GGML_ASSERT(false); // TODO: implement
  4714. }
  4715. } else {
  4716. //printf("%s: this is not optimal - fix me\n", __func__);
  4717. if (dst->type == GGML_TYPE_F32) {
  4718. size_t id = 0;
  4719. float * dst_ptr = (float *) dst->data;
  4720. for (int i03 = 0; i03 < ne03; i03++) {
  4721. for (int i02 = 0; i02 < ne02; i02++) {
  4722. id += ne00 * ir0;
  4723. for (int i01 = ir0; i01 < ir1; i01++) {
  4724. for (int i00 = 0; i00 < ne00; i00++) {
  4725. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4726. dst_ptr[id] = *src0_ptr;
  4727. id++;
  4728. }
  4729. }
  4730. id += ne00 * (ne01 - ir1);
  4731. }
  4732. }
  4733. } else if (dst->type == GGML_TYPE_F16) {
  4734. size_t id = 0;
  4735. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4736. for (int i03 = 0; i03 < ne03; i03++) {
  4737. for (int i02 = 0; i02 < ne02; i02++) {
  4738. id += ne00 * ir0;
  4739. for (int i01 = ir0; i01 < ir1; i01++) {
  4740. for (int i00 = 0; i00 < ne00; i00++) {
  4741. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4742. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4743. id++;
  4744. }
  4745. }
  4746. id += ne00 * (ne01 - ir1);
  4747. }
  4748. }
  4749. } else {
  4750. GGML_ASSERT(false); // TODO: implement
  4751. }
  4752. }
  4753. return;
  4754. }
  4755. // dst counters
  4756. int64_t i10 = 0;
  4757. int64_t i11 = 0;
  4758. int64_t i12 = 0;
  4759. int64_t i13 = 0;
  4760. if (dst->type == GGML_TYPE_F32) {
  4761. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4762. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4763. i10 += ne00 * ir0;
  4764. while (i10 >= ne0) {
  4765. i10 -= ne0;
  4766. i11++;
  4767. if (++i11 == ne1) {
  4768. i11 = 0;
  4769. if (++i12 == ne2) {
  4770. i12 = 0;
  4771. if (++i13 == ne3) {
  4772. i13 = 0;
  4773. }
  4774. }
  4775. }
  4776. }
  4777. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4778. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4779. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4780. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4781. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4782. if (++i10 == ne0) {
  4783. i10 = 0;
  4784. if (++i11 == ne1) {
  4785. i11 = 0;
  4786. if (++i12 == ne2) {
  4787. i12 = 0;
  4788. if (++i13 == ne3) {
  4789. i13 = 0;
  4790. }
  4791. }
  4792. }
  4793. }
  4794. }
  4795. }
  4796. i10 += ne00 * (ne01 - ir1);
  4797. while (i10 >= ne0) {
  4798. i10 -= ne0;
  4799. if (++i11 == ne1) {
  4800. i11 = 0;
  4801. if (++i12 == ne2) {
  4802. i12 = 0;
  4803. if (++i13 == ne3) {
  4804. i13 = 0;
  4805. }
  4806. }
  4807. }
  4808. }
  4809. }
  4810. }
  4811. } else if (dst->type == GGML_TYPE_F16) {
  4812. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4813. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4814. i10 += ne00 * ir0;
  4815. while (i10 >= ne0) {
  4816. i10 -= ne0;
  4817. if (++i11 == ne1) {
  4818. i11 = 0;
  4819. if (++i12 == ne2) {
  4820. i12 = 0;
  4821. if (++i13 == ne3) {
  4822. i13 = 0;
  4823. }
  4824. }
  4825. }
  4826. }
  4827. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4828. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4829. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4830. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4831. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4832. if (++i10 == ne0) {
  4833. i10 = 0;
  4834. if (++i11 == ne1) {
  4835. i11 = 0;
  4836. if (++i12 == ne2) {
  4837. i12 = 0;
  4838. if (++i13 == ne3) {
  4839. i13 = 0;
  4840. }
  4841. }
  4842. }
  4843. }
  4844. }
  4845. }
  4846. i10 += ne00 * (ne01 - ir1);
  4847. while (i10 >= ne0) {
  4848. i10 -= ne0;
  4849. if (++i11 == ne1) {
  4850. i11 = 0;
  4851. if (++i12 == ne2) {
  4852. i12 = 0;
  4853. if (++i13 == ne3) {
  4854. i13 = 0;
  4855. }
  4856. }
  4857. }
  4858. }
  4859. }
  4860. }
  4861. } else {
  4862. GGML_ASSERT(false); // TODO: implement
  4863. }
  4864. }
  4865. static void ggml_compute_forward_dup(
  4866. const struct ggml_compute_params * params,
  4867. const struct ggml_tensor * src0,
  4868. struct ggml_tensor * dst) {
  4869. switch (src0->type) {
  4870. case GGML_TYPE_F16:
  4871. {
  4872. ggml_compute_forward_dup_f16(params, src0, dst);
  4873. } break;
  4874. case GGML_TYPE_F32:
  4875. {
  4876. ggml_compute_forward_dup_f32(params, src0, dst);
  4877. } break;
  4878. default:
  4879. {
  4880. GGML_ASSERT(false);
  4881. } break;
  4882. }
  4883. }
  4884. // ggml_compute_forward_add
  4885. static void ggml_compute_forward_add_f32(
  4886. const struct ggml_compute_params * params,
  4887. const struct ggml_tensor * src0,
  4888. const struct ggml_tensor * src1,
  4889. struct ggml_tensor * dst) {
  4890. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4891. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4892. return;
  4893. }
  4894. const int ith = params->ith;
  4895. const int nth = params->nth;
  4896. const int n = ggml_nrows(src0);
  4897. const int nc = src0->ne[0];
  4898. const size_t nb00 = src0->nb[0];
  4899. const size_t nb01 = src0->nb[1];
  4900. const size_t nb10 = src1->nb[0];
  4901. const size_t nb11 = src1->nb[1];
  4902. const size_t nb0 = dst->nb[0];
  4903. const size_t nb1 = dst->nb[1];
  4904. GGML_ASSERT( nb0 == sizeof(float));
  4905. GGML_ASSERT(nb00 == sizeof(float));
  4906. if (nb10 == sizeof(float)) {
  4907. for (int j = ith; j < n; j += nth) {
  4908. #ifdef GGML_USE_ACCELERATE
  4909. vDSP_vadd(
  4910. (float *) ((char *) src0->data + j*nb01), 1,
  4911. (float *) ((char *) src1->data + j*nb11), 1,
  4912. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4913. #else
  4914. ggml_vec_add_f32(nc,
  4915. (float *) ((char *) dst->data + j*nb1),
  4916. (float *) ((char *) src0->data + j*nb01),
  4917. (float *) ((char *) src1->data + j*nb11));
  4918. #endif
  4919. }
  4920. } else {
  4921. // src1 is not contiguous
  4922. for (int j = ith; j < n; j += nth) {
  4923. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4924. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4925. for (int i = 0; i < nc; i++) {
  4926. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4927. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4928. }
  4929. }
  4930. }
  4931. }
  4932. static void ggml_compute_forward_add_f16_f32(
  4933. const struct ggml_compute_params * params,
  4934. const struct ggml_tensor * src0,
  4935. const struct ggml_tensor * src1,
  4936. struct ggml_tensor * dst) {
  4937. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4939. return;
  4940. }
  4941. const int ith = params->ith;
  4942. const int nth = params->nth;
  4943. const int n = ggml_nrows(src0);
  4944. const int nc = src0->ne[0];
  4945. const size_t nb00 = src0->nb[0];
  4946. const size_t nb01 = src0->nb[1];
  4947. const size_t nb10 = src1->nb[0];
  4948. const size_t nb11 = src1->nb[1];
  4949. const size_t nb0 = dst->nb[0];
  4950. const size_t nb1 = dst->nb[1];
  4951. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4952. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  4953. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4954. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4955. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4956. if (nb10 == sizeof(float)) {
  4957. for (int j = ith; j < n; j += nth) {
  4958. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4959. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4960. for (int i = 0; i < nc; i++) {
  4961. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4962. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  4963. }
  4964. }
  4965. }
  4966. else {
  4967. // src1 is not contiguous
  4968. GGML_ASSERT(false);
  4969. }
  4970. }
  4971. static void ggml_compute_forward_add_f16_f16(
  4972. const struct ggml_compute_params * params,
  4973. const struct ggml_tensor * src0,
  4974. const struct ggml_tensor * src1,
  4975. struct ggml_tensor * dst) {
  4976. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4978. return;
  4979. }
  4980. const int ith = params->ith;
  4981. const int nth = params->nth;
  4982. const int n = ggml_nrows(src0);
  4983. const int nc = src0->ne[0];
  4984. const size_t nb00 = src0->nb[0];
  4985. const size_t nb01 = src0->nb[1];
  4986. const size_t nb10 = src1->nb[0];
  4987. const size_t nb11 = src1->nb[1];
  4988. const size_t nb0 = dst->nb[0];
  4989. const size_t nb1 = dst->nb[1];
  4990. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  4991. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  4992. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  4993. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  4994. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4995. if (nb10 == sizeof(ggml_fp16_t)) {
  4996. for (int j = ith; j < n; j += nth) {
  4997. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  4998. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  4999. for (int i = 0; i < nc; i++) {
  5000. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5001. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5002. }
  5003. }
  5004. }
  5005. else {
  5006. // src1 is not contiguous
  5007. GGML_ASSERT(false);
  5008. }
  5009. }
  5010. static void ggml_compute_forward_add_q_f32(
  5011. const struct ggml_compute_params * params,
  5012. const struct ggml_tensor * src0,
  5013. const struct ggml_tensor * src1,
  5014. struct ggml_tensor * dst) {
  5015. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5016. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5017. return;
  5018. }
  5019. const int64_t ne00 = src0->ne[0];
  5020. const int64_t ne01 = src0->ne[1];
  5021. const int64_t ne02 = src0->ne[2];
  5022. const int64_t ne03 = src0->ne[3];
  5023. //const int64_t ne10 = src1->ne[0];
  5024. //const int64_t ne11 = src1->ne[1];
  5025. const int64_t ne12 = src1->ne[2];
  5026. const int64_t ne13 = src1->ne[3];
  5027. //const int64_t ne0 = dst->ne[0];
  5028. //const int64_t ne1 = dst->ne[1];
  5029. const int64_t ne2 = dst->ne[2];
  5030. const int64_t ne3 = dst->ne[3];
  5031. const int nb00 = src0->nb[0];
  5032. const int nb01 = src0->nb[1];
  5033. const int nb02 = src0->nb[2];
  5034. const int nb03 = src0->nb[3];
  5035. const int nb10 = src1->nb[0];
  5036. const int nb11 = src1->nb[1];
  5037. const int nb12 = src1->nb[2];
  5038. const int nb13 = src1->nb[3];
  5039. const int nb0 = dst->nb[0];
  5040. const int nb1 = dst->nb[1];
  5041. const int nb2 = dst->nb[2];
  5042. const int nb3 = dst->nb[3];
  5043. const int ith = params->ith;
  5044. const int nth = params->nth;
  5045. GGML_ASSERT(ne02 == ne12);
  5046. GGML_ASSERT(ne03 == ne13);
  5047. GGML_ASSERT(ne2 == ne12);
  5048. GGML_ASSERT(ne3 == ne13);
  5049. const enum ggml_type type = src0->type;
  5050. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5051. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5052. // we don't support permuted src0 or src1
  5053. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5054. GGML_ASSERT(nb10 == sizeof(float));
  5055. // dst cannot be transposed or permuted
  5056. GGML_ASSERT(nb0 <= nb1);
  5057. GGML_ASSERT(nb1 <= nb2);
  5058. GGML_ASSERT(nb2 <= nb3);
  5059. GGML_ASSERT(ggml_is_quantized(src0->type));
  5060. GGML_ASSERT(dst->type == src0->type);
  5061. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5062. // total rows in src0
  5063. const int nr = ne01*ne02*ne03;
  5064. // rows per thread
  5065. const int dr = (nr + nth - 1)/nth;
  5066. // row range for this thread
  5067. const int ir0 = dr*ith;
  5068. const int ir1 = MIN(ir0 + dr, nr);
  5069. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5070. for (int ir = ir0; ir < ir1; ++ir) {
  5071. // src0 indices
  5072. const int i03 = ir/(ne02*ne01);
  5073. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5074. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5075. // src1 and dst are same shape as src0 => same indices
  5076. const int i13 = i03;
  5077. const int i12 = i02;
  5078. const int i11 = i01;
  5079. const int i3 = i03;
  5080. const int i2 = i02;
  5081. const int i1 = i01;
  5082. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5083. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5084. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5085. assert(ne00 % 32 == 0);
  5086. // unquantize row from src0 to temp buffer
  5087. dequantize_row_q(src0_row, wdata, ne00);
  5088. // add src1
  5089. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5090. // quantize row to dst
  5091. quantize_row_q(wdata, dst_row, ne00);
  5092. }
  5093. }
  5094. static void ggml_compute_forward_add(
  5095. const struct ggml_compute_params * params,
  5096. const struct ggml_tensor * src0,
  5097. const struct ggml_tensor * src1,
  5098. struct ggml_tensor * dst) {
  5099. switch (src0->type) {
  5100. case GGML_TYPE_F32:
  5101. {
  5102. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5103. } break;
  5104. case GGML_TYPE_F16:
  5105. {
  5106. if (src1->type == GGML_TYPE_F16) {
  5107. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5108. }
  5109. else if (src1->type == GGML_TYPE_F32) {
  5110. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5111. }
  5112. else {
  5113. GGML_ASSERT(false);
  5114. }
  5115. } break;
  5116. case GGML_TYPE_Q4_0:
  5117. case GGML_TYPE_Q4_1:
  5118. case GGML_TYPE_Q4_2:
  5119. {
  5120. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5121. } break;
  5122. default:
  5123. {
  5124. GGML_ASSERT(false);
  5125. } break;
  5126. }
  5127. }
  5128. // ggml_compute_forward_sub
  5129. static void ggml_compute_forward_sub_f32(
  5130. const struct ggml_compute_params * params,
  5131. const struct ggml_tensor * src0,
  5132. const struct ggml_tensor * src1,
  5133. struct ggml_tensor * dst) {
  5134. assert(params->ith == 0);
  5135. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5137. return;
  5138. }
  5139. const int n = ggml_nrows(src0);
  5140. const int nc = src0->ne[0];
  5141. assert( dst->nb[0] == sizeof(float));
  5142. assert(src0->nb[0] == sizeof(float));
  5143. assert(src1->nb[0] == sizeof(float));
  5144. for (int i = 0; i < n; i++) {
  5145. ggml_vec_sub_f32(nc,
  5146. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5147. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5148. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5149. }
  5150. }
  5151. static void ggml_compute_forward_sub(
  5152. const struct ggml_compute_params * params,
  5153. const struct ggml_tensor * src0,
  5154. const struct ggml_tensor * src1,
  5155. struct ggml_tensor * dst) {
  5156. switch (src0->type) {
  5157. case GGML_TYPE_F32:
  5158. {
  5159. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5160. } break;
  5161. default:
  5162. {
  5163. GGML_ASSERT(false);
  5164. } break;
  5165. }
  5166. }
  5167. // ggml_compute_forward_mul
  5168. static void ggml_compute_forward_mul_f32(
  5169. const struct ggml_compute_params * params,
  5170. const struct ggml_tensor * src0,
  5171. const struct ggml_tensor * src1,
  5172. struct ggml_tensor * dst) {
  5173. assert(params->ith == 0);
  5174. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5176. return;
  5177. }
  5178. const int n = ggml_nrows(src0);
  5179. const int nc = src0->ne[0];
  5180. assert( dst->nb[0] == sizeof(float));
  5181. assert(src0->nb[0] == sizeof(float));
  5182. assert(src1->nb[0] == sizeof(float));
  5183. for (int i = 0; i < n; i++) {
  5184. ggml_vec_mul_f32(nc,
  5185. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5186. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5187. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5188. }
  5189. }
  5190. static void ggml_compute_forward_mul(
  5191. const struct ggml_compute_params * params,
  5192. const struct ggml_tensor * src0,
  5193. const struct ggml_tensor * src1,
  5194. struct ggml_tensor * dst) {
  5195. switch (src0->type) {
  5196. case GGML_TYPE_F32:
  5197. {
  5198. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5199. } break;
  5200. default:
  5201. {
  5202. GGML_ASSERT(false);
  5203. } break;
  5204. }
  5205. }
  5206. // ggml_compute_forward_div
  5207. static void ggml_compute_forward_div_f32(
  5208. const struct ggml_compute_params * params,
  5209. const struct ggml_tensor * src0,
  5210. const struct ggml_tensor * src1,
  5211. struct ggml_tensor * dst) {
  5212. assert(params->ith == 0);
  5213. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5215. return;
  5216. }
  5217. const int n = ggml_nrows(src0);
  5218. const int nc = src0->ne[0];
  5219. assert( dst->nb[0] == sizeof(float));
  5220. assert(src0->nb[0] == sizeof(float));
  5221. assert(src1->nb[0] == sizeof(float));
  5222. for (int i = 0; i < n; i++) {
  5223. ggml_vec_div_f32(nc,
  5224. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5225. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5226. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5227. }
  5228. }
  5229. static void ggml_compute_forward_div(
  5230. const struct ggml_compute_params * params,
  5231. const struct ggml_tensor * src0,
  5232. const struct ggml_tensor * src1,
  5233. struct ggml_tensor * dst) {
  5234. switch (src0->type) {
  5235. case GGML_TYPE_F32:
  5236. {
  5237. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5238. } break;
  5239. default:
  5240. {
  5241. GGML_ASSERT(false);
  5242. } break;
  5243. }
  5244. }
  5245. // ggml_compute_forward_sqr
  5246. static void ggml_compute_forward_sqr_f32(
  5247. const struct ggml_compute_params * params,
  5248. const struct ggml_tensor * src0,
  5249. struct ggml_tensor * dst) {
  5250. assert(params->ith == 0);
  5251. assert(ggml_are_same_shape(src0, dst));
  5252. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5253. return;
  5254. }
  5255. const int n = ggml_nrows(src0);
  5256. const int nc = src0->ne[0];
  5257. assert( dst->nb[0] == sizeof(float));
  5258. assert(src0->nb[0] == sizeof(float));
  5259. for (int i = 0; i < n; i++) {
  5260. ggml_vec_sqr_f32(nc,
  5261. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5262. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5263. }
  5264. }
  5265. static void ggml_compute_forward_sqr(
  5266. const struct ggml_compute_params * params,
  5267. const struct ggml_tensor * src0,
  5268. struct ggml_tensor * dst) {
  5269. switch (src0->type) {
  5270. case GGML_TYPE_F32:
  5271. {
  5272. ggml_compute_forward_sqr_f32(params, src0, dst);
  5273. } break;
  5274. default:
  5275. {
  5276. GGML_ASSERT(false);
  5277. } break;
  5278. }
  5279. }
  5280. // ggml_compute_forward_sqrt
  5281. static void ggml_compute_forward_sqrt_f32(
  5282. const struct ggml_compute_params * params,
  5283. const struct ggml_tensor * src0,
  5284. struct ggml_tensor * dst) {
  5285. assert(params->ith == 0);
  5286. assert(ggml_are_same_shape(src0, dst));
  5287. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5288. return;
  5289. }
  5290. const int n = ggml_nrows(src0);
  5291. const int nc = src0->ne[0];
  5292. assert( dst->nb[0] == sizeof(float));
  5293. assert(src0->nb[0] == sizeof(float));
  5294. for (int i = 0; i < n; i++) {
  5295. ggml_vec_sqrt_f32(nc,
  5296. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5297. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5298. }
  5299. }
  5300. static void ggml_compute_forward_sqrt(
  5301. const struct ggml_compute_params * params,
  5302. const struct ggml_tensor * src0,
  5303. struct ggml_tensor * dst) {
  5304. switch (src0->type) {
  5305. case GGML_TYPE_F32:
  5306. {
  5307. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5308. } break;
  5309. default:
  5310. {
  5311. GGML_ASSERT(false);
  5312. } break;
  5313. }
  5314. }
  5315. // ggml_compute_forward_sum
  5316. static void ggml_compute_forward_sum_f32(
  5317. const struct ggml_compute_params * params,
  5318. const struct ggml_tensor * src0,
  5319. struct ggml_tensor * dst) {
  5320. assert(params->ith == 0);
  5321. assert(ggml_is_scalar(dst));
  5322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5323. return;
  5324. }
  5325. assert(ggml_is_scalar(dst));
  5326. assert(src0->nb[0] == sizeof(float));
  5327. const int64_t ne00 = src0->ne[0];
  5328. const int64_t ne01 = src0->ne[1];
  5329. const int64_t ne02 = src0->ne[2];
  5330. const int64_t ne03 = src0->ne[3];
  5331. const size_t nb01 = src0->nb[1];
  5332. const size_t nb02 = src0->nb[2];
  5333. const size_t nb03 = src0->nb[3];
  5334. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5335. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5336. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5337. ggml_vec_sum_f32(ne00,
  5338. (float *) (dst->data),
  5339. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5340. }
  5341. }
  5342. }
  5343. }
  5344. static void ggml_compute_forward_sum(
  5345. const struct ggml_compute_params * params,
  5346. const struct ggml_tensor * src0,
  5347. struct ggml_tensor * dst) {
  5348. switch (src0->type) {
  5349. case GGML_TYPE_F32:
  5350. {
  5351. ggml_compute_forward_sum_f32(params, src0, dst);
  5352. } break;
  5353. default:
  5354. {
  5355. GGML_ASSERT(false);
  5356. } break;
  5357. }
  5358. }
  5359. // ggml_compute_forward_mean
  5360. static void ggml_compute_forward_mean_f32(
  5361. const struct ggml_compute_params * params,
  5362. const struct ggml_tensor * src0,
  5363. struct ggml_tensor * dst) {
  5364. assert(params->ith == 0);
  5365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5366. return;
  5367. }
  5368. assert(src0->nb[0] == sizeof(float));
  5369. const int64_t ne00 = src0->ne[0];
  5370. const int64_t ne01 = src0->ne[1];
  5371. const int64_t ne02 = src0->ne[2];
  5372. const int64_t ne03 = src0->ne[3];
  5373. const size_t nb01 = src0->nb[1];
  5374. const size_t nb02 = src0->nb[2];
  5375. const size_t nb03 = src0->nb[3];
  5376. const int64_t ne0 = dst->ne[0];
  5377. const int64_t ne1 = dst->ne[1];
  5378. const int64_t ne2 = dst->ne[2];
  5379. const int64_t ne3 = dst->ne[3];
  5380. assert(ne0 == 1);
  5381. assert(ne1 == ne01);
  5382. assert(ne2 == ne02);
  5383. assert(ne3 == ne03);
  5384. UNUSED(ne0);
  5385. UNUSED(ne1);
  5386. UNUSED(ne2);
  5387. UNUSED(ne3);
  5388. const size_t nb1 = dst->nb[1];
  5389. const size_t nb2 = dst->nb[2];
  5390. const size_t nb3 = dst->nb[3];
  5391. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5392. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5393. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5394. ggml_vec_sum_f32(ne00,
  5395. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5396. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5397. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5398. }
  5399. }
  5400. }
  5401. }
  5402. static void ggml_compute_forward_mean(
  5403. const struct ggml_compute_params * params,
  5404. const struct ggml_tensor * src0,
  5405. struct ggml_tensor * dst) {
  5406. switch (src0->type) {
  5407. case GGML_TYPE_F32:
  5408. {
  5409. ggml_compute_forward_mean_f32(params, src0, dst);
  5410. } break;
  5411. default:
  5412. {
  5413. GGML_ASSERT(false);
  5414. } break;
  5415. }
  5416. }
  5417. // ggml_compute_forward_repeat
  5418. static void ggml_compute_forward_repeat_f32(
  5419. const struct ggml_compute_params * params,
  5420. const struct ggml_tensor * src0,
  5421. struct ggml_tensor * dst) {
  5422. assert(params->ith == 0);
  5423. assert(ggml_can_repeat(src0, dst));
  5424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5425. return;
  5426. }
  5427. // TODO: implement support for rank > 2 tensors
  5428. assert(src0->ne[2] == 1);
  5429. assert(src0->ne[3] == 1);
  5430. assert( dst->ne[2] == 1);
  5431. assert( dst->ne[3] == 1);
  5432. const int nc = dst->ne[0];
  5433. const int nr = dst->ne[1];
  5434. const int nc0 = src0->ne[0];
  5435. const int nr0 = src0->ne[1];
  5436. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5437. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5438. // TODO: support for transposed / permuted tensors
  5439. assert( dst->nb[0] == sizeof(float));
  5440. assert(src0->nb[0] == sizeof(float));
  5441. // TODO: maybe this is not optimal?
  5442. for (int i = 0; i < nrr; i++) {
  5443. for (int j = 0; j < ncr; j++) {
  5444. for (int k = 0; k < nr0; k++) {
  5445. ggml_vec_cpy_f32(nc0,
  5446. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5447. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5448. }
  5449. }
  5450. }
  5451. }
  5452. static void ggml_compute_forward_repeat(
  5453. const struct ggml_compute_params * params,
  5454. const struct ggml_tensor * src0,
  5455. struct ggml_tensor * dst) {
  5456. switch (src0->type) {
  5457. case GGML_TYPE_F32:
  5458. {
  5459. ggml_compute_forward_repeat_f32(params, src0, dst);
  5460. } break;
  5461. default:
  5462. {
  5463. GGML_ASSERT(false);
  5464. } break;
  5465. }
  5466. }
  5467. // ggml_compute_forward_abs
  5468. static void ggml_compute_forward_abs_f32(
  5469. const struct ggml_compute_params * params,
  5470. const struct ggml_tensor * src0,
  5471. struct ggml_tensor * dst) {
  5472. assert(params->ith == 0);
  5473. assert(ggml_are_same_shape(src0, dst));
  5474. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5475. return;
  5476. }
  5477. const int n = ggml_nrows(src0);
  5478. const int nc = src0->ne[0];
  5479. assert(dst->nb[0] == sizeof(float));
  5480. assert(src0->nb[0] == sizeof(float));
  5481. for (int i = 0; i < n; i++) {
  5482. ggml_vec_abs_f32(nc,
  5483. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5484. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5485. }
  5486. }
  5487. static void ggml_compute_forward_abs(
  5488. const struct ggml_compute_params * params,
  5489. const struct ggml_tensor * src0,
  5490. struct ggml_tensor * dst) {
  5491. switch (src0->type) {
  5492. case GGML_TYPE_F32:
  5493. {
  5494. ggml_compute_forward_abs_f32(params, src0, dst);
  5495. } break;
  5496. default:
  5497. {
  5498. GGML_ASSERT(false);
  5499. } break;
  5500. }
  5501. }
  5502. // ggml_compute_forward_sgn
  5503. static void ggml_compute_forward_sgn_f32(
  5504. const struct ggml_compute_params * params,
  5505. const struct ggml_tensor * src0,
  5506. struct ggml_tensor * dst) {
  5507. assert(params->ith == 0);
  5508. assert(ggml_are_same_shape(src0, dst));
  5509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5510. return;
  5511. }
  5512. const int n = ggml_nrows(src0);
  5513. const int nc = src0->ne[0];
  5514. assert(dst->nb[0] == sizeof(float));
  5515. assert(src0->nb[0] == sizeof(float));
  5516. for (int i = 0; i < n; i++) {
  5517. ggml_vec_sgn_f32(nc,
  5518. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5519. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5520. }
  5521. }
  5522. static void ggml_compute_forward_sgn(
  5523. const struct ggml_compute_params * params,
  5524. const struct ggml_tensor * src0,
  5525. struct ggml_tensor * dst) {
  5526. switch (src0->type) {
  5527. case GGML_TYPE_F32:
  5528. {
  5529. ggml_compute_forward_sgn_f32(params, src0, dst);
  5530. } break;
  5531. default:
  5532. {
  5533. GGML_ASSERT(false);
  5534. } break;
  5535. }
  5536. }
  5537. // ggml_compute_forward_neg
  5538. static void ggml_compute_forward_neg_f32(
  5539. const struct ggml_compute_params * params,
  5540. const struct ggml_tensor * src0,
  5541. struct ggml_tensor * dst) {
  5542. assert(params->ith == 0);
  5543. assert(ggml_are_same_shape(src0, dst));
  5544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5545. return;
  5546. }
  5547. const int n = ggml_nrows(src0);
  5548. const int nc = src0->ne[0];
  5549. assert(dst->nb[0] == sizeof(float));
  5550. assert(src0->nb[0] == sizeof(float));
  5551. for (int i = 0; i < n; i++) {
  5552. ggml_vec_neg_f32(nc,
  5553. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5554. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5555. }
  5556. }
  5557. static void ggml_compute_forward_neg(
  5558. const struct ggml_compute_params * params,
  5559. const struct ggml_tensor * src0,
  5560. struct ggml_tensor * dst) {
  5561. switch (src0->type) {
  5562. case GGML_TYPE_F32:
  5563. {
  5564. ggml_compute_forward_neg_f32(params, src0, dst);
  5565. } break;
  5566. default:
  5567. {
  5568. GGML_ASSERT(false);
  5569. } break;
  5570. }
  5571. }
  5572. // ggml_compute_forward_step
  5573. static void ggml_compute_forward_step_f32(
  5574. const struct ggml_compute_params * params,
  5575. const struct ggml_tensor * src0,
  5576. struct ggml_tensor * dst) {
  5577. assert(params->ith == 0);
  5578. assert(ggml_are_same_shape(src0, dst));
  5579. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5580. return;
  5581. }
  5582. const int n = ggml_nrows(src0);
  5583. const int nc = src0->ne[0];
  5584. assert(dst->nb[0] == sizeof(float));
  5585. assert(src0->nb[0] == sizeof(float));
  5586. for (int i = 0; i < n; i++) {
  5587. ggml_vec_step_f32(nc,
  5588. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5589. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5590. }
  5591. }
  5592. static void ggml_compute_forward_step(
  5593. const struct ggml_compute_params * params,
  5594. const struct ggml_tensor * src0,
  5595. struct ggml_tensor * dst) {
  5596. switch (src0->type) {
  5597. case GGML_TYPE_F32:
  5598. {
  5599. ggml_compute_forward_step_f32(params, src0, dst);
  5600. } break;
  5601. default:
  5602. {
  5603. GGML_ASSERT(false);
  5604. } break;
  5605. }
  5606. }
  5607. // ggml_compute_forward_relu
  5608. static void ggml_compute_forward_relu_f32(
  5609. const struct ggml_compute_params * params,
  5610. const struct ggml_tensor * src0,
  5611. struct ggml_tensor * dst) {
  5612. assert(params->ith == 0);
  5613. assert(ggml_are_same_shape(src0, dst));
  5614. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5615. return;
  5616. }
  5617. const int n = ggml_nrows(src0);
  5618. const int nc = src0->ne[0];
  5619. assert(dst->nb[0] == sizeof(float));
  5620. assert(src0->nb[0] == sizeof(float));
  5621. for (int i = 0; i < n; i++) {
  5622. ggml_vec_relu_f32(nc,
  5623. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5624. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5625. }
  5626. }
  5627. static void ggml_compute_forward_relu(
  5628. const struct ggml_compute_params * params,
  5629. const struct ggml_tensor * src0,
  5630. struct ggml_tensor * dst) {
  5631. switch (src0->type) {
  5632. case GGML_TYPE_F32:
  5633. {
  5634. ggml_compute_forward_relu_f32(params, src0, dst);
  5635. } break;
  5636. default:
  5637. {
  5638. GGML_ASSERT(false);
  5639. } break;
  5640. }
  5641. }
  5642. // ggml_compute_forward_gelu
  5643. static void ggml_compute_forward_gelu_f32(
  5644. const struct ggml_compute_params * params,
  5645. const struct ggml_tensor * src0,
  5646. struct ggml_tensor * dst) {
  5647. GGML_ASSERT(ggml_is_contiguous(src0));
  5648. GGML_ASSERT(ggml_is_contiguous(dst));
  5649. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5650. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5651. return;
  5652. }
  5653. const int ith = params->ith;
  5654. const int nth = params->nth;
  5655. const int nc = src0->ne[0];
  5656. const int nr = ggml_nrows(src0);
  5657. // rows per thread
  5658. const int dr = (nr + nth - 1)/nth;
  5659. // row range for this thread
  5660. const int ir0 = dr*ith;
  5661. const int ir1 = MIN(ir0 + dr, nr);
  5662. for (int i1 = ir0; i1 < ir1; i1++) {
  5663. ggml_vec_gelu_f32(nc,
  5664. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5665. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5666. #ifndef NDEBUG
  5667. for (int k = 0; k < nc; k++) {
  5668. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5669. UNUSED(x);
  5670. assert(!isnan(x));
  5671. assert(!isinf(x));
  5672. }
  5673. #endif
  5674. }
  5675. }
  5676. static void ggml_compute_forward_gelu(
  5677. const struct ggml_compute_params * params,
  5678. const struct ggml_tensor * src0,
  5679. struct ggml_tensor * dst) {
  5680. switch (src0->type) {
  5681. case GGML_TYPE_F32:
  5682. {
  5683. ggml_compute_forward_gelu_f32(params, src0, dst);
  5684. } break;
  5685. default:
  5686. {
  5687. GGML_ASSERT(false);
  5688. } break;
  5689. }
  5690. //printf("XXXXXXXX gelu\n");
  5691. }
  5692. // ggml_compute_forward_silu
  5693. static void ggml_compute_forward_silu_f32(
  5694. const struct ggml_compute_params * params,
  5695. const struct ggml_tensor * src0,
  5696. struct ggml_tensor * dst) {
  5697. GGML_ASSERT(ggml_is_contiguous(src0));
  5698. GGML_ASSERT(ggml_is_contiguous(dst));
  5699. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5700. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5701. return;
  5702. }
  5703. const int ith = params->ith;
  5704. const int nth = params->nth;
  5705. const int nc = src0->ne[0];
  5706. const int nr = ggml_nrows(src0);
  5707. // rows per thread
  5708. const int dr = (nr + nth - 1)/nth;
  5709. // row range for this thread
  5710. const int ir0 = dr*ith;
  5711. const int ir1 = MIN(ir0 + dr, nr);
  5712. for (int i1 = ir0; i1 < ir1; i1++) {
  5713. ggml_vec_silu_f32(nc,
  5714. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5715. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5716. #ifndef NDEBUG
  5717. for (int k = 0; k < nc; k++) {
  5718. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5719. UNUSED(x);
  5720. assert(!isnan(x));
  5721. assert(!isinf(x));
  5722. }
  5723. #endif
  5724. }
  5725. }
  5726. static void ggml_compute_forward_silu(
  5727. const struct ggml_compute_params * params,
  5728. const struct ggml_tensor * src0,
  5729. struct ggml_tensor * dst) {
  5730. switch (src0->type) {
  5731. case GGML_TYPE_F32:
  5732. {
  5733. ggml_compute_forward_silu_f32(params, src0, dst);
  5734. } break;
  5735. default:
  5736. {
  5737. GGML_ASSERT(false);
  5738. } break;
  5739. }
  5740. }
  5741. // ggml_compute_forward_norm
  5742. static void ggml_compute_forward_norm_f32(
  5743. const struct ggml_compute_params * params,
  5744. const struct ggml_tensor * src0,
  5745. struct ggml_tensor * dst) {
  5746. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5747. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5748. return;
  5749. }
  5750. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5751. const int ith = params->ith;
  5752. const int nth = params->nth;
  5753. const int64_t ne00 = src0->ne[0];
  5754. const int64_t ne01 = src0->ne[1];
  5755. const int64_t ne02 = src0->ne[2];
  5756. const int64_t ne03 = src0->ne[3];
  5757. const size_t nb01 = src0->nb[1];
  5758. const size_t nb02 = src0->nb[2];
  5759. const size_t nb03 = src0->nb[3];
  5760. const size_t nb1 = dst->nb[1];
  5761. const size_t nb2 = dst->nb[2];
  5762. const size_t nb3 = dst->nb[3];
  5763. const float eps = 1e-5f; // TODO: make this a parameter
  5764. // TODO: optimize
  5765. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5766. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5767. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5768. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5769. ggml_float sum = 0.0;
  5770. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5771. sum += (ggml_float)x[i00];
  5772. }
  5773. float mean = sum/ne00;
  5774. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5775. ggml_float sum2 = 0.0;
  5776. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5777. float v = x[i00] - mean;
  5778. y[i00] = v;
  5779. sum2 += (ggml_float)(v*v);
  5780. }
  5781. float variance = sum2/ne00;
  5782. const float scale = 1.0f/sqrtf(variance + eps);
  5783. ggml_vec_scale_f32(ne00, y, scale);
  5784. }
  5785. }
  5786. }
  5787. }
  5788. static void ggml_compute_forward_norm(
  5789. const struct ggml_compute_params * params,
  5790. const struct ggml_tensor * src0,
  5791. struct ggml_tensor * dst) {
  5792. switch (src0->type) {
  5793. case GGML_TYPE_F32:
  5794. {
  5795. ggml_compute_forward_norm_f32(params, src0, dst);
  5796. } break;
  5797. default:
  5798. {
  5799. GGML_ASSERT(false);
  5800. } break;
  5801. }
  5802. }
  5803. static void ggml_compute_forward_rms_norm_f32(
  5804. const struct ggml_compute_params * params,
  5805. const struct ggml_tensor * src0,
  5806. struct ggml_tensor * dst) {
  5807. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5808. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5809. return;
  5810. }
  5811. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5812. const int ith = params->ith;
  5813. const int nth = params->nth;
  5814. const int64_t ne00 = src0->ne[0];
  5815. const int64_t ne01 = src0->ne[1];
  5816. const int64_t ne02 = src0->ne[2];
  5817. const int64_t ne03 = src0->ne[3];
  5818. const size_t nb01 = src0->nb[1];
  5819. const size_t nb02 = src0->nb[2];
  5820. const size_t nb03 = src0->nb[3];
  5821. const size_t nb1 = dst->nb[1];
  5822. const size_t nb2 = dst->nb[2];
  5823. const size_t nb3 = dst->nb[3];
  5824. const float eps = 1e-6f; // TODO: make this a parameter
  5825. // TODO: optimize
  5826. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5827. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5828. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5829. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5830. ggml_float sum = 0.0;
  5831. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5832. sum += (ggml_float)(x[i00] * x[i00]);
  5833. }
  5834. float mean = sum/ne00;
  5835. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5836. memcpy(y, x, ne00 * sizeof(float));
  5837. // for (int i00 = 0; i00 < ne00; i00++) {
  5838. // y[i00] = x[i00];
  5839. // }
  5840. const float scale = 1.0f/sqrtf(mean + eps);
  5841. ggml_vec_scale_f32(ne00, y, scale);
  5842. }
  5843. }
  5844. }
  5845. }
  5846. static void ggml_compute_forward_rms_norm(
  5847. const struct ggml_compute_params * params,
  5848. const struct ggml_tensor * src0,
  5849. struct ggml_tensor * dst) {
  5850. switch (src0->type) {
  5851. case GGML_TYPE_F32:
  5852. {
  5853. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5854. } break;
  5855. default:
  5856. {
  5857. GGML_ASSERT(false);
  5858. } break;
  5859. }
  5860. }
  5861. // ggml_compute_forward_mul_mat
  5862. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5863. // helper function to determine if it is better to use BLAS or not
  5864. // for large matrices, BLAS is faster
  5865. static bool ggml_compute_forward_mul_mat_use_blas(
  5866. const struct ggml_tensor * src0,
  5867. const struct ggml_tensor * src1,
  5868. struct ggml_tensor * dst) {
  5869. //const int64_t ne00 = src0->ne[0];
  5870. //const int64_t ne01 = src0->ne[1];
  5871. const int64_t ne10 = src1->ne[0];
  5872. const int64_t ne0 = dst->ne[0];
  5873. const int64_t ne1 = dst->ne[1];
  5874. // TODO: find the optimal values for these
  5875. if (ggml_is_contiguous(src0) &&
  5876. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5877. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5878. return true;
  5879. }
  5880. return false;
  5881. }
  5882. #endif
  5883. static void ggml_compute_forward_mul_mat_f32(
  5884. const struct ggml_compute_params * params,
  5885. const struct ggml_tensor * src0,
  5886. const struct ggml_tensor * src1,
  5887. struct ggml_tensor * dst) {
  5888. int64_t t0 = ggml_perf_time_us();
  5889. UNUSED(t0);
  5890. const int64_t ne00 = src0->ne[0];
  5891. const int64_t ne01 = src0->ne[1];
  5892. const int64_t ne02 = src0->ne[2];
  5893. const int64_t ne03 = src0->ne[3];
  5894. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5895. const int64_t ne10 = src1->ne[0];
  5896. #endif
  5897. const int64_t ne11 = src1->ne[1];
  5898. #ifndef NDEBUG
  5899. const int64_t ne12 = src1->ne[2];
  5900. const int64_t ne13 = src1->ne[3];
  5901. const int64_t ne0 = dst->ne[0];
  5902. const int64_t ne1 = dst->ne[1];
  5903. const int64_t ne2 = dst->ne[2];
  5904. const int64_t ne3 = dst->ne[3];
  5905. const int nb00 = src0->nb[0];
  5906. #endif
  5907. const int nb01 = src0->nb[1];
  5908. const int nb02 = src0->nb[2];
  5909. const int nb03 = src0->nb[3];
  5910. #ifndef NDEBUG
  5911. const int nb10 = src1->nb[0];
  5912. #endif
  5913. const int nb11 = src1->nb[1];
  5914. const int nb12 = src1->nb[2];
  5915. const int nb13 = src1->nb[3];
  5916. const int nb0 = dst->nb[0];
  5917. const int nb1 = dst->nb[1];
  5918. const int nb2 = dst->nb[2];
  5919. const int nb3 = dst->nb[3];
  5920. const int ith = params->ith;
  5921. const int nth = params->nth;
  5922. assert(ne02 == ne12);
  5923. assert(ne03 == ne13);
  5924. assert(ne2 == ne12);
  5925. assert(ne3 == ne13);
  5926. // we don't support permuted src0 or src1
  5927. assert(nb00 == sizeof(float));
  5928. assert(nb10 == sizeof(float));
  5929. // dst cannot be transposed or permuted
  5930. assert(nb0 == sizeof(float));
  5931. assert(nb0 <= nb1);
  5932. assert(nb1 <= nb2);
  5933. assert(nb2 <= nb3);
  5934. assert(ne0 == ne01);
  5935. assert(ne1 == ne11);
  5936. assert(ne2 == ne02);
  5937. assert(ne3 == ne03);
  5938. // nb01 >= nb00 - src0 is not transposed
  5939. // compute by src0 rows
  5940. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  5941. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5942. if (params->ith != 0) {
  5943. return;
  5944. }
  5945. if (params->type == GGML_TASK_INIT) {
  5946. return;
  5947. }
  5948. if (params->type == GGML_TASK_FINALIZE) {
  5949. return;
  5950. }
  5951. #if defined(GGML_USE_CUBLAS)
  5952. float *d_X = NULL;
  5953. float *d_Y = NULL;
  5954. float *d_D = NULL;
  5955. const float alpha = 1.0f;
  5956. const float beta = 0.0f;
  5957. const int x_ne = ne01 * ne10;
  5958. const int y_ne = ne11 * ne10;
  5959. const int d_ne = ne11 * ne01;
  5960. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  5961. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  5962. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  5963. #endif
  5964. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5965. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5966. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5967. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5968. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5969. #if defined(GGML_USE_CUBLAS)
  5970. // copy data to device
  5971. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  5972. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  5973. // compute
  5974. CUBLAS_CHECK(
  5975. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  5976. ne01, ne11, ne10,
  5977. &alpha, d_X, ne00,
  5978. d_Y, ne10,
  5979. &beta, d_D, ne01));
  5980. // copy data to host
  5981. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  5982. #else
  5983. // zT = y * xT
  5984. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5985. ne11, ne01, ne10,
  5986. 1.0f, y, ne10,
  5987. x, ne00,
  5988. 0.0f, d, ne01);
  5989. #endif
  5990. }
  5991. }
  5992. #if defined(GGML_USE_CUBLAS)
  5993. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  5994. CUDA_CHECK(cudaFree(d_X));
  5995. CUDA_CHECK(cudaFree(d_Y));
  5996. CUDA_CHECK(cudaFree(d_D));
  5997. #endif
  5998. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5999. return;
  6000. }
  6001. #endif
  6002. if (params->type == GGML_TASK_INIT) {
  6003. return;
  6004. }
  6005. if (params->type == GGML_TASK_FINALIZE) {
  6006. return;
  6007. }
  6008. // parallelize by src0 rows using ggml_vec_dot_f32
  6009. // total rows in src0
  6010. const int nr = ne01*ne02*ne03;
  6011. // rows per thread
  6012. const int dr = (nr + nth - 1)/nth;
  6013. // row range for this thread
  6014. const int ir0 = dr*ith;
  6015. const int ir1 = MIN(ir0 + dr, nr);
  6016. for (int ir = ir0; ir < ir1; ++ir) {
  6017. // src0 indices
  6018. const int i03 = ir/(ne02*ne01);
  6019. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6020. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6021. for (int64_t ic = 0; ic < ne11; ++ic) {
  6022. // src1 indices
  6023. const int i13 = i03;
  6024. const int i12 = i02;
  6025. const int i11 = ic;
  6026. // dst indices
  6027. const int i0 = i01;
  6028. const int i1 = i11;
  6029. const int i2 = i02;
  6030. const int i3 = i03;
  6031. ggml_vec_dot_f32(ne00,
  6032. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6033. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6034. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6035. }
  6036. }
  6037. //int64_t t1 = ggml_perf_time_us();
  6038. //static int64_t acc = 0;
  6039. //acc += t1 - t0;
  6040. //if (t1 - t0 > 10) {
  6041. // printf("\n");
  6042. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6043. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6044. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6045. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6046. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6047. //}
  6048. }
  6049. static void ggml_compute_forward_mul_mat_f16_f32(
  6050. const struct ggml_compute_params * params,
  6051. const struct ggml_tensor * src0,
  6052. const struct ggml_tensor * src1,
  6053. struct ggml_tensor * dst) {
  6054. int64_t t0 = ggml_perf_time_us();
  6055. UNUSED(t0);
  6056. const int64_t ne00 = src0->ne[0];
  6057. const int64_t ne01 = src0->ne[1];
  6058. const int64_t ne02 = src0->ne[2];
  6059. const int64_t ne03 = src0->ne[3];
  6060. const int64_t ne10 = src1->ne[0];
  6061. const int64_t ne11 = src1->ne[1];
  6062. const int64_t ne12 = src1->ne[2];
  6063. const int64_t ne13 = src1->ne[3];
  6064. const int64_t ne0 = dst->ne[0];
  6065. const int64_t ne1 = dst->ne[1];
  6066. const int64_t ne2 = dst->ne[2];
  6067. const int64_t ne3 = dst->ne[3];
  6068. //const int64_t ne = ne0*ne1*ne2*ne3;
  6069. const int nb00 = src0->nb[0];
  6070. const int nb01 = src0->nb[1];
  6071. const int nb02 = src0->nb[2];
  6072. const int nb03 = src0->nb[3];
  6073. const int nb10 = src1->nb[0];
  6074. const int nb11 = src1->nb[1];
  6075. const int nb12 = src1->nb[2];
  6076. const int nb13 = src1->nb[3];
  6077. const int nb0 = dst->nb[0];
  6078. const int nb1 = dst->nb[1];
  6079. const int nb2 = dst->nb[2];
  6080. const int nb3 = dst->nb[3];
  6081. const int ith = params->ith;
  6082. const int nth = params->nth;
  6083. GGML_ASSERT(ne02 == ne12);
  6084. GGML_ASSERT(ne03 == ne13);
  6085. GGML_ASSERT(ne2 == ne12);
  6086. GGML_ASSERT(ne3 == ne13);
  6087. // TODO: we don't support permuted src0
  6088. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6089. // dst cannot be transposed or permuted
  6090. GGML_ASSERT(nb0 == sizeof(float));
  6091. GGML_ASSERT(nb0 <= nb1);
  6092. GGML_ASSERT(nb1 <= nb2);
  6093. GGML_ASSERT(nb2 <= nb3);
  6094. GGML_ASSERT(ne0 == ne01);
  6095. GGML_ASSERT(ne1 == ne11);
  6096. GGML_ASSERT(ne2 == ne02);
  6097. GGML_ASSERT(ne3 == ne03);
  6098. // nb01 >= nb00 - src0 is not transposed
  6099. // compute by src0 rows
  6100. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6101. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6102. GGML_ASSERT(nb10 == sizeof(float));
  6103. if (params->ith != 0) {
  6104. return;
  6105. }
  6106. if (params->type == GGML_TASK_INIT) {
  6107. return;
  6108. }
  6109. if (params->type == GGML_TASK_FINALIZE) {
  6110. return;
  6111. }
  6112. #if defined(GGML_USE_CUBLAS)
  6113. ggml_fp16_t * const wdata = params->wdata;
  6114. float *d_X = NULL;
  6115. float *d_Y = NULL;
  6116. float *d_D = NULL;
  6117. const float alpha = 1.0f;
  6118. const float beta = 0.0f;
  6119. const int x_ne = ne01 * ne10;
  6120. const int y_ne = ne11 * ne10;
  6121. const int d_ne = ne11 * ne01;
  6122. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(ggml_fp16_t) * x_ne));
  6123. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6124. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6125. #else
  6126. float * const wdata = params->wdata;
  6127. #endif
  6128. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6129. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6130. #if defined(GGML_USE_CUBLAS)
  6131. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6132. {
  6133. size_t id = 0;
  6134. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6135. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6136. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6137. }
  6138. }
  6139. }
  6140. #else
  6141. {
  6142. size_t id = 0;
  6143. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6144. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6145. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6146. }
  6147. }
  6148. }
  6149. #endif
  6150. #if defined(GGML_USE_CUBLAS)
  6151. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6152. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6153. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6154. // copy data to device
  6155. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, cudaStream));
  6156. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6157. // compute
  6158. CUBLAS_CHECK(
  6159. cublasGemmEx(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6160. ne01, ne11, ne10,
  6161. &alpha, d_X, CUDA_R_16F, ne00,
  6162. d_Y, CUDA_R_16F, ne10,
  6163. &beta, d_D, CUDA_R_32F, ne01,
  6164. CUBLAS_COMPUTE_32F,
  6165. CUBLAS_GEMM_DEFAULT));
  6166. // copy data to host
  6167. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6168. #else
  6169. const float * x = wdata;
  6170. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6171. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6172. // zT = y * xT
  6173. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6174. ne11, ne01, ne10,
  6175. 1.0f, y, ne10,
  6176. x, ne00,
  6177. 0.0f, d, ne01);
  6178. #endif
  6179. }
  6180. }
  6181. #if defined(GGML_USE_CUBLAS)
  6182. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6183. CUDA_CHECK(cudaFree(d_X));
  6184. CUDA_CHECK(cudaFree(d_Y));
  6185. CUDA_CHECK(cudaFree(d_D));
  6186. #endif
  6187. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6188. return;
  6189. }
  6190. #endif
  6191. if (params->type == GGML_TASK_INIT) {
  6192. ggml_fp16_t * const wdata = params->wdata;
  6193. size_t id = 0;
  6194. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6195. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6196. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6197. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6198. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6199. }
  6200. }
  6201. }
  6202. }
  6203. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6204. return;
  6205. }
  6206. if (params->type == GGML_TASK_FINALIZE) {
  6207. return;
  6208. }
  6209. // fp16 -> half the size, so divide by 2
  6210. // TODO: do not support transposed src1
  6211. assert(nb10/2 == sizeof(ggml_fp16_t));
  6212. // parallelize by src0 rows using ggml_vec_dot_f16
  6213. // total rows in src0
  6214. const int nr = ne01*ne02*ne03;
  6215. // rows per thread
  6216. const int dr = (nr + nth - 1)/nth;
  6217. // row range for this thread
  6218. const int ir0 = dr*ith;
  6219. const int ir1 = MIN(ir0 + dr, nr);
  6220. ggml_fp16_t * wdata = params->wdata;
  6221. for (int ir = ir0; ir < ir1; ++ir) {
  6222. // src0 indices
  6223. const int i03 = ir/(ne02*ne01);
  6224. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6225. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6226. const int i13 = i03;
  6227. const int i12 = i02;
  6228. const int i0 = i01;
  6229. const int i2 = i02;
  6230. const int i3 = i03;
  6231. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6232. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6233. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6234. for (int64_t ic = 0; ic < ne11; ++ic) {
  6235. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6236. }
  6237. }
  6238. //int64_t t1 = ggml_time_us();
  6239. //static int64_t acc = 0;
  6240. //acc += t1 - t0;
  6241. //if (t1 - t0 > 10) {
  6242. // printf("\n");
  6243. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6244. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6245. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6246. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6247. //}
  6248. }
  6249. static void ggml_compute_forward_mul_mat_q_f32(
  6250. const struct ggml_compute_params * params,
  6251. const struct ggml_tensor * src0,
  6252. const struct ggml_tensor * src1,
  6253. struct ggml_tensor * dst) {
  6254. int64_t t0 = ggml_perf_time_us();
  6255. UNUSED(t0);
  6256. const int64_t ne00 = src0->ne[0];
  6257. const int64_t ne01 = src0->ne[1];
  6258. const int64_t ne02 = src0->ne[2];
  6259. const int64_t ne03 = src0->ne[3];
  6260. const int64_t ne10 = src1->ne[0];
  6261. const int64_t ne11 = src1->ne[1];
  6262. const int64_t ne12 = src1->ne[2];
  6263. const int64_t ne13 = src1->ne[3];
  6264. const int64_t ne0 = dst->ne[0];
  6265. const int64_t ne1 = dst->ne[1];
  6266. const int64_t ne2 = dst->ne[2];
  6267. const int64_t ne3 = dst->ne[3];
  6268. const int nb00 = src0->nb[0];
  6269. const int nb01 = src0->nb[1];
  6270. const int nb02 = src0->nb[2];
  6271. const int nb03 = src0->nb[3];
  6272. const int nb10 = src1->nb[0];
  6273. const int nb11 = src1->nb[1];
  6274. const int nb12 = src1->nb[2];
  6275. const int nb13 = src1->nb[3];
  6276. const int nb0 = dst->nb[0];
  6277. const int nb1 = dst->nb[1];
  6278. const int nb2 = dst->nb[2];
  6279. const int nb3 = dst->nb[3];
  6280. const int ith = params->ith;
  6281. const int nth = params->nth;
  6282. GGML_ASSERT(ne02 == ne12);
  6283. GGML_ASSERT(ne03 == ne13);
  6284. GGML_ASSERT(ne2 == ne12);
  6285. GGML_ASSERT(ne3 == ne13);
  6286. const enum ggml_type type = src0->type;
  6287. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6288. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6289. // we don't support permuted src0 or src1
  6290. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6291. GGML_ASSERT(nb10 == sizeof(float));
  6292. // dst cannot be transposed or permuted
  6293. GGML_ASSERT(nb0 == sizeof(float));
  6294. GGML_ASSERT(nb0 <= nb1);
  6295. GGML_ASSERT(nb1 <= nb2);
  6296. GGML_ASSERT(nb2 <= nb3);
  6297. GGML_ASSERT(ne0 == ne01);
  6298. GGML_ASSERT(ne1 == ne11);
  6299. GGML_ASSERT(ne2 == ne02);
  6300. GGML_ASSERT(ne3 == ne03);
  6301. // nb01 >= nb00 - src0 is not transposed
  6302. // compute by src0 rows
  6303. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6304. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6305. if (params->ith != 0) {
  6306. return;
  6307. }
  6308. if (params->type == GGML_TASK_INIT) {
  6309. return;
  6310. }
  6311. if (params->type == GGML_TASK_FINALIZE) {
  6312. return;
  6313. }
  6314. #if defined(GGML_USE_CUBLAS)
  6315. float *d_X = NULL;
  6316. float *d_Y = NULL;
  6317. float *d_D = NULL;
  6318. float *d_Q = NULL;
  6319. const float alpha = 1.0f;
  6320. const float beta = 0.0f;
  6321. const int x_ne = ne01 * ne10;
  6322. const int y_ne = ne11 * ne10;
  6323. const int d_ne = ne11 * ne01;
  6324. CUDA_CHECK(cudaMalloc((void **)(&d_X), sizeof(float) * x_ne));
  6325. CUDA_CHECK(cudaMalloc((void **)(&d_Y), sizeof(float) * y_ne));
  6326. CUDA_CHECK(cudaMalloc((void **)(&d_D), sizeof(float) * d_ne));
  6327. CUDA_CHECK(cudaMalloc((void **)(&d_Q), GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type]));
  6328. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6329. if (type == GGML_TYPE_Q4_0) {
  6330. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6331. }
  6332. else if (type == GGML_TYPE_Q4_1) {
  6333. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6334. }
  6335. else if (type == GGML_TYPE_Q4_2) {
  6336. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6337. }
  6338. else {
  6339. GGML_ASSERT(false);
  6340. }
  6341. #else
  6342. float * const wdata = params->wdata;
  6343. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6344. #endif
  6345. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6346. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6347. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6348. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6349. #if defined(GGML_USE_CUBLAS)
  6350. // copy and dequantize on device
  6351. CUDA_CHECK(
  6352. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6353. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, cudaStream));
  6354. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, cudaStream);
  6355. CUDA_CHECK(cudaGetLastError());
  6356. #else
  6357. {
  6358. size_t id = 0;
  6359. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6360. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6361. id += ne00;
  6362. }
  6363. }
  6364. const float * x = wdata;
  6365. #endif
  6366. #if defined(GGML_USE_CUBLAS)
  6367. // copy data to device
  6368. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, cudaStream));
  6369. // compute
  6370. CUBLAS_CHECK(
  6371. cublasSgemm(cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6372. ne01, ne11, ne10,
  6373. &alpha, d_X, ne00,
  6374. d_Y, ne10,
  6375. &beta, d_D, ne01));
  6376. // copy data to host
  6377. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
  6378. #else
  6379. // zT = y * xT
  6380. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6381. ne11, ne01, ne10,
  6382. 1.0f, y, ne10,
  6383. x, ne00,
  6384. 0.0f, d, ne01);
  6385. #endif
  6386. }
  6387. }
  6388. #if defined(GGML_USE_CUBLAS)
  6389. CUDA_CHECK(cudaStreamSynchronize(cudaStream));
  6390. CUDA_CHECK(cudaFree(d_X));
  6391. CUDA_CHECK(cudaFree(d_Y));
  6392. CUDA_CHECK(cudaFree(d_D));
  6393. CUDA_CHECK(cudaFree(d_Q));
  6394. #endif
  6395. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6396. return;
  6397. }
  6398. #endif
  6399. if (params->type == GGML_TASK_INIT) {
  6400. char * wdata = params->wdata;
  6401. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6402. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6403. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6404. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6405. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6406. wdata += row_size;
  6407. }
  6408. }
  6409. }
  6410. return;
  6411. }
  6412. if (params->type == GGML_TASK_FINALIZE) {
  6413. return;
  6414. }
  6415. // parallelize by src0 rows using ggml_vec_dot_q
  6416. // total rows in src0
  6417. const int nr = ne01*ne02*ne03;
  6418. // rows per thread
  6419. const int dr = (nr + nth - 1)/nth;
  6420. // row range for this thread
  6421. const int ir0 = dr*ith;
  6422. const int ir1 = MIN(ir0 + dr, nr);
  6423. void * wdata = params->wdata;
  6424. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6425. for (int ir = ir0; ir < ir1; ++ir) {
  6426. // src0 indices
  6427. const int i03 = ir/(ne02*ne01);
  6428. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6429. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6430. const int i13 = i03;
  6431. const int i12 = i02;
  6432. const int i0 = i01;
  6433. const int i2 = i02;
  6434. const int i3 = i03;
  6435. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6436. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6437. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6438. assert(ne00 % 32 == 0);
  6439. for (int64_t ic = 0; ic < ne11; ++ic) {
  6440. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6441. }
  6442. }
  6443. //int64_t t1 = ggml_time_us();
  6444. //static int64_t acc = 0;
  6445. //acc += t1 - t0;
  6446. //if (t1 - t0 > 10) {
  6447. // printf("\n");
  6448. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6449. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6450. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6451. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6452. //}
  6453. }
  6454. static void ggml_compute_forward_mul_mat(
  6455. const struct ggml_compute_params * params,
  6456. const struct ggml_tensor * src0,
  6457. const struct ggml_tensor * src1,
  6458. struct ggml_tensor * dst) {
  6459. switch (src0->type) {
  6460. case GGML_TYPE_Q4_0:
  6461. case GGML_TYPE_Q4_1:
  6462. case GGML_TYPE_Q4_2:
  6463. case GGML_TYPE_Q8_0:
  6464. {
  6465. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6466. } break;
  6467. case GGML_TYPE_F16:
  6468. {
  6469. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6470. } break;
  6471. case GGML_TYPE_F32:
  6472. {
  6473. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6474. } break;
  6475. default:
  6476. {
  6477. GGML_ASSERT(false);
  6478. } break;
  6479. }
  6480. #if 0
  6481. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  6482. static int first = 8;
  6483. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6484. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6485. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6486. if (first) {
  6487. --first;
  6488. } else {
  6489. for (int k = 0; k < dst->ne[1]; ++k) {
  6490. for (int j = 0; j < dst->ne[0]/16; ++j) {
  6491. for (int i = 0; i < 16; ++i) {
  6492. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6493. }
  6494. printf("\n");
  6495. }
  6496. printf("\n");
  6497. }
  6498. printf("\n");
  6499. exit(0);
  6500. }
  6501. } else {
  6502. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6503. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6504. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6505. }
  6506. #endif
  6507. }
  6508. // ggml_compute_forward_scale
  6509. static void ggml_compute_forward_scale_f32(
  6510. const struct ggml_compute_params * params,
  6511. const struct ggml_tensor * src0,
  6512. const struct ggml_tensor * src1,
  6513. struct ggml_tensor * dst) {
  6514. GGML_ASSERT(ggml_is_contiguous(src0));
  6515. GGML_ASSERT(ggml_is_contiguous(dst));
  6516. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6517. GGML_ASSERT(ggml_is_scalar(src1));
  6518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6519. return;
  6520. }
  6521. // scale factor
  6522. const float v = *(float *) src1->data;
  6523. const int ith = params->ith;
  6524. const int nth = params->nth;
  6525. const int nc = src0->ne[0];
  6526. const int nr = ggml_nrows(src0);
  6527. // rows per thread
  6528. const int dr = (nr + nth - 1)/nth;
  6529. // row range for this thread
  6530. const int ir0 = dr*ith;
  6531. const int ir1 = MIN(ir0 + dr, nr);
  6532. for (int i1 = ir0; i1 < ir1; i1++) {
  6533. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6534. }
  6535. }
  6536. static void ggml_compute_forward_scale(
  6537. const struct ggml_compute_params * params,
  6538. const struct ggml_tensor * src0,
  6539. const struct ggml_tensor * src1,
  6540. struct ggml_tensor * dst) {
  6541. switch (src0->type) {
  6542. case GGML_TYPE_F32:
  6543. {
  6544. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6545. } break;
  6546. default:
  6547. {
  6548. GGML_ASSERT(false);
  6549. } break;
  6550. }
  6551. }
  6552. // ggml_compute_forward_cpy
  6553. static void ggml_compute_forward_cpy(
  6554. const struct ggml_compute_params * params,
  6555. const struct ggml_tensor * src0,
  6556. struct ggml_tensor * dst) {
  6557. ggml_compute_forward_dup(params, src0, dst);
  6558. }
  6559. // ggml_compute_forward_cont
  6560. static void ggml_compute_forward_cont(
  6561. const struct ggml_compute_params * params,
  6562. const struct ggml_tensor * src0,
  6563. struct ggml_tensor * dst) {
  6564. ggml_compute_forward_dup(params, src0, dst);
  6565. }
  6566. // ggml_compute_forward_reshape
  6567. static void ggml_compute_forward_reshape(
  6568. const struct ggml_compute_params * params,
  6569. const struct ggml_tensor * src0,
  6570. struct ggml_tensor * dst) {
  6571. // NOP
  6572. UNUSED(params);
  6573. UNUSED(src0);
  6574. UNUSED(dst);
  6575. }
  6576. // ggml_compute_forward_view
  6577. static void ggml_compute_forward_view(
  6578. const struct ggml_compute_params * params,
  6579. const struct ggml_tensor * src0) {
  6580. // NOP
  6581. UNUSED(params);
  6582. UNUSED(src0);
  6583. }
  6584. // ggml_compute_forward_permute
  6585. static void ggml_compute_forward_permute(
  6586. const struct ggml_compute_params * params,
  6587. const struct ggml_tensor * src0) {
  6588. // NOP
  6589. UNUSED(params);
  6590. UNUSED(src0);
  6591. }
  6592. // ggml_compute_forward_transpose
  6593. static void ggml_compute_forward_transpose(
  6594. const struct ggml_compute_params * params,
  6595. const struct ggml_tensor * src0) {
  6596. // NOP
  6597. UNUSED(params);
  6598. UNUSED(src0);
  6599. }
  6600. // ggml_compute_forward_get_rows
  6601. static void ggml_compute_forward_get_rows_q(
  6602. const struct ggml_compute_params * params,
  6603. const struct ggml_tensor * src0,
  6604. const struct ggml_tensor * src1,
  6605. struct ggml_tensor * dst) {
  6606. assert(params->ith == 0);
  6607. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6608. return;
  6609. }
  6610. const int nc = src0->ne[0];
  6611. const int nr = ggml_nelements(src1);
  6612. const enum ggml_type type = src0->type;
  6613. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6614. assert( dst->ne[0] == nc);
  6615. assert( dst->ne[1] == nr);
  6616. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6617. for (int i = 0; i < nr; ++i) {
  6618. const int r = ((int32_t *) src1->data)[i];
  6619. dequantize_row_q(
  6620. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6621. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6622. }
  6623. }
  6624. static void ggml_compute_forward_get_rows_f16(
  6625. const struct ggml_compute_params * params,
  6626. const struct ggml_tensor * src0,
  6627. const struct ggml_tensor * src1,
  6628. struct ggml_tensor * dst) {
  6629. assert(params->ith == 0);
  6630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6631. return;
  6632. }
  6633. const int nc = src0->ne[0];
  6634. const int nr = ggml_nelements(src1);
  6635. assert( dst->ne[0] == nc);
  6636. assert( dst->ne[1] == nr);
  6637. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6638. for (int i = 0; i < nr; ++i) {
  6639. const int r = ((int32_t *) src1->data)[i];
  6640. for (int j = 0; j < nc; ++j) {
  6641. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6642. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6643. }
  6644. }
  6645. }
  6646. static void ggml_compute_forward_get_rows_f32(
  6647. const struct ggml_compute_params * params,
  6648. const struct ggml_tensor * src0,
  6649. const struct ggml_tensor * src1,
  6650. struct ggml_tensor * dst) {
  6651. assert(params->ith == 0);
  6652. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6653. return;
  6654. }
  6655. const int nc = src0->ne[0];
  6656. const int nr = ggml_nelements(src1);
  6657. assert( dst->ne[0] == nc);
  6658. assert( dst->ne[1] == nr);
  6659. assert(src0->nb[0] == sizeof(float));
  6660. for (int i = 0; i < nr; ++i) {
  6661. const int r = ((int32_t *) src1->data)[i];
  6662. ggml_vec_cpy_f32(nc,
  6663. (float *) ((char *) dst->data + i*dst->nb[1]),
  6664. (float *) ((char *) src0->data + r*src0->nb[1]));
  6665. }
  6666. }
  6667. static void ggml_compute_forward_get_rows(
  6668. const struct ggml_compute_params * params,
  6669. const struct ggml_tensor * src0,
  6670. const struct ggml_tensor * src1,
  6671. struct ggml_tensor * dst) {
  6672. switch (src0->type) {
  6673. case GGML_TYPE_Q4_0:
  6674. case GGML_TYPE_Q4_1:
  6675. case GGML_TYPE_Q4_2:
  6676. case GGML_TYPE_Q8_0:
  6677. {
  6678. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6679. } break;
  6680. case GGML_TYPE_F16:
  6681. {
  6682. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6683. } break;
  6684. case GGML_TYPE_F32:
  6685. {
  6686. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6687. } break;
  6688. default:
  6689. {
  6690. GGML_ASSERT(false);
  6691. } break;
  6692. }
  6693. //static bool first = true;
  6694. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6695. //if (first) {
  6696. // first = false;
  6697. //} else {
  6698. // for (int k = 0; k < dst->ne[1]; ++k) {
  6699. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6700. // for (int i = 0; i < 16; ++i) {
  6701. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6702. // }
  6703. // printf("\n");
  6704. // }
  6705. // printf("\n");
  6706. // }
  6707. // printf("\n");
  6708. // exit(0);
  6709. //}
  6710. }
  6711. // ggml_compute_forward_diag_mask_inf
  6712. static void ggml_compute_forward_diag_mask_inf_f32(
  6713. const struct ggml_compute_params * params,
  6714. const struct ggml_tensor * src0,
  6715. const struct ggml_tensor * src1,
  6716. struct ggml_tensor * dst) {
  6717. assert(params->ith == 0);
  6718. assert(src1->type == GGML_TYPE_I32);
  6719. assert(ggml_nelements(src1) == 1);
  6720. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6721. return;
  6722. }
  6723. const int n_past = ((int32_t *) src1->data)[0];
  6724. // TODO: handle transposed/permuted matrices
  6725. const int n = ggml_nrows(src0);
  6726. const int nc = src0->ne[0];
  6727. const int nr = src0->ne[1];
  6728. const int nz = n/nr;
  6729. assert( dst->nb[0] == sizeof(float));
  6730. assert(src0->nb[0] == sizeof(float));
  6731. for (int k = 0; k < nz; k++) {
  6732. for (int j = 0; j < nr; j++) {
  6733. for (int i = n_past; i < nc; i++) {
  6734. if (i > n_past + j) {
  6735. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6736. }
  6737. }
  6738. }
  6739. }
  6740. }
  6741. static void ggml_compute_forward_diag_mask_inf(
  6742. const struct ggml_compute_params * params,
  6743. const struct ggml_tensor * src0,
  6744. const struct ggml_tensor * src1,
  6745. struct ggml_tensor * dst) {
  6746. switch (src0->type) {
  6747. case GGML_TYPE_F32:
  6748. {
  6749. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6750. } break;
  6751. default:
  6752. {
  6753. GGML_ASSERT(false);
  6754. } break;
  6755. }
  6756. }
  6757. // ggml_compute_forward_soft_max
  6758. static void ggml_compute_forward_soft_max_f32(
  6759. const struct ggml_compute_params * params,
  6760. const struct ggml_tensor * src0,
  6761. struct ggml_tensor * dst) {
  6762. GGML_ASSERT(ggml_is_contiguous(src0));
  6763. GGML_ASSERT(ggml_is_contiguous(dst));
  6764. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6765. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6766. return;
  6767. }
  6768. // TODO: handle transposed/permuted matrices
  6769. const int ith = params->ith;
  6770. const int nth = params->nth;
  6771. const int nc = src0->ne[0];
  6772. const int nr = ggml_nrows(src0);
  6773. // rows per thread
  6774. const int dr = (nr + nth - 1)/nth;
  6775. // row range for this thread
  6776. const int ir0 = dr*ith;
  6777. const int ir1 = MIN(ir0 + dr, nr);
  6778. for (int i1 = ir0; i1 < ir1; i1++) {
  6779. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6780. #ifndef NDEBUG
  6781. for (int i = 0; i < nc; ++i) {
  6782. //printf("p[%d] = %f\n", i, p[i]);
  6783. assert(!isnan(p[i]));
  6784. }
  6785. #endif
  6786. float max = -INFINITY;
  6787. ggml_vec_max_f32(nc, &max, p);
  6788. ggml_float sum = 0.0;
  6789. uint16_t scvt;
  6790. for (int i = 0; i < nc; i++) {
  6791. if (p[i] == -INFINITY) {
  6792. p[i] = 0.0f;
  6793. } else {
  6794. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6795. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6796. memcpy(&scvt, &s, sizeof(scvt));
  6797. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6798. sum += (ggml_float)val;
  6799. p[i] = val;
  6800. }
  6801. }
  6802. assert(sum > 0.0);
  6803. sum = 1.0/sum;
  6804. ggml_vec_scale_f32(nc, p, sum);
  6805. #ifndef NDEBUG
  6806. for (int i = 0; i < nc; ++i) {
  6807. assert(!isnan(p[i]));
  6808. assert(!isinf(p[i]));
  6809. }
  6810. #endif
  6811. }
  6812. }
  6813. static void ggml_compute_forward_soft_max(
  6814. const struct ggml_compute_params * params,
  6815. const struct ggml_tensor * src0,
  6816. struct ggml_tensor * dst) {
  6817. switch (src0->type) {
  6818. case GGML_TYPE_F32:
  6819. {
  6820. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6821. } break;
  6822. default:
  6823. {
  6824. GGML_ASSERT(false);
  6825. } break;
  6826. }
  6827. }
  6828. // ggml_compute_forward_rope
  6829. static void ggml_compute_forward_rope_f32(
  6830. const struct ggml_compute_params * params,
  6831. const struct ggml_tensor * src0,
  6832. const struct ggml_tensor * src1,
  6833. struct ggml_tensor * dst) {
  6834. assert(src1->type == GGML_TYPE_I32);
  6835. assert(ggml_nelements(src1) == 3);
  6836. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6837. return;
  6838. }
  6839. const int n_past = ((int32_t *) src1->data)[0];
  6840. const int n_dims = ((int32_t *) src1->data)[1];
  6841. const int mode = ((int32_t *) src1->data)[2];
  6842. //const int64_t ne0 = src0->ne[0];
  6843. const int64_t ne1 = src0->ne[1];
  6844. const int64_t ne2 = src0->ne[2];
  6845. const int64_t ne3 = src0->ne[3];
  6846. const int nb0 = src0->nb[0];
  6847. const int nb1 = src0->nb[1];
  6848. const int nb2 = src0->nb[2];
  6849. const int nb3 = src0->nb[3];
  6850. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6851. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6852. assert(nb0 == sizeof(float));
  6853. const int ith = params->ith;
  6854. const int nth = params->nth;
  6855. const int nr = ggml_nrows(src0);
  6856. // rows per thread
  6857. const int dr = (nr + nth - 1)/nth;
  6858. // row range for this thread
  6859. const int ir0 = dr*ith;
  6860. const int ir1 = MIN(ir0 + dr, nr);
  6861. // row index used to determine which thread to use
  6862. int ir = 0;
  6863. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6864. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6865. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6866. const int p = (mode == 0 ? n_past + i2 : i2);
  6867. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6868. if (ir++ < ir0) continue;
  6869. if (ir > ir1) break;
  6870. float theta = (float)p;
  6871. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6872. const float cos_theta = cosf(theta);
  6873. const float sin_theta = sinf(theta);
  6874. theta *= theta_scale;
  6875. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6876. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6877. const float x0 = src[0];
  6878. const float x1 = src[1];
  6879. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6880. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6881. }
  6882. }
  6883. }
  6884. }
  6885. }
  6886. static void ggml_compute_forward_rope_f16(
  6887. const struct ggml_compute_params * params,
  6888. const struct ggml_tensor * src0,
  6889. const struct ggml_tensor * src1,
  6890. struct ggml_tensor * dst) {
  6891. assert(src1->type == GGML_TYPE_I32);
  6892. assert(ggml_nelements(src1) == 3);
  6893. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6894. return;
  6895. }
  6896. const int n_past = ((int32_t *) src1->data)[0];
  6897. const int n_dims = ((int32_t *) src1->data)[1];
  6898. const int mode = ((int32_t *) src1->data)[2];
  6899. //const int64_t ne0 = src0->ne[0];
  6900. const int64_t ne1 = src0->ne[1];
  6901. const int64_t ne2 = src0->ne[2];
  6902. const int64_t ne3 = src0->ne[3];
  6903. const int nb0 = src0->nb[0];
  6904. const int nb1 = src0->nb[1];
  6905. const int nb2 = src0->nb[2];
  6906. const int nb3 = src0->nb[3];
  6907. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6908. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6909. assert(nb0 == sizeof(ggml_fp16_t));
  6910. const int ith = params->ith;
  6911. const int nth = params->nth;
  6912. const int nr = ggml_nrows(src0);
  6913. // rows per thread
  6914. const int dr = (nr + nth - 1)/nth;
  6915. // row range for this thread
  6916. const int ir0 = dr*ith;
  6917. const int ir1 = MIN(ir0 + dr, nr);
  6918. // row index used to determine which thread to use
  6919. int ir = 0;
  6920. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6921. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6922. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6923. const int p = (mode == 0 ? n_past + i2 : i2);
  6924. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6925. if (ir++ < ir0) continue;
  6926. if (ir > ir1) break;
  6927. float theta = (float)p;
  6928. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6929. const float cos_theta = cosf(theta);
  6930. const float sin_theta = sinf(theta);
  6931. theta *= theta_scale;
  6932. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6933. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6934. const float x0 = GGML_FP16_TO_FP32(src[0]);
  6935. const float x1 = GGML_FP16_TO_FP32(src[1]);
  6936. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  6937. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  6938. }
  6939. }
  6940. }
  6941. }
  6942. }
  6943. static void ggml_compute_forward_rope(
  6944. const struct ggml_compute_params * params,
  6945. const struct ggml_tensor * src0,
  6946. const struct ggml_tensor * src1,
  6947. struct ggml_tensor * dst) {
  6948. switch (src0->type) {
  6949. case GGML_TYPE_F16:
  6950. {
  6951. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6952. } break;
  6953. case GGML_TYPE_F32:
  6954. {
  6955. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6956. } break;
  6957. default:
  6958. {
  6959. GGML_ASSERT(false);
  6960. } break;
  6961. }
  6962. }
  6963. // ggml_compute_forward_conv_1d_1s
  6964. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6965. const struct ggml_compute_params * params,
  6966. const struct ggml_tensor * src0,
  6967. const struct ggml_tensor * src1,
  6968. struct ggml_tensor * dst) {
  6969. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6970. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6971. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6972. int64_t t0 = ggml_perf_time_us();
  6973. UNUSED(t0);
  6974. const int64_t ne00 = src0->ne[0];
  6975. const int64_t ne01 = src0->ne[1];
  6976. const int64_t ne02 = src0->ne[2];
  6977. //const int64_t ne03 = src0->ne[3];
  6978. const int64_t ne10 = src1->ne[0];
  6979. const int64_t ne11 = src1->ne[1];
  6980. //const int64_t ne12 = src1->ne[2];
  6981. //const int64_t ne13 = src1->ne[3];
  6982. //const int64_t ne0 = dst->ne[0];
  6983. //const int64_t ne1 = dst->ne[1];
  6984. //const int64_t ne2 = dst->ne[2];
  6985. //const int64_t ne3 = dst->ne[3];
  6986. //const int64_t ne = ne0*ne1*ne2*ne3;
  6987. const int nb00 = src0->nb[0];
  6988. const int nb01 = src0->nb[1];
  6989. const int nb02 = src0->nb[2];
  6990. //const int nb03 = src0->nb[3];
  6991. const int nb10 = src1->nb[0];
  6992. const int nb11 = src1->nb[1];
  6993. //const int nb12 = src1->nb[2];
  6994. //const int nb13 = src1->nb[3];
  6995. //const int nb0 = dst->nb[0];
  6996. const int nb1 = dst->nb[1];
  6997. //const int nb2 = dst->nb[2];
  6998. //const int nb3 = dst->nb[3];
  6999. const int ith = params->ith;
  7000. const int nth = params->nth;
  7001. const int nk = ne00;
  7002. const int nh = nk/2;
  7003. const int ew0 = ggml_up32(ne01);
  7004. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7005. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7006. GGML_ASSERT(nb10 == sizeof(float));
  7007. if (params->type == GGML_TASK_INIT) {
  7008. // TODO: fix this memset (wsize is overestimated)
  7009. memset(params->wdata, 0, params->wsize);
  7010. // prepare kernel data (src0)
  7011. {
  7012. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7013. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7014. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7015. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7016. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7017. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7018. dst_data[i00*ew0 + i01] = src[i00];
  7019. }
  7020. }
  7021. }
  7022. }
  7023. // prepare source data (src1)
  7024. {
  7025. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7026. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7027. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7028. ggml_fp16_t * dst_data = wdata;
  7029. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7030. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7031. }
  7032. }
  7033. }
  7034. return;
  7035. }
  7036. if (params->type == GGML_TASK_FINALIZE) {
  7037. return;
  7038. }
  7039. // total rows in dst
  7040. const int nr = ne02;
  7041. // rows per thread
  7042. const int dr = (nr + nth - 1)/nth;
  7043. // row range for this thread
  7044. const int ir0 = dr*ith;
  7045. const int ir1 = MIN(ir0 + dr, nr);
  7046. for (int i1 = ir0; i1 < ir1; i1++) {
  7047. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7048. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7049. dst_data[i0] = 0;
  7050. for (int k = -nh; k <= nh; k++) {
  7051. float v = 0.0f;
  7052. ggml_vec_dot_f16(ew0, &v,
  7053. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7054. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7055. dst_data[i0] += v;
  7056. }
  7057. }
  7058. }
  7059. }
  7060. static void ggml_compute_forward_conv_1d_1s_f32(
  7061. const struct ggml_compute_params * params,
  7062. const struct ggml_tensor * src0,
  7063. const struct ggml_tensor * src1,
  7064. struct ggml_tensor * dst) {
  7065. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7066. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7067. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7068. int64_t t0 = ggml_perf_time_us();
  7069. UNUSED(t0);
  7070. const int64_t ne00 = src0->ne[0];
  7071. const int64_t ne01 = src0->ne[1];
  7072. const int64_t ne02 = src0->ne[2];
  7073. //const int64_t ne03 = src0->ne[3];
  7074. const int64_t ne10 = src1->ne[0];
  7075. const int64_t ne11 = src1->ne[1];
  7076. //const int64_t ne12 = src1->ne[2];
  7077. //const int64_t ne13 = src1->ne[3];
  7078. //const int64_t ne0 = dst->ne[0];
  7079. //const int64_t ne1 = dst->ne[1];
  7080. //const int64_t ne2 = dst->ne[2];
  7081. //const int64_t ne3 = dst->ne[3];
  7082. //const int64_t ne = ne0*ne1*ne2*ne3;
  7083. const int nb00 = src0->nb[0];
  7084. const int nb01 = src0->nb[1];
  7085. const int nb02 = src0->nb[2];
  7086. //const int nb03 = src0->nb[3];
  7087. const int nb10 = src1->nb[0];
  7088. const int nb11 = src1->nb[1];
  7089. //const int nb12 = src1->nb[2];
  7090. //const int nb13 = src1->nb[3];
  7091. //const int nb0 = dst->nb[0];
  7092. const int nb1 = dst->nb[1];
  7093. //const int nb2 = dst->nb[2];
  7094. //const int nb3 = dst->nb[3];
  7095. const int ith = params->ith;
  7096. const int nth = params->nth;
  7097. const int nk = ne00;
  7098. const int nh = nk/2;
  7099. const int ew0 = ggml_up32(ne01);
  7100. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7101. GGML_ASSERT(nb00 == sizeof(float));
  7102. GGML_ASSERT(nb10 == sizeof(float));
  7103. if (params->type == GGML_TASK_INIT) {
  7104. // TODO: fix this memset (wsize is overestimated)
  7105. memset(params->wdata, 0, params->wsize);
  7106. // prepare kernel data (src0)
  7107. {
  7108. float * const wdata = (float *) params->wdata + 0;
  7109. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7110. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7111. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7112. float * dst_data = wdata + i02*ew0*ne00;
  7113. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7114. dst_data[i00*ew0 + i01] = src[i00];
  7115. }
  7116. }
  7117. }
  7118. }
  7119. // prepare source data (src1)
  7120. {
  7121. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7122. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7123. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7124. float * dst_data = wdata;
  7125. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7126. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7127. }
  7128. }
  7129. }
  7130. return;
  7131. }
  7132. if (params->type == GGML_TASK_FINALIZE) {
  7133. return;
  7134. }
  7135. // total rows in dst
  7136. const int nr = ne02;
  7137. // rows per thread
  7138. const int dr = (nr + nth - 1)/nth;
  7139. // row range for this thread
  7140. const int ir0 = dr*ith;
  7141. const int ir1 = MIN(ir0 + dr, nr);
  7142. for (int i1 = ir0; i1 < ir1; i1++) {
  7143. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7144. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7145. dst_data[i0] = 0;
  7146. for (int k = -nh; k <= nh; k++) {
  7147. float v = 0.0f;
  7148. ggml_vec_dot_f32(ew0, &v,
  7149. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7150. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7151. dst_data[i0] += v;
  7152. }
  7153. }
  7154. }
  7155. }
  7156. static void ggml_compute_forward_conv_1d_1s(
  7157. const struct ggml_compute_params * params,
  7158. const struct ggml_tensor * src0,
  7159. const struct ggml_tensor * src1,
  7160. struct ggml_tensor * dst) {
  7161. switch (src0->type) {
  7162. case GGML_TYPE_F16:
  7163. {
  7164. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7165. } break;
  7166. case GGML_TYPE_F32:
  7167. {
  7168. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7169. } break;
  7170. default:
  7171. {
  7172. GGML_ASSERT(false);
  7173. } break;
  7174. }
  7175. }
  7176. // ggml_compute_forward_conv_1d_2s
  7177. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7178. const struct ggml_compute_params * params,
  7179. const struct ggml_tensor * src0,
  7180. const struct ggml_tensor * src1,
  7181. struct ggml_tensor * dst) {
  7182. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7183. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7184. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7185. int64_t t0 = ggml_perf_time_us();
  7186. UNUSED(t0);
  7187. const int64_t ne00 = src0->ne[0];
  7188. const int64_t ne01 = src0->ne[1];
  7189. const int64_t ne02 = src0->ne[2];
  7190. //const int64_t ne03 = src0->ne[3];
  7191. const int64_t ne10 = src1->ne[0];
  7192. const int64_t ne11 = src1->ne[1];
  7193. //const int64_t ne12 = src1->ne[2];
  7194. //const int64_t ne13 = src1->ne[3];
  7195. //const int64_t ne0 = dst->ne[0];
  7196. //const int64_t ne1 = dst->ne[1];
  7197. //const int64_t ne2 = dst->ne[2];
  7198. //const int64_t ne3 = dst->ne[3];
  7199. //const int64_t ne = ne0*ne1*ne2*ne3;
  7200. const int nb00 = src0->nb[0];
  7201. const int nb01 = src0->nb[1];
  7202. const int nb02 = src0->nb[2];
  7203. //const int nb03 = src0->nb[3];
  7204. const int nb10 = src1->nb[0];
  7205. const int nb11 = src1->nb[1];
  7206. //const int nb12 = src1->nb[2];
  7207. //const int nb13 = src1->nb[3];
  7208. //const int nb0 = dst->nb[0];
  7209. const int nb1 = dst->nb[1];
  7210. //const int nb2 = dst->nb[2];
  7211. //const int nb3 = dst->nb[3];
  7212. const int ith = params->ith;
  7213. const int nth = params->nth;
  7214. const int nk = ne00;
  7215. const int nh = nk/2;
  7216. const int ew0 = ggml_up32(ne01);
  7217. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7218. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7219. GGML_ASSERT(nb10 == sizeof(float));
  7220. if (params->type == GGML_TASK_INIT) {
  7221. // TODO: fix this memset (wsize is overestimated)
  7222. memset(params->wdata, 0, params->wsize);
  7223. // prepare kernel data (src0)
  7224. {
  7225. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7226. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7227. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7228. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7229. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7230. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7231. dst_data[i00*ew0 + i01] = src[i00];
  7232. }
  7233. }
  7234. }
  7235. }
  7236. // prepare source data (src1)
  7237. {
  7238. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7239. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7240. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7241. ggml_fp16_t * dst_data = wdata;
  7242. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7243. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7244. }
  7245. }
  7246. }
  7247. return;
  7248. }
  7249. if (params->type == GGML_TASK_FINALIZE) {
  7250. return;
  7251. }
  7252. // total rows in dst
  7253. const int nr = ne02;
  7254. // rows per thread
  7255. const int dr = (nr + nth - 1)/nth;
  7256. // row range for this thread
  7257. const int ir0 = dr*ith;
  7258. const int ir1 = MIN(ir0 + dr, nr);
  7259. for (int i1 = ir0; i1 < ir1; i1++) {
  7260. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7261. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7262. dst_data[i0/2] = 0;
  7263. for (int k = -nh; k <= nh; k++) {
  7264. float v = 0.0f;
  7265. ggml_vec_dot_f16(ew0, &v,
  7266. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7267. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7268. dst_data[i0/2] += v;
  7269. }
  7270. }
  7271. }
  7272. }
  7273. static void ggml_compute_forward_conv_1d_2s_f32(
  7274. const struct ggml_compute_params * params,
  7275. const struct ggml_tensor * src0,
  7276. const struct ggml_tensor * src1,
  7277. struct ggml_tensor * dst) {
  7278. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7279. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7280. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7281. int64_t t0 = ggml_perf_time_us();
  7282. UNUSED(t0);
  7283. const int64_t ne00 = src0->ne[0];
  7284. const int64_t ne01 = src0->ne[1];
  7285. const int64_t ne02 = src0->ne[2];
  7286. //const int64_t ne03 = src0->ne[3];
  7287. const int64_t ne10 = src1->ne[0];
  7288. const int64_t ne11 = src1->ne[1];
  7289. //const int64_t ne12 = src1->ne[2];
  7290. //const int64_t ne13 = src1->ne[3];
  7291. //const int64_t ne0 = dst->ne[0];
  7292. //const int64_t ne1 = dst->ne[1];
  7293. //const int64_t ne2 = dst->ne[2];
  7294. //const int64_t ne3 = dst->ne[3];
  7295. //const int64_t ne = ne0*ne1*ne2*ne3;
  7296. const int nb00 = src0->nb[0];
  7297. const int nb01 = src0->nb[1];
  7298. const int nb02 = src0->nb[2];
  7299. //const int nb03 = src0->nb[3];
  7300. const int nb10 = src1->nb[0];
  7301. const int nb11 = src1->nb[1];
  7302. //const int nb12 = src1->nb[2];
  7303. //const int nb13 = src1->nb[3];
  7304. //const int nb0 = dst->nb[0];
  7305. const int nb1 = dst->nb[1];
  7306. //const int nb2 = dst->nb[2];
  7307. //const int nb3 = dst->nb[3];
  7308. const int ith = params->ith;
  7309. const int nth = params->nth;
  7310. const int nk = ne00;
  7311. const int nh = nk/2;
  7312. const int ew0 = ggml_up32(ne01);
  7313. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7314. GGML_ASSERT(nb00 == sizeof(float));
  7315. GGML_ASSERT(nb10 == sizeof(float));
  7316. if (params->type == GGML_TASK_INIT) {
  7317. // TODO: fix this memset (wsize is overestimated)
  7318. memset(params->wdata, 0, params->wsize);
  7319. // prepare kernel data (src0)
  7320. {
  7321. float * const wdata = (float *) params->wdata + 0;
  7322. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7323. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7324. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7325. float * dst_data = wdata + i02*ew0*ne00;
  7326. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7327. dst_data[i00*ew0 + i01] = src[i00];
  7328. }
  7329. }
  7330. }
  7331. }
  7332. // prepare source data (src1)
  7333. {
  7334. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7335. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7336. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7337. float * dst_data = wdata;
  7338. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7339. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7340. }
  7341. }
  7342. }
  7343. return;
  7344. }
  7345. if (params->type == GGML_TASK_FINALIZE) {
  7346. return;
  7347. }
  7348. // total rows in dst
  7349. const int nr = ne02;
  7350. // rows per thread
  7351. const int dr = (nr + nth - 1)/nth;
  7352. // row range for this thread
  7353. const int ir0 = dr*ith;
  7354. const int ir1 = MIN(ir0 + dr, nr);
  7355. for (int i1 = ir0; i1 < ir1; i1++) {
  7356. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7357. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7358. dst_data[i0/2] = 0;
  7359. for (int k = -nh; k <= nh; k++) {
  7360. float v = 0.0f;
  7361. ggml_vec_dot_f32(ew0, &v,
  7362. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7363. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7364. dst_data[i0/2] += v;
  7365. }
  7366. }
  7367. }
  7368. }
  7369. static void ggml_compute_forward_conv_1d_2s(
  7370. const struct ggml_compute_params * params,
  7371. const struct ggml_tensor * src0,
  7372. const struct ggml_tensor * src1,
  7373. struct ggml_tensor * dst) {
  7374. switch (src0->type) {
  7375. case GGML_TYPE_F16:
  7376. {
  7377. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7378. } break;
  7379. case GGML_TYPE_F32:
  7380. {
  7381. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7382. } break;
  7383. default:
  7384. {
  7385. GGML_ASSERT(false);
  7386. } break;
  7387. }
  7388. }
  7389. // ggml_compute_forward_flash_attn
  7390. static void ggml_compute_forward_flash_attn_f32(
  7391. const struct ggml_compute_params * params,
  7392. const struct ggml_tensor * q,
  7393. const struct ggml_tensor * k,
  7394. const struct ggml_tensor * v,
  7395. const bool masked,
  7396. struct ggml_tensor * dst) {
  7397. int64_t t0 = ggml_perf_time_us();
  7398. UNUSED(t0);
  7399. const int64_t neq0 = q->ne[0];
  7400. const int64_t neq1 = q->ne[1];
  7401. const int64_t neq2 = q->ne[2];
  7402. const int64_t neq3 = q->ne[3];
  7403. const int64_t nek0 = k->ne[0];
  7404. const int64_t nek1 = k->ne[1];
  7405. //const int64_t nek2 = k->ne[2];
  7406. //const int64_t nek3 = k->ne[3];
  7407. //const int64_t nev0 = v->ne[0];
  7408. const int64_t nev1 = v->ne[1];
  7409. //const int64_t nev2 = v->ne[2];
  7410. //const int64_t nev3 = v->ne[3];
  7411. const int64_t ne0 = dst->ne[0];
  7412. const int64_t ne1 = dst->ne[1];
  7413. //const int64_t ne2 = dst->ne[2];
  7414. //const int64_t ne3 = dst->ne[3];
  7415. const int nbk0 = k->nb[0];
  7416. const int nbk1 = k->nb[1];
  7417. const int nbk2 = k->nb[2];
  7418. const int nbk3 = k->nb[3];
  7419. const int nbq0 = q->nb[0];
  7420. const int nbq1 = q->nb[1];
  7421. const int nbq2 = q->nb[2];
  7422. const int nbq3 = q->nb[3];
  7423. const int nbv0 = v->nb[0];
  7424. const int nbv1 = v->nb[1];
  7425. const int nbv2 = v->nb[2];
  7426. const int nbv3 = v->nb[3];
  7427. const int nb0 = dst->nb[0];
  7428. const int nb1 = dst->nb[1];
  7429. const int nb2 = dst->nb[2];
  7430. const int nb3 = dst->nb[3];
  7431. const int ith = params->ith;
  7432. const int nth = params->nth;
  7433. const int64_t D = neq0;
  7434. const int64_t N = neq1;
  7435. const int64_t P = nek1 - N;
  7436. const int64_t M = P + N;
  7437. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7438. GGML_ASSERT(ne0 == D);
  7439. GGML_ASSERT(ne1 == N);
  7440. GGML_ASSERT(P >= 0);
  7441. GGML_ASSERT(nbq0 == sizeof(float));
  7442. GGML_ASSERT(nbk0 == sizeof(float));
  7443. GGML_ASSERT(nbv0 == sizeof(float));
  7444. GGML_ASSERT(neq0 == D);
  7445. GGML_ASSERT(nek0 == D);
  7446. GGML_ASSERT(nev1 == D);
  7447. GGML_ASSERT(neq1 == N);
  7448. GGML_ASSERT(nek1 == N + P);
  7449. GGML_ASSERT(nev1 == D);
  7450. // dst cannot be transposed or permuted
  7451. GGML_ASSERT(nb0 == sizeof(float));
  7452. GGML_ASSERT(nb0 <= nb1);
  7453. GGML_ASSERT(nb1 <= nb2);
  7454. GGML_ASSERT(nb2 <= nb3);
  7455. if (params->type == GGML_TASK_INIT) {
  7456. return;
  7457. }
  7458. if (params->type == GGML_TASK_FINALIZE) {
  7459. return;
  7460. }
  7461. // parallelize by q rows using ggml_vec_dot_f32
  7462. // total rows in q
  7463. const int nr = neq1*neq2*neq3;
  7464. // rows per thread
  7465. const int dr = (nr + nth - 1)/nth;
  7466. // row range for this thread
  7467. const int ir0 = dr*ith;
  7468. const int ir1 = MIN(ir0 + dr, nr);
  7469. const float scale = 1.0f/sqrtf(D);
  7470. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7471. for (int ir = ir0; ir < ir1; ++ir) {
  7472. // q indices
  7473. const int iq3 = ir/(neq2*neq1);
  7474. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7475. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7476. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7477. for (int i = M; i < Mup; ++i) {
  7478. S[i] = -INFINITY;
  7479. }
  7480. for (int64_t ic = 0; ic < nek1; ++ic) {
  7481. // k indices
  7482. const int ik3 = iq3;
  7483. const int ik2 = iq2;
  7484. const int ik1 = ic;
  7485. // S indices
  7486. const int i1 = ik1;
  7487. ggml_vec_dot_f32(neq0,
  7488. S + i1,
  7489. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7490. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7491. }
  7492. // scale
  7493. ggml_vec_scale_f32(nek1, S, scale);
  7494. if (masked) {
  7495. for (int64_t i = P; i < M; i++) {
  7496. if (i > P + iq1) {
  7497. S[i] = -INFINITY;
  7498. }
  7499. }
  7500. }
  7501. // softmax
  7502. {
  7503. float max = -INFINITY;
  7504. ggml_vec_max_f32(M, &max, S);
  7505. ggml_float sum = 0.0;
  7506. {
  7507. #ifdef GGML_SOFT_MAX_ACCELERATE
  7508. max = -max;
  7509. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7510. vvexpf(S, S, &Mup);
  7511. ggml_vec_sum_f32(Mup, &sum, S);
  7512. #else
  7513. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7514. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7515. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7516. float * SS = S + i;
  7517. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7518. if (SS[j] == -INFINITY) {
  7519. SS[j] = 0.0f;
  7520. } else {
  7521. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7522. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7523. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7524. sump[j] += (ggml_float)val;
  7525. SS[j] = val;
  7526. }
  7527. }
  7528. }
  7529. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7530. sum += sump[i];
  7531. }
  7532. #endif
  7533. }
  7534. assert(sum > 0.0);
  7535. sum = 1.0/sum;
  7536. ggml_vec_scale_f32(M, S, sum);
  7537. #ifndef NDEBUG
  7538. for (int i = 0; i < M; ++i) {
  7539. assert(!isnan(S[i]));
  7540. assert(!isinf(S[i]));
  7541. }
  7542. #endif
  7543. }
  7544. for (int64_t ic = 0; ic < nev1; ++ic) {
  7545. // dst indices
  7546. const int i1 = iq1;
  7547. const int i2 = iq2;
  7548. const int i3 = iq3;
  7549. ggml_vec_dot_f32(nek1,
  7550. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7551. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7552. S);
  7553. }
  7554. }
  7555. }
  7556. static void ggml_compute_forward_flash_attn_f16(
  7557. const struct ggml_compute_params * params,
  7558. const struct ggml_tensor * q,
  7559. const struct ggml_tensor * k,
  7560. const struct ggml_tensor * v,
  7561. const bool masked,
  7562. struct ggml_tensor * dst) {
  7563. int64_t t0 = ggml_perf_time_us();
  7564. UNUSED(t0);
  7565. const int64_t neq0 = q->ne[0];
  7566. const int64_t neq1 = q->ne[1];
  7567. const int64_t neq2 = q->ne[2];
  7568. const int64_t neq3 = q->ne[3];
  7569. const int64_t nek0 = k->ne[0];
  7570. const int64_t nek1 = k->ne[1];
  7571. //const int64_t nek2 = k->ne[2];
  7572. //const int64_t nek3 = k->ne[3];
  7573. //const int64_t nev0 = v->ne[0];
  7574. const int64_t nev1 = v->ne[1];
  7575. //const int64_t nev2 = v->ne[2];
  7576. //const int64_t nev3 = v->ne[3];
  7577. const int64_t ne0 = dst->ne[0];
  7578. const int64_t ne1 = dst->ne[1];
  7579. //const int64_t ne2 = dst->ne[2];
  7580. //const int64_t ne3 = dst->ne[3];
  7581. const int nbk0 = k->nb[0];
  7582. const int nbk1 = k->nb[1];
  7583. const int nbk2 = k->nb[2];
  7584. const int nbk3 = k->nb[3];
  7585. const int nbq0 = q->nb[0];
  7586. const int nbq1 = q->nb[1];
  7587. const int nbq2 = q->nb[2];
  7588. const int nbq3 = q->nb[3];
  7589. const int nbv0 = v->nb[0];
  7590. const int nbv1 = v->nb[1];
  7591. const int nbv2 = v->nb[2];
  7592. const int nbv3 = v->nb[3];
  7593. const int nb0 = dst->nb[0];
  7594. const int nb1 = dst->nb[1];
  7595. const int nb2 = dst->nb[2];
  7596. const int nb3 = dst->nb[3];
  7597. const int ith = params->ith;
  7598. const int nth = params->nth;
  7599. const int64_t D = neq0;
  7600. const int64_t N = neq1;
  7601. const int64_t P = nek1 - N;
  7602. const int64_t M = P + N;
  7603. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7604. GGML_ASSERT(ne0 == D);
  7605. GGML_ASSERT(ne1 == N);
  7606. GGML_ASSERT(P >= 0);
  7607. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7608. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7609. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7610. GGML_ASSERT(neq0 == D);
  7611. GGML_ASSERT(nek0 == D);
  7612. GGML_ASSERT(nev1 == D);
  7613. GGML_ASSERT(neq1 == N);
  7614. GGML_ASSERT(nek1 == N + P);
  7615. GGML_ASSERT(nev1 == D);
  7616. // dst cannot be transposed or permuted
  7617. GGML_ASSERT(nb0 == sizeof(float));
  7618. GGML_ASSERT(nb0 <= nb1);
  7619. GGML_ASSERT(nb1 <= nb2);
  7620. GGML_ASSERT(nb2 <= nb3);
  7621. if (params->type == GGML_TASK_INIT) {
  7622. return;
  7623. }
  7624. if (params->type == GGML_TASK_FINALIZE) {
  7625. return;
  7626. }
  7627. // parallelize by q rows using ggml_vec_dot_f32
  7628. // total rows in q
  7629. const int nr = neq1*neq2*neq3;
  7630. // rows per thread
  7631. const int dr = (nr + nth - 1)/nth;
  7632. // row range for this thread
  7633. const int ir0 = dr*ith;
  7634. const int ir1 = MIN(ir0 + dr, nr);
  7635. const float scale = 1.0f/sqrtf(D);
  7636. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7637. for (int ir = ir0; ir < ir1; ++ir) {
  7638. // q indices
  7639. const int iq3 = ir/(neq2*neq1);
  7640. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7641. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7642. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7643. for (int i = M; i < Mup; ++i) {
  7644. S[i] = -INFINITY;
  7645. }
  7646. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7647. for (int64_t ic = 0; ic < nek1; ++ic) {
  7648. // k indices
  7649. const int ik3 = iq3;
  7650. const int ik2 = iq2;
  7651. const int ik1 = ic;
  7652. // S indices
  7653. const int i1 = ik1;
  7654. ggml_vec_dot_f16(neq0,
  7655. S + i1,
  7656. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7657. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7658. }
  7659. } else {
  7660. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7661. // k indices
  7662. const int ik3 = iq3;
  7663. const int ik2 = iq2;
  7664. const int ik1 = ic;
  7665. // S indices
  7666. const int i1 = ik1;
  7667. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7668. S + i1,
  7669. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7670. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7671. }
  7672. }
  7673. // scale
  7674. ggml_vec_scale_f32(nek1, S, scale);
  7675. if (masked) {
  7676. for (int64_t i = P; i < M; i++) {
  7677. if (i > P + iq1) {
  7678. S[i] = -INFINITY;
  7679. }
  7680. }
  7681. }
  7682. // softmax
  7683. {
  7684. float max = -INFINITY;
  7685. ggml_vec_max_f32(M, &max, S);
  7686. ggml_float sum = 0.0;
  7687. {
  7688. #ifdef GGML_SOFT_MAX_ACCELERATE
  7689. max = -max;
  7690. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7691. vvexpf(S, S, &Mup);
  7692. ggml_vec_sum_f32(Mup, &sum, S);
  7693. #else
  7694. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7695. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7696. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7697. float * SS = S + i;
  7698. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7699. if (SS[j] == -INFINITY) {
  7700. SS[j] = 0.0f;
  7701. } else {
  7702. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7703. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7704. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7705. sump[j] += (ggml_float)val;
  7706. SS[j] = val;
  7707. }
  7708. }
  7709. }
  7710. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7711. sum += sump[i];
  7712. }
  7713. #endif
  7714. }
  7715. assert(sum > 0.0);
  7716. sum = 1.0/sum;
  7717. ggml_vec_scale_f32(M, S, sum);
  7718. #ifndef NDEBUG
  7719. for (int i = 0; i < M; ++i) {
  7720. assert(!isnan(S[i]));
  7721. assert(!isinf(S[i]));
  7722. }
  7723. #endif
  7724. }
  7725. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7726. for (int64_t i = 0; i < M; i++) {
  7727. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7728. }
  7729. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7730. for (int64_t ic = 0; ic < nev1; ++ic) {
  7731. // dst indices
  7732. const int i1 = iq1;
  7733. const int i2 = iq2;
  7734. const int i3 = iq3;
  7735. ggml_vec_dot_f16(nek1,
  7736. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7737. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7738. S16);
  7739. }
  7740. } else {
  7741. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7742. // dst indices
  7743. const int i1 = iq1;
  7744. const int i2 = iq2;
  7745. const int i3 = iq3;
  7746. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7747. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7748. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7749. S16);
  7750. }
  7751. }
  7752. }
  7753. }
  7754. static void ggml_compute_forward_flash_attn(
  7755. const struct ggml_compute_params * params,
  7756. const struct ggml_tensor * q,
  7757. const struct ggml_tensor * k,
  7758. const struct ggml_tensor * v,
  7759. const bool masked,
  7760. struct ggml_tensor * dst) {
  7761. switch (q->type) {
  7762. case GGML_TYPE_F16:
  7763. {
  7764. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7765. } break;
  7766. case GGML_TYPE_F32:
  7767. {
  7768. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7769. } break;
  7770. default:
  7771. {
  7772. GGML_ASSERT(false);
  7773. } break;
  7774. }
  7775. }
  7776. // ggml_compute_forward_flash_ff
  7777. static void ggml_compute_forward_flash_ff_f16(
  7778. const struct ggml_compute_params * params,
  7779. const struct ggml_tensor * a, // F16
  7780. const struct ggml_tensor * b0, // F16 fc_w
  7781. const struct ggml_tensor * b1, // F32 fc_b
  7782. const struct ggml_tensor * c0, // F16 proj_w
  7783. const struct ggml_tensor * c1, // F32 proj_b
  7784. struct ggml_tensor * dst) {
  7785. int64_t t0 = ggml_perf_time_us();
  7786. UNUSED(t0);
  7787. const int64_t nea0 = a->ne[0];
  7788. const int64_t nea1 = a->ne[1];
  7789. const int64_t nea2 = a->ne[2];
  7790. const int64_t nea3 = a->ne[3];
  7791. const int64_t neb00 = b0->ne[0];
  7792. const int64_t neb01 = b0->ne[1];
  7793. //const int64_t neb02 = b0->ne[2];
  7794. //const int64_t neb03 = b0->ne[3];
  7795. const int64_t neb10 = b1->ne[0];
  7796. const int64_t neb11 = b1->ne[1];
  7797. //const int64_t neb12 = b1->ne[2];
  7798. //const int64_t neb13 = b1->ne[3];
  7799. const int64_t nec00 = c0->ne[0];
  7800. const int64_t nec01 = c0->ne[1];
  7801. //const int64_t nec02 = c0->ne[2];
  7802. //const int64_t nec03 = c0->ne[3];
  7803. const int64_t nec10 = c1->ne[0];
  7804. const int64_t nec11 = c1->ne[1];
  7805. //const int64_t nec12 = c1->ne[2];
  7806. //const int64_t nec13 = c1->ne[3];
  7807. const int64_t ne0 = dst->ne[0];
  7808. const int64_t ne1 = dst->ne[1];
  7809. const int64_t ne2 = dst->ne[2];
  7810. //const int64_t ne3 = dst->ne[3];
  7811. const int nba0 = a->nb[0];
  7812. const int nba1 = a->nb[1];
  7813. const int nba2 = a->nb[2];
  7814. const int nba3 = a->nb[3];
  7815. const int nbb00 = b0->nb[0];
  7816. const int nbb01 = b0->nb[1];
  7817. const int nbb02 = b0->nb[2];
  7818. const int nbb03 = b0->nb[3];
  7819. const int nbb10 = b1->nb[0];
  7820. //const int nbb11 = b1->nb[1];
  7821. //const int nbb12 = b1->nb[2];
  7822. //const int nbb13 = b1->nb[3];
  7823. const int nbc00 = c0->nb[0];
  7824. const int nbc01 = c0->nb[1];
  7825. const int nbc02 = c0->nb[2];
  7826. const int nbc03 = c0->nb[3];
  7827. const int nbc10 = c1->nb[0];
  7828. //const int nbc11 = c1->nb[1];
  7829. //const int nbc12 = c1->nb[2];
  7830. //const int nbc13 = c1->nb[3];
  7831. const int nb0 = dst->nb[0];
  7832. const int nb1 = dst->nb[1];
  7833. const int nb2 = dst->nb[2];
  7834. const int nb3 = dst->nb[3];
  7835. const int ith = params->ith;
  7836. const int nth = params->nth;
  7837. const int64_t D = nea0;
  7838. //const int64_t N = nea1;
  7839. const int64_t M = neb01;
  7840. GGML_ASSERT(ne0 == nea0);
  7841. GGML_ASSERT(ne1 == nea1);
  7842. GGML_ASSERT(ne2 == nea2);
  7843. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7844. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7845. GGML_ASSERT(nbb10 == sizeof(float));
  7846. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7847. GGML_ASSERT(nbc10 == sizeof(float));
  7848. GGML_ASSERT(neb00 == D);
  7849. GGML_ASSERT(neb01 == M);
  7850. GGML_ASSERT(neb10 == M);
  7851. GGML_ASSERT(neb11 == 1);
  7852. GGML_ASSERT(nec00 == M);
  7853. GGML_ASSERT(nec01 == D);
  7854. GGML_ASSERT(nec10 == D);
  7855. GGML_ASSERT(nec11 == 1);
  7856. // dst cannot be transposed or permuted
  7857. GGML_ASSERT(nb0 == sizeof(float));
  7858. GGML_ASSERT(nb0 <= nb1);
  7859. GGML_ASSERT(nb1 <= nb2);
  7860. GGML_ASSERT(nb2 <= nb3);
  7861. if (params->type == GGML_TASK_INIT) {
  7862. return;
  7863. }
  7864. if (params->type == GGML_TASK_FINALIZE) {
  7865. return;
  7866. }
  7867. // parallelize by a rows using ggml_vec_dot_f32
  7868. // total rows in a
  7869. const int nr = nea1*nea2*nea3;
  7870. // rows per thread
  7871. const int dr = (nr + nth - 1)/nth;
  7872. // row range for this thread
  7873. const int ir0 = dr*ith;
  7874. const int ir1 = MIN(ir0 + dr, nr);
  7875. for (int ir = ir0; ir < ir1; ++ir) {
  7876. // a indices
  7877. const int ia3 = ir/(nea2*nea1);
  7878. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7879. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7880. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7881. for (int64_t ic = 0; ic < neb01; ++ic) {
  7882. // b0 indices
  7883. const int ib03 = ia3;
  7884. const int ib02 = ia2;
  7885. const int ib01 = ic;
  7886. // S indices
  7887. const int i1 = ib01;
  7888. ggml_vec_dot_f16(nea0,
  7889. S + i1,
  7890. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7891. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7892. }
  7893. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7894. //ggml_vec_gelu_f32(neb01, S, S);
  7895. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7896. for (int64_t i = 0; i < M; i++) {
  7897. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7898. }
  7899. ggml_vec_gelu_f16(neb01, S16, S16);
  7900. {
  7901. // dst indices
  7902. const int i1 = ia1;
  7903. const int i2 = ia2;
  7904. const int i3 = ia3;
  7905. for (int64_t ic = 0; ic < nec01; ++ic) {
  7906. ggml_vec_dot_f16(neb01,
  7907. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7908. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7909. S16);
  7910. }
  7911. ggml_vec_add_f32(nec01,
  7912. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7913. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7914. (float *) c1->data);
  7915. }
  7916. }
  7917. }
  7918. static void ggml_compute_forward_flash_ff(
  7919. const struct ggml_compute_params * params,
  7920. const struct ggml_tensor * a,
  7921. const struct ggml_tensor * b0,
  7922. const struct ggml_tensor * b1,
  7923. const struct ggml_tensor * c0,
  7924. const struct ggml_tensor * c1,
  7925. struct ggml_tensor * dst) {
  7926. switch (b0->type) {
  7927. case GGML_TYPE_F16:
  7928. {
  7929. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7930. } break;
  7931. case GGML_TYPE_F32:
  7932. {
  7933. GGML_ASSERT(false); // TODO
  7934. } break;
  7935. default:
  7936. {
  7937. GGML_ASSERT(false);
  7938. } break;
  7939. }
  7940. }
  7941. // ggml_compute_forward_map_unary
  7942. static void ggml_compute_forward_map_unary_f32(
  7943. const struct ggml_compute_params * params,
  7944. const struct ggml_tensor * src0,
  7945. struct ggml_tensor * dst,
  7946. const ggml_unary_op_f32_t fun) {
  7947. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7948. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7949. return;
  7950. }
  7951. const int n = ggml_nrows(src0);
  7952. const int nc = src0->ne[0];
  7953. assert( dst->nb[0] == sizeof(float));
  7954. assert(src0->nb[0] == sizeof(float));
  7955. for (int i = 0; i < n; i++) {
  7956. fun(nc,
  7957. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7958. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7959. }
  7960. }
  7961. static void ggml_compute_forward_map_unary(
  7962. const struct ggml_compute_params * params,
  7963. const struct ggml_tensor * src0,
  7964. struct ggml_tensor * dst,
  7965. const ggml_unary_op_f32_t fun) {
  7966. switch (src0->type) {
  7967. case GGML_TYPE_F32:
  7968. {
  7969. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  7970. } break;
  7971. default:
  7972. {
  7973. GGML_ASSERT(false);
  7974. } break;
  7975. }
  7976. }
  7977. // ggml_compute_forward_map_binary
  7978. static void ggml_compute_forward_map_binary_f32(
  7979. const struct ggml_compute_params * params,
  7980. const struct ggml_tensor * src0,
  7981. const struct ggml_tensor * src1,
  7982. struct ggml_tensor * dst,
  7983. const ggml_binary_op_f32_t fun) {
  7984. assert(params->ith == 0);
  7985. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7986. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7987. return;
  7988. }
  7989. const int n = ggml_nrows(src0);
  7990. const int nc = src0->ne[0];
  7991. assert( dst->nb[0] == sizeof(float));
  7992. assert(src0->nb[0] == sizeof(float));
  7993. assert(src1->nb[0] == sizeof(float));
  7994. for (int i = 0; i < n; i++) {
  7995. fun(nc,
  7996. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7997. (float *) ((char *) src0->data + i*(src0->nb[1])),
  7998. (float *) ((char *) src1->data + i*(src1->nb[1])));
  7999. }
  8000. }
  8001. static void ggml_compute_forward_map_binary(
  8002. const struct ggml_compute_params * params,
  8003. const struct ggml_tensor * src0,
  8004. const struct ggml_tensor * src1,
  8005. struct ggml_tensor * dst,
  8006. const ggml_binary_op_f32_t fun) {
  8007. switch (src0->type) {
  8008. case GGML_TYPE_F32:
  8009. {
  8010. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8011. } break;
  8012. default:
  8013. {
  8014. GGML_ASSERT(false);
  8015. } break;
  8016. }
  8017. }
  8018. /////////////////////////////////
  8019. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8020. GGML_ASSERT(params);
  8021. switch (tensor->op) {
  8022. case GGML_OP_DUP:
  8023. {
  8024. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8025. } break;
  8026. case GGML_OP_ADD:
  8027. {
  8028. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8029. } break;
  8030. case GGML_OP_SUB:
  8031. {
  8032. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8033. } break;
  8034. case GGML_OP_MUL:
  8035. {
  8036. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8037. } break;
  8038. case GGML_OP_DIV:
  8039. {
  8040. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8041. } break;
  8042. case GGML_OP_SQR:
  8043. {
  8044. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8045. } break;
  8046. case GGML_OP_SQRT:
  8047. {
  8048. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8049. } break;
  8050. case GGML_OP_SUM:
  8051. {
  8052. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8053. } break;
  8054. case GGML_OP_MEAN:
  8055. {
  8056. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8057. } break;
  8058. case GGML_OP_REPEAT:
  8059. {
  8060. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8061. } break;
  8062. case GGML_OP_ABS:
  8063. {
  8064. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8065. } break;
  8066. case GGML_OP_SGN:
  8067. {
  8068. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8069. } break;
  8070. case GGML_OP_NEG:
  8071. {
  8072. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8073. } break;
  8074. case GGML_OP_STEP:
  8075. {
  8076. ggml_compute_forward_step(params, tensor->src0, tensor);
  8077. } break;
  8078. case GGML_OP_RELU:
  8079. {
  8080. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8081. } break;
  8082. case GGML_OP_GELU:
  8083. {
  8084. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8085. } break;
  8086. case GGML_OP_SILU:
  8087. {
  8088. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8089. } break;
  8090. case GGML_OP_NORM:
  8091. {
  8092. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8093. } break;
  8094. case GGML_OP_RMS_NORM:
  8095. {
  8096. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8097. } break;
  8098. case GGML_OP_MUL_MAT:
  8099. {
  8100. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8101. } break;
  8102. case GGML_OP_SCALE:
  8103. {
  8104. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8105. } break;
  8106. case GGML_OP_CPY:
  8107. {
  8108. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8109. } break;
  8110. case GGML_OP_CONT:
  8111. {
  8112. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8113. } break;
  8114. case GGML_OP_RESHAPE:
  8115. {
  8116. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8117. } break;
  8118. case GGML_OP_VIEW:
  8119. {
  8120. ggml_compute_forward_view(params, tensor->src0);
  8121. } break;
  8122. case GGML_OP_PERMUTE:
  8123. {
  8124. ggml_compute_forward_permute(params, tensor->src0);
  8125. } break;
  8126. case GGML_OP_TRANSPOSE:
  8127. {
  8128. ggml_compute_forward_transpose(params, tensor->src0);
  8129. } break;
  8130. case GGML_OP_GET_ROWS:
  8131. {
  8132. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8133. } break;
  8134. case GGML_OP_DIAG_MASK_INF:
  8135. {
  8136. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8137. } break;
  8138. case GGML_OP_SOFT_MAX:
  8139. {
  8140. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8141. } break;
  8142. case GGML_OP_ROPE:
  8143. {
  8144. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8145. } break;
  8146. case GGML_OP_CONV_1D_1S:
  8147. {
  8148. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8149. } break;
  8150. case GGML_OP_CONV_1D_2S:
  8151. {
  8152. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8153. } break;
  8154. case GGML_OP_FLASH_ATTN:
  8155. {
  8156. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8157. GGML_ASSERT(t == 0 || t == 1);
  8158. bool masked = t != 0;
  8159. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8160. } break;
  8161. case GGML_OP_FLASH_FF:
  8162. {
  8163. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8164. } break;
  8165. case GGML_OP_MAP_UNARY:
  8166. {
  8167. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8168. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8169. }
  8170. break;
  8171. case GGML_OP_MAP_BINARY:
  8172. {
  8173. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8174. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8175. }
  8176. break;
  8177. case GGML_OP_NONE:
  8178. {
  8179. // nop
  8180. } break;
  8181. case GGML_OP_COUNT:
  8182. {
  8183. GGML_ASSERT(false);
  8184. } break;
  8185. }
  8186. }
  8187. ////////////////////////////////////////////////////////////////////////////////
  8188. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8189. struct ggml_tensor * src0 = tensor->src0;
  8190. struct ggml_tensor * src1 = tensor->src1;
  8191. switch (tensor->op) {
  8192. case GGML_OP_DUP:
  8193. {
  8194. if (src0->grad) {
  8195. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8196. }
  8197. } break;
  8198. case GGML_OP_ADD:
  8199. {
  8200. if (src0->grad) {
  8201. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8202. }
  8203. if (src1->grad) {
  8204. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8205. }
  8206. } break;
  8207. case GGML_OP_SUB:
  8208. {
  8209. if (src0->grad) {
  8210. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8211. }
  8212. if (src1->grad) {
  8213. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8214. }
  8215. } break;
  8216. case GGML_OP_MUL:
  8217. {
  8218. if (src0->grad) {
  8219. src0->grad =
  8220. ggml_add_impl(ctx,
  8221. src0->grad,
  8222. ggml_mul(ctx, src1, tensor->grad),
  8223. inplace);
  8224. }
  8225. if (src1->grad) {
  8226. src1->grad =
  8227. ggml_add_impl(ctx,
  8228. src1->grad,
  8229. ggml_mul(ctx, src0, tensor->grad),
  8230. inplace);
  8231. }
  8232. } break;
  8233. case GGML_OP_DIV:
  8234. {
  8235. if (src0->grad) {
  8236. src0->grad =
  8237. ggml_add_impl(ctx,
  8238. src0->grad,
  8239. ggml_div(ctx, tensor->grad, src1),
  8240. inplace);
  8241. }
  8242. if (src1->grad) {
  8243. src1->grad =
  8244. ggml_sub_impl(ctx,
  8245. src1->grad,
  8246. ggml_mul(ctx,
  8247. tensor->grad,
  8248. ggml_div(ctx, tensor, src1)),
  8249. inplace);
  8250. }
  8251. } break;
  8252. case GGML_OP_SQR:
  8253. {
  8254. if (src0->grad) {
  8255. src0->grad =
  8256. ggml_add_impl(ctx,
  8257. src0->grad,
  8258. ggml_mul(ctx,
  8259. ggml_mul(ctx, src0, tensor->grad),
  8260. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8261. inplace);
  8262. }
  8263. } break;
  8264. case GGML_OP_SQRT:
  8265. {
  8266. if (src0->grad) {
  8267. src0->grad =
  8268. ggml_add_impl(ctx,
  8269. src0->grad,
  8270. ggml_div(ctx,
  8271. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8272. tensor),
  8273. inplace);
  8274. }
  8275. } break;
  8276. case GGML_OP_SUM:
  8277. {
  8278. if (src0->grad) {
  8279. src0->grad =
  8280. ggml_add_impl(ctx,
  8281. src0->grad,
  8282. ggml_repeat(ctx, tensor->grad, src0->grad),
  8283. inplace);
  8284. }
  8285. } break;
  8286. case GGML_OP_MEAN:
  8287. {
  8288. GGML_ASSERT(false); // TODO: implement
  8289. } break;
  8290. case GGML_OP_REPEAT:
  8291. {
  8292. if (src0->grad) {
  8293. src0->grad =
  8294. ggml_add_impl(ctx,
  8295. src0->grad,
  8296. ggml_sum(ctx, tensor->grad),
  8297. inplace);
  8298. }
  8299. } break;
  8300. case GGML_OP_ABS:
  8301. {
  8302. if (src0->grad) {
  8303. src0->grad =
  8304. ggml_add_impl(ctx,
  8305. src0->grad,
  8306. ggml_mul(ctx,
  8307. ggml_sgn(ctx, src0),
  8308. tensor->grad),
  8309. inplace);
  8310. }
  8311. } break;
  8312. case GGML_OP_SGN:
  8313. {
  8314. if (src0->grad) {
  8315. // noop
  8316. }
  8317. } break;
  8318. case GGML_OP_NEG:
  8319. {
  8320. if (src0->grad) {
  8321. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8322. }
  8323. } break;
  8324. case GGML_OP_STEP:
  8325. {
  8326. if (src0->grad) {
  8327. // noop
  8328. }
  8329. } break;
  8330. case GGML_OP_RELU:
  8331. {
  8332. if (src0->grad) {
  8333. src0->grad = ggml_sub_impl(ctx,
  8334. src0->grad,
  8335. ggml_mul(ctx,
  8336. ggml_step(ctx, src0),
  8337. tensor->grad),
  8338. inplace);
  8339. }
  8340. } break;
  8341. case GGML_OP_GELU:
  8342. {
  8343. GGML_ASSERT(false); // TODO: not implemented
  8344. } break;
  8345. case GGML_OP_SILU:
  8346. {
  8347. GGML_ASSERT(false); // TODO: not implemented
  8348. } break;
  8349. case GGML_OP_NORM:
  8350. {
  8351. GGML_ASSERT(false); // TODO: not implemented
  8352. } break;
  8353. case GGML_OP_RMS_NORM:
  8354. {
  8355. GGML_ASSERT(false); // TODO: not implemented
  8356. } break;
  8357. case GGML_OP_MUL_MAT:
  8358. {
  8359. if (src0->grad) {
  8360. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8361. GGML_ASSERT(false);
  8362. }
  8363. if (src1->grad) {
  8364. src1->grad =
  8365. ggml_add_impl(ctx,
  8366. src1->grad,
  8367. ggml_mul_mat(ctx,
  8368. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8369. tensor->grad),
  8370. inplace);
  8371. }
  8372. } break;
  8373. case GGML_OP_SCALE:
  8374. {
  8375. GGML_ASSERT(false); // TODO: not implemented
  8376. } break;
  8377. case GGML_OP_CPY:
  8378. {
  8379. GGML_ASSERT(false); // TODO: not implemented
  8380. } break;
  8381. case GGML_OP_CONT:
  8382. {
  8383. GGML_ASSERT(false); // TODO: not implemented
  8384. } break;
  8385. case GGML_OP_RESHAPE:
  8386. {
  8387. GGML_ASSERT(false); // TODO: not implemented
  8388. } break;
  8389. case GGML_OP_VIEW:
  8390. {
  8391. GGML_ASSERT(false); // not supported
  8392. } break;
  8393. case GGML_OP_PERMUTE:
  8394. {
  8395. GGML_ASSERT(false); // TODO: not implemented
  8396. } break;
  8397. case GGML_OP_TRANSPOSE:
  8398. {
  8399. GGML_ASSERT(false); // TODO: not implemented
  8400. } break;
  8401. case GGML_OP_GET_ROWS:
  8402. {
  8403. GGML_ASSERT(false); // TODO: not implemented
  8404. } break;
  8405. case GGML_OP_DIAG_MASK_INF:
  8406. {
  8407. GGML_ASSERT(false); // TODO: not implemented
  8408. } break;
  8409. case GGML_OP_SOFT_MAX:
  8410. {
  8411. GGML_ASSERT(false); // TODO: not implemented
  8412. } break;
  8413. case GGML_OP_ROPE:
  8414. {
  8415. GGML_ASSERT(false); // TODO: not implemented
  8416. } break;
  8417. case GGML_OP_CONV_1D_1S:
  8418. {
  8419. GGML_ASSERT(false); // TODO: not implemented
  8420. } break;
  8421. case GGML_OP_CONV_1D_2S:
  8422. {
  8423. GGML_ASSERT(false); // TODO: not implemented
  8424. } break;
  8425. case GGML_OP_FLASH_ATTN:
  8426. {
  8427. GGML_ASSERT(false); // not supported
  8428. } break;
  8429. case GGML_OP_FLASH_FF:
  8430. {
  8431. GGML_ASSERT(false); // not supported
  8432. } break;
  8433. case GGML_OP_MAP_UNARY:
  8434. case GGML_OP_MAP_BINARY:
  8435. {
  8436. GGML_ASSERT(false); // not supported
  8437. } break;
  8438. case GGML_OP_NONE:
  8439. {
  8440. // nop
  8441. } break;
  8442. case GGML_OP_COUNT:
  8443. {
  8444. GGML_ASSERT(false);
  8445. } break;
  8446. }
  8447. }
  8448. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8449. if (node->grad == NULL) {
  8450. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8451. // it can also happen during forward pass, if the user performs computations with constants
  8452. if (node->op != GGML_OP_NONE) {
  8453. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8454. }
  8455. }
  8456. // check if already visited
  8457. for (int i = 0; i < cgraph->n_nodes; i++) {
  8458. if (cgraph->nodes[i] == node) {
  8459. return;
  8460. }
  8461. }
  8462. for (int i = 0; i < cgraph->n_leafs; i++) {
  8463. if (cgraph->leafs[i] == node) {
  8464. return;
  8465. }
  8466. }
  8467. if (node->src0) {
  8468. ggml_visit_parents(cgraph, node->src0);
  8469. }
  8470. if (node->src1) {
  8471. ggml_visit_parents(cgraph, node->src1);
  8472. }
  8473. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8474. if (node->opt[i]) {
  8475. ggml_visit_parents(cgraph, node->opt[i]);
  8476. }
  8477. }
  8478. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8479. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8480. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8481. cgraph->leafs[cgraph->n_leafs] = node;
  8482. cgraph->n_leafs++;
  8483. } else {
  8484. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8485. cgraph->nodes[cgraph->n_nodes] = node;
  8486. cgraph->grads[cgraph->n_nodes] = node->grad;
  8487. cgraph->n_nodes++;
  8488. }
  8489. }
  8490. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8491. if (!expand) {
  8492. cgraph->n_nodes = 0;
  8493. cgraph->n_leafs = 0;
  8494. }
  8495. const int n0 = cgraph->n_nodes;
  8496. UNUSED(n0);
  8497. ggml_visit_parents(cgraph, tensor);
  8498. const int n_new = cgraph->n_nodes - n0;
  8499. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8500. if (n_new > 0) {
  8501. // the last added node should always be starting point
  8502. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8503. }
  8504. }
  8505. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8506. ggml_build_forward_impl(cgraph, tensor, true);
  8507. }
  8508. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8509. struct ggml_cgraph result = {
  8510. /*.n_nodes =*/ 0,
  8511. /*.n_leafs =*/ 0,
  8512. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8513. /*.work_size =*/ 0,
  8514. /*.work =*/ NULL,
  8515. /*.nodes =*/ { NULL },
  8516. /*.grads =*/ { NULL },
  8517. /*.leafs =*/ { NULL },
  8518. /*.perf_runs =*/ 0,
  8519. /*.perf_cycles =*/ 0,
  8520. /*.perf_time_us =*/ 0,
  8521. };
  8522. ggml_build_forward_impl(&result, tensor, false);
  8523. return result;
  8524. }
  8525. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8526. struct ggml_cgraph result = *gf;
  8527. GGML_ASSERT(gf->n_nodes > 0);
  8528. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8529. if (keep) {
  8530. for (int i = 0; i < gf->n_nodes; i++) {
  8531. struct ggml_tensor * node = gf->nodes[i];
  8532. if (node->grad) {
  8533. node->grad = ggml_dup_tensor(ctx, node);
  8534. gf->grads[i] = node->grad;
  8535. }
  8536. }
  8537. }
  8538. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8539. struct ggml_tensor * node = gf->nodes[i];
  8540. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8541. if (node->grad) {
  8542. ggml_compute_backward(ctx, node, keep);
  8543. }
  8544. }
  8545. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8546. struct ggml_tensor * node = gf->nodes[i];
  8547. if (node->is_param) {
  8548. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8549. ggml_build_forward_impl(&result, node->grad, true);
  8550. }
  8551. }
  8552. return result;
  8553. }
  8554. //
  8555. // thread data
  8556. //
  8557. // synchronization is done via busy loops
  8558. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8559. //
  8560. #ifdef __APPLE__
  8561. //#include <os/lock.h>
  8562. //
  8563. //typedef os_unfair_lock ggml_lock_t;
  8564. //
  8565. //#define ggml_lock_init(x) UNUSED(x)
  8566. //#define ggml_lock_destroy(x) UNUSED(x)
  8567. //#define ggml_lock_lock os_unfair_lock_lock
  8568. //#define ggml_lock_unlock os_unfair_lock_unlock
  8569. //
  8570. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8571. typedef int ggml_lock_t;
  8572. #define ggml_lock_init(x) UNUSED(x)
  8573. #define ggml_lock_destroy(x) UNUSED(x)
  8574. #define ggml_lock_lock(x) UNUSED(x)
  8575. #define ggml_lock_unlock(x) UNUSED(x)
  8576. #define GGML_LOCK_INITIALIZER 0
  8577. typedef pthread_t ggml_thread_t;
  8578. #define ggml_thread_create pthread_create
  8579. #define ggml_thread_join pthread_join
  8580. #else
  8581. //typedef pthread_spinlock_t ggml_lock_t;
  8582. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8583. //#define ggml_lock_destroy pthread_spin_destroy
  8584. //#define ggml_lock_lock pthread_spin_lock
  8585. //#define ggml_lock_unlock pthread_spin_unlock
  8586. typedef int ggml_lock_t;
  8587. #define ggml_lock_init(x) UNUSED(x)
  8588. #define ggml_lock_destroy(x) UNUSED(x)
  8589. #define ggml_lock_lock(x) UNUSED(x)
  8590. #define ggml_lock_unlock(x) UNUSED(x)
  8591. #define GGML_LOCK_INITIALIZER 0
  8592. typedef pthread_t ggml_thread_t;
  8593. #define ggml_thread_create pthread_create
  8594. #define ggml_thread_join pthread_join
  8595. #endif
  8596. struct ggml_compute_state_shared {
  8597. ggml_lock_t spin;
  8598. int n_threads;
  8599. // synchronization primitives
  8600. atomic_int n_ready;
  8601. atomic_bool has_work;
  8602. atomic_bool stop; // stop all threads
  8603. };
  8604. struct ggml_compute_state {
  8605. ggml_thread_t thrd;
  8606. struct ggml_compute_params params;
  8607. struct ggml_tensor * node;
  8608. struct ggml_compute_state_shared * shared;
  8609. };
  8610. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8611. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8612. const int n_threads = state->shared->n_threads;
  8613. while (true) {
  8614. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8615. atomic_store(&state->shared->has_work, false);
  8616. } else {
  8617. while (atomic_load(&state->shared->has_work)) {
  8618. if (atomic_load(&state->shared->stop)) {
  8619. return 0;
  8620. }
  8621. ggml_lock_lock (&state->shared->spin);
  8622. ggml_lock_unlock(&state->shared->spin);
  8623. }
  8624. }
  8625. atomic_fetch_sub(&state->shared->n_ready, 1);
  8626. // wait for work
  8627. while (!atomic_load(&state->shared->has_work)) {
  8628. if (atomic_load(&state->shared->stop)) {
  8629. return 0;
  8630. }
  8631. ggml_lock_lock (&state->shared->spin);
  8632. ggml_lock_unlock(&state->shared->spin);
  8633. }
  8634. // check if we should stop
  8635. if (atomic_load(&state->shared->stop)) {
  8636. break;
  8637. }
  8638. if (state->node) {
  8639. if (state->params.ith < state->params.nth) {
  8640. ggml_compute_forward(&state->params, state->node);
  8641. }
  8642. state->node = NULL;
  8643. } else {
  8644. break;
  8645. }
  8646. }
  8647. return 0;
  8648. }
  8649. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8650. const int n_threads = cgraph->n_threads;
  8651. struct ggml_compute_state_shared state_shared = {
  8652. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8653. /*.n_threads =*/ n_threads,
  8654. /*.n_ready =*/ 0,
  8655. /*.has_work =*/ false,
  8656. /*.stop =*/ false,
  8657. };
  8658. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8659. // create thread pool
  8660. if (n_threads > 1) {
  8661. ggml_lock_init(&state_shared.spin);
  8662. atomic_store(&state_shared.has_work, true);
  8663. for (int j = 0; j < n_threads - 1; j++) {
  8664. workers[j] = (struct ggml_compute_state) {
  8665. .thrd = 0,
  8666. .params = {
  8667. .type = GGML_TASK_COMPUTE,
  8668. .ith = j + 1,
  8669. .nth = n_threads,
  8670. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8671. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8672. },
  8673. .node = NULL,
  8674. .shared = &state_shared,
  8675. };
  8676. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8677. GGML_ASSERT(rc == 0);
  8678. UNUSED(rc);
  8679. }
  8680. }
  8681. // initialize tasks + work buffer
  8682. {
  8683. size_t work_size = 0;
  8684. // thread scheduling for the different operations
  8685. for (int i = 0; i < cgraph->n_nodes; i++) {
  8686. struct ggml_tensor * node = cgraph->nodes[i];
  8687. switch (node->op) {
  8688. case GGML_OP_CPY:
  8689. case GGML_OP_DUP:
  8690. {
  8691. node->n_tasks = n_threads;
  8692. size_t cur = 0;
  8693. if (ggml_is_quantized(node->type)) {
  8694. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8695. }
  8696. work_size = MAX(work_size, cur);
  8697. } break;
  8698. case GGML_OP_ADD:
  8699. {
  8700. node->n_tasks = n_threads;
  8701. size_t cur = 0;
  8702. if (ggml_is_quantized(node->src0->type)) {
  8703. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8704. }
  8705. work_size = MAX(work_size, cur);
  8706. } break;
  8707. case GGML_OP_SUB:
  8708. case GGML_OP_MUL:
  8709. case GGML_OP_DIV:
  8710. case GGML_OP_SQR:
  8711. case GGML_OP_SQRT:
  8712. case GGML_OP_SUM:
  8713. case GGML_OP_MEAN:
  8714. case GGML_OP_REPEAT:
  8715. case GGML_OP_ABS:
  8716. case GGML_OP_SGN:
  8717. case GGML_OP_NEG:
  8718. case GGML_OP_STEP:
  8719. case GGML_OP_RELU:
  8720. {
  8721. node->n_tasks = 1;
  8722. } break;
  8723. case GGML_OP_GELU:
  8724. {
  8725. node->n_tasks = n_threads;
  8726. } break;
  8727. case GGML_OP_SILU:
  8728. {
  8729. node->n_tasks = n_threads;
  8730. } break;
  8731. case GGML_OP_NORM:
  8732. case GGML_OP_RMS_NORM:
  8733. {
  8734. node->n_tasks = n_threads;
  8735. } break;
  8736. case GGML_OP_MUL_MAT:
  8737. {
  8738. node->n_tasks = n_threads;
  8739. // TODO: use different scheduling for different matrix sizes
  8740. //const int nr0 = ggml_nrows(node->src0);
  8741. //const int nr1 = ggml_nrows(node->src1);
  8742. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8743. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8744. size_t cur = 0;
  8745. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8746. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8747. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8748. node->n_tasks = 1; // TODO: this actually is doing nothing
  8749. // the threads are still spinning
  8750. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8751. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8752. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8753. //printf("cur = %zu\n", cur);
  8754. } else {
  8755. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8756. }
  8757. #else
  8758. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8759. #endif
  8760. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8761. cur = 0;
  8762. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8763. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8764. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8765. node->n_tasks = 1;
  8766. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8767. } else
  8768. #endif
  8769. {
  8770. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8771. }
  8772. } else {
  8773. GGML_ASSERT(false);
  8774. }
  8775. work_size = MAX(work_size, cur);
  8776. } break;
  8777. case GGML_OP_SCALE:
  8778. {
  8779. node->n_tasks = n_threads;
  8780. } break;
  8781. case GGML_OP_CONT:
  8782. case GGML_OP_RESHAPE:
  8783. case GGML_OP_VIEW:
  8784. case GGML_OP_PERMUTE:
  8785. case GGML_OP_TRANSPOSE:
  8786. case GGML_OP_GET_ROWS:
  8787. case GGML_OP_DIAG_MASK_INF:
  8788. {
  8789. node->n_tasks = 1;
  8790. } break;
  8791. case GGML_OP_SOFT_MAX:
  8792. {
  8793. node->n_tasks = n_threads;
  8794. } break;
  8795. case GGML_OP_ROPE:
  8796. {
  8797. node->n_tasks = n_threads;
  8798. } break;
  8799. case GGML_OP_CONV_1D_1S:
  8800. case GGML_OP_CONV_1D_2S:
  8801. {
  8802. node->n_tasks = n_threads;
  8803. GGML_ASSERT(node->src0->ne[3] == 1);
  8804. GGML_ASSERT(node->src1->ne[2] == 1);
  8805. GGML_ASSERT(node->src1->ne[3] == 1);
  8806. size_t cur = 0;
  8807. const int nk = node->src0->ne[0];
  8808. if (node->src0->type == GGML_TYPE_F16 &&
  8809. node->src1->type == GGML_TYPE_F32) {
  8810. cur = sizeof(ggml_fp16_t)*(
  8811. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8812. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8813. );
  8814. } else if (node->src0->type == GGML_TYPE_F32 &&
  8815. node->src1->type == GGML_TYPE_F32) {
  8816. cur = sizeof(float)*(
  8817. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8818. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8819. );
  8820. } else {
  8821. GGML_ASSERT(false);
  8822. }
  8823. work_size = MAX(work_size, cur);
  8824. } break;
  8825. case GGML_OP_FLASH_ATTN:
  8826. {
  8827. node->n_tasks = n_threads;
  8828. size_t cur = 0;
  8829. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8830. if (node->src1->type == GGML_TYPE_F32) {
  8831. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8832. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8833. }
  8834. if (node->src1->type == GGML_TYPE_F16) {
  8835. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8836. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8837. }
  8838. work_size = MAX(work_size, cur);
  8839. } break;
  8840. case GGML_OP_FLASH_FF:
  8841. {
  8842. node->n_tasks = n_threads;
  8843. size_t cur = 0;
  8844. if (node->src1->type == GGML_TYPE_F32) {
  8845. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8846. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8847. }
  8848. if (node->src1->type == GGML_TYPE_F16) {
  8849. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8850. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8851. }
  8852. work_size = MAX(work_size, cur);
  8853. } break;
  8854. case GGML_OP_MAP_UNARY:
  8855. case GGML_OP_MAP_BINARY:
  8856. {
  8857. node->n_tasks = 1;
  8858. } break;
  8859. case GGML_OP_NONE:
  8860. {
  8861. node->n_tasks = 1;
  8862. } break;
  8863. case GGML_OP_COUNT:
  8864. {
  8865. GGML_ASSERT(false);
  8866. } break;
  8867. }
  8868. }
  8869. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8870. GGML_ASSERT(false); // TODO: better handling
  8871. }
  8872. if (work_size > 0 && cgraph->work == NULL) {
  8873. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8874. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8875. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8876. }
  8877. }
  8878. const int64_t perf_start_cycles = ggml_perf_cycles();
  8879. const int64_t perf_start_time_us = ggml_perf_time_us();
  8880. for (int i = 0; i < cgraph->n_nodes; i++) {
  8881. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8882. struct ggml_tensor * node = cgraph->nodes[i];
  8883. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8884. //if (node->grad == NULL && node->perf_runs > 0) {
  8885. // continue;
  8886. //}
  8887. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8888. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8889. // INIT
  8890. struct ggml_compute_params params = {
  8891. /*.type =*/ GGML_TASK_INIT,
  8892. /*.ith =*/ 0,
  8893. /*.nth =*/ node->n_tasks,
  8894. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8895. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8896. };
  8897. ggml_compute_forward(&params, node);
  8898. // COMPUTE
  8899. if (node->n_tasks > 1) {
  8900. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8901. atomic_store(&state_shared.has_work, false);
  8902. }
  8903. while (atomic_load(&state_shared.has_work)) {
  8904. ggml_lock_lock (&state_shared.spin);
  8905. ggml_lock_unlock(&state_shared.spin);
  8906. }
  8907. // launch thread pool
  8908. for (int j = 0; j < n_threads - 1; j++) {
  8909. workers[j].params = (struct ggml_compute_params) {
  8910. .type = GGML_TASK_COMPUTE,
  8911. .ith = j + 1,
  8912. .nth = node->n_tasks,
  8913. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8914. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8915. };
  8916. workers[j].node = node;
  8917. }
  8918. atomic_fetch_sub(&state_shared.n_ready, 1);
  8919. while (atomic_load(&state_shared.n_ready) > 0) {
  8920. ggml_lock_lock (&state_shared.spin);
  8921. ggml_lock_unlock(&state_shared.spin);
  8922. }
  8923. atomic_store(&state_shared.has_work, true);
  8924. }
  8925. params.type = GGML_TASK_COMPUTE;
  8926. ggml_compute_forward(&params, node);
  8927. // wait for thread pool
  8928. if (node->n_tasks > 1) {
  8929. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8930. atomic_store(&state_shared.has_work, false);
  8931. }
  8932. while (atomic_load(&state_shared.has_work)) {
  8933. ggml_lock_lock (&state_shared.spin);
  8934. ggml_lock_unlock(&state_shared.spin);
  8935. }
  8936. atomic_fetch_sub(&state_shared.n_ready, 1);
  8937. while (atomic_load(&state_shared.n_ready) != 0) {
  8938. ggml_lock_lock (&state_shared.spin);
  8939. ggml_lock_unlock(&state_shared.spin);
  8940. }
  8941. }
  8942. // FINALIZE
  8943. if (node->n_tasks > 1) {
  8944. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8945. atomic_store(&state_shared.has_work, false);
  8946. }
  8947. while (atomic_load(&state_shared.has_work)) {
  8948. ggml_lock_lock (&state_shared.spin);
  8949. ggml_lock_unlock(&state_shared.spin);
  8950. }
  8951. // launch thread pool
  8952. for (int j = 0; j < n_threads - 1; j++) {
  8953. workers[j].params = (struct ggml_compute_params) {
  8954. .type = GGML_TASK_FINALIZE,
  8955. .ith = j + 1,
  8956. .nth = node->n_tasks,
  8957. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8958. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8959. };
  8960. workers[j].node = node;
  8961. }
  8962. atomic_fetch_sub(&state_shared.n_ready, 1);
  8963. while (atomic_load(&state_shared.n_ready) > 0) {
  8964. ggml_lock_lock (&state_shared.spin);
  8965. ggml_lock_unlock(&state_shared.spin);
  8966. }
  8967. atomic_store(&state_shared.has_work, true);
  8968. }
  8969. params.type = GGML_TASK_FINALIZE;
  8970. ggml_compute_forward(&params, node);
  8971. // wait for thread pool
  8972. if (node->n_tasks > 1) {
  8973. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8974. atomic_store(&state_shared.has_work, false);
  8975. }
  8976. while (atomic_load(&state_shared.has_work)) {
  8977. ggml_lock_lock (&state_shared.spin);
  8978. ggml_lock_unlock(&state_shared.spin);
  8979. }
  8980. atomic_fetch_sub(&state_shared.n_ready, 1);
  8981. while (atomic_load(&state_shared.n_ready) != 0) {
  8982. ggml_lock_lock (&state_shared.spin);
  8983. ggml_lock_unlock(&state_shared.spin);
  8984. }
  8985. }
  8986. // performance stats (node)
  8987. {
  8988. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8989. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8990. node->perf_runs++;
  8991. node->perf_cycles += perf_cycles_cur;
  8992. node->perf_time_us += perf_time_us_cur;
  8993. }
  8994. }
  8995. // join thread pool
  8996. if (n_threads > 1) {
  8997. atomic_store(&state_shared.stop, true);
  8998. atomic_store(&state_shared.has_work, true);
  8999. for (int j = 0; j < n_threads - 1; j++) {
  9000. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9001. GGML_ASSERT(rc == 0);
  9002. UNUSED(rc);
  9003. }
  9004. ggml_lock_destroy(&state_shared.spin);
  9005. }
  9006. // performance stats (graph)
  9007. {
  9008. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9009. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9010. cgraph->perf_runs++;
  9011. cgraph->perf_cycles += perf_cycles_cur;
  9012. cgraph->perf_time_us += perf_time_us_cur;
  9013. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9014. __func__, cgraph->perf_runs,
  9015. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9016. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9017. (double) perf_time_us_cur / 1000.0,
  9018. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9019. }
  9020. }
  9021. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9022. for (int i = 0; i < cgraph->n_nodes; i++) {
  9023. struct ggml_tensor * grad = cgraph->grads[i];
  9024. if (grad) {
  9025. ggml_set_zero(grad);
  9026. }
  9027. }
  9028. }
  9029. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9030. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9031. GGML_PRINT("=== GRAPH ===\n");
  9032. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9033. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9034. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9035. for (int i = 0; i < cgraph->n_nodes; i++) {
  9036. struct ggml_tensor * node = cgraph->nodes[i];
  9037. perf_total_per_op_us[node->op] += node->perf_time_us;
  9038. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9039. i,
  9040. node->ne[0], node->ne[1], node->ne[2],
  9041. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9042. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9043. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9044. (double) node->perf_time_us / 1000.0,
  9045. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9046. }
  9047. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9048. for (int i = 0; i < cgraph->n_leafs; i++) {
  9049. struct ggml_tensor * node = cgraph->leafs[i];
  9050. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  9051. i,
  9052. node->ne[0], node->ne[1],
  9053. GGML_OP_LABEL[node->op]);
  9054. }
  9055. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9056. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9057. }
  9058. GGML_PRINT("========================================\n");
  9059. }
  9060. // check if node is part of the graph
  9061. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9062. if (cgraph == NULL) {
  9063. return true;
  9064. }
  9065. for (int i = 0; i < cgraph->n_nodes; i++) {
  9066. if (cgraph->nodes[i] == node) {
  9067. return true;
  9068. }
  9069. }
  9070. return false;
  9071. }
  9072. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9073. for (int i = 0; i < cgraph->n_nodes; i++) {
  9074. struct ggml_tensor * parent = cgraph->nodes[i];
  9075. if (parent->grad == node) {
  9076. return parent;
  9077. }
  9078. }
  9079. return NULL;
  9080. }
  9081. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9082. char color[16];
  9083. FILE * fp = fopen(filename, "w");
  9084. GGML_ASSERT(fp);
  9085. fprintf(fp, "digraph G {\n");
  9086. fprintf(fp, " newrank = true;\n");
  9087. fprintf(fp, " rankdir = LR;\n");
  9088. for (int i = 0; i < gb->n_nodes; i++) {
  9089. struct ggml_tensor * node = gb->nodes[i];
  9090. if (ggml_graph_get_parent(gb, node) != NULL) {
  9091. continue;
  9092. }
  9093. if (node->is_param) {
  9094. snprintf(color, sizeof(color), "yellow");
  9095. } else if (node->grad) {
  9096. if (ggml_graph_find(gf, node)) {
  9097. snprintf(color, sizeof(color), "green");
  9098. } else {
  9099. snprintf(color, sizeof(color), "lightblue");
  9100. }
  9101. } else {
  9102. snprintf(color, sizeof(color), "white");
  9103. }
  9104. fprintf(fp, " \"%p\" [ \
  9105. style = filled; fillcolor = %s; shape = record; \
  9106. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9107. (void *) node, color,
  9108. i, node->ne[0], node->ne[1],
  9109. GGML_OP_SYMBOL[node->op]);
  9110. if (node->grad) {
  9111. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9112. } else {
  9113. fprintf(fp, "\"; ]\n");
  9114. }
  9115. }
  9116. for (int i = 0; i < gb->n_leafs; i++) {
  9117. struct ggml_tensor * node = gb->leafs[i];
  9118. snprintf(color, sizeof(color), "pink");
  9119. if (ggml_nelements(node) == 1) {
  9120. fprintf(fp, " \"%p\" [ \
  9121. style = filled; fillcolor = %s; shape = record; \
  9122. label=\"<x>%.1e\"; ]\n",
  9123. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9124. } else {
  9125. fprintf(fp, " \"%p\" [ \
  9126. style = filled; fillcolor = %s; shape = record; \
  9127. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9128. (void *) node, color,
  9129. i, node->ne[0], node->ne[1]);
  9130. }
  9131. }
  9132. for (int i = 0; i < gb->n_nodes; i++) {
  9133. struct ggml_tensor * node = gb->nodes[i];
  9134. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9135. if (node->src0) {
  9136. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9137. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9138. parent0 ? (void *) parent0 : (void *) node->src0,
  9139. parent0 ? "g" : "x",
  9140. parent ? (void *) parent : (void *) node,
  9141. parent ? "g" : "x",
  9142. parent ? "empty" : "vee",
  9143. parent ? "dashed" : "solid");
  9144. }
  9145. if (node->src1) {
  9146. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9147. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9148. parent1 ? (void *) parent1 : (void *) node->src1,
  9149. parent1 ? "g" : "x",
  9150. parent ? (void *) parent : (void *) node,
  9151. parent ? "g" : "x",
  9152. parent ? "empty" : "vee",
  9153. parent ? "dashed" : "solid");
  9154. }
  9155. }
  9156. for (int i = 0; i < gb->n_leafs; i++) {
  9157. struct ggml_tensor * node = gb->leafs[i];
  9158. if (node->src0) {
  9159. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9160. (void *) node->src0, "x",
  9161. (void *) node, "x");
  9162. }
  9163. if (node->src1) {
  9164. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9165. (void *) node->src1, "x",
  9166. (void *) node, "x");
  9167. }
  9168. }
  9169. fprintf(fp, "}\n");
  9170. fclose(fp);
  9171. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9172. }
  9173. ////////////////////////////////////////////////////////////////////////////////
  9174. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9175. int i = 0;
  9176. for (int p = 0; p < np; ++p) {
  9177. const int64_t ne = ggml_nelements(ps[p]) ;
  9178. // TODO: add function to set tensor from array
  9179. for (int64_t j = 0; j < ne; ++j) {
  9180. ggml_set_f32_1d(ps[p], j, x[i++]);
  9181. }
  9182. }
  9183. }
  9184. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9185. int i = 0;
  9186. for (int p = 0; p < np; ++p) {
  9187. const int64_t ne = ggml_nelements(ps[p]) ;
  9188. // TODO: add function to get all elements at once
  9189. for (int64_t j = 0; j < ne; ++j) {
  9190. x[i++] = ggml_get_f32_1d(ps[p], j);
  9191. }
  9192. }
  9193. }
  9194. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9195. int i = 0;
  9196. for (int p = 0; p < np; ++p) {
  9197. const int64_t ne = ggml_nelements(ps[p]) ;
  9198. // TODO: add function to get all elements at once
  9199. for (int64_t j = 0; j < ne; ++j) {
  9200. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9201. }
  9202. }
  9203. }
  9204. //
  9205. // ADAM
  9206. //
  9207. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9208. //
  9209. static enum ggml_opt_result ggml_opt_adam(
  9210. struct ggml_context * ctx,
  9211. struct ggml_opt_params params,
  9212. struct ggml_tensor * f,
  9213. struct ggml_cgraph * gf,
  9214. struct ggml_cgraph * gb) {
  9215. GGML_ASSERT(ggml_is_scalar(f));
  9216. gf->n_threads = params.n_threads;
  9217. gb->n_threads = params.n_threads;
  9218. // these will store the parameters we want to optimize
  9219. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9220. int np = 0;
  9221. int nx = 0;
  9222. for (int i = 0; i < gf->n_nodes; ++i) {
  9223. if (gf->nodes[i]->is_param) {
  9224. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9225. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9226. ps[np++] = gf->nodes[i];
  9227. nx += ggml_nelements(gf->nodes[i]);
  9228. }
  9229. }
  9230. // constants
  9231. const float alpha = params.adam.alpha;
  9232. const float beta1 = params.adam.beta1;
  9233. const float beta2 = params.adam.beta2;
  9234. const float eps = params.adam.eps;
  9235. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9236. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9237. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9238. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9239. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9240. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9241. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9242. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9243. // initialize
  9244. ggml_vec_set_f32(nx, m, 0.0f);
  9245. ggml_vec_set_f32(nx, v, 0.0f);
  9246. // update view
  9247. ggml_opt_get_params(np, ps, x);
  9248. // compute the function value
  9249. ggml_graph_reset (gf);
  9250. ggml_set_f32 (f->grad, 1.0f);
  9251. ggml_graph_compute(ctx, gb);
  9252. float fx_prev = ggml_get_f32_1d(f, 0);
  9253. if (pf) {
  9254. pf[0] = fx_prev;
  9255. }
  9256. int n_no_improvement = 0;
  9257. float fx_best = fx_prev;
  9258. // run the optimizer
  9259. for (int t = 0; t < params.adam.n_iter; ++t) {
  9260. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9261. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9262. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9263. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9264. for (int i = 0; i < np; ++i) {
  9265. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9266. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9267. }
  9268. const int64_t t_start_wall = ggml_time_us();
  9269. const int64_t t_start_cpu = ggml_cycles();
  9270. UNUSED(t_start_wall);
  9271. UNUSED(t_start_cpu);
  9272. {
  9273. // update the gradient
  9274. ggml_opt_get_grad(np, ps, g1);
  9275. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9276. ggml_vec_scale_f32(nx, m, beta1);
  9277. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9278. // g2 = g1^2
  9279. ggml_vec_sqr_f32 (nx, g2, g1);
  9280. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9281. ggml_vec_scale_f32(nx, v, beta2);
  9282. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9283. // m^hat = m_t / (1 - beta1^t)
  9284. // v^hat = v_t / (1 - beta2^t)
  9285. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9286. ggml_vec_cpy_f32 (nx, mh, m);
  9287. ggml_vec_cpy_f32 (nx, vh, v);
  9288. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9289. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9290. ggml_vec_sqrt_f32 (nx, vh, vh);
  9291. ggml_vec_acc1_f32 (nx, vh, eps);
  9292. ggml_vec_div_f32 (nx, mh, mh, vh);
  9293. ggml_vec_sub_f32 (nx, x, x, mh);
  9294. // update the parameters
  9295. ggml_opt_set_params(np, ps, x);
  9296. }
  9297. ggml_graph_reset (gf);
  9298. ggml_set_f32 (f->grad, 1.0f);
  9299. ggml_graph_compute(ctx, gb);
  9300. const float fx = ggml_get_f32_1d(f, 0);
  9301. // check convergence
  9302. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9303. GGML_PRINT_DEBUG("converged\n");
  9304. return GGML_OPT_OK;
  9305. }
  9306. // delta-based convergence test
  9307. if (pf != NULL) {
  9308. // need at least params.past iterations to start checking for convergence
  9309. if (params.past <= t) {
  9310. const float rate = (pf[t%params.past] - fx)/fx;
  9311. if (fabsf(rate) < params.delta) {
  9312. return GGML_OPT_OK;
  9313. }
  9314. }
  9315. pf[t%params.past] = fx;
  9316. }
  9317. // check for improvement
  9318. if (params.max_no_improvement > 0) {
  9319. if (fx_best > fx) {
  9320. fx_best = fx;
  9321. n_no_improvement = 0;
  9322. } else {
  9323. ++n_no_improvement;
  9324. if (n_no_improvement >= params.max_no_improvement) {
  9325. return GGML_OPT_OK;
  9326. }
  9327. }
  9328. }
  9329. fx_prev = fx;
  9330. {
  9331. const int64_t t_end_cpu = ggml_cycles();
  9332. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9333. UNUSED(t_end_cpu);
  9334. const int64_t t_end_wall = ggml_time_us();
  9335. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9336. UNUSED(t_end_wall);
  9337. }
  9338. }
  9339. return GGML_OPT_DID_NOT_CONVERGE;
  9340. }
  9341. //
  9342. // L-BFGS
  9343. //
  9344. // the L-BFGS implementation below is based on the following implementation:
  9345. //
  9346. // https://github.com/chokkan/liblbfgs
  9347. //
  9348. struct ggml_lbfgs_iteration_data {
  9349. float alpha;
  9350. float ys;
  9351. float * s;
  9352. float * y;
  9353. };
  9354. static enum ggml_opt_result linesearch_backtracking(
  9355. struct ggml_context * ctx,
  9356. const struct ggml_opt_params * params,
  9357. int nx,
  9358. float * x,
  9359. float * fx,
  9360. float * g,
  9361. float * d,
  9362. float * step,
  9363. const float * xp,
  9364. struct ggml_tensor * f,
  9365. struct ggml_cgraph * gf,
  9366. struct ggml_cgraph * gb,
  9367. const int np,
  9368. struct ggml_tensor * ps[]) {
  9369. int count = 0;
  9370. float width = 0.0f;
  9371. float dg = 0.0f;
  9372. float finit = 0.0f;
  9373. float dginit = 0.0f;
  9374. float dgtest = 0.0f;
  9375. const float dec = 0.5f;
  9376. const float inc = 2.1f;
  9377. if (*step <= 0.f) {
  9378. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9379. }
  9380. // compute the initial gradient in the search direction
  9381. ggml_vec_dot_f32(nx, &dginit, g, d);
  9382. // make sure that d points to a descent direction
  9383. if (0 < dginit) {
  9384. return GGML_LINESEARCH_FAIL;
  9385. }
  9386. // initialize local variables
  9387. finit = *fx;
  9388. dgtest = params->lbfgs.ftol*dginit;
  9389. while (true) {
  9390. ggml_vec_cpy_f32(nx, x, xp);
  9391. ggml_vec_mad_f32(nx, x, d, *step);
  9392. // evaluate the function and gradient values
  9393. {
  9394. ggml_opt_set_params(np, ps, x);
  9395. ggml_graph_reset (gf);
  9396. ggml_set_f32 (f->grad, 1.0f);
  9397. ggml_graph_compute(ctx, gb);
  9398. ggml_opt_get_grad(np, ps, g);
  9399. *fx = ggml_get_f32_1d(f, 0);
  9400. }
  9401. ++count;
  9402. if (*fx > finit + (*step)*dgtest) {
  9403. width = dec;
  9404. } else {
  9405. // Armijo condition is satisfied
  9406. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9407. return count;
  9408. }
  9409. ggml_vec_dot_f32(nx, &dg, g, d);
  9410. // check the Wolfe condition
  9411. if (dg < params->lbfgs.wolfe * dginit) {
  9412. width = inc;
  9413. } else {
  9414. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9415. // regular Wolfe conditions
  9416. return count;
  9417. }
  9418. if(dg > -params->lbfgs.wolfe*dginit) {
  9419. width = dec;
  9420. } else {
  9421. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9422. return count;
  9423. }
  9424. return count;
  9425. }
  9426. }
  9427. if (*step < params->lbfgs.min_step) {
  9428. return GGML_LINESEARCH_MINIMUM_STEP;
  9429. }
  9430. if (*step > params->lbfgs.max_step) {
  9431. return GGML_LINESEARCH_MAXIMUM_STEP;
  9432. }
  9433. if (params->lbfgs.max_linesearch <= count) {
  9434. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9435. }
  9436. (*step) *= width;
  9437. }
  9438. return GGML_LINESEARCH_FAIL;
  9439. }
  9440. static enum ggml_opt_result ggml_opt_lbfgs(
  9441. struct ggml_context * ctx,
  9442. struct ggml_opt_params params,
  9443. struct ggml_tensor * f,
  9444. struct ggml_cgraph * gf,
  9445. struct ggml_cgraph * gb) {
  9446. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9447. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9448. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9449. return GGML_OPT_INVALID_WOLFE;
  9450. }
  9451. }
  9452. gf->n_threads = params.n_threads;
  9453. gb->n_threads = params.n_threads;
  9454. const int m = params.lbfgs.m;
  9455. // these will store the parameters we want to optimize
  9456. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9457. int np = 0;
  9458. int nx = 0;
  9459. for (int i = 0; i < gf->n_nodes; ++i) {
  9460. if (gf->nodes[i]->is_param) {
  9461. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9462. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9463. ps[np++] = gf->nodes[i];
  9464. nx += ggml_nelements(gf->nodes[i]);
  9465. }
  9466. }
  9467. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9468. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9469. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9470. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9471. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9472. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9473. float fx = 0.0f; // cost function value
  9474. float xnorm = 0.0f; // ||x||
  9475. float gnorm = 0.0f; // ||g||
  9476. float step = 0.0f;
  9477. // initialize x from the graph nodes
  9478. ggml_opt_get_params(np, ps, x);
  9479. // the L-BFGS memory
  9480. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9481. for (int i = 0; i < m; ++i) {
  9482. lm[i].alpha = 0.0f;
  9483. lm[i].ys = 0.0f;
  9484. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9485. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9486. }
  9487. // evaluate the function value and its gradient
  9488. {
  9489. ggml_opt_set_params(np, ps, x);
  9490. ggml_graph_reset (gf);
  9491. ggml_set_f32 (f->grad, 1.0f);
  9492. ggml_graph_compute(ctx, gb);
  9493. ggml_opt_get_grad(np, ps, g);
  9494. fx = ggml_get_f32_1d(f, 0);
  9495. }
  9496. if (pf) {
  9497. pf[0] = fx;
  9498. }
  9499. float fx_best = fx;
  9500. // search direction = -gradient
  9501. ggml_vec_neg_f32(nx, d, g);
  9502. // ||x||, ||g||
  9503. ggml_vec_norm_f32(nx, &xnorm, x);
  9504. ggml_vec_norm_f32(nx, &gnorm, g);
  9505. if (xnorm < 1.0f) {
  9506. xnorm = 1.0f;
  9507. }
  9508. // already optimized
  9509. if (gnorm/xnorm <= params.lbfgs.eps) {
  9510. return GGML_OPT_OK;
  9511. }
  9512. // initial step
  9513. ggml_vec_norm_inv_f32(nx, &step, d);
  9514. int j = 0;
  9515. int k = 1;
  9516. int ls = 0;
  9517. int end = 0;
  9518. int bound = 0;
  9519. int n_no_improvement = 0;
  9520. float ys = 0.0f;
  9521. float yy = 0.0f;
  9522. float beta = 0.0f;
  9523. while (true) {
  9524. // store the current position and gradient vectors
  9525. ggml_vec_cpy_f32(nx, xp, x);
  9526. ggml_vec_cpy_f32(nx, gp, g);
  9527. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9528. if (ls < 0) {
  9529. // linesearch failed - go back to the previous point and return
  9530. ggml_vec_cpy_f32(nx, x, xp);
  9531. ggml_vec_cpy_f32(nx, g, gp);
  9532. return ls;
  9533. }
  9534. ggml_vec_norm_f32(nx, &xnorm, x);
  9535. ggml_vec_norm_f32(nx, &gnorm, g);
  9536. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9537. if (xnorm < 1.0f) {
  9538. xnorm = 1.0f;
  9539. }
  9540. if (gnorm/xnorm <= params.lbfgs.eps) {
  9541. // converged
  9542. return GGML_OPT_OK;
  9543. }
  9544. // delta-based convergence test
  9545. if (pf != NULL) {
  9546. // need at least params.past iterations to start checking for convergence
  9547. if (params.past <= k) {
  9548. const float rate = (pf[k%params.past] - fx)/fx;
  9549. if (fabsf(rate) < params.delta) {
  9550. return GGML_OPT_OK;
  9551. }
  9552. }
  9553. pf[k%params.past] = fx;
  9554. }
  9555. // check for improvement
  9556. if (params.max_no_improvement > 0) {
  9557. if (fx < fx_best) {
  9558. fx_best = fx;
  9559. n_no_improvement = 0;
  9560. } else {
  9561. n_no_improvement++;
  9562. if (n_no_improvement >= params.max_no_improvement) {
  9563. return GGML_OPT_OK;
  9564. }
  9565. }
  9566. }
  9567. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9568. // reached the maximum number of iterations
  9569. return GGML_OPT_DID_NOT_CONVERGE;
  9570. }
  9571. // update vectors s and y:
  9572. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9573. // y_{k+1} = g_{k+1} - g_{k}.
  9574. //
  9575. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9576. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9577. // compute scalars ys and yy:
  9578. // ys = y^t \cdot s -> 1 / \rho.
  9579. // yy = y^t \cdot y.
  9580. //
  9581. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9582. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9583. lm[end].ys = ys;
  9584. // find new search direction
  9585. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9586. bound = (m <= k) ? m : k;
  9587. k++;
  9588. end = (end + 1)%m;
  9589. // initialize search direction with -g
  9590. ggml_vec_neg_f32(nx, d, g);
  9591. j = end;
  9592. for (int i = 0; i < bound; ++i) {
  9593. j = (j + m - 1) % m;
  9594. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9595. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9596. lm[j].alpha /= lm[j].ys;
  9597. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9598. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9599. }
  9600. ggml_vec_scale_f32(nx, d, ys/yy);
  9601. for (int i = 0; i < bound; ++i) {
  9602. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9603. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9604. beta /= lm[j].ys;
  9605. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9606. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9607. j = (j + 1)%m;
  9608. }
  9609. step = 1.0;
  9610. }
  9611. return GGML_OPT_DID_NOT_CONVERGE;
  9612. }
  9613. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9614. struct ggml_opt_params result;
  9615. switch (type) {
  9616. case GGML_OPT_ADAM:
  9617. {
  9618. result = (struct ggml_opt_params) {
  9619. .type = GGML_OPT_ADAM,
  9620. .n_threads = 1,
  9621. .past = 0,
  9622. .delta = 1e-5f,
  9623. .max_no_improvement = 100,
  9624. .print_forward_graph = true,
  9625. .print_backward_graph = true,
  9626. .adam = {
  9627. .n_iter = 10000,
  9628. .alpha = 0.001f,
  9629. .beta1 = 0.9f,
  9630. .beta2 = 0.999f,
  9631. .eps = 1e-8f,
  9632. .eps_f = 1e-5f,
  9633. .eps_g = 1e-3f,
  9634. },
  9635. };
  9636. } break;
  9637. case GGML_OPT_LBFGS:
  9638. {
  9639. result = (struct ggml_opt_params) {
  9640. .type = GGML_OPT_LBFGS,
  9641. .n_threads = 1,
  9642. .past = 0,
  9643. .delta = 1e-5f,
  9644. .max_no_improvement = 0,
  9645. .print_forward_graph = true,
  9646. .print_backward_graph = true,
  9647. .lbfgs = {
  9648. .m = 6,
  9649. .n_iter = 100,
  9650. .max_linesearch = 20,
  9651. .eps = 1e-5f,
  9652. .ftol = 1e-4f,
  9653. .wolfe = 0.9f,
  9654. .min_step = 1e-20f,
  9655. .max_step = 1e+20f,
  9656. .linesearch = GGML_LINESEARCH_DEFAULT,
  9657. },
  9658. };
  9659. } break;
  9660. }
  9661. return result;
  9662. }
  9663. enum ggml_opt_result ggml_opt(
  9664. struct ggml_context * ctx,
  9665. struct ggml_opt_params params,
  9666. struct ggml_tensor * f) {
  9667. bool free_ctx = false;
  9668. if (ctx == NULL) {
  9669. struct ggml_init_params params_ctx = {
  9670. .mem_size = 16*1024*1024,
  9671. .mem_buffer = NULL,
  9672. .no_alloc = false,
  9673. };
  9674. ctx = ggml_init(params_ctx);
  9675. if (ctx == NULL) {
  9676. return GGML_OPT_NO_CONTEXT;
  9677. }
  9678. free_ctx = true;
  9679. }
  9680. enum ggml_opt_result result = GGML_OPT_OK;
  9681. // build forward + backward compute graphs
  9682. struct ggml_cgraph gf = ggml_build_forward (f);
  9683. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9684. switch (params.type) {
  9685. case GGML_OPT_ADAM:
  9686. {
  9687. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9688. } break;
  9689. case GGML_OPT_LBFGS:
  9690. {
  9691. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9692. } break;
  9693. }
  9694. if (params.print_forward_graph) {
  9695. ggml_graph_print (&gf);
  9696. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9697. }
  9698. if (params.print_backward_graph) {
  9699. ggml_graph_print (&gb);
  9700. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9701. }
  9702. if (free_ctx) {
  9703. ggml_free(ctx);
  9704. }
  9705. return result;
  9706. }
  9707. ////////////////////////////////////////////////////////////////////////////////
  9708. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9709. assert(k % QK4_0 == 0);
  9710. const int nb = k / QK4_0;
  9711. for (int j = 0; j < n; j += k) {
  9712. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9713. quantize_row_q4_0_reference(src + j, y, k);
  9714. for (int i = 0; i < nb; i++) {
  9715. for (int l = 0; l < QK4_0; l += 2) {
  9716. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9717. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9718. hist[vi0]++;
  9719. hist[vi1]++;
  9720. }
  9721. }
  9722. }
  9723. return (n/QK4_0*sizeof(block_q4_0));
  9724. }
  9725. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9726. assert(k % QK4_1 == 0);
  9727. const int nb = k / QK4_1;
  9728. for (int j = 0; j < n; j += k) {
  9729. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9730. quantize_row_q4_1_reference(src + j, y, k);
  9731. for (int i = 0; i < nb; i++) {
  9732. for (int l = 0; l < QK4_1; l += 2) {
  9733. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9734. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9735. hist[vi0]++;
  9736. hist[vi1]++;
  9737. }
  9738. }
  9739. }
  9740. return (n/QK4_1*sizeof(block_q4_1));
  9741. }
  9742. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9743. assert(k % QK4_2 == 0);
  9744. const int nb = k / QK4_2;
  9745. for (int j = 0; j < n; j += k) {
  9746. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9747. //quantize_row_q4_2_reference(src + j, y, k);
  9748. quantize_row_q4_2_rmse(src + j, y, k);
  9749. for (int i = 0; i < nb; i++) {
  9750. for (int l = 0; l < QK4_2; l += 2) {
  9751. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9752. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9753. hist[vi0]++;
  9754. hist[vi1]++;
  9755. }
  9756. }
  9757. }
  9758. return (n/QK4_2*sizeof(block_q4_2));
  9759. }
  9760. ////////////////////////////////////////////////////////////////////////////////
  9761. int ggml_cpu_has_avx(void) {
  9762. #if defined(__AVX__)
  9763. return 1;
  9764. #else
  9765. return 0;
  9766. #endif
  9767. }
  9768. int ggml_cpu_has_avx2(void) {
  9769. #if defined(__AVX2__)
  9770. return 1;
  9771. #else
  9772. return 0;
  9773. #endif
  9774. }
  9775. int ggml_cpu_has_avx512(void) {
  9776. #if defined(__AVX512F__)
  9777. return 1;
  9778. #else
  9779. return 0;
  9780. #endif
  9781. }
  9782. int ggml_cpu_has_avx512_vbmi(void) {
  9783. #if defined(__AVX512VBMI__)
  9784. return 1;
  9785. #else
  9786. return 0;
  9787. #endif
  9788. }
  9789. int ggml_cpu_has_avx512_vnni(void) {
  9790. #if defined(__AVX512VNNI__)
  9791. return 1;
  9792. #else
  9793. return 0;
  9794. #endif
  9795. }
  9796. int ggml_cpu_has_fma(void) {
  9797. #if defined(__FMA__)
  9798. return 1;
  9799. #else
  9800. return 0;
  9801. #endif
  9802. }
  9803. int ggml_cpu_has_neon(void) {
  9804. #if defined(__ARM_NEON)
  9805. return 1;
  9806. #else
  9807. return 0;
  9808. #endif
  9809. }
  9810. int ggml_cpu_has_arm_fma(void) {
  9811. #if defined(__ARM_FEATURE_FMA)
  9812. return 1;
  9813. #else
  9814. return 0;
  9815. #endif
  9816. }
  9817. int ggml_cpu_has_f16c(void) {
  9818. #if defined(__F16C__)
  9819. return 1;
  9820. #else
  9821. return 0;
  9822. #endif
  9823. }
  9824. int ggml_cpu_has_fp16_va(void) {
  9825. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  9826. return 1;
  9827. #else
  9828. return 0;
  9829. #endif
  9830. }
  9831. int ggml_cpu_has_wasm_simd(void) {
  9832. #if defined(__wasm_simd128__)
  9833. return 1;
  9834. #else
  9835. return 0;
  9836. #endif
  9837. }
  9838. int ggml_cpu_has_blas(void) {
  9839. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  9840. return 1;
  9841. #else
  9842. return 0;
  9843. #endif
  9844. }
  9845. int ggml_cpu_has_cublas(void) {
  9846. #if defined(GGML_USE_CUBLAS)
  9847. return 1;
  9848. #else
  9849. return 0;
  9850. #endif
  9851. }
  9852. int ggml_cpu_has_sse3(void) {
  9853. #if defined(__SSE3__)
  9854. return 1;
  9855. #else
  9856. return 0;
  9857. #endif
  9858. }
  9859. int ggml_cpu_has_vsx(void) {
  9860. #if defined(__POWER9_VECTOR__)
  9861. return 1;
  9862. #else
  9863. return 0;
  9864. #endif
  9865. }
  9866. ////////////////////////////////////////////////////////////////////////////////