test-backend-ops.cpp 191 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdint>
  23. #include <cstdio>
  24. #include <cstdlib>
  25. #include <cstring>
  26. #include <future>
  27. #include <memory>
  28. #include <random>
  29. #include <regex>
  30. #include <string>
  31. #include <thread>
  32. #include <vector>
  33. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  34. size_t nels = ggml_nelements(tensor);
  35. std::vector<float> data(nels);
  36. {
  37. // parallel initialization
  38. static const size_t n_threads = std::thread::hardware_concurrency();
  39. // static RNG initialization (revisit if n_threads stops being constant)
  40. static std::vector<std::default_random_engine> generators = []() {
  41. std::random_device rd;
  42. std::vector<std::default_random_engine> vec;
  43. vec.reserve(n_threads);
  44. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  45. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  46. return vec;
  47. }();
  48. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  49. std::uniform_real_distribution<float> distribution(min, max);
  50. auto & gen = generators[ith];
  51. for (size_t i = start; i < end; i++) {
  52. data[i] = distribution(gen);
  53. }
  54. };
  55. std::vector<std::future<void>> tasks;
  56. tasks.reserve(n_threads);
  57. for (size_t i = 0; i < n_threads; i++) {
  58. size_t start = i*nels/n_threads;
  59. size_t end = (i+1)*nels/n_threads;
  60. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  61. }
  62. for (auto & t : tasks) {
  63. t.get();
  64. }
  65. }
  66. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  67. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  68. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  69. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  70. // dummy importance matrix
  71. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  72. const float * im = imatrix.data();
  73. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  74. // when the imatrix is optional, we want to test both quantization with and without imatrix
  75. // use one of the random numbers to decide
  76. if (data[0] > 0.5f*(min + max)) {
  77. im = nullptr;
  78. }
  79. }
  80. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  81. {
  82. // parallel quantization by block
  83. size_t blck_size = ggml_blck_size(tensor->type);
  84. size_t n_blocks = nels / blck_size;
  85. auto quantize_thread = [&](size_t start, size_t end) {
  86. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  87. start * blck_size, end - start, blck_size, im);
  88. };
  89. const size_t min_blocks_per_thread = 1;
  90. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  91. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  92. std::vector<std::future<void>> tasks;
  93. tasks.reserve(n_threads);
  94. for (size_t i = 0; i < n_threads; i++) {
  95. size_t start = i*n_blocks/n_threads;
  96. size_t end = (i+1)*n_blocks/n_threads;
  97. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  98. }
  99. for (auto & t : tasks) {
  100. t.get();
  101. }
  102. }
  103. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  104. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  105. // This is going to create some weird integers though.
  106. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  107. } else if (tensor->type == GGML_TYPE_I64) {
  108. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  109. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  110. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  111. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  112. } else {
  113. GGML_ABORT("fatal error");
  114. }
  115. }
  116. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  117. std::vector<float> tv;
  118. tv.reserve(ggml_nelements(t));
  119. std::vector<uint8_t> buf(ggml_nbytes(t));
  120. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  121. const auto * tt = ggml_get_type_traits(t->type);
  122. size_t bs = ggml_blck_size(t->type);
  123. std::vector<float> vq(ggml_blck_size(t->type));
  124. bool quantized = ggml_is_quantized(t->type);
  125. // access elements by index to avoid gaps in views
  126. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  127. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  128. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  129. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  130. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  131. if (t->type == GGML_TYPE_F16) {
  132. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  133. } else if (t->type == GGML_TYPE_BF16) {
  134. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  135. } else if (t->type == GGML_TYPE_F32) {
  136. tv.push_back(*(float *) &buf[i]);
  137. } else if (t->type == GGML_TYPE_I64) {
  138. tv.push_back((float)*(int64_t *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I32) {
  140. tv.push_back((float)*(int32_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I16) {
  142. tv.push_back((float)*(int16_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I8) {
  144. tv.push_back((float)*(int8_t *) &buf[i]);
  145. } else if (quantized) {
  146. tt->to_float(&buf[i], vq.data(), bs);
  147. tv.insert(tv.end(), vq.begin(), vq.end());
  148. } else {
  149. GGML_ABORT("fatal error");
  150. }
  151. }
  152. }
  153. }
  154. }
  155. return tv;
  156. }
  157. // normalized mean squared error = mse(a, b) / mse(a, 0)
  158. static double nmse(const float * a, const float * b, size_t n) {
  159. double mse_a_b = 0.0;
  160. double mse_a_0 = 0.0;
  161. for (size_t i = 0; i < n; i++) {
  162. float a_i = a[i];
  163. float b_i = b[i];
  164. mse_a_b += (a_i - b_i) * (a_i - b_i);
  165. mse_a_0 += a_i * a_i;
  166. }
  167. return mse_a_b / mse_a_0;
  168. }
  169. // maximum absolute asymmetry between a and b
  170. // asymmetry: (a - b) / (a + b)
  171. // This is more stable than relative error if one of the values fluctuates towards zero.
  172. // n: number of values to compare.
  173. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  174. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  175. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  176. double sum = 0.0f;
  177. size_t nvalid = 0;
  178. for (size_t i = 0; i < n; i++) {
  179. if (!expected_vals.empty()) {
  180. bool matches_any = false;
  181. for (const float & ev : expected_vals) {
  182. if (fabsf(a[i] - ev) < 1e-3f) {
  183. matches_any = true;
  184. break;
  185. }
  186. }
  187. if (!matches_any) {
  188. continue;
  189. }
  190. }
  191. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  192. sum += fabsf(asymm);
  193. nvalid++;
  194. }
  195. return sum/nvalid;
  196. }
  197. // utils for printing the variables of the test cases
  198. template<typename T>
  199. static std::string var_to_str(const T & x) {
  200. return std::to_string(x);
  201. }
  202. template<typename T, size_t N>
  203. static std::string var_to_str(const T (&x)[N]) {
  204. std::string s = "[";
  205. for (size_t i = 0; i < N; i++) {
  206. if (i > 0) {
  207. s += ",";
  208. }
  209. s += var_to_str(x[i]);
  210. }
  211. s += "]";
  212. return s;
  213. }
  214. template<typename T, size_t N>
  215. static std::string var_to_str(const std::array<T, N> & x) {
  216. std::string s = "[";
  217. for (size_t i = 0; i < N; i++) {
  218. if (i > 0) {
  219. s += ",";
  220. }
  221. s += var_to_str(x[i]);
  222. }
  223. s += "]";
  224. return s;
  225. }
  226. static std::string var_to_str(ggml_type type) {
  227. return ggml_type_name(type);
  228. }
  229. static std::string var_to_str(ggml_prec prec) {
  230. return prec == GGML_PREC_F32 ? "f32" : "def";
  231. }
  232. static std::string var_to_str(ggml_op_pool pool) {
  233. switch (pool) {
  234. case GGML_OP_POOL_AVG: return "avg";
  235. case GGML_OP_POOL_MAX: return "max";
  236. default: return std::to_string(pool);
  237. }
  238. }
  239. static std::string var_to_str(ggml_scale_mode mode) {
  240. switch (mode) {
  241. case GGML_SCALE_MODE_NEAREST: return "nearest";
  242. case GGML_SCALE_MODE_BILINEAR: return "bilinear";
  243. default: return std::to_string(mode);
  244. }
  245. }
  246. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  247. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  248. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  249. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  250. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  251. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  252. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  253. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  254. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  255. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  256. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  257. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  258. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  259. #ifdef GGML_USE_SYCL
  260. static bool inline _isinf(float f) {
  261. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  262. }
  263. #else
  264. static bool inline _isinf(float f) { return std::isinf(f); }
  265. #endif
  266. // accept FLT_MAX as infinity
  267. static bool isinf_or_max(float f) {
  268. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  269. }
  270. static bool ggml_is_view_op(enum ggml_op op) {
  271. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  272. }
  273. enum test_mode {
  274. MODE_TEST,
  275. MODE_PERF,
  276. MODE_GRAD,
  277. };
  278. struct test_case {
  279. virtual ~test_case() {}
  280. virtual std::string op_desc(ggml_tensor * t) {
  281. return ggml_op_desc(t);
  282. }
  283. virtual std::string vars() {
  284. return "";
  285. }
  286. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  287. virtual double max_nmse_err() {
  288. return 1e-7;
  289. }
  290. virtual double max_maa_err() {
  291. return 1e-4;
  292. }
  293. virtual float grad_eps() {
  294. return 1e-1f;
  295. }
  296. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  297. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  298. virtual bool grad_precise() {
  299. return false;
  300. }
  301. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  302. virtual int64_t grad_nmax() {
  303. return 10000;
  304. }
  305. // No effect if empty.
  306. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  307. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  308. virtual std::vector<float> grad_expect() {
  309. return {};
  310. }
  311. virtual void initialize_tensors(ggml_context * ctx) {
  312. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  313. init_tensor_uniform(t);
  314. }
  315. }
  316. virtual size_t op_size(ggml_tensor * t) {
  317. size_t size = ggml_nbytes(t);
  318. // add source tensors
  319. for (int i = 0; i < GGML_MAX_SRC; i++) {
  320. if (t->src[i] != NULL) {
  321. size += ggml_nbytes(t->src[i]);
  322. }
  323. }
  324. return size;
  325. }
  326. virtual uint64_t op_flops(ggml_tensor * t) {
  327. GGML_UNUSED(t);
  328. return 0;
  329. }
  330. virtual bool run_whole_graph() { return false; }
  331. ggml_cgraph * gf = nullptr;
  332. ggml_cgraph * gb = nullptr;
  333. static const int sentinel_size = 1024;
  334. test_mode mode;
  335. std::vector<ggml_tensor *> sentinels;
  336. void add_sentinel(ggml_context * ctx) {
  337. if (mode == MODE_PERF || mode == MODE_GRAD) {
  338. return;
  339. }
  340. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  341. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  342. sentinels.push_back(sentinel);
  343. }
  344. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  345. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  346. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  347. add_sentinel(ctx);
  348. return t;
  349. }
  350. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  351. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  352. add_sentinel(ctx);
  353. return t;
  354. }
  355. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  356. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  357. add_sentinel(ctx);
  358. return t;
  359. }
  360. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  361. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  362. add_sentinel(ctx);
  363. return t;
  364. }
  365. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  366. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  367. add_sentinel(ctx);
  368. return t;
  369. }
  370. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  371. mode = MODE_TEST;
  372. ggml_init_params params = {
  373. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  374. /* .mem_base = */ NULL,
  375. /* .no_alloc = */ true,
  376. };
  377. ggml_context * ctx = ggml_init(params);
  378. GGML_ASSERT(ctx);
  379. gf = ggml_new_graph(ctx);
  380. // pre-graph sentinel
  381. add_sentinel(ctx);
  382. ggml_tensor * out = build_graph(ctx);
  383. if (op_name != nullptr && op_desc(out) != op_name) {
  384. //printf(" %s: skipping\n", op_desc(out).c_str());
  385. ggml_free(ctx);
  386. return true;
  387. }
  388. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  389. fflush(stdout);
  390. // check if the backends support the ops
  391. bool supported = true;
  392. for (ggml_backend_t backend : {backend1, backend2}) {
  393. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  394. if (!ggml_backend_supports_op(backend, t)) {
  395. printf("not supported [%s] ", ggml_backend_name(backend));
  396. supported = false;
  397. break;
  398. }
  399. }
  400. }
  401. if (!supported) {
  402. printf("\n");
  403. ggml_free(ctx);
  404. return true;
  405. }
  406. // post-graph sentinel
  407. add_sentinel(ctx);
  408. // allocate
  409. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  410. if (buf == NULL) {
  411. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  412. ggml_free(ctx);
  413. return false;
  414. }
  415. // build graph
  416. ggml_build_forward_expand(gf, out);
  417. // add sentinels as graph nodes so that they are checked in the callback
  418. for (ggml_tensor * sentinel : sentinels) {
  419. ggml_graph_add_node(gf, sentinel);
  420. }
  421. // randomize tensors
  422. initialize_tensors(ctx);
  423. // compare
  424. struct callback_userdata {
  425. bool ok;
  426. double max_err;
  427. ggml_backend_t backend1;
  428. ggml_backend_t backend2;
  429. };
  430. callback_userdata ud {
  431. true,
  432. max_nmse_err(),
  433. backend1,
  434. backend2
  435. };
  436. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  437. callback_userdata * ud = (callback_userdata *) user_data;
  438. const char * bn1 = ggml_backend_name(ud->backend1);
  439. const char * bn2 = ggml_backend_name(ud->backend2);
  440. if (t1->op == GGML_OP_NONE) {
  441. // sentinels must be unchanged
  442. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  443. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  444. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  445. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  446. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  447. printf("sentinel mismatch: %s ", t1->name);
  448. ud->ok = false;
  449. return true;
  450. }
  451. }
  452. std::vector<float> f1 = tensor_to_float(t1);
  453. std::vector<float> f2 = tensor_to_float(t2);
  454. for (size_t i = 0; i < f1.size(); i++) {
  455. // check for nans
  456. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  457. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  458. ud->ok = false;
  459. return true;
  460. }
  461. // check for infs: both must be inf of the same sign, or both must be finite
  462. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  463. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  464. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  465. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  466. ud->ok = false;
  467. return true;
  468. }
  469. } else {
  470. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  471. ud->ok = false;
  472. return true;
  473. }
  474. }
  475. }
  476. double err = nmse(f1.data(), f2.data(), f1.size());
  477. if (err > ud->max_err) {
  478. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  479. //for (int i = 0; i < (int) f1.size(); i++) {
  480. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  481. //}
  482. //printf("\n");
  483. //exit(1);
  484. ud->ok = false;
  485. }
  486. return true;
  487. GGML_UNUSED(index);
  488. };
  489. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud, run_whole_graph() ? out : nullptr);
  490. if (!cmp_ok) {
  491. printf("compare failed ");
  492. }
  493. ggml_backend_buffer_free(buf);
  494. ggml_free(ctx);
  495. if (ud.ok && cmp_ok) {
  496. printf("\033[1;32mOK\033[0m\n");
  497. return true;
  498. }
  499. printf("\033[1;31mFAIL\033[0m\n");
  500. return false;
  501. }
  502. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  503. mode = MODE_PERF;
  504. static const size_t graph_nodes = 8192;
  505. ggml_init_params params = {
  506. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  507. /* .mem_base = */ NULL,
  508. /* .no_alloc = */ true,
  509. };
  510. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  511. GGML_ASSERT(ctx);
  512. ggml_tensor * out = build_graph(ctx.get());
  513. if (op_name != nullptr && op_desc(out) != op_name) {
  514. //printf(" %s: skipping\n", op_desc(out).c_str());
  515. return true;
  516. }
  517. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  518. fflush(stdout);
  519. // check if backends support op
  520. if (!ggml_backend_supports_op(backend, out)) {
  521. printf("not supported\n");
  522. return true;
  523. }
  524. // align while also leaving some margin for variations in parameters
  525. int align = 8;
  526. int last = (len + align - 1) / align * align;
  527. if (last - len < 5) {
  528. last += align;
  529. }
  530. printf("%*s", last - len, "");
  531. // allocate
  532. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  533. if (buf == NULL) {
  534. printf("failed to allocate tensors\n");
  535. return false;
  536. }
  537. // randomize tensors
  538. initialize_tensors(ctx.get());
  539. // build graph
  540. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  541. ggml_build_forward_expand(gf, out);
  542. // warmup run
  543. ggml_status status = ggml_backend_graph_compute(backend, gf);
  544. if (status != GGML_STATUS_SUCCESS) {
  545. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  546. return false;
  547. }
  548. // determine number of runs
  549. int n_runs;
  550. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  551. if (op_flops(out) > 0) {
  552. // based on flops
  553. const uint64_t GFLOP = 1000 * 1000 * 1000;
  554. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  555. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  556. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  557. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  558. } else {
  559. // based on memory size
  560. const size_t GB = 1ULL << 30;
  561. const size_t target_size_cpu = 8 * GB;
  562. const size_t target_size_gpu = 32 * GB;
  563. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  564. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  565. }
  566. // duplicate the op
  567. for (int i = 1; i < n_runs; i++) {
  568. ggml_graph_add_node(gf, out);
  569. }
  570. // calculate memory
  571. size_t mem = n_runs * op_size(out);
  572. auto tensor_op_size = [](ggml_tensor * t) {
  573. size_t size = ggml_nbytes(t);
  574. // add source tensors
  575. for (int i = 0; i < GGML_MAX_SRC; i++) {
  576. if (t->src[i] != NULL) {
  577. size += ggml_nbytes(t->src[i]);
  578. }
  579. }
  580. return size;
  581. };
  582. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  583. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  584. continue;
  585. }
  586. mem += tensor_op_size(ggml_graph_node(gf, i));
  587. }
  588. // run
  589. int64_t total_time_us = 0;
  590. int64_t total_mem = 0;
  591. int total_runs = 0;
  592. do {
  593. int64_t start_time = ggml_time_us();
  594. ggml_status status = ggml_backend_graph_compute(backend, gf);
  595. if (status != GGML_STATUS_SUCCESS) {
  596. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  597. return false;
  598. }
  599. int64_t end_time = ggml_time_us();
  600. total_time_us += end_time - start_time;
  601. total_mem += mem;
  602. total_runs += n_runs;
  603. } while (total_time_us < 1000*1000); // run for at least 1 second
  604. printf(" %8d runs - %8.2f us/run - ",
  605. total_runs,
  606. (double)total_time_us / total_runs);
  607. if (op_flops(out) > 0) {
  608. double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
  609. auto format_flops = [](double flops) -> std::string {
  610. char buf[256];
  611. if (flops >= 1e12) {
  612. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  613. } else if (flops >= 1e9) {
  614. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  615. } else if (flops >= 1e6) {
  616. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  617. } else {
  618. snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
  619. }
  620. return buf;
  621. };
  622. printf("%s/run - \033[1;34m%sS\033[0m",
  623. format_flops(op_flops(out)).c_str(),
  624. format_flops(flops_per_sec).c_str());
  625. } else {
  626. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
  627. op_size(out) / 1024,
  628. total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
  629. }
  630. printf("\n");
  631. return true;
  632. }
  633. bool eval_grad(ggml_backend_t backend, const char * op_name) {
  634. mode = MODE_GRAD;
  635. const std::vector<float> expect = grad_expect();
  636. ggml_init_params params = {
  637. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  638. /* .mem_base = */ NULL,
  639. /* .no_alloc = */ true,
  640. };
  641. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  642. GGML_ASSERT(ctx);
  643. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  644. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  645. ggml_tensor * out = build_graph(ctx.get());
  646. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  647. //printf(" %s: skipping\n", op_desc(out).c_str());
  648. return true;
  649. }
  650. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  651. fflush(stdout);
  652. if (out->type != GGML_TYPE_F32) {
  653. printf("not supported [%s->type != FP32]\n", out->name);
  654. return true;
  655. }
  656. // check if the backend supports the ops
  657. bool supported = true;
  658. bool any_params = false;
  659. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  660. if (!ggml_backend_supports_op(backend, t)) {
  661. printf("not supported [%s] ", ggml_backend_name(backend));
  662. supported = false;
  663. break;
  664. }
  665. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  666. any_params = true;
  667. if (t->type != GGML_TYPE_F32) {
  668. printf("not supported [%s->type != FP32] ", t->name);
  669. supported = false;
  670. break;
  671. }
  672. }
  673. }
  674. if (!any_params) {
  675. printf("not supported [%s] \n", op_desc(out).c_str());
  676. supported = false;
  677. }
  678. if (!supported) {
  679. printf("\n");
  680. return true;
  681. }
  682. int64_t ngrads = 0;
  683. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  684. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  685. ngrads += ggml_nelements(t);
  686. }
  687. }
  688. if (ngrads > grad_nmax()) {
  689. printf("skipping large tensors for speed \n");
  690. return true;
  691. }
  692. if (!ggml_is_scalar(out)) {
  693. out = ggml_sum(ctx.get(), out);
  694. ggml_set_name(out, "sum_of_out");
  695. }
  696. ggml_set_loss(out);
  697. ggml_build_forward_expand(gf, out);
  698. ggml_graph_cpy(gf, gb);
  699. ggml_build_backward_expand(ctx.get(), gb, nullptr);
  700. if (expect.size() != 1 || expect[0] != 0.0f) {
  701. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  702. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  703. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  704. }
  705. }
  706. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  707. if (!ggml_backend_supports_op(backend, t)) {
  708. printf("not supported [%s] ", ggml_backend_name(backend));
  709. supported = false;
  710. break;
  711. }
  712. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  713. printf("not supported [%s->type != FP32] ", t->name);
  714. supported = false;
  715. break;
  716. }
  717. }
  718. if (!supported) {
  719. printf("\n");
  720. return true;
  721. }
  722. // allocate
  723. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  724. if (buf == NULL) {
  725. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
  726. return false;
  727. }
  728. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  729. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  730. ggml_status status = ggml_backend_graph_compute(backend, gf);
  731. if (status != GGML_STATUS_SUCCESS) {
  732. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  733. return false;
  734. }
  735. status = ggml_backend_graph_compute(backend, gb);
  736. if (status != GGML_STATUS_SUCCESS) {
  737. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  738. return false;
  739. }
  740. bool ok = true;
  741. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  742. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  743. continue;
  744. }
  745. const char * bn = ggml_backend_name(backend);
  746. const int64_t ne = ggml_nelements(t);
  747. std::vector<float> ga;
  748. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  749. if (grad) {
  750. ga = tensor_to_float(grad);
  751. } else {
  752. ga.resize(ne); // default value is 0.0f
  753. }
  754. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  755. // check for nans
  756. if (!std::isfinite(ga[i])) {
  757. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
  758. ok = false;
  759. break;
  760. }
  761. }
  762. if (!ok) {
  763. break;
  764. }
  765. std::vector<float> gn(ne); // gradient numeric
  766. GGML_ASSERT(ga.size() == gn.size());
  767. std::vector<float> x0 = tensor_to_float(t); // original t data
  768. GGML_ASSERT(ggml_is_scalar(out));
  769. GGML_ASSERT(out->type == GGML_TYPE_F32);
  770. const float eps = grad_eps();
  771. for (int64_t i = 0; i < ne; ++i) {
  772. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  773. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  774. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  775. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  776. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  777. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  778. status = ggml_backend_graph_compute(backend, gf);
  779. if (status != GGML_STATUS_SUCCESS) {
  780. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  781. return false;
  782. }
  783. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  784. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  785. status = ggml_backend_graph_compute(backend, gf);
  786. if (status != GGML_STATUS_SUCCESS) {
  787. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  788. return false;
  789. }
  790. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  791. if (grad_precise()) {
  792. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  793. status = ggml_backend_graph_compute(backend, gf);
  794. if (status != GGML_STATUS_SUCCESS) {
  795. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  796. return false;
  797. }
  798. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  799. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  800. status = ggml_backend_graph_compute(backend, gf);
  801. if (status != GGML_STATUS_SUCCESS) {
  802. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  803. return false;
  804. }
  805. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  806. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  807. } else {
  808. gn[i] = (fu - fd) / (2.0f*eps);
  809. }
  810. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  811. }
  812. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  813. if (err > max_maa_err()) {
  814. printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
  815. ok = false;
  816. break;
  817. }
  818. if (!ok) {
  819. break;
  820. }
  821. }
  822. if (!ok) {
  823. printf("compare failed ");
  824. }
  825. if (ok) {
  826. printf("\033[1;32mOK\033[0m\n");
  827. return true;
  828. }
  829. printf("\033[1;31mFAIL\033[0m\n");
  830. return false;
  831. }
  832. };
  833. // ###################################
  834. // ## Section 2: GGML Op Defintions ##
  835. // ###################################
  836. // The following is an example showing the bare minimum for creating a test for a GGML op.
  837. // GGML_OP_EXAMPLE
  838. struct test_example : public test_case {
  839. // Always define these 2 or variants thereof:
  840. const ggml_type type; // The type of the input tensors.
  841. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  842. // For some ops it's necessary to define multiple types or shapes for the inputs.
  843. // Or they may need additional parameters.
  844. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  845. // In most cases these are just the properties of the struct that you defined above.
  846. // This is needed for info prints.
  847. std::string vars() override {
  848. return VARS_TO_STR2(type, ne);
  849. }
  850. // Define a constructor for the struct.
  851. // In most cases it will be sufficient to have the same arguments as the struct has properties
  852. // and just use initializer lists.
  853. test_example(ggml_type type = GGML_TYPE_F32,
  854. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  855. : type(type), ne(ne) {}
  856. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  857. ggml_tensor * build_graph(ggml_context * ctx) override {
  858. // Step 1: create input tensors that don't depend on any other tensors:
  859. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  860. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  861. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  862. ggml_set_name(b, "b");
  863. // Step 2: use the op that you want to test in the GGML compute graph.
  864. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  865. ggml_set_name(out, "out");
  866. // Step 3: return the output tensor.
  867. return out;
  868. }
  869. // In order to also check the gradients for your op, add calls like ggml_set_param(a)
  870. // immediately after you create the tensors.
  871. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  872. };
  873. // GGML_OP_UNARY
  874. struct test_unary : public test_case {
  875. const ggml_unary_op op;
  876. const ggml_type type;
  877. const std::array<int64_t, 4> ne_a;
  878. int v; // view (1 : non-contiguous a)
  879. std::string vars() override {
  880. return VARS_TO_STR3(type, ne_a, v);
  881. }
  882. test_unary(ggml_unary_op op,
  883. ggml_type type = GGML_TYPE_F32,
  884. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  885. int v = 0)
  886. : op(op), type(type), ne_a(ne_a), v(v) {}
  887. ggml_tensor * build_graph(ggml_context * ctx) override {
  888. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  889. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  890. ggml_tensor * a;
  891. if (v & 1) {
  892. auto ne = ne_a; ne[0] *= 3;
  893. a = ggml_new_tensor(ctx, type, 4, ne.data());
  894. if (grad_supported) {
  895. ggml_set_param(a);
  896. }
  897. ggml_set_name(a, "a");
  898. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  899. ggml_set_name(a, "view_of_a");
  900. } else {
  901. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  902. if (grad_supported) {
  903. ggml_set_param(a);
  904. }
  905. ggml_set_name(a, "a");
  906. }
  907. ggml_tensor * out = ggml_unary(ctx, a, op);
  908. ggml_set_name(out, "out");
  909. return out;
  910. }
  911. void initialize_tensors(ggml_context * ctx) override {
  912. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  913. // test extended range of values to check for NaNs in GELU
  914. init_tensor_uniform(t, -150.f, 150.f);
  915. }
  916. }
  917. float grad_eps() override {
  918. return 15.0f;
  919. }
  920. std::vector<float> grad_expect() override {
  921. if (op == GGML_UNARY_OP_ABS) {
  922. return {-1.0f, 1.0f};
  923. }
  924. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  925. return {0.0f};
  926. }
  927. if (op == GGML_UNARY_OP_RELU) {
  928. return {0.0f, 1.0f};
  929. }
  930. return {};
  931. }
  932. };
  933. // GGML_OP_GLU
  934. struct test_glu : public test_case {
  935. const ggml_glu_op op;
  936. const ggml_type type;
  937. const std::array<int64_t, 4> ne_a;
  938. int v; // view (1 : non-contiguous a)
  939. bool swapped;
  940. std::string vars() override {
  941. return VARS_TO_STR4(type, ne_a, v, swapped);
  942. }
  943. test_glu(ggml_glu_op op,
  944. ggml_type type = GGML_TYPE_F32,
  945. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  946. int v = 0,
  947. bool swapped = false)
  948. : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {}
  949. ggml_tensor * build_graph(ggml_context * ctx) override {
  950. ggml_tensor * a;
  951. if (v & 1) {
  952. auto ne = ne_a; ne[0] *= 3;
  953. a = ggml_new_tensor(ctx, type, 4, ne.data());
  954. ggml_set_name(a, "a");
  955. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  956. ggml_set_name(a, "view_of_a");
  957. } else {
  958. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  959. ggml_set_name(a, "a");
  960. }
  961. ggml_tensor * out = ggml_glu(ctx, a, op, swapped);
  962. ggml_set_name(out, "out");
  963. return out;
  964. }
  965. void initialize_tensors(ggml_context * ctx) override {
  966. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  967. // test extended range of values to check for NaNs in GELU
  968. init_tensor_uniform(t, -150.f, 150.f);
  969. }
  970. }
  971. };
  972. struct test_glu_split : public test_case {
  973. const ggml_glu_op op;
  974. const ggml_type type;
  975. const std::array<int64_t, 4> ne_a;
  976. int v; // view (1 : non-contiguous a)
  977. std::string vars() override {
  978. return VARS_TO_STR3(type, ne_a, v) + ",split";
  979. }
  980. test_glu_split(ggml_glu_op op,
  981. ggml_type type = GGML_TYPE_F32,
  982. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  983. int v = 0)
  984. : op(op), type(type), ne_a(ne_a), v(v) {}
  985. ggml_tensor * build_graph(ggml_context * ctx) override {
  986. ggml_tensor * a;
  987. ggml_tensor * b;
  988. if (v & 1) {
  989. auto ne = ne_a; ne[0] *= 3;
  990. a = ggml_new_tensor(ctx, type, 4, ne.data());
  991. ggml_set_param(a);
  992. ggml_set_name(a, "a");
  993. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  994. ggml_set_name(a, "view_of_a");
  995. b = ggml_new_tensor(ctx, type, 4, ne.data());
  996. ggml_set_param(b);
  997. ggml_set_name(b, "b");
  998. b = ggml_view_4d(ctx, b, ne_a[0], ne_a[1], ne_a[2], ne_a[3], b->nb[1], b->nb[2], b->nb[3], 0);
  999. ggml_set_name(a, "view_of_b");
  1000. } else {
  1001. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1002. ggml_set_param(a);
  1003. ggml_set_name(a, "a");
  1004. b = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1005. ggml_set_param(b);
  1006. ggml_set_name(b, "b");
  1007. }
  1008. ggml_tensor * out = ggml_glu_split(ctx, a, b, op);
  1009. ggml_set_name(out, "out");
  1010. return out;
  1011. }
  1012. void initialize_tensors(ggml_context * ctx) override {
  1013. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1014. // test extended range of values to check for NaNs in GELU
  1015. init_tensor_uniform(t, -150.f, 150.f);
  1016. }
  1017. }
  1018. };
  1019. // GGML_OP_GET_ROWS
  1020. struct test_get_rows : public test_case {
  1021. const ggml_type type;
  1022. const int n; // cols
  1023. const int m; // rows
  1024. const int r; // rows to get
  1025. const int b; // batch size
  1026. const bool v; // view (non-contiguous src1)
  1027. std::string vars() override {
  1028. return VARS_TO_STR6(type, n, m, r, b, v);
  1029. }
  1030. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1031. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1032. ggml_tensor * build_graph(ggml_context * ctx) override {
  1033. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  1034. ggml_set_name(in, "in");
  1035. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1036. ggml_set_name(rows, "rows");
  1037. if (v) {
  1038. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1039. ggml_set_name(rows, "view_of_rows");
  1040. }
  1041. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  1042. if (grad_supported) {
  1043. ggml_set_param(in);
  1044. // rows is a constant input -> no gradients
  1045. }
  1046. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  1047. ggml_set_name(out, "out");
  1048. return out;
  1049. }
  1050. void initialize_tensors(ggml_context * ctx) override {
  1051. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1052. if (t->type == GGML_TYPE_I32) {
  1053. if (ggml_is_view_op(t->op)) { continue; }
  1054. // rows
  1055. std::vector<int> data(r*b);
  1056. for (int i = 0; i < r*b; i++) {
  1057. data[i] = rand() % m;
  1058. }
  1059. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1060. } else {
  1061. init_tensor_uniform(t);
  1062. }
  1063. }
  1064. }
  1065. };
  1066. // GGML_OP_GET_ROWS_BACK
  1067. struct test_get_rows_back : public test_case {
  1068. const ggml_type type;
  1069. const int n; // cols
  1070. const int m; // rows
  1071. const int r; // rows to get
  1072. const int b; // batch size
  1073. const bool v; // view (non-contiguous src1)
  1074. std::string vars() override {
  1075. return VARS_TO_STR6(type, n, m, r, b, v);
  1076. }
  1077. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  1078. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  1079. ggml_tensor * build_graph(ggml_context * ctx) override {
  1080. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  1081. ggml_set_name(in_forward, "in_forward");
  1082. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  1083. ggml_set_name(rows, "rows");
  1084. if (v) {
  1085. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  1086. ggml_set_name(rows, "view_of_rows");
  1087. }
  1088. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  1089. ggml_set_name(grad, "grad");
  1090. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  1091. ggml_set_name(out, "out");
  1092. return out;
  1093. }
  1094. void initialize_tensors(ggml_context * ctx) override {
  1095. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1096. if (t->type == GGML_TYPE_I32) {
  1097. if (ggml_is_view_op(t->op)) { continue; }
  1098. // rows
  1099. std::vector<int> data(r*b);
  1100. for (int i = 0; i < r*b; i++) {
  1101. data[i] = rand() % m;
  1102. }
  1103. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1104. } else {
  1105. init_tensor_uniform(t);
  1106. }
  1107. }
  1108. }
  1109. };
  1110. // GGML_OP_SET_ROWS
  1111. struct test_set_rows : public test_case {
  1112. const ggml_type type;
  1113. const std::array<int64_t, 4> ne;
  1114. const std::array<int, 2> nr23; // broadcast only dims 2 and 3
  1115. const int r; // rows to set
  1116. const bool v; // view (non-contiguous src1)
  1117. std::string vars() override {
  1118. return VARS_TO_STR5(type, ne, nr23, r, v);
  1119. }
  1120. test_set_rows(ggml_type type,
  1121. std::array<int64_t, 4> ne,
  1122. std::array<int, 2> nr23,
  1123. int r, bool v = false)
  1124. : type(type), ne(ne), nr23(nr23), r(r), v(v) {}
  1125. ggml_tensor * build_graph(ggml_context * ctx) override {
  1126. ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  1127. ggml_set_name(dst, "dst");
  1128. ggml_tensor * src = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, ne[0], r, ne[2]*nr23[0], ne[3]*nr23[1]);
  1129. ggml_set_name(src, "src");
  1130. ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, GGML_TYPE_I64, r, ne[2], ne[3]);
  1131. ggml_set_name(row_idxs, "row_idxs");
  1132. if (v) {
  1133. src = ggml_view_4d(ctx, src, ne[0], r/2, ne[2]*nr23[0], ne[3]*nr23[1], src->nb[1], src->nb[2], src->nb[3], 0);
  1134. row_idxs = ggml_view_3d(ctx, row_idxs, r/2, ne[2], ne[3], row_idxs->nb[1], row_idxs->nb[2], 0);
  1135. ggml_set_name(row_idxs, "view_of_rows");
  1136. }
  1137. ggml_tensor * out = ggml_set_rows(ctx, dst, src, row_idxs);
  1138. ggml_set_name(out, "out");
  1139. return out;
  1140. }
  1141. void initialize_tensors(ggml_context * ctx) override {
  1142. std::random_device rd;
  1143. std::default_random_engine rng(rd());
  1144. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1145. if (t->type == GGML_TYPE_I64) {
  1146. if (ggml_is_view_op(t->op)) {
  1147. continue;
  1148. }
  1149. for (int i2 = 0; i2 < t->ne[2]; i2++) {
  1150. for (int i1 = 0; i1 < t->ne[1]; i1++) {
  1151. // generate a shuffled subset of row indices
  1152. std::vector<int64_t> data(ne[1]);
  1153. for (int i = 0; i < ne[1]; i++) {
  1154. data[i] = i;
  1155. }
  1156. std::shuffle(data.begin(), data.end(), rng);
  1157. data.resize(t->ne[0]);
  1158. const size_t offs = i1*t->nb[1] + i2*t->nb[2];
  1159. ggml_backend_tensor_set(t, data.data(), offs, t->ne[0]*sizeof(int64_t));
  1160. }
  1161. }
  1162. } else {
  1163. init_tensor_uniform(t);
  1164. }
  1165. }
  1166. }
  1167. };
  1168. // GGML_OP_ARGMAX
  1169. struct test_argmax : public test_case {
  1170. const ggml_type type;
  1171. const std::array<int64_t, 4> ne;
  1172. std::string vars() override {
  1173. return VARS_TO_STR2(type, ne);
  1174. }
  1175. test_argmax(ggml_type type = GGML_TYPE_F32,
  1176. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1177. : type(type), ne(ne) {}
  1178. ggml_tensor * build_graph(ggml_context * ctx) override {
  1179. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1180. ggml_set_name(a, "a");
  1181. ggml_tensor * out = ggml_argmax(ctx, a);
  1182. ggml_set_name(out, "out");
  1183. return out;
  1184. }
  1185. void initialize_tensors(ggml_context * ctx) override {
  1186. std::random_device rd;
  1187. std::default_random_engine rng(rd());
  1188. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1189. if (t->type == GGML_TYPE_F32) {
  1190. // initialize with unique values to avoid ties
  1191. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1192. std::vector<float> data(t->ne[0]);
  1193. for (int i = 0; i < t->ne[0]; i++) {
  1194. data[i] = i;
  1195. }
  1196. std::shuffle(data.begin(), data.end(), rng);
  1197. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1198. }
  1199. } else {
  1200. init_tensor_uniform(t);
  1201. }
  1202. }
  1203. }
  1204. double max_nmse_err() override {
  1205. return 0.0;
  1206. }
  1207. };
  1208. // GGML_OP_COUNT_EQUAL
  1209. struct test_count_equal : public test_case {
  1210. const ggml_type type;
  1211. const std::array<int64_t, 4> ne;
  1212. std::string vars() override {
  1213. return VARS_TO_STR2(type, ne);
  1214. }
  1215. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1216. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1217. : type(type), ne(ne) {}
  1218. ggml_tensor * build_graph(ggml_context * ctx) override {
  1219. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1220. ggml_set_name(a, "a");
  1221. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1222. ggml_set_name(a_argmax, "a_argmax");
  1223. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1224. ggml_set_name(b, "b");
  1225. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1226. ggml_set_name(b_argmax, "b_argmax");
  1227. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1228. ggml_set_name(out, "out");
  1229. return out;
  1230. }
  1231. double max_nmse_err() override {
  1232. return 0.0;
  1233. }
  1234. };
  1235. // GGML_OP_REPEAT
  1236. struct test_repeat : public test_case {
  1237. const ggml_type type;
  1238. const std::array<int64_t, 4> ne;
  1239. const std::array<int, 4> nr;
  1240. std::string vars() override {
  1241. return VARS_TO_STR3(type, ne, nr);
  1242. }
  1243. size_t op_size(ggml_tensor * t) override {
  1244. return ggml_nbytes(t) * 2;
  1245. }
  1246. test_repeat(ggml_type type = GGML_TYPE_F32,
  1247. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1248. std::array<int, 4> nr = {2, 2, 2, 2})
  1249. : type(type), ne(ne), nr(nr) {}
  1250. ggml_tensor * build_graph(ggml_context * ctx) override {
  1251. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1252. ggml_set_name(target, "target");
  1253. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1254. ggml_set_param(src);
  1255. ggml_set_name(src, "src");
  1256. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1257. ggml_set_name(out, "out");
  1258. return out;
  1259. }
  1260. };
  1261. // GGML_OP_REPEAT_BACK
  1262. struct test_repeat_back : public test_case {
  1263. const ggml_type type;
  1264. const std::array<int64_t, 4> ne;
  1265. const std::array<int, 4> nr;
  1266. const bool v; // whether src is a noncontiguous view
  1267. std::string vars() override {
  1268. return VARS_TO_STR4(type, ne, nr, v);
  1269. }
  1270. size_t op_size(ggml_tensor * t) override {
  1271. return ggml_nbytes(t) * 2;
  1272. }
  1273. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1274. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1275. std::array<int, 4> nr = {2, 2, 2, 2},
  1276. bool v = false)
  1277. : type(type), ne(ne), nr(nr), v(v) {}
  1278. ggml_tensor * build_graph(ggml_context * ctx) override {
  1279. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1280. ggml_set_name(src, "src");
  1281. if (v) {
  1282. GGML_ASSERT(ne[0] % 2 == 0);
  1283. GGML_ASSERT(ne[1] % 2 == 0);
  1284. GGML_ASSERT(ne[2] % 2 == 0);
  1285. GGML_ASSERT(ne[3] % 2 == 0);
  1286. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1287. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1288. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1289. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1290. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1291. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1292. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1293. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1294. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1295. }
  1296. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1297. ggml_set_name(target, "target");
  1298. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1299. ggml_set_name(out, "out");
  1300. return out;
  1301. }
  1302. };
  1303. // GGML_OP_DUP
  1304. struct test_dup : public test_case {
  1305. const ggml_type type;
  1306. const std::array<int64_t, 4> ne;
  1307. const std::array<int64_t, 4> permute;
  1308. bool _use_permute;
  1309. std::string vars() override {
  1310. std::string v = VARS_TO_STR2(type, ne);
  1311. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1312. return v;
  1313. }
  1314. test_dup(ggml_type type = GGML_TYPE_F32,
  1315. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1316. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1317. : type(type), ne(ne), permute(permute),
  1318. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1319. ggml_tensor * build_graph(ggml_context * ctx) override {
  1320. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1321. ggml_set_param(src);
  1322. ggml_set_name(src, "src");
  1323. if (_use_permute) {
  1324. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1325. ggml_set_name(src, "src_permuted");
  1326. }
  1327. ggml_tensor * out = ggml_dup(ctx, src);
  1328. ggml_set_name(out, "out");
  1329. return out;
  1330. }
  1331. };
  1332. // GGML_OP_SET
  1333. struct test_set : public test_case {
  1334. const ggml_type type_src;
  1335. const ggml_type type_dst;
  1336. const std::array<int64_t, 4> ne;
  1337. const int dim;
  1338. std::string vars() override {
  1339. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1340. }
  1341. size_t op_size(ggml_tensor * t) override {
  1342. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1343. }
  1344. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1345. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1346. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1347. ggml_tensor * build_graph(ggml_context * ctx) override {
  1348. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1349. ggml_set_param(src);
  1350. ggml_set_name(src, "src");
  1351. auto ne_dst = ne;
  1352. for (int i = 0; i < dim; ++i) {
  1353. ne_dst[i] *= 2;
  1354. }
  1355. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1356. ggml_set_param(dst);
  1357. ggml_set_name(dst, "dst");
  1358. size_t offset = 0;
  1359. for (int i = 0; i < dim; ++i) {
  1360. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1361. }
  1362. ggml_tensor * out = ggml_set(ctx, dst, src,
  1363. // The backward pass requires setting a contiguous region:
  1364. src->nb[1], src->nb[2], src->nb[3], offset);
  1365. ggml_set_name(out, "out");
  1366. return out;
  1367. }
  1368. };
  1369. // GGML_OP_CPY
  1370. struct test_cpy : public test_case {
  1371. const ggml_type type_src;
  1372. const ggml_type type_dst;
  1373. const std::array<int64_t, 4> ne;
  1374. const std::array<int64_t, 4> permute_src;
  1375. const std::array<int64_t, 4> permute_dst;
  1376. bool _src_use_permute;
  1377. bool _dst_use_permute;
  1378. std::string vars() override {
  1379. return VARS_TO_STR5(type_src, type_dst, ne, permute_src, permute_dst);
  1380. }
  1381. double max_nmse_err() override {
  1382. return 1e-6;
  1383. }
  1384. size_t op_size(ggml_tensor * t) override {
  1385. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1386. }
  1387. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1388. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1389. std::array<int64_t, 4> permute_src = {0, 0, 0, 0},
  1390. std::array<int64_t, 4> permute_dst = {0, 0, 0, 0})
  1391. : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst),
  1392. _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0),
  1393. _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0) {}
  1394. ggml_tensor * build_graph(ggml_context * ctx) override {
  1395. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1396. ggml_set_param(src);
  1397. ggml_set_name(src, "src");
  1398. if (_src_use_permute) {
  1399. src = ggml_permute(ctx, src, permute_src[0], permute_src[1], permute_src[2], permute_src[3]);
  1400. ggml_set_name(src, "src_permuted");
  1401. }
  1402. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1403. ggml_set_name(dst, "dst");
  1404. if (_dst_use_permute) {
  1405. dst = ggml_permute(ctx, dst, permute_dst[0], permute_dst[1], permute_dst[2], permute_dst[3]);
  1406. ggml_set_name(dst, "dst_permuted");
  1407. }
  1408. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1409. ggml_set_name(out, "out");
  1410. return out;
  1411. }
  1412. };
  1413. // GGML_OP_CONT
  1414. struct test_cont : public test_case {
  1415. const ggml_type type;
  1416. const std::array<int64_t, 4> ne;
  1417. std::string vars() override {
  1418. return VARS_TO_STR2(type, ne);
  1419. }
  1420. test_cont(ggml_type type = GGML_TYPE_F32,
  1421. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1422. : type(type), ne(ne) {}
  1423. ggml_tensor * build_graph(ggml_context * ctx) override {
  1424. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1425. ggml_set_param(src);
  1426. ggml_set_name(src, "src");
  1427. src = ggml_transpose(ctx, src);
  1428. ggml_set_name(src, "src_transposed");
  1429. ggml_tensor * out = ggml_cont(ctx, src);
  1430. ggml_set_name(out, "out");
  1431. return out;
  1432. }
  1433. };
  1434. // GGML_OP_ADD
  1435. // GGML_OP_SUB
  1436. // GGML_OP_MUL
  1437. // GGML_OP_DIV
  1438. struct test_bin_bcast : public test_case {
  1439. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1440. op_t op;
  1441. const ggml_type type;
  1442. const std::array<int64_t, 4> ne;
  1443. const std::array<int, 4> nr;
  1444. std::string vars() override {
  1445. return VARS_TO_STR3(type, ne, nr);
  1446. }
  1447. size_t op_size(ggml_tensor * t) override {
  1448. return ggml_nbytes(t) * 3;
  1449. }
  1450. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1451. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1452. std::array<int, 4> nr = {1, 2, 1, 1})
  1453. : op(op), type(type), ne(ne), nr(nr) {}
  1454. ggml_tensor * build_graph(ggml_context * ctx) override {
  1455. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1456. ggml_set_name(a, "a");
  1457. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1458. ggml_set_name(b, "b");
  1459. // The backward pass supports broadcasting only for GGML_ADD:
  1460. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1461. if (grad_supported) {
  1462. ggml_set_param(a);
  1463. ggml_set_param(b);
  1464. }
  1465. ggml_tensor * out = op(ctx, a, b);
  1466. ggml_set_name(out, "out");
  1467. return out;
  1468. }
  1469. void initialize_tensors(ggml_context * ctx) override {
  1470. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1471. if (op == ggml_mul || op == ggml_div) {
  1472. // MUL and DIV have numerical issues around zero:
  1473. init_tensor_uniform(t, 0.9f, 1.1f);
  1474. } else {
  1475. init_tensor_uniform(t);
  1476. }
  1477. }
  1478. }
  1479. float grad_eps() override {
  1480. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1481. }
  1482. bool grad_precise() override {
  1483. return op == ggml_div;
  1484. }
  1485. double max_maa_err() override {
  1486. return op == ggml_add ? 1e-4 : 1e-3;
  1487. }
  1488. };
  1489. // GGML_OP_ADD1
  1490. struct test_add1 : public test_case {
  1491. const ggml_type type;
  1492. const std::array<int64_t, 4> ne;
  1493. std::string vars() override {
  1494. return VARS_TO_STR2(type, ne);
  1495. }
  1496. test_add1(ggml_type type = GGML_TYPE_F32,
  1497. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1498. : type(type), ne(ne) {}
  1499. ggml_tensor * build_graph(ggml_context * ctx) override {
  1500. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1501. ggml_set_param(a);
  1502. ggml_set_name(a, "a");
  1503. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1504. // ggml_set_param(b); // TODO: implement
  1505. ggml_set_name(b, "b");
  1506. ggml_tensor * out = ggml_add1(ctx, a, b);
  1507. ggml_set_name(out, "out");
  1508. return out;
  1509. }
  1510. float grad_eps() override {
  1511. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1512. }
  1513. };
  1514. // GGML_OP_SCALE
  1515. struct test_scale : public test_case {
  1516. const ggml_type type;
  1517. const std::array<int64_t, 4> ne;
  1518. float scale;
  1519. std::string vars() override {
  1520. return VARS_TO_STR3(type, ne, scale);
  1521. }
  1522. test_scale(ggml_type type = GGML_TYPE_F32,
  1523. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1524. float scale = 2.0f)
  1525. : type(type), ne(ne), scale(scale) {}
  1526. ggml_tensor * build_graph(ggml_context * ctx) override {
  1527. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1528. ggml_set_param(a);
  1529. ggml_set_name(a, "a");
  1530. ggml_tensor * out = ggml_scale(ctx, a, scale);
  1531. ggml_set_name(out, "out");
  1532. return out;
  1533. }
  1534. };
  1535. // GGML_OP_SILU_BACK
  1536. struct test_silu_back : public test_case {
  1537. const ggml_type type;
  1538. const std::array<int64_t, 4> ne;
  1539. float eps;
  1540. std::string vars() override {
  1541. return VARS_TO_STR3(type, ne, eps);
  1542. }
  1543. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1544. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1545. float eps = 1e-6f)
  1546. : type(type), ne(ne), eps(eps) {}
  1547. ggml_tensor * build_graph(ggml_context * ctx) override {
  1548. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1549. ggml_set_name(a, "a");
  1550. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  1551. ggml_set_name(grad, "grad");
  1552. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  1553. ggml_set_name(out, "out");
  1554. return out;
  1555. }
  1556. bool grad_precise() override {
  1557. return true;
  1558. }
  1559. };
  1560. // GGML_OP_NORM
  1561. struct test_norm : public test_case {
  1562. const ggml_type type;
  1563. const std::array<int64_t, 4> ne;
  1564. const bool v; // whether a is a non-contiguous view
  1565. const float eps;
  1566. std::string vars() override {
  1567. return VARS_TO_STR4(type, ne, v, eps);
  1568. }
  1569. test_norm(ggml_type type = GGML_TYPE_F32,
  1570. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1571. bool v = false,
  1572. float eps = 1e-6f)
  1573. : type(type), ne(ne), v(v), eps(eps) {}
  1574. ggml_tensor * build_graph(ggml_context * ctx) override {
  1575. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1576. ggml_set_name(a, "a");
  1577. if (v) {
  1578. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1579. ggml_set_name(a, "view of a");
  1580. }
  1581. ggml_tensor * out = ggml_norm(ctx, a, eps);
  1582. ggml_set_name(out, "out");
  1583. return out;
  1584. }
  1585. };
  1586. // GGML_OP_RMS_NORM
  1587. struct test_rms_norm : public test_case {
  1588. const ggml_type type;
  1589. const std::array<int64_t, 4> ne;
  1590. const bool v; // whether a is a non-contiguous view
  1591. const float eps;
  1592. std::string vars() override {
  1593. return VARS_TO_STR4(type, ne, v, eps);
  1594. }
  1595. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  1596. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1597. bool v = false,
  1598. float eps = 1e-6f)
  1599. : type(type), ne(ne), v(v), eps(eps) {}
  1600. ggml_tensor * build_graph(ggml_context * ctx) override {
  1601. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1602. ggml_set_param(a);
  1603. ggml_set_name(a, "a");
  1604. if (v) {
  1605. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1606. ggml_set_name(a, "view of a");
  1607. }
  1608. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  1609. ggml_set_name(out, "out");
  1610. return out;
  1611. }
  1612. void initialize_tensors(ggml_context * ctx) override {
  1613. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1614. init_tensor_uniform(t, -10.f, 10.f);
  1615. }
  1616. }
  1617. float grad_eps() override {
  1618. return 1.0f;
  1619. }
  1620. bool grad_precise() override {
  1621. return true;
  1622. }
  1623. };
  1624. // GGML_OP_RMS_NORM_BACK
  1625. struct test_rms_norm_back : public test_case {
  1626. const ggml_type type;
  1627. const std::array<int64_t, 4> ne;
  1628. const float eps;
  1629. std::string vars() override {
  1630. return VARS_TO_STR3(type, ne, eps);
  1631. }
  1632. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  1633. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1634. float eps = 1e-6f)
  1635. : type(type), ne(ne), eps(eps) {}
  1636. ggml_tensor * build_graph(ggml_context * ctx) override {
  1637. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1638. ggml_set_name(a, "a");
  1639. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1640. ggml_set_name(b, "b");
  1641. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  1642. ggml_set_name(out, "out");
  1643. return out;
  1644. }
  1645. void initialize_tensors(ggml_context * ctx) override {
  1646. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1647. init_tensor_uniform(t, -10.f, 10.f);
  1648. }
  1649. }
  1650. };
  1651. // GGML_OP_RMS_NORM + GGML_OP_MUL
  1652. struct test_rms_norm_mul : public test_case {
  1653. const ggml_type type;
  1654. const std::array<int64_t, 4> ne;
  1655. const float eps;
  1656. std::string op_desc(ggml_tensor * t) override {
  1657. GGML_UNUSED(t);
  1658. return "RMS_NORM_MUL";
  1659. }
  1660. bool run_whole_graph() override { return true; }
  1661. std::string vars() override {
  1662. return VARS_TO_STR3(type, ne, eps);
  1663. }
  1664. test_rms_norm_mul(ggml_type type = GGML_TYPE_F32,
  1665. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1666. float eps = 1e-6f)
  1667. : type(type), ne(ne), eps(eps) {}
  1668. ggml_tensor * build_graph(ggml_context * ctx) override {
  1669. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1670. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1671. ggml_set_param(a);
  1672. ggml_set_name(a, "a");
  1673. ggml_set_param(b);
  1674. ggml_set_name(b, "b");
  1675. // Use a and b early, so we don't end up with an OP_NONE between rms_norm and mul
  1676. a = ggml_add(ctx, a, b);
  1677. ggml_tensor * out = ggml_mul(ctx, ggml_rms_norm(ctx, a, eps), b);
  1678. ggml_set_name(out, "out");
  1679. return out;
  1680. }
  1681. void initialize_tensors(ggml_context * ctx) override {
  1682. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1683. init_tensor_uniform(t, -10.f, 10.f);
  1684. }
  1685. }
  1686. double max_nmse_err() override {
  1687. return 1e-6;
  1688. }
  1689. float grad_eps() override {
  1690. return 1.0f;
  1691. }
  1692. bool grad_precise() override {
  1693. return true;
  1694. }
  1695. };
  1696. // GGML_OP_SSM_CONV
  1697. struct test_ssm_conv : public test_case {
  1698. const ggml_type type;
  1699. const std::array<int64_t, 4> ne_a;
  1700. const std::array<int64_t, 4> ne_b;
  1701. std::string vars() override {
  1702. return VARS_TO_STR3(type, ne_a, ne_b);
  1703. }
  1704. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  1705. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  1706. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  1707. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1708. ggml_tensor * build_graph(ggml_context * ctx) override {
  1709. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1710. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1711. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  1712. return out;
  1713. }
  1714. };
  1715. // GGML_OP_SSM_SCAN
  1716. struct test_ssm_scan : public test_case {
  1717. const ggml_type type;
  1718. const int64_t d_state;
  1719. const int64_t head_dim;
  1720. const int64_t n_head;
  1721. const int64_t n_group;
  1722. const int64_t n_seq_tokens;
  1723. const int64_t n_seqs;
  1724. std::string vars() override {
  1725. return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs);
  1726. }
  1727. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  1728. int64_t d_state = 32,
  1729. int64_t head_dim = 1, // non-zero for Mamba-2
  1730. int64_t n_head = 32,
  1731. int64_t n_group = 1,
  1732. int64_t n_seq_tokens = 32,
  1733. int64_t n_seqs = 32)
  1734. : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1735. ggml_tensor * build_graph(ggml_context * ctx) override {
  1736. ggml_tensor * s = ggml_new_tensor_4d(ctx, type, d_state, head_dim, n_head, n_seqs);
  1737. ggml_tensor * x = ggml_new_tensor_4d(ctx, type, head_dim, n_head, n_seq_tokens, n_seqs);
  1738. ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, n_head, n_seq_tokens, n_seqs);
  1739. ggml_tensor * A = ggml_new_tensor_2d(ctx, type, (head_dim > 1) ? 1 : d_state, n_head);
  1740. ggml_tensor * B = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  1741. ggml_tensor * C = ggml_new_tensor_4d(ctx, type, d_state, n_group, n_seq_tokens, n_seqs);
  1742. ggml_tensor * ids = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_seqs);
  1743. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids);
  1744. return out;
  1745. }
  1746. // similar to test_mul_mat_id
  1747. void initialize_tensors(ggml_context * ctx) override {
  1748. std::random_device rd;
  1749. std::default_random_engine rng(rd());
  1750. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1751. if (t->type == GGML_TYPE_I32) {
  1752. if (ggml_is_view_op(t->op)) { continue; }
  1753. // ids
  1754. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1755. std::vector<int32_t> data(t->ne[0]);
  1756. for (int i = 0; i < t->ne[0]; i++) {
  1757. data[i] = i;
  1758. }
  1759. std::shuffle(data.begin(), data.end(), rng);
  1760. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  1761. }
  1762. } else {
  1763. init_tensor_uniform(t);
  1764. }
  1765. }
  1766. }
  1767. };
  1768. // GGML_OP_RWKV_WKV6
  1769. struct test_rwkv_wkv6 : public test_case {
  1770. const ggml_type type;
  1771. const int64_t head_count;
  1772. const int64_t head_size;
  1773. const int64_t n_seq_tokens;
  1774. const int64_t n_seqs;
  1775. std::string vars() override {
  1776. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1777. }
  1778. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  1779. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1780. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1781. ggml_tensor * build_graph(ggml_context * ctx) override {
  1782. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1783. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1784. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1785. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1786. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  1787. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1788. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1789. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  1790. return out;
  1791. }
  1792. };
  1793. // GGML_OP_GATED_LINEAR_ATTN
  1794. struct test_gla : public test_case {
  1795. const ggml_type type;
  1796. const int64_t head_count;
  1797. const int64_t head_size;
  1798. const int64_t n_seq_tokens;
  1799. const int64_t n_seqs;
  1800. std::string vars() override {
  1801. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1802. }
  1803. test_gla(ggml_type type = GGML_TYPE_F32,
  1804. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1805. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1806. ggml_tensor * build_graph(ggml_context * ctx) override {
  1807. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1808. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1809. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1810. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1811. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1812. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1813. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  1814. return out;
  1815. }
  1816. };
  1817. // GGML_OP_RWKV_WKV7
  1818. struct test_rwkv_wkv7 : public test_case {
  1819. const ggml_type type;
  1820. const int64_t head_count;
  1821. const int64_t head_size;
  1822. const int64_t n_seq_tokens;
  1823. const int64_t n_seqs;
  1824. std::string vars() override {
  1825. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1826. }
  1827. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  1828. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1829. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1830. ggml_tensor * build_graph(ggml_context * ctx) override {
  1831. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1832. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1833. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1834. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1835. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1836. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1837. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1838. // Outputs may become NaN with long seqlen without these normalization
  1839. a = ggml_l2_norm(ctx, a, 1e-7F);
  1840. b = ggml_l2_norm(ctx, b, 1e-7F);
  1841. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1842. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  1843. return out;
  1844. }
  1845. };
  1846. // GGML_OP_MUL_MAT
  1847. struct test_mul_mat : public test_case {
  1848. const ggml_type type_a;
  1849. const ggml_type type_b;
  1850. const int64_t m;
  1851. const int64_t n;
  1852. const int64_t k;
  1853. const std::array<int64_t, 2> bs; // dims 3 and 4
  1854. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1855. const std::array<int64_t, 4> per; // permutation of dimensions
  1856. const bool v; // whether a and b are non-contiguous views
  1857. std::string vars() override {
  1858. return VARS_TO_STR9(type_a, type_b, m, n, k, bs, nr, per, v);
  1859. }
  1860. double max_nmse_err() override {
  1861. return 5e-4;
  1862. }
  1863. int64_t grad_nmax() override {
  1864. return 20000;
  1865. }
  1866. uint64_t op_flops(ggml_tensor * t) override {
  1867. GGML_UNUSED(t);
  1868. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  1869. }
  1870. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1871. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1872. std::array<int64_t, 2> bs = {10, 10},
  1873. std::array<int64_t, 2> nr = {2, 2},
  1874. std::array<int64_t, 4> per = {0, 1, 2, 3},
  1875. bool v = false)
  1876. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), v(v) {}
  1877. ggml_tensor * build_graph(ggml_context * ctx) override {
  1878. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1879. ggml_tensor * a;
  1880. ggml_tensor * b;
  1881. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  1882. if (npermuted > 0) {
  1883. GGML_ASSERT(npermuted == 2);
  1884. GGML_ASSERT(!v); // not handled
  1885. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  1886. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  1887. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  1888. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  1889. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  1890. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  1891. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  1892. if (!ggml_is_quantized(type_a)) {
  1893. if (bs[1] == 1 && nr[1] == 1) {
  1894. ggml_set_param(a);
  1895. }
  1896. ggml_set_param(b);
  1897. }
  1898. ggml_set_name(a, "a");
  1899. ggml_set_name(b, "b");
  1900. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  1901. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  1902. ggml_set_name(a, "a_permuted");
  1903. ggml_set_name(b, "b_permuted");
  1904. } else {
  1905. if (v) {
  1906. a = ggml_new_tensor_4d(ctx, type_a, k*2, m, bs[0], bs[1]);
  1907. b = ggml_new_tensor_4d(ctx, type_b, k*2, n, bs[0]*nr[0], bs[1]*nr[1]);
  1908. if (!ggml_is_quantized(type_a)) {
  1909. if (bs[1] == 1 && nr[1] == 1) {
  1910. ggml_set_param(a);
  1911. }
  1912. ggml_set_param(b);
  1913. }
  1914. a = ggml_view_4d(ctx, a, k, m, bs[0], bs[1], a->nb[1], a->nb[2], a->nb[3], 0);
  1915. b = ggml_view_4d(ctx, b, k, n, bs[0]*nr[0], bs[1]*nr[1], b->nb[1], b->nb[2], b->nb[3], 0);
  1916. } else {
  1917. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  1918. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1919. if (!ggml_is_quantized(type_a)) {
  1920. if (bs[1] == 1 && nr[1] == 1) {
  1921. ggml_set_param(a);
  1922. }
  1923. ggml_set_param(b);
  1924. }
  1925. }
  1926. ggml_set_name(a, "a");
  1927. ggml_set_name(b, "b");
  1928. }
  1929. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  1930. ggml_set_name(out, "out");
  1931. return out;
  1932. }
  1933. };
  1934. // GGML_OP_MUL_MAT_ID
  1935. struct test_mul_mat_id : public test_case {
  1936. const ggml_type type_a;
  1937. const ggml_type type_b;
  1938. const int n_mats;
  1939. const int n_used;
  1940. const bool b; // broadcast b matrix
  1941. const int64_t m;
  1942. const int64_t n;
  1943. const int64_t k;
  1944. std::string vars() override {
  1945. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  1946. }
  1947. double max_nmse_err() override {
  1948. return 5e-4;
  1949. }
  1950. uint64_t op_flops(ggml_tensor * t) override {
  1951. GGML_UNUSED(t);
  1952. return 2 * m * k * n * n_used;
  1953. }
  1954. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1955. int n_mats = 8, int n_used = 2, bool b = false,
  1956. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  1957. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  1958. m(m), n(n), k(k) {
  1959. GGML_ASSERT(n_used <= n_mats);
  1960. }
  1961. ggml_tensor * build_graph(ggml_context * ctx) override {
  1962. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1963. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  1964. ggml_set_name(as, "as");
  1965. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  1966. ggml_set_name(ids, "ids");
  1967. if (n_used != n_mats) {
  1968. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  1969. ggml_set_name(ids, "view_of_ids");
  1970. }
  1971. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  1972. ggml_set_name(b, "b");
  1973. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  1974. ggml_set_name(out, "out");
  1975. return out;
  1976. }
  1977. void initialize_tensors(ggml_context * ctx) override {
  1978. std::random_device rd;
  1979. std::default_random_engine rng(rd());
  1980. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1981. if (t->type == GGML_TYPE_I32) {
  1982. if (ggml_is_view_op(t->op)) { continue; }
  1983. // ids
  1984. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1985. std::vector<int32_t> data(t->ne[0]);
  1986. for (int i = 0; i < t->ne[0]; i++) {
  1987. data[i] = i % n_mats;
  1988. }
  1989. std::shuffle(data.begin(), data.end(), rng);
  1990. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  1991. }
  1992. } else {
  1993. init_tensor_uniform(t);
  1994. }
  1995. }
  1996. }
  1997. };
  1998. // GGML_OP_OUT_PROD
  1999. struct test_out_prod : public test_case {
  2000. const ggml_type type_a;
  2001. const ggml_type type_b;
  2002. const int64_t m;
  2003. const int64_t n;
  2004. const int64_t k;
  2005. const std::array<int64_t, 2> bs; // dims 3 and 4
  2006. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  2007. const bool trans_b;
  2008. std::string vars() override {
  2009. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  2010. }
  2011. double max_nmse_err() override {
  2012. return 5e-4;
  2013. }
  2014. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  2015. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  2016. std::array<int64_t, 2> bs = {10, 10},
  2017. std::array<int64_t, 2> nr = {2, 2},
  2018. bool trans_b = false)
  2019. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  2020. ggml_tensor * build_graph(ggml_context * ctx) override {
  2021. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  2022. ggml_set_name(a, "a");
  2023. ggml_tensor * b;
  2024. if (trans_b) {
  2025. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  2026. b = ggml_transpose(ctx, b);
  2027. } else {
  2028. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  2029. }
  2030. ggml_set_name(b, "b");
  2031. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  2032. ggml_set_name(out, "out");
  2033. return out;
  2034. }
  2035. };
  2036. // GGML_OP_SQR
  2037. struct test_sqr : public test_case {
  2038. const ggml_type type;
  2039. const std::array<int64_t, 4> ne;
  2040. std::string vars() override {
  2041. return VARS_TO_STR2(type, ne);
  2042. }
  2043. test_sqr(ggml_type type = GGML_TYPE_F32,
  2044. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2045. : type(type), ne(ne) {}
  2046. ggml_tensor * build_graph(ggml_context * ctx) override {
  2047. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2048. ggml_set_param(a);
  2049. ggml_set_name(a, "a");
  2050. ggml_tensor * out = ggml_sqr(ctx, a);
  2051. ggml_set_name(out, "out");
  2052. return out;
  2053. }
  2054. float grad_eps() override {
  2055. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  2056. }
  2057. };
  2058. // GGML_OP_SQRT
  2059. struct test_sqrt : public test_case {
  2060. const ggml_type type;
  2061. const std::array<int64_t, 4> ne;
  2062. std::string vars() override {
  2063. return VARS_TO_STR2(type, ne);
  2064. }
  2065. test_sqrt(ggml_type type = GGML_TYPE_F32,
  2066. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  2067. : type(type), ne(ne) {}
  2068. ggml_tensor * build_graph(ggml_context * ctx) override {
  2069. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2070. ggml_set_param(a);
  2071. ggml_set_name(a, "a");
  2072. ggml_tensor * out = ggml_sqrt(ctx, a);
  2073. ggml_set_name(out, "out");
  2074. return out;
  2075. }
  2076. void initialize_tensors(ggml_context * ctx) override {
  2077. // fill with positive values
  2078. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2079. init_tensor_uniform(t, 50.0f, 100.0f);
  2080. }
  2081. }
  2082. float grad_eps() override {
  2083. return 20.0f;
  2084. }
  2085. bool grad_precise() override {
  2086. return true;
  2087. }
  2088. };
  2089. // GGML_OP_LOG
  2090. struct test_log : public test_case {
  2091. const ggml_type type;
  2092. const std::array<int64_t, 4> ne;
  2093. std::string vars() override {
  2094. return VARS_TO_STR2(type, ne);
  2095. }
  2096. test_log(ggml_type type = GGML_TYPE_F32,
  2097. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2098. : type(type), ne(ne) {}
  2099. ggml_tensor * build_graph(ggml_context * ctx) override {
  2100. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2101. ggml_set_param(a);
  2102. ggml_set_name(a, "a");
  2103. ggml_tensor * out = ggml_log(ctx, a);
  2104. ggml_set_name(out, "out");
  2105. return out;
  2106. }
  2107. void initialize_tensors(ggml_context * ctx) override {
  2108. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2109. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  2110. init_tensor_uniform(t, 0.9f, 1.1f);
  2111. }
  2112. }
  2113. bool grad_precise() override {
  2114. return true;
  2115. }
  2116. };
  2117. // GGML_OP_SIN
  2118. struct test_sin : public test_case {
  2119. const ggml_type type;
  2120. const std::array<int64_t, 4> ne;
  2121. std::string vars() override {
  2122. return VARS_TO_STR2(type, ne);
  2123. }
  2124. test_sin(ggml_type type = GGML_TYPE_F32,
  2125. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2126. : type(type), ne(ne) {}
  2127. ggml_tensor * build_graph(ggml_context * ctx) override {
  2128. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2129. ggml_set_param(a);
  2130. ggml_set_name(a, "a");
  2131. ggml_tensor * out = ggml_sin(ctx, a);
  2132. ggml_set_name(out, "out");
  2133. return out;
  2134. }
  2135. void initialize_tensors(ggml_context * ctx) override {
  2136. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2137. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2138. }
  2139. }
  2140. double max_maa_err() override {
  2141. return 1e-3;
  2142. }
  2143. float grad_eps() override {
  2144. return 0.2f;
  2145. }
  2146. bool grad_precise() override {
  2147. return true;
  2148. }
  2149. };
  2150. // GGML_OP_COS
  2151. struct test_cos : public test_case {
  2152. const ggml_type type;
  2153. const std::array<int64_t, 4> ne;
  2154. std::string vars() override {
  2155. return VARS_TO_STR2(type, ne);
  2156. }
  2157. test_cos(ggml_type type = GGML_TYPE_F32,
  2158. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  2159. : type(type), ne(ne) {}
  2160. ggml_tensor * build_graph(ggml_context * ctx) override {
  2161. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2162. ggml_set_param(a);
  2163. ggml_set_name(a, "a");
  2164. ggml_tensor * out = ggml_cos(ctx, a);
  2165. ggml_set_name(out, "out");
  2166. return out;
  2167. }
  2168. void initialize_tensors(ggml_context * ctx) override {
  2169. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2170. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  2171. }
  2172. }
  2173. double max_maa_err() override {
  2174. return 1e-3;
  2175. }
  2176. float grad_eps() override {
  2177. return 0.2f;
  2178. }
  2179. bool grad_precise() override {
  2180. return true;
  2181. }
  2182. };
  2183. // GGML_OP_CLAMP
  2184. struct test_clamp : public test_case {
  2185. const ggml_type type;
  2186. const std::array<int64_t, 4> ne;
  2187. float min;
  2188. float max;
  2189. std::string vars() override {
  2190. return VARS_TO_STR4(type, ne, min, max);
  2191. }
  2192. test_clamp(ggml_type type = GGML_TYPE_F32,
  2193. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2194. float min = -0.5f, float max = 0.5f)
  2195. : type(type), ne(ne), min(min), max(max) {}
  2196. ggml_tensor * build_graph(ggml_context * ctx) override {
  2197. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2198. ggml_set_name(a, "a");
  2199. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  2200. ggml_set_name(out, "out");
  2201. return out;
  2202. }
  2203. float grad_eps() override {
  2204. return 1e-2f;
  2205. }
  2206. std::vector<float> grad_expect() override {
  2207. return {0.0f, 1.0f};
  2208. }
  2209. };
  2210. // GGML_OP_DIAG_MASK_INF
  2211. struct test_diag_mask_inf : public test_case {
  2212. const ggml_type type;
  2213. const std::array<int64_t, 4> ne;
  2214. const int n_past;
  2215. std::string vars() override {
  2216. return VARS_TO_STR3(type, ne, n_past);
  2217. }
  2218. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  2219. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  2220. int n_past = 5)
  2221. : type(type), ne(ne), n_past(n_past) {}
  2222. ggml_tensor * build_graph(ggml_context * ctx) override {
  2223. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2224. ggml_set_param(a);
  2225. ggml_set_name(a, "a");
  2226. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  2227. ggml_set_name(out, "out");
  2228. return out;
  2229. }
  2230. };
  2231. // GGML_OP_SOFT_MAX
  2232. struct test_soft_max : public test_case {
  2233. const ggml_type type;
  2234. const std::array<int64_t, 4> ne;
  2235. const bool mask;
  2236. const ggml_type m_prec;
  2237. const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3
  2238. const float scale;
  2239. const float max_bias;
  2240. std::string vars() override {
  2241. return VARS_TO_STR7(type, ne, mask, m_prec, nr23, scale, max_bias);
  2242. }
  2243. // the 1024 test with bias occasionally fails:
  2244. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  2245. virtual double max_nmse_err() override {
  2246. return 1e-6;
  2247. }
  2248. test_soft_max(ggml_type type = GGML_TYPE_F32,
  2249. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2250. bool mask = false,
  2251. ggml_type m_prec = GGML_TYPE_F32,
  2252. std::array<int64_t, 2> nr23 = {1, 1},
  2253. float scale = 1.0f,
  2254. float max_bias = 0.0f)
  2255. : type(type), ne(ne), mask(mask), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias) {}
  2256. ggml_tensor * build_graph(ggml_context * ctx) override {
  2257. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2]*nr23[0], ne[3]*nr23[1]);
  2258. ggml_set_param(a);
  2259. ggml_set_name(a, "a");
  2260. ggml_tensor * mask = nullptr;
  2261. if (this->mask) {
  2262. mask = ggml_new_tensor_4d(ctx, m_prec, ne[0], ne[1], ne[2], ne[3]);
  2263. ggml_set_name(mask, "mask");
  2264. }
  2265. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  2266. ggml_set_name(out, "out");
  2267. return out;
  2268. }
  2269. bool grad_precise() override {
  2270. return true;
  2271. }
  2272. };
  2273. // GGML_OP_SOFT_MAX_BACK
  2274. struct test_soft_max_back : public test_case {
  2275. const ggml_type type;
  2276. const std::array<int64_t, 4> ne;
  2277. const float scale;
  2278. const float max_bias;
  2279. std::string vars() override {
  2280. return VARS_TO_STR4(type, ne, scale, max_bias);
  2281. }
  2282. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  2283. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2284. float scale = 1.0f,
  2285. float max_bias = 0.0f)
  2286. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  2287. ggml_tensor * build_graph(ggml_context * ctx) override {
  2288. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2289. ggml_set_name(a, "a");
  2290. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2291. ggml_set_name(a, "a");
  2292. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  2293. ggml_set_name(out, "out");
  2294. return out;
  2295. }
  2296. };
  2297. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  2298. struct test_rope : public test_case {
  2299. const ggml_type type;
  2300. const std::array<int64_t, 4> ne_a;
  2301. int n_dims;
  2302. int mode;
  2303. int n_ctx; // used to generate positions
  2304. float fs; // freq_scale
  2305. float ef; // ext_factor
  2306. float af; // attn_factor
  2307. bool ff;
  2308. int v; // view (1 : non-contiguous a)
  2309. bool forward;
  2310. std::string vars() override {
  2311. // forward can be inferred from the op, does not need to be printed
  2312. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  2313. }
  2314. test_rope(ggml_type type = GGML_TYPE_F32,
  2315. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  2316. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  2317. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2318. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2319. ggml_tensor * build_graph(ggml_context * ctx) override {
  2320. ggml_tensor * a;
  2321. if (v & 1) {
  2322. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2323. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2324. if (forward) {
  2325. ggml_set_param(a);
  2326. }
  2327. ggml_set_name(a, "a");
  2328. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2329. ggml_set_name(a, "view_of_a");
  2330. } else {
  2331. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2332. if (forward) {
  2333. ggml_set_param(a);
  2334. }
  2335. ggml_set_name(a, "a");
  2336. }
  2337. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2338. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2339. ggml_tensor * pos;
  2340. if (is_mrope || is_vision) {
  2341. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2342. } else {
  2343. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2344. }
  2345. ggml_set_name(pos, "pos");
  2346. ggml_tensor * freq = nullptr;
  2347. if (ff) {
  2348. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2349. ggml_set_name(freq, "freq");
  2350. }
  2351. ggml_tensor * out;
  2352. if (is_mrope) {
  2353. if (is_vision) {
  2354. GGML_ASSERT(n_dims/4 > 0);
  2355. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2356. if (forward) {
  2357. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2358. } else {
  2359. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2360. }
  2361. } else {
  2362. GGML_ASSERT(n_dims/3 > 0);
  2363. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2364. if (forward) {
  2365. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2366. } else {
  2367. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2368. }
  2369. }
  2370. } else {
  2371. if (forward) {
  2372. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2373. } else {
  2374. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2375. }
  2376. // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp
  2377. }
  2378. ggml_set_name(out, "out");
  2379. return out;
  2380. }
  2381. void initialize_tensors(ggml_context * ctx) override {
  2382. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2383. if (t->type == GGML_TYPE_I32) {
  2384. // pos
  2385. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2386. std::vector<int> data(num_pos_ids);
  2387. for (int i = 0; i < num_pos_ids; i++) {
  2388. data[i] = rand() % n_ctx;
  2389. }
  2390. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2391. } else {
  2392. if (t->ne[0] == n_dims/2) {
  2393. // frequency factors in the range [0.9f, 1.1f]
  2394. init_tensor_uniform(t, 0.9f, 1.1f);
  2395. } else {
  2396. init_tensor_uniform(t);
  2397. }
  2398. }
  2399. }
  2400. }
  2401. double max_maa_err() override {
  2402. return 1e-3;
  2403. }
  2404. bool grad_precise() override {
  2405. return true;
  2406. }
  2407. };
  2408. // GGML_OP_POOL2D
  2409. struct test_pool2d : public test_case {
  2410. enum ggml_op_pool pool_type;
  2411. const ggml_type type_input;
  2412. const std::array<int64_t, 4> ne_input;
  2413. // kernel size
  2414. const int k0;
  2415. const int k1;
  2416. // stride
  2417. const int s0;
  2418. const int s1;
  2419. // padding
  2420. const int p0;
  2421. const int p1;
  2422. std::string vars() override {
  2423. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2424. }
  2425. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2426. ggml_type type_input = GGML_TYPE_F32,
  2427. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2428. int k0 = 3, int k1 = 3,
  2429. int s0 = 1, int s1 = 1,
  2430. int p0 = 1, int p1 = 1)
  2431. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2432. ggml_tensor * build_graph(ggml_context * ctx) override {
  2433. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2434. ggml_set_param(input);
  2435. ggml_set_name(input, "input");
  2436. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2437. ggml_set_name(out, "out");
  2438. return out;
  2439. }
  2440. };
  2441. // GGML_OP_CONV_TRANSPOSE_1D
  2442. struct test_conv_transpose_1d : public test_case {
  2443. const std::array<int64_t, 4> ne_input;
  2444. const std::array<int64_t, 4> ne_kernel;
  2445. const int s0; // stride
  2446. const int p0; // padding
  2447. const int d0; // dilation
  2448. std::string vars() override {
  2449. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2450. }
  2451. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)]
  2452. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)]
  2453. int s0 = 1, int p0 = 0, int d0 = 1)
  2454. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2455. ggml_tensor * build_graph(ggml_context * ctx) override {
  2456. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2457. ggml_set_name(input, "input");
  2458. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2459. ggml_set_name(kernel, "kernel");
  2460. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2461. ggml_set_name(out, "out");
  2462. return out;
  2463. }
  2464. };
  2465. // GGML_OP_CONV_TRANSPOSE_2D
  2466. struct test_conv_transpose_2d : public test_case {
  2467. const std::array<int64_t, 4> ne_input;
  2468. const std::array<int64_t, 4> ne_kernel;
  2469. const int stride;
  2470. std::string vars() override {
  2471. return VARS_TO_STR3(ne_input, ne_kernel, stride);
  2472. }
  2473. test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2474. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2475. int stride = 1)
  2476. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){}
  2477. ggml_tensor * build_graph(ggml_context * ctx) override {
  2478. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2479. ggml_set_name(input, "input");
  2480. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne_kernel.data());
  2481. ggml_set_name(kernel, "kernel");
  2482. ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, kernel, input, stride);
  2483. ggml_set_name(out, "out");
  2484. return out;
  2485. }
  2486. };
  2487. // GGML_OP_IM2COL
  2488. struct test_im2col : public test_case {
  2489. const ggml_type type_input;
  2490. const ggml_type type_kernel;
  2491. const ggml_type dst_type;
  2492. const std::array<int64_t, 4> ne_input;
  2493. const std::array<int64_t, 4> ne_kernel;
  2494. // stride
  2495. const int s0;
  2496. const int s1;
  2497. // padding
  2498. const int p0;
  2499. const int p1;
  2500. // dilation
  2501. const int d0;
  2502. const int d1;
  2503. // mode
  2504. const bool is_2D;
  2505. std::string vars() override {
  2506. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2507. }
  2508. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2509. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2510. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2511. int s0 = 1, int s1 = 1,
  2512. int p0 = 1, int p1 = 1,
  2513. int d0 = 1, int d1 = 1,
  2514. bool is_2D = true)
  2515. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2516. ggml_tensor * build_graph(ggml_context * ctx) override {
  2517. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2518. ggml_set_param(input);
  2519. ggml_set_name(input, "input");
  2520. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2521. ggml_set_name(kernel, "kernel");
  2522. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2523. ggml_set_name(out, "out");
  2524. return out;
  2525. }
  2526. };
  2527. // GGML_OP_CONV_2D_DW
  2528. struct test_conv_2d_dw : public test_case {
  2529. const std::array<int64_t, 4> ne_input;
  2530. const std::array<int64_t, 4> ne_kernel;
  2531. const int stride;
  2532. const int padding;
  2533. const int dilation;
  2534. const bool cwhn;
  2535. std::string vars() override {
  2536. return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn);
  2537. }
  2538. test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1},
  2539. std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16},
  2540. int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false)
  2541. : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {}
  2542. ggml_tensor * build_graph(ggml_context * ctx) override {
  2543. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2544. ggml_set_name(input, "input");
  2545. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2546. ggml_set_name(kernel, "kernel");
  2547. if (cwhn) {
  2548. // change memory layout to channel-most-contiguous (CWHN),
  2549. // then permute it back so NE matches the original input
  2550. input = ggml_cont(ctx, ggml_permute(ctx, input, 1, 2, 0, 3));
  2551. input = ggml_permute(ctx, input, 2, 0, 1, 3);
  2552. kernel = ggml_cont(ctx, ggml_permute(ctx, kernel, 2, 3, 1, 0));
  2553. kernel = ggml_permute(ctx, kernel, 3, 2, 0, 1);
  2554. }
  2555. ggml_tensor * out = ggml_conv_2d_dw_direct(
  2556. ctx, kernel, input,
  2557. stride, stride, padding, padding, dilation, dilation);
  2558. ggml_set_name(out, "out");
  2559. return out;
  2560. }
  2561. };
  2562. // GGML_OP_CONCAT
  2563. struct test_concat : public test_case {
  2564. const ggml_type type;
  2565. const std::array<int64_t, 4> ne_a;
  2566. const int64_t ne_b_d;
  2567. const int dim;
  2568. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  2569. std::string vars() override {
  2570. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  2571. }
  2572. test_concat(ggml_type type = GGML_TYPE_F32,
  2573. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  2574. int64_t ne_b_d = 5,
  2575. int dim = 2, int v = 0)
  2576. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  2577. ggml_tensor * build_graph(ggml_context * ctx) override {
  2578. auto ne_b = ne_a;
  2579. ne_b[dim] = ne_b_d;
  2580. ggml_tensor * a;
  2581. if (v & 1) {
  2582. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2583. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2584. ggml_set_name(a, "a");
  2585. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2586. ggml_set_name(a, "view_of_a");
  2587. } else {
  2588. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2589. ggml_set_name(a, "a");
  2590. }
  2591. ggml_tensor * b;
  2592. if (v & 2) {
  2593. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  2594. b = ggml_new_tensor(ctx, type, 4, ne.data());
  2595. ggml_set_name(b, "b");
  2596. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  2597. ggml_set_name(b, "view_of_b");
  2598. } else {
  2599. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2600. ggml_set_name(b, "b");
  2601. }
  2602. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  2603. ggml_set_name(out, "out");
  2604. return out;
  2605. }
  2606. };
  2607. // GGML_OP_ARGSORT
  2608. struct test_argsort : public test_case {
  2609. const ggml_type type;
  2610. const std::array<int64_t, 4> ne;
  2611. ggml_sort_order order;
  2612. std::string vars() override {
  2613. return VARS_TO_STR3(type, ne, order);
  2614. }
  2615. test_argsort(ggml_type type = GGML_TYPE_F32,
  2616. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  2617. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  2618. : type(type), ne(ne), order(order) {}
  2619. ggml_tensor * build_graph(ggml_context * ctx) override {
  2620. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2621. ggml_set_name(a, "a");
  2622. ggml_tensor * out = ggml_argsort(ctx, a, order);
  2623. ggml_set_name(out, "out");
  2624. return out;
  2625. }
  2626. void initialize_tensors(ggml_context * ctx) override {
  2627. std::random_device rd;
  2628. std::default_random_engine rng(rd());
  2629. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2630. if (t->type == GGML_TYPE_I32) {
  2631. // indices
  2632. std::vector<int> data(ggml_nelements(t));
  2633. for (int i = 0; i < ggml_nelements(t); i++) {
  2634. data[i] = rand();
  2635. }
  2636. std::shuffle(data.begin(), data.end(), rng);
  2637. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  2638. } else if (t->type == GGML_TYPE_F32) {
  2639. // initialize with unique values to avoid ties
  2640. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2641. std::vector<float> data(t->ne[0]);
  2642. for (int i = 0; i < t->ne[0]; i++) {
  2643. data[i] = i;
  2644. }
  2645. std::shuffle(data.begin(), data.end(), rng);
  2646. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2647. }
  2648. } else {
  2649. GGML_ABORT("fatal error");
  2650. }
  2651. }
  2652. }
  2653. };
  2654. // GGML_OP_SUM
  2655. struct test_sum : public test_case {
  2656. const ggml_type type;
  2657. const std::array<int64_t, 4> ne;
  2658. std::string vars() override {
  2659. return VARS_TO_STR2(type, ne);
  2660. }
  2661. test_sum(ggml_type type = GGML_TYPE_F32,
  2662. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2663. : type(type), ne(ne) {}
  2664. ggml_tensor * build_graph(ggml_context * ctx) override {
  2665. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2666. ggml_set_param(a);
  2667. ggml_set_name(a, "a");
  2668. ggml_tensor * out = ggml_sum(ctx, a);
  2669. ggml_set_name(out, "out");
  2670. return out;
  2671. }
  2672. float grad_eps() override {
  2673. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  2674. }
  2675. };
  2676. // GGML_OP_SUM_ROWS
  2677. struct test_sum_rows : public test_case {
  2678. const ggml_type type;
  2679. const std::array<int64_t, 4> ne;
  2680. std::string vars() override {
  2681. return VARS_TO_STR2(type, ne);
  2682. }
  2683. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  2684. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2685. : type(type), ne(ne) {}
  2686. ggml_tensor * build_graph(ggml_context * ctx) override {
  2687. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2688. ggml_set_param(a);
  2689. ggml_set_name(a, "a");
  2690. ggml_tensor * out = ggml_sum_rows(ctx, a);
  2691. ggml_set_name(out, "out");
  2692. return out;
  2693. }
  2694. };
  2695. // GGML_OP_MEAN
  2696. struct test_mean : public test_case {
  2697. const ggml_type type;
  2698. const std::array<int64_t, 4> ne;
  2699. std::string vars() override {
  2700. return VARS_TO_STR2(type, ne);
  2701. }
  2702. test_mean(ggml_type type = GGML_TYPE_F32,
  2703. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2704. : type(type), ne(ne) {}
  2705. ggml_tensor * build_graph(ggml_context * ctx) override {
  2706. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2707. ggml_set_param(a);
  2708. ggml_set_name(a, "a");
  2709. ggml_tensor * out = ggml_mean(ctx, a);
  2710. ggml_set_name(out, "out");
  2711. return out;
  2712. }
  2713. float grad_eps() override {
  2714. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2715. }
  2716. };
  2717. // GGML_OP_UPSCALE
  2718. struct test_upscale : public test_case {
  2719. const ggml_type type;
  2720. const std::array<int64_t, 4> ne;
  2721. const int32_t scale_factor;
  2722. const bool transpose;
  2723. const ggml_scale_mode mode;
  2724. std::string vars() override {
  2725. return VARS_TO_STR5(type, ne, scale_factor, mode, transpose);
  2726. }
  2727. test_upscale(ggml_type type = GGML_TYPE_F32,
  2728. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  2729. int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false)
  2730. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {}
  2731. ggml_tensor * build_graph(ggml_context * ctx) override {
  2732. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2733. ggml_set_name(a, "a");
  2734. if (transpose) {
  2735. a = ggml_transpose(ctx, a);
  2736. ggml_set_name(a, "a_transposed");
  2737. }
  2738. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode);
  2739. ggml_set_name(out, "out");
  2740. return out;
  2741. }
  2742. };
  2743. // GGML_OP_UPSCALE (via ggml_interpolate)
  2744. struct test_interpolate : public test_case {
  2745. const ggml_type type;
  2746. const std::array<int64_t, 4> ne;
  2747. const std::array<int64_t, 4> ne_tgt;
  2748. const uint32_t mode = GGML_SCALE_MODE_NEAREST;
  2749. std::string vars() override {
  2750. return VARS_TO_STR4(type, ne, ne_tgt, mode);
  2751. }
  2752. test_interpolate(ggml_type type = GGML_TYPE_F32,
  2753. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  2754. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13},
  2755. uint32_t mode = GGML_SCALE_MODE_NEAREST)
  2756. : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {}
  2757. ggml_tensor * build_graph(ggml_context * ctx) override {
  2758. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2759. ggml_set_name(a, "a");
  2760. ggml_tensor * out = ggml_interpolate(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3], mode);
  2761. ggml_set_name(out, "out");
  2762. return out;
  2763. }
  2764. };
  2765. // GGML_OP_GROUP_NORM
  2766. struct test_group_norm : public test_case {
  2767. const ggml_type type;
  2768. const std::array<int64_t, 4> ne;
  2769. const int32_t num_groups;
  2770. const float eps;
  2771. std::string vars() override {
  2772. return VARS_TO_STR4(type, ne, num_groups, eps);
  2773. }
  2774. test_group_norm(ggml_type type = GGML_TYPE_F32,
  2775. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2776. int32_t num_groups = 32,
  2777. float eps = 1e-6f)
  2778. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  2779. ggml_tensor * build_graph(ggml_context * ctx) override {
  2780. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2781. ggml_set_name(a, "a");
  2782. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  2783. ggml_set_name(out, "out");
  2784. return out;
  2785. }
  2786. };
  2787. // GGML_OP_L2_NORM
  2788. struct test_l2_norm : public test_case {
  2789. const ggml_type type;
  2790. const std::array<int64_t, 4> ne;
  2791. const float eps;
  2792. std::string vars() override {
  2793. return VARS_TO_STR2(type, ne);
  2794. }
  2795. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  2796. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2797. float eps = 1e-12f)
  2798. : type(type), ne(ne), eps(eps) {}
  2799. ggml_tensor * build_graph(ggml_context * ctx) override {
  2800. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2801. ggml_set_name(a, "a");
  2802. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  2803. ggml_set_name(out, "out");
  2804. return out;
  2805. }
  2806. };
  2807. // GGML_OP_ACC
  2808. struct test_acc : public test_case {
  2809. const ggml_type type;
  2810. const std::array<int64_t, 4> ne_a;
  2811. const std::array<int64_t, 4> ne_b;
  2812. std::string vars() override {
  2813. return VARS_TO_STR3(type, ne_a, ne_b);
  2814. }
  2815. test_acc(ggml_type type = GGML_TYPE_F32,
  2816. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  2817. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  2818. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2819. ggml_tensor * build_graph(ggml_context * ctx) override {
  2820. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2821. ggml_set_param(a);
  2822. ggml_set_name(a, "a");
  2823. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2824. ggml_set_param(b);
  2825. ggml_set_name(b, "b");
  2826. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  2827. ggml_set_name(out, "out");
  2828. return out;
  2829. }
  2830. };
  2831. // GGML_OP_PAD
  2832. struct test_pad : public test_case {
  2833. const ggml_type type;
  2834. const std::array<int64_t, 4> ne_a;
  2835. const int pad_0;
  2836. const int pad_1;
  2837. std::string vars() override {
  2838. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2839. }
  2840. test_pad(ggml_type type = GGML_TYPE_F32,
  2841. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  2842. int pad_0 = 1, int pad_1 = 1)
  2843. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2844. ggml_tensor * build_graph(ggml_context * ctx) override {
  2845. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2846. ggml_set_name(a, "a");
  2847. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  2848. ggml_set_name(out, "out");
  2849. return out;
  2850. }
  2851. };
  2852. // GGML_OP_PAD_REFLECT_1D
  2853. struct test_pad_reflect_1d : public test_case {
  2854. const ggml_type type;
  2855. const std::array<int64_t, 4> ne_a;
  2856. const int pad_0;
  2857. const int pad_1;
  2858. std::string vars() override {
  2859. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2860. }
  2861. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  2862. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  2863. int pad_0 = 10, int pad_1 = 9)
  2864. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2865. ggml_tensor * build_graph(ggml_context * ctx) override {
  2866. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  2867. ggml_set_name(a, "a");
  2868. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  2869. ggml_set_name(out, "out");
  2870. return out;
  2871. }
  2872. };
  2873. // GGML_OP_ARANGE
  2874. struct test_arange : public test_case {
  2875. const ggml_type type;
  2876. const float start;
  2877. const float stop;
  2878. const float step;
  2879. std::string vars() override {
  2880. return VARS_TO_STR4(type, start, stop, step);
  2881. }
  2882. test_arange(ggml_type type = GGML_TYPE_F32,
  2883. float start = 0.f, float stop = 10.f, float step = 1.f)
  2884. : type(type), start(start), stop(stop), step(step) {}
  2885. ggml_tensor * build_graph(ggml_context * ctx) override {
  2886. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  2887. ggml_set_name(out, "out");
  2888. return out;
  2889. }
  2890. };
  2891. // GGML_OP_TIMESTEP_EMBEDDING
  2892. struct test_timestep_embedding : public test_case {
  2893. const ggml_type type;
  2894. const std::array<int64_t, 4> ne_a;
  2895. const int dim;
  2896. const int max_period;
  2897. std::string vars() override {
  2898. return VARS_TO_STR4(type, ne_a, dim, max_period);
  2899. }
  2900. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  2901. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  2902. int dim = 320, int max_period=10000)
  2903. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  2904. ggml_tensor * build_graph(ggml_context * ctx) override {
  2905. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2906. ggml_set_name(a, "a");
  2907. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  2908. ggml_set_name(out, "out");
  2909. return out;
  2910. }
  2911. };
  2912. // GGML_OP_LEAKY_RELU
  2913. struct test_leaky_relu : public test_case {
  2914. const ggml_type type;
  2915. const std::array<int64_t, 4> ne_a;
  2916. const float negative_slope;
  2917. std::string vars() override {
  2918. return VARS_TO_STR3(type, ne_a, negative_slope);
  2919. }
  2920. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  2921. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  2922. float negative_slope = 0.1f)
  2923. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  2924. ggml_tensor * build_graph(ggml_context * ctx) override {
  2925. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2926. ggml_set_name(a, "a");
  2927. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  2928. ggml_set_name(out, "out");
  2929. return out;
  2930. }
  2931. };
  2932. // GGML_OP_FLASH_ATTN_EXT
  2933. struct test_flash_attn_ext : public test_case {
  2934. const int64_t hsk; // K head size
  2935. const int64_t hsv; // V head size
  2936. const int64_t nh; // num heads
  2937. const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention
  2938. const int64_t kv; // kv size
  2939. const int64_t nb; // batch size
  2940. const bool mask; // use mask
  2941. const float max_bias; // ALiBi
  2942. const float logit_softcap; // Gemma 2
  2943. const ggml_prec prec;
  2944. const ggml_type type_KV;
  2945. std::array<int32_t, 4> permute;
  2946. std::string vars() override {
  2947. return VARS_TO_STR12(hsk, hsv, nh, nr23, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
  2948. }
  2949. double max_nmse_err() override {
  2950. return 5e-4;
  2951. }
  2952. uint64_t op_flops(ggml_tensor * t) override {
  2953. GGML_UNUSED(t);
  2954. // Just counting matmul costs:
  2955. // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head
  2956. return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1];
  2957. }
  2958. test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8,
  2959. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  2960. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  2961. : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  2962. ggml_tensor * build_graph(ggml_context * ctx) override {
  2963. const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV));
  2964. const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV));
  2965. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
  2966. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  2967. int64_t ne_perm[4];
  2968. for (int i = 0; i < 4; ++i) {
  2969. ne_perm[permute[i]] = ne[i];
  2970. }
  2971. ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  2972. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  2973. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  2974. }
  2975. return t;
  2976. };
  2977. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1]);
  2978. ggml_set_name(q, "q");
  2979. ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1]);
  2980. ggml_set_name(k, "k");
  2981. ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1]);
  2982. ggml_set_name(v, "v");
  2983. ggml_tensor * m = nullptr;
  2984. if (mask) {
  2985. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), nr23[0], nr23[1]);
  2986. ggml_set_name(m, "m");
  2987. }
  2988. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hsk), max_bias, logit_softcap);
  2989. ggml_flash_attn_ext_set_prec(out, prec);
  2990. ggml_set_name(out, "out");
  2991. return out;
  2992. }
  2993. bool grad_precise() override {
  2994. return true;
  2995. }
  2996. };
  2997. // GGML_OP_CROSS_ENTROPY_LOSS
  2998. struct test_cross_entropy_loss : public test_case {
  2999. const ggml_type type;
  3000. const std::array<int64_t, 4> ne;
  3001. std::string vars() override {
  3002. return VARS_TO_STR2(type, ne);
  3003. }
  3004. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  3005. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3006. : type(type), ne(ne) {}
  3007. ggml_tensor * build_graph(ggml_context * ctx) override {
  3008. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  3009. ggml_set_param(logits);
  3010. ggml_set_name(logits, "logits");
  3011. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  3012. // The labels are assumed to be constant -> no gradients.
  3013. ggml_set_name(labels, "labels");
  3014. // Ensure labels add up to 1:
  3015. labels = ggml_soft_max(ctx, labels);
  3016. ggml_set_name(labels, "labels_normalized");
  3017. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  3018. ggml_set_name(out, "out");
  3019. return out;
  3020. }
  3021. void initialize_tensors(ggml_context * ctx) override {
  3022. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  3023. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3024. init_tensor_uniform(t, -100.0f, 100.0f);
  3025. }
  3026. }
  3027. float grad_eps() override {
  3028. return 1.0f;
  3029. }
  3030. bool grad_precise() override {
  3031. return true;
  3032. }
  3033. };
  3034. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  3035. struct test_cross_entropy_loss_back : public test_case {
  3036. const ggml_type type;
  3037. const std::array<int64_t, 4> ne;
  3038. std::string vars() override {
  3039. return VARS_TO_STR2(type, ne);
  3040. }
  3041. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  3042. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3043. : type(type), ne(ne) {}
  3044. ggml_tensor * build_graph(ggml_context * ctx) override {
  3045. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3046. ggml_set_name(grad, "grad");
  3047. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  3048. ggml_set_name(logits, "logits");
  3049. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  3050. ggml_set_name(labels, "labels");
  3051. // Ensure labels add up to 1:
  3052. labels = ggml_soft_max(ctx, labels);
  3053. ggml_set_name(labels, "labels_normalized");
  3054. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  3055. ggml_set_name(out, "out");
  3056. return out;
  3057. }
  3058. };
  3059. // GGML_OP_OPT_STEP_ADAMW
  3060. struct test_opt_step_adamw : public test_case {
  3061. const ggml_type type;
  3062. const std::array<int64_t, 4> ne;
  3063. std::string vars() override {
  3064. return VARS_TO_STR2(type, ne);
  3065. }
  3066. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  3067. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  3068. : type(type), ne(ne) {}
  3069. ggml_tensor * build_graph(ggml_context * ctx) override {
  3070. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3071. ggml_set_param(a); // Despite tensor a having gradients the output tensor will not.
  3072. ggml_set_name(a, "a");
  3073. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3074. ggml_set_name(grad, "grad");
  3075. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3076. ggml_set_name(grad_m, "grad_m");
  3077. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  3078. ggml_set_name(grad_v, "grad_v");
  3079. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  3080. ggml_set_name(adamw_params, "adamw_params");
  3081. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  3082. ggml_set_name(out, "out");
  3083. return out;
  3084. }
  3085. void initialize_tensors(ggml_context * ctx) override {
  3086. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3087. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  3088. }
  3089. }
  3090. bool grad_precise() override {
  3091. return true;
  3092. }
  3093. };
  3094. enum llm_norm_type {
  3095. LLM_NORM,
  3096. LLM_NORM_RMS,
  3097. };
  3098. struct llama_hparams {
  3099. uint32_t n_vocab;
  3100. uint32_t n_embd;
  3101. uint32_t n_head;
  3102. uint32_t n_head_kv;
  3103. static constexpr uint32_t n_layer = 1;
  3104. uint32_t n_rot;
  3105. uint32_t n_embd_head; // dimension of values (d_v)
  3106. uint32_t n_ff;
  3107. float f_norm_eps;
  3108. float f_norm_rms_eps;
  3109. // cparams
  3110. static constexpr uint32_t n_ctx = 512; // user-specified context size
  3111. static constexpr uint32_t n_ctx_orig = n_ctx;
  3112. // batch
  3113. int32_t n_tokens;
  3114. // llm_build_context
  3115. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  3116. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  3117. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  3118. return n_embd_head * n_head_kv;
  3119. }
  3120. };
  3121. // LLM base class
  3122. struct test_llm : public test_case {
  3123. llama_hparams hp;
  3124. protected:
  3125. test_llm(llama_hparams hp)
  3126. : hp(std::move(hp)) {
  3127. }
  3128. public:
  3129. struct ggml_tensor * llm_build_norm(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * cur,
  3132. struct ggml_tensor * mw,
  3133. struct ggml_tensor * mb,
  3134. llm_norm_type type) {
  3135. switch (type) {
  3136. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  3137. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  3138. }
  3139. cur = ggml_mul(ctx, cur, mw);
  3140. if (mb) {
  3141. cur = ggml_add(ctx, cur, mb);
  3142. }
  3143. return cur;
  3144. }
  3145. void llm_build_kv_store(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * k_l,
  3148. struct ggml_tensor * v_l,
  3149. struct ggml_tensor * k_cur,
  3150. struct ggml_tensor * v_cur) {
  3151. // compute the transposed [n_tokens, n_embd] V matrix
  3152. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  3153. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  3154. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  3155. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  3156. ( hp.n_ctx)*ggml_element_size(v_l),
  3157. (hp.kv_head)*ggml_element_size(v_l));
  3158. // important: storing RoPE-ed version of K in the KV cache!
  3159. ggml_cpy(ctx, k_cur, k_cache_view);
  3160. ggml_cpy(ctx, v_cur_t, v_cache_view);
  3161. }
  3162. struct ggml_tensor * llm_build_kqv(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * k_l,
  3165. struct ggml_tensor * v_l,
  3166. struct ggml_tensor * q_cur,
  3167. struct ggml_tensor * kq_mask,
  3168. float kq_scale) {
  3169. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  3170. struct ggml_tensor * k =
  3171. ggml_view_3d(ctx, k_l,
  3172. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  3173. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  3174. ggml_row_size(k_l->type, hp.n_embd_head),
  3175. 0);
  3176. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  3177. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  3178. // split cached v into n_head heads
  3179. struct ggml_tensor * v =
  3180. ggml_view_3d(ctx, v_l,
  3181. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  3182. ggml_element_size(v_l)*hp.n_ctx,
  3183. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  3184. 0);
  3185. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  3186. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  3187. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  3188. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  3189. cur = ggml_mul_mat(ctx, wo, cur);
  3190. return cur;
  3191. }
  3192. void initialize_tensors(ggml_context * ctx) override {
  3193. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  3194. if (t->type == GGML_TYPE_I32) {
  3195. // pos
  3196. std::vector<int> data(hp.n_tokens);
  3197. for (int i = 0; i < hp.n_tokens; i++) {
  3198. data[i] = rand() % hp.n_ctx;
  3199. }
  3200. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  3201. } else {
  3202. init_tensor_uniform(t);
  3203. }
  3204. }
  3205. }
  3206. };
  3207. // Llama
  3208. struct test_llama : public test_llm {
  3209. static constexpr float freq_base = 10000.0f;
  3210. static constexpr float freq_scale = 1.0f;
  3211. static constexpr float ext_factor = 0.0f;
  3212. static constexpr float attn_factor = 1.0f;
  3213. static constexpr float beta_fast = 32.0f;
  3214. static constexpr float beta_slow = 1.0f;
  3215. bool fused;
  3216. std::string op_desc(ggml_tensor * t) override {
  3217. GGML_UNUSED(t);
  3218. return "LLAMA";
  3219. }
  3220. std::string vars() override {
  3221. auto n_tokens = hp.n_tokens;
  3222. return VARS_TO_STR1(n_tokens);
  3223. }
  3224. double max_nmse_err() override {
  3225. return 2e-3;
  3226. }
  3227. bool run_whole_graph() override { return fused; }
  3228. test_llama(int n_tokens = 1, bool fused = false)
  3229. : test_llm({
  3230. /*n_vocab =*/ 32000,
  3231. /*n_embd =*/ 3200,
  3232. /*n_head =*/ 32,
  3233. /*n_head_kv =*/ 32,
  3234. /*n_rot =*/ 100,
  3235. /*n_embd_head =*/ 100,
  3236. /*n_ff =*/ 8640,
  3237. /*f_norm_eps =*/ 0.f,
  3238. /*f_norm_rms_eps =*/ 1e-5f,
  3239. /*n_tokens =*/ n_tokens,
  3240. })
  3241. , fused(fused)
  3242. {
  3243. }
  3244. ggml_tensor * build_graph(ggml_context * ctx) override {
  3245. struct ggml_tensor * cur;
  3246. struct ggml_tensor * inpL;
  3247. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3248. // inp_pos - contains the positions
  3249. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3250. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3251. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3252. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3253. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3254. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3255. struct ggml_tensor * inpSA = inpL;
  3256. // norm
  3257. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3258. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  3259. // self-attention
  3260. {
  3261. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  3262. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  3263. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  3264. // compute Q and K and RoPE them
  3265. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  3266. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  3267. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  3268. Qcur = ggml_rope_ext(
  3269. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  3270. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  3271. ext_factor, attn_factor, beta_fast, beta_slow
  3272. );
  3273. Kcur = ggml_rope_ext(
  3274. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  3275. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  3276. ext_factor, attn_factor, beta_fast, beta_slow
  3277. );
  3278. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3279. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3280. }
  3281. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  3282. // feed-forward network
  3283. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3284. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  3285. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3286. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3287. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3288. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  3289. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  3290. cur = ggml_silu(ctx, cur);
  3291. cur = ggml_mul(ctx, cur, tmp);
  3292. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3293. cur = ggml_add(ctx, cur, ffn_inp);
  3294. // input for next layer
  3295. inpL = cur;
  3296. }
  3297. cur = inpL;
  3298. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3299. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  3300. // lm_head
  3301. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  3302. cur = ggml_mul_mat(ctx, output, cur);
  3303. return cur;
  3304. }
  3305. };
  3306. // Falcon
  3307. struct test_falcon : public test_llm {
  3308. static constexpr float freq_base = 10000.0f;
  3309. static constexpr float freq_scale = 1.0f;
  3310. static constexpr float ext_factor = 0.0f;
  3311. static constexpr float attn_factor = 1.0f;
  3312. static constexpr float beta_fast = 32.0f;
  3313. static constexpr float beta_slow = 1.0f;
  3314. std::string op_desc(ggml_tensor * t) override {
  3315. GGML_UNUSED(t);
  3316. return "FALCON";
  3317. }
  3318. std::string vars() override {
  3319. auto n_tokens = hp.n_tokens;
  3320. return VARS_TO_STR1(n_tokens);
  3321. }
  3322. double max_nmse_err() override {
  3323. return 2e-3;
  3324. }
  3325. test_falcon(int n_tokens = 1)
  3326. : test_llm({
  3327. /*n_vocab =*/ 32000,
  3328. /*n_embd =*/ 3200,
  3329. /*n_head =*/ 50,
  3330. /*n_head_kv =*/ 1,
  3331. /*n_rot =*/ 64,
  3332. /*n_embd_head =*/ 64,
  3333. /*n_ff =*/ 8640,
  3334. /*f_norm_eps =*/ 1e-5f,
  3335. /*f_norm_rms_eps =*/ 0.f,
  3336. /*n_tokens =*/ n_tokens,
  3337. }) {
  3338. }
  3339. ggml_tensor * build_graph(ggml_context * ctx) override {
  3340. struct ggml_tensor * cur;
  3341. struct ggml_tensor * inpL;
  3342. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3343. // inp_pos - contains the positions
  3344. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3345. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3346. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3347. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3348. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3349. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3350. // norm
  3351. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3352. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3353. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  3354. // self-attention
  3355. {
  3356. cur = attn_norm;
  3357. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  3358. cur = ggml_mul_mat(ctx, wqkv, cur);
  3359. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  3360. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  3361. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  3362. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  3363. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  3364. // using mode = 2 for neox mode
  3365. Qcur = ggml_rope_ext(
  3366. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3367. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3368. );
  3369. Kcur = ggml_rope_ext(
  3370. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3371. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3372. );
  3373. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3374. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3375. }
  3376. struct ggml_tensor * ffn_inp = cur;
  3377. // feed forward
  3378. {
  3379. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3380. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3381. cur = attn_norm;
  3382. cur = ggml_mul_mat(ctx, ffn_up, cur);
  3383. cur = ggml_gelu(ctx, cur);
  3384. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3385. }
  3386. cur = ggml_add(ctx, cur, ffn_inp);
  3387. cur = ggml_add(ctx, cur, inpL);
  3388. // input for next layer
  3389. inpL = cur;
  3390. }
  3391. cur = inpL;
  3392. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3393. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3394. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  3395. // lm_head
  3396. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  3397. cur = ggml_mul_mat(ctx, output, cur);
  3398. return cur;
  3399. }
  3400. };
  3401. // ###########################################
  3402. // ## Section 3: GGML Op Test Instantiation ##
  3403. // ###########################################
  3404. static const ggml_type all_types[] = {
  3405. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  3406. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  3407. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3408. GGML_TYPE_Q8_0,
  3409. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3410. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  3411. GGML_TYPE_Q6_K,
  3412. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3413. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3414. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3415. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3416. };
  3417. static const ggml_type base_types[] = {
  3418. GGML_TYPE_F32, GGML_TYPE_F16,
  3419. GGML_TYPE_Q8_0, // for I8MM tests
  3420. GGML_TYPE_Q4_0,
  3421. GGML_TYPE_Q4_1, // for I8MM tests
  3422. GGML_TYPE_Q4_K,
  3423. GGML_TYPE_IQ2_XXS
  3424. };
  3425. static const ggml_type other_types[] = {
  3426. GGML_TYPE_Q4_1,
  3427. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3428. GGML_TYPE_Q8_0,
  3429. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3430. GGML_TYPE_Q5_K,
  3431. GGML_TYPE_Q6_K,
  3432. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3433. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3434. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3435. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3436. GGML_TYPE_BF16,
  3437. };
  3438. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  3439. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  3440. std::vector<std::unique_ptr<test_case>> test_cases;
  3441. std::default_random_engine rng(0);
  3442. // unary ops
  3443. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3444. for (int v : {0, 1}) {
  3445. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  3446. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  3447. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  3448. }
  3449. }
  3450. }
  3451. // glu ops
  3452. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3453. for (int v : {0, 1}) {
  3454. for (int op = 0; op < GGML_GLU_OP_COUNT; op++) {
  3455. for (bool swapped : {false, true}) {
  3456. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped));
  3457. test_cases.emplace_back(new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped));
  3458. }
  3459. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v));
  3460. test_cases.emplace_back(new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v));
  3461. }
  3462. }
  3463. }
  3464. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3465. for (ggml_type type : all_types) {
  3466. for (int b : {1, 7}) {
  3467. for (bool v : {false, true}) {
  3468. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  3469. }
  3470. }
  3471. }
  3472. for (int b : {1, 7}) {
  3473. for (bool v : {false, true}) {
  3474. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  3475. }
  3476. }
  3477. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3478. for (ggml_type type : all_types) {
  3479. for (bool v : {false, true}) {
  3480. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  3481. }
  3482. }
  3483. for (bool v : {false, true}) {
  3484. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  3485. }
  3486. test_cases.emplace_back(new test_set_rows(GGML_TYPE_F32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false));
  3487. for (ggml_type type : all_types) {
  3488. for (int b : {1, 7}) {
  3489. for (bool v : {false, true}) {
  3490. test_cases.emplace_back(new test_set_rows(type, { 256, 5, b, 3 }, { 1, 1, }, 1, v));
  3491. test_cases.emplace_back(new test_set_rows(type, { 256, 11, 1, b }, { 2, 3, }, 7, v));
  3492. test_cases.emplace_back(new test_set_rows(type, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v));
  3493. if (ggml_blck_size(type) == 1) {
  3494. test_cases.emplace_back(new test_set_rows(type, { 31, 3, b, 1 }, { 2, 3, }, 2, v));
  3495. test_cases.emplace_back(new test_set_rows(type, { 33, 5, 1, b }, { 2, 3, }, 1, v));
  3496. }
  3497. }
  3498. }
  3499. }
  3500. for (ggml_type type_input : {GGML_TYPE_F32}) {
  3501. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  3502. for (int k0 : {1, 3}) {
  3503. for (int k1 : {1, 3}) {
  3504. for (int s0 : {1, 2}) {
  3505. for (int s1 : {1, 2}) {
  3506. for (int p0 : {0, 1}) {
  3507. for (int p1 : {0, 1}) {
  3508. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3509. }
  3510. }
  3511. }
  3512. }
  3513. }
  3514. }
  3515. }
  3516. }
  3517. // im2col 1D
  3518. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3519. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3520. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3521. for (int s0 : {1, 3}) {
  3522. for (int p0 : {0, 3}) {
  3523. for (int d0 : {1, 3}) {
  3524. test_cases.emplace_back(new test_im2col(
  3525. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3526. s0, 0, p0, 0, d0, 0, false));
  3527. }
  3528. }
  3529. }
  3530. // im2col 2D
  3531. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3532. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3533. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3534. for (int s0 : {1, 3}) {
  3535. for (int s1 : {1, 3}) {
  3536. for (int p0 : {0, 3}) {
  3537. for (int p1 : {0, 3}) {
  3538. for (int d0 : {1, 3}) {
  3539. for (int d1 : {1, 3}) {
  3540. test_cases.emplace_back(new test_im2col(
  3541. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3542. s0, s1, p0, p1, d0, d1, true));
  3543. }
  3544. }
  3545. }
  3546. }
  3547. }
  3548. }
  3549. // extra tests for im2col 2D
  3550. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  3551. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  3552. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  3553. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  3554. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  3555. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  3556. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  3557. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  3558. // sycl backend will limit task global_range < MAX_INT
  3559. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  3560. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3561. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3562. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3563. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3564. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false));
  3565. test_cases.emplace_back(new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true));
  3566. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false));
  3567. test_cases.emplace_back(new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true));
  3568. for(uint32_t Cout : {1, 9}){
  3569. for(uint32_t Cin : {1, 7}){
  3570. for(uint32_t K : {1, 3, 1337}){
  3571. for(uint32_t L : {1, 2, 13}){
  3572. for(uint32_t s0: {1, 2, 3}){
  3573. test_cases.emplace_back(new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1));
  3574. }
  3575. }
  3576. }
  3577. }
  3578. }
  3579. test_cases.emplace_back(new test_conv_transpose_1d());
  3580. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  3581. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  3582. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  3583. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  3584. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  3585. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  3586. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  3587. test_cases.emplace_back(new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1));
  3588. test_cases.emplace_back(new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2));
  3589. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  3590. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  3591. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  3592. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  3593. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3594. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  3595. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  3596. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  3597. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  3598. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  3599. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3600. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  3601. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  3602. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3603. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3604. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3605. }
  3606. for (bool view : {false, true}) {
  3607. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  3608. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  3609. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  3610. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  3611. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  3612. }
  3613. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  3614. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  3615. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  3616. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  3617. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  3618. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  3619. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  3620. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  3621. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  3622. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  3623. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3624. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  3625. }
  3626. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3627. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  3628. }
  3629. // same-type copy
  3630. for (ggml_type type : all_types) {
  3631. const auto nk = ggml_blck_size(type);
  3632. for (int k = 1; k < 4; ++k) {
  3633. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}));
  3634. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3}));
  3635. test_cases.emplace_back(new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3}));
  3636. }
  3637. }
  3638. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  3639. for (ggml_type type_dst : all_types) {
  3640. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3641. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3642. }
  3643. }
  3644. for (ggml_type type_src : all_types) {
  3645. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  3646. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3647. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3648. }
  3649. }
  3650. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3651. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3652. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  3653. }
  3654. }
  3655. test_cases.emplace_back(new test_cont());
  3656. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  3657. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  3658. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  3659. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  3660. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  3661. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  3662. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  3663. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  3664. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  3665. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  3666. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  3667. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  3668. }
  3669. };
  3670. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3671. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  3672. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  3673. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  3674. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  3675. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  3676. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  3677. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  3678. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  3679. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  3680. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  3681. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  3682. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  3683. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  3684. // stable diffusion
  3685. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  3686. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  3687. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  3688. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  3689. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  3690. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  3691. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  3692. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  3693. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  3694. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  3695. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  3696. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  3697. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  3698. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  3699. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  3700. }
  3701. test_cases.emplace_back(new test_add1());
  3702. test_cases.emplace_back(new test_scale());
  3703. test_cases.emplace_back(new test_silu_back());
  3704. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  3705. for (bool v : {false, true}) {
  3706. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3707. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3708. }
  3709. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3710. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3711. }
  3712. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  3713. test_cases.emplace_back(new test_rms_norm_mul(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3714. }
  3715. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  3716. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  3717. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  3718. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  3719. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1
  3720. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2
  3721. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  3722. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  3723. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  3724. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  3725. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  3726. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  3727. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  3728. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  3729. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  3730. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  3731. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  3732. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  3733. for (ggml_type type_a : all_types) {
  3734. for (int i = 1; i < 10; ++i) {
  3735. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3736. }
  3737. }
  3738. #if 1
  3739. for (ggml_type type_a : base_types) {
  3740. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3741. std::vector<int> ks = { 256 };
  3742. if (ggml_blck_size(type_a) == 1) {
  3743. ks.push_back(4);
  3744. }
  3745. for (auto k : ks) {
  3746. // test cases without permutation
  3747. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1}));
  3748. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1}));
  3749. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2}));
  3750. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1}));
  3751. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1}));
  3752. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1}));
  3753. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1}));
  3754. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2}));
  3755. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2}));
  3756. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1}));
  3757. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1}));
  3758. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2}));
  3759. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1}));
  3760. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1}));
  3761. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1}));
  3762. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1}));
  3763. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2}));
  3764. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2}));
  3765. // test cases with permutation
  3766. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3767. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3768. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3769. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3770. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3771. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3772. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3773. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3774. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3775. }
  3776. // test cases with large ne00/ne10 to cover stream-k fixup
  3777. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1}));
  3778. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1}));
  3779. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1}));
  3780. }
  3781. }
  3782. for (ggml_type type_a : other_types) {
  3783. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3784. if (ggml_blck_size(type_a) != 256) {
  3785. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  3786. }
  3787. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3788. }
  3789. }
  3790. #else
  3791. // m = a rows
  3792. // n = b rows
  3793. // k = cols
  3794. std::uniform_int_distribution<> dist_m(1, 128);
  3795. std::uniform_int_distribution<> dist_n(16, 128);
  3796. std::uniform_int_distribution<> dist_k(1, 16);
  3797. for (int i = 0; i < 1000; i++) {
  3798. for (ggml_type type_a : all_types) {
  3799. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3800. int m = dist_m(rng);
  3801. int n = dist_n(rng);
  3802. int k = dist_k(rng) * ggml_blck_size(type_a);
  3803. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  3804. }
  3805. }
  3806. }
  3807. #endif
  3808. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  3809. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  3810. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  3811. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  3812. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  3813. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  3814. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  3815. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3}));
  3816. for (auto bs : {1,2,4,8}) {
  3817. for (auto nr : {1,4}) {
  3818. for (uint32_t m = 0; m < 2; ++m) {
  3819. for (uint32_t k = 0; k < 2; ++k) {
  3820. for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) {
  3821. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, 1}, {nr, 1}, {0, 2, 1, 3}));
  3822. test_cases.emplace_back(new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, 1}, {nr, 1}, {0, 1, 2, 3}, true));
  3823. }
  3824. }
  3825. }
  3826. }
  3827. }
  3828. // sycl backend will limit task global_range < MAX_INT
  3829. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  3830. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3831. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3832. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  3833. // test large experts*tokens
  3834. for (bool b : {false, true}) {
  3835. test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16));
  3836. }
  3837. for (ggml_type type_a : base_types) {
  3838. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3839. for (int n_mats : {4, 8}) {
  3840. for (int n_used : {1, 2, 4}) {
  3841. for (bool b : {false, true}) {
  3842. for (int n : {1, 32, 129}) {
  3843. int m = 512;
  3844. int k = 256;
  3845. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3846. }
  3847. }
  3848. }
  3849. }
  3850. }
  3851. }
  3852. for (ggml_type type_a : other_types) {
  3853. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3854. for (int n_mats : {4}) {
  3855. for (int n_used : {2}) {
  3856. for (bool b : {false}) {
  3857. for (int n : {1, 32}) {
  3858. int m = 512;
  3859. int k = 256;
  3860. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3861. }
  3862. }
  3863. }
  3864. }
  3865. }
  3866. }
  3867. for (ggml_type type_a : base_types) {
  3868. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3869. for (int n : {1, 16}) {
  3870. for (int k : {1, 16}) {
  3871. for (int bs2 : {1, 3}) {
  3872. for (int bs3 : {1, 3}) {
  3873. for (int nr2 : {1, 2}) {
  3874. for (int nr3 : {1, 2}) {
  3875. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  3876. }
  3877. }
  3878. }
  3879. }
  3880. }
  3881. }
  3882. }
  3883. }
  3884. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3885. test_cases.emplace_back(new test_sqr(type));
  3886. test_cases.emplace_back(new test_sqrt(type));
  3887. test_cases.emplace_back(new test_log(type));
  3888. test_cases.emplace_back(new test_sin(type));
  3889. test_cases.emplace_back(new test_cos(type));
  3890. test_cases.emplace_back(new test_clamp(type));
  3891. }
  3892. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  3893. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  3894. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  3895. #if 0
  3896. std::uniform_int_distribution<> dist_ne1(1, 50);
  3897. int exponent = 1;
  3898. while (exponent < (1 << 17)) {
  3899. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  3900. for (int n = 0; n < 10; ++n) {
  3901. int64_t ne0 = dist_ne0(rng);
  3902. int64_t ne1 = dist_ne1(rng);
  3903. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  3904. }
  3905. exponent <<= 1;
  3906. }
  3907. #endif
  3908. for (bool mask : {false, true}) {
  3909. for (float max_bias : {0.0f, 8.0f}) {
  3910. if (!mask && max_bias > 0.0f) continue;
  3911. for (float scale : {1.0f, 0.1f}) {
  3912. for (int64_t ne0 : {16, 1024}) {
  3913. for (int64_t ne1 : {16, 1024}) {
  3914. if (mask) {
  3915. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3916. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
  3917. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {1, 1}, scale, max_bias));
  3918. if (ne0 <= 32 && ne1 <= 32) {
  3919. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, m_prec, {3, 1}, scale, max_bias));
  3920. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, {2, 3}, scale, max_bias));
  3921. }
  3922. }
  3923. } else {
  3924. /* The precision of mask here doesn't matter as boolean mask is false */
  3925. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  3926. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, {1, 1}, scale, max_bias));
  3927. }
  3928. }
  3929. }
  3930. }
  3931. }
  3932. }
  3933. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  3934. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  3935. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  3936. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f));
  3937. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f));
  3938. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
  3939. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
  3940. for (float max_bias : {0.0f, 8.0f}) {
  3941. for (float scale : {1.0f, 0.1f}) {
  3942. for (int64_t ne0 : {16, 1024}) {
  3943. for (int64_t ne1 : {16, 1024}) {
  3944. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  3945. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  3946. }
  3947. }
  3948. }
  3949. }
  3950. for (bool fw : {true, false}) { // fw == forward
  3951. bool all = true;
  3952. for (float v : { 0, 1 }) {
  3953. for (float fs : { 1.0f, 1.4245f }) {
  3954. for (float ef : { 0.0f, 0.7465f }) {
  3955. for (float af : { 1.0f, 1.4245f }) {
  3956. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3957. for (bool ff : {false, true}) { // freq_factors
  3958. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  3959. if (all) {
  3960. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  3961. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  3962. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  3963. }
  3964. if (all) {
  3965. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3966. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3967. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3968. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  3969. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  3970. }
  3971. if (all) {
  3972. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  3973. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  3974. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  3975. }
  3976. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3977. }
  3978. }
  3979. all = false;
  3980. }
  3981. }
  3982. }
  3983. }
  3984. }
  3985. for (int v : { 0, 1, 2, 3 }) {
  3986. for (int dim : { 0, 1, 2, 3, }) {
  3987. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  3988. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  3989. }
  3990. }
  3991. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  3992. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  3993. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  3994. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  3995. }
  3996. for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) {
  3997. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode));
  3998. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true));
  3999. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode));
  4000. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode));
  4001. }
  4002. test_cases.emplace_back(new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS));
  4003. test_cases.emplace_back(new test_sum());
  4004. test_cases.emplace_back(new test_sum_rows());
  4005. test_cases.emplace_back(new test_mean());
  4006. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  4007. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  4008. test_cases.emplace_back(new test_acc());
  4009. test_cases.emplace_back(new test_pad());
  4010. test_cases.emplace_back(new test_pad_reflect_1d());
  4011. test_cases.emplace_back(new test_arange());
  4012. test_cases.emplace_back(new test_timestep_embedding());
  4013. test_cases.emplace_back(new test_leaky_relu());
  4014. for (int hsk : { 64, 80, 128, 192, 256, 576 }) {
  4015. for (int hsv : { 64, 80, 128, 192, 256, 512 }) {
  4016. if (hsk != 192 && hsk != 576 && hsk != hsv) continue;
  4017. if (hsk == 192 && (hsv != 128 && hsv != 192)) continue;
  4018. if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA
  4019. for (bool mask : { true, false } ) {
  4020. for (float max_bias : { 0.0f, 8.0f }) {
  4021. if (!mask && max_bias > 0.0f) continue;
  4022. for (float logit_softcap : {0.0f, 10.0f}) {
  4023. if (hsk != 128 && logit_softcap != 0.0f) continue;
  4024. for (int nh : { 4, }) {
  4025. for (int nr3 : { 1, 3, }) {
  4026. if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes
  4027. for (int nr2 : { 1, 4, 16 }) {
  4028. if (nr2 == 16 && hsk != 128) continue;
  4029. for (int kv : { 512, 1024, }) {
  4030. if (nr2 != 1 && kv != 512) continue;
  4031. for (int nb : { 1, 3, 32, 35, }) {
  4032. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  4033. if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
  4034. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  4035. test_cases.emplace_back(new test_flash_attn_ext(
  4036. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
  4037. // run fewer test cases permuted
  4038. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  4039. test_cases.emplace_back(new test_flash_attn_ext(
  4040. hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  4041. }
  4042. }
  4043. }
  4044. }
  4045. }
  4046. }
  4047. }
  4048. }
  4049. }
  4050. }
  4051. }
  4052. }
  4053. }
  4054. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  4055. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  4056. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  4057. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  4058. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  4059. #if 0
  4060. // these tests are disabled to save execution time, sbut they can be handy for debugging
  4061. test_cases.emplace_back(new test_llama(2, true));
  4062. test_cases.emplace_back(new test_llama(1));
  4063. test_cases.emplace_back(new test_llama(2));
  4064. test_cases.emplace_back(new test_falcon(1));
  4065. test_cases.emplace_back(new test_falcon(2));
  4066. #endif
  4067. return test_cases;
  4068. }
  4069. // Test cases for performance evaluation: should be representative of real-world use cases
  4070. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  4071. std::vector<std::unique_ptr<test_case>> test_cases;
  4072. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  4073. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  4074. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  4075. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  4076. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  4077. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4078. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4079. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4080. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4081. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4082. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4083. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4084. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f));
  4085. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  4086. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  4087. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  4088. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3}));
  4089. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, true));
  4090. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  4091. for (ggml_type type_a : all_types) {
  4092. for (ggml_type type_b : {GGML_TYPE_F32}) {
  4093. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  4094. }
  4095. }
  4096. }
  4097. for (int K : {3, 5}) {
  4098. for (int IC : {256, 2560}) {
  4099. for (int IW_IH : {32, 64, 256}) {
  4100. if (IC == 2560 && IW_IH == 256) {
  4101. // too big
  4102. continue;
  4103. }
  4104. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  4105. }
  4106. }
  4107. }
  4108. for (int kv : { 4096, 8192, 16384, }) {
  4109. for (int hs : { 64, 128, }) {
  4110. for (int nr : { 1, 4, }) {
  4111. test_cases.emplace_back(new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, 0, 0, GGML_PREC_F32, GGML_TYPE_F16));
  4112. }
  4113. }
  4114. }
  4115. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false));
  4116. test_cases.emplace_back(new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true));
  4117. test_cases.emplace_back(new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1));
  4118. test_cases.emplace_back(new test_mean(GGML_TYPE_F32, {256, 256, 3, 1}));
  4119. return test_cases;
  4120. }
  4121. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter) {
  4122. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  4123. if (params_filter == nullptr) {
  4124. return;
  4125. }
  4126. std::regex params_filter_regex(params_filter);
  4127. for (auto it = test_cases.begin(); it != test_cases.end();) {
  4128. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  4129. it = test_cases.erase(it);
  4130. continue;
  4131. }
  4132. it++;
  4133. }
  4134. };
  4135. if (mode == MODE_TEST) {
  4136. auto test_cases = make_test_cases_eval();
  4137. filter_test_cases(test_cases, params_filter);
  4138. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  4139. if (backend_cpu == NULL) {
  4140. printf(" Failed to initialize CPU backend\n");
  4141. return false;
  4142. }
  4143. size_t n_ok = 0;
  4144. for (auto & test : test_cases) {
  4145. if (test->eval(backend, backend_cpu, op_name)) {
  4146. n_ok++;
  4147. }
  4148. }
  4149. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  4150. ggml_backend_free(backend_cpu);
  4151. return n_ok == test_cases.size();
  4152. }
  4153. if (mode == MODE_GRAD) {
  4154. auto test_cases = make_test_cases_eval();
  4155. filter_test_cases(test_cases, params_filter);
  4156. size_t n_ok = 0;
  4157. for (auto & test : test_cases) {
  4158. if (test->eval_grad(backend, op_name)) {
  4159. n_ok++;
  4160. }
  4161. }
  4162. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  4163. return n_ok == test_cases.size();
  4164. }
  4165. if (mode == MODE_PERF) {
  4166. auto test_cases = make_test_cases_perf();
  4167. filter_test_cases(test_cases, params_filter);
  4168. for (auto & test : test_cases) {
  4169. test->eval_perf(backend, op_name);
  4170. }
  4171. return true;
  4172. }
  4173. GGML_ABORT("fatal error");
  4174. }
  4175. static void usage(char ** argv) {
  4176. printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>]\n", argv[0]);
  4177. printf(" valid modes:\n");
  4178. printf(" - test (default, compare with CPU backend for correctness)\n");
  4179. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  4180. printf(" - perf (performance evaluation)\n");
  4181. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  4182. }
  4183. int main(int argc, char ** argv) {
  4184. test_mode mode = MODE_TEST;
  4185. const char * op_name_filter = nullptr;
  4186. const char * backend_filter = nullptr;
  4187. const char * params_filter = nullptr;
  4188. for (int i = 1; i < argc; i++) {
  4189. if (strcmp(argv[i], "test") == 0) {
  4190. mode = MODE_TEST;
  4191. } else if (strcmp(argv[i], "perf") == 0) {
  4192. mode = MODE_PERF;
  4193. } else if (strcmp(argv[i], "grad") == 0) {
  4194. mode = MODE_GRAD;
  4195. } else if (strcmp(argv[i], "-o") == 0) {
  4196. if (i + 1 < argc) {
  4197. op_name_filter = argv[++i];
  4198. } else {
  4199. usage(argv);
  4200. return 1;
  4201. }
  4202. } else if (strcmp(argv[i], "-b") == 0) {
  4203. if (i + 1 < argc) {
  4204. backend_filter = argv[++i];
  4205. } else {
  4206. usage(argv);
  4207. return 1;
  4208. }
  4209. } else if (strcmp(argv[i], "-p") == 0) {
  4210. if (i + 1 < argc) {
  4211. params_filter = argv[++i];
  4212. } else {
  4213. usage(argv);
  4214. return 1;
  4215. }
  4216. } else {
  4217. usage(argv);
  4218. return 1;
  4219. }
  4220. }
  4221. // load and enumerate backends
  4222. ggml_backend_load_all();
  4223. printf("Testing %zu devices\n\n", ggml_backend_dev_count());
  4224. size_t n_ok = 0;
  4225. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  4226. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  4227. printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
  4228. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  4229. printf(" Skipping\n");
  4230. n_ok++;
  4231. continue;
  4232. }
  4233. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  4234. printf(" Skipping CPU backend\n");
  4235. n_ok++;
  4236. continue;
  4237. }
  4238. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  4239. GGML_ASSERT(backend != NULL);
  4240. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  4241. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  4242. if (ggml_backend_set_n_threads_fn) {
  4243. // TODO: better value for n_threads
  4244. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  4245. }
  4246. printf(" Device description: %s\n", ggml_backend_dev_description(dev));
  4247. size_t free, total; // NOLINT
  4248. ggml_backend_dev_memory(dev, &free, &total);
  4249. printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
  4250. printf("\n");
  4251. bool ok = test_backend(backend, mode, op_name_filter, params_filter);
  4252. printf(" Backend %s: ", ggml_backend_name(backend));
  4253. if (ok) {
  4254. printf("\033[1;32mOK\033[0m\n");
  4255. n_ok++;
  4256. } else {
  4257. printf("\033[1;31mFAIL\033[0m\n");
  4258. }
  4259. printf("\n");
  4260. ggml_backend_free(backend);
  4261. }
  4262. ggml_quantize_free();
  4263. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
  4264. if (n_ok != ggml_backend_dev_count()) {
  4265. printf("\033[1;31mFAIL\033[0m\n");
  4266. return 1;
  4267. }
  4268. printf("\033[1;32mOK\033[0m\n");
  4269. return 0;
  4270. }