ggml.c 633 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. #define GGML_SOFT_MAX_UNROLL 4
  106. #define GGML_VEC_DOT_UNROLL 2
  107. //
  108. // logging
  109. //
  110. #if (GGML_DEBUG >= 1)
  111. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  112. #else
  113. #define GGML_PRINT_DEBUG(...)
  114. #endif
  115. #if (GGML_DEBUG >= 5)
  116. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG_5(...)
  119. #endif
  120. #if (GGML_DEBUG >= 10)
  121. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_10(...)
  124. #endif
  125. #define GGML_PRINT(...) printf(__VA_ARGS__)
  126. #ifdef GGML_USE_ACCELERATE
  127. // uncomment to use vDSP for soft max computation
  128. // note: not sure if it is actually faster
  129. //#define GGML_SOFT_MAX_ACCELERATE
  130. #endif
  131. #if UINTPTR_MAX == 0xFFFFFFFF
  132. #define GGML_MEM_ALIGN 4
  133. #else
  134. #define GGML_MEM_ALIGN 16
  135. #endif
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. void * aligned_memory = NULL;
  164. #ifdef GGML_USE_METAL
  165. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  166. #else
  167. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  168. #endif
  169. if (result != 0) {
  170. // Handle allocation failure
  171. const char *error_desc = "unknown allocation error";
  172. switch (result) {
  173. case EINVAL:
  174. error_desc = "invalid alignment value";
  175. break;
  176. case ENOMEM:
  177. error_desc = "insufficient memory";
  178. break;
  179. }
  180. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  181. return NULL;
  182. }
  183. return aligned_memory;
  184. }
  185. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  186. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  187. #endif
  188. #define UNUSED GGML_UNUSED
  189. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  190. //
  191. // tensor access macros
  192. //
  193. #define GGML_TENSOR_UNARY_OP_LOCALS \
  194. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  195. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  196. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  198. #define GGML_TENSOR_BINARY_OP_LOCALS \
  199. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  200. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  201. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  202. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  203. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  204. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  205. #if defined(GGML_USE_ACCELERATE)
  206. #include <Accelerate/Accelerate.h>
  207. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  208. #include "ggml-opencl.h"
  209. #endif
  210. #elif defined(GGML_USE_OPENBLAS)
  211. #if defined(GGML_BLAS_USE_MKL)
  212. #include <mkl.h>
  213. #else
  214. #include <cblas.h>
  215. #endif
  216. #elif defined(GGML_USE_CUBLAS)
  217. #include "ggml-cuda.h"
  218. #elif defined(GGML_USE_CLBLAST)
  219. #include "ggml-opencl.h"
  220. #endif
  221. #undef MIN
  222. #undef MAX
  223. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  224. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  225. // floating point type used to accumulate sums
  226. typedef double ggml_float;
  227. // 16-bit float
  228. // on Arm, we use __fp16
  229. // on x86, we use uint16_t
  230. #ifdef __ARM_NEON
  231. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  232. //
  233. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  234. //
  235. #include <arm_neon.h>
  236. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  237. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  238. #define GGML_FP16_TO_FP32(x) ((float) (x))
  239. #define GGML_FP32_TO_FP16(x) (x)
  240. #else
  241. #ifdef __wasm_simd128__
  242. #include <wasm_simd128.h>
  243. #else
  244. #ifdef __POWER9_VECTOR__
  245. #include <altivec.h>
  246. #undef bool
  247. #define bool _Bool
  248. #else
  249. #if defined(_MSC_VER) || defined(__MINGW32__)
  250. #include <intrin.h>
  251. #else
  252. #if !defined(__riscv)
  253. #include <immintrin.h>
  254. #endif
  255. #endif
  256. #endif
  257. #endif
  258. #ifdef __F16C__
  259. #ifdef _MSC_VER
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  262. #else
  263. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  264. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  265. #endif
  266. #elif defined(__POWER9_VECTOR__)
  267. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  268. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  269. /* the inline asm below is about 12% faster than the lookup method */
  270. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  271. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  272. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  273. register float f;
  274. register double d;
  275. __asm__(
  276. "mtfprd %0,%2\n"
  277. "xscvhpdp %0,%0\n"
  278. "frsp %1,%0\n" :
  279. /* temp */ "=d"(d),
  280. /* out */ "=f"(f):
  281. /* in */ "r"(h));
  282. return f;
  283. }
  284. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  285. register double d;
  286. register ggml_fp16_t r;
  287. __asm__( /* xscvdphp can work on double or single precision */
  288. "xscvdphp %0,%2\n"
  289. "mffprd %1,%0\n" :
  290. /* temp */ "=d"(d),
  291. /* out */ "=r"(r):
  292. /* in */ "f"(f));
  293. return r;
  294. }
  295. #else
  296. // FP16 <-> FP32
  297. // ref: https://github.com/Maratyszcza/FP16
  298. static inline float fp32_from_bits(uint32_t w) {
  299. union {
  300. uint32_t as_bits;
  301. float as_value;
  302. } fp32;
  303. fp32.as_bits = w;
  304. return fp32.as_value;
  305. }
  306. static inline uint32_t fp32_to_bits(float f) {
  307. union {
  308. float as_value;
  309. uint32_t as_bits;
  310. } fp32;
  311. fp32.as_value = f;
  312. return fp32.as_bits;
  313. }
  314. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  315. const uint32_t w = (uint32_t) h << 16;
  316. const uint32_t sign = w & UINT32_C(0x80000000);
  317. const uint32_t two_w = w + w;
  318. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  319. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  320. const float exp_scale = 0x1.0p-112f;
  321. #else
  322. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  323. #endif
  324. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  325. const uint32_t magic_mask = UINT32_C(126) << 23;
  326. const float magic_bias = 0.5f;
  327. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  328. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  329. const uint32_t result = sign |
  330. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  331. return fp32_from_bits(result);
  332. }
  333. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  334. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  335. const float scale_to_inf = 0x1.0p+112f;
  336. const float scale_to_zero = 0x1.0p-110f;
  337. #else
  338. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  339. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  340. #endif
  341. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  342. const uint32_t w = fp32_to_bits(f);
  343. const uint32_t shl1_w = w + w;
  344. const uint32_t sign = w & UINT32_C(0x80000000);
  345. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  346. if (bias < UINT32_C(0x71000000)) {
  347. bias = UINT32_C(0x71000000);
  348. }
  349. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  350. const uint32_t bits = fp32_to_bits(base);
  351. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  352. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  353. const uint32_t nonsign = exp_bits + mantissa_bits;
  354. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  355. }
  356. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  357. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  358. #endif // __F16C__
  359. #endif // __ARM_NEON
  360. //
  361. // global data
  362. //
  363. // precomputed gelu table for f16 (128 KB)
  364. static ggml_fp16_t table_gelu_f16[1 << 16];
  365. // precomputed quick gelu table for f16 (128 KB)
  366. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  367. // precomputed silu table for f16 (128 KB)
  368. static ggml_fp16_t table_silu_f16[1 << 16];
  369. // precomputed exp table for f16 (128 KB)
  370. static ggml_fp16_t table_exp_f16[1 << 16];
  371. // precomputed f32 table for f16 (256 KB)
  372. static float table_f32_f16[1 << 16];
  373. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  374. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  375. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  376. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  377. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  378. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  379. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  380. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  381. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  382. // precomputed tables for expanding 8bits to 8 bytes:
  383. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  384. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  385. #endif
  386. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  387. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  388. // This is also true for POWER9.
  389. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  390. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  391. uint16_t s;
  392. memcpy(&s, &f, sizeof(uint16_t));
  393. return table_f32_f16[s];
  394. }
  395. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  396. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  397. #endif
  398. // note: do not use these inside ggml.c
  399. // these are meant to be used via the ggml.h API
  400. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  401. return (float) GGML_FP16_TO_FP32(x);
  402. }
  403. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  404. return GGML_FP32_TO_FP16(x);
  405. }
  406. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  407. for (int i = 0; i < n; i++) {
  408. y[i] = GGML_FP16_TO_FP32(x[i]);
  409. }
  410. }
  411. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  412. int i = 0;
  413. #if defined(__F16C__)
  414. for (; i + 7 < n; i += 8) {
  415. __m256 x_vec = _mm256_loadu_ps(x + i);
  416. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  417. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  418. }
  419. for(; i + 3 < n; i += 4) {
  420. __m128 x_vec = _mm_loadu_ps(x + i);
  421. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  422. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  423. }
  424. #endif
  425. for (; i < n; i++) {
  426. y[i] = GGML_FP32_TO_FP16(x[i]);
  427. }
  428. }
  429. //
  430. // timing
  431. //
  432. #if defined(_MSC_VER) || defined(__MINGW32__)
  433. static int64_t timer_freq, timer_start;
  434. void ggml_time_init(void) {
  435. LARGE_INTEGER t;
  436. QueryPerformanceFrequency(&t);
  437. timer_freq = t.QuadPart;
  438. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  439. // and the uptime is high enough.
  440. // We subtract the program start time to reduce the likelihood of that happening.
  441. QueryPerformanceCounter(&t);
  442. timer_start = t.QuadPart;
  443. }
  444. int64_t ggml_time_ms(void) {
  445. LARGE_INTEGER t;
  446. QueryPerformanceCounter(&t);
  447. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  448. }
  449. int64_t ggml_time_us(void) {
  450. LARGE_INTEGER t;
  451. QueryPerformanceCounter(&t);
  452. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  453. }
  454. #else
  455. void ggml_time_init(void) {}
  456. int64_t ggml_time_ms(void) {
  457. struct timespec ts;
  458. clock_gettime(CLOCK_MONOTONIC, &ts);
  459. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  460. }
  461. int64_t ggml_time_us(void) {
  462. struct timespec ts;
  463. clock_gettime(CLOCK_MONOTONIC, &ts);
  464. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  465. }
  466. #endif
  467. int64_t ggml_cycles(void) {
  468. return clock();
  469. }
  470. int64_t ggml_cycles_per_ms(void) {
  471. return CLOCKS_PER_SEC/1000;
  472. }
  473. #ifdef GGML_PERF
  474. #define ggml_perf_time_ms() ggml_time_ms()
  475. #define ggml_perf_time_us() ggml_time_us()
  476. #define ggml_perf_cycles() ggml_cycles()
  477. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  478. #else
  479. #define ggml_perf_time_ms() 0
  480. #define ggml_perf_time_us() 0
  481. #define ggml_perf_cycles() 0
  482. #define ggml_perf_cycles_per_ms() 0
  483. #endif
  484. //
  485. // cache line
  486. //
  487. #if defined(__cpp_lib_hardware_interference_size)
  488. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  489. #else
  490. #if defined(__POWER9_VECTOR__)
  491. #define CACHE_LINE_SIZE 128
  492. #else
  493. #define CACHE_LINE_SIZE 64
  494. #endif
  495. #endif
  496. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  497. //
  498. // quantization
  499. //
  500. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  501. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  502. // multiply int8_t, add results pairwise twice
  503. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  504. // Get absolute values of x vectors
  505. const __m128i ax = _mm_sign_epi8(x, x);
  506. // Sign the values of the y vectors
  507. const __m128i sy = _mm_sign_epi8(y, x);
  508. // Perform multiplication and create 16-bit values
  509. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  510. const __m128i ones = _mm_set1_epi16(1);
  511. return _mm_madd_epi16(ones, dot);
  512. }
  513. #if __AVX__ || __AVX2__ || __AVX512F__
  514. // horizontally add 8 floats
  515. static inline float hsum_float_8(const __m256 x) {
  516. __m128 res = _mm256_extractf128_ps(x, 1);
  517. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  518. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  519. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  520. return _mm_cvtss_f32(res);
  521. }
  522. // horizontally add 8 int32_t
  523. static inline int hsum_i32_8(const __m256i a) {
  524. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  525. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  526. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  527. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  528. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  529. }
  530. // horizontally add 4 int32_t
  531. static inline int hsum_i32_4(const __m128i a) {
  532. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  533. const __m128i sum64 = _mm_add_epi32(hi64, a);
  534. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  535. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  536. }
  537. #if defined(__AVX2__) || defined(__AVX512F__)
  538. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  539. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  540. uint32_t x32;
  541. memcpy(&x32, x, sizeof(uint32_t));
  542. const __m256i shuf_mask = _mm256_set_epi64x(
  543. 0x0303030303030303, 0x0202020202020202,
  544. 0x0101010101010101, 0x0000000000000000);
  545. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  546. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  547. bytes = _mm256_or_si256(bytes, bit_mask);
  548. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  549. }
  550. // Unpack 32 4-bit fields into 32 bytes
  551. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  552. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  553. {
  554. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  555. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  556. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  557. return _mm256_and_si256(lowMask, bytes);
  558. }
  559. // add int16_t pairwise and return as float vector
  560. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  561. const __m256i ones = _mm256_set1_epi16(1);
  562. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  563. return _mm256_cvtepi32_ps(summed_pairs);
  564. }
  565. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  566. #if __AVXVNNI__
  567. const __m256i zero = _mm256_setzero_si256();
  568. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  569. return _mm256_cvtepi32_ps(summed_pairs);
  570. #else
  571. // Perform multiplication and create 16-bit values
  572. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  573. return sum_i16_pairs_float(dot);
  574. #endif
  575. }
  576. // multiply int8_t, add results pairwise twice and return as float vector
  577. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  578. #if __AVXVNNIINT8__
  579. const __m256i zero = _mm256_setzero_si256();
  580. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  581. return _mm256_cvtepi32_ps(summed_pairs);
  582. #else
  583. // Get absolute values of x vectors
  584. const __m256i ax = _mm256_sign_epi8(x, x);
  585. // Sign the values of the y vectors
  586. const __m256i sy = _mm256_sign_epi8(y, x);
  587. return mul_sum_us8_pairs_float(ax, sy);
  588. #endif
  589. }
  590. static inline __m128i packNibbles( __m256i bytes )
  591. {
  592. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  593. #if __AVX512F__
  594. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  595. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  596. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  597. #else
  598. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  599. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  600. __m256i low = _mm256_and_si256( lowByte, bytes );
  601. high = _mm256_srli_epi16( high, 4 );
  602. bytes = _mm256_or_si256( low, high );
  603. // Compress uint16_t lanes into bytes
  604. __m128i r0 = _mm256_castsi256_si128( bytes );
  605. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  606. return _mm_packus_epi16( r0, r1 );
  607. #endif
  608. }
  609. #elif defined(__AVX__)
  610. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  611. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  612. uint32_t x32;
  613. memcpy(&x32, x, sizeof(uint32_t));
  614. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  615. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  616. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  617. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  618. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  619. bytesl = _mm_or_si128(bytesl, bit_mask);
  620. bytesh = _mm_or_si128(bytesh, bit_mask);
  621. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  622. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  623. return MM256_SET_M128I(bytesh, bytesl);
  624. }
  625. // Unpack 32 4-bit fields into 32 bytes
  626. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  627. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  628. {
  629. // Load 16 bytes from memory
  630. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  631. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  632. const __m128i lowMask = _mm_set1_epi8(0xF);
  633. tmpl = _mm_and_si128(lowMask, tmpl);
  634. tmph = _mm_and_si128(lowMask, tmph);
  635. return MM256_SET_M128I(tmph, tmpl);
  636. }
  637. // add int16_t pairwise and return as float vector
  638. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  639. const __m128i ones = _mm_set1_epi16(1);
  640. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  641. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  642. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  643. return _mm256_cvtepi32_ps(summed_pairs);
  644. }
  645. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  646. const __m128i axl = _mm256_castsi256_si128(ax);
  647. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  648. const __m128i syl = _mm256_castsi256_si128(sy);
  649. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  650. // Perform multiplication and create 16-bit values
  651. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  652. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  653. return sum_i16_pairs_float(doth, dotl);
  654. }
  655. // multiply int8_t, add results pairwise twice and return as float vector
  656. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  657. const __m128i xl = _mm256_castsi256_si128(x);
  658. const __m128i xh = _mm256_extractf128_si256(x, 1);
  659. const __m128i yl = _mm256_castsi256_si128(y);
  660. const __m128i yh = _mm256_extractf128_si256(y, 1);
  661. // Get absolute values of x vectors
  662. const __m128i axl = _mm_sign_epi8(xl, xl);
  663. const __m128i axh = _mm_sign_epi8(xh, xh);
  664. // Sign the values of the y vectors
  665. const __m128i syl = _mm_sign_epi8(yl, xl);
  666. const __m128i syh = _mm_sign_epi8(yh, xh);
  667. // Perform multiplication and create 16-bit values
  668. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  669. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  670. return sum_i16_pairs_float(doth, dotl);
  671. }
  672. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  673. {
  674. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  675. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  676. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  677. __m128i low = _mm_and_si128( lowByte, bytes1 );
  678. high = _mm_srli_epi16( high, 4 );
  679. bytes1 = _mm_or_si128( low, high );
  680. high = _mm_andnot_si128( lowByte, bytes2 );
  681. low = _mm_and_si128( lowByte, bytes2 );
  682. high = _mm_srli_epi16( high, 4 );
  683. bytes2 = _mm_or_si128( low, high );
  684. return _mm_packus_epi16( bytes1, bytes2);
  685. }
  686. #endif
  687. #elif defined(__SSSE3__)
  688. // horizontally add 4x4 floats
  689. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  690. __m128 res_0 =_mm_hadd_ps(a, b);
  691. __m128 res_1 =_mm_hadd_ps(c, d);
  692. __m128 res =_mm_hadd_ps(res_0, res_1);
  693. res =_mm_hadd_ps(res, res);
  694. res =_mm_hadd_ps(res, res);
  695. return _mm_cvtss_f32(res);
  696. }
  697. #endif // __AVX__ || __AVX2__ || __AVX512F__
  698. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  699. #if defined(__ARM_NEON)
  700. #if !defined(__aarch64__)
  701. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  702. return
  703. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  704. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  705. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  706. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  707. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  708. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  709. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  710. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  711. }
  712. inline static int16_t vaddvq_s8(int8x16_t v) {
  713. return
  714. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  715. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  716. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  717. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  718. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  719. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  720. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  721. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  722. }
  723. inline static int32_t vaddvq_s16(int16x8_t v) {
  724. return
  725. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  726. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  727. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  728. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  729. }
  730. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  731. return
  732. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  733. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  734. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  735. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  736. }
  737. inline static int32_t vaddvq_s32(int32x4_t v) {
  738. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  739. }
  740. inline static float vaddvq_f32(float32x4_t v) {
  741. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  742. }
  743. inline static float vminvq_f32(float32x4_t v) {
  744. return
  745. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  746. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  747. }
  748. inline static float vmaxvq_f32(float32x4_t v) {
  749. return
  750. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  751. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  752. }
  753. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  754. int32x4_t res;
  755. res[0] = roundf(vgetq_lane_f32(v, 0));
  756. res[1] = roundf(vgetq_lane_f32(v, 1));
  757. res[2] = roundf(vgetq_lane_f32(v, 2));
  758. res[3] = roundf(vgetq_lane_f32(v, 3));
  759. return res;
  760. }
  761. #endif
  762. #endif
  763. #define QK4_0 32
  764. typedef struct {
  765. ggml_fp16_t d; // delta
  766. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  767. } block_q4_0;
  768. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  769. #define QK4_1 32
  770. typedef struct {
  771. ggml_fp16_t d; // delta
  772. ggml_fp16_t m; // min
  773. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  774. } block_q4_1;
  775. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  776. #define QK5_0 32
  777. typedef struct {
  778. ggml_fp16_t d; // delta
  779. uint8_t qh[4]; // 5-th bit of quants
  780. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  781. } block_q5_0;
  782. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  783. #define QK5_1 32
  784. typedef struct {
  785. ggml_fp16_t d; // delta
  786. ggml_fp16_t m; // min
  787. uint8_t qh[4]; // 5-th bit of quants
  788. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  789. } block_q5_1;
  790. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  791. #define QK8_0 32
  792. typedef struct {
  793. ggml_fp16_t d; // delta
  794. int8_t qs[QK8_0]; // quants
  795. } block_q8_0;
  796. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  797. #define QK8_1 32
  798. typedef struct {
  799. float d; // delta
  800. float s; // d * sum(qs[i])
  801. int8_t qs[QK8_1]; // quants
  802. } block_q8_1;
  803. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  804. // reference implementation for deterministic creation of model files
  805. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  806. static const int qk = QK4_0;
  807. assert(k % qk == 0);
  808. const int nb = k / qk;
  809. for (int i = 0; i < nb; i++) {
  810. float amax = 0.0f; // absolute max
  811. float max = 0.0f;
  812. for (int j = 0; j < qk; j++) {
  813. const float v = x[i*qk + j];
  814. if (amax < fabsf(v)) {
  815. amax = fabsf(v);
  816. max = v;
  817. }
  818. }
  819. const float d = max / -8;
  820. const float id = d ? 1.0f/d : 0.0f;
  821. y[i].d = GGML_FP32_TO_FP16(d);
  822. for (int j = 0; j < qk/2; ++j) {
  823. const float x0 = x[i*qk + 0 + j]*id;
  824. const float x1 = x[i*qk + qk/2 + j]*id;
  825. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  826. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  827. y[i].qs[j] = xi0;
  828. y[i].qs[j] |= xi1 << 4;
  829. }
  830. }
  831. }
  832. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  833. quantize_row_q4_0_reference(x, y, k);
  834. }
  835. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  836. const int qk = QK4_1;
  837. assert(k % qk == 0);
  838. const int nb = k / qk;
  839. for (int i = 0; i < nb; i++) {
  840. float min = FLT_MAX;
  841. float max = -FLT_MAX;
  842. for (int j = 0; j < qk; j++) {
  843. const float v = x[i*qk + j];
  844. if (v < min) min = v;
  845. if (v > max) max = v;
  846. }
  847. const float d = (max - min) / ((1 << 4) - 1);
  848. const float id = d ? 1.0f/d : 0.0f;
  849. y[i].d = GGML_FP32_TO_FP16(d);
  850. y[i].m = GGML_FP32_TO_FP16(min);
  851. for (int j = 0; j < qk/2; ++j) {
  852. const float x0 = (x[i*qk + 0 + j] - min)*id;
  853. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  854. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  855. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  856. y[i].qs[j] = xi0;
  857. y[i].qs[j] |= xi1 << 4;
  858. }
  859. }
  860. }
  861. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  862. quantize_row_q4_1_reference(x, y, k);
  863. }
  864. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  865. static const int qk = QK5_0;
  866. assert(k % qk == 0);
  867. const int nb = k / qk;
  868. for (int i = 0; i < nb; i++) {
  869. float amax = 0.0f; // absolute max
  870. float max = 0.0f;
  871. for (int j = 0; j < qk; j++) {
  872. const float v = x[i*qk + j];
  873. if (amax < fabsf(v)) {
  874. amax = fabsf(v);
  875. max = v;
  876. }
  877. }
  878. const float d = max / -16;
  879. const float id = d ? 1.0f/d : 0.0f;
  880. y[i].d = GGML_FP32_TO_FP16(d);
  881. uint32_t qh = 0;
  882. for (int j = 0; j < qk/2; ++j) {
  883. const float x0 = x[i*qk + 0 + j]*id;
  884. const float x1 = x[i*qk + qk/2 + j]*id;
  885. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  886. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  887. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  888. // get the 5-th bit and store it in qh at the right position
  889. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  890. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  891. }
  892. memcpy(&y[i].qh, &qh, sizeof(qh));
  893. }
  894. }
  895. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  896. quantize_row_q5_0_reference(x, y, k);
  897. }
  898. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  899. const int qk = QK5_1;
  900. assert(k % qk == 0);
  901. const int nb = k / qk;
  902. for (int i = 0; i < nb; i++) {
  903. float min = FLT_MAX;
  904. float max = -FLT_MAX;
  905. for (int j = 0; j < qk; j++) {
  906. const float v = x[i*qk + j];
  907. if (v < min) min = v;
  908. if (v > max) max = v;
  909. }
  910. const float d = (max - min) / ((1 << 5) - 1);
  911. const float id = d ? 1.0f/d : 0.0f;
  912. y[i].d = GGML_FP32_TO_FP16(d);
  913. y[i].m = GGML_FP32_TO_FP16(min);
  914. uint32_t qh = 0;
  915. for (int j = 0; j < qk/2; ++j) {
  916. const float x0 = (x[i*qk + 0 + j] - min)*id;
  917. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  918. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  919. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  920. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  921. // get the 5-th bit and store it in qh at the right position
  922. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  923. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  924. }
  925. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  926. }
  927. }
  928. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  929. quantize_row_q5_1_reference(x, y, k);
  930. }
  931. // reference implementation for deterministic creation of model files
  932. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  933. assert(k % QK8_0 == 0);
  934. const int nb = k / QK8_0;
  935. for (int i = 0; i < nb; i++) {
  936. float amax = 0.0f; // absolute max
  937. for (int j = 0; j < QK8_0; j++) {
  938. const float v = x[i*QK8_0 + j];
  939. amax = MAX(amax, fabsf(v));
  940. }
  941. const float d = amax / ((1 << 7) - 1);
  942. const float id = d ? 1.0f/d : 0.0f;
  943. y[i].d = GGML_FP32_TO_FP16(d);
  944. for (int j = 0; j < QK8_0; ++j) {
  945. const float x0 = x[i*QK8_0 + j]*id;
  946. y[i].qs[j] = roundf(x0);
  947. }
  948. }
  949. }
  950. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  951. assert(QK8_0 == 32);
  952. assert(k % QK8_0 == 0);
  953. const int nb = k / QK8_0;
  954. block_q8_0 * restrict y = vy;
  955. #if defined(__ARM_NEON)
  956. for (int i = 0; i < nb; i++) {
  957. float32x4_t srcv [8];
  958. float32x4_t asrcv[8];
  959. float32x4_t amaxv[8];
  960. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  961. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  962. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  963. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  964. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  965. const float amax = vmaxvq_f32(amaxv[0]);
  966. const float d = amax / ((1 << 7) - 1);
  967. const float id = d ? 1.0f/d : 0.0f;
  968. y[i].d = GGML_FP32_TO_FP16(d);
  969. for (int j = 0; j < 8; j++) {
  970. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  971. const int32x4_t vi = vcvtnq_s32_f32(v);
  972. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  973. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  974. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  975. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  976. }
  977. }
  978. #elif defined(__wasm_simd128__)
  979. for (int i = 0; i < nb; i++) {
  980. v128_t srcv [8];
  981. v128_t asrcv[8];
  982. v128_t amaxv[8];
  983. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  984. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  985. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  986. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  987. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  988. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  989. wasm_f32x4_extract_lane(amaxv[0], 1)),
  990. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  991. wasm_f32x4_extract_lane(amaxv[0], 3)));
  992. const float d = amax / ((1 << 7) - 1);
  993. const float id = d ? 1.0f/d : 0.0f;
  994. y[i].d = GGML_FP32_TO_FP16(d);
  995. for (int j = 0; j < 8; j++) {
  996. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  997. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  998. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  999. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1000. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1001. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1002. }
  1003. }
  1004. #elif defined(__AVX2__) || defined(__AVX__)
  1005. for (int i = 0; i < nb; i++) {
  1006. // Load elements into 4 AVX vectors
  1007. __m256 v0 = _mm256_loadu_ps( x );
  1008. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1009. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1010. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1011. x += 32;
  1012. // Compute max(abs(e)) for the block
  1013. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1014. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1015. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1016. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1017. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1018. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1019. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1020. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1021. const float maxScalar = _mm_cvtss_f32( max4 );
  1022. // Quantize these floats
  1023. const float d = maxScalar / 127.f;
  1024. y[i].d = GGML_FP32_TO_FP16(d);
  1025. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1026. const __m256 mul = _mm256_set1_ps( id );
  1027. // Apply the multiplier
  1028. v0 = _mm256_mul_ps( v0, mul );
  1029. v1 = _mm256_mul_ps( v1, mul );
  1030. v2 = _mm256_mul_ps( v2, mul );
  1031. v3 = _mm256_mul_ps( v3, mul );
  1032. // Round to nearest integer
  1033. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1034. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1035. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1036. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1037. // Convert floats to integers
  1038. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1039. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1040. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1041. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1042. #if defined(__AVX2__)
  1043. // Convert int32 to int16
  1044. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1045. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1046. // Convert int16 to int8
  1047. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1048. // We got our precious signed bytes, but the order is now wrong
  1049. // These AVX2 pack instructions process 16-byte pieces independently
  1050. // The following instruction is fixing the order
  1051. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1052. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1053. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1054. #else
  1055. // Since we don't have in AVX some necessary functions,
  1056. // we split the registers in half and call AVX2 analogs from SSE
  1057. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1058. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1059. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1060. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1061. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1062. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1063. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1064. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1065. // Convert int32 to int16
  1066. ni0 = _mm_packs_epi32( ni0, ni1 );
  1067. ni2 = _mm_packs_epi32( ni2, ni3 );
  1068. ni4 = _mm_packs_epi32( ni4, ni5 );
  1069. ni6 = _mm_packs_epi32( ni6, ni7 );
  1070. // Convert int16 to int8
  1071. ni0 = _mm_packs_epi16( ni0, ni2 );
  1072. ni4 = _mm_packs_epi16( ni4, ni6 );
  1073. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1074. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1075. #endif
  1076. }
  1077. #else
  1078. // scalar
  1079. quantize_row_q8_0_reference(x, y, k);
  1080. #endif
  1081. }
  1082. // reference implementation for deterministic creation of model files
  1083. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1084. assert(QK8_1 == 32);
  1085. assert(k % QK8_1 == 0);
  1086. const int nb = k / QK8_1;
  1087. for (int i = 0; i < nb; i++) {
  1088. float amax = 0.0f; // absolute max
  1089. for (int j = 0; j < QK8_1; j++) {
  1090. const float v = x[i*QK8_1 + j];
  1091. amax = MAX(amax, fabsf(v));
  1092. }
  1093. const float d = amax / ((1 << 7) - 1);
  1094. const float id = d ? 1.0f/d : 0.0f;
  1095. y[i].d = d;
  1096. int sum = 0;
  1097. for (int j = 0; j < QK8_1/2; ++j) {
  1098. const float v0 = x[i*QK8_1 + j]*id;
  1099. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1100. y[i].qs[ j] = roundf(v0);
  1101. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1102. sum += y[i].qs[ j];
  1103. sum += y[i].qs[QK8_1/2 + j];
  1104. }
  1105. y[i].s = sum*d;
  1106. }
  1107. }
  1108. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1109. assert(k % QK8_1 == 0);
  1110. const int nb = k / QK8_1;
  1111. block_q8_1 * restrict y = vy;
  1112. #if defined(__ARM_NEON)
  1113. for (int i = 0; i < nb; i++) {
  1114. float32x4_t srcv [8];
  1115. float32x4_t asrcv[8];
  1116. float32x4_t amaxv[8];
  1117. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1118. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1119. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1120. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1121. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1122. const float amax = vmaxvq_f32(amaxv[0]);
  1123. const float d = amax / ((1 << 7) - 1);
  1124. const float id = d ? 1.0f/d : 0.0f;
  1125. y[i].d = d;
  1126. int32x4_t accv = vdupq_n_s32(0);
  1127. for (int j = 0; j < 8; j++) {
  1128. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1129. const int32x4_t vi = vcvtnq_s32_f32(v);
  1130. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1131. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1132. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1133. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1134. accv = vaddq_s32(accv, vi);
  1135. }
  1136. y[i].s = d * vaddvq_s32(accv);
  1137. }
  1138. #elif defined(__wasm_simd128__)
  1139. for (int i = 0; i < nb; i++) {
  1140. v128_t srcv [8];
  1141. v128_t asrcv[8];
  1142. v128_t amaxv[8];
  1143. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1144. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1145. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1146. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1147. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1148. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1149. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1150. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1151. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1152. const float d = amax / ((1 << 7) - 1);
  1153. const float id = d ? 1.0f/d : 0.0f;
  1154. y[i].d = d;
  1155. v128_t accv = wasm_i32x4_splat(0);
  1156. for (int j = 0; j < 8; j++) {
  1157. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1158. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1159. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1160. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1161. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1162. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1163. accv = wasm_i32x4_add(accv, vi);
  1164. }
  1165. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1166. wasm_i32x4_extract_lane(accv, 1) +
  1167. wasm_i32x4_extract_lane(accv, 2) +
  1168. wasm_i32x4_extract_lane(accv, 3));
  1169. }
  1170. #elif defined(__AVX2__) || defined(__AVX__)
  1171. for (int i = 0; i < nb; i++) {
  1172. // Load elements into 4 AVX vectors
  1173. __m256 v0 = _mm256_loadu_ps( x );
  1174. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1175. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1176. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1177. x += 32;
  1178. // Compute max(abs(e)) for the block
  1179. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1180. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1181. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1182. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1183. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1184. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1185. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1186. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1187. const float maxScalar = _mm_cvtss_f32( max4 );
  1188. // Quantize these floats
  1189. const float d = maxScalar / 127.f;
  1190. y[i].d = d;
  1191. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1192. const __m256 mul = _mm256_set1_ps( id );
  1193. // Apply the multiplier
  1194. v0 = _mm256_mul_ps( v0, mul );
  1195. v1 = _mm256_mul_ps( v1, mul );
  1196. v2 = _mm256_mul_ps( v2, mul );
  1197. v3 = _mm256_mul_ps( v3, mul );
  1198. // Round to nearest integer
  1199. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1200. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1201. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1202. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1203. // Convert floats to integers
  1204. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1205. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1206. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1207. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1208. #if defined(__AVX2__)
  1209. // Compute the sum of the quants and set y[i].s
  1210. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1211. // Convert int32 to int16
  1212. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1213. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1214. // Convert int16 to int8
  1215. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1216. // We got our precious signed bytes, but the order is now wrong
  1217. // These AVX2 pack instructions process 16-byte pieces independently
  1218. // The following instruction is fixing the order
  1219. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1220. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1221. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1222. #else
  1223. // Since we don't have in AVX some necessary functions,
  1224. // we split the registers in half and call AVX2 analogs from SSE
  1225. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1226. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1227. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1228. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1229. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1230. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1231. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1232. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1233. // Compute the sum of the quants and set y[i].s
  1234. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1235. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1236. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1237. // Convert int32 to int16
  1238. ni0 = _mm_packs_epi32( ni0, ni1 );
  1239. ni2 = _mm_packs_epi32( ni2, ni3 );
  1240. ni4 = _mm_packs_epi32( ni4, ni5 );
  1241. ni6 = _mm_packs_epi32( ni6, ni7 );
  1242. // Convert int16 to int8
  1243. ni0 = _mm_packs_epi16( ni0, ni2 );
  1244. ni4 = _mm_packs_epi16( ni4, ni6 );
  1245. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1246. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1247. #endif
  1248. }
  1249. #else
  1250. // scalar
  1251. quantize_row_q8_1_reference(x, y, k);
  1252. #endif
  1253. }
  1254. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1255. static const int qk = QK4_0;
  1256. assert(k % qk == 0);
  1257. const int nb = k / qk;
  1258. for (int i = 0; i < nb; i++) {
  1259. const float d = GGML_FP16_TO_FP32(x[i].d);
  1260. for (int j = 0; j < qk/2; ++j) {
  1261. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1262. const int x1 = (x[i].qs[j] >> 4) - 8;
  1263. y[i*qk + j + 0 ] = x0*d;
  1264. y[i*qk + j + qk/2] = x1*d;
  1265. }
  1266. }
  1267. }
  1268. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1269. static const int qk = QK4_1;
  1270. assert(k % qk == 0);
  1271. const int nb = k / qk;
  1272. for (int i = 0; i < nb; i++) {
  1273. const float d = GGML_FP16_TO_FP32(x[i].d);
  1274. const float m = GGML_FP16_TO_FP32(x[i].m);
  1275. for (int j = 0; j < qk/2; ++j) {
  1276. const int x0 = (x[i].qs[j] & 0x0F);
  1277. const int x1 = (x[i].qs[j] >> 4);
  1278. y[i*qk + j + 0 ] = x0*d + m;
  1279. y[i*qk + j + qk/2] = x1*d + m;
  1280. }
  1281. }
  1282. }
  1283. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1284. static const int qk = QK5_0;
  1285. assert(k % qk == 0);
  1286. const int nb = k / qk;
  1287. for (int i = 0; i < nb; i++) {
  1288. const float d = GGML_FP16_TO_FP32(x[i].d);
  1289. uint32_t qh;
  1290. memcpy(&qh, x[i].qh, sizeof(qh));
  1291. for (int j = 0; j < qk/2; ++j) {
  1292. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1293. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1294. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1295. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1296. y[i*qk + j + 0 ] = x0*d;
  1297. y[i*qk + j + qk/2] = x1*d;
  1298. }
  1299. }
  1300. }
  1301. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1302. static const int qk = QK5_1;
  1303. assert(k % qk == 0);
  1304. const int nb = k / qk;
  1305. for (int i = 0; i < nb; i++) {
  1306. const float d = GGML_FP16_TO_FP32(x[i].d);
  1307. const float m = GGML_FP16_TO_FP32(x[i].m);
  1308. uint32_t qh;
  1309. memcpy(&qh, x[i].qh, sizeof(qh));
  1310. for (int j = 0; j < qk/2; ++j) {
  1311. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1312. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1313. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1314. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1315. y[i*qk + j + 0 ] = x0*d + m;
  1316. y[i*qk + j + qk/2] = x1*d + m;
  1317. }
  1318. }
  1319. }
  1320. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1321. static const int qk = QK8_0;
  1322. assert(k % qk == 0);
  1323. const int nb = k / qk;
  1324. const block_q8_0 * restrict x = vx;
  1325. for (int i = 0; i < nb; i++) {
  1326. const float d = GGML_FP16_TO_FP32(x[i].d);
  1327. for (int j = 0; j < qk; ++j) {
  1328. y[i*qk + j] = x[i].qs[j]*d;
  1329. }
  1330. }
  1331. }
  1332. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1333. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1334. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1335. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1338. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1340. [GGML_TYPE_I8] = {
  1341. .type_name = "i8",
  1342. .blck_size = 1,
  1343. .type_size = sizeof(int8_t),
  1344. .is_quantized = false,
  1345. },
  1346. [GGML_TYPE_I16] = {
  1347. .type_name = "i16",
  1348. .blck_size = 1,
  1349. .type_size = sizeof(int16_t),
  1350. .is_quantized = false,
  1351. },
  1352. [GGML_TYPE_I32] = {
  1353. .type_name = "i32",
  1354. .blck_size = 1,
  1355. .type_size = sizeof(int32_t),
  1356. .is_quantized = false,
  1357. },
  1358. [GGML_TYPE_F32] = {
  1359. .type_name = "f32",
  1360. .blck_size = 1,
  1361. .type_size = sizeof(float),
  1362. .is_quantized = false,
  1363. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1364. .vec_dot_type = GGML_TYPE_F32,
  1365. },
  1366. [GGML_TYPE_F16] = {
  1367. .type_name = "f16",
  1368. .blck_size = 1,
  1369. .type_size = sizeof(ggml_fp16_t),
  1370. .is_quantized = false,
  1371. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1372. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1373. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1374. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1375. .vec_dot_type = GGML_TYPE_F16,
  1376. },
  1377. [GGML_TYPE_Q4_0] = {
  1378. .type_name = "q4_0",
  1379. .blck_size = QK4_0,
  1380. .type_size = sizeof(block_q4_0),
  1381. .is_quantized = true,
  1382. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1383. .from_float = quantize_row_q4_0,
  1384. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1385. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1386. .vec_dot_type = GGML_TYPE_Q8_0,
  1387. },
  1388. [GGML_TYPE_Q4_1] = {
  1389. .type_name = "q4_1",
  1390. .blck_size = QK4_1,
  1391. .type_size = sizeof(block_q4_1),
  1392. .is_quantized = true,
  1393. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1394. .from_float = quantize_row_q4_1,
  1395. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1396. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1397. .vec_dot_type = GGML_TYPE_Q8_1,
  1398. },
  1399. [GGML_TYPE_Q5_0] = {
  1400. .type_name = "q5_0",
  1401. .blck_size = QK5_0,
  1402. .type_size = sizeof(block_q5_0),
  1403. .is_quantized = true,
  1404. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1405. .from_float = quantize_row_q5_0,
  1406. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1407. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1408. .vec_dot_type = GGML_TYPE_Q8_0,
  1409. },
  1410. [GGML_TYPE_Q5_1] = {
  1411. .type_name = "q5_1",
  1412. .blck_size = QK5_1,
  1413. .type_size = sizeof(block_q5_1),
  1414. .is_quantized = true,
  1415. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1416. .from_float = quantize_row_q5_1,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1418. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1419. .vec_dot_type = GGML_TYPE_Q8_1,
  1420. },
  1421. [GGML_TYPE_Q8_0] = {
  1422. .type_name = "q8_0",
  1423. .blck_size = QK8_0,
  1424. .type_size = sizeof(block_q8_0),
  1425. .is_quantized = true,
  1426. .to_float = dequantize_row_q8_0,
  1427. .from_float = quantize_row_q8_0,
  1428. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1429. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1430. .vec_dot_type = GGML_TYPE_Q8_0,
  1431. },
  1432. [GGML_TYPE_Q8_1] = {
  1433. .type_name = "q8_1",
  1434. .blck_size = QK8_1,
  1435. .type_size = sizeof(block_q8_1),
  1436. .is_quantized = true,
  1437. .from_float = quantize_row_q8_1,
  1438. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1439. .vec_dot_type = GGML_TYPE_Q8_1,
  1440. },
  1441. #ifdef GGML_USE_K_QUANTS
  1442. [GGML_TYPE_Q2_K] = {
  1443. .type_name = "q2_K",
  1444. .blck_size = QK_K,
  1445. .type_size = sizeof(block_q2_K),
  1446. .is_quantized = true,
  1447. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1448. .from_float = quantize_row_q2_K,
  1449. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1450. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1451. .vec_dot_type = GGML_TYPE_Q8_K,
  1452. },
  1453. [GGML_TYPE_Q3_K] = {
  1454. .type_name = "q3_K",
  1455. .blck_size = QK_K,
  1456. .type_size = sizeof(block_q3_K),
  1457. .is_quantized = true,
  1458. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1459. .from_float = quantize_row_q3_K,
  1460. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1461. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1462. .vec_dot_type = GGML_TYPE_Q8_K,
  1463. },
  1464. [GGML_TYPE_Q4_K] = {
  1465. .type_name = "q4_K",
  1466. .blck_size = QK_K,
  1467. .type_size = sizeof(block_q4_K),
  1468. .is_quantized = true,
  1469. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1470. .from_float = quantize_row_q4_K,
  1471. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1472. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1473. .vec_dot_type = GGML_TYPE_Q8_K,
  1474. },
  1475. [GGML_TYPE_Q5_K] = {
  1476. .type_name = "q5_K",
  1477. .blck_size = QK_K,
  1478. .type_size = sizeof(block_q5_K),
  1479. .is_quantized = true,
  1480. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1481. .from_float = quantize_row_q5_K,
  1482. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1483. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1484. .vec_dot_type = GGML_TYPE_Q8_K,
  1485. },
  1486. [GGML_TYPE_Q6_K] = {
  1487. .type_name = "q6_K",
  1488. .blck_size = QK_K,
  1489. .type_size = sizeof(block_q6_K),
  1490. .is_quantized = true,
  1491. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1492. .from_float = quantize_row_q6_K,
  1493. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1494. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1495. .vec_dot_type = GGML_TYPE_Q8_K,
  1496. },
  1497. [GGML_TYPE_Q8_K] = {
  1498. .type_name = "q8_K",
  1499. .blck_size = QK_K,
  1500. .type_size = sizeof(block_q8_K),
  1501. .is_quantized = true,
  1502. .from_float = quantize_row_q8_K,
  1503. }
  1504. #endif
  1505. };
  1506. // For internal test use
  1507. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1508. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1509. return type_traits[type];
  1510. }
  1511. //
  1512. // simd mappings
  1513. //
  1514. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1515. // we then implement the fundamental computation operations below using only these macros
  1516. // adding support for new architectures requires to define the corresponding SIMD macros
  1517. //
  1518. // GGML_F32_STEP / GGML_F16_STEP
  1519. // number of elements to process in a single step
  1520. //
  1521. // GGML_F32_EPR / GGML_F16_EPR
  1522. // number of elements to fit in a single register
  1523. //
  1524. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1525. #define GGML_SIMD
  1526. // F32 NEON
  1527. #define GGML_F32_STEP 16
  1528. #define GGML_F32_EPR 4
  1529. #define GGML_F32x4 float32x4_t
  1530. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1531. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1532. #define GGML_F32x4_LOAD vld1q_f32
  1533. #define GGML_F32x4_STORE vst1q_f32
  1534. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1535. #define GGML_F32x4_ADD vaddq_f32
  1536. #define GGML_F32x4_MUL vmulq_f32
  1537. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1538. #define GGML_F32x4_REDUCE(res, x) \
  1539. { \
  1540. int offset = GGML_F32_ARR >> 1; \
  1541. for (int i = 0; i < offset; ++i) { \
  1542. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1543. } \
  1544. offset >>= 1; \
  1545. for (int i = 0; i < offset; ++i) { \
  1546. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1547. } \
  1548. offset >>= 1; \
  1549. for (int i = 0; i < offset; ++i) { \
  1550. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1551. } \
  1552. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1553. }
  1554. #define GGML_F32_VEC GGML_F32x4
  1555. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1556. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1557. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1558. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1559. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1560. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1561. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1562. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1563. // F16 NEON
  1564. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1565. #define GGML_F16_STEP 32
  1566. #define GGML_F16_EPR 8
  1567. #define GGML_F16x8 float16x8_t
  1568. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1569. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1570. #define GGML_F16x8_LOAD vld1q_f16
  1571. #define GGML_F16x8_STORE vst1q_f16
  1572. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1573. #define GGML_F16x8_ADD vaddq_f16
  1574. #define GGML_F16x8_MUL vmulq_f16
  1575. #define GGML_F16x8_REDUCE(res, x) \
  1576. { \
  1577. int offset = GGML_F16_ARR >> 1; \
  1578. for (int i = 0; i < offset; ++i) { \
  1579. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1580. } \
  1581. offset >>= 1; \
  1582. for (int i = 0; i < offset; ++i) { \
  1583. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1584. } \
  1585. offset >>= 1; \
  1586. for (int i = 0; i < offset; ++i) { \
  1587. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1588. } \
  1589. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1590. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1591. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1592. }
  1593. #define GGML_F16_VEC GGML_F16x8
  1594. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1595. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1596. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1597. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1598. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1599. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1600. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1601. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1602. #else
  1603. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1604. // and take advantage of the vcvt_ functions to convert to/from FP16
  1605. #define GGML_F16_STEP 16
  1606. #define GGML_F16_EPR 4
  1607. #define GGML_F32Cx4 float32x4_t
  1608. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1609. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1610. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1611. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1612. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1613. #define GGML_F32Cx4_ADD vaddq_f32
  1614. #define GGML_F32Cx4_MUL vmulq_f32
  1615. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1616. #define GGML_F16_VEC GGML_F32Cx4
  1617. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1618. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1619. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1620. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1621. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1622. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1623. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1624. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1625. #endif
  1626. #elif defined(__AVX__)
  1627. #define GGML_SIMD
  1628. // F32 AVX
  1629. #define GGML_F32_STEP 32
  1630. #define GGML_F32_EPR 8
  1631. #define GGML_F32x8 __m256
  1632. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1633. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1634. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1635. #define GGML_F32x8_STORE _mm256_storeu_ps
  1636. #if defined(__FMA__)
  1637. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1638. #else
  1639. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1640. #endif
  1641. #define GGML_F32x8_ADD _mm256_add_ps
  1642. #define GGML_F32x8_MUL _mm256_mul_ps
  1643. #define GGML_F32x8_REDUCE(res, x) \
  1644. { \
  1645. int offset = GGML_F32_ARR >> 1; \
  1646. for (int i = 0; i < offset; ++i) { \
  1647. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1648. } \
  1649. offset >>= 1; \
  1650. for (int i = 0; i < offset; ++i) { \
  1651. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1652. } \
  1653. offset >>= 1; \
  1654. for (int i = 0; i < offset; ++i) { \
  1655. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1656. } \
  1657. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1658. _mm256_extractf128_ps(x[0], 1)); \
  1659. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1660. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1661. }
  1662. // TODO: is this optimal ?
  1663. #define GGML_F32_VEC GGML_F32x8
  1664. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1665. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1666. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1667. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1668. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1669. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1670. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1671. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1672. // F16 AVX
  1673. #define GGML_F16_STEP 32
  1674. #define GGML_F16_EPR 8
  1675. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1676. #define GGML_F32Cx8 __m256
  1677. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1678. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1679. #if defined(__F16C__)
  1680. // the _mm256_cvt intrinsics require F16C
  1681. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1682. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1683. #else
  1684. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1685. float tmp[8];
  1686. for (int i = 0; i < 8; i++) {
  1687. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1688. }
  1689. return _mm256_loadu_ps(tmp);
  1690. }
  1691. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1692. float arr[8];
  1693. _mm256_storeu_ps(arr, y);
  1694. for (int i = 0; i < 8; i++)
  1695. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1696. }
  1697. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1698. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1699. #endif
  1700. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1701. #define GGML_F32Cx8_ADD _mm256_add_ps
  1702. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1703. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1704. #define GGML_F16_VEC GGML_F32Cx8
  1705. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1706. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1707. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1708. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1709. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1710. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1711. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1712. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1713. #elif defined(__POWER9_VECTOR__)
  1714. #define GGML_SIMD
  1715. // F32 POWER9
  1716. #define GGML_F32_STEP 32
  1717. #define GGML_F32_EPR 4
  1718. #define GGML_F32x4 vector float
  1719. #define GGML_F32x4_ZERO 0.0f
  1720. #define GGML_F32x4_SET1 vec_splats
  1721. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1722. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1723. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1724. #define GGML_F32x4_ADD vec_add
  1725. #define GGML_F32x4_MUL vec_mul
  1726. #define GGML_F32x4_REDUCE(res, x) \
  1727. { \
  1728. int offset = GGML_F32_ARR >> 1; \
  1729. for (int i = 0; i < offset; ++i) { \
  1730. x[i] = vec_add(x[i], x[offset+i]); \
  1731. } \
  1732. offset >>= 1; \
  1733. for (int i = 0; i < offset; ++i) { \
  1734. x[i] = vec_add(x[i], x[offset+i]); \
  1735. } \
  1736. offset >>= 1; \
  1737. for (int i = 0; i < offset; ++i) { \
  1738. x[i] = vec_add(x[i], x[offset+i]); \
  1739. } \
  1740. res = vec_extract(x[0], 0) + \
  1741. vec_extract(x[0], 1) + \
  1742. vec_extract(x[0], 2) + \
  1743. vec_extract(x[0], 3); \
  1744. }
  1745. #define GGML_F32_VEC GGML_F32x4
  1746. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1747. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1748. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1749. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1750. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1751. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1752. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1753. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1754. // F16 POWER9
  1755. #define GGML_F16_STEP GGML_F32_STEP
  1756. #define GGML_F16_EPR GGML_F32_EPR
  1757. #define GGML_F16_VEC GGML_F32x4
  1758. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1759. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1760. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1761. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1762. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1763. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1764. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1765. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1766. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1767. #define GGML_F16_VEC_STORE(p, r, i) \
  1768. if (i & 0x1) \
  1769. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1770. r[i - GGML_ENDIAN_BYTE(0)]), \
  1771. 0, p - GGML_F16_EPR)
  1772. #elif defined(__wasm_simd128__)
  1773. #define GGML_SIMD
  1774. // F32 WASM
  1775. #define GGML_F32_STEP 16
  1776. #define GGML_F32_EPR 4
  1777. #define GGML_F32x4 v128_t
  1778. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1779. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1780. #define GGML_F32x4_LOAD wasm_v128_load
  1781. #define GGML_F32x4_STORE wasm_v128_store
  1782. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1783. #define GGML_F32x4_ADD wasm_f32x4_add
  1784. #define GGML_F32x4_MUL wasm_f32x4_mul
  1785. #define GGML_F32x4_REDUCE(res, x) \
  1786. { \
  1787. int offset = GGML_F32_ARR >> 1; \
  1788. for (int i = 0; i < offset; ++i) { \
  1789. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1790. } \
  1791. offset >>= 1; \
  1792. for (int i = 0; i < offset; ++i) { \
  1793. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1794. } \
  1795. offset >>= 1; \
  1796. for (int i = 0; i < offset; ++i) { \
  1797. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1798. } \
  1799. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1800. wasm_f32x4_extract_lane(x[0], 1) + \
  1801. wasm_f32x4_extract_lane(x[0], 2) + \
  1802. wasm_f32x4_extract_lane(x[0], 3); \
  1803. }
  1804. #define GGML_F32_VEC GGML_F32x4
  1805. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1806. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1807. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1808. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1809. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1810. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1811. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1812. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1813. // F16 WASM
  1814. #define GGML_F16_STEP 16
  1815. #define GGML_F16_EPR 4
  1816. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1817. float tmp[4];
  1818. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1819. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1820. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1821. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1822. return wasm_v128_load(tmp);
  1823. }
  1824. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1825. float tmp[4];
  1826. wasm_v128_store(tmp, x);
  1827. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1828. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1829. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1830. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1831. }
  1832. #define GGML_F16x4 v128_t
  1833. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1834. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1835. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1836. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1837. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1838. #define GGML_F16x4_ADD wasm_f32x4_add
  1839. #define GGML_F16x4_MUL wasm_f32x4_mul
  1840. #define GGML_F16x4_REDUCE(res, x) \
  1841. { \
  1842. int offset = GGML_F16_ARR >> 1; \
  1843. for (int i = 0; i < offset; ++i) { \
  1844. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1845. } \
  1846. offset >>= 1; \
  1847. for (int i = 0; i < offset; ++i) { \
  1848. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1849. } \
  1850. offset >>= 1; \
  1851. for (int i = 0; i < offset; ++i) { \
  1852. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1853. } \
  1854. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1855. wasm_f32x4_extract_lane(x[0], 1) + \
  1856. wasm_f32x4_extract_lane(x[0], 2) + \
  1857. wasm_f32x4_extract_lane(x[0], 3); \
  1858. }
  1859. #define GGML_F16_VEC GGML_F16x4
  1860. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1861. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1862. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1863. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1864. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1865. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1866. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1867. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1868. #elif defined(__SSE3__)
  1869. #define GGML_SIMD
  1870. // F32 SSE
  1871. #define GGML_F32_STEP 32
  1872. #define GGML_F32_EPR 4
  1873. #define GGML_F32x4 __m128
  1874. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1875. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1876. #define GGML_F32x4_LOAD _mm_loadu_ps
  1877. #define GGML_F32x4_STORE _mm_storeu_ps
  1878. #if defined(__FMA__)
  1879. // TODO: Does this work?
  1880. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1881. #else
  1882. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1883. #endif
  1884. #define GGML_F32x4_ADD _mm_add_ps
  1885. #define GGML_F32x4_MUL _mm_mul_ps
  1886. #define GGML_F32x4_REDUCE(res, x) \
  1887. { \
  1888. int offset = GGML_F32_ARR >> 1; \
  1889. for (int i = 0; i < offset; ++i) { \
  1890. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1891. } \
  1892. offset >>= 1; \
  1893. for (int i = 0; i < offset; ++i) { \
  1894. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1895. } \
  1896. offset >>= 1; \
  1897. for (int i = 0; i < offset; ++i) { \
  1898. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1899. } \
  1900. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1901. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1902. }
  1903. // TODO: is this optimal ?
  1904. #define GGML_F32_VEC GGML_F32x4
  1905. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1906. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1907. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1908. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1909. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1910. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1911. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1912. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1913. // F16 SSE
  1914. #define GGML_F16_STEP 32
  1915. #define GGML_F16_EPR 4
  1916. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1917. float tmp[4];
  1918. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1919. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1920. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1921. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1922. return _mm_loadu_ps(tmp);
  1923. }
  1924. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1925. float arr[4];
  1926. _mm_storeu_ps(arr, y);
  1927. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1928. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1929. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1930. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1931. }
  1932. #define GGML_F32Cx4 __m128
  1933. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1934. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1935. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1936. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1937. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1938. #define GGML_F32Cx4_ADD _mm_add_ps
  1939. #define GGML_F32Cx4_MUL _mm_mul_ps
  1940. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1941. #define GGML_F16_VEC GGML_F32Cx4
  1942. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1943. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1944. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1945. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1946. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1947. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1948. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1949. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1950. #endif
  1951. // GGML_F32_ARR / GGML_F16_ARR
  1952. // number of registers to use per step
  1953. #ifdef GGML_SIMD
  1954. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1955. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1956. #endif
  1957. //
  1958. // fundamental operations
  1959. //
  1960. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1961. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1962. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1963. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1964. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1965. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1966. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1967. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1968. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1969. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1970. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1971. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1972. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1973. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1974. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1975. #ifdef GGML_SIMD
  1976. float sumf = 0.0f;
  1977. const int np = (n & ~(GGML_F32_STEP - 1));
  1978. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1979. GGML_F32_VEC ax[GGML_F32_ARR];
  1980. GGML_F32_VEC ay[GGML_F32_ARR];
  1981. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1982. for (int j = 0; j < GGML_F32_ARR; j++) {
  1983. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1984. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1985. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1986. }
  1987. }
  1988. // reduce sum0..sum3 to sum0
  1989. GGML_F32_VEC_REDUCE(sumf, sum);
  1990. // leftovers
  1991. for (int i = np; i < n; ++i) {
  1992. sumf += x[i]*y[i];
  1993. }
  1994. #else
  1995. // scalar
  1996. ggml_float sumf = 0.0;
  1997. for (int i = 0; i < n; ++i) {
  1998. sumf += (ggml_float)(x[i]*y[i]);
  1999. }
  2000. #endif
  2001. *s = sumf;
  2002. }
  2003. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2004. ggml_float sumf = 0.0;
  2005. #if defined(GGML_SIMD)
  2006. const int np = (n & ~(GGML_F16_STEP - 1));
  2007. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2008. GGML_F16_VEC ax[GGML_F16_ARR];
  2009. GGML_F16_VEC ay[GGML_F16_ARR];
  2010. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2011. for (int j = 0; j < GGML_F16_ARR; j++) {
  2012. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2013. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2014. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2015. }
  2016. }
  2017. // reduce sum0..sum3 to sum0
  2018. GGML_F16_VEC_REDUCE(sumf, sum);
  2019. // leftovers
  2020. for (int i = np; i < n; ++i) {
  2021. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2022. }
  2023. #else
  2024. for (int i = 0; i < n; ++i) {
  2025. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2026. }
  2027. #endif
  2028. *s = sumf;
  2029. }
  2030. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2031. const int qk = QK8_0;
  2032. const int nb = n / qk;
  2033. assert(n % qk == 0);
  2034. assert(nb % 2 == 0);
  2035. const block_q4_0 * restrict x = vx;
  2036. const block_q8_0 * restrict y = vy;
  2037. #if defined(__ARM_NEON)
  2038. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2039. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2040. for (int i = 0; i < nb; i += 2) {
  2041. const block_q4_0 * restrict x0 = &x[i + 0];
  2042. const block_q4_0 * restrict x1 = &x[i + 1];
  2043. const block_q8_0 * restrict y0 = &y[i + 0];
  2044. const block_q8_0 * restrict y1 = &y[i + 1];
  2045. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2046. const int8x16_t s8b = vdupq_n_s8(0x8);
  2047. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2048. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2049. // 4-bit -> 8-bit
  2050. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2051. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2052. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2053. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2054. // sub 8
  2055. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2056. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2057. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2058. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2059. // load y
  2060. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2061. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2062. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2063. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2064. #if defined(__ARM_FEATURE_DOTPROD)
  2065. // dot product into int32x4_t
  2066. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2067. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2068. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2069. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2070. #else
  2071. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2072. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2073. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2074. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2075. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2076. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2077. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2078. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2079. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2080. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2081. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2082. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2083. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2084. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2085. #endif
  2086. }
  2087. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2088. #elif defined(__AVX2__)
  2089. // Initialize accumulator with zeros
  2090. __m256 acc = _mm256_setzero_ps();
  2091. // Main loop
  2092. for (int i = 0; i < nb; ++i) {
  2093. /* Compute combined scale for the block */
  2094. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2095. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2096. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2097. const __m256i off = _mm256_set1_epi8( 8 );
  2098. bx = _mm256_sub_epi8( bx, off );
  2099. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2100. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2101. /* Multiply q with scale and accumulate */
  2102. acc = _mm256_fmadd_ps( d, q, acc );
  2103. }
  2104. *s = hsum_float_8(acc);
  2105. #elif defined(__AVX__)
  2106. // Initialize accumulator with zeros
  2107. __m256 acc = _mm256_setzero_ps();
  2108. // Main loop
  2109. for (int i = 0; i < nb; ++i) {
  2110. // Compute combined scale for the block
  2111. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2112. const __m128i lowMask = _mm_set1_epi8(0xF);
  2113. const __m128i off = _mm_set1_epi8(8);
  2114. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2115. __m128i bx = _mm_and_si128(lowMask, tmp);
  2116. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2117. bx = _mm_sub_epi8(bx, off);
  2118. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2119. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2120. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2121. bx = _mm_sub_epi8(bx, off);
  2122. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2123. // Convert int32_t to float
  2124. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2125. // Apply the scale, and accumulate
  2126. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2127. }
  2128. *s = hsum_float_8(acc);
  2129. #elif defined(__SSSE3__)
  2130. // set constants
  2131. const __m128i lowMask = _mm_set1_epi8(0xF);
  2132. const __m128i off = _mm_set1_epi8(8);
  2133. // Initialize accumulator with zeros
  2134. __m128 acc_0 = _mm_setzero_ps();
  2135. __m128 acc_1 = _mm_setzero_ps();
  2136. __m128 acc_2 = _mm_setzero_ps();
  2137. __m128 acc_3 = _mm_setzero_ps();
  2138. // First round without accumulation
  2139. {
  2140. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2141. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2142. // Compute combined scale for the block 0 and 1
  2143. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2144. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2145. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2146. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2147. bx_0 = _mm_sub_epi8(bx_0, off);
  2148. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2149. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2150. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2151. bx_1 = _mm_sub_epi8(bx_1, off);
  2152. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2153. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2154. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2155. // Compute combined scale for the block 2 and 3
  2156. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2157. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2158. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2159. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2160. bx_2 = _mm_sub_epi8(bx_2, off);
  2161. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2162. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2163. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2164. bx_3 = _mm_sub_epi8(bx_3, off);
  2165. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2166. // Convert int32_t to float
  2167. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2168. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2169. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2170. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2171. // Apply the scale
  2172. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2173. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2174. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2175. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2176. }
  2177. // Main loop
  2178. for (int i = 2; i < nb; i+=2) {
  2179. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2180. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2181. // Compute combined scale for the block 0 and 1
  2182. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2183. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2184. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2185. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2186. bx_0 = _mm_sub_epi8(bx_0, off);
  2187. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2188. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2189. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2190. bx_1 = _mm_sub_epi8(bx_1, off);
  2191. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2192. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2193. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2194. // Compute combined scale for the block 2 and 3
  2195. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2196. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2197. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2198. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2199. bx_2 = _mm_sub_epi8(bx_2, off);
  2200. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2201. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2202. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2203. bx_3 = _mm_sub_epi8(bx_3, off);
  2204. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2205. // Convert int32_t to float
  2206. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2207. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2208. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2209. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2210. // Apply the scale
  2211. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2212. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2213. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2214. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2215. // Acummulate
  2216. acc_0 = _mm_add_ps(p0_d, acc_0);
  2217. acc_1 = _mm_add_ps(p1_d, acc_1);
  2218. acc_2 = _mm_add_ps(p2_d, acc_2);
  2219. acc_3 = _mm_add_ps(p3_d, acc_3);
  2220. }
  2221. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2222. #else
  2223. // scalar
  2224. float sumf = 0.0;
  2225. for (int i = 0; i < nb; i++) {
  2226. int sumi = 0;
  2227. for (int j = 0; j < qk/2; ++j) {
  2228. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2229. const int v1 = (x[i].qs[j] >> 4) - 8;
  2230. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2231. }
  2232. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2233. }
  2234. *s = sumf;
  2235. #endif
  2236. }
  2237. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2238. const int qk = QK8_1;
  2239. const int nb = n / qk;
  2240. assert(n % qk == 0);
  2241. assert(nb % 2 == 0);
  2242. const block_q4_1 * restrict x = vx;
  2243. const block_q8_1 * restrict y = vy;
  2244. // TODO: add WASM SIMD
  2245. #if defined(__ARM_NEON)
  2246. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2247. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2248. float summs = 0;
  2249. for (int i = 0; i < nb; i += 2) {
  2250. const block_q4_1 * restrict x0 = &x[i + 0];
  2251. const block_q4_1 * restrict x1 = &x[i + 1];
  2252. const block_q8_1 * restrict y0 = &y[i + 0];
  2253. const block_q8_1 * restrict y1 = &y[i + 1];
  2254. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2255. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2256. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2257. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2258. // 4-bit -> 8-bit
  2259. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2260. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2261. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2262. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2263. // load y
  2264. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2265. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2266. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2267. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2268. #if defined(__ARM_FEATURE_DOTPROD)
  2269. // dot product into int32x4_t
  2270. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2271. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2272. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2273. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2274. #else
  2275. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2276. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2277. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2278. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2279. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2280. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2281. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2282. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2283. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2284. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2285. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2286. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2287. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2288. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2289. #endif
  2290. }
  2291. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2292. #elif defined(__AVX2__) || defined(__AVX__)
  2293. // Initialize accumulator with zeros
  2294. __m256 acc = _mm256_setzero_ps();
  2295. float summs = 0;
  2296. // Main loop
  2297. for (int i = 0; i < nb; ++i) {
  2298. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2299. const float d1 = y[i].d;
  2300. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2301. const __m256 d0v = _mm256_set1_ps( d0 );
  2302. const __m256 d1v = _mm256_set1_ps( d1 );
  2303. // Compute combined scales
  2304. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2305. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2306. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2307. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2308. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2309. // Accumulate d0*d1*x*y
  2310. #if defined(__AVX2__)
  2311. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2312. #else
  2313. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2314. #endif
  2315. }
  2316. *s = hsum_float_8(acc) + summs;
  2317. #else
  2318. // scalar
  2319. float sumf = 0.0;
  2320. for (int i = 0; i < nb; i++) {
  2321. int sumi = 0;
  2322. for (int j = 0; j < qk/2; ++j) {
  2323. const int v0 = (x[i].qs[j] & 0x0F);
  2324. const int v1 = (x[i].qs[j] >> 4);
  2325. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2326. }
  2327. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2328. }
  2329. *s = sumf;
  2330. #endif
  2331. }
  2332. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2333. const int qk = QK8_0;
  2334. const int nb = n / qk;
  2335. assert(n % qk == 0);
  2336. assert(nb % 2 == 0);
  2337. assert(qk == QK5_0);
  2338. const block_q5_0 * restrict x = vx;
  2339. const block_q8_0 * restrict y = vy;
  2340. #if defined(__ARM_NEON)
  2341. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2342. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2343. uint32_t qh0;
  2344. uint32_t qh1;
  2345. uint64_t tmp0[4];
  2346. uint64_t tmp1[4];
  2347. for (int i = 0; i < nb; i += 2) {
  2348. const block_q5_0 * restrict x0 = &x[i];
  2349. const block_q5_0 * restrict x1 = &x[i + 1];
  2350. const block_q8_0 * restrict y0 = &y[i];
  2351. const block_q8_0 * restrict y1 = &y[i + 1];
  2352. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2353. // extract the 5th bit via lookup table ((!b) << 4)
  2354. memcpy(&qh0, x0->qh, sizeof(qh0));
  2355. memcpy(&qh1, x1->qh, sizeof(qh1));
  2356. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2357. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2358. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2359. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2360. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2361. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2362. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2363. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2364. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2365. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2366. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2367. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2368. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2369. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2370. // 4-bit -> 8-bit
  2371. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2372. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2373. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2374. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2375. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2376. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2377. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2378. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2379. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2380. // load y
  2381. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2382. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2383. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2384. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2385. #if defined(__ARM_FEATURE_DOTPROD)
  2386. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2387. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2388. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2389. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2390. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2391. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2392. #else
  2393. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2394. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2395. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2396. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2397. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2398. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2399. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2400. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2401. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2402. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2403. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2404. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2405. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2406. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2407. #endif
  2408. }
  2409. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2410. #elif defined(__wasm_simd128__)
  2411. v128_t sumv = wasm_f32x4_splat(0.0f);
  2412. uint32_t qh;
  2413. uint64_t tmp[4];
  2414. // TODO: check if unrolling this is better
  2415. for (int i = 0; i < nb; ++i) {
  2416. const block_q5_0 * restrict x0 = &x[i];
  2417. const block_q8_0 * restrict y0 = &y[i];
  2418. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2419. // extract the 5th bit
  2420. memcpy(&qh, x0->qh, sizeof(qh));
  2421. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2422. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2423. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2424. tmp[3] = table_b2b_1[(qh >> 24) ];
  2425. const v128_t qhl = wasm_v128_load(tmp + 0);
  2426. const v128_t qhh = wasm_v128_load(tmp + 2);
  2427. const v128_t v0 = wasm_v128_load(x0->qs);
  2428. // 4-bit -> 8-bit
  2429. const v128_t v0l = wasm_v128_and (v0, m4b);
  2430. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2431. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2432. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2433. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2434. // load y
  2435. const v128_t v1l = wasm_v128_load(y0->qs);
  2436. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2437. // int8x16 -> int16x8
  2438. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2439. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2440. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2441. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2442. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2443. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2444. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2445. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2446. // dot product
  2447. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2448. wasm_i32x4_add(
  2449. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2450. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2451. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2452. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2453. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2454. }
  2455. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2456. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2457. #elif defined(__AVX2__)
  2458. // Initialize accumulator with zeros
  2459. __m256 acc = _mm256_setzero_ps();
  2460. // Main loop
  2461. for (int i = 0; i < nb; i++) {
  2462. /* Compute combined scale for the block */
  2463. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2464. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2465. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2466. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2467. bx = _mm256_or_si256(bx, bxhi);
  2468. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2469. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2470. /* Multiply q with scale and accumulate */
  2471. acc = _mm256_fmadd_ps(d, q, acc);
  2472. }
  2473. *s = hsum_float_8(acc);
  2474. #elif defined(__AVX__)
  2475. // Initialize accumulator with zeros
  2476. __m256 acc = _mm256_setzero_ps();
  2477. __m128i mask = _mm_set1_epi8((char)0xF0);
  2478. // Main loop
  2479. for (int i = 0; i < nb; i++) {
  2480. /* Compute combined scale for the block */
  2481. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2482. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2483. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2484. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2485. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2486. bxhil = _mm_andnot_si128(bxhil, mask);
  2487. bxhih = _mm_andnot_si128(bxhih, mask);
  2488. __m128i bxl = _mm256_castsi256_si128(bx);
  2489. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2490. bxl = _mm_or_si128(bxl, bxhil);
  2491. bxh = _mm_or_si128(bxh, bxhih);
  2492. bx = MM256_SET_M128I(bxh, bxl);
  2493. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2494. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2495. /* Multiply q with scale and accumulate */
  2496. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2497. }
  2498. *s = hsum_float_8(acc);
  2499. #else
  2500. // scalar
  2501. float sumf = 0.0;
  2502. for (int i = 0; i < nb; i++) {
  2503. uint32_t qh;
  2504. memcpy(&qh, x[i].qh, sizeof(qh));
  2505. int sumi = 0;
  2506. for (int j = 0; j < qk/2; ++j) {
  2507. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2508. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2509. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2510. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2511. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2512. }
  2513. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2514. }
  2515. *s = sumf;
  2516. #endif
  2517. }
  2518. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2519. const int qk = QK8_1;
  2520. const int nb = n / qk;
  2521. assert(n % qk == 0);
  2522. assert(nb % 2 == 0);
  2523. assert(qk == QK5_1);
  2524. const block_q5_1 * restrict x = vx;
  2525. const block_q8_1 * restrict y = vy;
  2526. #if defined(__ARM_NEON)
  2527. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2528. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2529. float summs0 = 0.0f;
  2530. float summs1 = 0.0f;
  2531. uint32_t qh0;
  2532. uint32_t qh1;
  2533. uint64_t tmp0[4];
  2534. uint64_t tmp1[4];
  2535. for (int i = 0; i < nb; i += 2) {
  2536. const block_q5_1 * restrict x0 = &x[i];
  2537. const block_q5_1 * restrict x1 = &x[i + 1];
  2538. const block_q8_1 * restrict y0 = &y[i];
  2539. const block_q8_1 * restrict y1 = &y[i + 1];
  2540. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2541. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2542. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2543. // extract the 5th bit via lookup table ((b) << 4)
  2544. memcpy(&qh0, x0->qh, sizeof(qh0));
  2545. memcpy(&qh1, x1->qh, sizeof(qh1));
  2546. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2547. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2548. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2549. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2550. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2551. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2552. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2553. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2554. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2555. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2556. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2557. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2558. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2559. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2560. // 4-bit -> 8-bit
  2561. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2562. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2563. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2564. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2565. // add high bit
  2566. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2567. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2568. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2569. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2570. // load y
  2571. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2572. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2573. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2574. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2575. #if defined(__ARM_FEATURE_DOTPROD)
  2576. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2577. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2578. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2579. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2580. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2581. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2582. #else
  2583. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2584. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2585. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2586. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2587. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2588. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2589. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2590. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2591. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2592. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2593. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2594. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2595. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2596. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2597. #endif
  2598. }
  2599. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2600. #elif defined(__wasm_simd128__)
  2601. v128_t sumv = wasm_f32x4_splat(0.0f);
  2602. float summs = 0.0f;
  2603. uint32_t qh;
  2604. uint64_t tmp[4];
  2605. // TODO: check if unrolling this is better
  2606. for (int i = 0; i < nb; ++i) {
  2607. const block_q5_1 * restrict x0 = &x[i];
  2608. const block_q8_1 * restrict y0 = &y[i];
  2609. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2610. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2611. // extract the 5th bit
  2612. memcpy(&qh, x0->qh, sizeof(qh));
  2613. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2614. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2615. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2616. tmp[3] = table_b2b_0[(qh >> 24) ];
  2617. const v128_t qhl = wasm_v128_load(tmp + 0);
  2618. const v128_t qhh = wasm_v128_load(tmp + 2);
  2619. const v128_t v0 = wasm_v128_load(x0->qs);
  2620. // 4-bit -> 8-bit
  2621. const v128_t v0l = wasm_v128_and (v0, m4b);
  2622. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2623. // add high bit
  2624. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2625. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2626. // load y
  2627. const v128_t v1l = wasm_v128_load(y0->qs);
  2628. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2629. // int8x16 -> int16x8
  2630. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2631. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2632. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2633. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2634. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2635. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2636. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2637. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2638. // dot product
  2639. sumv = wasm_f32x4_add(sumv,
  2640. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2641. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2642. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2643. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2644. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2645. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2646. }
  2647. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2648. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2649. #elif defined(__AVX2__)
  2650. // Initialize accumulator with zeros
  2651. __m256 acc = _mm256_setzero_ps();
  2652. float summs = 0.0f;
  2653. // Main loop
  2654. for (int i = 0; i < nb; i++) {
  2655. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2656. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2657. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2658. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2659. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2660. bx = _mm256_or_si256(bx, bxhi);
  2661. const __m256 dy = _mm256_set1_ps(y[i].d);
  2662. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2663. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2664. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2665. }
  2666. *s = hsum_float_8(acc) + summs;
  2667. #elif defined(__AVX__)
  2668. // Initialize accumulator with zeros
  2669. __m256 acc = _mm256_setzero_ps();
  2670. __m128i mask = _mm_set1_epi8(0x10);
  2671. float summs = 0.0f;
  2672. // Main loop
  2673. for (int i = 0; i < nb; i++) {
  2674. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2675. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2676. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2677. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2678. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2679. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2680. bxhil = _mm_and_si128(bxhil, mask);
  2681. bxhih = _mm_and_si128(bxhih, mask);
  2682. __m128i bxl = _mm256_castsi256_si128(bx);
  2683. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2684. bxl = _mm_or_si128(bxl, bxhil);
  2685. bxh = _mm_or_si128(bxh, bxhih);
  2686. bx = MM256_SET_M128I(bxh, bxl);
  2687. const __m256 dy = _mm256_set1_ps(y[i].d);
  2688. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2689. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2690. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2691. }
  2692. *s = hsum_float_8(acc) + summs;
  2693. #else
  2694. // scalar
  2695. float sumf = 0.0;
  2696. for (int i = 0; i < nb; i++) {
  2697. uint32_t qh;
  2698. memcpy(&qh, x[i].qh, sizeof(qh));
  2699. int sumi = 0;
  2700. for (int j = 0; j < qk/2; ++j) {
  2701. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2702. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2703. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2704. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2705. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2706. }
  2707. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2708. }
  2709. *s = sumf;
  2710. #endif
  2711. }
  2712. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2713. const int qk = QK8_0;
  2714. const int nb = n / qk;
  2715. assert(n % qk == 0);
  2716. assert(nb % 2 == 0);
  2717. const block_q8_0 * restrict x = vx;
  2718. const block_q8_0 * restrict y = vy;
  2719. #if defined(__ARM_NEON)
  2720. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2721. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2722. for (int i = 0; i < nb; i += 2) {
  2723. const block_q8_0 * restrict x0 = &x[i + 0];
  2724. const block_q8_0 * restrict x1 = &x[i + 1];
  2725. const block_q8_0 * restrict y0 = &y[i + 0];
  2726. const block_q8_0 * restrict y1 = &y[i + 1];
  2727. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2728. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2729. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2730. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2731. // load y
  2732. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2733. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2734. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2735. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2736. #if defined(__ARM_FEATURE_DOTPROD)
  2737. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2738. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2739. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2740. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2741. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2742. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2743. #else
  2744. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2745. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2746. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2747. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2748. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2749. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2750. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2751. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2752. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2753. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2754. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2755. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2756. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2757. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2758. #endif
  2759. }
  2760. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2761. #elif defined(__AVX2__) || defined(__AVX__)
  2762. // Initialize accumulator with zeros
  2763. __m256 acc = _mm256_setzero_ps();
  2764. // Main loop
  2765. for (int i = 0; i < nb; ++i) {
  2766. // Compute combined scale for the block
  2767. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2768. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2769. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2770. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2771. // Multiply q with scale and accumulate
  2772. #if defined(__AVX2__)
  2773. acc = _mm256_fmadd_ps( d, q, acc );
  2774. #else
  2775. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2776. #endif
  2777. }
  2778. *s = hsum_float_8(acc);
  2779. #else
  2780. // scalar
  2781. float sumf = 0.0;
  2782. for (int i = 0; i < nb; i++) {
  2783. int sumi = 0;
  2784. for (int j = 0; j < qk; j++) {
  2785. sumi += x[i].qs[j]*y[i].qs[j];
  2786. }
  2787. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2788. }
  2789. *s = sumf;
  2790. #endif
  2791. }
  2792. // compute GGML_VEC_DOT_UNROLL dot products at once
  2793. // xs - x row stride in bytes
  2794. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2795. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2796. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2797. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2798. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2799. }
  2800. #if defined(GGML_SIMD)
  2801. const int np = (n & ~(GGML_F16_STEP - 1));
  2802. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2803. GGML_F16_VEC ax[GGML_F16_ARR];
  2804. GGML_F16_VEC ay[GGML_F16_ARR];
  2805. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2806. for (int j = 0; j < GGML_F16_ARR; j++) {
  2807. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2808. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2809. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2810. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2811. }
  2812. }
  2813. }
  2814. // reduce sum0..sum3 to sum0
  2815. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2816. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2817. }
  2818. // leftovers
  2819. for (int i = np; i < n; ++i) {
  2820. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2821. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2822. }
  2823. }
  2824. #else
  2825. for (int i = 0; i < n; ++i) {
  2826. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2827. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2828. }
  2829. }
  2830. #endif
  2831. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2832. s[i] = sumf[i];
  2833. }
  2834. }
  2835. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2836. #if defined(GGML_SIMD)
  2837. const int np = (n & ~(GGML_F32_STEP - 1));
  2838. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2839. GGML_F32_VEC ax[GGML_F32_ARR];
  2840. GGML_F32_VEC ay[GGML_F32_ARR];
  2841. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2842. for (int j = 0; j < GGML_F32_ARR; j++) {
  2843. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2844. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2845. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2846. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2847. }
  2848. }
  2849. // leftovers
  2850. for (int i = np; i < n; ++i) {
  2851. y[i] += x[i]*v;
  2852. }
  2853. #else
  2854. // scalar
  2855. for (int i = 0; i < n; ++i) {
  2856. y[i] += x[i]*v;
  2857. }
  2858. #endif
  2859. }
  2860. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2861. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2862. #if defined(GGML_USE_ACCELERATE)
  2863. vDSP_vsmul(y, 1, &v, y, 1, n);
  2864. #elif defined(GGML_SIMD)
  2865. const int np = (n & ~(GGML_F32_STEP - 1));
  2866. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2867. GGML_F32_VEC ay[GGML_F32_ARR];
  2868. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2869. for (int j = 0; j < GGML_F32_ARR; j++) {
  2870. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2871. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2872. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2873. }
  2874. }
  2875. // leftovers
  2876. for (int i = np; i < n; ++i) {
  2877. y[i] *= v;
  2878. }
  2879. #else
  2880. // scalar
  2881. for (int i = 0; i < n; ++i) {
  2882. y[i] *= v;
  2883. }
  2884. #endif
  2885. }
  2886. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2887. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2888. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2889. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2890. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2891. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2892. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2893. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2894. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2895. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2896. static const float GELU_COEF_A = 0.044715f;
  2897. static const float GELU_QUICK_COEF = -1.702f;
  2898. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2899. inline static float ggml_gelu_f32(float x) {
  2900. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2901. }
  2902. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2903. const uint16_t * i16 = (const uint16_t *) x;
  2904. for (int i = 0; i < n; ++i) {
  2905. y[i] = table_gelu_f16[i16[i]];
  2906. }
  2907. }
  2908. #ifdef GGML_GELU_FP16
  2909. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2910. uint16_t t;
  2911. for (int i = 0; i < n; ++i) {
  2912. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2913. memcpy(&t, &fp16, sizeof(uint16_t));
  2914. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2915. }
  2916. }
  2917. #else
  2918. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2919. for (int i = 0; i < n; ++i) {
  2920. y[i] = ggml_gelu_f32(x[i]);
  2921. }
  2922. }
  2923. #endif
  2924. inline static float ggml_gelu_quick_f32(float x) {
  2925. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2926. }
  2927. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2928. // const uint16_t * i16 = (const uint16_t *) x;
  2929. // for (int i = 0; i < n; ++i) {
  2930. // y[i] = table_gelu_quick_f16[i16[i]];
  2931. // }
  2932. //}
  2933. #ifdef GGML_GELU_QUICK_FP16
  2934. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2935. uint16_t t;
  2936. for (int i = 0; i < n; ++i) {
  2937. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2938. memcpy(&t, &fp16, sizeof(uint16_t));
  2939. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2940. }
  2941. }
  2942. #else
  2943. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2944. for (int i = 0; i < n; ++i) {
  2945. y[i] = ggml_gelu_quick_f32(x[i]);
  2946. }
  2947. }
  2948. #endif
  2949. // Sigmoid Linear Unit (SiLU) function
  2950. inline static float ggml_silu_f32(float x) {
  2951. return x/(1.0f + expf(-x));
  2952. }
  2953. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2954. // const uint16_t * i16 = (const uint16_t *) x;
  2955. // for (int i = 0; i < n; ++i) {
  2956. // y[i] = table_silu_f16[i16[i]];
  2957. // }
  2958. //}
  2959. #ifdef GGML_SILU_FP16
  2960. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2961. uint16_t t;
  2962. for (int i = 0; i < n; ++i) {
  2963. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2964. memcpy(&t, &fp16, sizeof(uint16_t));
  2965. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2966. }
  2967. }
  2968. #else
  2969. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2970. for (int i = 0; i < n; ++i) {
  2971. y[i] = ggml_silu_f32(x[i]);
  2972. }
  2973. }
  2974. #endif
  2975. inline static float ggml_silu_backward_f32(float x, float dy) {
  2976. const float s = 1.0f/(1.0f + expf(-x));
  2977. return dy*s*(1.0f + x*(1.0f - s));
  2978. }
  2979. #ifdef GGML_SILU_FP16
  2980. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2981. for (int i = 0; i < n; ++i) {
  2982. // we did not use x[i] to compute forward silu but its f16 equivalent
  2983. // take derivative at f16 of x[i]:
  2984. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2985. float usedx = GGML_FP16_TO_FP32(fp16);
  2986. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2987. }
  2988. }
  2989. #else
  2990. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2991. for (int i = 0; i < n; ++i) {
  2992. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2993. }
  2994. }
  2995. #endif
  2996. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2997. #ifndef GGML_USE_ACCELERATE
  2998. ggml_float sum = 0.0;
  2999. for (int i = 0; i < n; ++i) {
  3000. sum += (ggml_float)x[i];
  3001. }
  3002. *s = sum;
  3003. #else
  3004. vDSP_sve(x, 1, s, n);
  3005. #endif
  3006. }
  3007. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3008. ggml_float sum = 0.0;
  3009. for (int i = 0; i < n; ++i) {
  3010. sum += (ggml_float)x[i];
  3011. }
  3012. *s = sum;
  3013. }
  3014. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3015. float sum = 0.0f;
  3016. for (int i = 0; i < n; ++i) {
  3017. sum += GGML_FP16_TO_FP32(x[i]);
  3018. }
  3019. *s = sum;
  3020. }
  3021. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3022. #ifndef GGML_USE_ACCELERATE
  3023. float max = -INFINITY;
  3024. for (int i = 0; i < n; ++i) {
  3025. max = MAX(max, x[i]);
  3026. }
  3027. *s = max;
  3028. #else
  3029. vDSP_maxv(x, 1, s, n);
  3030. #endif
  3031. }
  3032. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3033. ggml_vec_norm_f32(n, s, x);
  3034. *s = 1.f/(*s);
  3035. }
  3036. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3037. float max = -INFINITY;
  3038. int idx = 0;
  3039. for (int i = 0; i < n; ++i) {
  3040. max = MAX(max, x[i]);
  3041. if (max == x[i]) { idx = i; }
  3042. }
  3043. *s = idx;
  3044. }
  3045. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3046. "NONE",
  3047. "DUP",
  3048. "ADD",
  3049. "ADD1",
  3050. "ACC",
  3051. "SUB",
  3052. "MUL",
  3053. "DIV",
  3054. "SQR",
  3055. "SQRT",
  3056. "LOG",
  3057. "SUM",
  3058. "SUM_ROWS",
  3059. "MEAN",
  3060. "ARGMAX",
  3061. "REPEAT",
  3062. "REPEAT_BACK",
  3063. "SILU_BACK",
  3064. "NORM",
  3065. "RMS_NORM",
  3066. "RMS_NORM_BACK",
  3067. "MUL_MAT",
  3068. "OUT_PROD",
  3069. "SCALE",
  3070. "SET",
  3071. "CPY",
  3072. "CONT",
  3073. "RESHAPE",
  3074. "VIEW",
  3075. "PERMUTE",
  3076. "TRANSPOSE",
  3077. "GET_ROWS",
  3078. "GET_ROWS_BACK",
  3079. "DIAG",
  3080. "DIAG_MASK_INF",
  3081. "DIAG_MASK_ZERO",
  3082. "SOFT_MAX",
  3083. "SOFT_MAX_BACK",
  3084. "ROPE",
  3085. "ROPE_BACK",
  3086. "ALIBI",
  3087. "CLAMP",
  3088. "CONV_1D",
  3089. "CONV_2D",
  3090. "POOL_1D",
  3091. "POOL_2D",
  3092. "FLASH_ATTN",
  3093. "FLASH_FF",
  3094. "FLASH_ATTN_BACK",
  3095. "WIN_PART",
  3096. "WIN_UNPART",
  3097. "UNARY",
  3098. "MAP_UNARY",
  3099. "MAP_BINARY",
  3100. "MAP_CUSTOM1",
  3101. "MAP_CUSTOM2",
  3102. "MAP_CUSTOM3",
  3103. "CROSS_ENTROPY_LOSS",
  3104. "CROSS_ENTROPY_LOSS_BACK",
  3105. };
  3106. static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
  3107. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3108. "none",
  3109. "x",
  3110. "x+y",
  3111. "x+y",
  3112. "view(x,nb,offset)+=y->x",
  3113. "x-y",
  3114. "x*y",
  3115. "x/y",
  3116. "x^2",
  3117. "√x",
  3118. "log(x)",
  3119. "Σx",
  3120. "Σx_k",
  3121. "Σx/n",
  3122. "argmax(x)",
  3123. "repeat(x)",
  3124. "repeat_back(x)",
  3125. "silu_back(x)",
  3126. "norm(x)",
  3127. "rms_norm(x)",
  3128. "rms_norm_back(x)",
  3129. "X*Y",
  3130. "X*Y",
  3131. "x*v",
  3132. "y-\\>view(x)",
  3133. "x-\\>y",
  3134. "cont(x)",
  3135. "reshape(x)",
  3136. "view(x)",
  3137. "permute(x)",
  3138. "transpose(x)",
  3139. "get_rows(x)",
  3140. "get_rows_back(x)",
  3141. "diag(x)",
  3142. "diag_mask_inf(x)",
  3143. "diag_mask_zero(x)",
  3144. "soft_max(x)",
  3145. "soft_max_back(x)",
  3146. "rope(x)",
  3147. "rope_back(x)",
  3148. "alibi(x)",
  3149. "clamp(x)",
  3150. "conv_1d(x)",
  3151. "conv_2d(x)",
  3152. "pool_1d(x)",
  3153. "pool_2d(x)",
  3154. "flash_attn(x)",
  3155. "flash_ff(x)",
  3156. "flash_attn_back(x)",
  3157. "win_part(x)",
  3158. "win_unpart(x)",
  3159. "unary(x)",
  3160. "f(x)",
  3161. "f(x,y)",
  3162. "custom(x)",
  3163. "custom(x,y)",
  3164. "custom(x,y,z)",
  3165. "cross_entropy_loss(x,y)",
  3166. "cross_entropy_loss_back(x,y)",
  3167. };
  3168. static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
  3169. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3170. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3171. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3172. // WARN:
  3173. // Mis-confguration can lead to problem that's hard to reason about:
  3174. // * At best it crash or talks nosense.
  3175. // * At worst it talks slightly difference but hard to perceive.
  3176. //
  3177. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3178. // Take care about compile options (e.g., GGML_USE_xxx).
  3179. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3180. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3181. static void ggml_setup_op_has_task_pass(void) {
  3182. { // INIT
  3183. bool * p = GGML_OP_HAS_INIT;
  3184. p[GGML_OP_ACC ] = true;
  3185. p[GGML_OP_MUL_MAT ] = true;
  3186. p[GGML_OP_OUT_PROD ] = true;
  3187. p[GGML_OP_SET ] = true;
  3188. p[GGML_OP_GET_ROWS_BACK ] = true;
  3189. p[GGML_OP_DIAG_MASK_INF ] = true;
  3190. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3191. p[GGML_OP_CONV_1D ] = true;
  3192. p[GGML_OP_CONV_2D ] = true;
  3193. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3194. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3195. }
  3196. { // FINALIZE
  3197. bool * p = GGML_OP_HAS_FINALIZE;
  3198. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3199. }
  3200. }
  3201. //
  3202. // ggml context
  3203. //
  3204. struct ggml_context {
  3205. size_t mem_size;
  3206. void * mem_buffer;
  3207. bool mem_buffer_owned;
  3208. bool no_alloc;
  3209. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3210. int n_objects;
  3211. struct ggml_object * objects_begin;
  3212. struct ggml_object * objects_end;
  3213. struct ggml_scratch scratch;
  3214. struct ggml_scratch scratch_save;
  3215. };
  3216. struct ggml_context_container {
  3217. bool used;
  3218. struct ggml_context context;
  3219. };
  3220. //
  3221. // NUMA support
  3222. //
  3223. #define GGML_NUMA_MAX_NODES 8
  3224. #define GGML_NUMA_MAX_CPUS 512
  3225. struct ggml_numa_node {
  3226. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3227. uint32_t n_cpus;
  3228. };
  3229. struct ggml_numa_nodes {
  3230. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3231. uint32_t n_nodes;
  3232. uint32_t total_cpus; // hardware threads on system
  3233. };
  3234. //
  3235. // ggml state
  3236. //
  3237. struct ggml_state {
  3238. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3239. struct ggml_numa_nodes numa;
  3240. };
  3241. // global state
  3242. static struct ggml_state g_state;
  3243. static atomic_int g_state_barrier = 0;
  3244. // barrier via spin lock
  3245. inline static void ggml_critical_section_start(void) {
  3246. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3247. while (processing > 0) {
  3248. // wait for other threads to finish
  3249. atomic_fetch_sub(&g_state_barrier, 1);
  3250. sched_yield(); // TODO: reconsider this
  3251. processing = atomic_fetch_add(&g_state_barrier, 1);
  3252. }
  3253. }
  3254. // TODO: make this somehow automatically executed
  3255. // some sort of "sentry" mechanism
  3256. inline static void ggml_critical_section_end(void) {
  3257. atomic_fetch_sub(&g_state_barrier, 1);
  3258. }
  3259. void ggml_numa_init(void) {
  3260. if (g_state.numa.n_nodes > 0) {
  3261. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3262. return;
  3263. }
  3264. #ifdef __linux__
  3265. struct stat st;
  3266. char path[256];
  3267. int rv;
  3268. // enumerate nodes
  3269. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3270. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3271. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3272. if (stat(path, &st) != 0) { break; }
  3273. ++g_state.numa.n_nodes;
  3274. }
  3275. // enumerate CPUs
  3276. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3277. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3278. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3279. if (stat(path, &st) != 0) { break; }
  3280. ++g_state.numa.total_cpus;
  3281. }
  3282. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3283. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3284. g_state.numa.n_nodes = 0;
  3285. return;
  3286. }
  3287. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3288. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3289. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3290. node->n_cpus = 0;
  3291. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3292. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3293. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3294. if (stat(path, &st) == 0) {
  3295. node->cpus[node->n_cpus++] = c;
  3296. GGML_PRINT_DEBUG(" %u", c);
  3297. }
  3298. }
  3299. GGML_PRINT_DEBUG("\n");
  3300. }
  3301. if (ggml_is_numa()) {
  3302. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3303. if (fptr != NULL) {
  3304. char buf[42];
  3305. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3306. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3307. }
  3308. fclose(fptr);
  3309. }
  3310. }
  3311. #else
  3312. // TODO
  3313. #endif
  3314. }
  3315. bool ggml_is_numa(void) {
  3316. return g_state.numa.n_nodes > 1;
  3317. }
  3318. ////////////////////////////////////////////////////////////////////////////////
  3319. void ggml_print_object(const struct ggml_object * obj) {
  3320. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3321. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3322. }
  3323. void ggml_print_objects(const struct ggml_context * ctx) {
  3324. struct ggml_object * obj = ctx->objects_begin;
  3325. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3326. while (obj != NULL) {
  3327. ggml_print_object(obj);
  3328. obj = obj->next;
  3329. }
  3330. GGML_PRINT("%s: --- end ---\n", __func__);
  3331. }
  3332. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3333. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3334. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3335. }
  3336. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3337. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3338. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3339. }
  3340. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3341. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3342. // this should handle cases where the tensor is not contiguous in memory
  3343. // probaby just:
  3344. //
  3345. // return tensor->ne[3]*tensor->nb[3]
  3346. //
  3347. // is enough, but just in case, adding the second part
  3348. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type));
  3349. }
  3350. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3351. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3352. }
  3353. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3354. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3355. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3356. }
  3357. int ggml_blck_size(enum ggml_type type) {
  3358. return type_traits[type].blck_size;
  3359. }
  3360. size_t ggml_type_size(enum ggml_type type) {
  3361. return type_traits[type].type_size;
  3362. }
  3363. float ggml_type_sizef(enum ggml_type type) {
  3364. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3365. }
  3366. const char * ggml_type_name(enum ggml_type type) {
  3367. return type_traits[type].type_name;
  3368. }
  3369. bool ggml_is_quantized(enum ggml_type type) {
  3370. return type_traits[type].is_quantized;
  3371. }
  3372. const char * ggml_op_name(enum ggml_op op) {
  3373. return GGML_OP_NAME[op];
  3374. }
  3375. const char * ggml_op_symbol(enum ggml_op op) {
  3376. return GGML_OP_SYMBOL[op];
  3377. }
  3378. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3379. return ggml_type_size(tensor->type);
  3380. }
  3381. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3382. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3383. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3384. }
  3385. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3386. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3387. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3388. }
  3389. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3390. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3391. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3392. }
  3393. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3394. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3395. return (t0->ne[0] == t1->ne[0]) &&
  3396. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3397. (t1->ne[3]%t0->ne[3] == 0);
  3398. }
  3399. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3400. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3401. return
  3402. (t0->ne[1] == t1->ne[1]) &&
  3403. (t0->ne[2] == t1->ne[2]) &&
  3404. (t0->ne[3] == t1->ne[3]);
  3405. }
  3406. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3407. enum ggml_type wtype = GGML_TYPE_COUNT;
  3408. switch (ftype) {
  3409. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3410. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3411. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3412. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3413. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3414. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3415. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3416. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3417. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3418. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3419. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3420. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3421. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3422. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3423. }
  3424. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3425. return wtype;
  3426. }
  3427. size_t ggml_tensor_overhead(void) {
  3428. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3429. }
  3430. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3431. return tensor->nb[0] > tensor->nb[1];
  3432. }
  3433. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3434. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3435. return
  3436. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3437. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3438. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3439. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3440. }
  3441. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3442. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3443. return
  3444. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3445. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3446. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3447. }
  3448. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3449. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3450. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3451. }
  3452. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3453. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3454. return
  3455. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3456. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3457. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3458. }
  3459. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3460. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3461. return
  3462. (t0->ne[0] == t1->ne[0] ) &&
  3463. (t0->ne[1] == t1->ne[1] ) &&
  3464. (t0->ne[2] == t1->ne[2] ) &&
  3465. (t0->ne[3] == t1->ne[3] );
  3466. }
  3467. // check if t1 can be represented as a repeatition of t0
  3468. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3469. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3470. return
  3471. (t1->ne[0]%t0->ne[0] == 0) &&
  3472. (t1->ne[1]%t0->ne[1] == 0) &&
  3473. (t1->ne[2]%t0->ne[2] == 0) &&
  3474. (t1->ne[3]%t0->ne[3] == 0);
  3475. }
  3476. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3477. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3478. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3479. }
  3480. static inline int ggml_up32(int n) {
  3481. return (n + 31) & ~31;
  3482. }
  3483. //static inline int ggml_up64(int n) {
  3484. // return (n + 63) & ~63;
  3485. //}
  3486. static inline int ggml_up(int n, int m) {
  3487. // assert m is a power of 2
  3488. GGML_ASSERT((m & (m - 1)) == 0);
  3489. return (n + m - 1) & ~(m - 1);
  3490. }
  3491. // assert that pointer is aligned to GGML_MEM_ALIGN
  3492. #define ggml_assert_aligned(ptr) \
  3493. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3494. ////////////////////////////////////////////////////////////////////////////////
  3495. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3496. // make this function thread safe
  3497. ggml_critical_section_start();
  3498. static bool is_first_call = true;
  3499. if (is_first_call) {
  3500. // initialize time system (required on Windows)
  3501. ggml_time_init();
  3502. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3503. {
  3504. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3505. ggml_fp16_t ii;
  3506. for (int i = 0; i < (1 << 16); ++i) {
  3507. uint16_t ui = i;
  3508. memcpy(&ii, &ui, sizeof(ii));
  3509. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3510. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3511. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3512. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3513. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3514. }
  3515. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3516. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3517. }
  3518. // initialize g_state
  3519. {
  3520. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3521. g_state = (struct ggml_state) {
  3522. /*.contexts =*/ { { 0 } },
  3523. /*.numa =*/ {
  3524. .n_nodes = 0,
  3525. .total_cpus = 0,
  3526. },
  3527. };
  3528. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3529. g_state.contexts[i].used = false;
  3530. }
  3531. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3532. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3533. }
  3534. #if defined(GGML_USE_CUBLAS)
  3535. ggml_init_cublas();
  3536. #elif defined(GGML_USE_CLBLAST)
  3537. ggml_cl_init();
  3538. #endif
  3539. ggml_setup_op_has_task_pass();
  3540. is_first_call = false;
  3541. }
  3542. // find non-used context in g_state
  3543. struct ggml_context * ctx = NULL;
  3544. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3545. if (!g_state.contexts[i].used) {
  3546. g_state.contexts[i].used = true;
  3547. ctx = &g_state.contexts[i].context;
  3548. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3549. break;
  3550. }
  3551. }
  3552. if (ctx == NULL) {
  3553. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3554. ggml_critical_section_end();
  3555. return NULL;
  3556. }
  3557. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3558. *ctx = (struct ggml_context) {
  3559. /*.mem_size =*/ mem_size,
  3560. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3561. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3562. /*.no_alloc =*/ params.no_alloc,
  3563. /*.no_alloc_save =*/ params.no_alloc,
  3564. /*.n_objects =*/ 0,
  3565. /*.objects_begin =*/ NULL,
  3566. /*.objects_end =*/ NULL,
  3567. /*.scratch =*/ { 0, 0, NULL, },
  3568. /*.scratch_save =*/ { 0, 0, NULL, },
  3569. };
  3570. GGML_ASSERT(ctx->mem_buffer != NULL);
  3571. ggml_assert_aligned(ctx->mem_buffer);
  3572. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3573. ggml_critical_section_end();
  3574. return ctx;
  3575. }
  3576. void ggml_free(struct ggml_context * ctx) {
  3577. // make this function thread safe
  3578. ggml_critical_section_start();
  3579. bool found = false;
  3580. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3581. if (&g_state.contexts[i].context == ctx) {
  3582. g_state.contexts[i].used = false;
  3583. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3584. __func__, i, ggml_used_mem(ctx));
  3585. if (ctx->mem_buffer_owned) {
  3586. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3587. }
  3588. found = true;
  3589. break;
  3590. }
  3591. }
  3592. if (!found) {
  3593. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3594. }
  3595. ggml_critical_section_end();
  3596. }
  3597. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3598. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3599. }
  3600. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3601. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3602. ctx->scratch = scratch;
  3603. return result;
  3604. }
  3605. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3606. return ctx->no_alloc;
  3607. }
  3608. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3609. ctx->no_alloc = no_alloc;
  3610. }
  3611. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3612. return ctx->mem_buffer;
  3613. }
  3614. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3615. return ctx->mem_size;
  3616. }
  3617. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3618. size_t max_size = 0;
  3619. struct ggml_object * obj = ctx->objects_begin;
  3620. while (obj != NULL) {
  3621. if (obj->type == GGML_OBJECT_TENSOR) {
  3622. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3623. const size_t size = ggml_nbytes(tensor);
  3624. if (max_size < size) {
  3625. max_size = size;
  3626. }
  3627. }
  3628. obj = obj->next;
  3629. }
  3630. return max_size;
  3631. }
  3632. // IMPORTANT:
  3633. // when creating "opt" tensors, always save and load the scratch buffer
  3634. // this is an error prone process, but it is necessary to support inplace
  3635. // operators when using scratch buffers
  3636. // TODO: implement a better way
  3637. static void ggml_scratch_save(struct ggml_context * ctx) {
  3638. // this is needed to allow opt tensors to store their data
  3639. // TODO: again, need to find a better way
  3640. ctx->no_alloc_save = ctx->no_alloc;
  3641. ctx->no_alloc = false;
  3642. ctx->scratch_save = ctx->scratch;
  3643. ctx->scratch.data = NULL;
  3644. }
  3645. static void ggml_scratch_load(struct ggml_context * ctx) {
  3646. ctx->no_alloc = ctx->no_alloc_save;
  3647. ctx->scratch = ctx->scratch_save;
  3648. }
  3649. ////////////////////////////////////////////////////////////////////////////////
  3650. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3651. // always insert objects at the end of the context's memory pool
  3652. struct ggml_object * obj_cur = ctx->objects_end;
  3653. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3654. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3655. const size_t cur_end = cur_offs + cur_size;
  3656. // align to GGML_MEM_ALIGN
  3657. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3658. char * const mem_buffer = ctx->mem_buffer;
  3659. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3660. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3661. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3662. __func__, cur_end + size_needed, ctx->mem_size);
  3663. assert(false);
  3664. return NULL;
  3665. }
  3666. *obj_new = (struct ggml_object) {
  3667. .offs = cur_end + GGML_OBJECT_SIZE,
  3668. .size = size_needed,
  3669. .next = NULL,
  3670. .type = type,
  3671. };
  3672. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3673. if (obj_cur != NULL) {
  3674. obj_cur->next = obj_new;
  3675. } else {
  3676. // this is the first object in this context
  3677. ctx->objects_begin = obj_new;
  3678. }
  3679. ctx->objects_end = obj_new;
  3680. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3681. return obj_new;
  3682. }
  3683. static struct ggml_tensor * ggml_new_tensor_impl(
  3684. struct ggml_context * ctx,
  3685. enum ggml_type type,
  3686. int n_dims,
  3687. const int64_t * ne,
  3688. void * data) {
  3689. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3690. size_t data_size = 0;
  3691. if (data == NULL && !ctx->no_alloc) {
  3692. data_size += ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3693. for (int i = 1; i < n_dims; i++) {
  3694. data_size *= ne[i];
  3695. }
  3696. }
  3697. if (ctx->scratch.data != NULL && data == NULL) {
  3698. // allocate tensor data in the scratch buffer
  3699. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3700. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3701. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3702. assert(false);
  3703. return NULL;
  3704. }
  3705. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3706. ctx->scratch.offs += data_size;
  3707. data_size = 0;
  3708. }
  3709. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
  3710. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3711. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3712. *result = (struct ggml_tensor) {
  3713. /*.type =*/ type,
  3714. /*.backend =*/ GGML_BACKEND_CPU,
  3715. /*.n_dims =*/ n_dims,
  3716. /*.ne =*/ { 1, 1, 1, 1 },
  3717. /*.nb =*/ { 0, 0, 0, 0 },
  3718. /*.op =*/ GGML_OP_NONE,
  3719. /*.op_params =*/ { 0 },
  3720. /*.is_param =*/ false,
  3721. /*.grad =*/ NULL,
  3722. /*.src =*/ { NULL },
  3723. /*.perf_runs =*/ 0,
  3724. /*.perf_cycles =*/ 0,
  3725. /*.perf_time_us =*/ 0,
  3726. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3727. /*.name =*/ { 0 },
  3728. /*.extra =*/ NULL,
  3729. /*.padding =*/ { 0 },
  3730. };
  3731. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3732. //ggml_assert_aligned(result->data);
  3733. for (int i = 0; i < n_dims; i++) {
  3734. result->ne[i] = ne[i];
  3735. }
  3736. result->nb[0] = ggml_type_size(type);
  3737. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3738. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3739. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3740. }
  3741. ctx->n_objects++;
  3742. return result;
  3743. }
  3744. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3745. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3746. assert(params_size <= GGML_MAX_OP_PARAMS);
  3747. memcpy(tensor->op_params, params, params_size);
  3748. }
  3749. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3750. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3751. return ((const int32_t *)(tensor->op_params))[i];
  3752. }
  3753. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3754. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3755. ((int32_t *)(tensor->op_params))[i] = value;
  3756. }
  3757. struct ggml_tensor * ggml_new_tensor(
  3758. struct ggml_context * ctx,
  3759. enum ggml_type type,
  3760. int n_dims,
  3761. const int64_t * ne) {
  3762. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3763. }
  3764. struct ggml_tensor * ggml_new_tensor_1d(
  3765. struct ggml_context * ctx,
  3766. enum ggml_type type,
  3767. int64_t ne0) {
  3768. return ggml_new_tensor(ctx, type, 1, &ne0);
  3769. }
  3770. struct ggml_tensor * ggml_new_tensor_2d(
  3771. struct ggml_context * ctx,
  3772. enum ggml_type type,
  3773. int64_t ne0,
  3774. int64_t ne1) {
  3775. const int64_t ne[2] = { ne0, ne1 };
  3776. return ggml_new_tensor(ctx, type, 2, ne);
  3777. }
  3778. struct ggml_tensor * ggml_new_tensor_3d(
  3779. struct ggml_context * ctx,
  3780. enum ggml_type type,
  3781. int64_t ne0,
  3782. int64_t ne1,
  3783. int64_t ne2) {
  3784. const int64_t ne[3] = { ne0, ne1, ne2 };
  3785. return ggml_new_tensor(ctx, type, 3, ne);
  3786. }
  3787. struct ggml_tensor * ggml_new_tensor_4d(
  3788. struct ggml_context * ctx,
  3789. enum ggml_type type,
  3790. int64_t ne0,
  3791. int64_t ne1,
  3792. int64_t ne2,
  3793. int64_t ne3) {
  3794. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3795. return ggml_new_tensor(ctx, type, 4, ne);
  3796. }
  3797. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3798. ggml_scratch_save(ctx);
  3799. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3800. ggml_scratch_load(ctx);
  3801. ggml_set_i32(result, value);
  3802. return result;
  3803. }
  3804. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3805. ggml_scratch_save(ctx);
  3806. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3807. ggml_scratch_load(ctx);
  3808. ggml_set_f32(result, value);
  3809. return result;
  3810. }
  3811. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3812. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3813. }
  3814. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3815. memset(tensor->data, 0, ggml_nbytes(tensor));
  3816. return tensor;
  3817. }
  3818. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3819. const int n = ggml_nrows(tensor);
  3820. const int nc = tensor->ne[0];
  3821. const size_t n1 = tensor->nb[1];
  3822. char * const data = tensor->data;
  3823. switch (tensor->type) {
  3824. case GGML_TYPE_I8:
  3825. {
  3826. assert(tensor->nb[0] == sizeof(int8_t));
  3827. for (int i = 0; i < n; i++) {
  3828. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3829. }
  3830. } break;
  3831. case GGML_TYPE_I16:
  3832. {
  3833. assert(tensor->nb[0] == sizeof(int16_t));
  3834. for (int i = 0; i < n; i++) {
  3835. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3836. }
  3837. } break;
  3838. case GGML_TYPE_I32:
  3839. {
  3840. assert(tensor->nb[0] == sizeof(int32_t));
  3841. for (int i = 0; i < n; i++) {
  3842. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3843. }
  3844. } break;
  3845. case GGML_TYPE_F16:
  3846. {
  3847. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3848. for (int i = 0; i < n; i++) {
  3849. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3850. }
  3851. } break;
  3852. case GGML_TYPE_F32:
  3853. {
  3854. assert(tensor->nb[0] == sizeof(float));
  3855. for (int i = 0; i < n; i++) {
  3856. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3857. }
  3858. } break;
  3859. default:
  3860. {
  3861. GGML_ASSERT(false);
  3862. } break;
  3863. }
  3864. return tensor;
  3865. }
  3866. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3867. const int n = ggml_nrows(tensor);
  3868. const int nc = tensor->ne[0];
  3869. const size_t n1 = tensor->nb[1];
  3870. char * const data = tensor->data;
  3871. switch (tensor->type) {
  3872. case GGML_TYPE_I8:
  3873. {
  3874. assert(tensor->nb[0] == sizeof(int8_t));
  3875. for (int i = 0; i < n; i++) {
  3876. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3877. }
  3878. } break;
  3879. case GGML_TYPE_I16:
  3880. {
  3881. assert(tensor->nb[0] == sizeof(int16_t));
  3882. for (int i = 0; i < n; i++) {
  3883. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3884. }
  3885. } break;
  3886. case GGML_TYPE_I32:
  3887. {
  3888. assert(tensor->nb[0] == sizeof(int32_t));
  3889. for (int i = 0; i < n; i++) {
  3890. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3891. }
  3892. } break;
  3893. case GGML_TYPE_F16:
  3894. {
  3895. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3896. for (int i = 0; i < n; i++) {
  3897. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3898. }
  3899. } break;
  3900. case GGML_TYPE_F32:
  3901. {
  3902. assert(tensor->nb[0] == sizeof(float));
  3903. for (int i = 0; i < n; i++) {
  3904. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3905. }
  3906. } break;
  3907. default:
  3908. {
  3909. GGML_ASSERT(false);
  3910. } break;
  3911. }
  3912. return tensor;
  3913. }
  3914. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3915. switch (tensor->type) {
  3916. case GGML_TYPE_I8:
  3917. {
  3918. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3919. return ((int8_t *)(tensor->data))[i];
  3920. } break;
  3921. case GGML_TYPE_I16:
  3922. {
  3923. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3924. return ((int16_t *)(tensor->data))[i];
  3925. } break;
  3926. case GGML_TYPE_I32:
  3927. {
  3928. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3929. return ((int32_t *)(tensor->data))[i];
  3930. } break;
  3931. case GGML_TYPE_F16:
  3932. {
  3933. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3934. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3935. } break;
  3936. case GGML_TYPE_F32:
  3937. {
  3938. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3939. return ((float *)(tensor->data))[i];
  3940. } break;
  3941. default:
  3942. {
  3943. GGML_ASSERT(false);
  3944. } break;
  3945. }
  3946. return 0.0f;
  3947. }
  3948. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3949. switch (tensor->type) {
  3950. case GGML_TYPE_I8:
  3951. {
  3952. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3953. ((int8_t *)(tensor->data))[i] = value;
  3954. } break;
  3955. case GGML_TYPE_I16:
  3956. {
  3957. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3958. ((int16_t *)(tensor->data))[i] = value;
  3959. } break;
  3960. case GGML_TYPE_I32:
  3961. {
  3962. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3963. ((int32_t *)(tensor->data))[i] = value;
  3964. } break;
  3965. case GGML_TYPE_F16:
  3966. {
  3967. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3968. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3969. } break;
  3970. case GGML_TYPE_F32:
  3971. {
  3972. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3973. ((float *)(tensor->data))[i] = value;
  3974. } break;
  3975. default:
  3976. {
  3977. GGML_ASSERT(false);
  3978. } break;
  3979. }
  3980. }
  3981. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3982. switch (tensor->type) {
  3983. case GGML_TYPE_I8:
  3984. {
  3985. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3986. return ((int8_t *)(tensor->data))[i];
  3987. } break;
  3988. case GGML_TYPE_I16:
  3989. {
  3990. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3991. return ((int16_t *)(tensor->data))[i];
  3992. } break;
  3993. case GGML_TYPE_I32:
  3994. {
  3995. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3996. return ((int32_t *)(tensor->data))[i];
  3997. } break;
  3998. case GGML_TYPE_F16:
  3999. {
  4000. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4001. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4002. } break;
  4003. case GGML_TYPE_F32:
  4004. {
  4005. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4006. return ((float *)(tensor->data))[i];
  4007. } break;
  4008. default:
  4009. {
  4010. GGML_ASSERT(false);
  4011. } break;
  4012. }
  4013. return 0.0f;
  4014. }
  4015. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4016. switch (tensor->type) {
  4017. case GGML_TYPE_I8:
  4018. {
  4019. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4020. ((int8_t *)(tensor->data))[i] = value;
  4021. } break;
  4022. case GGML_TYPE_I16:
  4023. {
  4024. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4025. ((int16_t *)(tensor->data))[i] = value;
  4026. } break;
  4027. case GGML_TYPE_I32:
  4028. {
  4029. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4030. ((int32_t *)(tensor->data))[i] = value;
  4031. } break;
  4032. case GGML_TYPE_F16:
  4033. {
  4034. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4035. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4036. } break;
  4037. case GGML_TYPE_F32:
  4038. {
  4039. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4040. ((float *)(tensor->data))[i] = value;
  4041. } break;
  4042. default:
  4043. {
  4044. GGML_ASSERT(false);
  4045. } break;
  4046. }
  4047. }
  4048. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4049. return tensor->data;
  4050. }
  4051. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4052. assert(tensor->type == GGML_TYPE_F32);
  4053. return (float *)(tensor->data);
  4054. }
  4055. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4056. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4057. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4058. }
  4059. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4060. return tensor->name;
  4061. }
  4062. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4063. strncpy(tensor->name, name, sizeof(tensor->name));
  4064. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4065. return tensor;
  4066. }
  4067. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4068. va_list args;
  4069. va_start(args, fmt);
  4070. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4071. va_end(args);
  4072. return tensor;
  4073. }
  4074. struct ggml_tensor * ggml_view_tensor(
  4075. struct ggml_context * ctx,
  4076. const struct ggml_tensor * src) {
  4077. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4078. ggml_format_name(result, "%s (view)", src->name);
  4079. result->nb[0] = src->nb[0];
  4080. result->nb[1] = src->nb[1];
  4081. result->nb[2] = src->nb[2];
  4082. result->nb[3] = src->nb[3];
  4083. return result;
  4084. }
  4085. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4086. struct ggml_object * obj = ctx->objects_begin;
  4087. char * const mem_buffer = ctx->mem_buffer;
  4088. while (obj != NULL) {
  4089. if (obj->type == GGML_OBJECT_TENSOR) {
  4090. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4091. if (strcmp(cur->name, name) == 0) {
  4092. return cur;
  4093. }
  4094. }
  4095. obj = obj->next;
  4096. }
  4097. return NULL;
  4098. }
  4099. ////////////////////////////////////////////////////////////////////////////////
  4100. // ggml_dup
  4101. static struct ggml_tensor * ggml_dup_impl(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. bool inplace) {
  4105. bool is_node = false;
  4106. if (!inplace && (a->grad)) {
  4107. is_node = true;
  4108. }
  4109. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4110. result->op = GGML_OP_DUP;
  4111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4112. result->src[0] = a;
  4113. return result;
  4114. }
  4115. struct ggml_tensor * ggml_dup(
  4116. struct ggml_context * ctx,
  4117. struct ggml_tensor * a) {
  4118. return ggml_dup_impl(ctx, a, false);
  4119. }
  4120. struct ggml_tensor * ggml_dup_inplace(
  4121. struct ggml_context * ctx,
  4122. struct ggml_tensor * a) {
  4123. return ggml_dup_impl(ctx, a, true);
  4124. }
  4125. // ggml_add
  4126. static struct ggml_tensor * ggml_add_impl(
  4127. struct ggml_context * ctx,
  4128. struct ggml_tensor * a,
  4129. struct ggml_tensor * b,
  4130. bool inplace) {
  4131. // TODO: support less-strict constraint
  4132. // GGML_ASSERT(ggml_can_repeat(b, a));
  4133. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4134. bool is_node = false;
  4135. if (!inplace && (a->grad || b->grad)) {
  4136. // TODO: support backward pass for broadcasting
  4137. GGML_ASSERT(ggml_are_same_shape(a, b));
  4138. is_node = true;
  4139. }
  4140. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4141. result->op = GGML_OP_ADD;
  4142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4143. result->src[0] = a;
  4144. result->src[1] = b;
  4145. return result;
  4146. }
  4147. struct ggml_tensor * ggml_add(
  4148. struct ggml_context * ctx,
  4149. struct ggml_tensor * a,
  4150. struct ggml_tensor * b) {
  4151. return ggml_add_impl(ctx, a, b, false);
  4152. }
  4153. struct ggml_tensor * ggml_add_inplace(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a,
  4156. struct ggml_tensor * b) {
  4157. return ggml_add_impl(ctx, a, b, true);
  4158. }
  4159. // ggml_add1
  4160. static struct ggml_tensor * ggml_add1_impl(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. struct ggml_tensor * b,
  4164. bool inplace) {
  4165. GGML_ASSERT(ggml_is_scalar(b));
  4166. GGML_ASSERT(ggml_is_padded_1d(a));
  4167. bool is_node = false;
  4168. if (a->grad || b->grad) {
  4169. is_node = true;
  4170. }
  4171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4172. result->op = GGML_OP_ADD1;
  4173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4174. result->src[0] = a;
  4175. result->src[1] = b;
  4176. return result;
  4177. }
  4178. struct ggml_tensor * ggml_add1(
  4179. struct ggml_context * ctx,
  4180. struct ggml_tensor * a,
  4181. struct ggml_tensor * b) {
  4182. return ggml_add1_impl(ctx, a, b, false);
  4183. }
  4184. struct ggml_tensor * ggml_add1_inplace(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a,
  4187. struct ggml_tensor * b) {
  4188. return ggml_add1_impl(ctx, a, b, true);
  4189. }
  4190. // ggml_acc
  4191. static struct ggml_tensor * ggml_acc_impl(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a,
  4194. struct ggml_tensor * b,
  4195. size_t nb1,
  4196. size_t nb2,
  4197. size_t nb3,
  4198. size_t offset,
  4199. bool inplace) {
  4200. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4201. GGML_ASSERT(ggml_is_contiguous(a));
  4202. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4203. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4204. bool is_node = false;
  4205. if (!inplace && (a->grad || b->grad)) {
  4206. is_node = true;
  4207. }
  4208. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4209. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4210. ggml_set_op_params(result, params, sizeof(params));
  4211. result->op = GGML_OP_ACC;
  4212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4213. result->src[0] = a;
  4214. result->src[1] = b;
  4215. return result;
  4216. }
  4217. struct ggml_tensor * ggml_acc(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a,
  4220. struct ggml_tensor * b,
  4221. size_t nb1,
  4222. size_t nb2,
  4223. size_t nb3,
  4224. size_t offset) {
  4225. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4226. }
  4227. struct ggml_tensor * ggml_acc_inplace(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a,
  4230. struct ggml_tensor * b,
  4231. size_t nb1,
  4232. size_t nb2,
  4233. size_t nb3,
  4234. size_t offset) {
  4235. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4236. }
  4237. // ggml_sub
  4238. static struct ggml_tensor * ggml_sub_impl(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a,
  4241. struct ggml_tensor * b,
  4242. bool inplace) {
  4243. GGML_ASSERT(ggml_are_same_shape(a, b));
  4244. bool is_node = false;
  4245. if (!inplace && (a->grad || b->grad)) {
  4246. is_node = true;
  4247. }
  4248. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4249. result->op = GGML_OP_SUB;
  4250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4251. result->src[0] = a;
  4252. result->src[1] = b;
  4253. return result;
  4254. }
  4255. struct ggml_tensor * ggml_sub(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a,
  4258. struct ggml_tensor * b) {
  4259. return ggml_sub_impl(ctx, a, b, false);
  4260. }
  4261. struct ggml_tensor * ggml_sub_inplace(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a,
  4264. struct ggml_tensor * b) {
  4265. return ggml_sub_impl(ctx, a, b, true);
  4266. }
  4267. // ggml_mul
  4268. static struct ggml_tensor * ggml_mul_impl(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a,
  4271. struct ggml_tensor * b,
  4272. bool inplace) {
  4273. // TODO: support less-strict constraint
  4274. // GGML_ASSERT(ggml_can_repeat(b, a));
  4275. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4276. bool is_node = false;
  4277. if (!inplace && (a->grad || b->grad)) {
  4278. // TODO: support backward pass for broadcasting
  4279. GGML_ASSERT(ggml_are_same_shape(a, b));
  4280. is_node = true;
  4281. }
  4282. if (inplace) {
  4283. GGML_ASSERT(is_node == false);
  4284. }
  4285. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4286. result->op = GGML_OP_MUL;
  4287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4288. result->src[0] = a;
  4289. result->src[1] = b;
  4290. return result;
  4291. }
  4292. struct ggml_tensor * ggml_mul(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. struct ggml_tensor * b) {
  4296. return ggml_mul_impl(ctx, a, b, false);
  4297. }
  4298. struct ggml_tensor * ggml_mul_inplace(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a,
  4301. struct ggml_tensor * b) {
  4302. return ggml_mul_impl(ctx, a, b, true);
  4303. }
  4304. // ggml_div
  4305. static struct ggml_tensor * ggml_div_impl(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a,
  4308. struct ggml_tensor * b,
  4309. bool inplace) {
  4310. GGML_ASSERT(ggml_are_same_shape(a, b));
  4311. bool is_node = false;
  4312. if (!inplace && (a->grad || b->grad)) {
  4313. is_node = true;
  4314. }
  4315. if (inplace) {
  4316. GGML_ASSERT(is_node == false);
  4317. }
  4318. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4319. result->op = GGML_OP_DIV;
  4320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4321. result->src[0] = a;
  4322. result->src[1] = b;
  4323. return result;
  4324. }
  4325. struct ggml_tensor * ggml_div(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a,
  4328. struct ggml_tensor * b) {
  4329. return ggml_div_impl(ctx, a, b, false);
  4330. }
  4331. struct ggml_tensor * ggml_div_inplace(
  4332. struct ggml_context * ctx,
  4333. struct ggml_tensor * a,
  4334. struct ggml_tensor * b) {
  4335. return ggml_div_impl(ctx, a, b, true);
  4336. }
  4337. // ggml_sqr
  4338. static struct ggml_tensor * ggml_sqr_impl(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a,
  4341. bool inplace) {
  4342. bool is_node = false;
  4343. if (!inplace && (a->grad)) {
  4344. is_node = true;
  4345. }
  4346. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4347. result->op = GGML_OP_SQR;
  4348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4349. result->src[0] = a;
  4350. return result;
  4351. }
  4352. struct ggml_tensor * ggml_sqr(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a) {
  4355. return ggml_sqr_impl(ctx, a, false);
  4356. }
  4357. struct ggml_tensor * ggml_sqr_inplace(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a) {
  4360. return ggml_sqr_impl(ctx, a, true);
  4361. }
  4362. // ggml_sqrt
  4363. static struct ggml_tensor * ggml_sqrt_impl(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. bool inplace) {
  4367. bool is_node = false;
  4368. if (!inplace && (a->grad)) {
  4369. is_node = true;
  4370. }
  4371. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4372. result->op = GGML_OP_SQRT;
  4373. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4374. result->src[0] = a;
  4375. return result;
  4376. }
  4377. struct ggml_tensor * ggml_sqrt(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a) {
  4380. return ggml_sqrt_impl(ctx, a, false);
  4381. }
  4382. struct ggml_tensor * ggml_sqrt_inplace(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a) {
  4385. return ggml_sqrt_impl(ctx, a, true);
  4386. }
  4387. // ggml_log
  4388. static struct ggml_tensor * ggml_log_impl(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. bool inplace) {
  4392. bool is_node = false;
  4393. if (!inplace && (a->grad)) {
  4394. is_node = true;
  4395. }
  4396. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4397. result->op = GGML_OP_LOG;
  4398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4399. result->src[0] = a;
  4400. return result;
  4401. }
  4402. struct ggml_tensor * ggml_log(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a) {
  4405. return ggml_log_impl(ctx, a, false);
  4406. }
  4407. struct ggml_tensor * ggml_log_inplace(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a) {
  4410. return ggml_log_impl(ctx, a, true);
  4411. }
  4412. // ggml_sum
  4413. struct ggml_tensor * ggml_sum(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a) {
  4416. bool is_node = false;
  4417. if (a->grad) {
  4418. is_node = true;
  4419. }
  4420. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4421. result->op = GGML_OP_SUM;
  4422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4423. result->src[0] = a;
  4424. return result;
  4425. }
  4426. // ggml_sum_rows
  4427. struct ggml_tensor * ggml_sum_rows(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a) {
  4430. bool is_node = false;
  4431. if (a->grad) {
  4432. is_node = true;
  4433. }
  4434. int64_t ne[4] = {1,1,1,1};
  4435. for (int i=1; i<a->n_dims; ++i) {
  4436. ne[i] = a->ne[i];
  4437. }
  4438. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4439. result->op = GGML_OP_SUM_ROWS;
  4440. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4441. result->src[0] = a;
  4442. return result;
  4443. }
  4444. // ggml_mean
  4445. struct ggml_tensor * ggml_mean(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a) {
  4448. bool is_node = false;
  4449. if (a->grad) {
  4450. GGML_ASSERT(false); // TODO: implement
  4451. is_node = true;
  4452. }
  4453. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4454. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4455. result->op = GGML_OP_MEAN;
  4456. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4457. result->src[0] = a;
  4458. return result;
  4459. }
  4460. // ggml_argmax
  4461. struct ggml_tensor * ggml_argmax(
  4462. struct ggml_context * ctx,
  4463. struct ggml_tensor * a) {
  4464. GGML_ASSERT(ggml_is_matrix(a));
  4465. bool is_node = false;
  4466. if (a->grad) {
  4467. GGML_ASSERT(false);
  4468. is_node = true;
  4469. }
  4470. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4471. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4472. result->op = GGML_OP_ARGMAX;
  4473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4474. result->src[0] = a;
  4475. return result;
  4476. }
  4477. // ggml_repeat
  4478. struct ggml_tensor * ggml_repeat(
  4479. struct ggml_context * ctx,
  4480. struct ggml_tensor * a,
  4481. struct ggml_tensor * b) {
  4482. GGML_ASSERT(ggml_can_repeat(a, b));
  4483. bool is_node = false;
  4484. if (a->grad) {
  4485. is_node = true;
  4486. }
  4487. if (ggml_are_same_shape(a, b) && !is_node) {
  4488. return a;
  4489. }
  4490. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4491. result->op = GGML_OP_REPEAT;
  4492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4493. result->src[0] = a;
  4494. result->src[1] = b;
  4495. return result;
  4496. }
  4497. // ggml_repeat_back
  4498. struct ggml_tensor * ggml_repeat_back(
  4499. struct ggml_context * ctx,
  4500. struct ggml_tensor * a,
  4501. struct ggml_tensor * b) {
  4502. GGML_ASSERT(ggml_can_repeat(b, a));
  4503. bool is_node = false;
  4504. if (a->grad) {
  4505. is_node = true;
  4506. }
  4507. if (ggml_are_same_shape(a, b) && !is_node) {
  4508. return a;
  4509. }
  4510. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4511. result->op = GGML_OP_REPEAT_BACK;
  4512. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4513. result->src[0] = a;
  4514. result->src[1] = b;
  4515. return result;
  4516. }
  4517. // ggml_abs
  4518. struct ggml_tensor * ggml_abs(
  4519. struct ggml_context * ctx,
  4520. struct ggml_tensor * a) {
  4521. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4522. }
  4523. struct ggml_tensor * ggml_abs_inplace(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a) {
  4526. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4527. }
  4528. // ggml_sgn
  4529. struct ggml_tensor * ggml_sgn(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a) {
  4532. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4533. }
  4534. struct ggml_tensor * ggml_sgn_inplace(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a) {
  4537. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4538. }
  4539. // ggml_neg
  4540. struct ggml_tensor * ggml_neg(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a) {
  4543. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4544. }
  4545. struct ggml_tensor * ggml_neg_inplace(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a) {
  4548. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4549. }
  4550. // ggml_step
  4551. struct ggml_tensor * ggml_step(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a) {
  4554. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4555. }
  4556. struct ggml_tensor * ggml_step_inplace(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a) {
  4559. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4560. }
  4561. // ggml_tanh
  4562. struct ggml_tensor * ggml_tanh(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a) {
  4565. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4566. }
  4567. struct ggml_tensor * ggml_tanh_inplace(
  4568. struct ggml_context * ctx,
  4569. struct ggml_tensor * a) {
  4570. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4571. }
  4572. // ggml_elu
  4573. struct ggml_tensor * ggml_elu(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a) {
  4576. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4577. }
  4578. struct ggml_tensor * ggml_elu_inplace(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a) {
  4581. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4582. }
  4583. // ggml_relu
  4584. struct ggml_tensor * ggml_relu(
  4585. struct ggml_context * ctx,
  4586. struct ggml_tensor * a) {
  4587. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4588. }
  4589. struct ggml_tensor * ggml_relu_inplace(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a) {
  4592. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4593. }
  4594. // ggml_gelu
  4595. struct ggml_tensor * ggml_gelu(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a) {
  4598. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4599. }
  4600. struct ggml_tensor * ggml_gelu_inplace(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a) {
  4603. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4604. }
  4605. // ggml_gelu_quick
  4606. struct ggml_tensor * ggml_gelu_quick(
  4607. struct ggml_context * ctx,
  4608. struct ggml_tensor * a) {
  4609. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4610. }
  4611. struct ggml_tensor * ggml_gelu_quick_inplace(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a) {
  4614. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4615. }
  4616. // ggml_silu
  4617. struct ggml_tensor * ggml_silu(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a) {
  4620. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4621. }
  4622. struct ggml_tensor * ggml_silu_inplace(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a) {
  4625. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4626. }
  4627. // ggml_silu_back
  4628. struct ggml_tensor * ggml_silu_back(
  4629. struct ggml_context * ctx,
  4630. struct ggml_tensor * a,
  4631. struct ggml_tensor * b) {
  4632. bool is_node = false;
  4633. if (a->grad || b->grad) {
  4634. // TODO: implement backward
  4635. is_node = true;
  4636. }
  4637. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4638. result->op = GGML_OP_SILU_BACK;
  4639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4640. result->src[0] = a;
  4641. result->src[1] = b;
  4642. return result;
  4643. }
  4644. // ggml_norm
  4645. static struct ggml_tensor * ggml_norm_impl(
  4646. struct ggml_context * ctx,
  4647. struct ggml_tensor * a,
  4648. bool inplace) {
  4649. bool is_node = false;
  4650. if (!inplace && (a->grad)) {
  4651. GGML_ASSERT(false); // TODO: implement backward
  4652. is_node = true;
  4653. }
  4654. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4655. // TODO: maybe store epsilon here?
  4656. result->op = GGML_OP_NORM;
  4657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4658. result->src[0] = a;
  4659. return result;
  4660. }
  4661. struct ggml_tensor * ggml_norm(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a) {
  4664. return ggml_norm_impl(ctx, a, false);
  4665. }
  4666. struct ggml_tensor * ggml_norm_inplace(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a) {
  4669. return ggml_norm_impl(ctx, a, true);
  4670. }
  4671. static struct ggml_tensor * ggml_rms_norm_impl(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a,
  4674. float eps,
  4675. bool inplace) {
  4676. bool is_node = false;
  4677. if (!inplace && (a->grad)) {
  4678. is_node = true;
  4679. }
  4680. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4681. ggml_set_op_params(result, &eps, sizeof(eps));
  4682. result->op = GGML_OP_RMS_NORM;
  4683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4684. result->src[0] = a;
  4685. return result;
  4686. }
  4687. struct ggml_tensor * ggml_rms_norm(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a,
  4690. float eps) {
  4691. return ggml_rms_norm_impl(ctx, a, eps, false);
  4692. }
  4693. struct ggml_tensor * ggml_rms_norm_inplace(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. float eps) {
  4697. return ggml_rms_norm_impl(ctx, a, eps, true);
  4698. }
  4699. struct ggml_tensor * ggml_rms_norm_back(
  4700. struct ggml_context * ctx,
  4701. struct ggml_tensor * a,
  4702. struct ggml_tensor * b) {
  4703. bool is_node = false;
  4704. if (a->grad) {
  4705. // TODO: implement backward
  4706. is_node = true;
  4707. }
  4708. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4709. result->op = GGML_OP_RMS_NORM_BACK;
  4710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4711. result->src[0] = a;
  4712. result->src[1] = b;
  4713. return result;
  4714. }
  4715. // ggml_mul_mat
  4716. struct ggml_tensor * ggml_mul_mat(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a,
  4719. struct ggml_tensor * b) {
  4720. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4721. GGML_ASSERT(!ggml_is_transposed(a));
  4722. bool is_node = false;
  4723. if (a->grad || b->grad) {
  4724. is_node = true;
  4725. }
  4726. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4727. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4728. result->op = GGML_OP_MUL_MAT;
  4729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4730. result->src[0] = a;
  4731. result->src[1] = b;
  4732. return result;
  4733. }
  4734. // ggml_out_prod
  4735. struct ggml_tensor * ggml_out_prod(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * a,
  4738. struct ggml_tensor * b) {
  4739. GGML_ASSERT(ggml_can_out_prod(a, b));
  4740. GGML_ASSERT(!ggml_is_transposed(a));
  4741. bool is_node = false;
  4742. if (a->grad || b->grad) {
  4743. is_node = true;
  4744. }
  4745. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4746. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4747. result->op = GGML_OP_OUT_PROD;
  4748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4749. result->src[0] = a;
  4750. result->src[1] = b;
  4751. return result;
  4752. }
  4753. // ggml_scale
  4754. static struct ggml_tensor * ggml_scale_impl(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a,
  4757. struct ggml_tensor * b,
  4758. bool inplace) {
  4759. GGML_ASSERT(ggml_is_scalar(b));
  4760. GGML_ASSERT(ggml_is_padded_1d(a));
  4761. bool is_node = false;
  4762. if (a->grad || b->grad) {
  4763. is_node = true;
  4764. }
  4765. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4766. result->op = GGML_OP_SCALE;
  4767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4768. result->src[0] = a;
  4769. result->src[1] = b;
  4770. return result;
  4771. }
  4772. struct ggml_tensor * ggml_scale(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a,
  4775. struct ggml_tensor * b) {
  4776. return ggml_scale_impl(ctx, a, b, false);
  4777. }
  4778. struct ggml_tensor * ggml_scale_inplace(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. struct ggml_tensor * b) {
  4782. return ggml_scale_impl(ctx, a, b, true);
  4783. }
  4784. // ggml_set
  4785. static struct ggml_tensor * ggml_set_impl(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. struct ggml_tensor * b,
  4789. size_t nb1,
  4790. size_t nb2,
  4791. size_t nb3,
  4792. size_t offset,
  4793. bool inplace) {
  4794. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4795. bool is_node = false;
  4796. if (a->grad || b->grad) {
  4797. is_node = true;
  4798. }
  4799. // make a view of the destination
  4800. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4801. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4802. ggml_set_op_params(result, params, sizeof(params));
  4803. result->op = GGML_OP_SET;
  4804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4805. result->src[0] = a;
  4806. result->src[1] = b;
  4807. return result;
  4808. }
  4809. struct ggml_tensor * ggml_set(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. struct ggml_tensor * b,
  4813. size_t nb1,
  4814. size_t nb2,
  4815. size_t nb3,
  4816. size_t offset) {
  4817. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4818. }
  4819. struct ggml_tensor * ggml_set_inplace(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. struct ggml_tensor * b,
  4823. size_t nb1,
  4824. size_t nb2,
  4825. size_t nb3,
  4826. size_t offset) {
  4827. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4828. }
  4829. struct ggml_tensor * ggml_set_1d(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a,
  4832. struct ggml_tensor * b,
  4833. size_t offset) {
  4834. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4835. }
  4836. struct ggml_tensor * ggml_set_1d_inplace(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. struct ggml_tensor * b,
  4840. size_t offset) {
  4841. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4842. }
  4843. struct ggml_tensor * ggml_set_2d(
  4844. struct ggml_context * ctx,
  4845. struct ggml_tensor * a,
  4846. struct ggml_tensor * b,
  4847. size_t nb1,
  4848. size_t offset) {
  4849. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4850. }
  4851. struct ggml_tensor * ggml_set_2d_inplace(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. struct ggml_tensor * b,
  4855. size_t nb1,
  4856. size_t offset) {
  4857. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4858. }
  4859. // ggml_cpy
  4860. static struct ggml_tensor * ggml_cpy_impl(
  4861. struct ggml_context * ctx,
  4862. struct ggml_tensor * a,
  4863. struct ggml_tensor * b,
  4864. bool inplace) {
  4865. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4866. bool is_node = false;
  4867. if (!inplace && (a->grad || b->grad)) {
  4868. is_node = true;
  4869. }
  4870. // make a view of the destination
  4871. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4872. if (strlen(b->name) > 0) {
  4873. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4874. } else {
  4875. ggml_format_name(result, "%s (copy)", a->name);
  4876. }
  4877. result->op = GGML_OP_CPY;
  4878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4879. result->src[0] = a;
  4880. result->src[1] = b;
  4881. return result;
  4882. }
  4883. struct ggml_tensor * ggml_cpy(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * a,
  4886. struct ggml_tensor * b) {
  4887. return ggml_cpy_impl(ctx, a, b, false);
  4888. }
  4889. struct ggml_tensor * ggml_cpy_inplace(
  4890. struct ggml_context * ctx,
  4891. struct ggml_tensor * a,
  4892. struct ggml_tensor * b) {
  4893. return ggml_cpy_impl(ctx, a, b, true);
  4894. }
  4895. // ggml_cont
  4896. static struct ggml_tensor * ggml_cont_impl(
  4897. struct ggml_context * ctx,
  4898. struct ggml_tensor * a,
  4899. bool inplace) {
  4900. bool is_node = false;
  4901. if (!inplace && a->grad) {
  4902. is_node = true;
  4903. }
  4904. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4905. ggml_format_name(result, "%s (cont)", a->name);
  4906. result->op = GGML_OP_CONT;
  4907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4908. result->src[0] = a;
  4909. return result;
  4910. }
  4911. struct ggml_tensor * ggml_cont(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a) {
  4914. return ggml_cont_impl(ctx, a, false);
  4915. }
  4916. struct ggml_tensor * ggml_cont_inplace(
  4917. struct ggml_context * ctx,
  4918. struct ggml_tensor * a) {
  4919. return ggml_cont_impl(ctx, a, true);
  4920. }
  4921. // ggml_reshape
  4922. struct ggml_tensor * ggml_reshape(
  4923. struct ggml_context * ctx,
  4924. struct ggml_tensor * a,
  4925. struct ggml_tensor * b) {
  4926. GGML_ASSERT(ggml_is_contiguous(a));
  4927. GGML_ASSERT(ggml_is_contiguous(b));
  4928. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4929. bool is_node = false;
  4930. if (a->grad) {
  4931. is_node = true;
  4932. }
  4933. if (b->grad) {
  4934. // gradient propagation is not supported
  4935. //GGML_ASSERT(false);
  4936. }
  4937. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4938. ggml_format_name(result, "%s (reshaped)", a->name);
  4939. result->op = GGML_OP_RESHAPE;
  4940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4941. result->src[0] = a;
  4942. return result;
  4943. }
  4944. struct ggml_tensor * ggml_reshape_1d(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. int64_t ne0) {
  4948. GGML_ASSERT(ggml_is_contiguous(a));
  4949. GGML_ASSERT(ggml_nelements(a) == ne0);
  4950. bool is_node = false;
  4951. if (a->grad) {
  4952. is_node = true;
  4953. }
  4954. const int64_t ne[1] = { ne0 };
  4955. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4956. ggml_format_name(result, "%s (reshaped)", a->name);
  4957. result->op = GGML_OP_RESHAPE;
  4958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4959. result->src[0] = a;
  4960. return result;
  4961. }
  4962. struct ggml_tensor * ggml_reshape_2d(
  4963. struct ggml_context * ctx,
  4964. struct ggml_tensor * a,
  4965. int64_t ne0,
  4966. int64_t ne1) {
  4967. GGML_ASSERT(ggml_is_contiguous(a));
  4968. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4969. bool is_node = false;
  4970. if (a->grad) {
  4971. is_node = true;
  4972. }
  4973. const int64_t ne[2] = { ne0, ne1 };
  4974. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4975. ggml_format_name(result, "%s (reshaped)", a->name);
  4976. result->op = GGML_OP_RESHAPE;
  4977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4978. result->src[0] = a;
  4979. return result;
  4980. }
  4981. struct ggml_tensor * ggml_reshape_3d(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a,
  4984. int64_t ne0,
  4985. int64_t ne1,
  4986. int64_t ne2) {
  4987. GGML_ASSERT(ggml_is_contiguous(a));
  4988. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4989. bool is_node = false;
  4990. if (a->grad) {
  4991. is_node = true;
  4992. }
  4993. const int64_t ne[3] = { ne0, ne1, ne2 };
  4994. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4995. ggml_format_name(result, "%s (reshaped)", a->name);
  4996. result->op = GGML_OP_RESHAPE;
  4997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4998. result->src[0] = a;
  4999. return result;
  5000. }
  5001. struct ggml_tensor * ggml_reshape_4d(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. int64_t ne0,
  5005. int64_t ne1,
  5006. int64_t ne2,
  5007. int64_t ne3) {
  5008. GGML_ASSERT(ggml_is_contiguous(a));
  5009. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5010. bool is_node = false;
  5011. if (a->grad) {
  5012. is_node = true;
  5013. }
  5014. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5015. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5016. ggml_format_name(result, "%s (reshaped)", a->name);
  5017. result->op = GGML_OP_RESHAPE;
  5018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5019. result->src[0] = a;
  5020. return result;
  5021. }
  5022. // ggml_view_1d
  5023. static struct ggml_tensor * ggml_view_tensor_offset(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * a,
  5026. int n_dims,
  5027. const int64_t * ne,
  5028. size_t offset) {
  5029. // don't calculate an offset from an unallocated tensor
  5030. void * data = NULL;
  5031. if (a->data != NULL) {
  5032. data = (char *) a->data + offset;
  5033. }
  5034. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
  5035. ggml_format_name(result, "%s (view)", a->name);
  5036. ggml_set_op_params(result, &offset, sizeof(offset));
  5037. return result;
  5038. }
  5039. struct ggml_tensor * ggml_view_1d(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. int64_t ne0,
  5043. size_t offset) {
  5044. bool is_node = false;
  5045. if (a->grad) {
  5046. is_node = true;
  5047. }
  5048. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
  5049. result->op = GGML_OP_VIEW;
  5050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5051. result->src[0] = a;
  5052. return result;
  5053. }
  5054. // ggml_view_2d
  5055. struct ggml_tensor * ggml_view_2d(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a,
  5058. int64_t ne0,
  5059. int64_t ne1,
  5060. size_t nb1,
  5061. size_t offset) {
  5062. bool is_node = false;
  5063. if (a->grad) {
  5064. is_node = true;
  5065. }
  5066. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5067. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
  5068. result->nb[1] = nb1;
  5069. result->nb[2] = result->nb[1]*ne1;
  5070. result->nb[3] = result->nb[2];
  5071. result->op = GGML_OP_VIEW;
  5072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5073. result->src[0] = a;
  5074. return result;
  5075. }
  5076. // ggml_view_3d
  5077. struct ggml_tensor * ggml_view_3d(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * a,
  5080. int64_t ne0,
  5081. int64_t ne1,
  5082. int64_t ne2,
  5083. size_t nb1,
  5084. size_t nb2,
  5085. size_t offset) {
  5086. bool is_node = false;
  5087. if (a->grad) {
  5088. is_node = true;
  5089. }
  5090. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5091. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
  5092. result->nb[1] = nb1;
  5093. result->nb[2] = nb2;
  5094. result->nb[3] = result->nb[2]*ne2;
  5095. result->op = GGML_OP_VIEW;
  5096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5097. result->src[0] = a;
  5098. return result;
  5099. }
  5100. // ggml_view_4d
  5101. struct ggml_tensor * ggml_view_4d(
  5102. struct ggml_context * ctx,
  5103. struct ggml_tensor * a,
  5104. int64_t ne0,
  5105. int64_t ne1,
  5106. int64_t ne2,
  5107. int64_t ne3,
  5108. size_t nb1,
  5109. size_t nb2,
  5110. size_t nb3,
  5111. size_t offset) {
  5112. bool is_node = false;
  5113. if (a->grad) {
  5114. is_node = true;
  5115. }
  5116. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5117. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
  5118. result->nb[1] = nb1;
  5119. result->nb[2] = nb2;
  5120. result->nb[3] = nb3;
  5121. result->op = GGML_OP_VIEW;
  5122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5123. result->src[0] = a;
  5124. return result;
  5125. }
  5126. // ggml_permute
  5127. struct ggml_tensor * ggml_permute(
  5128. struct ggml_context * ctx,
  5129. struct ggml_tensor * a,
  5130. int axis0,
  5131. int axis1,
  5132. int axis2,
  5133. int axis3) {
  5134. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5135. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5136. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5137. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5138. GGML_ASSERT(axis0 != axis1);
  5139. GGML_ASSERT(axis0 != axis2);
  5140. GGML_ASSERT(axis0 != axis3);
  5141. GGML_ASSERT(axis1 != axis2);
  5142. GGML_ASSERT(axis1 != axis3);
  5143. GGML_ASSERT(axis2 != axis3);
  5144. bool is_node = false;
  5145. if (a->grad) {
  5146. is_node = true;
  5147. }
  5148. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5149. ggml_format_name(result, "%s (permuted)", a->name);
  5150. int ne[GGML_MAX_DIMS];
  5151. int nb[GGML_MAX_DIMS];
  5152. ne[axis0] = a->ne[0];
  5153. ne[axis1] = a->ne[1];
  5154. ne[axis2] = a->ne[2];
  5155. ne[axis3] = a->ne[3];
  5156. nb[axis0] = a->nb[0];
  5157. nb[axis1] = a->nb[1];
  5158. nb[axis2] = a->nb[2];
  5159. nb[axis3] = a->nb[3];
  5160. result->ne[0] = ne[0];
  5161. result->ne[1] = ne[1];
  5162. result->ne[2] = ne[2];
  5163. result->ne[3] = ne[3];
  5164. result->nb[0] = nb[0];
  5165. result->nb[1] = nb[1];
  5166. result->nb[2] = nb[2];
  5167. result->nb[3] = nb[3];
  5168. result->op = GGML_OP_PERMUTE;
  5169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5170. result->src[0] = a;
  5171. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5172. ggml_set_op_params(result, params, sizeof(params));
  5173. return result;
  5174. }
  5175. // ggml_transpose
  5176. struct ggml_tensor * ggml_transpose(
  5177. struct ggml_context * ctx,
  5178. struct ggml_tensor * a) {
  5179. bool is_node = false;
  5180. if (a->grad) {
  5181. is_node = true;
  5182. }
  5183. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5184. ggml_format_name(result, "%s (transposed)", a->name);
  5185. result->ne[0] = a->ne[1];
  5186. result->ne[1] = a->ne[0];
  5187. result->nb[0] = a->nb[1];
  5188. result->nb[1] = a->nb[0];
  5189. result->op = GGML_OP_TRANSPOSE;
  5190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5191. result->src[0] = a;
  5192. return result;
  5193. }
  5194. // ggml_get_rows
  5195. struct ggml_tensor * ggml_get_rows(
  5196. struct ggml_context * ctx,
  5197. struct ggml_tensor * a,
  5198. struct ggml_tensor * b) {
  5199. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5200. bool is_node = false;
  5201. if (a->grad || b->grad) {
  5202. is_node = true;
  5203. }
  5204. // TODO: implement non F32 return
  5205. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5206. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5207. result->op = GGML_OP_GET_ROWS;
  5208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5209. result->src[0] = a;
  5210. result->src[1] = b;
  5211. return result;
  5212. }
  5213. // ggml_get_rows_back
  5214. struct ggml_tensor * ggml_get_rows_back(
  5215. struct ggml_context * ctx,
  5216. struct ggml_tensor * a,
  5217. struct ggml_tensor * b,
  5218. struct ggml_tensor * c) {
  5219. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5220. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5221. bool is_node = false;
  5222. if (a->grad || b->grad) {
  5223. is_node = true;
  5224. }
  5225. // TODO: implement non F32 return
  5226. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5227. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5228. result->op = GGML_OP_GET_ROWS_BACK;
  5229. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5230. result->src[0] = a;
  5231. result->src[1] = b;
  5232. result->src[2] = c;
  5233. return result;
  5234. }
  5235. // ggml_diag
  5236. struct ggml_tensor * ggml_diag(
  5237. struct ggml_context * ctx,
  5238. struct ggml_tensor * a) {
  5239. GGML_ASSERT(a->ne[1] == 1);
  5240. bool is_node = false;
  5241. if (a->grad) {
  5242. is_node = true;
  5243. }
  5244. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5245. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5246. result->op = GGML_OP_DIAG;
  5247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5248. result->src[0] = a;
  5249. return result;
  5250. }
  5251. // ggml_diag_mask_inf
  5252. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5253. struct ggml_context * ctx,
  5254. struct ggml_tensor * a,
  5255. int n_past,
  5256. bool inplace) {
  5257. bool is_node = false;
  5258. if (a->grad) {
  5259. is_node = true;
  5260. }
  5261. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5262. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5263. ggml_set_op_params(result, params, sizeof(params));
  5264. result->op = GGML_OP_DIAG_MASK_INF;
  5265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5266. result->src[0] = a;
  5267. return result;
  5268. }
  5269. struct ggml_tensor * ggml_diag_mask_inf(
  5270. struct ggml_context * ctx,
  5271. struct ggml_tensor * a,
  5272. int n_past) {
  5273. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5274. }
  5275. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5276. struct ggml_context * ctx,
  5277. struct ggml_tensor * a,
  5278. int n_past) {
  5279. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5280. }
  5281. // ggml_diag_mask_zero
  5282. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5283. struct ggml_context * ctx,
  5284. struct ggml_tensor * a,
  5285. int n_past,
  5286. bool inplace) {
  5287. bool is_node = false;
  5288. if (a->grad) {
  5289. is_node = true;
  5290. }
  5291. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5292. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5293. ggml_set_op_params(result, params, sizeof(params));
  5294. result->op = GGML_OP_DIAG_MASK_ZERO;
  5295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5296. result->src[0] = a;
  5297. return result;
  5298. }
  5299. struct ggml_tensor * ggml_diag_mask_zero(
  5300. struct ggml_context * ctx,
  5301. struct ggml_tensor * a,
  5302. int n_past) {
  5303. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5304. }
  5305. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5306. struct ggml_context * ctx,
  5307. struct ggml_tensor * a,
  5308. int n_past) {
  5309. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5310. }
  5311. // ggml_soft_max
  5312. static struct ggml_tensor * ggml_soft_max_impl(
  5313. struct ggml_context * ctx,
  5314. struct ggml_tensor * a,
  5315. bool inplace) {
  5316. bool is_node = false;
  5317. if (a->grad) {
  5318. is_node = true;
  5319. }
  5320. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5321. result->op = GGML_OP_SOFT_MAX;
  5322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5323. result->src[0] = a;
  5324. return result;
  5325. }
  5326. struct ggml_tensor * ggml_soft_max(
  5327. struct ggml_context * ctx,
  5328. struct ggml_tensor * a) {
  5329. return ggml_soft_max_impl(ctx, a, false);
  5330. }
  5331. struct ggml_tensor * ggml_soft_max_inplace(
  5332. struct ggml_context * ctx,
  5333. struct ggml_tensor * a) {
  5334. return ggml_soft_max_impl(ctx, a, true);
  5335. }
  5336. // ggml_soft_max_back
  5337. static struct ggml_tensor * ggml_soft_max_back_impl(
  5338. struct ggml_context * ctx,
  5339. struct ggml_tensor * a,
  5340. struct ggml_tensor * b,
  5341. bool inplace) {
  5342. bool is_node = false;
  5343. if (a->grad || b->grad) {
  5344. is_node = true; // TODO : implement backward pass
  5345. }
  5346. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5347. result->op = GGML_OP_SOFT_MAX_BACK;
  5348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5349. result->src[0] = a;
  5350. result->src[1] = b;
  5351. return result;
  5352. }
  5353. struct ggml_tensor * ggml_soft_max_back(
  5354. struct ggml_context * ctx,
  5355. struct ggml_tensor * a,
  5356. struct ggml_tensor * b) {
  5357. return ggml_soft_max_back_impl(ctx, a, b, false);
  5358. }
  5359. struct ggml_tensor * ggml_soft_max_back_inplace(
  5360. struct ggml_context * ctx,
  5361. struct ggml_tensor * a,
  5362. struct ggml_tensor * b) {
  5363. return ggml_soft_max_back_impl(ctx, a, b, true);
  5364. }
  5365. // ggml_rope
  5366. static struct ggml_tensor * ggml_rope_impl(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * a,
  5369. int n_past,
  5370. int n_dims,
  5371. int mode,
  5372. int n_ctx,
  5373. float freq_base,
  5374. float freq_scale,
  5375. bool inplace) {
  5376. GGML_ASSERT(n_past >= 0);
  5377. bool is_node = false;
  5378. if (a->grad) {
  5379. is_node = true;
  5380. }
  5381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5382. int32_t params[6] = { n_past, n_dims, mode, n_ctx };
  5383. memcpy(params + 4, &freq_base, sizeof(float));
  5384. memcpy(params + 5, &freq_scale, sizeof(float));
  5385. ggml_set_op_params(result, params, sizeof(params));
  5386. result->op = GGML_OP_ROPE;
  5387. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5388. result->src[0] = a;
  5389. return result;
  5390. }
  5391. struct ggml_tensor * ggml_rope(
  5392. struct ggml_context * ctx,
  5393. struct ggml_tensor * a,
  5394. int n_past,
  5395. int n_dims,
  5396. int mode,
  5397. int n_ctx) {
  5398. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
  5399. }
  5400. struct ggml_tensor * ggml_rope_inplace(
  5401. struct ggml_context * ctx,
  5402. struct ggml_tensor * a,
  5403. int n_past,
  5404. int n_dims,
  5405. int mode,
  5406. int n_ctx) {
  5407. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
  5408. }
  5409. struct ggml_tensor * ggml_rope_custom(
  5410. struct ggml_context * ctx,
  5411. struct ggml_tensor * a,
  5412. int n_past,
  5413. int n_dims,
  5414. int mode,
  5415. int n_ctx,
  5416. float freq_base,
  5417. float freq_scale) {
  5418. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false);
  5419. }
  5420. struct ggml_tensor * ggml_rope_custom_inplace(
  5421. struct ggml_context * ctx,
  5422. struct ggml_tensor * a,
  5423. int n_past,
  5424. int n_dims,
  5425. int mode,
  5426. int n_ctx,
  5427. float freq_base,
  5428. float freq_scale) {
  5429. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
  5430. }
  5431. // ggml_rope_back
  5432. struct ggml_tensor * ggml_rope_back(
  5433. struct ggml_context * ctx,
  5434. struct ggml_tensor * a,
  5435. int n_past,
  5436. int n_dims,
  5437. int mode,
  5438. int n_ctx) {
  5439. GGML_ASSERT(n_past >= 0);
  5440. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5441. bool is_node = false;
  5442. if (a->grad) {
  5443. is_node = false; // TODO: implement backward
  5444. }
  5445. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5446. int32_t params[] = { n_past, n_dims, mode, n_ctx };
  5447. ggml_set_op_params(result, params, sizeof(params));
  5448. result->op = GGML_OP_ROPE_BACK;
  5449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5450. result->src[0] = a;
  5451. return result;
  5452. }
  5453. // ggml_alibi
  5454. struct ggml_tensor * ggml_alibi(
  5455. struct ggml_context * ctx,
  5456. struct ggml_tensor * a,
  5457. int n_past,
  5458. int n_head,
  5459. float bias_max) {
  5460. GGML_ASSERT(n_past >= 0);
  5461. bool is_node = false;
  5462. if (a->grad) {
  5463. GGML_ASSERT(false); // TODO: implement backward
  5464. is_node = true;
  5465. }
  5466. // TODO: when implement backward, fix this:
  5467. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5468. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5469. int32_t op_params[3] = { n_past, n_head };
  5470. memcpy(op_params + 2, &bias_max, sizeof(float));
  5471. ggml_set_op_params(result, op_params, sizeof(op_params));
  5472. result->op = GGML_OP_ALIBI;
  5473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5474. result->src[0] = a;
  5475. return result;
  5476. }
  5477. // ggml_clamp
  5478. struct ggml_tensor * ggml_clamp(
  5479. struct ggml_context * ctx,
  5480. struct ggml_tensor * a,
  5481. float min,
  5482. float max) {
  5483. bool is_node = false;
  5484. if (a->grad) {
  5485. GGML_ASSERT(false); // TODO: implement backward
  5486. is_node = true;
  5487. }
  5488. // TODO: when implement backward, fix this:
  5489. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5490. float params[] = { min, max };
  5491. ggml_set_op_params(result, params, sizeof(params));
  5492. result->op = GGML_OP_CLAMP;
  5493. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5494. result->src[0] = a;
  5495. return result;
  5496. }
  5497. // ggml_conv_1d
  5498. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5499. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5500. }
  5501. GGML_API struct ggml_tensor * ggml_conv_1d(
  5502. struct ggml_context * ctx,
  5503. struct ggml_tensor * a,
  5504. struct ggml_tensor * b,
  5505. int s0,
  5506. int p0,
  5507. int d0) {
  5508. GGML_ASSERT(ggml_is_matrix(b));
  5509. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5510. bool is_node = false;
  5511. if (a->grad || b->grad) {
  5512. GGML_ASSERT(false); // TODO: implement backward
  5513. is_node = true;
  5514. }
  5515. const int64_t ne[4] = {
  5516. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5517. a->ne[2], 1, 1,
  5518. };
  5519. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5520. int32_t params[] = { s0, p0, d0 };
  5521. ggml_set_op_params(result, params, sizeof(params));
  5522. result->op = GGML_OP_CONV_1D;
  5523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5524. result->src[0] = a;
  5525. result->src[1] = b;
  5526. return result;
  5527. }
  5528. // ggml_conv_2d
  5529. struct ggml_tensor * ggml_conv_2d(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b,
  5533. int s0,
  5534. int s1,
  5535. int p0,
  5536. int p1,
  5537. int d0,
  5538. int d1) {
  5539. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5540. bool is_node = false;
  5541. if (a->grad || b->grad) {
  5542. GGML_ASSERT(false); // TODO: implement backward
  5543. is_node = true;
  5544. }
  5545. const int64_t ne[4] = {
  5546. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5547. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5548. a->ne[3], b->ne[3],
  5549. };
  5550. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5551. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5552. ggml_set_op_params(result, params, sizeof(params));
  5553. result->op = GGML_OP_CONV_2D;
  5554. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5555. result->src[0] = a;
  5556. result->src[1] = b;
  5557. return result;
  5558. }
  5559. // ggml_conv_1d_ph
  5560. struct ggml_tensor * ggml_conv_1d_ph(
  5561. struct ggml_context * ctx,
  5562. struct ggml_tensor * a,
  5563. struct ggml_tensor * b,
  5564. int s,
  5565. int d) {
  5566. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5567. }
  5568. // ggml_pool_*
  5569. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5570. return (ins + 2 * p - ks) / s + 1;
  5571. }
  5572. // ggml_pool_1d
  5573. struct ggml_tensor * ggml_pool_1d(
  5574. struct ggml_context * ctx,
  5575. struct ggml_tensor * a,
  5576. enum ggml_op_pool op,
  5577. int k0,
  5578. int s0,
  5579. int p0) {
  5580. bool is_node = false;
  5581. if (a->grad) {
  5582. GGML_ASSERT(false); // TODO: implement backward
  5583. is_node = true;
  5584. }
  5585. const int64_t ne[3] = {
  5586. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5587. a->ne[1],
  5588. };
  5589. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5590. int32_t params[] = { op, k0, s0, p0 };
  5591. ggml_set_op_params(result, params, sizeof(params));
  5592. result->op = GGML_OP_POOL_1D;
  5593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5594. result->src[0] = a;
  5595. return result;
  5596. }
  5597. // ggml_pool_2d
  5598. struct ggml_tensor * ggml_pool_2d(
  5599. struct ggml_context * ctx,
  5600. struct ggml_tensor * a,
  5601. enum ggml_op_pool op,
  5602. int k0,
  5603. int k1,
  5604. int s0,
  5605. int s1,
  5606. int p0,
  5607. int p1) {
  5608. bool is_node = false;
  5609. if (a->grad) {
  5610. GGML_ASSERT(false); // TODO: implement backward
  5611. is_node = true;
  5612. }
  5613. const int64_t ne[3] = {
  5614. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5615. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5616. a->ne[2],
  5617. };
  5618. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5619. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5620. ggml_set_op_params(result, params, sizeof(params));
  5621. result->op = GGML_OP_POOL_2D;
  5622. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5623. result->src[0] = a;
  5624. return result;
  5625. }
  5626. // ggml_flash_attn
  5627. struct ggml_tensor * ggml_flash_attn(
  5628. struct ggml_context * ctx,
  5629. struct ggml_tensor * q,
  5630. struct ggml_tensor * k,
  5631. struct ggml_tensor * v,
  5632. bool masked) {
  5633. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5634. // TODO: check if vT can be multiplied by (k*qT)
  5635. bool is_node = false;
  5636. if (q->grad || k->grad || v->grad) {
  5637. is_node = true;
  5638. }
  5639. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5640. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5641. int32_t t = masked ? 1 : 0;
  5642. ggml_set_op_params(result, &t, sizeof(t));
  5643. result->op = GGML_OP_FLASH_ATTN;
  5644. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5645. result->src[0] = q;
  5646. result->src[1] = k;
  5647. result->src[2] = v;
  5648. return result;
  5649. }
  5650. // ggml_flash_ff
  5651. struct ggml_tensor * ggml_flash_ff(
  5652. struct ggml_context * ctx,
  5653. struct ggml_tensor * a,
  5654. struct ggml_tensor * b0,
  5655. struct ggml_tensor * b1,
  5656. struct ggml_tensor * c0,
  5657. struct ggml_tensor * c1) {
  5658. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5659. // TODO: more checks
  5660. bool is_node = false;
  5661. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5662. is_node = true;
  5663. }
  5664. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5665. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5666. result->op = GGML_OP_FLASH_FF;
  5667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5668. result->src[0] = a;
  5669. result->src[1] = b0;
  5670. result->src[2] = b1;
  5671. result->src[3] = c0;
  5672. result->src[4] = c1;
  5673. return result;
  5674. }
  5675. // ggml_flash_attn_back
  5676. struct ggml_tensor * ggml_flash_attn_back(
  5677. struct ggml_context * ctx,
  5678. struct ggml_tensor * q,
  5679. struct ggml_tensor * k,
  5680. struct ggml_tensor * v,
  5681. struct ggml_tensor * d,
  5682. bool masked) {
  5683. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5684. // TODO: check if vT can be multiplied by (k*qT)
  5685. // d shape [D,N,ne2,ne3]
  5686. // q shape [D,N,ne2,ne3]
  5687. // k shape [D,M,ne2,ne3]
  5688. // v shape [M,D,ne2,ne3]
  5689. const int64_t D = q->ne[0];
  5690. const int64_t N = q->ne[1];
  5691. const int64_t M = k->ne[1];
  5692. const int64_t ne2 = q->ne[2];
  5693. const int64_t ne3 = q->ne[3];
  5694. GGML_ASSERT(k->ne[0] == D);
  5695. GGML_ASSERT(v->ne[0] == M);
  5696. GGML_ASSERT(v->ne[1] == D);
  5697. GGML_ASSERT(d->ne[0] == D);
  5698. GGML_ASSERT(d->ne[1] == N);
  5699. GGML_ASSERT(k->ne[2] == ne2);
  5700. GGML_ASSERT(k->ne[3] == ne3);
  5701. GGML_ASSERT(v->ne[2] == ne2);
  5702. GGML_ASSERT(v->ne[3] == ne3);
  5703. GGML_ASSERT(d->ne[2] == ne2);
  5704. GGML_ASSERT(d->ne[3] == ne3);
  5705. bool is_node = false;
  5706. if (q->grad || k->grad || v->grad) {
  5707. // when using this operation (in backwards pass) these grads are set.
  5708. // we don't want to create (big) grad of our result, so is_node is false.
  5709. is_node = false;
  5710. }
  5711. // store gradients of q, k and v as continuous tensors concatenated in result.
  5712. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5713. // gradq->data = result->data
  5714. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5715. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5716. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5717. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5718. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5719. int32_t masked_i = masked ? 1 : 0;
  5720. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5721. result->op = GGML_OP_FLASH_ATTN_BACK;
  5722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5723. result->src[0] = q;
  5724. result->src[1] = k;
  5725. result->src[2] = v;
  5726. result->src[3] = d;
  5727. return result;
  5728. }
  5729. // ggml_win_part
  5730. struct ggml_tensor * ggml_win_part(
  5731. struct ggml_context * ctx,
  5732. struct ggml_tensor * a,
  5733. int w) {
  5734. GGML_ASSERT(a->ne[3] == 1);
  5735. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5736. bool is_node = false;
  5737. if (a->grad) {
  5738. GGML_ASSERT(false); // TODO: implement backward
  5739. is_node = true;
  5740. }
  5741. // padding
  5742. const int px = (w - a->ne[1]%w)%w;
  5743. const int py = (w - a->ne[2]%w)%w;
  5744. const int npx = (px + a->ne[1])/w;
  5745. const int npy = (py + a->ne[2])/w;
  5746. const int np = npx*npy;
  5747. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5748. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5749. int32_t params[] = { npx, npy, w };
  5750. ggml_set_op_params(result, params, sizeof(params));
  5751. result->op = GGML_OP_WIN_PART;
  5752. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5753. result->src[0] = a;
  5754. return result;
  5755. }
  5756. // ggml_win_unpart
  5757. struct ggml_tensor * ggml_win_unpart(
  5758. struct ggml_context * ctx,
  5759. struct ggml_tensor * a,
  5760. int w0,
  5761. int h0,
  5762. int w) {
  5763. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5764. bool is_node = false;
  5765. if (a->grad) {
  5766. GGML_ASSERT(false); // TODO: implement backward
  5767. is_node = true;
  5768. }
  5769. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5770. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5771. int32_t params[] = { w };
  5772. ggml_set_op_params(result, params, sizeof(params));
  5773. result->op = GGML_OP_WIN_UNPART;
  5774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5775. result->src[0] = a;
  5776. return result;
  5777. }
  5778. // gmml_unary
  5779. static struct ggml_tensor * ggml_unary_impl(
  5780. struct ggml_context * ctx,
  5781. struct ggml_tensor * a,
  5782. enum ggml_unary_op op,
  5783. bool inplace) {
  5784. bool is_node = false;
  5785. if (!inplace && (a->grad)) {
  5786. is_node = true;
  5787. }
  5788. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5789. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5790. result->op = GGML_OP_UNARY;
  5791. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5792. result->src[0] = a;
  5793. return result;
  5794. }
  5795. struct ggml_tensor * ggml_unary(
  5796. struct ggml_context * ctx,
  5797. struct ggml_tensor * a,
  5798. enum ggml_unary_op op) {
  5799. return ggml_unary_impl(ctx, a, op, false);
  5800. }
  5801. struct ggml_tensor * ggml_unary_inplace(
  5802. struct ggml_context * ctx,
  5803. struct ggml_tensor * a,
  5804. enum ggml_unary_op op) {
  5805. return ggml_unary_impl(ctx, a, op, true);
  5806. }
  5807. // ggml_map_unary
  5808. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5809. struct ggml_context * ctx,
  5810. struct ggml_tensor * a,
  5811. const ggml_unary_op_f32_t fun,
  5812. bool inplace) {
  5813. bool is_node = false;
  5814. if (!inplace && a->grad) {
  5815. is_node = true;
  5816. }
  5817. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5818. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5819. result->op = GGML_OP_MAP_UNARY;
  5820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5821. result->src[0] = a;
  5822. return result;
  5823. }
  5824. struct ggml_tensor * ggml_map_unary_f32(
  5825. struct ggml_context * ctx,
  5826. struct ggml_tensor * a,
  5827. const ggml_unary_op_f32_t fun) {
  5828. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5829. }
  5830. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5831. struct ggml_context * ctx,
  5832. struct ggml_tensor * a,
  5833. const ggml_unary_op_f32_t fun) {
  5834. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5835. }
  5836. // ggml_map_binary
  5837. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5838. struct ggml_context * ctx,
  5839. struct ggml_tensor * a,
  5840. struct ggml_tensor * b,
  5841. const ggml_binary_op_f32_t fun,
  5842. bool inplace) {
  5843. GGML_ASSERT(ggml_are_same_shape(a, b));
  5844. bool is_node = false;
  5845. if (!inplace && (a->grad || b->grad)) {
  5846. is_node = true;
  5847. }
  5848. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5849. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5850. result->op = GGML_OP_MAP_BINARY;
  5851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5852. result->src[0] = a;
  5853. result->src[1] = b;
  5854. return result;
  5855. }
  5856. struct ggml_tensor * ggml_map_binary_f32(
  5857. struct ggml_context * ctx,
  5858. struct ggml_tensor * a,
  5859. struct ggml_tensor * b,
  5860. const ggml_binary_op_f32_t fun) {
  5861. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5862. }
  5863. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5864. struct ggml_context * ctx,
  5865. struct ggml_tensor * a,
  5866. struct ggml_tensor * b,
  5867. const ggml_binary_op_f32_t fun) {
  5868. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5869. }
  5870. // ggml_map_custom1_f32
  5871. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5872. struct ggml_context * ctx,
  5873. struct ggml_tensor * a,
  5874. const ggml_custom1_op_f32_t fun,
  5875. bool inplace) {
  5876. bool is_node = false;
  5877. if (!inplace && a->grad) {
  5878. is_node = true;
  5879. }
  5880. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5881. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5882. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5883. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5884. result->src[0] = a;
  5885. return result;
  5886. }
  5887. struct ggml_tensor * ggml_map_custom1_f32(
  5888. struct ggml_context * ctx,
  5889. struct ggml_tensor * a,
  5890. const ggml_custom1_op_f32_t fun) {
  5891. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5892. }
  5893. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5894. struct ggml_context * ctx,
  5895. struct ggml_tensor * a,
  5896. const ggml_custom1_op_f32_t fun) {
  5897. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5898. }
  5899. // ggml_map_custom2_f32
  5900. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5901. struct ggml_context * ctx,
  5902. struct ggml_tensor * a,
  5903. struct ggml_tensor * b,
  5904. const ggml_custom2_op_f32_t fun,
  5905. bool inplace) {
  5906. bool is_node = false;
  5907. if (!inplace && (a->grad || b->grad)) {
  5908. is_node = true;
  5909. }
  5910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5911. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5912. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5914. result->src[0] = a;
  5915. result->src[1] = b;
  5916. return result;
  5917. }
  5918. struct ggml_tensor * ggml_map_custom2_f32(
  5919. struct ggml_context * ctx,
  5920. struct ggml_tensor * a,
  5921. struct ggml_tensor * b,
  5922. const ggml_custom2_op_f32_t fun) {
  5923. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5924. }
  5925. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5926. struct ggml_context * ctx,
  5927. struct ggml_tensor * a,
  5928. struct ggml_tensor * b,
  5929. const ggml_custom2_op_f32_t fun) {
  5930. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5931. }
  5932. // ggml_map_custom3_f32
  5933. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5934. struct ggml_context * ctx,
  5935. struct ggml_tensor * a,
  5936. struct ggml_tensor * b,
  5937. struct ggml_tensor * c,
  5938. const ggml_custom3_op_f32_t fun,
  5939. bool inplace) {
  5940. bool is_node = false;
  5941. if (!inplace && (a->grad || b->grad || c->grad)) {
  5942. is_node = true;
  5943. }
  5944. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5945. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5946. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5948. result->src[0] = a;
  5949. result->src[1] = b;
  5950. result->src[2] = c;
  5951. return result;
  5952. }
  5953. struct ggml_tensor * ggml_map_custom3_f32(
  5954. struct ggml_context * ctx,
  5955. struct ggml_tensor * a,
  5956. struct ggml_tensor * b,
  5957. struct ggml_tensor * c,
  5958. const ggml_custom3_op_f32_t fun) {
  5959. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5960. }
  5961. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5962. struct ggml_context * ctx,
  5963. struct ggml_tensor * a,
  5964. struct ggml_tensor * b,
  5965. struct ggml_tensor * c,
  5966. const ggml_custom3_op_f32_t fun) {
  5967. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5968. }
  5969. // ggml_map_custom1
  5970. struct ggml_map_custom1_op_params {
  5971. ggml_custom1_op_t fun;
  5972. int n_tasks;
  5973. void * userdata;
  5974. };
  5975. static struct ggml_tensor * ggml_map_custom1_impl(
  5976. struct ggml_context * ctx,
  5977. struct ggml_tensor * a,
  5978. const ggml_custom1_op_t fun,
  5979. int n_tasks,
  5980. void * userdata,
  5981. bool inplace) {
  5982. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5983. bool is_node = false;
  5984. if (!inplace && a->grad) {
  5985. is_node = true;
  5986. }
  5987. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5988. struct ggml_map_custom1_op_params params = {
  5989. /*.fun =*/ fun,
  5990. /*.n_tasks =*/ n_tasks,
  5991. /*.userdata =*/ userdata
  5992. };
  5993. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5994. result->op = GGML_OP_MAP_CUSTOM1;
  5995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5996. result->src[0] = a;
  5997. return result;
  5998. }
  5999. struct ggml_tensor * ggml_map_custom1(
  6000. struct ggml_context * ctx,
  6001. struct ggml_tensor * a,
  6002. const ggml_custom1_op_t fun,
  6003. int n_tasks,
  6004. void * userdata) {
  6005. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6006. }
  6007. struct ggml_tensor * ggml_map_custom1_inplace(
  6008. struct ggml_context * ctx,
  6009. struct ggml_tensor * a,
  6010. const ggml_custom1_op_t fun,
  6011. int n_tasks,
  6012. void * userdata) {
  6013. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6014. }
  6015. // ggml_map_custom2
  6016. struct ggml_map_custom2_op_params {
  6017. ggml_custom2_op_t fun;
  6018. int n_tasks;
  6019. void * userdata;
  6020. };
  6021. static struct ggml_tensor * ggml_map_custom2_impl(
  6022. struct ggml_context * ctx,
  6023. struct ggml_tensor * a,
  6024. struct ggml_tensor * b,
  6025. const ggml_custom2_op_t fun,
  6026. int n_tasks,
  6027. void * userdata,
  6028. bool inplace) {
  6029. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6030. bool is_node = false;
  6031. if (!inplace && (a->grad || b->grad)) {
  6032. is_node = true;
  6033. }
  6034. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6035. struct ggml_map_custom2_op_params params = {
  6036. /*.fun =*/ fun,
  6037. /*.n_tasks =*/ n_tasks,
  6038. /*.userdata =*/ userdata
  6039. };
  6040. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6041. result->op = GGML_OP_MAP_CUSTOM2;
  6042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6043. result->src[0] = a;
  6044. result->src[1] = b;
  6045. return result;
  6046. }
  6047. struct ggml_tensor * ggml_map_custom2(
  6048. struct ggml_context * ctx,
  6049. struct ggml_tensor * a,
  6050. struct ggml_tensor * b,
  6051. const ggml_custom2_op_t fun,
  6052. int n_tasks,
  6053. void * userdata) {
  6054. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6055. }
  6056. struct ggml_tensor * ggml_map_custom2_inplace(
  6057. struct ggml_context * ctx,
  6058. struct ggml_tensor * a,
  6059. struct ggml_tensor * b,
  6060. const ggml_custom2_op_t fun,
  6061. int n_tasks,
  6062. void * userdata) {
  6063. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6064. }
  6065. // ggml_map_custom3
  6066. struct ggml_map_custom3_op_params {
  6067. ggml_custom3_op_t fun;
  6068. int n_tasks;
  6069. void * userdata;
  6070. };
  6071. static struct ggml_tensor * ggml_map_custom3_impl(
  6072. struct ggml_context * ctx,
  6073. struct ggml_tensor * a,
  6074. struct ggml_tensor * b,
  6075. struct ggml_tensor * c,
  6076. const ggml_custom3_op_t fun,
  6077. int n_tasks,
  6078. void * userdata,
  6079. bool inplace) {
  6080. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6081. bool is_node = false;
  6082. if (!inplace && (a->grad || b->grad || c->grad)) {
  6083. is_node = true;
  6084. }
  6085. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6086. struct ggml_map_custom3_op_params params = {
  6087. /*.fun =*/ fun,
  6088. /*.n_tasks =*/ n_tasks,
  6089. /*.userdata =*/ userdata
  6090. };
  6091. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6092. result->op = GGML_OP_MAP_CUSTOM3;
  6093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6094. result->src[0] = a;
  6095. result->src[1] = b;
  6096. result->src[2] = c;
  6097. return result;
  6098. }
  6099. struct ggml_tensor * ggml_map_custom3(
  6100. struct ggml_context * ctx,
  6101. struct ggml_tensor * a,
  6102. struct ggml_tensor * b,
  6103. struct ggml_tensor * c,
  6104. const ggml_custom3_op_t fun,
  6105. int n_tasks,
  6106. void * userdata) {
  6107. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6108. }
  6109. struct ggml_tensor * ggml_map_custom3_inplace(
  6110. struct ggml_context * ctx,
  6111. struct ggml_tensor * a,
  6112. struct ggml_tensor * b,
  6113. struct ggml_tensor * c,
  6114. const ggml_custom3_op_t fun,
  6115. int n_tasks,
  6116. void * userdata) {
  6117. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6118. }
  6119. // ggml_cross_entropy_loss
  6120. struct ggml_tensor * ggml_cross_entropy_loss(
  6121. struct ggml_context * ctx,
  6122. struct ggml_tensor * a,
  6123. struct ggml_tensor * b) {
  6124. GGML_ASSERT(ggml_are_same_shape(a, b));
  6125. bool is_node = false;
  6126. if (a->grad || b->grad) {
  6127. is_node = true;
  6128. }
  6129. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6130. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6132. result->src[0] = a;
  6133. result->src[1] = b;
  6134. return result;
  6135. }
  6136. // ggml_cross_entropy_loss_back
  6137. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6138. struct ggml_context * ctx,
  6139. struct ggml_tensor * a,
  6140. struct ggml_tensor * b,
  6141. struct ggml_tensor * c) {
  6142. GGML_ASSERT(ggml_are_same_shape(a, b));
  6143. GGML_ASSERT(ggml_is_scalar(c));
  6144. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6145. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6146. result->grad = NULL;
  6147. result->src[0] = a;
  6148. result->src[1] = b;
  6149. result->src[2] = c;
  6150. return result;
  6151. }
  6152. ////////////////////////////////////////////////////////////////////////////////
  6153. void ggml_set_param(
  6154. struct ggml_context * ctx,
  6155. struct ggml_tensor * tensor) {
  6156. tensor->is_param = true;
  6157. GGML_ASSERT(tensor->grad == NULL);
  6158. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6159. }
  6160. // ggml_compute_forward_dup
  6161. static void ggml_compute_forward_dup_same_cont(
  6162. const struct ggml_compute_params * params,
  6163. const struct ggml_tensor * src0,
  6164. struct ggml_tensor * dst) {
  6165. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6166. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6167. GGML_ASSERT(src0->type == dst->type);
  6168. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6169. return;
  6170. }
  6171. const size_t nb00 = src0->nb[0];
  6172. const size_t nb0 = dst->nb[0];
  6173. const int ith = params->ith; // thread index
  6174. const int nth = params->nth; // number of threads
  6175. // parallelize by elements
  6176. const int ne = ggml_nelements(dst);
  6177. const int dr = (ne + nth - 1) / nth;
  6178. const int ie0 = dr * ith;
  6179. const int ie1 = MIN(ie0 + dr, ne);
  6180. if (ie0 < ie1) {
  6181. memcpy(
  6182. ((char *) dst->data + ie0*nb0),
  6183. ((char *) src0->data + ie0*nb00),
  6184. (ie1 - ie0) * ggml_type_size(src0->type));
  6185. }
  6186. }
  6187. static void ggml_compute_forward_dup_f16(
  6188. const struct ggml_compute_params * params,
  6189. const struct ggml_tensor * src0,
  6190. struct ggml_tensor * dst) {
  6191. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6193. return;
  6194. }
  6195. GGML_TENSOR_UNARY_OP_LOCALS;
  6196. const int ith = params->ith; // thread index
  6197. const int nth = params->nth; // number of threads
  6198. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6199. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6200. return;
  6201. }
  6202. // parallelize by rows
  6203. const int nr = ne01;
  6204. // number of rows per thread
  6205. const int dr = (nr + nth - 1) / nth;
  6206. // row range for this thread
  6207. const int ir0 = dr * ith;
  6208. const int ir1 = MIN(ir0 + dr, nr);
  6209. if (src0->type == dst->type &&
  6210. ne00 == ne0 &&
  6211. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6212. // copy by rows
  6213. const size_t rs = ne00*nb00;
  6214. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6215. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6216. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6217. memcpy(
  6218. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6219. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6220. rs);
  6221. }
  6222. }
  6223. }
  6224. return;
  6225. }
  6226. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6227. if (ggml_is_contiguous(dst)) {
  6228. if (nb00 == sizeof(ggml_fp16_t)) {
  6229. if (dst->type == GGML_TYPE_F16) {
  6230. size_t id = 0;
  6231. const size_t rs = ne00 * nb00;
  6232. char * dst_ptr = (char *) dst->data;
  6233. for (int i03 = 0; i03 < ne03; i03++) {
  6234. for (int i02 = 0; i02 < ne02; i02++) {
  6235. id += rs * ir0;
  6236. for (int i01 = ir0; i01 < ir1; i01++) {
  6237. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6238. memcpy(dst_ptr + id, src0_ptr, rs);
  6239. id += rs;
  6240. }
  6241. id += rs * (ne01 - ir1);
  6242. }
  6243. }
  6244. } else if (dst->type == GGML_TYPE_F32) {
  6245. size_t id = 0;
  6246. float * dst_ptr = (float *) dst->data;
  6247. for (int i03 = 0; i03 < ne03; i03++) {
  6248. for (int i02 = 0; i02 < ne02; i02++) {
  6249. id += ne00 * ir0;
  6250. for (int i01 = ir0; i01 < ir1; i01++) {
  6251. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6252. for (int i00 = 0; i00 < ne00; i00++) {
  6253. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6254. id++;
  6255. }
  6256. }
  6257. id += ne00 * (ne01 - ir1);
  6258. }
  6259. }
  6260. } else if (type_traits[dst->type].from_float) {
  6261. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6262. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6263. size_t id = 0;
  6264. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6265. char * dst_ptr = (char *) dst->data;
  6266. for (int i03 = 0; i03 < ne03; i03++) {
  6267. for (int i02 = 0; i02 < ne02; i02++) {
  6268. id += rs * ir0;
  6269. for (int i01 = ir0; i01 < ir1; i01++) {
  6270. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6271. for (int i00 = 0; i00 < ne00; i00++) {
  6272. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6273. }
  6274. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6275. id += rs;
  6276. }
  6277. id += rs * (ne01 - ir1);
  6278. }
  6279. }
  6280. } else {
  6281. GGML_ASSERT(false); // TODO: implement
  6282. }
  6283. } else {
  6284. //printf("%s: this is not optimal - fix me\n", __func__);
  6285. if (dst->type == GGML_TYPE_F32) {
  6286. size_t id = 0;
  6287. float * dst_ptr = (float *) dst->data;
  6288. for (int i03 = 0; i03 < ne03; i03++) {
  6289. for (int i02 = 0; i02 < ne02; i02++) {
  6290. id += ne00 * ir0;
  6291. for (int i01 = ir0; i01 < ir1; i01++) {
  6292. for (int i00 = 0; i00 < ne00; i00++) {
  6293. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6294. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6295. id++;
  6296. }
  6297. }
  6298. id += ne00 * (ne01 - ir1);
  6299. }
  6300. }
  6301. } else if (dst->type == GGML_TYPE_F16) {
  6302. size_t id = 0;
  6303. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6304. for (int i03 = 0; i03 < ne03; i03++) {
  6305. for (int i02 = 0; i02 < ne02; i02++) {
  6306. id += ne00 * ir0;
  6307. for (int i01 = ir0; i01 < ir1; i01++) {
  6308. for (int i00 = 0; i00 < ne00; i00++) {
  6309. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6310. dst_ptr[id] = *src0_ptr;
  6311. id++;
  6312. }
  6313. }
  6314. id += ne00 * (ne01 - ir1);
  6315. }
  6316. }
  6317. } else {
  6318. GGML_ASSERT(false); // TODO: implement
  6319. }
  6320. }
  6321. return;
  6322. }
  6323. // dst counters
  6324. int64_t i10 = 0;
  6325. int64_t i11 = 0;
  6326. int64_t i12 = 0;
  6327. int64_t i13 = 0;
  6328. if (dst->type == GGML_TYPE_F16) {
  6329. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6330. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6331. i10 += ne00 * ir0;
  6332. while (i10 >= ne0) {
  6333. i10 -= ne0;
  6334. if (++i11 == ne1) {
  6335. i11 = 0;
  6336. if (++i12 == ne2) {
  6337. i12 = 0;
  6338. if (++i13 == ne3) {
  6339. i13 = 0;
  6340. }
  6341. }
  6342. }
  6343. }
  6344. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6345. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6346. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6347. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6348. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6349. if (++i10 == ne00) {
  6350. i10 = 0;
  6351. if (++i11 == ne01) {
  6352. i11 = 0;
  6353. if (++i12 == ne02) {
  6354. i12 = 0;
  6355. if (++i13 == ne03) {
  6356. i13 = 0;
  6357. }
  6358. }
  6359. }
  6360. }
  6361. }
  6362. }
  6363. i10 += ne00 * (ne01 - ir1);
  6364. while (i10 >= ne0) {
  6365. i10 -= ne0;
  6366. if (++i11 == ne1) {
  6367. i11 = 0;
  6368. if (++i12 == ne2) {
  6369. i12 = 0;
  6370. if (++i13 == ne3) {
  6371. i13 = 0;
  6372. }
  6373. }
  6374. }
  6375. }
  6376. }
  6377. }
  6378. } else if (dst->type == GGML_TYPE_F32) {
  6379. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6380. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6381. i10 += ne00 * ir0;
  6382. while (i10 >= ne0) {
  6383. i10 -= ne0;
  6384. if (++i11 == ne1) {
  6385. i11 = 0;
  6386. if (++i12 == ne2) {
  6387. i12 = 0;
  6388. if (++i13 == ne3) {
  6389. i13 = 0;
  6390. }
  6391. }
  6392. }
  6393. }
  6394. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6395. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6396. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6397. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6398. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6399. if (++i10 == ne0) {
  6400. i10 = 0;
  6401. if (++i11 == ne1) {
  6402. i11 = 0;
  6403. if (++i12 == ne2) {
  6404. i12 = 0;
  6405. if (++i13 == ne3) {
  6406. i13 = 0;
  6407. }
  6408. }
  6409. }
  6410. }
  6411. }
  6412. }
  6413. i10 += ne00 * (ne01 - ir1);
  6414. while (i10 >= ne0) {
  6415. i10 -= ne0;
  6416. if (++i11 == ne1) {
  6417. i11 = 0;
  6418. if (++i12 == ne2) {
  6419. i12 = 0;
  6420. if (++i13 == ne3) {
  6421. i13 = 0;
  6422. }
  6423. }
  6424. }
  6425. }
  6426. }
  6427. }
  6428. } else {
  6429. GGML_ASSERT(false); // TODO: implement
  6430. }
  6431. }
  6432. static void ggml_compute_forward_dup_f32(
  6433. const struct ggml_compute_params * params,
  6434. const struct ggml_tensor * src0,
  6435. struct ggml_tensor * dst) {
  6436. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6437. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6438. return;
  6439. }
  6440. GGML_TENSOR_UNARY_OP_LOCALS;
  6441. const int ith = params->ith; // thread index
  6442. const int nth = params->nth; // number of threads
  6443. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6444. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6445. return;
  6446. }
  6447. // parallelize by rows
  6448. const int nr = ne01;
  6449. // number of rows per thread
  6450. const int dr = (nr + nth - 1) / nth;
  6451. // row range for this thread
  6452. const int ir0 = dr * ith;
  6453. const int ir1 = MIN(ir0 + dr, nr);
  6454. if (src0->type == dst->type &&
  6455. ne00 == ne0 &&
  6456. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6457. // copy by rows
  6458. const size_t rs = ne00*nb00;
  6459. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6460. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6461. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6462. memcpy(
  6463. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6464. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6465. rs);
  6466. }
  6467. }
  6468. }
  6469. return;
  6470. }
  6471. if (ggml_is_contiguous(dst)) {
  6472. // TODO: simplify
  6473. if (nb00 == sizeof(float)) {
  6474. if (dst->type == GGML_TYPE_F32) {
  6475. size_t id = 0;
  6476. const size_t rs = ne00 * nb00;
  6477. char * dst_ptr = (char *) dst->data;
  6478. for (int i03 = 0; i03 < ne03; i03++) {
  6479. for (int i02 = 0; i02 < ne02; i02++) {
  6480. id += rs * ir0;
  6481. for (int i01 = ir0; i01 < ir1; i01++) {
  6482. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6483. memcpy(dst_ptr + id, src0_ptr, rs);
  6484. id += rs;
  6485. }
  6486. id += rs * (ne01 - ir1);
  6487. }
  6488. }
  6489. } else if (type_traits[dst->type].from_float) {
  6490. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6491. size_t id = 0;
  6492. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6493. char * dst_ptr = (char *) dst->data;
  6494. for (int i03 = 0; i03 < ne03; i03++) {
  6495. for (int i02 = 0; i02 < ne02; i02++) {
  6496. id += rs * ir0;
  6497. for (int i01 = ir0; i01 < ir1; i01++) {
  6498. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6499. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6500. id += rs;
  6501. }
  6502. id += rs * (ne01 - ir1);
  6503. }
  6504. }
  6505. } else {
  6506. GGML_ASSERT(false); // TODO: implement
  6507. }
  6508. } else {
  6509. //printf("%s: this is not optimal - fix me\n", __func__);
  6510. if (dst->type == GGML_TYPE_F32) {
  6511. size_t id = 0;
  6512. float * dst_ptr = (float *) dst->data;
  6513. for (int i03 = 0; i03 < ne03; i03++) {
  6514. for (int i02 = 0; i02 < ne02; i02++) {
  6515. id += ne00 * ir0;
  6516. for (int i01 = ir0; i01 < ir1; i01++) {
  6517. for (int i00 = 0; i00 < ne00; i00++) {
  6518. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6519. dst_ptr[id] = *src0_ptr;
  6520. id++;
  6521. }
  6522. }
  6523. id += ne00 * (ne01 - ir1);
  6524. }
  6525. }
  6526. } else if (dst->type == GGML_TYPE_F16) {
  6527. size_t id = 0;
  6528. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6529. for (int i03 = 0; i03 < ne03; i03++) {
  6530. for (int i02 = 0; i02 < ne02; i02++) {
  6531. id += ne00 * ir0;
  6532. for (int i01 = ir0; i01 < ir1; i01++) {
  6533. for (int i00 = 0; i00 < ne00; i00++) {
  6534. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6535. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6536. id++;
  6537. }
  6538. }
  6539. id += ne00 * (ne01 - ir1);
  6540. }
  6541. }
  6542. } else {
  6543. GGML_ASSERT(false); // TODO: implement
  6544. }
  6545. }
  6546. return;
  6547. }
  6548. // dst counters
  6549. int64_t i10 = 0;
  6550. int64_t i11 = 0;
  6551. int64_t i12 = 0;
  6552. int64_t i13 = 0;
  6553. if (dst->type == GGML_TYPE_F32) {
  6554. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6555. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6556. i10 += ne00 * ir0;
  6557. while (i10 >= ne0) {
  6558. i10 -= ne0;
  6559. if (++i11 == ne1) {
  6560. i11 = 0;
  6561. if (++i12 == ne2) {
  6562. i12 = 0;
  6563. if (++i13 == ne3) {
  6564. i13 = 0;
  6565. }
  6566. }
  6567. }
  6568. }
  6569. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6570. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6571. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6572. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6573. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6574. if (++i10 == ne0) {
  6575. i10 = 0;
  6576. if (++i11 == ne1) {
  6577. i11 = 0;
  6578. if (++i12 == ne2) {
  6579. i12 = 0;
  6580. if (++i13 == ne3) {
  6581. i13 = 0;
  6582. }
  6583. }
  6584. }
  6585. }
  6586. }
  6587. }
  6588. i10 += ne00 * (ne01 - ir1);
  6589. while (i10 >= ne0) {
  6590. i10 -= ne0;
  6591. if (++i11 == ne1) {
  6592. i11 = 0;
  6593. if (++i12 == ne2) {
  6594. i12 = 0;
  6595. if (++i13 == ne3) {
  6596. i13 = 0;
  6597. }
  6598. }
  6599. }
  6600. }
  6601. }
  6602. }
  6603. } else if (dst->type == GGML_TYPE_F16) {
  6604. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6605. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6606. i10 += ne00 * ir0;
  6607. while (i10 >= ne0) {
  6608. i10 -= ne0;
  6609. if (++i11 == ne1) {
  6610. i11 = 0;
  6611. if (++i12 == ne2) {
  6612. i12 = 0;
  6613. if (++i13 == ne3) {
  6614. i13 = 0;
  6615. }
  6616. }
  6617. }
  6618. }
  6619. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6620. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6621. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6622. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6623. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6624. if (++i10 == ne0) {
  6625. i10 = 0;
  6626. if (++i11 == ne1) {
  6627. i11 = 0;
  6628. if (++i12 == ne2) {
  6629. i12 = 0;
  6630. if (++i13 == ne3) {
  6631. i13 = 0;
  6632. }
  6633. }
  6634. }
  6635. }
  6636. }
  6637. }
  6638. i10 += ne00 * (ne01 - ir1);
  6639. while (i10 >= ne0) {
  6640. i10 -= ne0;
  6641. if (++i11 == ne1) {
  6642. i11 = 0;
  6643. if (++i12 == ne2) {
  6644. i12 = 0;
  6645. if (++i13 == ne3) {
  6646. i13 = 0;
  6647. }
  6648. }
  6649. }
  6650. }
  6651. }
  6652. }
  6653. } else {
  6654. GGML_ASSERT(false); // TODO: implement
  6655. }
  6656. }
  6657. static void ggml_compute_forward_dup(
  6658. const struct ggml_compute_params * params,
  6659. const struct ggml_tensor * src0,
  6660. struct ggml_tensor * dst) {
  6661. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6662. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6663. return;
  6664. }
  6665. switch (src0->type) {
  6666. case GGML_TYPE_F16:
  6667. {
  6668. ggml_compute_forward_dup_f16(params, src0, dst);
  6669. } break;
  6670. case GGML_TYPE_F32:
  6671. {
  6672. ggml_compute_forward_dup_f32(params, src0, dst);
  6673. } break;
  6674. default:
  6675. {
  6676. GGML_ASSERT(false);
  6677. } break;
  6678. }
  6679. }
  6680. // ggml_compute_forward_add
  6681. static void ggml_compute_forward_add_f32(
  6682. const struct ggml_compute_params * params,
  6683. const struct ggml_tensor * src0,
  6684. const struct ggml_tensor * src1,
  6685. struct ggml_tensor * dst) {
  6686. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6688. return;
  6689. }
  6690. const int ith = params->ith;
  6691. const int nth = params->nth;
  6692. const int nr = ggml_nrows(src0);
  6693. GGML_TENSOR_BINARY_OP_LOCALS;
  6694. GGML_ASSERT( nb0 == sizeof(float));
  6695. GGML_ASSERT(nb00 == sizeof(float));
  6696. // rows per thread
  6697. const int dr = (nr + nth - 1)/nth;
  6698. // row range for this thread
  6699. const int ir0 = dr*ith;
  6700. const int ir1 = MIN(ir0 + dr, nr);
  6701. if (nb10 == sizeof(float)) {
  6702. for (int ir = ir0; ir < ir1; ++ir) {
  6703. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6704. const int64_t i03 = ir/(ne02*ne01);
  6705. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6706. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6707. const int64_t i13 = i03 % ne13;
  6708. const int64_t i12 = i02 % ne12;
  6709. const int64_t i11 = i01 % ne11;
  6710. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6711. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6712. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6713. #ifdef GGML_USE_ACCELERATE
  6714. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6715. #else
  6716. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6717. #endif
  6718. // }
  6719. // }
  6720. }
  6721. } else {
  6722. // src1 is not contiguous
  6723. for (int ir = ir0; ir < ir1; ++ir) {
  6724. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6725. const int64_t i03 = ir/(ne02*ne01);
  6726. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6727. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6728. const int64_t i13 = i03 % ne13;
  6729. const int64_t i12 = i02 % ne12;
  6730. const int64_t i11 = i01 % ne11;
  6731. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6732. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6733. for (int i0 = 0; i0 < ne0; i0++) {
  6734. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6735. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6736. }
  6737. }
  6738. }
  6739. }
  6740. static void ggml_compute_forward_add_f16_f32(
  6741. const struct ggml_compute_params * params,
  6742. const struct ggml_tensor * src0,
  6743. const struct ggml_tensor * src1,
  6744. struct ggml_tensor * dst) {
  6745. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6746. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6747. return;
  6748. }
  6749. const int ith = params->ith;
  6750. const int nth = params->nth;
  6751. const int nr = ggml_nrows(src0);
  6752. GGML_TENSOR_BINARY_OP_LOCALS;
  6753. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6754. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6755. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6756. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6757. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6758. // rows per thread
  6759. const int dr = (nr + nth - 1)/nth;
  6760. // row range for this thread
  6761. const int ir0 = dr*ith;
  6762. const int ir1 = MIN(ir0 + dr, nr);
  6763. if (nb10 == sizeof(float)) {
  6764. for (int ir = ir0; ir < ir1; ++ir) {
  6765. // src0, src1 and dst are same shape => same indices
  6766. const int i3 = ir/(ne2*ne1);
  6767. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6768. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6769. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6770. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6771. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6772. for (int i = 0; i < ne0; i++) {
  6773. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6774. }
  6775. }
  6776. }
  6777. else {
  6778. // src1 is not contiguous
  6779. GGML_ASSERT(false);
  6780. }
  6781. }
  6782. static void ggml_compute_forward_add_f16_f16(
  6783. const struct ggml_compute_params * params,
  6784. const struct ggml_tensor * src0,
  6785. const struct ggml_tensor * src1,
  6786. struct ggml_tensor * dst) {
  6787. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6788. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6789. return;
  6790. }
  6791. const int ith = params->ith;
  6792. const int nth = params->nth;
  6793. const int nr = ggml_nrows(src0);
  6794. GGML_TENSOR_BINARY_OP_LOCALS;
  6795. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6796. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6797. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6798. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6799. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6800. // rows per thread
  6801. const int dr = (nr + nth - 1)/nth;
  6802. // row range for this thread
  6803. const int ir0 = dr*ith;
  6804. const int ir1 = MIN(ir0 + dr, nr);
  6805. if (nb10 == sizeof(ggml_fp16_t)) {
  6806. for (int ir = ir0; ir < ir1; ++ir) {
  6807. // src0, src1 and dst are same shape => same indices
  6808. const int i3 = ir/(ne2*ne1);
  6809. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6810. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6811. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6812. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6813. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6814. for (int i = 0; i < ne0; i++) {
  6815. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6816. }
  6817. }
  6818. }
  6819. else {
  6820. // src1 is not contiguous
  6821. GGML_ASSERT(false);
  6822. }
  6823. }
  6824. static void ggml_compute_forward_add_q_f32(
  6825. const struct ggml_compute_params * params,
  6826. const struct ggml_tensor * src0,
  6827. const struct ggml_tensor * src1,
  6828. struct ggml_tensor * dst) {
  6829. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6830. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6831. return;
  6832. }
  6833. const int nr = ggml_nrows(src0);
  6834. GGML_TENSOR_BINARY_OP_LOCALS;
  6835. const int ith = params->ith;
  6836. const int nth = params->nth;
  6837. const enum ggml_type type = src0->type;
  6838. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6839. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6840. // we don't support permuted src0 or src1
  6841. GGML_ASSERT(nb00 == ggml_type_size(type));
  6842. GGML_ASSERT(nb10 == sizeof(float));
  6843. // dst cannot be transposed or permuted
  6844. GGML_ASSERT(nb0 <= nb1);
  6845. GGML_ASSERT(nb1 <= nb2);
  6846. GGML_ASSERT(nb2 <= nb3);
  6847. GGML_ASSERT(ggml_is_quantized(src0->type));
  6848. GGML_ASSERT(dst->type == src0->type);
  6849. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6850. // rows per thread
  6851. const int dr = (nr + nth - 1)/nth;
  6852. // row range for this thread
  6853. const int ir0 = dr*ith;
  6854. const int ir1 = MIN(ir0 + dr, nr);
  6855. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6856. for (int ir = ir0; ir < ir1; ++ir) {
  6857. // src0 indices
  6858. const int i03 = ir/(ne02*ne01);
  6859. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6860. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6861. // src1 and dst are same shape as src0 => same indices
  6862. const int i13 = i03;
  6863. const int i12 = i02;
  6864. const int i11 = i01;
  6865. const int i3 = i03;
  6866. const int i2 = i02;
  6867. const int i1 = i01;
  6868. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6869. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6870. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6871. assert(ne00 % 32 == 0);
  6872. // unquantize row from src0 to temp buffer
  6873. dequantize_row_q(src0_row, wdata, ne00);
  6874. // add src1
  6875. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6876. // quantize row to dst
  6877. quantize_row_q(wdata, dst_row, ne00);
  6878. }
  6879. }
  6880. static void ggml_compute_forward_add(
  6881. const struct ggml_compute_params * params,
  6882. const struct ggml_tensor * src0,
  6883. const struct ggml_tensor * src1,
  6884. struct ggml_tensor * dst) {
  6885. switch (src0->type) {
  6886. case GGML_TYPE_F32:
  6887. {
  6888. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6889. } break;
  6890. case GGML_TYPE_F16:
  6891. {
  6892. if (src1->type == GGML_TYPE_F16) {
  6893. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6894. }
  6895. else if (src1->type == GGML_TYPE_F32) {
  6896. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6897. }
  6898. else {
  6899. GGML_ASSERT(false);
  6900. }
  6901. } break;
  6902. case GGML_TYPE_Q4_0:
  6903. case GGML_TYPE_Q4_1:
  6904. case GGML_TYPE_Q5_0:
  6905. case GGML_TYPE_Q5_1:
  6906. case GGML_TYPE_Q8_0:
  6907. case GGML_TYPE_Q2_K:
  6908. case GGML_TYPE_Q3_K:
  6909. case GGML_TYPE_Q4_K:
  6910. case GGML_TYPE_Q5_K:
  6911. case GGML_TYPE_Q6_K:
  6912. {
  6913. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6914. } break;
  6915. default:
  6916. {
  6917. GGML_ASSERT(false);
  6918. } break;
  6919. }
  6920. }
  6921. // ggml_compute_forward_add1
  6922. static void ggml_compute_forward_add1_f32(
  6923. const struct ggml_compute_params * params,
  6924. const struct ggml_tensor * src0,
  6925. const struct ggml_tensor * src1,
  6926. struct ggml_tensor * dst) {
  6927. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6928. GGML_ASSERT(ggml_is_scalar(src1));
  6929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6930. return;
  6931. }
  6932. const int ith = params->ith;
  6933. const int nth = params->nth;
  6934. const int nr = ggml_nrows(src0);
  6935. GGML_TENSOR_UNARY_OP_LOCALS;
  6936. GGML_ASSERT( nb0 == sizeof(float));
  6937. GGML_ASSERT(nb00 == sizeof(float));
  6938. // rows per thread
  6939. const int dr = (nr + nth - 1)/nth;
  6940. // row range for this thread
  6941. const int ir0 = dr*ith;
  6942. const int ir1 = MIN(ir0 + dr, nr);
  6943. for (int ir = ir0; ir < ir1; ++ir) {
  6944. // src0 and dst are same shape => same indices
  6945. const int i3 = ir/(ne2*ne1);
  6946. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6947. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6948. #ifdef GGML_USE_ACCELERATE
  6949. UNUSED(ggml_vec_add1_f32);
  6950. vDSP_vadd(
  6951. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6952. (float *) ((char *) src1->data), 0,
  6953. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6954. ne0);
  6955. #else
  6956. ggml_vec_add1_f32(ne0,
  6957. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6958. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6959. *(float *) src1->data);
  6960. #endif
  6961. }
  6962. }
  6963. static void ggml_compute_forward_add1_f16_f32(
  6964. const struct ggml_compute_params * params,
  6965. const struct ggml_tensor * src0,
  6966. const struct ggml_tensor * src1,
  6967. struct ggml_tensor * dst) {
  6968. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6969. GGML_ASSERT(ggml_is_scalar(src1));
  6970. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6971. return;
  6972. }
  6973. // scalar to add
  6974. const float v = *(float *) src1->data;
  6975. const int ith = params->ith;
  6976. const int nth = params->nth;
  6977. const int nr = ggml_nrows(src0);
  6978. GGML_TENSOR_UNARY_OP_LOCALS;
  6979. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6980. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6981. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6982. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6983. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6984. // rows per thread
  6985. const int dr = (nr + nth - 1)/nth;
  6986. // row range for this thread
  6987. const int ir0 = dr*ith;
  6988. const int ir1 = MIN(ir0 + dr, nr);
  6989. for (int ir = ir0; ir < ir1; ++ir) {
  6990. // src0 and dst are same shape => same indices
  6991. const int i3 = ir/(ne2*ne1);
  6992. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6993. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6994. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6995. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6996. for (int i = 0; i < ne0; i++) {
  6997. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6998. }
  6999. }
  7000. }
  7001. static void ggml_compute_forward_add1_f16_f16(
  7002. const struct ggml_compute_params * params,
  7003. const struct ggml_tensor * src0,
  7004. const struct ggml_tensor * src1,
  7005. struct ggml_tensor * dst) {
  7006. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7007. GGML_ASSERT(ggml_is_scalar(src1));
  7008. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7009. return;
  7010. }
  7011. // scalar to add
  7012. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7013. const int ith = params->ith;
  7014. const int nth = params->nth;
  7015. const int nr = ggml_nrows(src0);
  7016. GGML_TENSOR_UNARY_OP_LOCALS;
  7017. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7018. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7019. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7020. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7021. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7022. // rows per thread
  7023. const int dr = (nr + nth - 1)/nth;
  7024. // row range for this thread
  7025. const int ir0 = dr*ith;
  7026. const int ir1 = MIN(ir0 + dr, nr);
  7027. for (int ir = ir0; ir < ir1; ++ir) {
  7028. // src0 and dst are same shape => same indices
  7029. const int i3 = ir/(ne2*ne1);
  7030. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7031. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7032. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7033. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7034. for (int i = 0; i < ne0; i++) {
  7035. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7036. }
  7037. }
  7038. }
  7039. static void ggml_compute_forward_add1_q_f32(
  7040. const struct ggml_compute_params * params,
  7041. const struct ggml_tensor * src0,
  7042. const struct ggml_tensor * src1,
  7043. struct ggml_tensor * dst) {
  7044. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7045. GGML_ASSERT(ggml_is_scalar(src1));
  7046. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7047. return;
  7048. }
  7049. // scalar to add
  7050. const float v = *(float *) src1->data;
  7051. const int ith = params->ith;
  7052. const int nth = params->nth;
  7053. const int nr = ggml_nrows(src0);
  7054. GGML_TENSOR_UNARY_OP_LOCALS;
  7055. const enum ggml_type type = src0->type;
  7056. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7057. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7058. // we don't support permuted src0
  7059. GGML_ASSERT(nb00 == ggml_type_size(type));
  7060. // dst cannot be transposed or permuted
  7061. GGML_ASSERT(nb0 <= nb1);
  7062. GGML_ASSERT(nb1 <= nb2);
  7063. GGML_ASSERT(nb2 <= nb3);
  7064. GGML_ASSERT(ggml_is_quantized(src0->type));
  7065. GGML_ASSERT(dst->type == src0->type);
  7066. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7067. // rows per thread
  7068. const int dr = (nr + nth - 1)/nth;
  7069. // row range for this thread
  7070. const int ir0 = dr*ith;
  7071. const int ir1 = MIN(ir0 + dr, nr);
  7072. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7073. for (int ir = ir0; ir < ir1; ++ir) {
  7074. // src0 and dst are same shape => same indices
  7075. const int i3 = ir/(ne2*ne1);
  7076. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7077. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7078. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7079. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7080. assert(ne0 % 32 == 0);
  7081. // unquantize row from src0 to temp buffer
  7082. dequantize_row_q(src0_row, wdata, ne0);
  7083. // add src1
  7084. ggml_vec_acc1_f32(ne0, wdata, v);
  7085. // quantize row to dst
  7086. quantize_row_q(wdata, dst_row, ne0);
  7087. }
  7088. }
  7089. static void ggml_compute_forward_add1(
  7090. const struct ggml_compute_params * params,
  7091. const struct ggml_tensor * src0,
  7092. const struct ggml_tensor * src1,
  7093. struct ggml_tensor * dst) {
  7094. switch (src0->type) {
  7095. case GGML_TYPE_F32:
  7096. {
  7097. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7098. } break;
  7099. case GGML_TYPE_F16:
  7100. {
  7101. if (src1->type == GGML_TYPE_F16) {
  7102. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7103. }
  7104. else if (src1->type == GGML_TYPE_F32) {
  7105. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7106. }
  7107. else {
  7108. GGML_ASSERT(false);
  7109. }
  7110. } break;
  7111. case GGML_TYPE_Q4_0:
  7112. case GGML_TYPE_Q4_1:
  7113. case GGML_TYPE_Q5_0:
  7114. case GGML_TYPE_Q5_1:
  7115. case GGML_TYPE_Q8_0:
  7116. case GGML_TYPE_Q8_1:
  7117. case GGML_TYPE_Q2_K:
  7118. case GGML_TYPE_Q3_K:
  7119. case GGML_TYPE_Q4_K:
  7120. case GGML_TYPE_Q5_K:
  7121. case GGML_TYPE_Q6_K:
  7122. {
  7123. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7124. } break;
  7125. default:
  7126. {
  7127. GGML_ASSERT(false);
  7128. } break;
  7129. }
  7130. }
  7131. // ggml_compute_forward_acc
  7132. static void ggml_compute_forward_acc_f32(
  7133. const struct ggml_compute_params * params,
  7134. const struct ggml_tensor * src0,
  7135. const struct ggml_tensor * src1,
  7136. struct ggml_tensor * dst) {
  7137. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7138. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7139. // view src0 and dst with these strides and data offset inbytes during acc
  7140. // nb0 is implicitely element_size because src0 and dst are contiguous
  7141. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7142. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7143. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7144. size_t offset = ((int32_t *) dst->op_params)[3];
  7145. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7146. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7147. // memcpy needs to be synchronized across threads to avoid race conditions.
  7148. // => do it in INIT phase
  7149. memcpy(
  7150. ((char *) dst->data),
  7151. ((char *) src0->data),
  7152. ggml_nbytes(dst));
  7153. }
  7154. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7155. return;
  7156. }
  7157. const int ith = params->ith;
  7158. const int nth = params->nth;
  7159. const int nr = ggml_nrows(src1);
  7160. const int nc = src1->ne[0];
  7161. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7162. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7163. // src0 and dst as viewed during acc
  7164. const size_t nb0 = ggml_element_size(src0);
  7165. const size_t nb00 = nb0;
  7166. const size_t nb01 = nb1;
  7167. const size_t nb02 = nb2;
  7168. const size_t nb03 = nb3;
  7169. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7170. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7171. GGML_ASSERT(nb10 == sizeof(float));
  7172. // rows per thread
  7173. const int dr = (nr + nth - 1)/nth;
  7174. // row range for this thread
  7175. const int ir0 = dr*ith;
  7176. const int ir1 = MIN(ir0 + dr, nr);
  7177. for (int ir = ir0; ir < ir1; ++ir) {
  7178. // src0 and dst are viewed with shape of src1 and offset
  7179. // => same indices
  7180. const int i3 = ir/(ne12*ne11);
  7181. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7182. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7183. #ifdef GGML_USE_ACCELERATE
  7184. vDSP_vadd(
  7185. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7186. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7187. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7188. #else
  7189. ggml_vec_add_f32(nc,
  7190. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7191. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7192. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7193. #endif
  7194. }
  7195. }
  7196. static void ggml_compute_forward_acc(
  7197. const struct ggml_compute_params * params,
  7198. const struct ggml_tensor * src0,
  7199. const struct ggml_tensor * src1,
  7200. struct ggml_tensor * dst) {
  7201. switch (src0->type) {
  7202. case GGML_TYPE_F32:
  7203. {
  7204. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7205. } break;
  7206. case GGML_TYPE_F16:
  7207. case GGML_TYPE_Q4_0:
  7208. case GGML_TYPE_Q4_1:
  7209. case GGML_TYPE_Q5_0:
  7210. case GGML_TYPE_Q5_1:
  7211. case GGML_TYPE_Q8_0:
  7212. case GGML_TYPE_Q8_1:
  7213. case GGML_TYPE_Q2_K:
  7214. case GGML_TYPE_Q3_K:
  7215. case GGML_TYPE_Q4_K:
  7216. case GGML_TYPE_Q5_K:
  7217. case GGML_TYPE_Q6_K:
  7218. default:
  7219. {
  7220. GGML_ASSERT(false);
  7221. } break;
  7222. }
  7223. }
  7224. // ggml_compute_forward_sub
  7225. static void ggml_compute_forward_sub_f32(
  7226. const struct ggml_compute_params * params,
  7227. const struct ggml_tensor * src0,
  7228. const struct ggml_tensor * src1,
  7229. struct ggml_tensor * dst) {
  7230. assert(params->ith == 0);
  7231. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7232. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7233. return;
  7234. }
  7235. const int nr = ggml_nrows(src0);
  7236. GGML_TENSOR_BINARY_OP_LOCALS;
  7237. GGML_ASSERT( nb0 == sizeof(float));
  7238. GGML_ASSERT(nb00 == sizeof(float));
  7239. if (nb10 == sizeof(float)) {
  7240. for (int ir = 0; ir < nr; ++ir) {
  7241. // src0, src1 and dst are same shape => same indices
  7242. const int i3 = ir/(ne2*ne1);
  7243. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7244. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7245. #ifdef GGML_USE_ACCELERATE
  7246. vDSP_vsub(
  7247. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7248. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7249. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7250. ne0);
  7251. #else
  7252. ggml_vec_sub_f32(ne0,
  7253. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7254. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7255. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7256. #endif
  7257. // }
  7258. // }
  7259. }
  7260. } else {
  7261. // src1 is not contiguous
  7262. for (int ir = 0; ir < nr; ++ir) {
  7263. // src0, src1 and dst are same shape => same indices
  7264. const int i3 = ir/(ne2*ne1);
  7265. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7266. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7267. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7268. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7269. for (int i0 = 0; i0 < ne0; i0++) {
  7270. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7271. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7272. }
  7273. }
  7274. }
  7275. }
  7276. static void ggml_compute_forward_sub(
  7277. const struct ggml_compute_params * params,
  7278. const struct ggml_tensor * src0,
  7279. const struct ggml_tensor * src1,
  7280. struct ggml_tensor * dst) {
  7281. switch (src0->type) {
  7282. case GGML_TYPE_F32:
  7283. {
  7284. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7285. } break;
  7286. default:
  7287. {
  7288. GGML_ASSERT(false);
  7289. } break;
  7290. }
  7291. }
  7292. // ggml_compute_forward_mul
  7293. static void ggml_compute_forward_mul_f32(
  7294. const struct ggml_compute_params * params,
  7295. const struct ggml_tensor * src0,
  7296. const struct ggml_tensor * src1,
  7297. struct ggml_tensor * dst) {
  7298. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7300. return;
  7301. }
  7302. const int ith = params->ith;
  7303. const int nth = params->nth;
  7304. #ifdef GGML_USE_CLBLAST
  7305. if (src1->backend == GGML_BACKEND_GPU) {
  7306. if (ith == 0) {
  7307. ggml_cl_mul(src0, src1, dst);
  7308. }
  7309. return;
  7310. }
  7311. #endif
  7312. const int64_t nr = ggml_nrows(src0);
  7313. GGML_TENSOR_BINARY_OP_LOCALS;
  7314. GGML_ASSERT( nb0 == sizeof(float));
  7315. GGML_ASSERT(nb00 == sizeof(float));
  7316. GGML_ASSERT(ne00 == ne10);
  7317. if (nb10 == sizeof(float)) {
  7318. for (int64_t ir = ith; ir < nr; ir += nth) {
  7319. // src0 and dst are same shape => same indices
  7320. const int64_t i03 = ir/(ne02*ne01);
  7321. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7322. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7323. const int64_t i13 = i03 % ne13;
  7324. const int64_t i12 = i02 % ne12;
  7325. const int64_t i11 = i01 % ne11;
  7326. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7327. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7328. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7329. #ifdef GGML_USE_ACCELERATE
  7330. UNUSED(ggml_vec_mul_f32);
  7331. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7332. #else
  7333. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7334. #endif
  7335. // }
  7336. // }
  7337. }
  7338. } else {
  7339. // src1 is not contiguous
  7340. for (int64_t ir = ith; ir < nr; ir += nth) {
  7341. // src0 and dst are same shape => same indices
  7342. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7343. const int64_t i03 = ir/(ne02*ne01);
  7344. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7345. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7346. const int64_t i13 = i03 % ne13;
  7347. const int64_t i12 = i02 % ne12;
  7348. const int64_t i11 = i01 % ne11;
  7349. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7350. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7351. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7352. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7353. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7354. }
  7355. }
  7356. }
  7357. }
  7358. static void ggml_compute_forward_mul(
  7359. const struct ggml_compute_params * params,
  7360. const struct ggml_tensor * src0,
  7361. const struct ggml_tensor * src1,
  7362. struct ggml_tensor * dst) {
  7363. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7364. switch (src0->type) {
  7365. case GGML_TYPE_F32:
  7366. {
  7367. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7368. } break;
  7369. default:
  7370. {
  7371. GGML_ASSERT(false);
  7372. } break;
  7373. }
  7374. }
  7375. // ggml_compute_forward_div
  7376. static void ggml_compute_forward_div_f32(
  7377. const struct ggml_compute_params * params,
  7378. const struct ggml_tensor * src0,
  7379. const struct ggml_tensor * src1,
  7380. struct ggml_tensor * dst) {
  7381. assert(params->ith == 0);
  7382. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7383. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7384. return;
  7385. }
  7386. const int nr = ggml_nrows(src0);
  7387. GGML_TENSOR_BINARY_OP_LOCALS;
  7388. GGML_ASSERT( nb0 == sizeof(float));
  7389. GGML_ASSERT(nb00 == sizeof(float));
  7390. if (nb10 == sizeof(float)) {
  7391. for (int ir = 0; ir < nr; ++ir) {
  7392. // src0, src1 and dst are same shape => same indices
  7393. const int i3 = ir/(ne2*ne1);
  7394. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7395. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7396. #ifdef GGML_USE_ACCELERATE
  7397. vDSP_vdiv(
  7398. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7399. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7400. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7401. ne0);
  7402. #else
  7403. ggml_vec_div_f32(ne0,
  7404. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7405. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7406. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7407. #endif
  7408. // }
  7409. // }
  7410. }
  7411. } else {
  7412. // src1 is not contiguous
  7413. for (int ir = 0; ir < nr; ++ir) {
  7414. // src0, src1 and dst are same shape => same indices
  7415. const int i3 = ir/(ne2*ne1);
  7416. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7417. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7418. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7419. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7420. for (int i0 = 0; i0 < ne0; i0++) {
  7421. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7422. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7423. }
  7424. }
  7425. }
  7426. }
  7427. static void ggml_compute_forward_div(
  7428. const struct ggml_compute_params * params,
  7429. const struct ggml_tensor * src0,
  7430. const struct ggml_tensor * src1,
  7431. struct ggml_tensor * dst) {
  7432. switch (src0->type) {
  7433. case GGML_TYPE_F32:
  7434. {
  7435. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7436. } break;
  7437. default:
  7438. {
  7439. GGML_ASSERT(false);
  7440. } break;
  7441. }
  7442. }
  7443. // ggml_compute_forward_sqr
  7444. static void ggml_compute_forward_sqr_f32(
  7445. const struct ggml_compute_params * params,
  7446. const struct ggml_tensor * src0,
  7447. struct ggml_tensor * dst) {
  7448. assert(params->ith == 0);
  7449. assert(ggml_are_same_shape(src0, dst));
  7450. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7451. return;
  7452. }
  7453. const int n = ggml_nrows(src0);
  7454. const int nc = src0->ne[0];
  7455. assert( dst->nb[0] == sizeof(float));
  7456. assert(src0->nb[0] == sizeof(float));
  7457. for (int i = 0; i < n; i++) {
  7458. ggml_vec_sqr_f32(nc,
  7459. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7460. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7461. }
  7462. }
  7463. static void ggml_compute_forward_sqr(
  7464. const struct ggml_compute_params * params,
  7465. const struct ggml_tensor * src0,
  7466. struct ggml_tensor * dst) {
  7467. switch (src0->type) {
  7468. case GGML_TYPE_F32:
  7469. {
  7470. ggml_compute_forward_sqr_f32(params, src0, dst);
  7471. } break;
  7472. default:
  7473. {
  7474. GGML_ASSERT(false);
  7475. } break;
  7476. }
  7477. }
  7478. // ggml_compute_forward_sqrt
  7479. static void ggml_compute_forward_sqrt_f32(
  7480. const struct ggml_compute_params * params,
  7481. const struct ggml_tensor * src0,
  7482. struct ggml_tensor * dst) {
  7483. assert(params->ith == 0);
  7484. assert(ggml_are_same_shape(src0, dst));
  7485. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7486. return;
  7487. }
  7488. const int n = ggml_nrows(src0);
  7489. const int nc = src0->ne[0];
  7490. assert( dst->nb[0] == sizeof(float));
  7491. assert(src0->nb[0] == sizeof(float));
  7492. for (int i = 0; i < n; i++) {
  7493. ggml_vec_sqrt_f32(nc,
  7494. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7495. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7496. }
  7497. }
  7498. static void ggml_compute_forward_sqrt(
  7499. const struct ggml_compute_params * params,
  7500. const struct ggml_tensor * src0,
  7501. struct ggml_tensor * dst) {
  7502. switch (src0->type) {
  7503. case GGML_TYPE_F32:
  7504. {
  7505. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7506. } break;
  7507. default:
  7508. {
  7509. GGML_ASSERT(false);
  7510. } break;
  7511. }
  7512. }
  7513. // ggml_compute_forward_log
  7514. static void ggml_compute_forward_log_f32(
  7515. const struct ggml_compute_params * params,
  7516. const struct ggml_tensor * src0,
  7517. struct ggml_tensor * dst) {
  7518. GGML_ASSERT(params->ith == 0);
  7519. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7520. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7521. return;
  7522. }
  7523. const int n = ggml_nrows(src0);
  7524. const int nc = src0->ne[0];
  7525. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7526. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7527. for (int i = 0; i < n; i++) {
  7528. ggml_vec_log_f32(nc,
  7529. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7530. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7531. }
  7532. }
  7533. static void ggml_compute_forward_log(
  7534. const struct ggml_compute_params * params,
  7535. const struct ggml_tensor * src0,
  7536. struct ggml_tensor * dst) {
  7537. switch (src0->type) {
  7538. case GGML_TYPE_F32:
  7539. {
  7540. ggml_compute_forward_log_f32(params, src0, dst);
  7541. } break;
  7542. default:
  7543. {
  7544. GGML_ASSERT(false);
  7545. } break;
  7546. }
  7547. }
  7548. // ggml_compute_forward_sum
  7549. static void ggml_compute_forward_sum_f32(
  7550. const struct ggml_compute_params * params,
  7551. const struct ggml_tensor * src0,
  7552. struct ggml_tensor * dst) {
  7553. assert(params->ith == 0);
  7554. assert(ggml_is_scalar(dst));
  7555. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7556. return;
  7557. }
  7558. assert(ggml_is_scalar(dst));
  7559. assert(src0->nb[0] == sizeof(float));
  7560. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7561. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7562. ggml_float sum = 0;
  7563. ggml_float row_sum = 0;
  7564. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7565. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7566. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7567. ggml_vec_sum_f32_ggf(ne00,
  7568. &row_sum,
  7569. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7570. sum += row_sum;
  7571. }
  7572. }
  7573. }
  7574. ((float *) dst->data)[0] = sum;
  7575. }
  7576. static void ggml_compute_forward_sum_f16(
  7577. const struct ggml_compute_params * params,
  7578. const struct ggml_tensor * src0,
  7579. struct ggml_tensor * dst) {
  7580. assert(params->ith == 0);
  7581. assert(ggml_is_scalar(dst));
  7582. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7583. return;
  7584. }
  7585. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7586. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7587. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7588. float sum = 0;
  7589. float row_sum = 0;
  7590. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7591. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7592. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7593. ggml_vec_sum_f16_ggf(ne00,
  7594. &row_sum,
  7595. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7596. sum += row_sum;
  7597. }
  7598. }
  7599. }
  7600. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7601. }
  7602. static void ggml_compute_forward_sum(
  7603. const struct ggml_compute_params * params,
  7604. const struct ggml_tensor * src0,
  7605. struct ggml_tensor * dst) {
  7606. switch (src0->type) {
  7607. case GGML_TYPE_F32:
  7608. {
  7609. ggml_compute_forward_sum_f32(params, src0, dst);
  7610. } break;
  7611. case GGML_TYPE_F16:
  7612. {
  7613. ggml_compute_forward_sum_f16(params, src0, dst);
  7614. } break;
  7615. default:
  7616. {
  7617. GGML_ASSERT(false);
  7618. } break;
  7619. }
  7620. }
  7621. // ggml_compute_forward_sum_rows
  7622. static void ggml_compute_forward_sum_rows_f32(
  7623. const struct ggml_compute_params * params,
  7624. const struct ggml_tensor * src0,
  7625. struct ggml_tensor * dst) {
  7626. GGML_ASSERT(params->ith == 0);
  7627. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7628. return;
  7629. }
  7630. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7631. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7632. GGML_TENSOR_UNARY_OP_LOCALS;
  7633. GGML_ASSERT(ne0 == 1);
  7634. GGML_ASSERT(ne1 == ne01);
  7635. GGML_ASSERT(ne2 == ne02);
  7636. GGML_ASSERT(ne3 == ne03);
  7637. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7638. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7639. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7640. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7641. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7642. float row_sum = 0;
  7643. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7644. dst_row[0] = row_sum;
  7645. }
  7646. }
  7647. }
  7648. }
  7649. static void ggml_compute_forward_sum_rows(
  7650. const struct ggml_compute_params * params,
  7651. const struct ggml_tensor * src0,
  7652. struct ggml_tensor * dst) {
  7653. switch (src0->type) {
  7654. case GGML_TYPE_F32:
  7655. {
  7656. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7657. } break;
  7658. default:
  7659. {
  7660. GGML_ASSERT(false);
  7661. } break;
  7662. }
  7663. }
  7664. // ggml_compute_forward_mean
  7665. static void ggml_compute_forward_mean_f32(
  7666. const struct ggml_compute_params * params,
  7667. const struct ggml_tensor * src0,
  7668. struct ggml_tensor * dst) {
  7669. assert(params->ith == 0);
  7670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7671. return;
  7672. }
  7673. assert(src0->nb[0] == sizeof(float));
  7674. GGML_TENSOR_UNARY_OP_LOCALS;
  7675. assert(ne0 == 1);
  7676. assert(ne1 == ne01);
  7677. assert(ne2 == ne02);
  7678. assert(ne3 == ne03);
  7679. UNUSED(ne0);
  7680. UNUSED(ne1);
  7681. UNUSED(ne2);
  7682. UNUSED(ne3);
  7683. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7684. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7685. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7686. ggml_vec_sum_f32(ne00,
  7687. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7688. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7689. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7690. }
  7691. }
  7692. }
  7693. }
  7694. static void ggml_compute_forward_mean(
  7695. const struct ggml_compute_params * params,
  7696. const struct ggml_tensor * src0,
  7697. struct ggml_tensor * dst) {
  7698. switch (src0->type) {
  7699. case GGML_TYPE_F32:
  7700. {
  7701. ggml_compute_forward_mean_f32(params, src0, dst);
  7702. } break;
  7703. default:
  7704. {
  7705. GGML_ASSERT(false);
  7706. } break;
  7707. }
  7708. }
  7709. // ggml_compute_forward_argmax
  7710. static void ggml_compute_forward_argmax_f32(
  7711. const struct ggml_compute_params * params,
  7712. const struct ggml_tensor * src0,
  7713. struct ggml_tensor * dst) {
  7714. assert(params->ith == 0);
  7715. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7716. return;
  7717. }
  7718. assert(src0->nb[0] == sizeof(float));
  7719. assert(dst->nb[0] == sizeof(float));
  7720. const int64_t ne00 = src0->ne[0];
  7721. const int64_t ne01 = src0->ne[1];
  7722. const size_t nb01 = src0->nb[1];
  7723. const size_t nb0 = dst->nb[0];
  7724. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7725. float * src = (float *) ((char *) src0->data + i1*nb01);
  7726. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7727. int v = 0;
  7728. ggml_vec_argmax_f32(ne00, &v, src);
  7729. dst_[0] = v;
  7730. }
  7731. }
  7732. static void ggml_compute_forward_argmax(
  7733. const struct ggml_compute_params * params,
  7734. const struct ggml_tensor * src0,
  7735. struct ggml_tensor * dst) {
  7736. switch (src0->type) {
  7737. case GGML_TYPE_F32:
  7738. {
  7739. ggml_compute_forward_argmax_f32(params, src0, dst);
  7740. } break;
  7741. default:
  7742. {
  7743. GGML_ASSERT(false);
  7744. } break;
  7745. }
  7746. }
  7747. // ggml_compute_forward_repeat
  7748. static void ggml_compute_forward_repeat_f32(
  7749. const struct ggml_compute_params * params,
  7750. const struct ggml_tensor * src0,
  7751. struct ggml_tensor * dst) {
  7752. GGML_ASSERT(params->ith == 0);
  7753. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7754. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7755. return;
  7756. }
  7757. GGML_TENSOR_UNARY_OP_LOCALS;
  7758. // guaranteed to be an integer due to the check in ggml_can_repeat
  7759. const int nr0 = (int)(ne0/ne00);
  7760. const int nr1 = (int)(ne1/ne01);
  7761. const int nr2 = (int)(ne2/ne02);
  7762. const int nr3 = (int)(ne3/ne03);
  7763. // TODO: support for transposed / permuted tensors
  7764. GGML_ASSERT(nb0 == sizeof(float));
  7765. GGML_ASSERT(nb00 == sizeof(float));
  7766. // TODO: maybe this is not optimal?
  7767. for (int i3 = 0; i3 < nr3; i3++) {
  7768. for (int k3 = 0; k3 < ne03; k3++) {
  7769. for (int i2 = 0; i2 < nr2; i2++) {
  7770. for (int k2 = 0; k2 < ne02; k2++) {
  7771. for (int i1 = 0; i1 < nr1; i1++) {
  7772. for (int k1 = 0; k1 < ne01; k1++) {
  7773. for (int i0 = 0; i0 < nr0; i0++) {
  7774. ggml_vec_cpy_f32(ne00,
  7775. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7776. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7777. }
  7778. }
  7779. }
  7780. }
  7781. }
  7782. }
  7783. }
  7784. }
  7785. static void ggml_compute_forward_repeat(
  7786. const struct ggml_compute_params * params,
  7787. const struct ggml_tensor * src0,
  7788. struct ggml_tensor * dst) {
  7789. switch (src0->type) {
  7790. case GGML_TYPE_F32:
  7791. {
  7792. ggml_compute_forward_repeat_f32(params, src0, dst);
  7793. } break;
  7794. default:
  7795. {
  7796. GGML_ASSERT(false);
  7797. } break;
  7798. }
  7799. }
  7800. // ggml_compute_forward_repeat_back
  7801. static void ggml_compute_forward_repeat_back_f32(
  7802. const struct ggml_compute_params * params,
  7803. const struct ggml_tensor * src0,
  7804. struct ggml_tensor * dst) {
  7805. GGML_ASSERT(params->ith == 0);
  7806. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7808. return;
  7809. }
  7810. GGML_TENSOR_UNARY_OP_LOCALS;
  7811. // guaranteed to be an integer due to the check in ggml_can_repeat
  7812. const int nr0 = (int)(ne00/ne0);
  7813. const int nr1 = (int)(ne01/ne1);
  7814. const int nr2 = (int)(ne02/ne2);
  7815. const int nr3 = (int)(ne03/ne3);
  7816. // TODO: support for transposed / permuted tensors
  7817. GGML_ASSERT(nb0 == sizeof(float));
  7818. GGML_ASSERT(nb00 == sizeof(float));
  7819. if (ggml_is_contiguous(dst)) {
  7820. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7821. } else {
  7822. for (int k3 = 0; k3 < ne3; k3++) {
  7823. for (int k2 = 0; k2 < ne2; k2++) {
  7824. for (int k1 = 0; k1 < ne1; k1++) {
  7825. ggml_vec_set_f32(ne0,
  7826. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7827. 0);
  7828. }
  7829. }
  7830. }
  7831. }
  7832. // TODO: maybe this is not optimal?
  7833. for (int i3 = 0; i3 < nr3; i3++) {
  7834. for (int k3 = 0; k3 < ne3; k3++) {
  7835. for (int i2 = 0; i2 < nr2; i2++) {
  7836. for (int k2 = 0; k2 < ne2; k2++) {
  7837. for (int i1 = 0; i1 < nr1; i1++) {
  7838. for (int k1 = 0; k1 < ne1; k1++) {
  7839. for (int i0 = 0; i0 < nr0; i0++) {
  7840. ggml_vec_acc_f32(ne0,
  7841. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7842. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7843. }
  7844. }
  7845. }
  7846. }
  7847. }
  7848. }
  7849. }
  7850. }
  7851. static void ggml_compute_forward_repeat_back(
  7852. const struct ggml_compute_params * params,
  7853. const struct ggml_tensor * src0,
  7854. struct ggml_tensor * dst) {
  7855. switch (src0->type) {
  7856. case GGML_TYPE_F32:
  7857. {
  7858. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7859. } break;
  7860. default:
  7861. {
  7862. GGML_ASSERT(false);
  7863. } break;
  7864. }
  7865. }
  7866. // ggml_compute_forward_abs
  7867. static void ggml_compute_forward_abs_f32(
  7868. const struct ggml_compute_params * params,
  7869. const struct ggml_tensor * src0,
  7870. struct ggml_tensor * dst) {
  7871. assert(params->ith == 0);
  7872. assert(ggml_are_same_shape(src0, dst));
  7873. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7874. return;
  7875. }
  7876. const int n = ggml_nrows(src0);
  7877. const int nc = src0->ne[0];
  7878. assert(dst->nb[0] == sizeof(float));
  7879. assert(src0->nb[0] == sizeof(float));
  7880. for (int i = 0; i < n; i++) {
  7881. ggml_vec_abs_f32(nc,
  7882. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7883. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7884. }
  7885. }
  7886. static void ggml_compute_forward_abs(
  7887. const struct ggml_compute_params * params,
  7888. const struct ggml_tensor * src0,
  7889. struct ggml_tensor * dst) {
  7890. switch (src0->type) {
  7891. case GGML_TYPE_F32:
  7892. {
  7893. ggml_compute_forward_abs_f32(params, src0, dst);
  7894. } break;
  7895. default:
  7896. {
  7897. GGML_ASSERT(false);
  7898. } break;
  7899. }
  7900. }
  7901. // ggml_compute_forward_sgn
  7902. static void ggml_compute_forward_sgn_f32(
  7903. const struct ggml_compute_params * params,
  7904. const struct ggml_tensor * src0,
  7905. struct ggml_tensor * dst) {
  7906. assert(params->ith == 0);
  7907. assert(ggml_are_same_shape(src0, dst));
  7908. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7909. return;
  7910. }
  7911. const int n = ggml_nrows(src0);
  7912. const int nc = src0->ne[0];
  7913. assert(dst->nb[0] == sizeof(float));
  7914. assert(src0->nb[0] == sizeof(float));
  7915. for (int i = 0; i < n; i++) {
  7916. ggml_vec_sgn_f32(nc,
  7917. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7918. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7919. }
  7920. }
  7921. static void ggml_compute_forward_sgn(
  7922. const struct ggml_compute_params * params,
  7923. const struct ggml_tensor * src0,
  7924. struct ggml_tensor * dst) {
  7925. switch (src0->type) {
  7926. case GGML_TYPE_F32:
  7927. {
  7928. ggml_compute_forward_sgn_f32(params, src0, dst);
  7929. } break;
  7930. default:
  7931. {
  7932. GGML_ASSERT(false);
  7933. } break;
  7934. }
  7935. }
  7936. // ggml_compute_forward_neg
  7937. static void ggml_compute_forward_neg_f32(
  7938. const struct ggml_compute_params * params,
  7939. const struct ggml_tensor * src0,
  7940. struct ggml_tensor * dst) {
  7941. assert(params->ith == 0);
  7942. assert(ggml_are_same_shape(src0, dst));
  7943. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7944. return;
  7945. }
  7946. const int n = ggml_nrows(src0);
  7947. const int nc = src0->ne[0];
  7948. assert(dst->nb[0] == sizeof(float));
  7949. assert(src0->nb[0] == sizeof(float));
  7950. for (int i = 0; i < n; i++) {
  7951. ggml_vec_neg_f32(nc,
  7952. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7953. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7954. }
  7955. }
  7956. static void ggml_compute_forward_neg(
  7957. const struct ggml_compute_params * params,
  7958. const struct ggml_tensor * src0,
  7959. struct ggml_tensor * dst) {
  7960. switch (src0->type) {
  7961. case GGML_TYPE_F32:
  7962. {
  7963. ggml_compute_forward_neg_f32(params, src0, dst);
  7964. } break;
  7965. default:
  7966. {
  7967. GGML_ASSERT(false);
  7968. } break;
  7969. }
  7970. }
  7971. // ggml_compute_forward_step
  7972. static void ggml_compute_forward_step_f32(
  7973. const struct ggml_compute_params * params,
  7974. const struct ggml_tensor * src0,
  7975. struct ggml_tensor * dst) {
  7976. assert(params->ith == 0);
  7977. assert(ggml_are_same_shape(src0, dst));
  7978. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7979. return;
  7980. }
  7981. const int n = ggml_nrows(src0);
  7982. const int nc = src0->ne[0];
  7983. assert(dst->nb[0] == sizeof(float));
  7984. assert(src0->nb[0] == sizeof(float));
  7985. for (int i = 0; i < n; i++) {
  7986. ggml_vec_step_f32(nc,
  7987. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7988. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7989. }
  7990. }
  7991. static void ggml_compute_forward_step(
  7992. const struct ggml_compute_params * params,
  7993. const struct ggml_tensor * src0,
  7994. struct ggml_tensor * dst) {
  7995. switch (src0->type) {
  7996. case GGML_TYPE_F32:
  7997. {
  7998. ggml_compute_forward_step_f32(params, src0, dst);
  7999. } break;
  8000. default:
  8001. {
  8002. GGML_ASSERT(false);
  8003. } break;
  8004. }
  8005. }
  8006. // ggml_compute_forward_tanh
  8007. static void ggml_compute_forward_tanh_f32(
  8008. const struct ggml_compute_params * params,
  8009. const struct ggml_tensor * src0,
  8010. struct ggml_tensor * dst) {
  8011. assert(params->ith == 0);
  8012. assert(ggml_are_same_shape(src0, dst));
  8013. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8014. return;
  8015. }
  8016. const int n = ggml_nrows(src0);
  8017. const int nc = src0->ne[0];
  8018. assert(dst->nb[0] == sizeof(float));
  8019. assert(src0->nb[0] == sizeof(float));
  8020. for (int i = 0; i < n; i++) {
  8021. ggml_vec_tanh_f32(nc,
  8022. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8023. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8024. }
  8025. }
  8026. static void ggml_compute_forward_tanh(
  8027. const struct ggml_compute_params * params,
  8028. const struct ggml_tensor * src0,
  8029. struct ggml_tensor * dst) {
  8030. switch (src0->type) {
  8031. case GGML_TYPE_F32:
  8032. {
  8033. ggml_compute_forward_tanh_f32(params, src0, dst);
  8034. } break;
  8035. default:
  8036. {
  8037. GGML_ASSERT(false);
  8038. } break;
  8039. }
  8040. }
  8041. // ggml_compute_forward_elu
  8042. static void ggml_compute_forward_elu_f32(
  8043. const struct ggml_compute_params * params,
  8044. const struct ggml_tensor * src0,
  8045. struct ggml_tensor * dst) {
  8046. assert(params->ith == 0);
  8047. assert(ggml_are_same_shape(src0, dst));
  8048. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8049. return;
  8050. }
  8051. const int n = ggml_nrows(src0);
  8052. const int nc = src0->ne[0];
  8053. assert(dst->nb[0] == sizeof(float));
  8054. assert(src0->nb[0] == sizeof(float));
  8055. for (int i = 0; i < n; i++) {
  8056. ggml_vec_elu_f32(nc,
  8057. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8058. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8059. }
  8060. }
  8061. static void ggml_compute_forward_elu(
  8062. const struct ggml_compute_params * params,
  8063. const struct ggml_tensor * src0,
  8064. struct ggml_tensor * dst) {
  8065. switch (src0->type) {
  8066. case GGML_TYPE_F32:
  8067. {
  8068. ggml_compute_forward_elu_f32(params, src0, dst);
  8069. } break;
  8070. default:
  8071. {
  8072. GGML_ASSERT(false);
  8073. } break;
  8074. }
  8075. }
  8076. // ggml_compute_forward_relu
  8077. static void ggml_compute_forward_relu_f32(
  8078. const struct ggml_compute_params * params,
  8079. const struct ggml_tensor * src0,
  8080. struct ggml_tensor * dst) {
  8081. assert(params->ith == 0);
  8082. assert(ggml_are_same_shape(src0, dst));
  8083. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8084. return;
  8085. }
  8086. const int n = ggml_nrows(src0);
  8087. const int nc = src0->ne[0];
  8088. assert(dst->nb[0] == sizeof(float));
  8089. assert(src0->nb[0] == sizeof(float));
  8090. for (int i = 0; i < n; i++) {
  8091. ggml_vec_relu_f32(nc,
  8092. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8093. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8094. }
  8095. }
  8096. static void ggml_compute_forward_relu(
  8097. const struct ggml_compute_params * params,
  8098. const struct ggml_tensor * src0,
  8099. struct ggml_tensor * dst) {
  8100. switch (src0->type) {
  8101. case GGML_TYPE_F32:
  8102. {
  8103. ggml_compute_forward_relu_f32(params, src0, dst);
  8104. } break;
  8105. default:
  8106. {
  8107. GGML_ASSERT(false);
  8108. } break;
  8109. }
  8110. }
  8111. // ggml_compute_forward_gelu
  8112. static void ggml_compute_forward_gelu_f32(
  8113. const struct ggml_compute_params * params,
  8114. const struct ggml_tensor * src0,
  8115. struct ggml_tensor * dst) {
  8116. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8117. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8118. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8119. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8120. return;
  8121. }
  8122. const int ith = params->ith;
  8123. const int nth = params->nth;
  8124. const int nc = src0->ne[0];
  8125. const int nr = ggml_nrows(src0);
  8126. // rows per thread
  8127. const int dr = (nr + nth - 1)/nth;
  8128. // row range for this thread
  8129. const int ir0 = dr*ith;
  8130. const int ir1 = MIN(ir0 + dr, nr);
  8131. for (int i1 = ir0; i1 < ir1; i1++) {
  8132. ggml_vec_gelu_f32(nc,
  8133. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8134. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8135. #ifndef NDEBUG
  8136. for (int k = 0; k < nc; k++) {
  8137. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8138. UNUSED(x);
  8139. assert(!isnan(x));
  8140. assert(!isinf(x));
  8141. }
  8142. #endif
  8143. }
  8144. }
  8145. static void ggml_compute_forward_gelu(
  8146. const struct ggml_compute_params * params,
  8147. const struct ggml_tensor * src0,
  8148. struct ggml_tensor * dst) {
  8149. switch (src0->type) {
  8150. case GGML_TYPE_F32:
  8151. {
  8152. ggml_compute_forward_gelu_f32(params, src0, dst);
  8153. } break;
  8154. default:
  8155. {
  8156. GGML_ASSERT(false);
  8157. } break;
  8158. }
  8159. }
  8160. // ggml_compute_forward_gelu_quick
  8161. static void ggml_compute_forward_gelu_quick_f32(
  8162. const struct ggml_compute_params * params,
  8163. const struct ggml_tensor * src0,
  8164. struct ggml_tensor * dst) {
  8165. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8166. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8167. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8168. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8169. return;
  8170. }
  8171. const int ith = params->ith;
  8172. const int nth = params->nth;
  8173. const int nc = src0->ne[0];
  8174. const int nr = ggml_nrows(src0);
  8175. // rows per thread
  8176. const int dr = (nr + nth - 1)/nth;
  8177. // row range for this thread
  8178. const int ir0 = dr*ith;
  8179. const int ir1 = MIN(ir0 + dr, nr);
  8180. for (int i1 = ir0; i1 < ir1; i1++) {
  8181. ggml_vec_gelu_quick_f32(nc,
  8182. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8183. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8184. #ifndef NDEBUG
  8185. for (int k = 0; k < nc; k++) {
  8186. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8187. UNUSED(x);
  8188. assert(!isnan(x));
  8189. assert(!isinf(x));
  8190. }
  8191. #endif
  8192. }
  8193. }
  8194. static void ggml_compute_forward_gelu_quick(
  8195. const struct ggml_compute_params * params,
  8196. const struct ggml_tensor * src0,
  8197. struct ggml_tensor * dst) {
  8198. switch (src0->type) {
  8199. case GGML_TYPE_F32:
  8200. {
  8201. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8202. } break;
  8203. default:
  8204. {
  8205. GGML_ASSERT(false);
  8206. } break;
  8207. }
  8208. }
  8209. // ggml_compute_forward_silu
  8210. static void ggml_compute_forward_silu_f32(
  8211. const struct ggml_compute_params * params,
  8212. const struct ggml_tensor * src0,
  8213. struct ggml_tensor * dst) {
  8214. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8215. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8216. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8217. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8218. return;
  8219. }
  8220. const int ith = params->ith;
  8221. const int nth = params->nth;
  8222. const int nc = src0->ne[0];
  8223. const int nr = ggml_nrows(src0);
  8224. // rows per thread
  8225. const int dr = (nr + nth - 1)/nth;
  8226. // row range for this thread
  8227. const int ir0 = dr*ith;
  8228. const int ir1 = MIN(ir0 + dr, nr);
  8229. for (int i1 = ir0; i1 < ir1; i1++) {
  8230. ggml_vec_silu_f32(nc,
  8231. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8232. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8233. #ifndef NDEBUG
  8234. for (int k = 0; k < nc; k++) {
  8235. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8236. UNUSED(x);
  8237. assert(!isnan(x));
  8238. assert(!isinf(x));
  8239. }
  8240. #endif
  8241. }
  8242. }
  8243. static void ggml_compute_forward_silu(
  8244. const struct ggml_compute_params * params,
  8245. const struct ggml_tensor * src0,
  8246. struct ggml_tensor * dst) {
  8247. switch (src0->type) {
  8248. case GGML_TYPE_F32:
  8249. {
  8250. ggml_compute_forward_silu_f32(params, src0, dst);
  8251. } break;
  8252. default:
  8253. {
  8254. GGML_ASSERT(false);
  8255. } break;
  8256. }
  8257. }
  8258. // ggml_compute_forward_silu_back
  8259. static void ggml_compute_forward_silu_back_f32(
  8260. const struct ggml_compute_params * params,
  8261. const struct ggml_tensor * src0,
  8262. const struct ggml_tensor * grad,
  8263. struct ggml_tensor * dst) {
  8264. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8265. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8266. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8267. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8268. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8269. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8270. return;
  8271. }
  8272. const int ith = params->ith;
  8273. const int nth = params->nth;
  8274. const int nc = src0->ne[0];
  8275. const int nr = ggml_nrows(src0);
  8276. // rows per thread
  8277. const int dr = (nr + nth - 1)/nth;
  8278. // row range for this thread
  8279. const int ir0 = dr*ith;
  8280. const int ir1 = MIN(ir0 + dr, nr);
  8281. for (int i1 = ir0; i1 < ir1; i1++) {
  8282. ggml_vec_silu_backward_f32(nc,
  8283. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8284. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8285. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8286. #ifndef NDEBUG
  8287. for (int k = 0; k < nc; k++) {
  8288. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8289. UNUSED(x);
  8290. assert(!isnan(x));
  8291. assert(!isinf(x));
  8292. }
  8293. #endif
  8294. }
  8295. }
  8296. static void ggml_compute_forward_silu_back(
  8297. const struct ggml_compute_params * params,
  8298. const struct ggml_tensor * src0,
  8299. const struct ggml_tensor * grad,
  8300. struct ggml_tensor * dst) {
  8301. switch (src0->type) {
  8302. case GGML_TYPE_F32:
  8303. {
  8304. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8305. } break;
  8306. default:
  8307. {
  8308. GGML_ASSERT(false);
  8309. } break;
  8310. }
  8311. }
  8312. // ggml_compute_forward_norm
  8313. static void ggml_compute_forward_norm_f32(
  8314. const struct ggml_compute_params * params,
  8315. const struct ggml_tensor * src0,
  8316. struct ggml_tensor * dst) {
  8317. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8319. return;
  8320. }
  8321. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8322. const int ith = params->ith;
  8323. const int nth = params->nth;
  8324. GGML_TENSOR_UNARY_OP_LOCALS;
  8325. const float eps = 1e-5f; // TODO: make this a parameter
  8326. // TODO: optimize
  8327. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8328. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8329. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8330. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8331. ggml_float sum = 0.0;
  8332. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8333. sum += (ggml_float)x[i00];
  8334. }
  8335. float mean = sum/ne00;
  8336. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8337. ggml_float sum2 = 0.0;
  8338. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8339. float v = x[i00] - mean;
  8340. y[i00] = v;
  8341. sum2 += (ggml_float)(v*v);
  8342. }
  8343. float variance = sum2/ne00;
  8344. const float scale = 1.0f/sqrtf(variance + eps);
  8345. ggml_vec_scale_f32(ne00, y, scale);
  8346. }
  8347. }
  8348. }
  8349. }
  8350. static void ggml_compute_forward_norm(
  8351. const struct ggml_compute_params * params,
  8352. const struct ggml_tensor * src0,
  8353. struct ggml_tensor * dst) {
  8354. switch (src0->type) {
  8355. case GGML_TYPE_F32:
  8356. {
  8357. ggml_compute_forward_norm_f32(params, src0, dst);
  8358. } break;
  8359. default:
  8360. {
  8361. GGML_ASSERT(false);
  8362. } break;
  8363. }
  8364. }
  8365. static void ggml_compute_forward_rms_norm_f32(
  8366. const struct ggml_compute_params * params,
  8367. const struct ggml_tensor * src0,
  8368. struct ggml_tensor * dst) {
  8369. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8370. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8371. return;
  8372. }
  8373. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8374. const int ith = params->ith;
  8375. const int nth = params->nth;
  8376. GGML_TENSOR_UNARY_OP_LOCALS;
  8377. float eps;
  8378. memcpy(&eps, dst->op_params, sizeof(float));
  8379. // TODO: optimize
  8380. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8381. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8382. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8383. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8384. ggml_float sum = 0.0;
  8385. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8386. sum += (ggml_float)(x[i00] * x[i00]);
  8387. }
  8388. const float mean = sum/ne00;
  8389. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8390. memcpy(y, x, ne00 * sizeof(float));
  8391. // for (int i00 = 0; i00 < ne00; i00++) {
  8392. // y[i00] = x[i00];
  8393. // }
  8394. const float scale = 1.0f/sqrtf(mean + eps);
  8395. ggml_vec_scale_f32(ne00, y, scale);
  8396. }
  8397. }
  8398. }
  8399. }
  8400. static void ggml_compute_forward_rms_norm(
  8401. const struct ggml_compute_params * params,
  8402. const struct ggml_tensor * src0,
  8403. struct ggml_tensor * dst) {
  8404. switch (src0->type) {
  8405. case GGML_TYPE_F32:
  8406. {
  8407. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8408. } break;
  8409. default:
  8410. {
  8411. GGML_ASSERT(false);
  8412. } break;
  8413. }
  8414. }
  8415. static void ggml_compute_forward_rms_norm_back_f32(
  8416. const struct ggml_compute_params * params,
  8417. const struct ggml_tensor * src0,
  8418. const struct ggml_tensor * src1,
  8419. struct ggml_tensor * dst) {
  8420. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8421. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8422. return;
  8423. }
  8424. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8425. const int ith = params->ith;
  8426. const int nth = params->nth;
  8427. GGML_TENSOR_BINARY_OP_LOCALS;
  8428. const float eps = 1e-6f; // TODO: make this a parameter
  8429. // TODO: optimize
  8430. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8431. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8432. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8433. // src1 is same shape as src0 => same indices
  8434. const int64_t i11 = i01;
  8435. const int64_t i12 = i02;
  8436. const int64_t i13 = i03;
  8437. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8438. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8439. ggml_float sum_xx = 0.0;
  8440. ggml_float sum_xdz = 0.0;
  8441. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8442. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8443. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8444. }
  8445. //const float mean = (float)(sum_xx)/ne00;
  8446. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8447. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8448. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8449. // we could cache rms from forward pass to improve performance.
  8450. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8451. //const float rms = sqrtf(mean_eps);
  8452. const float rrms = 1.0f / sqrtf(mean_eps);
  8453. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8454. {
  8455. // z = rms_norm(x)
  8456. //
  8457. // rms_norm(src0) =
  8458. // scale(
  8459. // src0,
  8460. // div(
  8461. // 1,
  8462. // sqrt(
  8463. // add(
  8464. // scale(
  8465. // sum(
  8466. // sqr(
  8467. // src0)),
  8468. // (1.0/N)),
  8469. // eps))));
  8470. // postorder:
  8471. // ## op args grad
  8472. // 00 param src0 grad[#00]
  8473. // 01 const 1
  8474. // 02 sqr (#00) grad[#02]
  8475. // 03 sum (#02) grad[#03]
  8476. // 04 const 1/N
  8477. // 05 scale (#03, #04) grad[#05]
  8478. // 06 const eps
  8479. // 07 add (#05, #06) grad[#07]
  8480. // 08 sqrt (#07) grad[#08]
  8481. // 09 div (#01,#08) grad[#09]
  8482. // 10 scale (#00,#09) grad[#10]
  8483. //
  8484. // backward pass, given grad[#10]
  8485. // #10: scale
  8486. // grad[#00] += scale(grad[#10],#09)
  8487. // grad[#09] += sum(mul(grad[#10],#00))
  8488. // #09: div
  8489. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8490. // #08: sqrt
  8491. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8492. // #07: add
  8493. // grad[#05] += grad[#07]
  8494. // #05: scale
  8495. // grad[#03] += scale(grad[#05],#04)
  8496. // #03: sum
  8497. // grad[#02] += repeat(grad[#03], #02)
  8498. // #02:
  8499. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8500. //
  8501. // substitute and simplify:
  8502. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8503. // grad[#02] = repeat(grad[#03], #02)
  8504. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8505. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8506. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8507. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8508. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8509. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8510. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8511. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8512. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8513. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8514. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8515. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8516. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8517. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8518. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8519. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8520. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8521. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8522. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8523. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8524. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8525. // a = b*c + d*e
  8526. // a = b*c*f/f + d*e*f/f
  8527. // a = (b*c*f + d*e*f)*(1/f)
  8528. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8529. // a = (b + d*e/c)*c
  8530. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8531. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8532. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8533. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8534. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8535. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8536. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8537. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8538. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8539. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8540. }
  8541. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8542. // post-order:
  8543. // dx := x
  8544. // dx := scale(dx,-mean_xdz/mean_eps)
  8545. // dx := add(dx, dz)
  8546. // dx := scale(dx, rrms)
  8547. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8548. ggml_vec_cpy_f32 (ne00, dx, x);
  8549. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8550. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8551. ggml_vec_acc_f32 (ne00, dx, dz);
  8552. ggml_vec_scale_f32(ne00, dx, rrms);
  8553. }
  8554. }
  8555. }
  8556. }
  8557. static void ggml_compute_forward_rms_norm_back(
  8558. const struct ggml_compute_params * params,
  8559. const struct ggml_tensor * src0,
  8560. const struct ggml_tensor * src1,
  8561. struct ggml_tensor * dst) {
  8562. switch (src0->type) {
  8563. case GGML_TYPE_F32:
  8564. {
  8565. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8566. } break;
  8567. default:
  8568. {
  8569. GGML_ASSERT(false);
  8570. } break;
  8571. }
  8572. }
  8573. // ggml_compute_forward_mul_mat
  8574. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8575. // helper function to determine if it is better to use BLAS or not
  8576. // for large matrices, BLAS is faster
  8577. static bool ggml_compute_forward_mul_mat_use_blas(
  8578. const struct ggml_tensor * src0,
  8579. const struct ggml_tensor * src1,
  8580. struct ggml_tensor * dst) {
  8581. //const int64_t ne00 = src0->ne[0];
  8582. //const int64_t ne01 = src0->ne[1];
  8583. const int64_t ne10 = src1->ne[0];
  8584. const int64_t ne0 = dst->ne[0];
  8585. const int64_t ne1 = dst->ne[1];
  8586. // TODO: find the optimal values for these
  8587. if (ggml_is_contiguous(src0) &&
  8588. ggml_is_contiguous(src1) &&
  8589. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8590. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8591. return true;
  8592. }
  8593. return false;
  8594. }
  8595. #endif
  8596. static void ggml_compute_forward_mul_mat(
  8597. const struct ggml_compute_params * params,
  8598. const struct ggml_tensor * src0,
  8599. const struct ggml_tensor * src1,
  8600. struct ggml_tensor * dst) {
  8601. int64_t t0 = ggml_perf_time_us();
  8602. UNUSED(t0);
  8603. GGML_TENSOR_BINARY_OP_LOCALS;
  8604. const int ith = params->ith;
  8605. const int nth = params->nth;
  8606. const enum ggml_type type = src0->type;
  8607. const bool src1_cont = ggml_is_contiguous(src1);
  8608. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8609. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8610. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8611. GGML_ASSERT(ne0 == ne01);
  8612. GGML_ASSERT(ne1 == ne11);
  8613. GGML_ASSERT(ne2 == ne12);
  8614. GGML_ASSERT(ne3 == ne13);
  8615. // we don't support permuted src0 or src1
  8616. GGML_ASSERT(nb00 == ggml_type_size(type));
  8617. GGML_ASSERT(nb10 == sizeof(float));
  8618. // dst cannot be transposed or permuted
  8619. GGML_ASSERT(nb0 == sizeof(float));
  8620. GGML_ASSERT(nb0 <= nb1);
  8621. GGML_ASSERT(nb1 <= nb2);
  8622. GGML_ASSERT(nb2 <= nb3);
  8623. // nb01 >= nb00 - src0 is not transposed
  8624. // compute by src0 rows
  8625. #if defined(GGML_USE_CLBLAST)
  8626. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8627. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8628. // ref: https://github.com/ggerganov/ggml/pull/224
  8629. GGML_ASSERT(ne02 == ne12);
  8630. GGML_ASSERT(ne03 == ne13);
  8631. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8632. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8633. }
  8634. return;
  8635. }
  8636. #endif
  8637. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8638. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8639. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8640. // ref: https://github.com/ggerganov/ggml/pull/224
  8641. GGML_ASSERT(ne02 == ne12);
  8642. GGML_ASSERT(ne03 == ne13);
  8643. if (params->ith != 0) {
  8644. return;
  8645. }
  8646. if (params->type == GGML_TASK_INIT) {
  8647. return;
  8648. }
  8649. if (params->type == GGML_TASK_FINALIZE) {
  8650. return;
  8651. }
  8652. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8653. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8654. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8655. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8656. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8657. if (type != GGML_TYPE_F32) {
  8658. float * const wdata = params->wdata;
  8659. ggml_to_float_t const to_float = type_traits[type].to_float;
  8660. size_t id = 0;
  8661. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8662. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8663. id += ne00;
  8664. }
  8665. assert(id*sizeof(float) <= params->wsize);
  8666. x = wdata;
  8667. }
  8668. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8669. ne11, ne01, ne10,
  8670. 1.0f, y, ne10,
  8671. x, ne00,
  8672. 0.0f, d, ne01);
  8673. }
  8674. }
  8675. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8676. return;
  8677. }
  8678. #endif
  8679. if (params->type == GGML_TASK_INIT) {
  8680. if (src1->type != vec_dot_type) {
  8681. char * wdata = params->wdata;
  8682. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  8683. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8684. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8685. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8686. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8687. wdata += row_size;
  8688. }
  8689. }
  8690. }
  8691. }
  8692. return;
  8693. }
  8694. if (params->type == GGML_TASK_FINALIZE) {
  8695. return;
  8696. }
  8697. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8698. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  8699. const int64_t nr0 = ne01; // src0 rows
  8700. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  8701. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8702. // distribute the thread work across the inner or outer loop based on which one is larger
  8703. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8704. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8705. const int64_t ith0 = ith % nth0;
  8706. const int64_t ith1 = ith / nth0;
  8707. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8708. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8709. const int64_t ir010 = dr0*ith0;
  8710. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8711. const int64_t ir110 = dr1*ith1;
  8712. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8713. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8714. // threads with no work simply yield (not sure if it helps)
  8715. if (ir010 >= ir011 || ir110 >= ir111) {
  8716. sched_yield();
  8717. return;
  8718. }
  8719. assert(ne12 % ne02 == 0);
  8720. assert(ne13 % ne03 == 0);
  8721. // broadcast factors
  8722. const int64_t r2 = ne12/ne02;
  8723. const int64_t r3 = ne13/ne03;
  8724. // block-tiling attempt
  8725. const int64_t blck_0 = 16;
  8726. const int64_t blck_1 = 16;
  8727. // attempt to reduce false-sharing (does not seem to make a difference)
  8728. float tmp[16];
  8729. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8730. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8731. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8732. const int64_t i13 = (ir1/(ne12*ne11));
  8733. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8734. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8735. // broadcast src0 into src1
  8736. const int64_t i03 = i13/r3;
  8737. const int64_t i02 = i12/r2;
  8738. const int64_t i1 = i11;
  8739. const int64_t i2 = i12;
  8740. const int64_t i3 = i13;
  8741. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8742. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8743. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8744. // the original src1 data pointer, so we should index using the indices directly
  8745. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8746. const char * src1_col = (const char *) wdata +
  8747. (src1_cont || src1->type != vec_dot_type
  8748. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8749. : (i11*nb11 + i12*nb12 + i13*nb13));
  8750. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8751. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8752. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8753. //}
  8754. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8755. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8756. }
  8757. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8758. }
  8759. }
  8760. }
  8761. }
  8762. // ggml_compute_forward_out_prod
  8763. static void ggml_compute_forward_out_prod_f32(
  8764. const struct ggml_compute_params * params,
  8765. const struct ggml_tensor * src0,
  8766. const struct ggml_tensor * src1,
  8767. struct ggml_tensor * dst) {
  8768. int64_t t0 = ggml_perf_time_us();
  8769. UNUSED(t0);
  8770. GGML_TENSOR_BINARY_OP_LOCALS;
  8771. const int ith = params->ith;
  8772. const int nth = params->nth;
  8773. GGML_ASSERT(ne02 == ne12);
  8774. GGML_ASSERT(ne03 == ne13);
  8775. GGML_ASSERT(ne2 == ne12);
  8776. GGML_ASSERT(ne3 == ne13);
  8777. // we don't support permuted src0 or src1
  8778. GGML_ASSERT(nb00 == sizeof(float));
  8779. // dst cannot be transposed or permuted
  8780. GGML_ASSERT(nb0 == sizeof(float));
  8781. // GGML_ASSERT(nb0 <= nb1);
  8782. // GGML_ASSERT(nb1 <= nb2);
  8783. // GGML_ASSERT(nb2 <= nb3);
  8784. GGML_ASSERT(ne0 == ne00);
  8785. GGML_ASSERT(ne1 == ne10);
  8786. GGML_ASSERT(ne2 == ne02);
  8787. GGML_ASSERT(ne3 == ne03);
  8788. // nb01 >= nb00 - src0 is not transposed
  8789. // compute by src0 rows
  8790. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8791. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8792. if (params->type == GGML_TASK_INIT) {
  8793. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8794. return;
  8795. }
  8796. if (params->type == GGML_TASK_FINALIZE) {
  8797. return;
  8798. }
  8799. // parallelize by last three dimensions
  8800. // total rows in dst
  8801. const int64_t nr = ne1*ne2*ne3;
  8802. // rows per thread
  8803. const int64_t dr = (nr + nth - 1)/nth;
  8804. // row range for this thread
  8805. const int64_t ir0 = dr*ith;
  8806. const int64_t ir1 = MIN(ir0 + dr, nr);
  8807. // dst[:,:,:,:] = 0
  8808. // for i2,i3:
  8809. // for i1:
  8810. // for i01:
  8811. // for i0:
  8812. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8813. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8814. // dst indices
  8815. const int64_t i3 = ir/(ne2*ne1);
  8816. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8817. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8818. const int64_t i02 = i2;
  8819. const int64_t i03 = i3;
  8820. //const int64_t i10 = i1;
  8821. const int64_t i12 = i2;
  8822. const int64_t i13 = i3;
  8823. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8824. const int64_t i11 = i01;
  8825. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8826. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8827. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8828. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8829. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8830. // d[i0] += s0[i0] * s1[i1];
  8831. // }
  8832. }
  8833. }
  8834. //int64_t t1 = ggml_perf_time_us();
  8835. //static int64_t acc = 0;
  8836. //acc += t1 - t0;
  8837. //if (t1 - t0 > 10) {
  8838. // printf("\n");
  8839. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8840. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8841. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8842. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8843. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8844. //}
  8845. }
  8846. static void ggml_compute_forward_out_prod(
  8847. const struct ggml_compute_params * params,
  8848. const struct ggml_tensor * src0,
  8849. const struct ggml_tensor * src1,
  8850. struct ggml_tensor * dst) {
  8851. switch (src0->type) {
  8852. case GGML_TYPE_Q4_0:
  8853. case GGML_TYPE_Q4_1:
  8854. case GGML_TYPE_Q5_0:
  8855. case GGML_TYPE_Q5_1:
  8856. case GGML_TYPE_Q8_0:
  8857. case GGML_TYPE_Q8_1:
  8858. {
  8859. GGML_ASSERT(false); // todo
  8860. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8861. } break;
  8862. case GGML_TYPE_F16:
  8863. {
  8864. GGML_ASSERT(false); // todo
  8865. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8866. } break;
  8867. case GGML_TYPE_F32:
  8868. {
  8869. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8870. } break;
  8871. default:
  8872. {
  8873. GGML_ASSERT(false);
  8874. } break;
  8875. }
  8876. }
  8877. // ggml_compute_forward_scale
  8878. static void ggml_compute_forward_scale_f32(
  8879. const struct ggml_compute_params * params,
  8880. const struct ggml_tensor * src0,
  8881. const struct ggml_tensor * src1,
  8882. struct ggml_tensor * dst) {
  8883. GGML_ASSERT(ggml_is_contiguous(src0));
  8884. GGML_ASSERT(ggml_is_contiguous(dst));
  8885. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8886. GGML_ASSERT(ggml_is_scalar(src1));
  8887. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8888. return;
  8889. }
  8890. // scale factor
  8891. const float v = *(float *) src1->data;
  8892. const int ith = params->ith;
  8893. const int nth = params->nth;
  8894. const int nc = src0->ne[0];
  8895. const int nr = ggml_nrows(src0);
  8896. // rows per thread
  8897. const int dr = (nr + nth - 1)/nth;
  8898. // row range for this thread
  8899. const int ir0 = dr*ith;
  8900. const int ir1 = MIN(ir0 + dr, nr);
  8901. const size_t nb01 = src0->nb[1];
  8902. const size_t nb1 = dst->nb[1];
  8903. for (int i1 = ir0; i1 < ir1; i1++) {
  8904. if (dst->data != src0->data) {
  8905. // src0 is same shape as dst => same indices
  8906. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8907. }
  8908. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8909. }
  8910. }
  8911. static void ggml_compute_forward_scale(
  8912. const struct ggml_compute_params * params,
  8913. const struct ggml_tensor * src0,
  8914. const struct ggml_tensor * src1,
  8915. struct ggml_tensor * dst) {
  8916. switch (src0->type) {
  8917. case GGML_TYPE_F32:
  8918. {
  8919. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8920. } break;
  8921. default:
  8922. {
  8923. GGML_ASSERT(false);
  8924. } break;
  8925. }
  8926. }
  8927. // ggml_compute_forward_set
  8928. static void ggml_compute_forward_set_f32(
  8929. const struct ggml_compute_params * params,
  8930. const struct ggml_tensor * src0,
  8931. const struct ggml_tensor * src1,
  8932. struct ggml_tensor * dst) {
  8933. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8934. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8935. // view src0 and dst with these strides and data offset inbytes during set
  8936. // nb0 is implicitely element_size because src0 and dst are contiguous
  8937. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8938. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8939. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8940. size_t offset = ((int32_t *) dst->op_params)[3];
  8941. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8942. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8943. // memcpy needs to be synchronized across threads to avoid race conditions.
  8944. // => do it in INIT phase
  8945. memcpy(
  8946. ((char *) dst->data),
  8947. ((char *) src0->data),
  8948. ggml_nbytes(dst));
  8949. }
  8950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8951. return;
  8952. }
  8953. const int ith = params->ith;
  8954. const int nth = params->nth;
  8955. const int nr = ggml_nrows(src1);
  8956. const int nc = src1->ne[0];
  8957. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8958. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8959. // src0 and dst as viewed during set
  8960. const size_t nb0 = ggml_element_size(src0);
  8961. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8962. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8963. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8964. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8965. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8966. GGML_ASSERT(nb10 == sizeof(float));
  8967. // rows per thread
  8968. const int dr = (nr + nth - 1)/nth;
  8969. // row range for this thread
  8970. const int ir0 = dr*ith;
  8971. const int ir1 = MIN(ir0 + dr, nr);
  8972. for (int ir = ir0; ir < ir1; ++ir) {
  8973. // src0 and dst are viewed with shape of src1 and offset
  8974. // => same indices
  8975. const int i3 = ir/(ne12*ne11);
  8976. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8977. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8978. ggml_vec_cpy_f32(nc,
  8979. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8980. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8981. }
  8982. }
  8983. static void ggml_compute_forward_set(
  8984. const struct ggml_compute_params * params,
  8985. const struct ggml_tensor * src0,
  8986. const struct ggml_tensor * src1,
  8987. struct ggml_tensor * dst) {
  8988. switch (src0->type) {
  8989. case GGML_TYPE_F32:
  8990. {
  8991. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8992. } break;
  8993. case GGML_TYPE_F16:
  8994. case GGML_TYPE_Q4_0:
  8995. case GGML_TYPE_Q4_1:
  8996. case GGML_TYPE_Q5_0:
  8997. case GGML_TYPE_Q5_1:
  8998. case GGML_TYPE_Q8_0:
  8999. case GGML_TYPE_Q8_1:
  9000. case GGML_TYPE_Q2_K:
  9001. case GGML_TYPE_Q3_K:
  9002. case GGML_TYPE_Q4_K:
  9003. case GGML_TYPE_Q5_K:
  9004. case GGML_TYPE_Q6_K:
  9005. default:
  9006. {
  9007. GGML_ASSERT(false);
  9008. } break;
  9009. }
  9010. }
  9011. // ggml_compute_forward_cpy
  9012. static void ggml_compute_forward_cpy(
  9013. const struct ggml_compute_params * params,
  9014. const struct ggml_tensor * src0,
  9015. struct ggml_tensor * dst) {
  9016. ggml_compute_forward_dup(params, src0, dst);
  9017. }
  9018. // ggml_compute_forward_cont
  9019. static void ggml_compute_forward_cont(
  9020. const struct ggml_compute_params * params,
  9021. const struct ggml_tensor * src0,
  9022. struct ggml_tensor * dst) {
  9023. ggml_compute_forward_dup(params, src0, dst);
  9024. }
  9025. // ggml_compute_forward_reshape
  9026. static void ggml_compute_forward_reshape(
  9027. const struct ggml_compute_params * params,
  9028. const struct ggml_tensor * src0,
  9029. struct ggml_tensor * dst) {
  9030. // NOP
  9031. UNUSED(params);
  9032. UNUSED(src0);
  9033. UNUSED(dst);
  9034. }
  9035. // ggml_compute_forward_view
  9036. static void ggml_compute_forward_view(
  9037. const struct ggml_compute_params * params,
  9038. const struct ggml_tensor * src0) {
  9039. // NOP
  9040. UNUSED(params);
  9041. UNUSED(src0);
  9042. }
  9043. // ggml_compute_forward_permute
  9044. static void ggml_compute_forward_permute(
  9045. const struct ggml_compute_params * params,
  9046. const struct ggml_tensor * src0) {
  9047. // NOP
  9048. UNUSED(params);
  9049. UNUSED(src0);
  9050. }
  9051. // ggml_compute_forward_transpose
  9052. static void ggml_compute_forward_transpose(
  9053. const struct ggml_compute_params * params,
  9054. const struct ggml_tensor * src0) {
  9055. // NOP
  9056. UNUSED(params);
  9057. UNUSED(src0);
  9058. }
  9059. // ggml_compute_forward_get_rows
  9060. static void ggml_compute_forward_get_rows_q(
  9061. const struct ggml_compute_params * params,
  9062. const struct ggml_tensor * src0,
  9063. const struct ggml_tensor * src1,
  9064. struct ggml_tensor * dst) {
  9065. assert(params->ith == 0);
  9066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9067. return;
  9068. }
  9069. const int nc = src0->ne[0];
  9070. const int nr = ggml_nelements(src1);
  9071. const enum ggml_type type = src0->type;
  9072. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9073. assert( dst->ne[0] == nc);
  9074. assert( dst->ne[1] == nr);
  9075. assert(src0->nb[0] == ggml_type_size(type));
  9076. for (int i = 0; i < nr; ++i) {
  9077. const int r = ((int32_t *) src1->data)[i];
  9078. dequantize_row_q(
  9079. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9080. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9081. }
  9082. }
  9083. static void ggml_compute_forward_get_rows_f16(
  9084. const struct ggml_compute_params * params,
  9085. const struct ggml_tensor * src0,
  9086. const struct ggml_tensor * src1,
  9087. struct ggml_tensor * dst) {
  9088. assert(params->ith == 0);
  9089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9090. return;
  9091. }
  9092. const int nc = src0->ne[0];
  9093. const int nr = ggml_nelements(src1);
  9094. assert( dst->ne[0] == nc);
  9095. assert( dst->ne[1] == nr);
  9096. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9097. for (int i = 0; i < nr; ++i) {
  9098. const int r = ((int32_t *) src1->data)[i];
  9099. for (int j = 0; j < nc; ++j) {
  9100. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9101. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9102. }
  9103. }
  9104. }
  9105. static void ggml_compute_forward_get_rows_f32(
  9106. const struct ggml_compute_params * params,
  9107. const struct ggml_tensor * src0,
  9108. const struct ggml_tensor * src1,
  9109. struct ggml_tensor * dst) {
  9110. assert(params->ith == 0);
  9111. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9112. return;
  9113. }
  9114. const int nc = src0->ne[0];
  9115. const int nr = ggml_nelements(src1);
  9116. assert( dst->ne[0] == nc);
  9117. assert( dst->ne[1] == nr);
  9118. assert(src0->nb[0] == sizeof(float));
  9119. for (int i = 0; i < nr; ++i) {
  9120. const int r = ((int32_t *) src1->data)[i];
  9121. ggml_vec_cpy_f32(nc,
  9122. (float *) ((char *) dst->data + i*dst->nb[1]),
  9123. (float *) ((char *) src0->data + r*src0->nb[1]));
  9124. }
  9125. }
  9126. static void ggml_compute_forward_get_rows(
  9127. const struct ggml_compute_params * params,
  9128. const struct ggml_tensor * src0,
  9129. const struct ggml_tensor * src1,
  9130. struct ggml_tensor * dst) {
  9131. switch (src0->type) {
  9132. case GGML_TYPE_Q4_0:
  9133. case GGML_TYPE_Q4_1:
  9134. case GGML_TYPE_Q5_0:
  9135. case GGML_TYPE_Q5_1:
  9136. case GGML_TYPE_Q8_0:
  9137. case GGML_TYPE_Q8_1:
  9138. case GGML_TYPE_Q2_K:
  9139. case GGML_TYPE_Q3_K:
  9140. case GGML_TYPE_Q4_K:
  9141. case GGML_TYPE_Q5_K:
  9142. case GGML_TYPE_Q6_K:
  9143. {
  9144. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9145. } break;
  9146. case GGML_TYPE_F16:
  9147. {
  9148. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9149. } break;
  9150. case GGML_TYPE_F32:
  9151. {
  9152. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9153. } break;
  9154. default:
  9155. {
  9156. GGML_ASSERT(false);
  9157. } break;
  9158. }
  9159. //static bool first = true;
  9160. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9161. //if (first) {
  9162. // first = false;
  9163. //} else {
  9164. // for (int k = 0; k < dst->ne[1]; ++k) {
  9165. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9166. // for (int i = 0; i < 16; ++i) {
  9167. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9168. // }
  9169. // printf("\n");
  9170. // }
  9171. // printf("\n");
  9172. // }
  9173. // printf("\n");
  9174. // exit(0);
  9175. //}
  9176. }
  9177. // ggml_compute_forward_get_rows_back
  9178. static void ggml_compute_forward_get_rows_back_f32_f16(
  9179. const struct ggml_compute_params * params,
  9180. const struct ggml_tensor * src0,
  9181. const struct ggml_tensor * src1,
  9182. const struct ggml_tensor * opt0,
  9183. struct ggml_tensor * dst) {
  9184. GGML_ASSERT(params->ith == 0);
  9185. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9186. GGML_ASSERT(ggml_is_contiguous(opt0));
  9187. GGML_ASSERT(ggml_is_contiguous(dst));
  9188. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9189. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9190. return;
  9191. }
  9192. const int nc = src0->ne[0];
  9193. const int nr = ggml_nelements(src1);
  9194. GGML_ASSERT( dst->ne[0] == nc);
  9195. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9196. for (int i = 0; i < nr; ++i) {
  9197. const int r = ((int32_t *) src1->data)[i];
  9198. for (int j = 0; j < nc; ++j) {
  9199. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9200. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9201. }
  9202. }
  9203. }
  9204. static void ggml_compute_forward_get_rows_back_f32(
  9205. const struct ggml_compute_params * params,
  9206. const struct ggml_tensor * src0,
  9207. const struct ggml_tensor * src1,
  9208. const struct ggml_tensor * opt0,
  9209. struct ggml_tensor * dst) {
  9210. GGML_ASSERT(params->ith == 0);
  9211. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9212. GGML_ASSERT(ggml_is_contiguous(opt0));
  9213. GGML_ASSERT(ggml_is_contiguous(dst));
  9214. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9215. if (params->type == GGML_TASK_INIT) {
  9216. memset(dst->data, 0, ggml_nbytes(dst));
  9217. }
  9218. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9219. return;
  9220. }
  9221. const int nc = src0->ne[0];
  9222. const int nr = ggml_nelements(src1);
  9223. GGML_ASSERT( dst->ne[0] == nc);
  9224. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9225. for (int i = 0; i < nr; ++i) {
  9226. const int r = ((int32_t *) src1->data)[i];
  9227. ggml_vec_add_f32(nc,
  9228. (float *) ((char *) dst->data + r*dst->nb[1]),
  9229. (float *) ((char *) dst->data + r*dst->nb[1]),
  9230. (float *) ((char *) src0->data + i*src0->nb[1]));
  9231. }
  9232. }
  9233. static void ggml_compute_forward_get_rows_back(
  9234. const struct ggml_compute_params * params,
  9235. const struct ggml_tensor * src0,
  9236. const struct ggml_tensor * src1,
  9237. const struct ggml_tensor * opt0,
  9238. struct ggml_tensor * dst) {
  9239. switch (src0->type) {
  9240. case GGML_TYPE_F16:
  9241. {
  9242. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9243. } break;
  9244. case GGML_TYPE_F32:
  9245. {
  9246. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9247. } break;
  9248. default:
  9249. {
  9250. GGML_ASSERT(false);
  9251. } break;
  9252. }
  9253. //static bool first = true;
  9254. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9255. //if (first) {
  9256. // first = false;
  9257. //} else {
  9258. // for (int k = 0; k < dst->ne[1]; ++k) {
  9259. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9260. // for (int i = 0; i < 16; ++i) {
  9261. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9262. // }
  9263. // printf("\n");
  9264. // }
  9265. // printf("\n");
  9266. // }
  9267. // printf("\n");
  9268. // exit(0);
  9269. //}
  9270. }
  9271. // ggml_compute_forward_diag
  9272. static void ggml_compute_forward_diag_f32(
  9273. const struct ggml_compute_params * params,
  9274. const struct ggml_tensor * src0,
  9275. struct ggml_tensor * dst) {
  9276. GGML_ASSERT(params->ith == 0);
  9277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9278. return;
  9279. }
  9280. // TODO: handle transposed/permuted matrices
  9281. GGML_TENSOR_UNARY_OP_LOCALS;
  9282. GGML_ASSERT(ne00 == ne0);
  9283. GGML_ASSERT(ne00 == ne1);
  9284. GGML_ASSERT(ne01 == 1);
  9285. GGML_ASSERT(ne02 == ne2);
  9286. GGML_ASSERT(ne03 == ne3);
  9287. GGML_ASSERT(nb00 == sizeof(float));
  9288. GGML_ASSERT(nb0 == sizeof(float));
  9289. for (int i3 = 0; i3 < ne3; i3++) {
  9290. for (int i2 = 0; i2 < ne2; i2++) {
  9291. for (int i1 = 0; i1 < ne1; i1++) {
  9292. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9293. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9294. for (int i0 = 0; i0 < i1; i0++) {
  9295. d[i0] = 0;
  9296. }
  9297. d[i1] = s[i1];
  9298. for (int i0 = i1+1; i0 < ne0; i0++) {
  9299. d[i0] = 0;
  9300. }
  9301. }
  9302. }
  9303. }
  9304. }
  9305. static void ggml_compute_forward_diag(
  9306. const struct ggml_compute_params * params,
  9307. const struct ggml_tensor * src0,
  9308. struct ggml_tensor * dst) {
  9309. switch (src0->type) {
  9310. case GGML_TYPE_F32:
  9311. {
  9312. ggml_compute_forward_diag_f32(params, src0, dst);
  9313. } break;
  9314. default:
  9315. {
  9316. GGML_ASSERT(false);
  9317. } break;
  9318. }
  9319. }
  9320. // ggml_compute_forward_diag_mask_inf
  9321. static void ggml_compute_forward_diag_mask_f32(
  9322. const struct ggml_compute_params * params,
  9323. const struct ggml_tensor * src0,
  9324. struct ggml_tensor * dst,
  9325. const float value) {
  9326. const int ith = params->ith;
  9327. const int nth = params->nth;
  9328. const int n_past = ((int32_t *) dst->op_params)[0];
  9329. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9330. GGML_ASSERT(n_past >= 0);
  9331. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9332. // memcpy needs to be synchronized across threads to avoid race conditions.
  9333. // => do it in INIT phase
  9334. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9335. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9336. memcpy(
  9337. ((char *) dst->data),
  9338. ((char *) src0->data),
  9339. ggml_nbytes(dst));
  9340. }
  9341. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9342. return;
  9343. }
  9344. // TODO: handle transposed/permuted matrices
  9345. const int n = ggml_nrows(src0);
  9346. const int nc = src0->ne[0];
  9347. const int nr = src0->ne[1];
  9348. const int nz = n/nr;
  9349. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9350. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9351. for (int k = 0; k < nz; k++) {
  9352. for (int j = ith; j < nr; j += nth) {
  9353. for (int i = n_past; i < nc; i++) {
  9354. if (i > n_past + j) {
  9355. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9356. }
  9357. }
  9358. }
  9359. }
  9360. }
  9361. static void ggml_compute_forward_diag_mask_inf(
  9362. const struct ggml_compute_params * params,
  9363. const struct ggml_tensor * src0,
  9364. struct ggml_tensor * dst) {
  9365. switch (src0->type) {
  9366. case GGML_TYPE_F32:
  9367. {
  9368. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9369. } break;
  9370. default:
  9371. {
  9372. GGML_ASSERT(false);
  9373. } break;
  9374. }
  9375. }
  9376. static void ggml_compute_forward_diag_mask_zero(
  9377. const struct ggml_compute_params * params,
  9378. const struct ggml_tensor * src0,
  9379. struct ggml_tensor * dst) {
  9380. switch (src0->type) {
  9381. case GGML_TYPE_F32:
  9382. {
  9383. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9384. } break;
  9385. default:
  9386. {
  9387. GGML_ASSERT(false);
  9388. } break;
  9389. }
  9390. }
  9391. // ggml_compute_forward_soft_max
  9392. static void ggml_compute_forward_soft_max_f32(
  9393. const struct ggml_compute_params * params,
  9394. const struct ggml_tensor * src0,
  9395. struct ggml_tensor * dst) {
  9396. GGML_ASSERT(ggml_is_contiguous(src0));
  9397. GGML_ASSERT(ggml_is_contiguous(dst));
  9398. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9400. return;
  9401. }
  9402. // TODO: handle transposed/permuted matrices
  9403. const int ith = params->ith;
  9404. const int nth = params->nth;
  9405. const int nc = src0->ne[0];
  9406. const int nr = ggml_nrows(src0);
  9407. // rows per thread
  9408. const int dr = (nr + nth - 1)/nth;
  9409. // row range for this thread
  9410. const int ir0 = dr*ith;
  9411. const int ir1 = MIN(ir0 + dr, nr);
  9412. for (int i1 = ir0; i1 < ir1; i1++) {
  9413. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9414. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9415. #ifndef NDEBUG
  9416. for (int i = 0; i < nc; ++i) {
  9417. //printf("p[%d] = %f\n", i, p[i]);
  9418. assert(!isnan(sp[i]));
  9419. }
  9420. #endif
  9421. float max = -INFINITY;
  9422. ggml_vec_max_f32(nc, &max, sp);
  9423. ggml_float sum = 0.0;
  9424. uint16_t scvt;
  9425. for (int i = 0; i < nc; i++) {
  9426. if (sp[i] == -INFINITY) {
  9427. dp[i] = 0.0f;
  9428. } else {
  9429. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9430. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9431. memcpy(&scvt, &s, sizeof(scvt));
  9432. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9433. sum += (ggml_float)val;
  9434. dp[i] = val;
  9435. }
  9436. }
  9437. assert(sum > 0.0);
  9438. sum = 1.0/sum;
  9439. ggml_vec_scale_f32(nc, dp, sum);
  9440. #ifndef NDEBUG
  9441. for (int i = 0; i < nc; ++i) {
  9442. assert(!isnan(dp[i]));
  9443. assert(!isinf(dp[i]));
  9444. }
  9445. #endif
  9446. }
  9447. }
  9448. static void ggml_compute_forward_soft_max(
  9449. const struct ggml_compute_params * params,
  9450. const struct ggml_tensor * src0,
  9451. struct ggml_tensor * dst) {
  9452. switch (src0->type) {
  9453. case GGML_TYPE_F32:
  9454. {
  9455. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9456. } break;
  9457. default:
  9458. {
  9459. GGML_ASSERT(false);
  9460. } break;
  9461. }
  9462. }
  9463. // ggml_compute_forward_soft_max_back
  9464. static void ggml_compute_forward_soft_max_back_f32(
  9465. const struct ggml_compute_params * params,
  9466. const struct ggml_tensor * src0,
  9467. const struct ggml_tensor * src1,
  9468. struct ggml_tensor * dst) {
  9469. GGML_ASSERT(ggml_is_contiguous(src0));
  9470. GGML_ASSERT(ggml_is_contiguous(src1));
  9471. GGML_ASSERT(ggml_is_contiguous(dst));
  9472. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9473. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9474. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9475. return;
  9476. }
  9477. // TODO: handle transposed/permuted matrices
  9478. const int ith = params->ith;
  9479. const int nth = params->nth;
  9480. const int nc = src0->ne[0];
  9481. const int nr = ggml_nrows(src0);
  9482. // rows per thread
  9483. const int dr = (nr + nth - 1)/nth;
  9484. // row range for this thread
  9485. const int ir0 = dr*ith;
  9486. const int ir1 = MIN(ir0 + dr, nr);
  9487. for (int i1 = ir0; i1 < ir1; i1++) {
  9488. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9489. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9490. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9491. #ifndef NDEBUG
  9492. for (int i = 0; i < nc; ++i) {
  9493. //printf("p[%d] = %f\n", i, p[i]);
  9494. assert(!isnan(dy[i]));
  9495. assert(!isnan(y[i]));
  9496. }
  9497. #endif
  9498. // Jii = yi - yi*yi
  9499. // Jij = -yi*yj
  9500. // J = diag(y)-y.T*y
  9501. // dx = J * dy
  9502. // dxk = sum_i(Jki * dyi)
  9503. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9504. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9505. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9506. // dxk = -yk * dot(y, dy) + yk*dyk
  9507. // dxk = yk * (- dot(y, dy) + dyk)
  9508. // dxk = yk * (dyk - dot(y, dy))
  9509. //
  9510. // post-order:
  9511. // dot_y_dy := dot(y, dy)
  9512. // dx := dy
  9513. // dx := dx - dot_y_dy
  9514. // dx := dx * y
  9515. // linear runtime, no additional memory
  9516. float dot_y_dy = 0;
  9517. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9518. ggml_vec_cpy_f32 (nc, dx, dy);
  9519. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9520. ggml_vec_mul_f32 (nc, dx, dx, y);
  9521. #ifndef NDEBUG
  9522. for (int i = 0; i < nc; ++i) {
  9523. assert(!isnan(dx[i]));
  9524. assert(!isinf(dx[i]));
  9525. }
  9526. #endif
  9527. }
  9528. }
  9529. static void ggml_compute_forward_soft_max_back(
  9530. const struct ggml_compute_params * params,
  9531. const struct ggml_tensor * src0,
  9532. const struct ggml_tensor * src1,
  9533. struct ggml_tensor * dst) {
  9534. switch (src0->type) {
  9535. case GGML_TYPE_F32:
  9536. {
  9537. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9538. } break;
  9539. default:
  9540. {
  9541. GGML_ASSERT(false);
  9542. } break;
  9543. }
  9544. }
  9545. // ggml_compute_forward_alibi
  9546. static void ggml_compute_forward_alibi_f32(
  9547. const struct ggml_compute_params * params,
  9548. const struct ggml_tensor * src0,
  9549. struct ggml_tensor * dst) {
  9550. assert(params->ith == 0);
  9551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9552. return;
  9553. }
  9554. const int n_past = ((int32_t *) dst->op_params)[0];
  9555. const int n_head = ((int32_t *) dst->op_params)[1];
  9556. float max_bias;
  9557. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9558. assert(n_past >= 0);
  9559. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9560. const int ne1 = src0->ne[1]; // seq_len_without_past
  9561. const int ne2 = src0->ne[2]; // n_head -> this is k
  9562. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9563. const int n = ggml_nrows(src0);
  9564. const int ne2_ne3 = n/ne1; // ne2*ne3
  9565. const int nb0 = src0->nb[0];
  9566. const int nb1 = src0->nb[1];
  9567. const int nb2 = src0->nb[2];
  9568. //const int nb3 = src0->nb[3];
  9569. GGML_ASSERT(nb0 == sizeof(float));
  9570. GGML_ASSERT(ne1 + n_past == ne0);
  9571. GGML_ASSERT(n_head == ne2);
  9572. // add alibi to src0 (KQ_scaled)
  9573. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9574. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9575. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9576. for (int i = 0; i < ne0; i++) {
  9577. for (int j = 0; j < ne1; j++) {
  9578. for (int k = 0; k < ne2_ne3; k++) {
  9579. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9580. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9581. // TODO: k*nb2 or k*nb3
  9582. float m_k;
  9583. if (k < n_heads_log2_floor) {
  9584. m_k = powf(m0, k + 1);
  9585. } else {
  9586. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9587. }
  9588. pdst[0] = i * m_k + src[0];
  9589. }
  9590. }
  9591. }
  9592. }
  9593. static void ggml_compute_forward_alibi_f16(
  9594. const struct ggml_compute_params * params,
  9595. const struct ggml_tensor * src0,
  9596. struct ggml_tensor * dst) {
  9597. assert(params->ith == 0);
  9598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9599. return;
  9600. }
  9601. const int n_past = ((int32_t *) dst->op_params)[0];
  9602. const int n_head = ((int32_t *) dst->op_params)[1];
  9603. float max_bias;
  9604. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9605. assert(n_past >= 0);
  9606. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9607. const int ne1 = src0->ne[1]; // seq_len_without_past
  9608. const int ne2 = src0->ne[2]; // n_head -> this is k
  9609. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9610. const int n = ggml_nrows(src0);
  9611. const int ne2_ne3 = n/ne1; // ne2*ne3
  9612. const int nb0 = src0->nb[0];
  9613. const int nb1 = src0->nb[1];
  9614. const int nb2 = src0->nb[2];
  9615. //const int nb3 = src0->nb[3];
  9616. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9617. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9618. GGML_ASSERT(n_head == ne2);
  9619. // add alibi to src0 (KQ_scaled)
  9620. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9621. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9622. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9623. for (int i = 0; i < ne0; i++) {
  9624. for (int j = 0; j < ne1; j++) {
  9625. for (int k = 0; k < ne2_ne3; k++) {
  9626. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9627. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9628. // TODO: k*nb2 or k*nb3
  9629. float m_k;
  9630. if (k < n_heads_log2_floor) {
  9631. m_k = powf(m0, k + 1);
  9632. } else {
  9633. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9634. }
  9635. // we return F32
  9636. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9637. }
  9638. }
  9639. }
  9640. }
  9641. static void ggml_compute_forward_alibi(
  9642. const struct ggml_compute_params * params,
  9643. const struct ggml_tensor * src0,
  9644. struct ggml_tensor * dst) {
  9645. switch (src0->type) {
  9646. case GGML_TYPE_F16:
  9647. {
  9648. ggml_compute_forward_alibi_f16(params, src0, dst);
  9649. } break;
  9650. case GGML_TYPE_F32:
  9651. {
  9652. ggml_compute_forward_alibi_f32(params, src0, dst);
  9653. } break;
  9654. case GGML_TYPE_Q4_0:
  9655. case GGML_TYPE_Q4_1:
  9656. case GGML_TYPE_Q5_0:
  9657. case GGML_TYPE_Q5_1:
  9658. case GGML_TYPE_Q8_0:
  9659. case GGML_TYPE_Q8_1:
  9660. case GGML_TYPE_Q2_K:
  9661. case GGML_TYPE_Q3_K:
  9662. case GGML_TYPE_Q4_K:
  9663. case GGML_TYPE_Q5_K:
  9664. case GGML_TYPE_Q6_K:
  9665. case GGML_TYPE_Q8_K:
  9666. case GGML_TYPE_I8:
  9667. case GGML_TYPE_I16:
  9668. case GGML_TYPE_I32:
  9669. case GGML_TYPE_COUNT:
  9670. {
  9671. GGML_ASSERT(false);
  9672. } break;
  9673. }
  9674. }
  9675. // ggml_compute_forward_clamp
  9676. static void ggml_compute_forward_clamp_f32(
  9677. const struct ggml_compute_params * params,
  9678. const struct ggml_tensor * src0,
  9679. struct ggml_tensor * dst) {
  9680. assert(params->ith == 0);
  9681. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9682. return;
  9683. }
  9684. float min;
  9685. float max;
  9686. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9687. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9688. const int ith = params->ith;
  9689. const int nth = params->nth;
  9690. const int n = ggml_nrows(src0);
  9691. const int nc = src0->ne[0];
  9692. const size_t nb00 = src0->nb[0];
  9693. const size_t nb01 = src0->nb[1];
  9694. const size_t nb0 = dst->nb[0];
  9695. const size_t nb1 = dst->nb[1];
  9696. GGML_ASSERT( nb0 == sizeof(float));
  9697. GGML_ASSERT(nb00 == sizeof(float));
  9698. for (int j = ith; j < n; j += nth) {
  9699. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9700. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9701. for (int i = 0; i < nc; i++) {
  9702. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9703. }
  9704. }
  9705. }
  9706. static void ggml_compute_forward_clamp(
  9707. const struct ggml_compute_params * params,
  9708. const struct ggml_tensor * src0,
  9709. struct ggml_tensor * dst) {
  9710. switch (src0->type) {
  9711. case GGML_TYPE_F32:
  9712. {
  9713. ggml_compute_forward_clamp_f32(params, src0, dst);
  9714. } break;
  9715. case GGML_TYPE_F16:
  9716. case GGML_TYPE_Q4_0:
  9717. case GGML_TYPE_Q4_1:
  9718. case GGML_TYPE_Q5_0:
  9719. case GGML_TYPE_Q5_1:
  9720. case GGML_TYPE_Q8_0:
  9721. case GGML_TYPE_Q8_1:
  9722. case GGML_TYPE_Q2_K:
  9723. case GGML_TYPE_Q3_K:
  9724. case GGML_TYPE_Q4_K:
  9725. case GGML_TYPE_Q5_K:
  9726. case GGML_TYPE_Q6_K:
  9727. case GGML_TYPE_Q8_K:
  9728. case GGML_TYPE_I8:
  9729. case GGML_TYPE_I16:
  9730. case GGML_TYPE_I32:
  9731. case GGML_TYPE_COUNT:
  9732. {
  9733. GGML_ASSERT(false);
  9734. } break;
  9735. }
  9736. }
  9737. // ggml_compute_forward_rope
  9738. static void ggml_compute_forward_rope_f32(
  9739. const struct ggml_compute_params * params,
  9740. const struct ggml_tensor * src0,
  9741. struct ggml_tensor * dst) {
  9742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9743. return;
  9744. }
  9745. float freq_base;
  9746. float freq_scale;
  9747. const int n_past = ((int32_t *) dst->op_params)[0];
  9748. const int n_dims = ((int32_t *) dst->op_params)[1];
  9749. const int mode = ((int32_t *) dst->op_params)[2];
  9750. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9751. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9752. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9753. assert(n_past >= 0);
  9754. GGML_TENSOR_UNARY_OP_LOCALS;
  9755. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9756. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9757. GGML_ASSERT(nb00 == sizeof(float));
  9758. const int ith = params->ith;
  9759. const int nth = params->nth;
  9760. const int nr = ggml_nrows(dst);
  9761. GGML_ASSERT(n_dims <= ne0);
  9762. GGML_ASSERT(n_dims % 2 == 0);
  9763. // rows per thread
  9764. const int dr = (nr + nth - 1)/nth;
  9765. // row range for this thread
  9766. const int ir0 = dr*ith;
  9767. const int ir1 = MIN(ir0 + dr, nr);
  9768. // row index used to determine which thread to use
  9769. int ir = 0;
  9770. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9771. const bool is_neox = mode & 2;
  9772. const bool is_glm = mode & 4;
  9773. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9774. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9775. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9776. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9777. if (ir++ < ir0) continue;
  9778. if (ir > ir1) break;
  9779. float theta = freq_scale * (float)p;
  9780. if (is_glm) {
  9781. theta = MIN(p, n_ctx - 2);
  9782. float block_theta = MAX(p - (n_ctx - 2), 0);
  9783. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9784. const float cos_theta = cosf(theta);
  9785. const float sin_theta = sinf(theta);
  9786. const float cos_block_theta = cosf(block_theta);
  9787. const float sin_block_theta = sinf(block_theta);
  9788. theta *= theta_scale;
  9789. block_theta *= theta_scale;
  9790. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9791. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9792. const float x0 = src[0];
  9793. const float x1 = src[n_dims/2];
  9794. const float x2 = src[n_dims];
  9795. const float x3 = src[n_dims/2*3];
  9796. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9797. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9798. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9799. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9800. }
  9801. } else if (!is_neox) {
  9802. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9803. const float cos_theta = cosf(theta);
  9804. const float sin_theta = sinf(theta);
  9805. theta *= theta_scale;
  9806. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9807. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9808. const float x0 = src[0];
  9809. const float x1 = src[1];
  9810. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9811. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9812. }
  9813. } else {
  9814. // TODO: this is probably wrong, but I can't figure it out ..
  9815. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9816. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9817. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9818. const float cos_theta = cosf(theta);
  9819. const float sin_theta = sinf(theta);
  9820. theta *= theta_scale;
  9821. const int64_t i0 = ib*n_dims + ic/2;
  9822. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9823. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9824. const float x0 = src[0];
  9825. const float x1 = src[n_dims/2];
  9826. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9827. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9828. }
  9829. }
  9830. }
  9831. }
  9832. }
  9833. }
  9834. }
  9835. static void ggml_compute_forward_rope_f16(
  9836. const struct ggml_compute_params * params,
  9837. const struct ggml_tensor * src0,
  9838. struct ggml_tensor * dst) {
  9839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9840. return;
  9841. }
  9842. float freq_base;
  9843. float freq_scale;
  9844. const int n_past = ((int32_t *) dst->op_params)[0];
  9845. const int n_dims = ((int32_t *) dst->op_params)[1];
  9846. const int mode = ((int32_t *) dst->op_params)[2];
  9847. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9848. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9849. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9850. assert(n_past >= 0);
  9851. GGML_TENSOR_UNARY_OP_LOCALS;
  9852. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9853. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9854. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9855. const int ith = params->ith;
  9856. const int nth = params->nth;
  9857. const int nr = ggml_nrows(dst);
  9858. GGML_ASSERT(n_dims <= ne0);
  9859. GGML_ASSERT(n_dims % 2 == 0);
  9860. // rows per thread
  9861. const int dr = (nr + nth - 1)/nth;
  9862. // row range for this thread
  9863. const int ir0 = dr*ith;
  9864. const int ir1 = MIN(ir0 + dr, nr);
  9865. // row index used to determine which thread to use
  9866. int ir = 0;
  9867. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9868. const bool is_neox = mode & 2;
  9869. const bool is_glm = mode & 4;
  9870. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9871. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9872. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9873. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9874. if (ir++ < ir0) continue;
  9875. if (ir > ir1) break;
  9876. float theta = freq_scale * (float)p;
  9877. if (is_glm) {
  9878. theta = MIN(p, n_ctx - 2);
  9879. float block_theta = MAX(p - (n_ctx - 2), 0);
  9880. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9881. const float cos_theta = cosf(theta);
  9882. const float sin_theta = sinf(theta);
  9883. const float cos_block_theta = cosf(block_theta);
  9884. const float sin_block_theta = sinf(block_theta);
  9885. theta *= theta_scale;
  9886. block_theta *= theta_scale;
  9887. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9888. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9889. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9890. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9891. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9892. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9893. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9894. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9895. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9896. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9897. }
  9898. } if (!is_neox) {
  9899. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9900. const float cos_theta = cosf(theta);
  9901. const float sin_theta = sinf(theta);
  9902. theta *= theta_scale;
  9903. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9904. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9905. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9906. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9907. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9908. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9909. }
  9910. } else {
  9911. // TODO: this is probably wrong, but I can't figure it out ..
  9912. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9913. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9914. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9915. const float cos_theta = cosf(theta);
  9916. const float sin_theta = sinf(theta);
  9917. theta *= theta_scale;
  9918. const int64_t i0 = ib*n_dims + ic/2;
  9919. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9920. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9921. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9922. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9923. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9924. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9925. }
  9926. }
  9927. }
  9928. }
  9929. }
  9930. }
  9931. }
  9932. static void ggml_compute_forward_rope(
  9933. const struct ggml_compute_params * params,
  9934. const struct ggml_tensor * src0,
  9935. struct ggml_tensor * dst) {
  9936. switch (src0->type) {
  9937. case GGML_TYPE_F16:
  9938. {
  9939. ggml_compute_forward_rope_f16(params, src0, dst);
  9940. } break;
  9941. case GGML_TYPE_F32:
  9942. {
  9943. ggml_compute_forward_rope_f32(params, src0, dst);
  9944. } break;
  9945. default:
  9946. {
  9947. GGML_ASSERT(false);
  9948. } break;
  9949. }
  9950. }
  9951. // ggml_compute_forward_rope_back
  9952. static void ggml_compute_forward_rope_back_f32(
  9953. const struct ggml_compute_params * params,
  9954. const struct ggml_tensor * src0,
  9955. struct ggml_tensor * dst) {
  9956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9957. return;
  9958. }
  9959. // y = rope(x, src1)
  9960. // dx = rope_back(dy, src1)
  9961. // src0 is dy, src1 contains options
  9962. const int n_past = ((int32_t *) dst->op_params)[0];
  9963. const int n_dims = ((int32_t *) dst->op_params)[1];
  9964. const int mode = ((int32_t *) dst->op_params)[2];
  9965. assert(n_past >= 0);
  9966. GGML_TENSOR_UNARY_OP_LOCALS;
  9967. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9968. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9969. assert(nb0 == sizeof(float));
  9970. const int ith = params->ith;
  9971. const int nth = params->nth;
  9972. const int nr = ggml_nrows(dst);
  9973. // rows per thread
  9974. const int dr = (nr + nth - 1)/nth;
  9975. // row range for this thread
  9976. const int ir0 = dr*ith;
  9977. const int ir1 = MIN(ir0 + dr, nr);
  9978. // row index used to determine which thread to use
  9979. int ir = 0;
  9980. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9981. const bool is_neox = mode & 2;
  9982. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9983. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9984. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9985. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9986. if (ir++ < ir0) continue;
  9987. if (ir > ir1) break;
  9988. float theta = (float)p;
  9989. if (!is_neox) {
  9990. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9991. const float cos_theta = cosf(theta);
  9992. const float sin_theta = sinf(theta);
  9993. theta *= theta_scale;
  9994. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9995. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9996. const float dy0 = dy[0];
  9997. const float dy1 = dy[1];
  9998. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9999. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10000. }
  10001. } else {
  10002. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10003. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10004. const float cos_theta = cosf(theta);
  10005. const float sin_theta = sinf(theta);
  10006. theta *= theta_scale;
  10007. const int64_t i0 = ib*n_dims + ic/2;
  10008. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10009. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10010. const float dy0 = dy[0];
  10011. const float dy1 = dy[n_dims/2];
  10012. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10013. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10014. }
  10015. }
  10016. }
  10017. }
  10018. }
  10019. }
  10020. }
  10021. static void ggml_compute_forward_rope_back_f16(
  10022. const struct ggml_compute_params * params,
  10023. const struct ggml_tensor * src0,
  10024. struct ggml_tensor * dst) {
  10025. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10026. return;
  10027. }
  10028. // y = rope(x, src1)
  10029. // dx = rope_back(dy, src1)
  10030. // src0 is dy, src1 contains options
  10031. const int n_past = ((int32_t *) dst->op_params)[0];
  10032. const int n_dims = ((int32_t *) dst->op_params)[1];
  10033. const int mode = ((int32_t *) dst->op_params)[2];
  10034. assert(n_past >= 0);
  10035. GGML_TENSOR_UNARY_OP_LOCALS;
  10036. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10037. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10038. assert(nb0 == sizeof(ggml_fp16_t));
  10039. const int ith = params->ith;
  10040. const int nth = params->nth;
  10041. const int nr = ggml_nrows(dst);
  10042. // rows per thread
  10043. const int dr = (nr + nth - 1)/nth;
  10044. // row range for this thread
  10045. const int ir0 = dr*ith;
  10046. const int ir1 = MIN(ir0 + dr, nr);
  10047. // row index used to determine which thread to use
  10048. int ir = 0;
  10049. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10050. const bool is_neox = mode & 2;
  10051. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10052. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10053. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10054. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10055. if (ir++ < ir0) continue;
  10056. if (ir > ir1) break;
  10057. float theta = (float)p;
  10058. if (!is_neox) {
  10059. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10060. const float cos_theta = cosf(theta);
  10061. const float sin_theta = sinf(theta);
  10062. theta *= theta_scale;
  10063. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10064. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10065. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10066. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10067. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10068. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10069. }
  10070. } else {
  10071. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10072. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10073. const float cos_theta = cosf(theta);
  10074. const float sin_theta = sinf(theta);
  10075. theta *= theta_scale;
  10076. const int64_t i0 = ib*n_dims + ic/2;
  10077. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10078. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10079. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10080. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10081. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10082. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10083. }
  10084. }
  10085. }
  10086. }
  10087. }
  10088. }
  10089. }
  10090. static void ggml_compute_forward_rope_back(
  10091. const struct ggml_compute_params * params,
  10092. const struct ggml_tensor * src0,
  10093. struct ggml_tensor * dst) {
  10094. switch (src0->type) {
  10095. case GGML_TYPE_F16:
  10096. {
  10097. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10098. } break;
  10099. case GGML_TYPE_F32:
  10100. {
  10101. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10102. } break;
  10103. default:
  10104. {
  10105. GGML_ASSERT(false);
  10106. } break;
  10107. }
  10108. }
  10109. // ggml_compute_forward_conv_1d
  10110. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10111. const struct ggml_compute_params * params,
  10112. const struct ggml_tensor * src0,
  10113. const struct ggml_tensor * src1,
  10114. struct ggml_tensor * dst) {
  10115. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10116. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10117. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10118. int64_t t0 = ggml_perf_time_us();
  10119. UNUSED(t0);
  10120. GGML_TENSOR_BINARY_OP_LOCALS;
  10121. const int ith = params->ith;
  10122. const int nth = params->nth;
  10123. const int nk = ne00;
  10124. const int nh = nk/2;
  10125. const int ew0 = ggml_up32(ne01);
  10126. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10127. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10128. GGML_ASSERT(nb10 == sizeof(float));
  10129. if (params->type == GGML_TASK_INIT) {
  10130. // TODO: fix this memset (wsize is overestimated)
  10131. memset(params->wdata, 0, params->wsize);
  10132. // prepare kernel data (src0)
  10133. {
  10134. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10135. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10136. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10137. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10138. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10139. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10140. dst_data[i00*ew0 + i01] = src[i00];
  10141. }
  10142. }
  10143. }
  10144. }
  10145. // prepare source data (src1)
  10146. {
  10147. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10148. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10149. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10150. ggml_fp16_t * dst_data = wdata;
  10151. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10152. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10153. }
  10154. }
  10155. }
  10156. return;
  10157. }
  10158. if (params->type == GGML_TASK_FINALIZE) {
  10159. return;
  10160. }
  10161. // total rows in dst
  10162. const int nr = ne02;
  10163. // rows per thread
  10164. const int dr = (nr + nth - 1)/nth;
  10165. // row range for this thread
  10166. const int ir0 = dr*ith;
  10167. const int ir1 = MIN(ir0 + dr, nr);
  10168. for (int i1 = ir0; i1 < ir1; i1++) {
  10169. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10170. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10171. dst_data[i0] = 0;
  10172. for (int k = -nh; k <= nh; k++) {
  10173. float v = 0.0f;
  10174. ggml_vec_dot_f16(ew0, &v,
  10175. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10176. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10177. dst_data[i0] += v;
  10178. }
  10179. }
  10180. }
  10181. }
  10182. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10183. const struct ggml_compute_params * params,
  10184. const struct ggml_tensor * src0,
  10185. const struct ggml_tensor * src1,
  10186. struct ggml_tensor * dst) {
  10187. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10188. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10189. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10190. int64_t t0 = ggml_perf_time_us();
  10191. UNUSED(t0);
  10192. GGML_TENSOR_BINARY_OP_LOCALS;
  10193. const int ith = params->ith;
  10194. const int nth = params->nth;
  10195. const int nk = ne00;
  10196. const int nh = nk/2;
  10197. const int ew0 = ggml_up32(ne01);
  10198. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10199. GGML_ASSERT(nb00 == sizeof(float));
  10200. GGML_ASSERT(nb10 == sizeof(float));
  10201. if (params->type == GGML_TASK_INIT) {
  10202. // TODO: fix this memset (wsize is overestimated)
  10203. memset(params->wdata, 0, params->wsize);
  10204. // prepare kernel data (src0)
  10205. {
  10206. float * const wdata = (float *) params->wdata + 0;
  10207. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10208. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10209. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10210. float * dst_data = wdata + i02*ew0*ne00;
  10211. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10212. dst_data[i00*ew0 + i01] = src[i00];
  10213. }
  10214. }
  10215. }
  10216. }
  10217. // prepare source data (src1)
  10218. {
  10219. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10220. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10221. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10222. float * dst_data = wdata;
  10223. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10224. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10225. }
  10226. }
  10227. }
  10228. return;
  10229. }
  10230. if (params->type == GGML_TASK_FINALIZE) {
  10231. return;
  10232. }
  10233. // total rows in dst
  10234. const int nr = ne02;
  10235. // rows per thread
  10236. const int dr = (nr + nth - 1)/nth;
  10237. // row range for this thread
  10238. const int ir0 = dr*ith;
  10239. const int ir1 = MIN(ir0 + dr, nr);
  10240. for (int i1 = ir0; i1 < ir1; i1++) {
  10241. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10242. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10243. dst_data[i0] = 0;
  10244. for (int k = -nh; k <= nh; k++) {
  10245. float v = 0.0f;
  10246. ggml_vec_dot_f32(ew0, &v,
  10247. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10248. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10249. dst_data[i0] += v;
  10250. }
  10251. }
  10252. }
  10253. }
  10254. static void ggml_compute_forward_conv_1d_s1_ph(
  10255. const struct ggml_compute_params * params,
  10256. const struct ggml_tensor * src0,
  10257. const struct ggml_tensor * src1,
  10258. struct ggml_tensor * dst) {
  10259. switch (src0->type) {
  10260. case GGML_TYPE_F16:
  10261. {
  10262. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10263. } break;
  10264. case GGML_TYPE_F32:
  10265. {
  10266. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10267. } break;
  10268. default:
  10269. {
  10270. GGML_ASSERT(false);
  10271. } break;
  10272. }
  10273. }
  10274. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10275. const struct ggml_compute_params * params,
  10276. const struct ggml_tensor * src0,
  10277. const struct ggml_tensor * src1,
  10278. struct ggml_tensor * dst) {
  10279. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10280. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10281. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10282. int64_t t0 = ggml_perf_time_us();
  10283. UNUSED(t0);
  10284. GGML_TENSOR_BINARY_OP_LOCALS;
  10285. const int ith = params->ith;
  10286. const int nth = params->nth;
  10287. const int nk = ne00;
  10288. const int nh = nk/2;
  10289. const int ew0 = ggml_up32(ne01);
  10290. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10291. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10292. GGML_ASSERT(nb10 == sizeof(float));
  10293. if (params->type == GGML_TASK_INIT) {
  10294. // TODO: fix this memset (wsize is overestimated)
  10295. memset(params->wdata, 0, params->wsize);
  10296. // prepare kernel data (src0)
  10297. {
  10298. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10299. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10300. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10301. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10302. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10303. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10304. dst_data[i00*ew0 + i01] = src[i00];
  10305. }
  10306. }
  10307. }
  10308. }
  10309. // prepare source data (src1)
  10310. {
  10311. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10312. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10313. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10314. ggml_fp16_t * dst_data = wdata;
  10315. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10316. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10317. }
  10318. }
  10319. }
  10320. return;
  10321. }
  10322. if (params->type == GGML_TASK_FINALIZE) {
  10323. return;
  10324. }
  10325. // total rows in dst
  10326. const int nr = ne02;
  10327. // rows per thread
  10328. const int dr = (nr + nth - 1)/nth;
  10329. // row range for this thread
  10330. const int ir0 = dr*ith;
  10331. const int ir1 = MIN(ir0 + dr, nr);
  10332. for (int i1 = ir0; i1 < ir1; i1++) {
  10333. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10334. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10335. dst_data[i0/2] = 0;
  10336. for (int k = -nh; k <= nh; k++) {
  10337. float v = 0.0f;
  10338. ggml_vec_dot_f16(ew0, &v,
  10339. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10340. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10341. dst_data[i0/2] += v;
  10342. }
  10343. }
  10344. }
  10345. }
  10346. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10347. const struct ggml_compute_params * params,
  10348. const struct ggml_tensor * src0,
  10349. const struct ggml_tensor * src1,
  10350. struct ggml_tensor * dst) {
  10351. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10352. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10353. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10354. int64_t t0 = ggml_perf_time_us();
  10355. UNUSED(t0);
  10356. GGML_TENSOR_BINARY_OP_LOCALS;
  10357. const int ith = params->ith;
  10358. const int nth = params->nth;
  10359. const int nk = ne00;
  10360. const int nh = nk/2;
  10361. const int ew0 = ggml_up32(ne01);
  10362. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10363. GGML_ASSERT(nb00 == sizeof(float));
  10364. GGML_ASSERT(nb10 == sizeof(float));
  10365. if (params->type == GGML_TASK_INIT) {
  10366. // TODO: fix this memset (wsize is overestimated)
  10367. memset(params->wdata, 0, params->wsize);
  10368. // prepare kernel data (src0)
  10369. {
  10370. float * const wdata = (float *) params->wdata + 0;
  10371. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10372. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10373. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10374. float * dst_data = wdata + i02*ew0*ne00;
  10375. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10376. dst_data[i00*ew0 + i01] = src[i00];
  10377. }
  10378. }
  10379. }
  10380. }
  10381. // prepare source data (src1)
  10382. {
  10383. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10384. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10385. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10386. float * dst_data = wdata;
  10387. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10388. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10389. }
  10390. }
  10391. }
  10392. return;
  10393. }
  10394. if (params->type == GGML_TASK_FINALIZE) {
  10395. return;
  10396. }
  10397. // total rows in dst
  10398. const int nr = ne02;
  10399. // rows per thread
  10400. const int dr = (nr + nth - 1)/nth;
  10401. // row range for this thread
  10402. const int ir0 = dr*ith;
  10403. const int ir1 = MIN(ir0 + dr, nr);
  10404. for (int i1 = ir0; i1 < ir1; i1++) {
  10405. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10406. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10407. dst_data[i0/2] = 0;
  10408. for (int k = -nh; k <= nh; k++) {
  10409. float v = 0.0f;
  10410. ggml_vec_dot_f32(ew0, &v,
  10411. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10412. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10413. dst_data[i0/2] += v;
  10414. }
  10415. }
  10416. }
  10417. }
  10418. static void ggml_compute_forward_conv_1d_s2_ph(
  10419. const struct ggml_compute_params * params,
  10420. const struct ggml_tensor * src0,
  10421. const struct ggml_tensor * src1,
  10422. struct ggml_tensor * dst) {
  10423. switch (src0->type) {
  10424. case GGML_TYPE_F16:
  10425. {
  10426. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10427. } break;
  10428. case GGML_TYPE_F32:
  10429. {
  10430. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10431. } break;
  10432. default:
  10433. {
  10434. GGML_ASSERT(false);
  10435. } break;
  10436. }
  10437. }
  10438. // ggml_compute_forward_conv_1d
  10439. static void ggml_compute_forward_conv_1d(
  10440. const struct ggml_compute_params * params,
  10441. const struct ggml_tensor * src0,
  10442. const struct ggml_tensor * src1,
  10443. struct ggml_tensor * dst) {
  10444. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10445. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10446. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10447. GGML_ASSERT(d0 == 1); // dilation not supported
  10448. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10449. if (s0 == 1) {
  10450. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10451. } else if (s0 == 2) {
  10452. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10453. } else {
  10454. GGML_ASSERT(false); // only stride 1 and 2 supported
  10455. };
  10456. }
  10457. // ggml_compute_forward_conv_2d
  10458. static void ggml_compute_forward_conv_2d_f16_f32(
  10459. const struct ggml_compute_params * params,
  10460. const struct ggml_tensor * src0,
  10461. const struct ggml_tensor * src1,
  10462. struct ggml_tensor * dst) {
  10463. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10464. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10465. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10466. int64_t t0 = ggml_perf_time_us();
  10467. UNUSED(t0);
  10468. GGML_TENSOR_BINARY_OP_LOCALS;
  10469. const int ith = params->ith;
  10470. const int nth = params->nth;
  10471. const int nk0 = ne00;
  10472. const int nk1 = ne01;
  10473. // size of the convolution row - the kernel size unrolled across all channels
  10474. const int ew0 = nk0*nk1*ne02;
  10475. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10476. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10477. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10478. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10479. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10480. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10481. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10482. GGML_ASSERT(nb10 == sizeof(float));
  10483. if (params->type == GGML_TASK_INIT) {
  10484. memset(params->wdata, 0, params->wsize);
  10485. // prepare source data (src1)
  10486. {
  10487. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10488. for (int i12 = 0; i12 < ne12; i12++) {
  10489. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10490. ggml_fp16_t * dst_data = wdata;
  10491. for (int i1 = 0; i1 < ne1; i1++) {
  10492. for (int i0 = 0; i0 < ne0; i0++) {
  10493. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10494. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10495. const int idx0 = i0*s0 + ik0*d0 - p0;
  10496. const int idx1 = i1*s1 + ik1*d1 - p1;
  10497. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10498. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10499. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10500. }
  10501. }
  10502. }
  10503. }
  10504. }
  10505. }
  10506. }
  10507. return;
  10508. }
  10509. if (params->type == GGML_TASK_FINALIZE) {
  10510. return;
  10511. }
  10512. // total patches in dst
  10513. const int np = ne2;
  10514. // patches per thread
  10515. const int dp = (np + nth - 1)/nth;
  10516. // patch range for this thread
  10517. const int ip0 = dp*ith;
  10518. const int ip1 = MIN(ip0 + dp, np);
  10519. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10520. for (int i3 = 0; i3 < ne3; i3++) {
  10521. for (int i2 = ip0; i2 < ip1; i2++) {
  10522. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10523. for (int i1 = 0; i1 < ne1; ++i1) {
  10524. for (int i0 = 0; i0 < ne0; ++i0) {
  10525. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10526. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10527. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10528. }
  10529. }
  10530. }
  10531. }
  10532. }
  10533. static void ggml_compute_forward_conv_2d(
  10534. const struct ggml_compute_params * params,
  10535. const struct ggml_tensor * src0,
  10536. const struct ggml_tensor * src1,
  10537. struct ggml_tensor * dst) {
  10538. switch (src0->type) {
  10539. case GGML_TYPE_F16:
  10540. {
  10541. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10542. } break;
  10543. case GGML_TYPE_F32:
  10544. {
  10545. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10546. GGML_ASSERT(false);
  10547. } break;
  10548. default:
  10549. {
  10550. GGML_ASSERT(false);
  10551. } break;
  10552. }
  10553. }
  10554. // ggml_compute_forward_pool_1d_sk_p0
  10555. static void ggml_compute_forward_pool_1d_sk_p0(
  10556. const struct ggml_compute_params * params,
  10557. const enum ggml_op_pool op,
  10558. const struct ggml_tensor * src,
  10559. const int k,
  10560. struct ggml_tensor * dst) {
  10561. assert(src->type == GGML_TYPE_F32);
  10562. assert(params->ith == 0);
  10563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10564. return;
  10565. }
  10566. const char * cdata = (const char *)src->data;
  10567. const char * const data_end = cdata + ggml_nbytes(src);
  10568. float * drow = (float *)dst->data;
  10569. const int64_t rs = dst->ne[0];
  10570. while (cdata < data_end) {
  10571. const float * const srow = (const float *)cdata;
  10572. int j = 0;
  10573. for (int64_t i = 0; i < rs; ++i) {
  10574. switch (op) {
  10575. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10576. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10577. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10578. }
  10579. for (int ki = 0; ki < k; ++ki) {
  10580. switch (op) {
  10581. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10582. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10583. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10584. }
  10585. ++j;
  10586. }
  10587. switch (op) {
  10588. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10589. case GGML_OP_POOL_MAX: break;
  10590. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10591. }
  10592. }
  10593. cdata += src->nb[1];
  10594. drow += rs;
  10595. }
  10596. }
  10597. // ggml_compute_forward_pool_1d
  10598. static void ggml_compute_forward_pool_1d(
  10599. const struct ggml_compute_params * params,
  10600. const struct ggml_tensor * src0,
  10601. struct ggml_tensor * dst) {
  10602. const int32_t * opts = (const int32_t *)dst->op_params;
  10603. enum ggml_op_pool op = opts[0];
  10604. const int k0 = opts[1];
  10605. const int s0 = opts[2];
  10606. const int p0 = opts[3];
  10607. GGML_ASSERT(p0 == 0); // padding not supported
  10608. GGML_ASSERT(k0 == s0); // only s = k supported
  10609. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10610. }
  10611. // ggml_compute_forward_pool_2d_sk_p0
  10612. static void ggml_compute_forward_pool_2d_sk_p0(
  10613. const struct ggml_compute_params * params,
  10614. const enum ggml_op_pool op,
  10615. const struct ggml_tensor * src,
  10616. const int k0,
  10617. const int k1,
  10618. struct ggml_tensor * dst) {
  10619. assert(src->type == GGML_TYPE_F32);
  10620. assert(params->ith == 0);
  10621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10622. return;
  10623. }
  10624. const char * cdata = (const char*)src->data;
  10625. const char * const data_end = cdata + ggml_nbytes(src);
  10626. const int64_t px = dst->ne[0];
  10627. const int64_t py = dst->ne[1];
  10628. const int64_t pa = px * py;
  10629. float * dplane = (float *)dst->data;
  10630. const int ka = k0 * k1;
  10631. while (cdata < data_end) {
  10632. for (int oy = 0; oy < py; ++oy) {
  10633. float * const drow = dplane + oy * px;
  10634. for (int ox = 0; ox < px; ++ox) {
  10635. float * const out = drow + ox;
  10636. switch (op) {
  10637. case GGML_OP_POOL_AVG: *out = 0; break;
  10638. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10639. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10640. }
  10641. const int ix = ox * k0;
  10642. const int iy = oy * k1;
  10643. for (int ky = 0; ky < k1; ++ky) {
  10644. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10645. for (int kx = 0; kx < k0; ++kx) {
  10646. int j = ix + kx;
  10647. switch (op) {
  10648. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10649. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10650. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10651. }
  10652. }
  10653. }
  10654. switch (op) {
  10655. case GGML_OP_POOL_AVG: *out /= ka; break;
  10656. case GGML_OP_POOL_MAX: break;
  10657. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10658. }
  10659. }
  10660. }
  10661. cdata += src->nb[2];
  10662. dplane += pa;
  10663. }
  10664. }
  10665. // ggml_compute_forward_pool_2d
  10666. static void ggml_compute_forward_pool_2d(
  10667. const struct ggml_compute_params * params,
  10668. const struct ggml_tensor * src0,
  10669. struct ggml_tensor * dst) {
  10670. const int32_t * opts = (const int32_t *)dst->op_params;
  10671. enum ggml_op_pool op = opts[0];
  10672. const int k0 = opts[1];
  10673. const int k1 = opts[2];
  10674. const int s0 = opts[3];
  10675. const int s1 = opts[4];
  10676. const int p0 = opts[5];
  10677. const int p1 = opts[6];
  10678. GGML_ASSERT(p0 == 0);
  10679. GGML_ASSERT(p1 == 0); // padding not supported
  10680. GGML_ASSERT(k0 == s0);
  10681. GGML_ASSERT(k1 == s1); // only s = k supported
  10682. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10683. }
  10684. // ggml_compute_forward_flash_attn
  10685. static void ggml_compute_forward_flash_attn_f32(
  10686. const struct ggml_compute_params * params,
  10687. const struct ggml_tensor * q,
  10688. const struct ggml_tensor * k,
  10689. const struct ggml_tensor * v,
  10690. const bool masked,
  10691. struct ggml_tensor * dst) {
  10692. int64_t t0 = ggml_perf_time_us();
  10693. UNUSED(t0);
  10694. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10695. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10696. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10697. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10698. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10699. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10700. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10701. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10702. const int ith = params->ith;
  10703. const int nth = params->nth;
  10704. const int64_t D = neq0;
  10705. const int64_t N = neq1;
  10706. const int64_t P = nek1 - N;
  10707. const int64_t M = P + N;
  10708. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10709. GGML_ASSERT(ne0 == D);
  10710. GGML_ASSERT(ne1 == N);
  10711. GGML_ASSERT(P >= 0);
  10712. GGML_ASSERT(nbq0 == sizeof(float));
  10713. GGML_ASSERT(nbk0 == sizeof(float));
  10714. GGML_ASSERT(nbv0 == sizeof(float));
  10715. GGML_ASSERT(neq0 == D);
  10716. GGML_ASSERT(nek0 == D);
  10717. GGML_ASSERT(nev1 == D);
  10718. GGML_ASSERT(neq1 == N);
  10719. GGML_ASSERT(nek1 == N + P);
  10720. GGML_ASSERT(nev1 == D);
  10721. // dst cannot be transposed or permuted
  10722. GGML_ASSERT(nb0 == sizeof(float));
  10723. GGML_ASSERT(nb0 <= nb1);
  10724. GGML_ASSERT(nb1 <= nb2);
  10725. GGML_ASSERT(nb2 <= nb3);
  10726. if (params->type == GGML_TASK_INIT) {
  10727. return;
  10728. }
  10729. if (params->type == GGML_TASK_FINALIZE) {
  10730. return;
  10731. }
  10732. // parallelize by q rows using ggml_vec_dot_f32
  10733. // total rows in q
  10734. const int nr = neq1*neq2*neq3;
  10735. // rows per thread
  10736. const int dr = (nr + nth - 1)/nth;
  10737. // row range for this thread
  10738. const int ir0 = dr*ith;
  10739. const int ir1 = MIN(ir0 + dr, nr);
  10740. const float scale = 1.0f/sqrtf(D);
  10741. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10742. for (int ir = ir0; ir < ir1; ++ir) {
  10743. // q indices
  10744. const int iq3 = ir/(neq2*neq1);
  10745. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10746. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10747. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10748. for (int i = M; i < Mup; ++i) {
  10749. S[i] = -INFINITY;
  10750. }
  10751. for (int64_t ic = 0; ic < nek1; ++ic) {
  10752. // k indices
  10753. const int ik3 = iq3;
  10754. const int ik2 = iq2;
  10755. const int ik1 = ic;
  10756. // S indices
  10757. const int i1 = ik1;
  10758. ggml_vec_dot_f32(neq0,
  10759. S + i1,
  10760. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10761. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10762. }
  10763. // scale
  10764. ggml_vec_scale_f32(nek1, S, scale);
  10765. if (masked) {
  10766. for (int64_t i = P; i < M; i++) {
  10767. if (i > P + iq1) {
  10768. S[i] = -INFINITY;
  10769. }
  10770. }
  10771. }
  10772. // softmax
  10773. {
  10774. float max = -INFINITY;
  10775. ggml_vec_max_f32(M, &max, S);
  10776. ggml_float sum = 0.0;
  10777. {
  10778. #ifdef GGML_SOFT_MAX_ACCELERATE
  10779. max = -max;
  10780. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10781. vvexpf(S, S, &Mup);
  10782. ggml_vec_sum_f32(Mup, &sum, S);
  10783. #else
  10784. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10785. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10786. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10787. float * SS = S + i;
  10788. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10789. if (SS[j] == -INFINITY) {
  10790. SS[j] = 0.0f;
  10791. } else {
  10792. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10793. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10794. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10795. sump[j] += (ggml_float)val;
  10796. SS[j] = val;
  10797. }
  10798. }
  10799. }
  10800. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10801. sum += sump[i];
  10802. }
  10803. #endif
  10804. }
  10805. assert(sum > 0.0);
  10806. sum = 1.0/sum;
  10807. ggml_vec_scale_f32(M, S, sum);
  10808. #ifndef NDEBUG
  10809. for (int i = 0; i < M; ++i) {
  10810. assert(!isnan(S[i]));
  10811. assert(!isinf(S[i]));
  10812. }
  10813. #endif
  10814. }
  10815. for (int64_t ic = 0; ic < nev1; ++ic) {
  10816. // dst indices
  10817. const int i1 = iq1;
  10818. const int i2 = iq2;
  10819. const int i3 = iq3;
  10820. ggml_vec_dot_f32(nek1,
  10821. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10822. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10823. S);
  10824. }
  10825. }
  10826. }
  10827. static void ggml_compute_forward_flash_attn_f16(
  10828. const struct ggml_compute_params * params,
  10829. const struct ggml_tensor * q,
  10830. const struct ggml_tensor * k,
  10831. const struct ggml_tensor * v,
  10832. const bool masked,
  10833. struct ggml_tensor * dst) {
  10834. int64_t t0 = ggml_perf_time_us();
  10835. UNUSED(t0);
  10836. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10837. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10838. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10839. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10840. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10841. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10842. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10843. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10844. const int ith = params->ith;
  10845. const int nth = params->nth;
  10846. const int64_t D = neq0;
  10847. const int64_t N = neq1;
  10848. const int64_t P = nek1 - N;
  10849. const int64_t M = P + N;
  10850. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10851. GGML_ASSERT(ne0 == D);
  10852. GGML_ASSERT(ne1 == N);
  10853. GGML_ASSERT(P >= 0);
  10854. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10855. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10856. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10857. GGML_ASSERT(neq0 == D);
  10858. GGML_ASSERT(nek0 == D);
  10859. GGML_ASSERT(nev1 == D);
  10860. GGML_ASSERT(neq1 == N);
  10861. GGML_ASSERT(nek1 == N + P);
  10862. GGML_ASSERT(nev1 == D);
  10863. // dst cannot be transposed or permuted
  10864. GGML_ASSERT(nb0 == sizeof(float));
  10865. GGML_ASSERT(nb0 <= nb1);
  10866. GGML_ASSERT(nb1 <= nb2);
  10867. GGML_ASSERT(nb2 <= nb3);
  10868. if (params->type == GGML_TASK_INIT) {
  10869. return;
  10870. }
  10871. if (params->type == GGML_TASK_FINALIZE) {
  10872. return;
  10873. }
  10874. // parallelize by q rows using ggml_vec_dot_f32
  10875. // total rows in q
  10876. const int nr = neq1*neq2*neq3;
  10877. // rows per thread
  10878. const int dr = (nr + nth - 1)/nth;
  10879. // row range for this thread
  10880. const int ir0 = dr*ith;
  10881. const int ir1 = MIN(ir0 + dr, nr);
  10882. const float scale = 1.0f/sqrtf(D);
  10883. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10884. for (int ir = ir0; ir < ir1; ++ir) {
  10885. // q indices
  10886. const int iq3 = ir/(neq2*neq1);
  10887. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10888. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10889. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10890. for (int i = M; i < Mup; ++i) {
  10891. S[i] = -INFINITY;
  10892. }
  10893. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10894. for (int64_t ic = 0; ic < nek1; ++ic) {
  10895. // k indices
  10896. const int ik3 = iq3;
  10897. const int ik2 = iq2;
  10898. const int ik1 = ic;
  10899. // S indices
  10900. const int i1 = ik1;
  10901. ggml_vec_dot_f16(neq0,
  10902. S + i1,
  10903. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10904. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10905. }
  10906. } else {
  10907. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10908. // k indices
  10909. const int ik3 = iq3;
  10910. const int ik2 = iq2;
  10911. const int ik1 = ic;
  10912. // S indices
  10913. const int i1 = ik1;
  10914. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10915. S + i1,
  10916. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10917. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10918. }
  10919. }
  10920. // scale
  10921. ggml_vec_scale_f32(nek1, S, scale);
  10922. if (masked) {
  10923. for (int64_t i = P; i < M; i++) {
  10924. if (i > P + iq1) {
  10925. S[i] = -INFINITY;
  10926. }
  10927. }
  10928. }
  10929. // softmax
  10930. {
  10931. float max = -INFINITY;
  10932. ggml_vec_max_f32(M, &max, S);
  10933. ggml_float sum = 0.0;
  10934. {
  10935. #ifdef GGML_SOFT_MAX_ACCELERATE
  10936. max = -max;
  10937. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10938. vvexpf(S, S, &Mup);
  10939. ggml_vec_sum_f32(Mup, &sum, S);
  10940. #else
  10941. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10942. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10943. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10944. float * SS = S + i;
  10945. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10946. if (SS[j] == -INFINITY) {
  10947. SS[j] = 0.0f;
  10948. } else {
  10949. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10950. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10951. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10952. sump[j] += (ggml_float)val;
  10953. SS[j] = val;
  10954. }
  10955. }
  10956. }
  10957. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10958. sum += sump[i];
  10959. }
  10960. #endif
  10961. }
  10962. assert(sum > 0.0);
  10963. sum = 1.0/sum;
  10964. ggml_vec_scale_f32(M, S, sum);
  10965. #ifndef NDEBUG
  10966. for (int i = 0; i < M; ++i) {
  10967. assert(!isnan(S[i]));
  10968. assert(!isinf(S[i]));
  10969. }
  10970. #endif
  10971. }
  10972. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10973. for (int64_t i = 0; i < M; i++) {
  10974. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10975. }
  10976. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10977. for (int64_t ic = 0; ic < nev1; ++ic) {
  10978. // dst indices
  10979. const int i1 = iq1;
  10980. const int i2 = iq2;
  10981. const int i3 = iq3;
  10982. ggml_vec_dot_f16(nek1,
  10983. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10984. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10985. S16);
  10986. }
  10987. } else {
  10988. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10989. // dst indices
  10990. const int i1 = iq1;
  10991. const int i2 = iq2;
  10992. const int i3 = iq3;
  10993. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10994. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10995. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10996. S16);
  10997. }
  10998. }
  10999. }
  11000. }
  11001. static void ggml_compute_forward_flash_attn(
  11002. const struct ggml_compute_params * params,
  11003. const struct ggml_tensor * q,
  11004. const struct ggml_tensor * k,
  11005. const struct ggml_tensor * v,
  11006. const bool masked,
  11007. struct ggml_tensor * dst) {
  11008. switch (q->type) {
  11009. case GGML_TYPE_F16:
  11010. {
  11011. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11012. } break;
  11013. case GGML_TYPE_F32:
  11014. {
  11015. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11016. } break;
  11017. default:
  11018. {
  11019. GGML_ASSERT(false);
  11020. } break;
  11021. }
  11022. }
  11023. // ggml_compute_forward_flash_ff
  11024. static void ggml_compute_forward_flash_ff_f16(
  11025. const struct ggml_compute_params * params,
  11026. const struct ggml_tensor * a, // F16
  11027. const struct ggml_tensor * b0, // F16 fc_w
  11028. const struct ggml_tensor * b1, // F32 fc_b
  11029. const struct ggml_tensor * c0, // F16 proj_w
  11030. const struct ggml_tensor * c1, // F32 proj_b
  11031. struct ggml_tensor * dst) {
  11032. int64_t t0 = ggml_perf_time_us();
  11033. UNUSED(t0);
  11034. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11035. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11036. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11037. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11038. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11039. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11040. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11041. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11042. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11043. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11044. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11045. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11046. const int ith = params->ith;
  11047. const int nth = params->nth;
  11048. const int64_t D = nea0;
  11049. //const int64_t N = nea1;
  11050. const int64_t M = neb01;
  11051. GGML_ASSERT(ne0 == nea0);
  11052. GGML_ASSERT(ne1 == nea1);
  11053. GGML_ASSERT(ne2 == nea2);
  11054. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11055. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11056. GGML_ASSERT(nbb10 == sizeof(float));
  11057. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11058. GGML_ASSERT(nbc10 == sizeof(float));
  11059. GGML_ASSERT(neb00 == D);
  11060. GGML_ASSERT(neb01 == M);
  11061. GGML_ASSERT(neb10 == M);
  11062. GGML_ASSERT(neb11 == 1);
  11063. GGML_ASSERT(nec00 == M);
  11064. GGML_ASSERT(nec01 == D);
  11065. GGML_ASSERT(nec10 == D);
  11066. GGML_ASSERT(nec11 == 1);
  11067. // dst cannot be transposed or permuted
  11068. GGML_ASSERT(nb0 == sizeof(float));
  11069. GGML_ASSERT(nb0 <= nb1);
  11070. GGML_ASSERT(nb1 <= nb2);
  11071. GGML_ASSERT(nb2 <= nb3);
  11072. if (params->type == GGML_TASK_INIT) {
  11073. return;
  11074. }
  11075. if (params->type == GGML_TASK_FINALIZE) {
  11076. return;
  11077. }
  11078. // parallelize by a rows using ggml_vec_dot_f32
  11079. // total rows in a
  11080. const int nr = nea1*nea2*nea3;
  11081. // rows per thread
  11082. const int dr = (nr + nth - 1)/nth;
  11083. // row range for this thread
  11084. const int ir0 = dr*ith;
  11085. const int ir1 = MIN(ir0 + dr, nr);
  11086. for (int ir = ir0; ir < ir1; ++ir) {
  11087. // a indices
  11088. const int ia3 = ir/(nea2*nea1);
  11089. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11090. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11091. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11092. for (int64_t ic = 0; ic < neb01; ++ic) {
  11093. // b0 indices
  11094. const int ib03 = ia3;
  11095. const int ib02 = ia2;
  11096. const int ib01 = ic;
  11097. // S indices
  11098. const int i1 = ib01;
  11099. ggml_vec_dot_f16(nea0,
  11100. S + i1,
  11101. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11102. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11103. }
  11104. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11105. //ggml_vec_gelu_f32(neb01, S, S);
  11106. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11107. for (int64_t i = 0; i < M; i++) {
  11108. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11109. }
  11110. ggml_vec_gelu_f16(neb01, S16, S16);
  11111. {
  11112. // dst indices
  11113. const int i1 = ia1;
  11114. const int i2 = ia2;
  11115. const int i3 = ia3;
  11116. for (int64_t ic = 0; ic < nec01; ++ic) {
  11117. ggml_vec_dot_f16(neb01,
  11118. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11119. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11120. S16);
  11121. }
  11122. ggml_vec_add_f32(nec01,
  11123. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11124. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11125. (float *) c1->data);
  11126. }
  11127. }
  11128. }
  11129. static void ggml_compute_forward_flash_ff(
  11130. const struct ggml_compute_params * params,
  11131. const struct ggml_tensor * a,
  11132. const struct ggml_tensor * b0,
  11133. const struct ggml_tensor * b1,
  11134. const struct ggml_tensor * c0,
  11135. const struct ggml_tensor * c1,
  11136. struct ggml_tensor * dst) {
  11137. switch (b0->type) {
  11138. case GGML_TYPE_F16:
  11139. {
  11140. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11141. } break;
  11142. case GGML_TYPE_F32:
  11143. {
  11144. GGML_ASSERT(false); // TODO
  11145. } break;
  11146. default:
  11147. {
  11148. GGML_ASSERT(false);
  11149. } break;
  11150. }
  11151. }
  11152. // ggml_compute_forward_flash_attn_back
  11153. static void ggml_compute_forward_flash_attn_back_f32(
  11154. const struct ggml_compute_params * params,
  11155. const struct ggml_tensor * q,
  11156. const struct ggml_tensor * k,
  11157. const struct ggml_tensor * v,
  11158. const struct ggml_tensor * d,
  11159. const bool masked,
  11160. struct ggml_tensor * dst) {
  11161. int64_t t0 = ggml_perf_time_us();
  11162. UNUSED(t0);
  11163. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11164. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11165. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11166. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11167. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11168. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11169. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11170. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11171. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11172. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11173. const int ith = params->ith;
  11174. const int nth = params->nth;
  11175. const int64_t D = neq0;
  11176. const int64_t N = neq1;
  11177. const int64_t P = nek1 - N;
  11178. const int64_t M = P + N;
  11179. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11180. const int mxDM = MAX(D, Mup);
  11181. // GGML_ASSERT(ne0 == D);
  11182. // GGML_ASSERT(ne1 == N);
  11183. GGML_ASSERT(P >= 0);
  11184. GGML_ASSERT(nbq0 == sizeof(float));
  11185. GGML_ASSERT(nbk0 == sizeof(float));
  11186. GGML_ASSERT(nbv0 == sizeof(float));
  11187. GGML_ASSERT(neq0 == D);
  11188. GGML_ASSERT(nek0 == D);
  11189. GGML_ASSERT(nev1 == D);
  11190. GGML_ASSERT(ned0 == D);
  11191. GGML_ASSERT(neq1 == N);
  11192. GGML_ASSERT(nek1 == N + P);
  11193. GGML_ASSERT(nev1 == D);
  11194. GGML_ASSERT(ned1 == N);
  11195. // dst cannot be transposed or permuted
  11196. GGML_ASSERT(nb0 == sizeof(float));
  11197. GGML_ASSERT(nb0 <= nb1);
  11198. GGML_ASSERT(nb1 <= nb2);
  11199. GGML_ASSERT(nb2 <= nb3);
  11200. if (params->type == GGML_TASK_INIT) {
  11201. if (ith == 0) {
  11202. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11203. }
  11204. return;
  11205. }
  11206. if (params->type == GGML_TASK_FINALIZE) {
  11207. return;
  11208. }
  11209. // parallelize by q rows using ggml_vec_dot_f32
  11210. // total rows in q
  11211. const int nr = neq2*neq3;
  11212. // rows per thread
  11213. const int dr = (nr + nth - 1)/nth;
  11214. // row range for this thread
  11215. const int ir0 = dr*ith;
  11216. const int ir1 = MIN(ir0 + dr, nr);
  11217. const float scale = 1.0f/sqrtf(D);
  11218. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11219. for (int ir = ir0; ir < ir1; ++ir) {
  11220. // q indices
  11221. const int iq3 = ir/(neq2);
  11222. const int iq2 = ir - iq3*neq2;
  11223. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11224. // not sure about CACHE_LINE_SIZE_F32..
  11225. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11226. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11227. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11228. for (int i = M; i < Mup; ++i) {
  11229. S[i] = -INFINITY;
  11230. }
  11231. for (int64_t ic = 0; ic < nek1; ++ic) {
  11232. // k indices
  11233. const int ik3 = iq3;
  11234. const int ik2 = iq2;
  11235. const int ik1 = ic;
  11236. // S indices
  11237. const int i1 = ik1;
  11238. ggml_vec_dot_f32(neq0,
  11239. S + i1,
  11240. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11241. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11242. }
  11243. // scale
  11244. ggml_vec_scale_f32(nek1, S, scale);
  11245. if (masked) {
  11246. for (int64_t i = P; i < M; i++) {
  11247. if (i > P + iq1) {
  11248. S[i] = -INFINITY;
  11249. }
  11250. }
  11251. }
  11252. // softmax
  11253. {
  11254. float max = -INFINITY;
  11255. ggml_vec_max_f32(M, &max, S);
  11256. ggml_float sum = 0.0;
  11257. {
  11258. #ifdef GGML_SOFT_MAX_ACCELERATE
  11259. max = -max;
  11260. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11261. vvexpf(SM, SM, &Mup);
  11262. ggml_vec_sum_f32(Mup, &sum, SM);
  11263. #else
  11264. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11265. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11266. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11267. float * SR = S + i;
  11268. float * SW = SM + i;
  11269. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11270. if (SR[j] == -INFINITY) {
  11271. SW[j] = 0.0f;
  11272. } else {
  11273. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11274. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11275. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11276. sump[j] += (ggml_float)val;
  11277. SW[j] = val;
  11278. }
  11279. }
  11280. }
  11281. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11282. sum += sump[i];
  11283. }
  11284. #endif
  11285. }
  11286. assert(sum > 0.0);
  11287. sum = 1.0/sum;
  11288. ggml_vec_scale_f32(M, SM, sum);
  11289. }
  11290. // step-by-step explanation
  11291. {
  11292. // forward-process shape grads from backward process
  11293. // parallel_for iq2,iq3:
  11294. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11295. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11296. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11297. // for iq1:
  11298. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11299. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11300. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11301. // S0 = -Inf [D,1,1,1]
  11302. // ~S1[i] = dot(kcur[:D,i], qcur)
  11303. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11304. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11305. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11306. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11307. // ~S5[i] = dot(vcur[:,i], S4)
  11308. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11309. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11310. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11311. // dst backward-/ grad[dst] = d
  11312. //
  11313. // output gradients with their dependencies:
  11314. //
  11315. // grad[kcur] = grad[S1].T @ qcur
  11316. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11317. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11318. // grad[S4] = grad[S5] @ vcur
  11319. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11320. // grad[qcur] = grad[S1] @ kcur
  11321. // grad[vcur] = grad[S5].T @ S4
  11322. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11323. //
  11324. // in post-order:
  11325. //
  11326. // S1 = qcur @ kcur.T
  11327. // S2 = S1 * scale
  11328. // S3 = diag_mask_inf(S2, P)
  11329. // S4 = softmax(S3)
  11330. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11331. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11332. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11333. // grad[qcur] = grad[S1] @ kcur
  11334. // grad[kcur] = grad[S1].T @ qcur
  11335. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11336. //
  11337. // using less variables (SM=S4):
  11338. //
  11339. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11340. // SM = softmax(S)
  11341. // S = d[:D,iq1,iq2,iq3] @ vcur
  11342. // dot_SM_gradSM = dot(SM, S)
  11343. // S = SM * (S - dot(SM, S))
  11344. // S = diag_mask_zero(S, P) * scale
  11345. //
  11346. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11347. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11348. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11349. }
  11350. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11351. // S = d[:D,iq1,iq2,iq3] @ vcur
  11352. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11353. ggml_vec_set_f32(M, S, 0);
  11354. for (int64_t ic = 0; ic < D; ++ic) {
  11355. // dst indices
  11356. const int i1 = iq1;
  11357. const int i2 = iq2;
  11358. const int i3 = iq3;
  11359. ggml_vec_mad_f32(M,
  11360. S,
  11361. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11362. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11363. }
  11364. // S = SM * (S - dot(SM, S))
  11365. float dot_SM_gradSM = 0;
  11366. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11367. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11368. ggml_vec_mul_f32 (M, S, S, SM);
  11369. // S = diag_mask_zero(S, P) * scale
  11370. if (masked) {
  11371. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11372. // S[i] = 0;
  11373. // }
  11374. for (int64_t i = P; i < M; i++) {
  11375. if (i > P + iq1) {
  11376. S[i] = 0;
  11377. }
  11378. }
  11379. }
  11380. ggml_vec_scale_f32(M, S, scale);
  11381. void * grad_q = (char *) dst->data;
  11382. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11383. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11384. const size_t nbgq1 = nb0*neq0;
  11385. const size_t nbgq2 = nb0*neq0*neq1;
  11386. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11387. const size_t nbgk1 = nb0*nek0;
  11388. const size_t nbgk2 = nb0*nek0*nek1;
  11389. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11390. const size_t nbgv1 = nb0*nev0;
  11391. const size_t nbgv2 = nb0*nev0*nev1;
  11392. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11393. // S shape [M,1]
  11394. // SM shape [M,1]
  11395. // kcur shape [D,M]
  11396. // qcur shape [D,1]
  11397. // vcur shape [M,D]
  11398. //
  11399. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11400. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11401. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11402. //
  11403. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11404. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11405. for (int64_t ic = 0; ic < M; ++ic) {
  11406. // dst indices
  11407. const int i1 = iq1;
  11408. const int i2 = iq2;
  11409. const int i3 = iq3;
  11410. ggml_vec_mad_f32(D,
  11411. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11412. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11413. S[ic]);
  11414. }
  11415. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11416. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11417. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11418. for (int64_t ic = 0; ic < M; ++ic) {
  11419. // dst indices
  11420. const int i1 = iq1;
  11421. const int i2 = iq2;
  11422. const int i3 = iq3;
  11423. // ggml_vec_set_f32(D,
  11424. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11425. // 0);
  11426. ggml_vec_mad_f32(D,
  11427. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11428. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11429. S[ic]);
  11430. }
  11431. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11432. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11433. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11434. for (int64_t ic = 0; ic < D; ++ic) {
  11435. // dst indices
  11436. const int i1 = iq1;
  11437. const int i2 = iq2;
  11438. const int i3 = iq3;
  11439. // ggml_vec_set_f32(M,
  11440. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11441. // 0);
  11442. ggml_vec_mad_f32(M,
  11443. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11444. SM,
  11445. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11446. }
  11447. }
  11448. }
  11449. }
  11450. static void ggml_compute_forward_flash_attn_back(
  11451. const struct ggml_compute_params * params,
  11452. const struct ggml_tensor * q,
  11453. const struct ggml_tensor * k,
  11454. const struct ggml_tensor * v,
  11455. const struct ggml_tensor * d,
  11456. const bool masked,
  11457. struct ggml_tensor * dst) {
  11458. switch (q->type) {
  11459. case GGML_TYPE_F32:
  11460. {
  11461. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11462. } break;
  11463. default:
  11464. {
  11465. GGML_ASSERT(false);
  11466. } break;
  11467. }
  11468. }
  11469. // ggml_compute_forward_win_part
  11470. static void ggml_compute_forward_win_part_f32(
  11471. const struct ggml_compute_params * params,
  11472. const struct ggml_tensor * src0,
  11473. struct ggml_tensor * dst) {
  11474. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11475. return;
  11476. }
  11477. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11478. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11479. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11480. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11481. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11482. assert(ne00 == ne0);
  11483. assert(ne3 == nep0*nep1);
  11484. // TODO: optimize / multi-thread
  11485. for (int py = 0; py < nep1; ++py) {
  11486. for (int px = 0; px < nep0; ++px) {
  11487. const int64_t i3 = py*nep0 + px;
  11488. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11489. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11490. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11491. const int64_t i02 = py*w + i2;
  11492. const int64_t i01 = px*w + i1;
  11493. const int64_t i00 = i0;
  11494. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11495. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11496. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11497. ((float *) dst->data)[i] = 0.0f;
  11498. } else {
  11499. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11500. }
  11501. }
  11502. }
  11503. }
  11504. }
  11505. }
  11506. }
  11507. static void ggml_compute_forward_win_part(
  11508. const struct ggml_compute_params * params,
  11509. const struct ggml_tensor * src0,
  11510. struct ggml_tensor * dst) {
  11511. switch (src0->type) {
  11512. case GGML_TYPE_F32:
  11513. {
  11514. ggml_compute_forward_win_part_f32(params, src0, dst);
  11515. } break;
  11516. default:
  11517. {
  11518. GGML_ASSERT(false);
  11519. } break;
  11520. }
  11521. }
  11522. // ggml_compute_forward_win_unpart
  11523. static void ggml_compute_forward_win_unpart_f32(
  11524. const struct ggml_compute_params * params,
  11525. const struct ggml_tensor * src0,
  11526. struct ggml_tensor * dst) {
  11527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11528. return;
  11529. }
  11530. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11531. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11532. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11533. // padding
  11534. const int px = (w - ne1%w)%w;
  11535. //const int py = (w - ne2%w)%w;
  11536. const int npx = (px + ne1)/w;
  11537. //const int npy = (py + ne2)/w;
  11538. assert(ne0 == ne00);
  11539. // TODO: optimize / multi-thread
  11540. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11541. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11542. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11543. const int ip2 = i2/w;
  11544. const int ip1 = i1/w;
  11545. const int64_t i02 = i2%w;
  11546. const int64_t i01 = i1%w;
  11547. const int64_t i00 = i0;
  11548. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11549. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11550. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11551. }
  11552. }
  11553. }
  11554. }
  11555. static void ggml_compute_forward_win_unpart(
  11556. const struct ggml_compute_params * params,
  11557. const struct ggml_tensor * src0,
  11558. struct ggml_tensor * dst) {
  11559. switch (src0->type) {
  11560. case GGML_TYPE_F32:
  11561. {
  11562. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11563. } break;
  11564. default:
  11565. {
  11566. GGML_ASSERT(false);
  11567. } break;
  11568. }
  11569. }
  11570. //gmml_compute_forward_unary
  11571. static void ggml_compute_forward_unary(
  11572. const struct ggml_compute_params * params,
  11573. const struct ggml_tensor * src0,
  11574. struct ggml_tensor * dst) {
  11575. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11576. switch (op) {
  11577. case GGML_UNARY_OP_ABS:
  11578. {
  11579. ggml_compute_forward_abs(params, src0, dst);
  11580. } break;
  11581. case GGML_UNARY_OP_SGN:
  11582. {
  11583. ggml_compute_forward_sgn(params, src0, dst);
  11584. } break;
  11585. case GGML_UNARY_OP_NEG:
  11586. {
  11587. ggml_compute_forward_neg(params, src0, dst);
  11588. } break;
  11589. case GGML_UNARY_OP_STEP:
  11590. {
  11591. ggml_compute_forward_step(params, src0, dst);
  11592. } break;
  11593. case GGML_UNARY_OP_TANH:
  11594. {
  11595. ggml_compute_forward_tanh(params, src0, dst);
  11596. } break;
  11597. case GGML_UNARY_OP_ELU:
  11598. {
  11599. ggml_compute_forward_elu(params, src0, dst);
  11600. } break;
  11601. case GGML_UNARY_OP_RELU:
  11602. {
  11603. ggml_compute_forward_relu(params, src0, dst);
  11604. } break;
  11605. case GGML_UNARY_OP_GELU:
  11606. {
  11607. ggml_compute_forward_gelu(params, src0, dst);
  11608. } break;
  11609. case GGML_UNARY_OP_GELU_QUICK:
  11610. {
  11611. ggml_compute_forward_gelu_quick(params, src0, dst);
  11612. } break;
  11613. case GGML_UNARY_OP_SILU:
  11614. {
  11615. ggml_compute_forward_silu(params, src0, dst);
  11616. } break;
  11617. default:
  11618. {
  11619. GGML_ASSERT(false);
  11620. } break;
  11621. }
  11622. }
  11623. // ggml_compute_forward_map_unary
  11624. static void ggml_compute_forward_map_unary_f32(
  11625. const struct ggml_compute_params * params,
  11626. const struct ggml_tensor * src0,
  11627. struct ggml_tensor * dst,
  11628. const ggml_unary_op_f32_t fun) {
  11629. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11631. return;
  11632. }
  11633. const int n = ggml_nrows(src0);
  11634. const int nc = src0->ne[0];
  11635. assert( dst->nb[0] == sizeof(float));
  11636. assert(src0->nb[0] == sizeof(float));
  11637. for (int i = 0; i < n; i++) {
  11638. fun(nc,
  11639. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11640. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11641. }
  11642. }
  11643. static void ggml_compute_forward_map_unary(
  11644. const struct ggml_compute_params * params,
  11645. const struct ggml_tensor * src0,
  11646. struct ggml_tensor * dst,
  11647. const ggml_unary_op_f32_t fun) {
  11648. switch (src0->type) {
  11649. case GGML_TYPE_F32:
  11650. {
  11651. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11652. } break;
  11653. default:
  11654. {
  11655. GGML_ASSERT(false);
  11656. } break;
  11657. }
  11658. }
  11659. // ggml_compute_forward_map_binary
  11660. static void ggml_compute_forward_map_binary_f32(
  11661. const struct ggml_compute_params * params,
  11662. const struct ggml_tensor * src0,
  11663. const struct ggml_tensor * src1,
  11664. struct ggml_tensor * dst,
  11665. const ggml_binary_op_f32_t fun) {
  11666. assert(params->ith == 0);
  11667. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11668. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11669. return;
  11670. }
  11671. const int n = ggml_nrows(src0);
  11672. const int nc = src0->ne[0];
  11673. assert( dst->nb[0] == sizeof(float));
  11674. assert(src0->nb[0] == sizeof(float));
  11675. assert(src1->nb[0] == sizeof(float));
  11676. for (int i = 0; i < n; i++) {
  11677. fun(nc,
  11678. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11679. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11680. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11681. }
  11682. }
  11683. static void ggml_compute_forward_map_binary(
  11684. const struct ggml_compute_params * params,
  11685. const struct ggml_tensor * src0,
  11686. const struct ggml_tensor * src1,
  11687. struct ggml_tensor * dst,
  11688. const ggml_binary_op_f32_t fun) {
  11689. switch (src0->type) {
  11690. case GGML_TYPE_F32:
  11691. {
  11692. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11693. } break;
  11694. default:
  11695. {
  11696. GGML_ASSERT(false);
  11697. } break;
  11698. }
  11699. }
  11700. // ggml_compute_forward_map_custom1
  11701. static void ggml_compute_forward_map_custom1_f32(
  11702. const struct ggml_compute_params * params,
  11703. const struct ggml_tensor * a,
  11704. struct ggml_tensor * dst,
  11705. const ggml_custom1_op_f32_t fun) {
  11706. assert(params->ith == 0);
  11707. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11708. return;
  11709. }
  11710. fun(dst, a);
  11711. }
  11712. // ggml_compute_forward_map_custom2
  11713. static void ggml_compute_forward_map_custom2_f32(
  11714. const struct ggml_compute_params * params,
  11715. const struct ggml_tensor * a,
  11716. const struct ggml_tensor * b,
  11717. struct ggml_tensor * dst,
  11718. const ggml_custom2_op_f32_t fun) {
  11719. assert(params->ith == 0);
  11720. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11721. return;
  11722. }
  11723. fun(dst, a, b);
  11724. }
  11725. // ggml_compute_forward_map_custom3
  11726. static void ggml_compute_forward_map_custom3_f32(
  11727. const struct ggml_compute_params * params,
  11728. const struct ggml_tensor * a,
  11729. const struct ggml_tensor * b,
  11730. const struct ggml_tensor * c,
  11731. struct ggml_tensor * dst,
  11732. const ggml_custom3_op_f32_t fun) {
  11733. assert(params->ith == 0);
  11734. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11735. return;
  11736. }
  11737. fun(dst, a, b, c);
  11738. }
  11739. // ggml_compute_forward_map_custom1
  11740. static void ggml_compute_forward_map_custom1(
  11741. const struct ggml_compute_params * params,
  11742. const struct ggml_tensor * a,
  11743. struct ggml_tensor * dst) {
  11744. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11745. return;
  11746. }
  11747. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11748. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11749. }
  11750. // ggml_compute_forward_map_custom2
  11751. static void ggml_compute_forward_map_custom2(
  11752. const struct ggml_compute_params * params,
  11753. const struct ggml_tensor * a,
  11754. const struct ggml_tensor * b,
  11755. struct ggml_tensor * dst) {
  11756. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11757. return;
  11758. }
  11759. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11760. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11761. }
  11762. // ggml_compute_forward_map_custom3
  11763. static void ggml_compute_forward_map_custom3(
  11764. const struct ggml_compute_params * params,
  11765. const struct ggml_tensor * a,
  11766. const struct ggml_tensor * b,
  11767. const struct ggml_tensor * c,
  11768. struct ggml_tensor * dst) {
  11769. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11770. return;
  11771. }
  11772. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11773. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11774. }
  11775. // ggml_compute_forward_cross_entropy_loss
  11776. static void ggml_compute_forward_cross_entropy_loss_f32(
  11777. const struct ggml_compute_params * params,
  11778. const struct ggml_tensor * src0,
  11779. const struct ggml_tensor * src1,
  11780. struct ggml_tensor * dst) {
  11781. GGML_ASSERT(ggml_is_contiguous(src0));
  11782. GGML_ASSERT(ggml_is_contiguous(src1));
  11783. GGML_ASSERT(ggml_is_scalar(dst));
  11784. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11785. const int ith = params->ith;
  11786. const int nth = params->nth;
  11787. float * sums = (float *) params->wdata;
  11788. // TODO: handle transposed/permuted matrices
  11789. const int nc = src0->ne[0];
  11790. const int nr = ggml_nrows(src0);
  11791. if (params->type == GGML_TASK_INIT) {
  11792. if (ith == 0) {
  11793. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11794. }
  11795. return;
  11796. }
  11797. if (params->type == GGML_TASK_FINALIZE) {
  11798. if (ith == 0) {
  11799. float * dp = (float *) dst->data;
  11800. ggml_vec_sum_f32(nth, dp, sums);
  11801. dp[0] *= -1.0f;
  11802. }
  11803. return;
  11804. }
  11805. const double eps = 1e-9;
  11806. // rows per thread
  11807. const int dr = (nr + nth - 1)/nth;
  11808. // row range for this thread
  11809. const int ir0 = dr*ith;
  11810. const int ir1 = MIN(ir0 + dr, nr);
  11811. for (int i1 = ir0; i1 < ir1; i1++) {
  11812. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11813. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11814. float * st = (float *) params->wdata + nth + ith*nc;
  11815. #ifndef NDEBUG
  11816. for (int i = 0; i < nc; ++i) {
  11817. //printf("p[%d] = %f\n", i, p[i]);
  11818. assert(!isnan(s0[i]));
  11819. assert(!isnan(s1[i]));
  11820. }
  11821. #endif
  11822. // soft_max
  11823. ggml_float sum = 0.0;
  11824. {
  11825. float max = -INFINITY;
  11826. ggml_vec_max_f32(nc, &max, s0);
  11827. uint16_t scvt;
  11828. for (int i = 0; i < nc; i++) {
  11829. if (s0[i] == -INFINITY) {
  11830. st[i] = 0.0f;
  11831. } else {
  11832. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11833. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11834. memcpy(&scvt, &s, sizeof(scvt));
  11835. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11836. sum += (ggml_float)val;
  11837. st[i] = val;
  11838. }
  11839. }
  11840. assert(sum > 0.0);
  11841. // sum = 1.0/sum;
  11842. }
  11843. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11844. sum = (1.0 - eps) / sum;
  11845. ggml_vec_scale_f32(nc, st, sum);
  11846. ggml_vec_add1_f32(nc, st, st, eps);
  11847. ggml_vec_log_f32(nc, st, st);
  11848. ggml_vec_mul_f32(nc, st, st, s1);
  11849. ggml_vec_sum_f32(nc, sums + ith, st);
  11850. #ifndef NDEBUG
  11851. for (int i = 0; i < nc; ++i) {
  11852. assert(!isnan(st[i]));
  11853. assert(!isinf(st[i]));
  11854. }
  11855. #endif
  11856. }
  11857. }
  11858. static void ggml_compute_forward_cross_entropy_loss(
  11859. const struct ggml_compute_params * params,
  11860. const struct ggml_tensor * src0,
  11861. const struct ggml_tensor * src1,
  11862. struct ggml_tensor * dst) {
  11863. switch (src0->type) {
  11864. case GGML_TYPE_F32:
  11865. {
  11866. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11867. } break;
  11868. default:
  11869. {
  11870. GGML_ASSERT(false);
  11871. } break;
  11872. }
  11873. }
  11874. // ggml_compute_forward_cross_entropy_loss_back
  11875. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11876. const struct ggml_compute_params * params,
  11877. const struct ggml_tensor * src0,
  11878. const struct ggml_tensor * src1,
  11879. const struct ggml_tensor * opt0,
  11880. struct ggml_tensor * dst) {
  11881. GGML_ASSERT(ggml_is_contiguous(dst));
  11882. GGML_ASSERT(ggml_is_contiguous(src0));
  11883. GGML_ASSERT(ggml_is_contiguous(src1));
  11884. GGML_ASSERT(ggml_is_contiguous(opt0));
  11885. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11886. const int64_t ith = params->ith;
  11887. const int64_t nth = params->nth;
  11888. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11889. return;
  11890. }
  11891. const float eps = 1e-9f;
  11892. // TODO: handle transposed/permuted matrices
  11893. const int64_t nc = src0->ne[0];
  11894. const int64_t nr = ggml_nrows(src0);
  11895. // rows per thread
  11896. const int64_t dr = (nr + nth - 1)/nth;
  11897. // row range for this thread
  11898. const int64_t ir0 = dr*ith;
  11899. const int64_t ir1 = MIN(ir0 + dr, nr);
  11900. float * d = (float *) opt0->data;
  11901. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11902. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11903. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11904. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11905. float * sm = (float *) params->wdata + ith*nc;
  11906. #ifndef NDEBUG
  11907. for (int i = 0; i < nc; ++i) {
  11908. //printf("p[%d] = %f\n", i, p[i]);
  11909. assert(!isnan(s0[i]));
  11910. assert(!isnan(s1[i]));
  11911. }
  11912. #endif
  11913. // step by step explanation:
  11914. {
  11915. //float * sums = (float *) params->wdata;
  11916. // forward pass with annotated gradients from backward pass
  11917. // (built by going in reverse operation order, adding to gradients of current operation args)
  11918. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11919. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11920. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11921. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11922. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11923. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11924. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11925. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11926. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11927. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11928. // postorder:
  11929. // grad[st1] := softmax(s0)
  11930. // grad[st1] := grad[st1]*(1.0 - eps)
  11931. // grad[st1] := grad[st1] + eps
  11932. // grad[st1] := s1 / grad[st1]
  11933. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11934. // src0 gradients by going through softmax_back
  11935. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11936. // from softmax_back:
  11937. // dxk = yk * (dyk - dot(y, dy))
  11938. // dot_y_dy := dot(y, dy)
  11939. // dx := dy
  11940. // dx := dx - dot_y_dy
  11941. // dx := dx * y
  11942. // postorder:
  11943. // dot_st1_dst1 := dot(st1, grad[st1])
  11944. // grad[s0] := grad[st1]
  11945. // grad[s0] := grad[s0] - dot_st1_dst1
  11946. // grad[s0] := grad[s0] * st1
  11947. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11948. // sm := softmax(s0)
  11949. // grad[s0] := sm*(1.0 - eps)
  11950. // grad[s0] := grad[s0] + eps
  11951. // grad[s0] := s1 / grad[s0]
  11952. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11953. // dot_st1_dst1 := dot(sm, grad[s0])
  11954. // grad[s0] := grad[s0] - dot_st1_dst1
  11955. // grad[s0] := grad[s0] * sm
  11956. }
  11957. // soft_max
  11958. ggml_float sum = 0.0;
  11959. {
  11960. float max = -INFINITY;
  11961. ggml_vec_max_f32(nc, &max, s0);
  11962. uint16_t scvt;
  11963. for (int i = 0; i < nc; i++) {
  11964. if (s0[i] == -INFINITY) {
  11965. sm[i] = 0.0f;
  11966. } else {
  11967. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11968. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11969. memcpy(&scvt, &s, sizeof(scvt));
  11970. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11971. sum += (ggml_float)val;
  11972. sm[i] = val;
  11973. }
  11974. }
  11975. assert(sum > 0.0);
  11976. sum = 1.0/sum;
  11977. }
  11978. float dot_st1_dst1 = 0;
  11979. ggml_vec_scale_f32(nc, sm, sum);
  11980. ggml_vec_cpy_f32 (nc, ds0, sm);
  11981. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11982. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11983. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11984. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11985. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11986. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11987. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11988. #ifndef NDEBUG
  11989. for (int i = 0; i < nc; ++i) {
  11990. assert(!isnan(sm[i]));
  11991. assert(!isinf(sm[i]));
  11992. assert(!isnan(ds0[i]));
  11993. assert(!isinf(ds0[i]));
  11994. }
  11995. #endif
  11996. }
  11997. }
  11998. static void ggml_compute_forward_cross_entropy_loss_back(
  11999. const struct ggml_compute_params * params,
  12000. const struct ggml_tensor * src0,
  12001. const struct ggml_tensor * src1,
  12002. const struct ggml_tensor * opt0,
  12003. struct ggml_tensor * dst) {
  12004. switch (src0->type) {
  12005. case GGML_TYPE_F32:
  12006. {
  12007. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12008. } break;
  12009. default:
  12010. {
  12011. GGML_ASSERT(false);
  12012. } break;
  12013. }
  12014. }
  12015. /////////////////////////////////
  12016. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12017. GGML_ASSERT(params);
  12018. #ifdef GGML_USE_CUBLAS
  12019. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12020. if (skip_cpu) {
  12021. return;
  12022. }
  12023. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12024. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12025. #endif // GGML_USE_CUBLAS
  12026. switch (tensor->op) {
  12027. case GGML_OP_DUP:
  12028. {
  12029. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12030. } break;
  12031. case GGML_OP_ADD:
  12032. {
  12033. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12034. } break;
  12035. case GGML_OP_ADD1:
  12036. {
  12037. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12038. } break;
  12039. case GGML_OP_ACC:
  12040. {
  12041. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12042. } break;
  12043. case GGML_OP_SUB:
  12044. {
  12045. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12046. } break;
  12047. case GGML_OP_MUL:
  12048. {
  12049. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12050. } break;
  12051. case GGML_OP_DIV:
  12052. {
  12053. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12054. } break;
  12055. case GGML_OP_SQR:
  12056. {
  12057. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12058. } break;
  12059. case GGML_OP_SQRT:
  12060. {
  12061. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12062. } break;
  12063. case GGML_OP_LOG:
  12064. {
  12065. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12066. } break;
  12067. case GGML_OP_SUM:
  12068. {
  12069. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12070. } break;
  12071. case GGML_OP_SUM_ROWS:
  12072. {
  12073. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12074. } break;
  12075. case GGML_OP_MEAN:
  12076. {
  12077. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12078. } break;
  12079. case GGML_OP_ARGMAX:
  12080. {
  12081. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12082. } break;
  12083. case GGML_OP_REPEAT:
  12084. {
  12085. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12086. } break;
  12087. case GGML_OP_REPEAT_BACK:
  12088. {
  12089. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12090. } break;
  12091. case GGML_OP_SILU_BACK:
  12092. {
  12093. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12094. } break;
  12095. case GGML_OP_NORM:
  12096. {
  12097. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12098. } break;
  12099. case GGML_OP_RMS_NORM:
  12100. {
  12101. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12102. } break;
  12103. case GGML_OP_RMS_NORM_BACK:
  12104. {
  12105. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12106. } break;
  12107. case GGML_OP_MUL_MAT:
  12108. {
  12109. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12110. } break;
  12111. case GGML_OP_OUT_PROD:
  12112. {
  12113. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12114. } break;
  12115. case GGML_OP_SCALE:
  12116. {
  12117. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12118. } break;
  12119. case GGML_OP_SET:
  12120. {
  12121. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12122. } break;
  12123. case GGML_OP_CPY:
  12124. {
  12125. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12126. } break;
  12127. case GGML_OP_CONT:
  12128. {
  12129. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12130. } break;
  12131. case GGML_OP_RESHAPE:
  12132. {
  12133. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12134. } break;
  12135. case GGML_OP_VIEW:
  12136. {
  12137. ggml_compute_forward_view(params, tensor->src[0]);
  12138. } break;
  12139. case GGML_OP_PERMUTE:
  12140. {
  12141. ggml_compute_forward_permute(params, tensor->src[0]);
  12142. } break;
  12143. case GGML_OP_TRANSPOSE:
  12144. {
  12145. ggml_compute_forward_transpose(params, tensor->src[0]);
  12146. } break;
  12147. case GGML_OP_GET_ROWS:
  12148. {
  12149. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12150. } break;
  12151. case GGML_OP_GET_ROWS_BACK:
  12152. {
  12153. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12154. } break;
  12155. case GGML_OP_DIAG:
  12156. {
  12157. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12158. } break;
  12159. case GGML_OP_DIAG_MASK_INF:
  12160. {
  12161. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12162. } break;
  12163. case GGML_OP_DIAG_MASK_ZERO:
  12164. {
  12165. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12166. } break;
  12167. case GGML_OP_SOFT_MAX:
  12168. {
  12169. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12170. } break;
  12171. case GGML_OP_SOFT_MAX_BACK:
  12172. {
  12173. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12174. } break;
  12175. case GGML_OP_ROPE:
  12176. {
  12177. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12178. } break;
  12179. case GGML_OP_ROPE_BACK:
  12180. {
  12181. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12182. } break;
  12183. case GGML_OP_ALIBI:
  12184. {
  12185. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12186. } break;
  12187. case GGML_OP_CLAMP:
  12188. {
  12189. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12190. } break;
  12191. case GGML_OP_CONV_1D:
  12192. {
  12193. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12194. } break;
  12195. case GGML_OP_CONV_2D:
  12196. {
  12197. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12198. } break;
  12199. case GGML_OP_POOL_1D:
  12200. {
  12201. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12202. } break;
  12203. case GGML_OP_POOL_2D:
  12204. {
  12205. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12206. } break;
  12207. case GGML_OP_FLASH_ATTN:
  12208. {
  12209. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12210. GGML_ASSERT(t == 0 || t == 1);
  12211. const bool masked = t != 0;
  12212. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12213. } break;
  12214. case GGML_OP_FLASH_FF:
  12215. {
  12216. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12217. } break;
  12218. case GGML_OP_FLASH_ATTN_BACK:
  12219. {
  12220. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12221. GGML_ASSERT(t == 0 || t == 1);
  12222. bool masked = t != 0;
  12223. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12224. } break;
  12225. case GGML_OP_WIN_PART:
  12226. {
  12227. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12228. } break;
  12229. case GGML_OP_WIN_UNPART:
  12230. {
  12231. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12232. } break;
  12233. case GGML_OP_UNARY:
  12234. {
  12235. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12236. } break;
  12237. case GGML_OP_MAP_UNARY:
  12238. {
  12239. ggml_unary_op_f32_t fun;
  12240. memcpy(&fun, tensor->op_params, sizeof(fun));
  12241. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12242. }
  12243. break;
  12244. case GGML_OP_MAP_BINARY:
  12245. {
  12246. ggml_binary_op_f32_t fun;
  12247. memcpy(&fun, tensor->op_params, sizeof(fun));
  12248. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12249. }
  12250. break;
  12251. case GGML_OP_MAP_CUSTOM1_F32:
  12252. {
  12253. ggml_custom1_op_f32_t fun;
  12254. memcpy(&fun, tensor->op_params, sizeof(fun));
  12255. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12256. }
  12257. break;
  12258. case GGML_OP_MAP_CUSTOM2_F32:
  12259. {
  12260. ggml_custom2_op_f32_t fun;
  12261. memcpy(&fun, tensor->op_params, sizeof(fun));
  12262. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12263. }
  12264. break;
  12265. case GGML_OP_MAP_CUSTOM3_F32:
  12266. {
  12267. ggml_custom3_op_f32_t fun;
  12268. memcpy(&fun, tensor->op_params, sizeof(fun));
  12269. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12270. }
  12271. break;
  12272. case GGML_OP_MAP_CUSTOM1:
  12273. {
  12274. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12275. }
  12276. break;
  12277. case GGML_OP_MAP_CUSTOM2:
  12278. {
  12279. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12280. }
  12281. break;
  12282. case GGML_OP_MAP_CUSTOM3:
  12283. {
  12284. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12285. }
  12286. break;
  12287. case GGML_OP_CROSS_ENTROPY_LOSS:
  12288. {
  12289. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12290. }
  12291. break;
  12292. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12293. {
  12294. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12295. }
  12296. break;
  12297. case GGML_OP_NONE:
  12298. {
  12299. // nop
  12300. } break;
  12301. case GGML_OP_COUNT:
  12302. {
  12303. GGML_ASSERT(false);
  12304. } break;
  12305. }
  12306. }
  12307. ////////////////////////////////////////////////////////////////////////////////
  12308. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12309. struct ggml_tensor * src0 = tensor->src[0];
  12310. struct ggml_tensor * src1 = tensor->src[1];
  12311. switch (tensor->op) {
  12312. case GGML_OP_DUP:
  12313. {
  12314. if (src0->grad) {
  12315. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12316. }
  12317. } break;
  12318. case GGML_OP_ADD:
  12319. {
  12320. if (src0->grad) {
  12321. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12322. }
  12323. if (src1->grad) {
  12324. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12325. }
  12326. } break;
  12327. case GGML_OP_ADD1:
  12328. {
  12329. if (src0->grad) {
  12330. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12331. }
  12332. if (src1->grad) {
  12333. src1->grad = ggml_add_impl(ctx,
  12334. src1->grad,
  12335. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12336. inplace);
  12337. }
  12338. } break;
  12339. case GGML_OP_ACC:
  12340. {
  12341. if (src0->grad) {
  12342. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12343. }
  12344. if (src1->grad) {
  12345. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12346. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12347. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12348. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12349. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12350. tensor->grad,
  12351. src1->grad->ne[0],
  12352. src1->grad->ne[1],
  12353. src1->grad->ne[2],
  12354. src1->grad->ne[3],
  12355. nb1, nb2, nb3, offset);
  12356. src1->grad =
  12357. ggml_add_impl(ctx,
  12358. src1->grad,
  12359. ggml_reshape(ctx,
  12360. ggml_cont(ctx, tensor_grad_view),
  12361. src1->grad),
  12362. inplace);
  12363. }
  12364. } break;
  12365. case GGML_OP_SUB:
  12366. {
  12367. if (src0->grad) {
  12368. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12369. }
  12370. if (src1->grad) {
  12371. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12372. }
  12373. } break;
  12374. case GGML_OP_MUL:
  12375. {
  12376. if (src0->grad) {
  12377. src0->grad =
  12378. ggml_add_impl(ctx,
  12379. src0->grad,
  12380. ggml_mul(ctx, src1, tensor->grad),
  12381. inplace);
  12382. }
  12383. if (src1->grad) {
  12384. src1->grad =
  12385. ggml_add_impl(ctx,
  12386. src1->grad,
  12387. ggml_mul(ctx, src0, tensor->grad),
  12388. inplace);
  12389. }
  12390. } break;
  12391. case GGML_OP_DIV:
  12392. {
  12393. if (src0->grad) {
  12394. src0->grad =
  12395. ggml_add_impl(ctx,
  12396. src0->grad,
  12397. ggml_div(ctx, tensor->grad, src1),
  12398. inplace);
  12399. }
  12400. if (src1->grad) {
  12401. src1->grad =
  12402. ggml_sub_impl(ctx,
  12403. src1->grad,
  12404. ggml_mul(ctx,
  12405. tensor->grad,
  12406. ggml_div(ctx, tensor, src1)),
  12407. inplace);
  12408. }
  12409. } break;
  12410. case GGML_OP_SQR:
  12411. {
  12412. if (src0->grad) {
  12413. src0->grad =
  12414. ggml_add_impl(ctx,
  12415. src0->grad,
  12416. ggml_scale(ctx,
  12417. ggml_mul(ctx, src0, tensor->grad),
  12418. ggml_new_f32(ctx, 2.0f)),
  12419. inplace);
  12420. }
  12421. } break;
  12422. case GGML_OP_SQRT:
  12423. {
  12424. if (src0->grad) {
  12425. src0->grad =
  12426. ggml_add_impl(ctx,
  12427. src0->grad,
  12428. ggml_scale(ctx,
  12429. ggml_div(ctx,
  12430. tensor->grad,
  12431. tensor),
  12432. ggml_new_f32(ctx, 0.5f)),
  12433. inplace);
  12434. }
  12435. } break;
  12436. case GGML_OP_LOG:
  12437. {
  12438. if (src0->grad) {
  12439. src0->grad =
  12440. ggml_add_impl(ctx,
  12441. src0->grad,
  12442. ggml_div(ctx,
  12443. tensor->grad,
  12444. src0),
  12445. inplace);
  12446. }
  12447. } break;
  12448. case GGML_OP_SUM:
  12449. {
  12450. if (src0->grad) {
  12451. src0->grad =
  12452. ggml_add1_impl(ctx,
  12453. src0->grad,
  12454. tensor->grad,
  12455. inplace);
  12456. }
  12457. } break;
  12458. case GGML_OP_SUM_ROWS:
  12459. {
  12460. if (src0->grad) {
  12461. src0->grad =
  12462. ggml_add_impl(ctx,
  12463. src0->grad,
  12464. ggml_repeat(ctx,
  12465. tensor->grad,
  12466. src0->grad),
  12467. inplace);
  12468. }
  12469. } break;
  12470. case GGML_OP_MEAN:
  12471. case GGML_OP_ARGMAX:
  12472. {
  12473. GGML_ASSERT(false); // TODO: implement
  12474. } break;
  12475. case GGML_OP_REPEAT:
  12476. {
  12477. // necessary for llama
  12478. if (src0->grad) {
  12479. src0->grad = ggml_add_impl(ctx,
  12480. src0->grad,
  12481. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12482. inplace);
  12483. }
  12484. } break;
  12485. case GGML_OP_REPEAT_BACK:
  12486. {
  12487. if (src0->grad) {
  12488. // TODO: test this
  12489. src0->grad = ggml_add_impl(ctx,
  12490. src0->grad,
  12491. ggml_repeat(ctx, tensor->grad, src0->grad),
  12492. inplace);
  12493. }
  12494. } break;
  12495. case GGML_OP_SILU_BACK:
  12496. {
  12497. GGML_ASSERT(false); // TODO: not implemented
  12498. } break;
  12499. case GGML_OP_NORM:
  12500. {
  12501. GGML_ASSERT(false); // TODO: not implemented
  12502. } break;
  12503. case GGML_OP_RMS_NORM:
  12504. {
  12505. // necessary for llama
  12506. if (src0->grad) {
  12507. src0->grad = ggml_add_impl(ctx,
  12508. src0->grad,
  12509. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12510. inplace);
  12511. }
  12512. } break;
  12513. case GGML_OP_RMS_NORM_BACK:
  12514. {
  12515. GGML_ASSERT(false); // TODO: not implemented
  12516. } break;
  12517. case GGML_OP_MUL_MAT:
  12518. {
  12519. // https://cs231n.github.io/optimization-2/#staged
  12520. // # forward pass
  12521. // s0 = np.random.randn(5, 10)
  12522. // s1 = np.random.randn(10, 3)
  12523. // t = s0.dot(s1)
  12524. // # now suppose we had the gradient on t from above in the circuit
  12525. // dt = np.random.randn(*t.shape) # same shape as t
  12526. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12527. // ds1 = t.T.dot(dt)
  12528. // tensor.shape [m,p]
  12529. // src0.shape [n,m]
  12530. // src1.shape [n,p]
  12531. // necessary for llama
  12532. if (src0->grad) {
  12533. src0->grad =
  12534. ggml_add_impl(ctx,
  12535. src0->grad,
  12536. ggml_out_prod(ctx, // [n,m]
  12537. src1, // [n,p]
  12538. tensor->grad), // [m,p]
  12539. inplace);
  12540. }
  12541. if (src1->grad) {
  12542. src1->grad =
  12543. ggml_add_impl(ctx,
  12544. src1->grad,
  12545. // ggml_mul_mat(ctx, // [n,p]
  12546. // ggml_cont(ctx, // [m,n]
  12547. // ggml_transpose(ctx, src0)), // [m,n]
  12548. // tensor->grad), // [m,p]
  12549. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12550. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12551. // // and then use ggml_out_prod
  12552. ggml_out_prod(ctx, // [n,p]
  12553. src0, // [n,m]
  12554. ggml_transpose(ctx, // [p,m]
  12555. tensor->grad)), // [m,p]
  12556. inplace);
  12557. }
  12558. } break;
  12559. case GGML_OP_OUT_PROD:
  12560. {
  12561. GGML_ASSERT(false); // TODO: not implemented
  12562. } break;
  12563. case GGML_OP_SCALE:
  12564. {
  12565. // necessary for llama
  12566. if (src0->grad) {
  12567. src0->grad =
  12568. ggml_add_impl(ctx,
  12569. src0->grad,
  12570. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12571. inplace);
  12572. }
  12573. if (src1->grad) {
  12574. src1->grad =
  12575. ggml_add_impl(ctx,
  12576. src1->grad,
  12577. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12578. inplace);
  12579. }
  12580. } break;
  12581. case GGML_OP_SET:
  12582. {
  12583. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12584. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12585. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12586. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12587. struct ggml_tensor * tensor_grad_view = NULL;
  12588. if (src0->grad || src1->grad) {
  12589. GGML_ASSERT(src0->type == tensor->type);
  12590. GGML_ASSERT(tensor->grad->type == tensor->type);
  12591. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12592. tensor_grad_view = ggml_view_4d(ctx,
  12593. tensor->grad,
  12594. src1->grad->ne[0],
  12595. src1->grad->ne[1],
  12596. src1->grad->ne[2],
  12597. src1->grad->ne[3],
  12598. nb1, nb2, nb3, offset);
  12599. }
  12600. if (src0->grad) {
  12601. src0->grad = ggml_add_impl(ctx,
  12602. src0->grad,
  12603. ggml_acc_impl(ctx,
  12604. tensor->grad,
  12605. ggml_neg(ctx, tensor_grad_view),
  12606. nb1, nb2, nb3, offset, false),
  12607. inplace);
  12608. }
  12609. if (src1->grad) {
  12610. src1->grad =
  12611. ggml_add_impl(ctx,
  12612. src1->grad,
  12613. ggml_reshape(ctx,
  12614. ggml_cont(ctx, tensor_grad_view),
  12615. src1->grad),
  12616. inplace);
  12617. }
  12618. } break;
  12619. case GGML_OP_CPY:
  12620. {
  12621. // necessary for llama
  12622. // cpy overwrites value of src1 by src0 and returns view(src1)
  12623. // the overwriting is mathematically equivalent to:
  12624. // tensor = src0 * 1 + src1 * 0
  12625. if (src0->grad) {
  12626. // dsrc0 = dtensor * 1
  12627. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12628. }
  12629. if (src1->grad) {
  12630. // dsrc1 = dtensor * 0 -> noop
  12631. }
  12632. } break;
  12633. case GGML_OP_CONT:
  12634. {
  12635. // same as cpy
  12636. if (src0->grad) {
  12637. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12638. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12639. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12640. }
  12641. } break;
  12642. case GGML_OP_RESHAPE:
  12643. {
  12644. // necessary for llama
  12645. if (src0->grad) {
  12646. src0->grad =
  12647. ggml_add_impl(ctx, src0->grad,
  12648. ggml_reshape(ctx, tensor->grad, src0->grad),
  12649. inplace);
  12650. }
  12651. } break;
  12652. case GGML_OP_VIEW:
  12653. {
  12654. // necessary for llama
  12655. if (src0->grad) {
  12656. size_t offset;
  12657. memcpy(&offset, tensor->op_params, sizeof(offset));
  12658. size_t nb1 = tensor->nb[1];
  12659. size_t nb2 = tensor->nb[2];
  12660. size_t nb3 = tensor->nb[3];
  12661. if (src0->type != src0->grad->type) {
  12662. // gradient is typically F32, but src0 could be other type
  12663. size_t ng = ggml_element_size(src0->grad);
  12664. size_t n0 = ggml_element_size(src0);
  12665. GGML_ASSERT(offset % n0 == 0);
  12666. GGML_ASSERT(nb1 % n0 == 0);
  12667. GGML_ASSERT(nb2 % n0 == 0);
  12668. GGML_ASSERT(nb3 % n0 == 0);
  12669. offset = (offset / n0) * ng;
  12670. nb1 = (nb1 / n0) * ng;
  12671. nb2 = (nb2 / n0) * ng;
  12672. nb3 = (nb3 / n0) * ng;
  12673. }
  12674. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12675. }
  12676. } break;
  12677. case GGML_OP_PERMUTE:
  12678. {
  12679. // necessary for llama
  12680. if (src0->grad) {
  12681. int32_t * axes = (int32_t *) tensor->op_params;
  12682. int axis0 = axes[0] & 0x3;
  12683. int axis1 = axes[1] & 0x3;
  12684. int axis2 = axes[2] & 0x3;
  12685. int axis3 = axes[3] & 0x3;
  12686. int axes_backward[4] = {0,0,0,0};
  12687. axes_backward[axis0] = 0;
  12688. axes_backward[axis1] = 1;
  12689. axes_backward[axis2] = 2;
  12690. axes_backward[axis3] = 3;
  12691. src0->grad =
  12692. ggml_add_impl(ctx, src0->grad,
  12693. ggml_permute(ctx,
  12694. tensor->grad,
  12695. axes_backward[0],
  12696. axes_backward[1],
  12697. axes_backward[2],
  12698. axes_backward[3]),
  12699. inplace);
  12700. }
  12701. } break;
  12702. case GGML_OP_TRANSPOSE:
  12703. {
  12704. // necessary for llama
  12705. if (src0->grad) {
  12706. src0->grad =
  12707. ggml_add_impl(ctx, src0->grad,
  12708. ggml_transpose(ctx, tensor->grad),
  12709. inplace);
  12710. }
  12711. } break;
  12712. case GGML_OP_GET_ROWS:
  12713. {
  12714. // necessary for llama (only for tokenizer)
  12715. if (src0->grad) {
  12716. src0->grad =
  12717. ggml_add_impl(ctx, src0->grad,
  12718. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12719. inplace);
  12720. }
  12721. if (src1->grad) {
  12722. // noop
  12723. }
  12724. } break;
  12725. case GGML_OP_GET_ROWS_BACK:
  12726. {
  12727. GGML_ASSERT(false); // TODO: not implemented
  12728. } break;
  12729. case GGML_OP_DIAG:
  12730. {
  12731. GGML_ASSERT(false); // TODO: not implemented
  12732. } break;
  12733. case GGML_OP_DIAG_MASK_INF:
  12734. {
  12735. // necessary for llama
  12736. if (src0->grad) {
  12737. const int n_past = ((int32_t *) tensor->op_params)[0];
  12738. src0->grad =
  12739. ggml_add_impl(ctx, src0->grad,
  12740. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12741. inplace);
  12742. }
  12743. } break;
  12744. case GGML_OP_DIAG_MASK_ZERO:
  12745. {
  12746. // necessary for llama
  12747. if (src0->grad) {
  12748. const int n_past = ((int32_t *) tensor->op_params)[0];
  12749. src0->grad =
  12750. ggml_add_impl(ctx, src0->grad,
  12751. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12752. inplace);
  12753. }
  12754. } break;
  12755. case GGML_OP_SOFT_MAX:
  12756. {
  12757. // necessary for llama
  12758. if (src0->grad) {
  12759. src0->grad =
  12760. ggml_add_impl(ctx, src0->grad,
  12761. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12762. inplace);
  12763. }
  12764. } break;
  12765. case GGML_OP_SOFT_MAX_BACK:
  12766. {
  12767. GGML_ASSERT(false); // TODO: not implemented
  12768. } break;
  12769. case GGML_OP_ROPE:
  12770. {
  12771. // necessary for llama
  12772. if (src0->grad) {
  12773. const int n_past = ((int32_t *) tensor->op_params)[0];
  12774. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12775. const int mode = ((int32_t *) tensor->op_params)[2];
  12776. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12777. src0->grad = ggml_add_impl(ctx,
  12778. src0->grad,
  12779. ggml_rope_back(ctx,
  12780. tensor->grad,
  12781. n_past,
  12782. n_dims,
  12783. mode,
  12784. n_ctx),
  12785. inplace);
  12786. }
  12787. } break;
  12788. case GGML_OP_ROPE_BACK:
  12789. {
  12790. if (src0->grad) {
  12791. const int n_past = ((int32_t *) tensor->op_params)[0];
  12792. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12793. const int mode = ((int32_t *) tensor->op_params)[2];
  12794. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12795. src0->grad = ggml_add_impl(ctx,
  12796. src0->grad,
  12797. ggml_rope(ctx,
  12798. tensor->grad,
  12799. n_past,
  12800. n_dims,
  12801. mode,
  12802. n_ctx),
  12803. inplace);
  12804. }
  12805. } break;
  12806. case GGML_OP_ALIBI:
  12807. {
  12808. GGML_ASSERT(false); // TODO: not implemented
  12809. } break;
  12810. case GGML_OP_CLAMP:
  12811. {
  12812. GGML_ASSERT(false); // TODO: not implemented
  12813. } break;
  12814. case GGML_OP_CONV_1D:
  12815. {
  12816. GGML_ASSERT(false); // TODO: not implemented
  12817. } break;
  12818. case GGML_OP_CONV_2D:
  12819. {
  12820. GGML_ASSERT(false); // TODO: not implemented
  12821. } break;
  12822. case GGML_OP_POOL_1D:
  12823. {
  12824. GGML_ASSERT(false); // TODO: not implemented
  12825. } break;
  12826. case GGML_OP_POOL_2D:
  12827. {
  12828. GGML_ASSERT(false); // TODO: not implemented
  12829. } break;
  12830. case GGML_OP_FLASH_ATTN:
  12831. {
  12832. struct ggml_tensor * flash_grad = NULL;
  12833. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12834. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12835. GGML_ASSERT(t == 0 || t == 1);
  12836. bool masked = t != 0;
  12837. flash_grad =
  12838. ggml_flash_attn_back(ctx,
  12839. src0,
  12840. src1,
  12841. tensor->src[2],
  12842. tensor->grad,
  12843. masked);
  12844. }
  12845. if (src0->grad) {
  12846. struct ggml_tensor * grad_q = NULL;
  12847. const size_t nb0 = flash_grad->nb[0];
  12848. const size_t offset = 0;
  12849. switch(src0->n_dims) {
  12850. case 2:
  12851. {
  12852. grad_q = ggml_view_2d(ctx,
  12853. flash_grad,
  12854. src0->ne[0],
  12855. src0->ne[1],
  12856. nb0*src0->ne[0],
  12857. offset);
  12858. } break;
  12859. case 3:
  12860. {
  12861. grad_q = ggml_view_3d(ctx,
  12862. flash_grad,
  12863. src0->ne[0],
  12864. src0->ne[1],
  12865. src0->ne[2],
  12866. nb0*src0->ne[0],
  12867. nb0*src0->ne[0]*src0->ne[1],
  12868. offset);
  12869. } break;
  12870. case 4:
  12871. {
  12872. grad_q = ggml_view_4d(ctx,
  12873. flash_grad,
  12874. src0->ne[0],
  12875. src0->ne[1],
  12876. src0->ne[2],
  12877. src0->ne[3],
  12878. nb0*src0->ne[0],
  12879. nb0*src0->ne[0]*src0->ne[1],
  12880. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12881. offset);
  12882. } break;
  12883. }
  12884. src0->grad = ggml_add_impl(ctx,
  12885. src0->grad,
  12886. grad_q,
  12887. inplace);
  12888. }
  12889. if (src1->grad) {
  12890. struct ggml_tensor * grad_k = NULL;
  12891. const size_t nb0 = flash_grad->nb[0];
  12892. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12893. switch(src1->n_dims) {
  12894. case 2:
  12895. {
  12896. grad_k = ggml_view_2d(ctx,
  12897. flash_grad,
  12898. src1->ne[0],
  12899. src1->ne[1],
  12900. nb0*src1->ne[0],
  12901. offset);
  12902. } break;
  12903. case 3:
  12904. {
  12905. grad_k = ggml_view_3d(ctx,
  12906. flash_grad,
  12907. src1->ne[0],
  12908. src1->ne[1],
  12909. src1->ne[2],
  12910. nb0*src1->ne[0],
  12911. nb0*src1->ne[0]*src1->ne[1],
  12912. offset);
  12913. } break;
  12914. case 4:
  12915. {
  12916. grad_k = ggml_view_4d(ctx,
  12917. flash_grad,
  12918. src1->ne[0],
  12919. src1->ne[1],
  12920. src1->ne[2],
  12921. src1->ne[3],
  12922. nb0*src1->ne[0],
  12923. nb0*src1->ne[0]*src1->ne[1],
  12924. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12925. offset);
  12926. } break;
  12927. }
  12928. src1->grad = ggml_add_impl(ctx,
  12929. src1->grad,
  12930. grad_k,
  12931. inplace);
  12932. }
  12933. struct ggml_tensor * opt0 = tensor->src[2];
  12934. if (opt0->grad) {
  12935. struct ggml_tensor * grad_v = NULL;
  12936. const size_t nb0 = flash_grad->nb[0];
  12937. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12938. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12939. switch(opt0->n_dims) {
  12940. case 2:
  12941. {
  12942. grad_v = ggml_view_2d(ctx,
  12943. flash_grad,
  12944. opt0->ne[0],
  12945. opt0->ne[1],
  12946. nb0*opt0->ne[0],
  12947. offset);
  12948. } break;
  12949. case 3:
  12950. {
  12951. grad_v = ggml_view_3d(ctx,
  12952. flash_grad,
  12953. opt0->ne[0],
  12954. opt0->ne[1],
  12955. opt0->ne[2],
  12956. nb0*opt0->ne[0],
  12957. nb0*opt0->ne[0]*opt0->ne[1],
  12958. offset);
  12959. } break;
  12960. case 4:
  12961. {
  12962. grad_v = ggml_view_4d(ctx,
  12963. flash_grad,
  12964. opt0->ne[0],
  12965. opt0->ne[1],
  12966. opt0->ne[2],
  12967. opt0->ne[3],
  12968. nb0*opt0->ne[0],
  12969. nb0*opt0->ne[0]*opt0->ne[1],
  12970. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12971. offset);
  12972. } break;
  12973. }
  12974. opt0->grad = ggml_add_impl(ctx,
  12975. opt0->grad,
  12976. grad_v,
  12977. inplace);
  12978. }
  12979. } break;
  12980. case GGML_OP_FLASH_FF:
  12981. {
  12982. GGML_ASSERT(false); // not supported
  12983. } break;
  12984. case GGML_OP_FLASH_ATTN_BACK:
  12985. {
  12986. GGML_ASSERT(false); // not supported
  12987. } break;
  12988. case GGML_OP_WIN_PART:
  12989. case GGML_OP_WIN_UNPART:
  12990. case GGML_OP_UNARY:
  12991. {
  12992. switch (ggml_get_unary_op(tensor)) {
  12993. case GGML_UNARY_OP_ABS:
  12994. {
  12995. if (src0->grad) {
  12996. src0->grad =
  12997. ggml_add_impl(ctx,
  12998. src0->grad,
  12999. ggml_mul(ctx,
  13000. ggml_sgn(ctx, src0),
  13001. tensor->grad),
  13002. inplace);
  13003. }
  13004. } break;
  13005. case GGML_UNARY_OP_SGN:
  13006. {
  13007. if (src0->grad) {
  13008. // noop
  13009. }
  13010. } break;
  13011. case GGML_UNARY_OP_NEG:
  13012. {
  13013. if (src0->grad) {
  13014. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13015. }
  13016. } break;
  13017. case GGML_UNARY_OP_STEP:
  13018. {
  13019. if (src0->grad) {
  13020. // noop
  13021. }
  13022. } break;
  13023. case GGML_UNARY_OP_TANH:
  13024. {
  13025. GGML_ASSERT(false); // TODO: not implemented
  13026. } break;
  13027. case GGML_UNARY_OP_ELU:
  13028. {
  13029. GGML_ASSERT(false); // TODO: not implemented
  13030. } break;
  13031. case GGML_UNARY_OP_RELU:
  13032. {
  13033. if (src0->grad) {
  13034. src0->grad = ggml_add_impl(ctx,
  13035. src0->grad,
  13036. ggml_mul(ctx,
  13037. ggml_step(ctx, src0),
  13038. tensor->grad),
  13039. inplace);
  13040. }
  13041. } break;
  13042. case GGML_UNARY_OP_GELU:
  13043. {
  13044. GGML_ASSERT(false); // TODO: not implemented
  13045. } break;
  13046. case GGML_UNARY_OP_GELU_QUICK:
  13047. {
  13048. GGML_ASSERT(false); // TODO: not implemented
  13049. } break;
  13050. case GGML_UNARY_OP_SILU:
  13051. {
  13052. // necessary for llama
  13053. if (src0->grad) {
  13054. src0->grad = ggml_add_impl(ctx,
  13055. src0->grad,
  13056. ggml_silu_back(ctx, src0, tensor->grad),
  13057. inplace);
  13058. }
  13059. } break;
  13060. default:
  13061. GGML_ASSERT(false);
  13062. }
  13063. } break;
  13064. case GGML_OP_MAP_UNARY:
  13065. case GGML_OP_MAP_BINARY:
  13066. case GGML_OP_MAP_CUSTOM1_F32:
  13067. case GGML_OP_MAP_CUSTOM2_F32:
  13068. case GGML_OP_MAP_CUSTOM3_F32:
  13069. case GGML_OP_MAP_CUSTOM1:
  13070. case GGML_OP_MAP_CUSTOM2:
  13071. case GGML_OP_MAP_CUSTOM3:
  13072. {
  13073. GGML_ASSERT(false); // not supported
  13074. } break;
  13075. case GGML_OP_CROSS_ENTROPY_LOSS:
  13076. {
  13077. if (src0->grad) {
  13078. src0->grad = ggml_add_impl(ctx,
  13079. src0->grad,
  13080. ggml_cross_entropy_loss_back(ctx,
  13081. src0,
  13082. src1,
  13083. tensor->grad),
  13084. inplace);
  13085. }
  13086. } break;
  13087. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13088. {
  13089. GGML_ASSERT(false); // not supported
  13090. } break;
  13091. case GGML_OP_NONE:
  13092. {
  13093. // nop
  13094. } break;
  13095. case GGML_OP_COUNT:
  13096. {
  13097. GGML_ASSERT(false);
  13098. } break;
  13099. }
  13100. }
  13101. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13102. static size_t hash(void * p) {
  13103. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13104. }
  13105. static bool hash_insert(void * hash_table[], void * p) {
  13106. size_t h = hash(p);
  13107. // linear probing
  13108. size_t i = h;
  13109. while (hash_table[i] != NULL && hash_table[i] != p) {
  13110. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13111. if (i == h) {
  13112. // hash table is full
  13113. GGML_ASSERT(false);
  13114. }
  13115. }
  13116. if (hash_table[i] == p) {
  13117. return true;
  13118. }
  13119. // insert
  13120. hash_table[i] = p;
  13121. return false;
  13122. }
  13123. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13124. if (node->grad == NULL) {
  13125. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13126. // it can also happen during forward pass, if the user performs computations with constants
  13127. if (node->op != GGML_OP_NONE) {
  13128. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13129. }
  13130. }
  13131. // check if already visited
  13132. if (hash_insert(cgraph->visited_hash_table, node)) {
  13133. return;
  13134. }
  13135. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13136. if (node->src[i]) {
  13137. ggml_visit_parents(cgraph, node->src[i]);
  13138. }
  13139. }
  13140. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13141. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13142. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13143. if (strlen(node->name) == 0) {
  13144. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13145. }
  13146. cgraph->leafs[cgraph->n_leafs] = node;
  13147. cgraph->n_leafs++;
  13148. } else {
  13149. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13150. if (strlen(node->name) == 0) {
  13151. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13152. }
  13153. cgraph->nodes[cgraph->n_nodes] = node;
  13154. cgraph->grads[cgraph->n_nodes] = node->grad;
  13155. cgraph->n_nodes++;
  13156. }
  13157. }
  13158. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13159. if (!expand) {
  13160. cgraph->n_nodes = 0;
  13161. cgraph->n_leafs = 0;
  13162. }
  13163. const int n0 = cgraph->n_nodes;
  13164. UNUSED(n0);
  13165. ggml_visit_parents(cgraph, tensor);
  13166. const int n_new = cgraph->n_nodes - n0;
  13167. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13168. if (n_new > 0) {
  13169. // the last added node should always be starting point
  13170. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13171. }
  13172. }
  13173. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13174. ggml_build_forward_impl(cgraph, tensor, true);
  13175. }
  13176. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13177. struct ggml_cgraph result = {
  13178. /*.n_nodes =*/ 0,
  13179. /*.n_leafs =*/ 0,
  13180. /*.nodes =*/ { NULL },
  13181. /*.grads =*/ { NULL },
  13182. /*.leafs =*/ { NULL },
  13183. /*.hash_table =*/ { NULL },
  13184. /*.perf_runs =*/ 0,
  13185. /*.perf_cycles =*/ 0,
  13186. /*.perf_time_us =*/ 0,
  13187. };
  13188. ggml_build_forward_impl(&result, tensor, false);
  13189. return result;
  13190. }
  13191. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13192. struct ggml_cgraph result = *gf;
  13193. GGML_ASSERT(gf->n_nodes > 0);
  13194. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13195. if (keep) {
  13196. for (int i = 0; i < gf->n_nodes; i++) {
  13197. struct ggml_tensor * node = gf->nodes[i];
  13198. if (node->grad) {
  13199. node->grad = ggml_dup_tensor(ctx, node);
  13200. gf->grads[i] = node->grad;
  13201. }
  13202. }
  13203. }
  13204. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13205. struct ggml_tensor * node = gf->nodes[i];
  13206. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13207. if (node->grad) {
  13208. ggml_compute_backward(ctx, node, keep);
  13209. }
  13210. }
  13211. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13212. struct ggml_tensor * node = gf->nodes[i];
  13213. if (node->is_param) {
  13214. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13215. ggml_build_forward_expand(&result, node->grad);
  13216. }
  13217. }
  13218. return result;
  13219. }
  13220. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13221. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13222. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13223. *cgraph = (struct ggml_cgraph) {
  13224. /*.n_nodes =*/ 0,
  13225. /*.n_leafs =*/ 0,
  13226. /*.nodes =*/ { NULL },
  13227. /*.grads =*/ { NULL },
  13228. /*.leafs =*/ { NULL },
  13229. /*.hash_table =*/ { NULL },
  13230. /*.perf_runs =*/ 0,
  13231. /*.perf_cycles =*/ 0,
  13232. /*.perf_time_us =*/ 0,
  13233. };
  13234. return cgraph;
  13235. }
  13236. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13237. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13238. ggml_build_forward_impl(cgraph, tensor, false);
  13239. return cgraph;
  13240. }
  13241. size_t ggml_graph_overhead(void) {
  13242. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13243. }
  13244. //
  13245. // thread data
  13246. //
  13247. // synchronization is done via busy loops
  13248. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13249. //
  13250. #ifdef __APPLE__
  13251. //#include <os/lock.h>
  13252. //
  13253. //typedef os_unfair_lock ggml_lock_t;
  13254. //
  13255. //#define ggml_lock_init(x) UNUSED(x)
  13256. //#define ggml_lock_destroy(x) UNUSED(x)
  13257. //#define ggml_lock_lock os_unfair_lock_lock
  13258. //#define ggml_lock_unlock os_unfair_lock_unlock
  13259. //
  13260. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13261. typedef int ggml_lock_t;
  13262. #define ggml_lock_init(x) UNUSED(x)
  13263. #define ggml_lock_destroy(x) UNUSED(x)
  13264. #define ggml_lock_lock(x) UNUSED(x)
  13265. #define ggml_lock_unlock(x) UNUSED(x)
  13266. #define GGML_LOCK_INITIALIZER 0
  13267. typedef pthread_t ggml_thread_t;
  13268. #define ggml_thread_create pthread_create
  13269. #define ggml_thread_join pthread_join
  13270. #else
  13271. //typedef pthread_spinlock_t ggml_lock_t;
  13272. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13273. //#define ggml_lock_destroy pthread_spin_destroy
  13274. //#define ggml_lock_lock pthread_spin_lock
  13275. //#define ggml_lock_unlock pthread_spin_unlock
  13276. typedef int ggml_lock_t;
  13277. #define ggml_lock_init(x) UNUSED(x)
  13278. #define ggml_lock_destroy(x) UNUSED(x)
  13279. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13280. #define ggml_lock_lock(x) _mm_pause()
  13281. #else
  13282. #define ggml_lock_lock(x) UNUSED(x)
  13283. #endif
  13284. #define ggml_lock_unlock(x) UNUSED(x)
  13285. #define GGML_LOCK_INITIALIZER 0
  13286. typedef pthread_t ggml_thread_t;
  13287. #define ggml_thread_create pthread_create
  13288. #define ggml_thread_join pthread_join
  13289. #endif
  13290. // Android's libc implementation "bionic" does not support setting affinity
  13291. #if defined(__linux__) && !defined(__BIONIC__)
  13292. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13293. if (!ggml_is_numa()) {
  13294. return;
  13295. }
  13296. // run thread on node_num thread_n / (threads per node)
  13297. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13298. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13299. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13300. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13301. CPU_ZERO_S(setsize, cpus);
  13302. for (size_t i = 0; i < node->n_cpus; ++i) {
  13303. CPU_SET_S(node->cpus[i], setsize, cpus);
  13304. }
  13305. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13306. if (rv) {
  13307. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13308. strerror(rv));
  13309. }
  13310. CPU_FREE(cpus);
  13311. }
  13312. static void clear_numa_thread_affinity(void) {
  13313. if (!ggml_is_numa()) {
  13314. return;
  13315. }
  13316. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13317. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13318. CPU_ZERO_S(setsize, cpus);
  13319. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13320. CPU_SET_S(i, setsize, cpus);
  13321. }
  13322. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13323. if (rv) {
  13324. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13325. strerror(rv));
  13326. }
  13327. CPU_FREE(cpus);
  13328. }
  13329. #else
  13330. // TODO: Windows etc.
  13331. // (the linux implementation may also work on BSD, someone should test)
  13332. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13333. static void clear_numa_thread_affinity(void) {}
  13334. #endif
  13335. struct ggml_compute_state_shared {
  13336. const struct ggml_cgraph * cgraph;
  13337. const struct ggml_cplan * cplan;
  13338. int64_t perf_node_start_cycles;
  13339. int64_t perf_node_start_time_us;
  13340. const int n_threads;
  13341. // synchronization primitives
  13342. atomic_int n_active; // num active threads
  13343. atomic_int node_n; // active graph node
  13344. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13345. void * abort_callback_data;
  13346. };
  13347. struct ggml_compute_state {
  13348. ggml_thread_t thrd;
  13349. int ith;
  13350. struct ggml_compute_state_shared * shared;
  13351. };
  13352. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13353. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13354. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13355. node->perf_runs++;
  13356. node->perf_cycles += cycles_cur;
  13357. node->perf_time_us += time_us_cur;
  13358. }
  13359. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13360. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13361. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13362. const struct ggml_cplan * cplan = state->shared->cplan;
  13363. const int * n_tasks_arr = cplan->n_tasks;
  13364. const int n_threads = state->shared->n_threads;
  13365. set_numa_thread_affinity(state->ith, n_threads);
  13366. int node_n = -1;
  13367. while (true) {
  13368. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13369. state->shared->node_n += 1;
  13370. return (thread_ret_t) GGML_EXIT_ABORTED;
  13371. }
  13372. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13373. // all other threads are finished and spinning
  13374. // do finalize and init here so we don't have synchronize again
  13375. struct ggml_compute_params params = {
  13376. /*.type =*/ GGML_TASK_FINALIZE,
  13377. /*.ith =*/ 0,
  13378. /*.nth =*/ 0,
  13379. /*.wsize =*/ cplan->work_size,
  13380. /*.wdata =*/ cplan->work_data,
  13381. };
  13382. if (node_n != -1) {
  13383. /* FINALIZE */
  13384. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13385. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13386. params.nth = n_tasks_arr[node_n];
  13387. ggml_compute_forward(&params, node);
  13388. }
  13389. ggml_graph_compute_perf_stats_node(node, state->shared);
  13390. }
  13391. // distribute new work or execute it direct if 1T
  13392. while (++node_n < cgraph->n_nodes) {
  13393. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13394. struct ggml_tensor * node = cgraph->nodes[node_n];
  13395. const int n_tasks = n_tasks_arr[node_n];
  13396. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13397. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13398. params.nth = n_tasks;
  13399. /* INIT */
  13400. if (GGML_OP_HAS_INIT[node->op]) {
  13401. params.type = GGML_TASK_INIT;
  13402. ggml_compute_forward(&params, node);
  13403. }
  13404. if (n_tasks == 1) {
  13405. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13406. // they do something more efficient than spinning (?)
  13407. params.type = GGML_TASK_COMPUTE;
  13408. ggml_compute_forward(&params, node);
  13409. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13410. params.type = GGML_TASK_FINALIZE;
  13411. ggml_compute_forward(&params, node);
  13412. }
  13413. ggml_graph_compute_perf_stats_node(node, state->shared);
  13414. } else {
  13415. break;
  13416. }
  13417. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13418. break;
  13419. }
  13420. }
  13421. atomic_store(&state->shared->n_active, n_threads);
  13422. atomic_store(&state->shared->node_n, node_n);
  13423. } else {
  13424. // wait for other threads to finish
  13425. const int last = node_n;
  13426. do {
  13427. //sched_yield();
  13428. node_n = atomic_load(&state->shared->node_n);
  13429. } while (node_n == last);
  13430. }
  13431. // check if we should stop
  13432. if (node_n >= cgraph->n_nodes) break;
  13433. /* COMPUTE */
  13434. struct ggml_tensor * node = cgraph->nodes[node_n];
  13435. const int n_tasks = n_tasks_arr[node_n];
  13436. struct ggml_compute_params params = {
  13437. /*.type =*/ GGML_TASK_COMPUTE,
  13438. /*.ith =*/ state->ith,
  13439. /*.nth =*/ n_tasks,
  13440. /*.wsize =*/ cplan->work_size,
  13441. /*.wdata =*/ cplan->work_data,
  13442. };
  13443. if (state->ith < n_tasks) {
  13444. ggml_compute_forward(&params, node);
  13445. }
  13446. }
  13447. return GGML_EXIT_SUCCESS;
  13448. }
  13449. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13450. if (n_threads <= 0) {
  13451. n_threads = GGML_DEFAULT_N_THREADS;
  13452. }
  13453. size_t work_size = 0;
  13454. struct ggml_cplan cplan;
  13455. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13456. // thread scheduling for the different operations + work buffer size estimation
  13457. for (int i = 0; i < cgraph->n_nodes; i++) {
  13458. int n_tasks = 1;
  13459. struct ggml_tensor * node = cgraph->nodes[i];
  13460. switch (node->op) {
  13461. case GGML_OP_CPY:
  13462. case GGML_OP_DUP:
  13463. {
  13464. n_tasks = n_threads;
  13465. size_t cur = 0;
  13466. if (ggml_is_quantized(node->type)) {
  13467. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13468. }
  13469. work_size = MAX(work_size, cur);
  13470. } break;
  13471. case GGML_OP_ADD:
  13472. case GGML_OP_ADD1:
  13473. {
  13474. n_tasks = n_threads;
  13475. size_t cur = 0;
  13476. if (ggml_is_quantized(node->src[0]->type)) {
  13477. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13478. }
  13479. work_size = MAX(work_size, cur);
  13480. } break;
  13481. case GGML_OP_ACC:
  13482. {
  13483. n_tasks = n_threads;
  13484. size_t cur = 0;
  13485. if (ggml_is_quantized(node->src[0]->type)) {
  13486. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13487. }
  13488. work_size = MAX(work_size, cur);
  13489. } break;
  13490. case GGML_OP_SUB:
  13491. case GGML_OP_DIV:
  13492. case GGML_OP_SQR:
  13493. case GGML_OP_SQRT:
  13494. case GGML_OP_LOG:
  13495. case GGML_OP_SUM:
  13496. case GGML_OP_SUM_ROWS:
  13497. case GGML_OP_MEAN:
  13498. case GGML_OP_ARGMAX:
  13499. case GGML_OP_REPEAT:
  13500. case GGML_OP_REPEAT_BACK:
  13501. {
  13502. n_tasks = 1;
  13503. } break;
  13504. case GGML_OP_UNARY:
  13505. {
  13506. switch (ggml_get_unary_op(node)) {
  13507. case GGML_UNARY_OP_ABS:
  13508. case GGML_UNARY_OP_SGN:
  13509. case GGML_UNARY_OP_NEG:
  13510. case GGML_UNARY_OP_STEP:
  13511. case GGML_UNARY_OP_TANH:
  13512. case GGML_UNARY_OP_ELU:
  13513. case GGML_UNARY_OP_RELU:
  13514. {
  13515. n_tasks = 1;
  13516. } break;
  13517. case GGML_UNARY_OP_GELU:
  13518. case GGML_UNARY_OP_GELU_QUICK:
  13519. case GGML_UNARY_OP_SILU:
  13520. {
  13521. n_tasks = n_threads;
  13522. } break;
  13523. }
  13524. } break;
  13525. case GGML_OP_SILU_BACK:
  13526. case GGML_OP_MUL:
  13527. case GGML_OP_NORM:
  13528. case GGML_OP_RMS_NORM:
  13529. case GGML_OP_RMS_NORM_BACK:
  13530. {
  13531. n_tasks = n_threads;
  13532. } break;
  13533. case GGML_OP_MUL_MAT:
  13534. case GGML_OP_OUT_PROD:
  13535. {
  13536. n_tasks = n_threads;
  13537. // TODO: use different scheduling for different matrix sizes
  13538. //const int nr0 = ggml_nrows(node->src[0]);
  13539. //const int nr1 = ggml_nrows(node->src[1]);
  13540. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13541. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13542. size_t cur = 0;
  13543. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13544. #if defined(GGML_USE_CUBLAS)
  13545. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13546. n_tasks = 1; // TODO: this actually is doing nothing
  13547. // the threads are still spinning
  13548. } else
  13549. #elif defined(GGML_USE_CLBLAST)
  13550. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13551. n_tasks = 1; // TODO: this actually is doing nothing
  13552. // the threads are still spinning
  13553. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13554. } else
  13555. #endif
  13556. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13557. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13558. n_tasks = 1; // TODO: this actually is doing nothing
  13559. // the threads are still spinning
  13560. if (node->src[0]->type != GGML_TYPE_F32) {
  13561. // here we need memory just for single 2D matrix from src0
  13562. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13563. }
  13564. } else
  13565. #endif
  13566. if (node->src[1]->type != vec_dot_type) {
  13567. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13568. } else {
  13569. cur = 0;
  13570. }
  13571. work_size = MAX(work_size, cur);
  13572. } break;
  13573. case GGML_OP_SCALE:
  13574. {
  13575. n_tasks = 1;
  13576. } break;
  13577. case GGML_OP_SET:
  13578. case GGML_OP_CONT:
  13579. case GGML_OP_RESHAPE:
  13580. case GGML_OP_VIEW:
  13581. case GGML_OP_PERMUTE:
  13582. case GGML_OP_TRANSPOSE:
  13583. case GGML_OP_GET_ROWS:
  13584. case GGML_OP_GET_ROWS_BACK:
  13585. case GGML_OP_DIAG:
  13586. {
  13587. n_tasks = 1;
  13588. } break;
  13589. case GGML_OP_DIAG_MASK_ZERO:
  13590. case GGML_OP_DIAG_MASK_INF:
  13591. case GGML_OP_SOFT_MAX:
  13592. case GGML_OP_SOFT_MAX_BACK:
  13593. case GGML_OP_ROPE:
  13594. case GGML_OP_ROPE_BACK:
  13595. {
  13596. n_tasks = n_threads;
  13597. } break;
  13598. case GGML_OP_ALIBI:
  13599. {
  13600. n_tasks = 1; //TODO
  13601. } break;
  13602. case GGML_OP_CLAMP:
  13603. {
  13604. n_tasks = 1; //TODO
  13605. } break;
  13606. case GGML_OP_CONV_1D:
  13607. {
  13608. n_tasks = n_threads;
  13609. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13610. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13611. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13612. size_t cur = 0;
  13613. const int nk = node->src[0]->ne[0];
  13614. if (node->src[0]->type == GGML_TYPE_F16 &&
  13615. node->src[1]->type == GGML_TYPE_F32) {
  13616. cur = sizeof(ggml_fp16_t)*(
  13617. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13618. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13619. );
  13620. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13621. node->src[1]->type == GGML_TYPE_F32) {
  13622. cur = sizeof(float)*(
  13623. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13624. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13625. );
  13626. } else {
  13627. GGML_ASSERT(false);
  13628. }
  13629. work_size = MAX(work_size, cur);
  13630. } break;
  13631. case GGML_OP_CONV_2D:
  13632. {
  13633. n_tasks = n_threads;
  13634. const int64_t ne00 = node->src[0]->ne[0]; // W
  13635. const int64_t ne01 = node->src[0]->ne[1]; // H
  13636. const int64_t ne02 = node->src[0]->ne[2]; // C
  13637. const int64_t ne03 = node->src[0]->ne[3]; // N
  13638. const int64_t ne10 = node->src[1]->ne[0]; // W
  13639. const int64_t ne11 = node->src[1]->ne[1]; // H
  13640. const int64_t ne12 = node->src[1]->ne[2]; // C
  13641. const int64_t ne0 = node->ne[0];
  13642. const int64_t ne1 = node->ne[1];
  13643. const int64_t ne2 = node->ne[2];
  13644. const int64_t nk = ne00*ne01;
  13645. const int64_t ew0 = nk * ne02;
  13646. UNUSED(ne03);
  13647. UNUSED(ne2);
  13648. size_t cur = 0;
  13649. if (node->src[0]->type == GGML_TYPE_F16 &&
  13650. node->src[1]->type == GGML_TYPE_F32) {
  13651. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13652. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13653. node->src[1]->type == GGML_TYPE_F32) {
  13654. cur = sizeof(float)* (ne10*ne11*ne12);
  13655. } else {
  13656. GGML_ASSERT(false);
  13657. }
  13658. work_size = MAX(work_size, cur);
  13659. } break;
  13660. case GGML_OP_POOL_1D:
  13661. case GGML_OP_POOL_2D:
  13662. {
  13663. n_tasks = 1;
  13664. } break;
  13665. case GGML_OP_FLASH_ATTN:
  13666. {
  13667. n_tasks = n_threads;
  13668. size_t cur = 0;
  13669. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13670. if (node->src[1]->type == GGML_TYPE_F32) {
  13671. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13672. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13673. }
  13674. if (node->src[1]->type == GGML_TYPE_F16) {
  13675. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13676. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13677. }
  13678. work_size = MAX(work_size, cur);
  13679. } break;
  13680. case GGML_OP_FLASH_FF:
  13681. {
  13682. n_tasks = n_threads;
  13683. size_t cur = 0;
  13684. if (node->src[1]->type == GGML_TYPE_F32) {
  13685. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13686. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13687. }
  13688. if (node->src[1]->type == GGML_TYPE_F16) {
  13689. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13690. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13691. }
  13692. work_size = MAX(work_size, cur);
  13693. } break;
  13694. case GGML_OP_FLASH_ATTN_BACK:
  13695. {
  13696. n_tasks = n_threads;
  13697. size_t cur = 0;
  13698. const int64_t D = node->src[0]->ne[0];
  13699. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13700. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13701. if (node->src[1]->type == GGML_TYPE_F32) {
  13702. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13703. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13704. }
  13705. if (node->src[1]->type == GGML_TYPE_F16) {
  13706. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13707. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13708. }
  13709. work_size = MAX(work_size, cur);
  13710. } break;
  13711. case GGML_OP_WIN_PART:
  13712. case GGML_OP_WIN_UNPART:
  13713. case GGML_OP_MAP_UNARY:
  13714. case GGML_OP_MAP_BINARY:
  13715. case GGML_OP_MAP_CUSTOM1_F32:
  13716. case GGML_OP_MAP_CUSTOM2_F32:
  13717. case GGML_OP_MAP_CUSTOM3_F32:
  13718. {
  13719. n_tasks = 1;
  13720. } break;
  13721. case GGML_OP_MAP_CUSTOM1:
  13722. {
  13723. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13724. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13725. n_tasks = n_threads;
  13726. } else {
  13727. n_tasks = MIN(p->n_tasks, n_threads);
  13728. }
  13729. } break;
  13730. case GGML_OP_MAP_CUSTOM2:
  13731. {
  13732. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13733. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13734. n_tasks = n_threads;
  13735. } else {
  13736. n_tasks = MIN(p->n_tasks, n_threads);
  13737. }
  13738. } break;
  13739. case GGML_OP_MAP_CUSTOM3:
  13740. {
  13741. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13742. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13743. n_tasks = n_threads;
  13744. } else {
  13745. n_tasks = MIN(p->n_tasks, n_threads);
  13746. }
  13747. } break;
  13748. case GGML_OP_CROSS_ENTROPY_LOSS:
  13749. {
  13750. n_tasks = n_threads;
  13751. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13752. work_size = MAX(work_size, cur);
  13753. } break;
  13754. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13755. {
  13756. n_tasks = n_threads;
  13757. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13758. work_size = MAX(work_size, cur);
  13759. } break;
  13760. case GGML_OP_NONE:
  13761. {
  13762. n_tasks = 1;
  13763. } break;
  13764. case GGML_OP_COUNT:
  13765. {
  13766. GGML_ASSERT(false);
  13767. } break;
  13768. }
  13769. cplan.n_tasks[i] = n_tasks;
  13770. }
  13771. if (work_size > 0) {
  13772. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13773. }
  13774. cplan.n_threads = n_threads;
  13775. cplan.work_size = work_size;
  13776. cplan.work_data = NULL;
  13777. return cplan;
  13778. }
  13779. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13780. {
  13781. GGML_ASSERT(cplan);
  13782. GGML_ASSERT(cplan->n_threads > 0);
  13783. if (cplan->work_size > 0) {
  13784. GGML_ASSERT(cplan->work_data);
  13785. }
  13786. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13787. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13788. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13789. }
  13790. }
  13791. }
  13792. const int n_threads = cplan->n_threads;
  13793. struct ggml_compute_state_shared state_shared = {
  13794. /*.cgraph =*/ cgraph,
  13795. /*.cgraph_plan =*/ cplan,
  13796. /*.perf_node_start_cycles =*/ 0,
  13797. /*.perf_node_start_time_us =*/ 0,
  13798. /*.n_threads =*/ n_threads,
  13799. /*.n_active =*/ n_threads,
  13800. /*.node_n =*/ -1,
  13801. /*.abort_callback =*/ NULL,
  13802. /*.abort_callback_data =*/ NULL,
  13803. };
  13804. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13805. // create thread pool
  13806. if (n_threads > 1) {
  13807. for (int j = 1; j < n_threads; ++j) {
  13808. workers[j] = (struct ggml_compute_state) {
  13809. .thrd = 0,
  13810. .ith = j,
  13811. .shared = &state_shared,
  13812. };
  13813. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13814. GGML_ASSERT(rc == 0);
  13815. }
  13816. }
  13817. workers[0].ith = 0;
  13818. workers[0].shared = &state_shared;
  13819. const int64_t perf_start_cycles = ggml_perf_cycles();
  13820. const int64_t perf_start_time_us = ggml_perf_time_us();
  13821. // this is a work thread too
  13822. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13823. // don't leave affinity set on the main thread
  13824. clear_numa_thread_affinity();
  13825. // join or kill thread pool
  13826. if (n_threads > 1) {
  13827. for (int j = 1; j < n_threads; j++) {
  13828. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13829. GGML_ASSERT(rc == 0);
  13830. }
  13831. }
  13832. // performance stats (graph)
  13833. {
  13834. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13835. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13836. cgraph->perf_runs++;
  13837. cgraph->perf_cycles += perf_cycles_cur;
  13838. cgraph->perf_time_us += perf_time_us_cur;
  13839. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13840. __func__, cgraph->perf_runs,
  13841. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13842. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13843. (double) perf_time_us_cur / 1000.0,
  13844. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13845. }
  13846. return compute_status;
  13847. }
  13848. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13849. for (int i = 0; i < cgraph->n_nodes; i++) {
  13850. struct ggml_tensor * grad = cgraph->grads[i];
  13851. if (grad) {
  13852. ggml_set_zero(grad);
  13853. }
  13854. }
  13855. }
  13856. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13857. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13858. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13859. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13860. ggml_graph_compute(cgraph, &cplan);
  13861. }
  13862. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13863. for (int i = 0; i < cgraph->n_leafs; i++) {
  13864. struct ggml_tensor * leaf = cgraph->leafs[i];
  13865. if (strcmp(leaf->name, name) == 0) {
  13866. return leaf;
  13867. }
  13868. }
  13869. for (int i = 0; i < cgraph->n_nodes; i++) {
  13870. struct ggml_tensor * node = cgraph->nodes[i];
  13871. if (strcmp(node->name, name) == 0) {
  13872. return node;
  13873. }
  13874. }
  13875. return NULL;
  13876. }
  13877. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13878. const int64_t * ne = tensor->ne;
  13879. const size_t * nb = tensor->nb;
  13880. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13881. ggml_type_name(tensor->type),
  13882. ggml_op_name (tensor->op),
  13883. tensor->n_dims,
  13884. ne[0], ne[1], ne[2], ne[3],
  13885. nb[0], nb[1], nb[2], nb[3],
  13886. tensor->data,
  13887. tensor->name);
  13888. }
  13889. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13890. const int64_t * ne = tensor->ne;
  13891. const size_t * nb = tensor->nb;
  13892. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13893. arg,
  13894. ggml_type_name(tensor->type),
  13895. ggml_op_name (tensor->op),
  13896. tensor->n_dims,
  13897. ne[0], ne[1], ne[2], ne[3],
  13898. nb[0], nb[1], nb[2], nb[3],
  13899. tensor->data,
  13900. tensor->name);
  13901. }
  13902. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13903. uint64_t size_eval = 0;
  13904. // compute size of intermediate results
  13905. // TODO: does not take into account scratch buffers !!!!
  13906. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13907. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13908. }
  13909. // print
  13910. {
  13911. FILE * fout = stdout;
  13912. fprintf(fout, "\n");
  13913. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13914. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13915. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13916. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13917. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13918. // header
  13919. fprintf(fout, "\n");
  13920. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13921. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13922. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13923. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13924. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13925. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13926. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13927. }
  13928. // header
  13929. fprintf(fout, "\n");
  13930. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13931. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13932. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13933. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13934. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13935. if (cgraph->nodes[i]->src[j]) {
  13936. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13937. }
  13938. }
  13939. fprintf(fout, "\n");
  13940. }
  13941. fprintf(fout, "\n");
  13942. }
  13943. // write binary data
  13944. {
  13945. FILE * fout = fopen(fname, "wb");
  13946. if (!fout) {
  13947. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13948. return;
  13949. }
  13950. // header
  13951. {
  13952. const uint32_t magic = GGML_FILE_MAGIC;
  13953. const uint32_t version = GGML_FILE_VERSION;
  13954. const uint32_t n_leafs = cgraph->n_leafs;
  13955. const uint32_t nodes = cgraph->n_nodes;
  13956. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13957. fwrite(&version, sizeof(uint32_t), 1, fout);
  13958. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13959. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13960. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13961. }
  13962. // leafs
  13963. {
  13964. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13965. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13966. const uint32_t type = tensor->type;
  13967. const uint32_t op = tensor->op;
  13968. const uint32_t n_dims = tensor->n_dims;
  13969. fwrite(&type, sizeof(uint32_t), 1, fout);
  13970. fwrite(&op, sizeof(uint32_t), 1, fout);
  13971. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13972. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13973. const uint64_t ne = tensor->ne[j];
  13974. const uint64_t nb = tensor->nb[j];
  13975. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13976. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13977. }
  13978. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13979. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13980. // dump the data
  13981. // TODO: pad this to 32 byte boundary
  13982. {
  13983. const size_t size = ggml_nbytes(tensor);
  13984. fwrite(tensor->data, sizeof(char), size, fout);
  13985. }
  13986. }
  13987. }
  13988. // nodes
  13989. {
  13990. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13991. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13992. const uint32_t type = tensor->type;
  13993. const uint32_t op = tensor->op;
  13994. const uint32_t n_dims = tensor->n_dims;
  13995. fwrite(&type, sizeof(uint32_t), 1, fout);
  13996. fwrite(&op, sizeof(uint32_t), 1, fout);
  13997. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13998. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13999. const uint64_t ne = tensor->ne[j];
  14000. const uint64_t nb = tensor->nb[j];
  14001. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14002. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14003. }
  14004. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14005. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14006. // output the op arguments
  14007. {
  14008. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14009. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14010. args[j] = tensor->src[j];
  14011. }
  14012. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14013. if (args[j]) {
  14014. int32_t idx = -1;
  14015. // check if leaf
  14016. {
  14017. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14018. if (args[j] == cgraph->leafs[k]) {
  14019. idx = k;
  14020. break;
  14021. }
  14022. }
  14023. }
  14024. // check if node
  14025. if (idx == -1) {
  14026. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14027. if (args[j] == cgraph->nodes[k]) {
  14028. idx = GGML_MAX_NODES + k;
  14029. break;
  14030. }
  14031. }
  14032. }
  14033. if (idx == -1) {
  14034. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14035. return;
  14036. }
  14037. fwrite(&idx, sizeof(int32_t), 1, fout);
  14038. } else {
  14039. const int32_t nul = -1;
  14040. fwrite(&nul, sizeof(int32_t), 1, fout);
  14041. }
  14042. }
  14043. }
  14044. }
  14045. }
  14046. fclose(fout);
  14047. }
  14048. }
  14049. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14050. assert(*ctx_data == NULL);
  14051. assert(*ctx_eval == NULL);
  14052. struct ggml_cgraph result = { 0 };
  14053. struct ggml_tensor * data = NULL;
  14054. // read file into data
  14055. {
  14056. FILE * fin = fopen(fname, "rb");
  14057. if (!fin) {
  14058. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14059. return result;
  14060. }
  14061. size_t fsize = 0;
  14062. fseek(fin, 0, SEEK_END);
  14063. fsize = ftell(fin);
  14064. fseek(fin, 0, SEEK_SET);
  14065. // create the data context
  14066. {
  14067. const size_t overhead = 1*ggml_tensor_overhead();
  14068. struct ggml_init_params params = {
  14069. .mem_size = fsize + overhead,
  14070. .mem_buffer = NULL,
  14071. .no_alloc = false,
  14072. };
  14073. *ctx_data = ggml_init(params);
  14074. if (!*ctx_data) {
  14075. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14076. fclose(fin);
  14077. return result;
  14078. }
  14079. }
  14080. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14081. {
  14082. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14083. if (ret != fsize) {
  14084. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14085. fclose(fin);
  14086. return result;
  14087. }
  14088. }
  14089. fclose(fin);
  14090. }
  14091. // populate result
  14092. {
  14093. char * ptr = (char *) data->data;
  14094. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14095. if (magic != GGML_FILE_MAGIC) {
  14096. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14097. return result;
  14098. }
  14099. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14100. if (version != GGML_FILE_VERSION) {
  14101. fprintf(stderr, "%s: invalid version number\n", __func__);
  14102. return result;
  14103. }
  14104. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14105. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14106. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14107. result.n_leafs = n_leafs;
  14108. result.n_nodes = n_nodes;
  14109. // create the data context
  14110. {
  14111. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14112. struct ggml_init_params params = {
  14113. .mem_size = size_eval + overhead,
  14114. .mem_buffer = NULL,
  14115. .no_alloc = true,
  14116. };
  14117. *ctx_eval = ggml_init(params);
  14118. if (!*ctx_eval) {
  14119. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14120. return result;
  14121. }
  14122. }
  14123. // leafs
  14124. {
  14125. uint32_t type;
  14126. uint32_t op;
  14127. uint32_t n_dims;
  14128. for (uint32_t i = 0; i < n_leafs; ++i) {
  14129. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14130. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14131. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14132. int64_t ne[GGML_MAX_DIMS];
  14133. size_t nb[GGML_MAX_DIMS];
  14134. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14135. uint64_t ne_cur;
  14136. uint64_t nb_cur;
  14137. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14138. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14139. ne[j] = ne_cur;
  14140. nb[j] = nb_cur;
  14141. }
  14142. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14143. tensor->op = (enum ggml_op) op;
  14144. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14145. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14146. tensor->data = (void *) ptr;
  14147. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14148. tensor->nb[j] = nb[j];
  14149. }
  14150. result.leafs[i] = tensor;
  14151. ptr += ggml_nbytes(tensor);
  14152. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14153. }
  14154. }
  14155. ggml_set_no_alloc(*ctx_eval, false);
  14156. // nodes
  14157. {
  14158. uint32_t type;
  14159. uint32_t op;
  14160. uint32_t n_dims;
  14161. for (uint32_t i = 0; i < n_nodes; ++i) {
  14162. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14163. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14164. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14165. enum ggml_op eop = (enum ggml_op) op;
  14166. int64_t ne[GGML_MAX_DIMS];
  14167. size_t nb[GGML_MAX_DIMS];
  14168. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14169. uint64_t ne_cur;
  14170. uint64_t nb_cur;
  14171. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14172. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14173. ne[j] = ne_cur;
  14174. nb[j] = nb_cur;
  14175. }
  14176. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14177. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14178. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14179. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14180. // parse args
  14181. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14182. const int32_t arg_idx = ptr_arg_idx[j];
  14183. if (arg_idx == -1) {
  14184. continue;
  14185. }
  14186. if (arg_idx < GGML_MAX_NODES) {
  14187. args[j] = result.leafs[arg_idx];
  14188. } else {
  14189. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14190. }
  14191. }
  14192. // create the tensor
  14193. // "view" operations are handled differently
  14194. // TODO: handle inplace ops - currently a copy is always made
  14195. struct ggml_tensor * tensor = NULL;
  14196. switch (eop) {
  14197. // TODO: implement other view ops
  14198. case GGML_OP_RESHAPE:
  14199. {
  14200. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14201. } break;
  14202. case GGML_OP_VIEW:
  14203. {
  14204. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14205. size_t offs;
  14206. memcpy(&offs, ptr_op_params, sizeof(offs));
  14207. tensor->data = ((char *) tensor->data) + offs;
  14208. } break;
  14209. case GGML_OP_TRANSPOSE:
  14210. {
  14211. tensor = ggml_transpose(*ctx_eval, args[0]);
  14212. } break;
  14213. case GGML_OP_PERMUTE:
  14214. {
  14215. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14216. } break;
  14217. default:
  14218. {
  14219. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14220. tensor->op = eop;
  14221. } break;
  14222. }
  14223. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14224. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14225. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14226. tensor->nb[j] = nb[j];
  14227. }
  14228. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14229. tensor->src[j] = args[j];
  14230. }
  14231. result.nodes[i] = tensor;
  14232. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14233. }
  14234. }
  14235. }
  14236. return result;
  14237. }
  14238. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14239. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14240. GGML_PRINT("=== GRAPH ===\n");
  14241. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14242. for (int i = 0; i < cgraph->n_nodes; i++) {
  14243. struct ggml_tensor * node = cgraph->nodes[i];
  14244. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14245. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14246. i,
  14247. node->ne[0], node->ne[1], node->ne[2],
  14248. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14249. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14250. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14251. (double) node->perf_time_us / 1000.0,
  14252. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14253. }
  14254. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14255. for (int i = 0; i < cgraph->n_leafs; i++) {
  14256. struct ggml_tensor * node = cgraph->leafs[i];
  14257. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14258. i,
  14259. node->ne[0], node->ne[1],
  14260. ggml_op_name(node->op));
  14261. }
  14262. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14263. if (perf_total_per_op_us[i] == 0) {
  14264. continue;
  14265. }
  14266. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14267. }
  14268. GGML_PRINT("========================================\n");
  14269. }
  14270. // check if node is part of the graph
  14271. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14272. if (cgraph == NULL) {
  14273. return true;
  14274. }
  14275. for (int i = 0; i < cgraph->n_nodes; i++) {
  14276. if (cgraph->nodes[i] == node) {
  14277. return true;
  14278. }
  14279. }
  14280. return false;
  14281. }
  14282. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14283. for (int i = 0; i < cgraph->n_nodes; i++) {
  14284. struct ggml_tensor * parent = cgraph->nodes[i];
  14285. if (parent->grad == node) {
  14286. return parent;
  14287. }
  14288. }
  14289. return NULL;
  14290. }
  14291. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14292. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14293. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14294. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14295. gparent0 ? (void *) gparent0 : (void *) parent,
  14296. gparent0 ? "g" : "x",
  14297. gparent ? (void *) gparent : (void *) node,
  14298. gparent ? "g" : "x",
  14299. gparent ? "empty" : "vee",
  14300. gparent ? "dashed" : "solid",
  14301. label);
  14302. }
  14303. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14304. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14305. (void *) parent, "x",
  14306. (void *) node, "x",
  14307. label);
  14308. }
  14309. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14310. char color[16];
  14311. FILE * fp = fopen(filename, "w");
  14312. GGML_ASSERT(fp);
  14313. fprintf(fp, "digraph G {\n");
  14314. fprintf(fp, " newrank = true;\n");
  14315. fprintf(fp, " rankdir = LR;\n");
  14316. for (int i = 0; i < gb->n_nodes; i++) {
  14317. struct ggml_tensor * node = gb->nodes[i];
  14318. if (ggml_graph_get_parent(gb, node) != NULL) {
  14319. continue;
  14320. }
  14321. if (node->is_param) {
  14322. snprintf(color, sizeof(color), "yellow");
  14323. } else if (node->grad) {
  14324. if (ggml_graph_find(gf, node)) {
  14325. snprintf(color, sizeof(color), "green");
  14326. } else {
  14327. snprintf(color, sizeof(color), "lightblue");
  14328. }
  14329. } else {
  14330. snprintf(color, sizeof(color), "white");
  14331. }
  14332. fprintf(fp, " \"%p\" [ "
  14333. "style = filled; fillcolor = %s; shape = record; "
  14334. "label=\"",
  14335. (void *) node, color);
  14336. if (strlen(node->name) > 0) {
  14337. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14338. } else {
  14339. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14340. }
  14341. if (node->n_dims == 2) {
  14342. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14343. } else {
  14344. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14345. }
  14346. if (node->grad) {
  14347. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14348. } else {
  14349. fprintf(fp, "\"; ]\n");
  14350. }
  14351. }
  14352. for (int i = 0; i < gb->n_leafs; i++) {
  14353. struct ggml_tensor * node = gb->leafs[i];
  14354. snprintf(color, sizeof(color), "pink");
  14355. fprintf(fp, " \"%p\" [ "
  14356. "style = filled; fillcolor = %s; shape = record; "
  14357. "label=\"<x>",
  14358. (void *) node, color);
  14359. if (strlen(node->name) > 0) {
  14360. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14361. } else {
  14362. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14363. }
  14364. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14365. if (ggml_nelements(node) < 5) {
  14366. fprintf(fp, " | (");
  14367. for (int j = 0; j < ggml_nelements(node); j++) {
  14368. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14369. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14370. }
  14371. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14372. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14373. }
  14374. else {
  14375. fprintf(fp, "#");
  14376. }
  14377. if (j < ggml_nelements(node) - 1) {
  14378. fprintf(fp, ", ");
  14379. }
  14380. }
  14381. fprintf(fp, ")");
  14382. }
  14383. fprintf(fp, "\"; ]\n");
  14384. }
  14385. for (int i = 0; i < gb->n_nodes; i++) {
  14386. struct ggml_tensor * node = gb->nodes[i];
  14387. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14388. if (node->src[j]) {
  14389. char label[16];
  14390. snprintf(label, sizeof(label), "src %d", j);
  14391. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14392. }
  14393. }
  14394. }
  14395. for (int i = 0; i < gb->n_leafs; i++) {
  14396. struct ggml_tensor * node = gb->leafs[i];
  14397. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14398. if (node->src[j]) {
  14399. char label[16];
  14400. snprintf(label, sizeof(label), "src %d", j);
  14401. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14402. }
  14403. }
  14404. }
  14405. fprintf(fp, "}\n");
  14406. fclose(fp);
  14407. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14408. }
  14409. ////////////////////////////////////////////////////////////////////////////////
  14410. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14411. int i = 0;
  14412. for (int p = 0; p < np; ++p) {
  14413. const int64_t ne = ggml_nelements(ps[p]) ;
  14414. // TODO: add function to set tensor from array
  14415. for (int64_t j = 0; j < ne; ++j) {
  14416. ggml_set_f32_1d(ps[p], j, x[i++]);
  14417. }
  14418. }
  14419. }
  14420. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14421. int i = 0;
  14422. for (int p = 0; p < np; ++p) {
  14423. const int64_t ne = ggml_nelements(ps[p]) ;
  14424. // TODO: add function to get all elements at once
  14425. for (int64_t j = 0; j < ne; ++j) {
  14426. x[i++] = ggml_get_f32_1d(ps[p], j);
  14427. }
  14428. }
  14429. }
  14430. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14431. int i = 0;
  14432. for (int p = 0; p < np; ++p) {
  14433. const int64_t ne = ggml_nelements(ps[p]) ;
  14434. // TODO: add function to get all elements at once
  14435. for (int64_t j = 0; j < ne; ++j) {
  14436. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14437. }
  14438. }
  14439. }
  14440. //
  14441. // ADAM
  14442. //
  14443. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14444. //
  14445. static enum ggml_opt_result ggml_opt_adam(
  14446. struct ggml_context * ctx,
  14447. struct ggml_opt_context * opt,
  14448. struct ggml_opt_params params,
  14449. struct ggml_tensor * f,
  14450. struct ggml_cgraph * gf,
  14451. struct ggml_cgraph * gb) {
  14452. GGML_ASSERT(ggml_is_scalar(f));
  14453. // these will store the parameters we want to optimize
  14454. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14455. int np = 0;
  14456. int nx = 0;
  14457. for (int i = 0; i < gf->n_nodes; ++i) {
  14458. if (gf->nodes[i]->is_param) {
  14459. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14460. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14461. ps[np++] = gf->nodes[i];
  14462. nx += ggml_nelements(gf->nodes[i]);
  14463. }
  14464. }
  14465. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14466. int iter = opt->iter;
  14467. ggml_opt_init(opt->ctx, opt, params, nx);
  14468. opt->iter = iter;
  14469. }
  14470. // constants
  14471. const float sched = params.adam.sched;
  14472. const float decay = params.adam.decay * sched;
  14473. const float alpha = params.adam.alpha * sched;
  14474. const float beta1 = params.adam.beta1;
  14475. const float beta2 = params.adam.beta2;
  14476. const float eps = params.adam.eps;
  14477. float * x = opt->adam.x->data; // view of the parameters
  14478. float * g1 = opt->adam.g1->data; // gradient
  14479. float * g2 = opt->adam.g2->data; // gradient squared
  14480. float * m = opt->adam.m->data; // first moment
  14481. float * v = opt->adam.v->data; // second moment
  14482. float * mh = opt->adam.mh->data; // first moment hat
  14483. float * vh = opt->adam.vh->data; // second moment hat
  14484. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14485. // update view
  14486. ggml_opt_get_params(np, ps, x);
  14487. // compute the function value
  14488. ggml_graph_reset (gf);
  14489. ggml_set_f32 (f->grad, 1.0f);
  14490. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14491. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14492. opt->adam.fx_best = opt->adam.fx_prev;
  14493. if (pf) {
  14494. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14495. }
  14496. // initialize
  14497. if (opt->just_initialized) {
  14498. opt->adam.n_no_improvement = 0;
  14499. opt->just_initialized = false;
  14500. }
  14501. float * fx_best = &opt->adam.fx_best;
  14502. float * fx_prev = &opt->adam.fx_prev;
  14503. int * n_no_improvement = &opt->adam.n_no_improvement;
  14504. int iter0 = opt->iter;
  14505. // run the optimizer
  14506. for (int t = 0; t < params.adam.n_iter; ++t) {
  14507. opt->iter = iter0 + t + 1;
  14508. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14509. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14510. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14511. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14512. for (int i = 0; i < np; ++i) {
  14513. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14514. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14515. }
  14516. const int64_t t_start_wall = ggml_time_us();
  14517. const int64_t t_start_cpu = ggml_cycles();
  14518. UNUSED(t_start_wall);
  14519. UNUSED(t_start_cpu);
  14520. {
  14521. // update the gradient
  14522. ggml_opt_get_grad(np, ps, g1);
  14523. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14524. ggml_vec_scale_f32(nx, m, beta1);
  14525. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14526. // g2 = g1^2
  14527. ggml_vec_sqr_f32 (nx, g2, g1);
  14528. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14529. ggml_vec_scale_f32(nx, v, beta2);
  14530. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14531. // m^hat = m_t / (1 - beta1^t)
  14532. // v^hat = v_t / (1 - beta2^t)
  14533. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14534. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14535. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14536. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14537. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14538. ggml_vec_cpy_f32 (nx, mh, m);
  14539. ggml_vec_cpy_f32 (nx, vh, v);
  14540. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14541. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14542. ggml_vec_sqrt_f32 (nx, vh, vh);
  14543. ggml_vec_acc1_f32 (nx, vh, eps);
  14544. ggml_vec_div_f32 (nx, mh, mh, vh);
  14545. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14546. ggml_vec_sub_f32 (nx, x, x, mh);
  14547. // update the parameters
  14548. ggml_opt_set_params(np, ps, x);
  14549. }
  14550. ggml_graph_reset (gf);
  14551. ggml_set_f32 (f->grad, 1.0f);
  14552. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14553. const float fx = ggml_get_f32_1d(f, 0);
  14554. // check convergence
  14555. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14556. GGML_PRINT_DEBUG("converged\n");
  14557. return GGML_OPT_OK;
  14558. }
  14559. // delta-based convergence test
  14560. if (pf != NULL) {
  14561. // need at least params.past iterations to start checking for convergence
  14562. if (params.past <= iter0 + t) {
  14563. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14564. if (fabsf(rate) < params.delta) {
  14565. return GGML_OPT_OK;
  14566. }
  14567. }
  14568. pf[(iter0 + t)%params.past] = fx;
  14569. }
  14570. // check for improvement
  14571. if (params.max_no_improvement > 0) {
  14572. if (fx_best[0] > fx) {
  14573. fx_best[0] = fx;
  14574. n_no_improvement[0] = 0;
  14575. } else {
  14576. ++n_no_improvement[0];
  14577. if (n_no_improvement[0] >= params.max_no_improvement) {
  14578. return GGML_OPT_OK;
  14579. }
  14580. }
  14581. }
  14582. fx_prev[0] = fx;
  14583. {
  14584. const int64_t t_end_cpu = ggml_cycles();
  14585. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14586. UNUSED(t_end_cpu);
  14587. const int64_t t_end_wall = ggml_time_us();
  14588. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14589. UNUSED(t_end_wall);
  14590. }
  14591. }
  14592. return GGML_OPT_DID_NOT_CONVERGE;
  14593. }
  14594. //
  14595. // L-BFGS
  14596. //
  14597. // the L-BFGS implementation below is based on the following implementation:
  14598. //
  14599. // https://github.com/chokkan/liblbfgs
  14600. //
  14601. struct ggml_lbfgs_iteration_data {
  14602. float alpha;
  14603. float ys;
  14604. float * s;
  14605. float * y;
  14606. };
  14607. static enum ggml_opt_result linesearch_backtracking(
  14608. struct ggml_context * ctx,
  14609. const struct ggml_opt_params * params,
  14610. int nx,
  14611. float * x,
  14612. float * fx,
  14613. float * g,
  14614. float * d,
  14615. float * step,
  14616. const float * xp,
  14617. struct ggml_tensor * f,
  14618. struct ggml_cgraph * gf,
  14619. struct ggml_cgraph * gb,
  14620. const int np,
  14621. struct ggml_tensor * ps[]) {
  14622. int count = 0;
  14623. float width = 0.0f;
  14624. float dg = 0.0f;
  14625. float finit = 0.0f;
  14626. float dginit = 0.0f;
  14627. float dgtest = 0.0f;
  14628. const float dec = 0.5f;
  14629. const float inc = 2.1f;
  14630. if (*step <= 0.f) {
  14631. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14632. }
  14633. // compute the initial gradient in the search direction
  14634. ggml_vec_dot_f32(nx, &dginit, g, d);
  14635. // make sure that d points to a descent direction
  14636. if (0 < dginit) {
  14637. return GGML_LINESEARCH_FAIL;
  14638. }
  14639. // initialize local variables
  14640. finit = *fx;
  14641. dgtest = params->lbfgs.ftol*dginit;
  14642. while (true) {
  14643. ggml_vec_cpy_f32(nx, x, xp);
  14644. ggml_vec_mad_f32(nx, x, d, *step);
  14645. // evaluate the function and gradient values
  14646. {
  14647. ggml_opt_set_params(np, ps, x);
  14648. ggml_graph_reset (gf);
  14649. ggml_set_f32 (f->grad, 1.0f);
  14650. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14651. ggml_opt_get_grad(np, ps, g);
  14652. *fx = ggml_get_f32_1d(f, 0);
  14653. }
  14654. ++count;
  14655. if (*fx > finit + (*step)*dgtest) {
  14656. width = dec;
  14657. } else {
  14658. // Armijo condition is satisfied
  14659. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14660. return count;
  14661. }
  14662. ggml_vec_dot_f32(nx, &dg, g, d);
  14663. // check the Wolfe condition
  14664. if (dg < params->lbfgs.wolfe * dginit) {
  14665. width = inc;
  14666. } else {
  14667. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14668. // regular Wolfe conditions
  14669. return count;
  14670. }
  14671. if(dg > -params->lbfgs.wolfe*dginit) {
  14672. width = dec;
  14673. } else {
  14674. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14675. return count;
  14676. }
  14677. return count;
  14678. }
  14679. }
  14680. if (*step < params->lbfgs.min_step) {
  14681. return GGML_LINESEARCH_MINIMUM_STEP;
  14682. }
  14683. if (*step > params->lbfgs.max_step) {
  14684. return GGML_LINESEARCH_MAXIMUM_STEP;
  14685. }
  14686. if (params->lbfgs.max_linesearch <= count) {
  14687. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14688. }
  14689. (*step) *= width;
  14690. }
  14691. return GGML_LINESEARCH_FAIL;
  14692. }
  14693. static enum ggml_opt_result ggml_opt_lbfgs(
  14694. struct ggml_context * ctx,
  14695. struct ggml_opt_context * opt,
  14696. struct ggml_opt_params params,
  14697. struct ggml_tensor * f,
  14698. struct ggml_cgraph * gf,
  14699. struct ggml_cgraph * gb) {
  14700. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14701. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14702. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14703. return GGML_OPT_INVALID_WOLFE;
  14704. }
  14705. }
  14706. const int m = params.lbfgs.m;
  14707. // these will store the parameters we want to optimize
  14708. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14709. int np = 0;
  14710. int nx = 0;
  14711. for (int i = 0; i < gf->n_nodes; ++i) {
  14712. if (gf->nodes[i]->is_param) {
  14713. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14714. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14715. ps[np++] = gf->nodes[i];
  14716. nx += ggml_nelements(gf->nodes[i]);
  14717. }
  14718. }
  14719. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14720. int iter = opt->iter;
  14721. ggml_opt_init(ctx, opt, params, nx);
  14722. opt->iter = iter;
  14723. }
  14724. float * x = opt->lbfgs.x->data; // current parameters
  14725. float * xp = opt->lbfgs.xp->data; // previous parameters
  14726. float * g = opt->lbfgs.g->data; // current gradient
  14727. float * gp = opt->lbfgs.gp->data; // previous gradient
  14728. float * d = opt->lbfgs.d->data; // search direction
  14729. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14730. float fx = 0.0f; // cost function value
  14731. float xnorm = 0.0f; // ||x||
  14732. float gnorm = 0.0f; // ||g||
  14733. // initialize x from the graph nodes
  14734. ggml_opt_get_params(np, ps, x);
  14735. // the L-BFGS memory
  14736. float * lm_alpha = opt->lbfgs.lmal->data;
  14737. float * lm_ys = opt->lbfgs.lmys->data;
  14738. float * lm_s = opt->lbfgs.lms->data;
  14739. float * lm_y = opt->lbfgs.lmy->data;
  14740. // evaluate the function value and its gradient
  14741. {
  14742. ggml_opt_set_params(np, ps, x);
  14743. ggml_graph_reset (gf);
  14744. ggml_set_f32 (f->grad, 1.0f);
  14745. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14746. ggml_opt_get_grad(np, ps, g);
  14747. fx = ggml_get_f32_1d(f, 0);
  14748. }
  14749. // search direction = -gradient
  14750. ggml_vec_neg_f32(nx, d, g);
  14751. // ||x||, ||g||
  14752. ggml_vec_norm_f32(nx, &xnorm, x);
  14753. ggml_vec_norm_f32(nx, &gnorm, g);
  14754. if (xnorm < 1.0f) {
  14755. xnorm = 1.0f;
  14756. }
  14757. // already optimized
  14758. if (gnorm/xnorm <= params.lbfgs.eps) {
  14759. return GGML_OPT_OK;
  14760. }
  14761. if (opt->just_initialized) {
  14762. if (pf) {
  14763. pf[0] = fx;
  14764. }
  14765. opt->lbfgs.fx_best = fx;
  14766. // initial step
  14767. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14768. opt->lbfgs.j = 0;
  14769. opt->lbfgs.k = 1;
  14770. opt->lbfgs.end = 0;
  14771. opt->lbfgs.n_no_improvement = 0;
  14772. opt->just_initialized = false;
  14773. }
  14774. float * fx_best = &opt->lbfgs.fx_best;
  14775. float * step = &opt->lbfgs.step;
  14776. int * j = &opt->lbfgs.j;
  14777. int * k = &opt->lbfgs.k;
  14778. int * end = &opt->lbfgs.end;
  14779. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14780. int ls = 0;
  14781. int bound = 0;
  14782. float ys = 0.0f;
  14783. float yy = 0.0f;
  14784. float beta = 0.0f;
  14785. int it = 0;
  14786. while (true) {
  14787. // store the current position and gradient vectors
  14788. ggml_vec_cpy_f32(nx, xp, x);
  14789. ggml_vec_cpy_f32(nx, gp, g);
  14790. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14791. if (ls < 0) {
  14792. // linesearch failed - go back to the previous point and return
  14793. ggml_vec_cpy_f32(nx, x, xp);
  14794. ggml_vec_cpy_f32(nx, g, gp);
  14795. return ls;
  14796. }
  14797. ggml_vec_norm_f32(nx, &xnorm, x);
  14798. ggml_vec_norm_f32(nx, &gnorm, g);
  14799. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14800. if (xnorm < 1.0f) {
  14801. xnorm = 1.0f;
  14802. }
  14803. if (gnorm/xnorm <= params.lbfgs.eps) {
  14804. // converged
  14805. return GGML_OPT_OK;
  14806. }
  14807. // delta-based convergence test
  14808. if (pf != NULL) {
  14809. // need at least params.past iterations to start checking for convergence
  14810. if (params.past <= k[0]) {
  14811. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14812. if (fabsf(rate) < params.delta) {
  14813. return GGML_OPT_OK;
  14814. }
  14815. }
  14816. pf[k[0]%params.past] = fx;
  14817. }
  14818. // check for improvement
  14819. if (params.max_no_improvement > 0) {
  14820. if (fx < fx_best[0]) {
  14821. fx_best[0] = fx;
  14822. n_no_improvement[0] = 0;
  14823. } else {
  14824. n_no_improvement[0]++;
  14825. if (n_no_improvement[0] >= params.max_no_improvement) {
  14826. return GGML_OPT_OK;
  14827. }
  14828. }
  14829. }
  14830. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14831. // reached the maximum number of iterations
  14832. return GGML_OPT_DID_NOT_CONVERGE;
  14833. }
  14834. // update vectors s and y:
  14835. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14836. // y_{k+1} = g_{k+1} - g_{k}.
  14837. //
  14838. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14839. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14840. // compute scalars ys and yy:
  14841. // ys = y^t \cdot s -> 1 / \rho.
  14842. // yy = y^t \cdot y.
  14843. //
  14844. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14845. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14846. lm_ys[end[0]] = ys;
  14847. // find new search direction
  14848. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14849. bound = (m <= k[0]) ? m : k[0];
  14850. k[0]++;
  14851. it++;
  14852. end[0] = (end[0] + 1)%m;
  14853. // initialize search direction with -g
  14854. ggml_vec_neg_f32(nx, d, g);
  14855. j[0] = end[0];
  14856. for (int i = 0; i < bound; ++i) {
  14857. j[0] = (j[0] + m - 1) % m;
  14858. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14859. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14860. lm_alpha[j[0]] /= lm_ys[j[0]];
  14861. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14862. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14863. }
  14864. ggml_vec_scale_f32(nx, d, ys/yy);
  14865. for (int i = 0; i < bound; ++i) {
  14866. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14867. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14868. beta /= lm_ys[j[0]];
  14869. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14870. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14871. j[0] = (j[0] + 1)%m;
  14872. }
  14873. step[0] = 1.0;
  14874. }
  14875. return GGML_OPT_DID_NOT_CONVERGE;
  14876. }
  14877. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14878. struct ggml_opt_params result;
  14879. switch (type) {
  14880. case GGML_OPT_ADAM:
  14881. {
  14882. result = (struct ggml_opt_params) {
  14883. .type = GGML_OPT_ADAM,
  14884. .n_threads = 1,
  14885. .past = 0,
  14886. .delta = 1e-5f,
  14887. .max_no_improvement = 100,
  14888. .print_forward_graph = true,
  14889. .print_backward_graph = true,
  14890. .adam = {
  14891. .n_iter = 10000,
  14892. .sched = 1.000f,
  14893. .decay = 0.001f,
  14894. .alpha = 0.001f,
  14895. .beta1 = 0.9f,
  14896. .beta2 = 0.999f,
  14897. .eps = 1e-8f,
  14898. .eps_f = 1e-5f,
  14899. .eps_g = 1e-3f,
  14900. },
  14901. };
  14902. } break;
  14903. case GGML_OPT_LBFGS:
  14904. {
  14905. result = (struct ggml_opt_params) {
  14906. .type = GGML_OPT_LBFGS,
  14907. .n_threads = 1,
  14908. .past = 0,
  14909. .delta = 1e-5f,
  14910. .max_no_improvement = 0,
  14911. .print_forward_graph = true,
  14912. .print_backward_graph = true,
  14913. .lbfgs = {
  14914. .m = 6,
  14915. .n_iter = 100,
  14916. .max_linesearch = 20,
  14917. .eps = 1e-5f,
  14918. .ftol = 1e-4f,
  14919. .wolfe = 0.9f,
  14920. .min_step = 1e-20f,
  14921. .max_step = 1e+20f,
  14922. .linesearch = GGML_LINESEARCH_DEFAULT,
  14923. },
  14924. };
  14925. } break;
  14926. }
  14927. return result;
  14928. }
  14929. GGML_API void ggml_opt_init(
  14930. struct ggml_context * ctx,
  14931. struct ggml_opt_context * opt,
  14932. struct ggml_opt_params params,
  14933. int64_t nx) {
  14934. opt->ctx = ctx;
  14935. opt->params = params;
  14936. opt->iter = 0;
  14937. opt->nx = nx;
  14938. opt->just_initialized = true;
  14939. switch (opt->params.type) {
  14940. case GGML_OPT_ADAM:
  14941. {
  14942. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14943. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14944. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14945. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14946. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14947. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14948. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14949. opt->adam.pf = params.past > 0
  14950. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14951. : NULL;
  14952. ggml_set_zero(opt->adam.x);
  14953. ggml_set_zero(opt->adam.g1);
  14954. ggml_set_zero(opt->adam.g2);
  14955. ggml_set_zero(opt->adam.m);
  14956. ggml_set_zero(opt->adam.v);
  14957. ggml_set_zero(opt->adam.mh);
  14958. ggml_set_zero(opt->adam.vh);
  14959. if (opt->adam.pf) {
  14960. ggml_set_zero(opt->adam.pf);
  14961. }
  14962. } break;
  14963. case GGML_OPT_LBFGS:
  14964. {
  14965. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14966. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14967. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14968. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14969. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14970. opt->lbfgs.pf = params.past > 0
  14971. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14972. : NULL;
  14973. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14974. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14975. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14976. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14977. ggml_set_zero(opt->lbfgs.x);
  14978. ggml_set_zero(opt->lbfgs.xp);
  14979. ggml_set_zero(opt->lbfgs.g);
  14980. ggml_set_zero(opt->lbfgs.gp);
  14981. ggml_set_zero(opt->lbfgs.d);
  14982. if (opt->lbfgs.pf) {
  14983. ggml_set_zero(opt->lbfgs.pf);
  14984. }
  14985. ggml_set_zero(opt->lbfgs.lmal);
  14986. ggml_set_zero(opt->lbfgs.lmys);
  14987. ggml_set_zero(opt->lbfgs.lms);
  14988. ggml_set_zero(opt->lbfgs.lmy);
  14989. } break;
  14990. }
  14991. }
  14992. enum ggml_opt_result ggml_opt(
  14993. struct ggml_context * ctx,
  14994. struct ggml_opt_params params,
  14995. struct ggml_tensor * f) {
  14996. bool free_ctx = false;
  14997. if (ctx == NULL) {
  14998. struct ggml_init_params params_ctx = {
  14999. .mem_size = 16*1024*1024,
  15000. .mem_buffer = NULL,
  15001. .no_alloc = false,
  15002. };
  15003. ctx = ggml_init(params_ctx);
  15004. if (ctx == NULL) {
  15005. return GGML_OPT_NO_CONTEXT;
  15006. }
  15007. free_ctx = true;
  15008. }
  15009. enum ggml_opt_result result = GGML_OPT_OK;
  15010. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15011. ggml_opt_init(ctx, opt, params, 0);
  15012. result = ggml_opt_resume(ctx, opt, f);
  15013. if (free_ctx) {
  15014. ggml_free(ctx);
  15015. }
  15016. return result;
  15017. }
  15018. enum ggml_opt_result ggml_opt_resume(
  15019. struct ggml_context * ctx,
  15020. struct ggml_opt_context * opt,
  15021. struct ggml_tensor * f) {
  15022. // build forward + backward compute graphs
  15023. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15024. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15025. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15026. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15027. *gf = ggml_build_forward (f);
  15028. *gb = ggml_build_backward(ctx, gf, true);
  15029. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15030. }
  15031. enum ggml_opt_result ggml_opt_resume_g(
  15032. struct ggml_context * ctx,
  15033. struct ggml_opt_context * opt,
  15034. struct ggml_tensor * f,
  15035. struct ggml_cgraph * gf,
  15036. struct ggml_cgraph * gb) {
  15037. // build forward + backward compute graphs
  15038. enum ggml_opt_result result = GGML_OPT_OK;
  15039. switch (opt->params.type) {
  15040. case GGML_OPT_ADAM:
  15041. {
  15042. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15043. } break;
  15044. case GGML_OPT_LBFGS:
  15045. {
  15046. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15047. } break;
  15048. }
  15049. if (opt->params.print_forward_graph) {
  15050. ggml_graph_print (gf);
  15051. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15052. }
  15053. if (opt->params.print_backward_graph) {
  15054. ggml_graph_print (gb);
  15055. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15056. }
  15057. return result;
  15058. }
  15059. ////////////////////////////////////////////////////////////////////////////////
  15060. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15061. assert(k % QK4_0 == 0);
  15062. const int nb = k / QK4_0;
  15063. for (int b = 0; b < n; b += k) {
  15064. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15065. quantize_row_q4_0_reference(src + b, y, k);
  15066. for (int i = 0; i < nb; i++) {
  15067. for (int j = 0; j < QK4_0; j += 2) {
  15068. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15069. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15070. hist[vi0]++;
  15071. hist[vi1]++;
  15072. }
  15073. }
  15074. }
  15075. return (n/QK4_0*sizeof(block_q4_0));
  15076. }
  15077. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15078. assert(k % QK4_1 == 0);
  15079. const int nb = k / QK4_1;
  15080. for (int b = 0; b < n; b += k) {
  15081. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15082. quantize_row_q4_1_reference(src + b, y, k);
  15083. for (int i = 0; i < nb; i++) {
  15084. for (int j = 0; j < QK4_1; j += 2) {
  15085. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15086. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15087. hist[vi0]++;
  15088. hist[vi1]++;
  15089. }
  15090. }
  15091. }
  15092. return (n/QK4_1*sizeof(block_q4_1));
  15093. }
  15094. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15095. assert(k % QK5_0 == 0);
  15096. const int nb = k / QK5_0;
  15097. for (int b = 0; b < n; b += k) {
  15098. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15099. quantize_row_q5_0_reference(src + b, y, k);
  15100. for (int i = 0; i < nb; i++) {
  15101. uint32_t qh;
  15102. memcpy(&qh, &y[i].qh, sizeof(qh));
  15103. for (int j = 0; j < QK5_0; j += 2) {
  15104. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15105. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15106. // cast to 16 bins
  15107. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15108. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15109. hist[vi0]++;
  15110. hist[vi1]++;
  15111. }
  15112. }
  15113. }
  15114. return (n/QK5_0*sizeof(block_q5_0));
  15115. }
  15116. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15117. assert(k % QK5_1 == 0);
  15118. const int nb = k / QK5_1;
  15119. for (int b = 0; b < n; b += k) {
  15120. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15121. quantize_row_q5_1_reference(src + b, y, k);
  15122. for (int i = 0; i < nb; i++) {
  15123. uint32_t qh;
  15124. memcpy(&qh, &y[i].qh, sizeof(qh));
  15125. for (int j = 0; j < QK5_1; j += 2) {
  15126. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15127. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15128. // cast to 16 bins
  15129. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15130. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15131. hist[vi0]++;
  15132. hist[vi1]++;
  15133. }
  15134. }
  15135. }
  15136. return (n/QK5_1*sizeof(block_q5_1));
  15137. }
  15138. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15139. assert(k % QK8_0 == 0);
  15140. const int nb = k / QK8_0;
  15141. for (int b = 0; b < n; b += k) {
  15142. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15143. quantize_row_q8_0_reference(src + b, y, k);
  15144. for (int i = 0; i < nb; i++) {
  15145. for (int j = 0; j < QK8_0; ++j) {
  15146. const int8_t vi = y[i].qs[j];
  15147. hist[vi/16 + 8]++;
  15148. }
  15149. }
  15150. }
  15151. return (n/QK8_0*sizeof(block_q8_0));
  15152. }
  15153. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15154. size_t result = 0;
  15155. switch (type) {
  15156. case GGML_TYPE_Q4_0:
  15157. {
  15158. GGML_ASSERT(start % QK4_0 == 0);
  15159. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15160. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15161. } break;
  15162. case GGML_TYPE_Q4_1:
  15163. {
  15164. GGML_ASSERT(start % QK4_1 == 0);
  15165. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15166. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15167. } break;
  15168. case GGML_TYPE_Q5_0:
  15169. {
  15170. GGML_ASSERT(start % QK5_0 == 0);
  15171. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15172. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15173. } break;
  15174. case GGML_TYPE_Q5_1:
  15175. {
  15176. GGML_ASSERT(start % QK5_1 == 0);
  15177. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15178. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15179. } break;
  15180. case GGML_TYPE_Q8_0:
  15181. {
  15182. GGML_ASSERT(start % QK8_0 == 0);
  15183. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15184. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15185. } break;
  15186. #ifdef GGML_USE_K_QUANTS
  15187. case GGML_TYPE_Q2_K:
  15188. {
  15189. GGML_ASSERT(start % QK_K == 0);
  15190. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15191. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15192. } break;
  15193. case GGML_TYPE_Q3_K:
  15194. {
  15195. GGML_ASSERT(start % QK_K == 0);
  15196. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15197. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15198. } break;
  15199. case GGML_TYPE_Q4_K:
  15200. {
  15201. GGML_ASSERT(start % QK_K == 0);
  15202. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15203. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15204. } break;
  15205. case GGML_TYPE_Q5_K:
  15206. {
  15207. GGML_ASSERT(start % QK_K == 0);
  15208. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15209. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15210. } break;
  15211. case GGML_TYPE_Q6_K:
  15212. {
  15213. GGML_ASSERT(start % QK_K == 0);
  15214. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15215. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15216. } break;
  15217. #endif
  15218. case GGML_TYPE_F16:
  15219. {
  15220. int elemsize = sizeof(ggml_fp16_t);
  15221. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15222. result = n * elemsize;
  15223. } break;
  15224. case GGML_TYPE_F32:
  15225. {
  15226. int elemsize = sizeof(float);
  15227. result = n * elemsize;
  15228. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15229. } break;
  15230. default:
  15231. assert(false);
  15232. }
  15233. return result;
  15234. }
  15235. ////////////////////////////////////////////////////////////////////////////////
  15236. struct gguf_str {
  15237. uint32_t n;
  15238. char * data;
  15239. };
  15240. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15241. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15242. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15243. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15244. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15245. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15246. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15247. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15248. [GGUF_TYPE_BOOL] = sizeof(bool),
  15249. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15250. [GGUF_TYPE_ARRAY] = 0, // undefined
  15251. };
  15252. static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10");
  15253. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15254. [GGUF_TYPE_UINT8] = "u8",
  15255. [GGUF_TYPE_INT8] = "i8",
  15256. [GGUF_TYPE_UINT16] = "u16",
  15257. [GGUF_TYPE_INT16] = "i16",
  15258. [GGUF_TYPE_UINT32] = "u32",
  15259. [GGUF_TYPE_INT32] = "i32",
  15260. [GGUF_TYPE_FLOAT32] = "f32",
  15261. [GGUF_TYPE_BOOL] = "bool",
  15262. [GGUF_TYPE_STRING] = "str",
  15263. [GGUF_TYPE_ARRAY] = "arr",
  15264. };
  15265. static_assert(GGUF_TYPE_COUNT == 10, "GGUF_TYPE_COUNT != 10");
  15266. union gguf_value {
  15267. uint8_t uint8;
  15268. int8_t int8;
  15269. uint16_t uint16;
  15270. int16_t int16;
  15271. uint32_t uint32;
  15272. int32_t int32;
  15273. float float32;
  15274. bool bool_;
  15275. struct gguf_str str;
  15276. struct {
  15277. enum gguf_type type;
  15278. uint32_t n;
  15279. void * data;
  15280. } arr;
  15281. };
  15282. struct gguf_kv {
  15283. struct gguf_str key;
  15284. uint32_t n_bytes; // TODO: is this actually needed?
  15285. enum gguf_type type;
  15286. union gguf_value value;
  15287. };
  15288. struct gguf_header {
  15289. uint32_t magic;
  15290. uint32_t version;
  15291. uint32_t n_tensors;
  15292. uint32_t n_kv;
  15293. };
  15294. struct gguf_tensor_info {
  15295. struct gguf_str name;
  15296. uint32_t n_dims;
  15297. uint32_t ne[GGML_MAX_DIMS];
  15298. enum ggml_type type;
  15299. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15300. // for writing API
  15301. const void * data;
  15302. size_t size;
  15303. };
  15304. struct gguf_context {
  15305. struct gguf_header header;
  15306. struct gguf_kv * kv;
  15307. struct gguf_tensor_info * infos;
  15308. size_t alignment;
  15309. size_t offset; // offset of `data` from beginning of file
  15310. size_t size; // size of `data` in bytes
  15311. //uint8_t * padding;
  15312. void * data;
  15313. };
  15314. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15315. const size_t n = fread(dst, 1, size, file);
  15316. *offset += n;
  15317. return n == size;
  15318. }
  15319. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15320. p->n = 0;
  15321. p->data = NULL;
  15322. bool ok = true;
  15323. // TODO: how to avoid mallocs for strings?
  15324. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15325. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15326. return ok;
  15327. }
  15328. struct gguf_context * gguf_init_empty(void) {
  15329. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15330. ctx->header.magic = GGUF_MAGIC;
  15331. ctx->header.version = GGUF_VERSION;
  15332. ctx->header.n_tensors = 0;
  15333. ctx->header.n_kv = 0;
  15334. ctx->kv = NULL;
  15335. ctx->infos = NULL;
  15336. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15337. ctx->offset = 0;
  15338. ctx->size = 0;
  15339. ctx->data = NULL;
  15340. return ctx;
  15341. }
  15342. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15343. FILE * file = fopen(fname, "rb");
  15344. if (!file) {
  15345. return NULL;
  15346. }
  15347. // offset from start of file
  15348. size_t offset = 0;
  15349. uint32_t magic = 0;
  15350. // check the magic before making allocations
  15351. {
  15352. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15353. if (magic != GGUF_MAGIC) {
  15354. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  15355. fclose(file);
  15356. return NULL;
  15357. }
  15358. }
  15359. bool ok = true;
  15360. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15361. // read the header
  15362. {
  15363. ctx->header.magic = magic;
  15364. ctx->kv = NULL;
  15365. ctx->infos = NULL;
  15366. ctx->data = NULL;
  15367. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15368. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15369. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15370. if (!ok) {
  15371. fprintf(stderr, "%s: failed to read header\n", __func__);
  15372. fclose(file);
  15373. gguf_free(ctx);
  15374. return NULL;
  15375. }
  15376. }
  15377. // read the kv pairs
  15378. {
  15379. ctx->kv = GGML_ALIGNED_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  15380. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15381. struct gguf_kv * kv = &ctx->kv[i];
  15382. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15383. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15384. //ok = ok && gguf_fread_el (file, &kv->n_bytes, sizeof(kv->n_bytes), &offset);
  15385. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15386. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15387. switch (kv->type) {
  15388. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15389. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15390. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15391. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15392. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15393. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15394. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15395. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15396. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15397. case GGUF_TYPE_ARRAY:
  15398. {
  15399. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15400. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15401. switch (kv->value.arr.type) {
  15402. case GGUF_TYPE_UINT8:
  15403. case GGUF_TYPE_INT8:
  15404. case GGUF_TYPE_UINT16:
  15405. case GGUF_TYPE_INT16:
  15406. case GGUF_TYPE_UINT32:
  15407. case GGUF_TYPE_INT32:
  15408. case GGUF_TYPE_FLOAT32:
  15409. case GGUF_TYPE_BOOL:
  15410. {
  15411. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15412. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15413. } break;
  15414. case GGUF_TYPE_STRING:
  15415. {
  15416. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15417. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15418. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15419. }
  15420. } break;
  15421. case GGUF_TYPE_ARRAY:
  15422. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15423. };
  15424. } break;
  15425. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15426. };
  15427. if (!ok) {
  15428. break;
  15429. }
  15430. }
  15431. if (!ok) {
  15432. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15433. fclose(file);
  15434. gguf_free(ctx);
  15435. return NULL;
  15436. }
  15437. }
  15438. // read the tensor infos
  15439. {
  15440. ctx->infos = GGML_ALIGNED_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15441. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15442. struct gguf_tensor_info * info = &ctx->infos[i];
  15443. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15444. info->ne[j] = 1;
  15445. }
  15446. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15447. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15448. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15449. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15450. }
  15451. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15452. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15453. if (!ok) {
  15454. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15455. fclose(file);
  15456. gguf_free(ctx);
  15457. return NULL;
  15458. }
  15459. }
  15460. }
  15461. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15462. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15463. if (alignment_idx != -1) {
  15464. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15465. }
  15466. // we require the data section to be aligned, so take into account any padding
  15467. {
  15468. const size_t offset_pad = offset % ctx->alignment;
  15469. if (offset_pad != 0) {
  15470. offset += ctx->alignment - offset_pad;
  15471. fseek(file, offset, SEEK_SET);
  15472. }
  15473. }
  15474. // store the current file offset - this is where the data section starts
  15475. ctx->offset = offset;
  15476. // compute the total size of the data section, taking into account the alignment
  15477. {
  15478. ctx->size = 0;
  15479. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15480. struct gguf_tensor_info * info = &ctx->infos[i];
  15481. const int64_t ne =
  15482. (int64_t) info->ne[0] *
  15483. (int64_t) info->ne[1] *
  15484. (int64_t) info->ne[2] *
  15485. (int64_t) info->ne[3];
  15486. if (ne % ggml_blck_size(info->type) != 0) {
  15487. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15488. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15489. fclose(file);
  15490. gguf_free(ctx);
  15491. return NULL;
  15492. }
  15493. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15494. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15495. }
  15496. }
  15497. // load the tensor data only if requested
  15498. if (params.ctx != NULL) {
  15499. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15500. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15501. // the ggml_tensor structs to the appropriate locations in the binary blob
  15502. // compute the exact size needed for the new ggml_context
  15503. const size_t mem_size =
  15504. params.no_alloc ?
  15505. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15506. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15507. struct ggml_init_params pdata = {
  15508. .mem_size = mem_size,
  15509. .mem_buffer = NULL,
  15510. .no_alloc = params.no_alloc,
  15511. };
  15512. *params.ctx = ggml_init(pdata);
  15513. struct ggml_context * ctx_data = *params.ctx;
  15514. struct ggml_tensor * data = NULL;
  15515. if (params.no_alloc == false) {
  15516. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15517. ok = ok && data != NULL;
  15518. // read the binary blob with the tensor data
  15519. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15520. if (!ok) {
  15521. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15522. fclose(file);
  15523. ggml_free(ctx_data);
  15524. gguf_free(ctx);
  15525. return NULL;
  15526. }
  15527. ctx->data = data->data;
  15528. }
  15529. ggml_set_no_alloc(ctx_data, true);
  15530. // create the tensors
  15531. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15532. const int64_t ne[GGML_MAX_DIMS] = {
  15533. ctx->infos[i].ne[0],
  15534. ctx->infos[i].ne[1],
  15535. ctx->infos[i].ne[2],
  15536. ctx->infos[i].ne[3],
  15537. };
  15538. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15539. ok = ok && cur != NULL;
  15540. ggml_set_name(cur, ctx->infos[i].name.data);
  15541. if (!ok) {
  15542. break;
  15543. }
  15544. // point the data member to the appropriate location in the binary blob using the tensor infos
  15545. if (params.no_alloc == false) {
  15546. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15547. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15548. }
  15549. }
  15550. if (!ok) {
  15551. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15552. fclose(file);
  15553. ggml_free(ctx_data);
  15554. gguf_free(ctx);
  15555. return NULL;
  15556. }
  15557. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15558. }
  15559. fclose(file);
  15560. return ctx;
  15561. }
  15562. void gguf_free(struct gguf_context * ctx) {
  15563. if (ctx == NULL) {
  15564. return;
  15565. }
  15566. if (ctx->kv) {
  15567. // free string memory - not great..
  15568. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15569. struct gguf_kv * kv = &ctx->kv[i];
  15570. if (kv->key.data) {
  15571. free(kv->key.data);
  15572. }
  15573. if (kv->type == GGUF_TYPE_STRING) {
  15574. if (kv->value.str.data) {
  15575. free(kv->value.str.data);
  15576. }
  15577. }
  15578. if (kv->type == GGUF_TYPE_ARRAY) {
  15579. if (kv->value.arr.data) {
  15580. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15581. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15582. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15583. if (str->data) {
  15584. free(str->data);
  15585. }
  15586. }
  15587. }
  15588. free(kv->value.arr.data);
  15589. }
  15590. }
  15591. }
  15592. GGML_ALIGNED_FREE(ctx->kv);
  15593. }
  15594. if (ctx->infos) {
  15595. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15596. struct gguf_tensor_info * info = &ctx->infos[i];
  15597. if (info->name.data) {
  15598. free(info->name.data);
  15599. }
  15600. }
  15601. GGML_ALIGNED_FREE(ctx->infos);
  15602. }
  15603. GGML_ALIGNED_FREE(ctx);
  15604. }
  15605. const char * gguf_type_name(enum gguf_type type) {
  15606. return GGUF_TYPE_NAME[type];
  15607. }
  15608. int gguf_get_version(struct gguf_context * ctx) {
  15609. return ctx->header.version;
  15610. }
  15611. size_t gguf_get_alignment(struct gguf_context * ctx) {
  15612. return ctx->alignment;
  15613. }
  15614. size_t gguf_get_data_offset(struct gguf_context * ctx) {
  15615. return ctx->offset;
  15616. }
  15617. void * gguf_get_data(struct gguf_context * ctx) {
  15618. return ctx->data;
  15619. }
  15620. int gguf_get_n_kv(struct gguf_context * ctx) {
  15621. return ctx->header.n_kv;
  15622. }
  15623. int gguf_find_key(struct gguf_context * ctx, const char * key) {
  15624. // return -1 if key not found
  15625. int keyfound = -1;
  15626. const int n_kv = gguf_get_n_kv(ctx);
  15627. for (int i = 0; i < n_kv; ++i) {
  15628. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15629. keyfound = i;
  15630. break;
  15631. }
  15632. }
  15633. return keyfound;
  15634. }
  15635. const char * gguf_get_key(struct gguf_context * ctx, int i) {
  15636. return ctx->kv[i].key.data;
  15637. }
  15638. enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
  15639. return ctx->kv[i].type;
  15640. }
  15641. enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
  15642. return ctx->kv[i].value.arr.type;
  15643. }
  15644. const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
  15645. return ctx->kv[i].value.arr.data;
  15646. }
  15647. const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
  15648. struct gguf_kv * kv = &ctx->kv[key_id];
  15649. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15650. return str->data;
  15651. }
  15652. int gguf_get_arr_n(struct gguf_context * ctx, int i) {
  15653. return ctx->kv[i].value.arr.n;
  15654. }
  15655. uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
  15656. return ctx->kv[i].value.uint8;
  15657. }
  15658. int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
  15659. return ctx->kv[i].value.int8;
  15660. }
  15661. uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
  15662. return ctx->kv[i].value.uint16;
  15663. }
  15664. int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
  15665. return ctx->kv[i].value.int16;
  15666. }
  15667. uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
  15668. return ctx->kv[i].value.uint32;
  15669. }
  15670. int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
  15671. return ctx->kv[i].value.int32;
  15672. }
  15673. float gguf_get_val_f32(struct gguf_context * ctx, int i) {
  15674. return ctx->kv[i].value.float32;
  15675. }
  15676. bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
  15677. return ctx->kv[i].value.bool_;
  15678. }
  15679. const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
  15680. return ctx->kv[i].value.str.data;
  15681. }
  15682. int gguf_get_n_tensors(struct gguf_context * ctx) {
  15683. return ctx->header.n_tensors;
  15684. }
  15685. int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
  15686. // return -1 if tensor not found
  15687. int tensorfound = -1;
  15688. const int n_tensors = gguf_get_n_tensors(ctx);
  15689. for (int i = 0; i < n_tensors; ++i) {
  15690. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15691. tensorfound = i;
  15692. break;
  15693. }
  15694. }
  15695. return tensorfound;
  15696. }
  15697. size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
  15698. return ctx->infos[i].offset;
  15699. }
  15700. char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
  15701. return ctx->infos[i].name.data;
  15702. }
  15703. // returns the index
  15704. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15705. const int idx = gguf_find_key(ctx, key);
  15706. if (idx >= 0) {
  15707. return idx;
  15708. }
  15709. const int n_kv = gguf_get_n_kv(ctx);
  15710. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15711. ctx->kv[n_kv].key.n = strlen(key) + 1;
  15712. ctx->kv[n_kv].key.data = strdup(key);
  15713. ctx->header.n_kv++;
  15714. return n_kv;
  15715. }
  15716. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15717. const int idx = gguf_get_or_add_key(ctx, key);
  15718. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15719. ctx->kv[idx].value.uint8 = val;
  15720. }
  15721. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15722. const int idx = gguf_get_or_add_key(ctx, key);
  15723. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15724. ctx->kv[idx].value.int8 = val;
  15725. }
  15726. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15727. const int idx = gguf_get_or_add_key(ctx, key);
  15728. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15729. ctx->kv[idx].value.uint16 = val;
  15730. }
  15731. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15732. const int idx = gguf_get_or_add_key(ctx, key);
  15733. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15734. ctx->kv[idx].value.int16 = val;
  15735. }
  15736. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15737. const int idx = gguf_get_or_add_key(ctx, key);
  15738. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15739. ctx->kv[idx].value.uint32 = val;
  15740. }
  15741. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15742. const int idx = gguf_get_or_add_key(ctx, key);
  15743. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15744. ctx->kv[idx].value.int32 = val;
  15745. }
  15746. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15747. const int idx = gguf_get_or_add_key(ctx, key);
  15748. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15749. ctx->kv[idx].value.float32 = val;
  15750. }
  15751. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15752. const int idx = gguf_get_or_add_key(ctx, key);
  15753. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15754. ctx->kv[idx].value.bool_ = val;
  15755. }
  15756. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15757. const int idx = gguf_get_or_add_key(ctx, key);
  15758. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15759. ctx->kv[idx].value.str.n = strlen(val) + 1;
  15760. ctx->kv[idx].value.str.data = strdup(val);
  15761. }
  15762. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  15763. const int idx = gguf_get_or_add_key(ctx, key);
  15764. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15765. ctx->kv[idx].value.arr.type = type;
  15766. ctx->kv[idx].value.arr.n = n;
  15767. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  15768. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  15769. }
  15770. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  15771. const int idx = gguf_get_or_add_key(ctx, key);
  15772. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15773. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  15774. ctx->kv[idx].value.arr.n = n;
  15775. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  15776. for (int i = 0; i < n; i++) {
  15777. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  15778. str->n = strlen(data[i]) + 1;
  15779. str->data = strdup(data[i]);
  15780. }
  15781. }
  15782. // set or add KV pairs from another context
  15783. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  15784. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  15785. switch (src->kv[i].type) {
  15786. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  15787. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  15788. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  15789. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  15790. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  15791. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  15792. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  15793. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  15794. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  15795. case GGUF_TYPE_ARRAY:
  15796. {
  15797. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  15798. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  15799. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  15800. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  15801. }
  15802. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  15803. free(data);
  15804. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  15805. GGML_ASSERT(false && "nested arrays not supported");
  15806. } else {
  15807. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  15808. }
  15809. } break;
  15810. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15811. }
  15812. }
  15813. }
  15814. void gguf_add_tensor(
  15815. struct gguf_context * ctx,
  15816. const struct ggml_tensor * tensor) {
  15817. const int idx = ctx->header.n_tensors;
  15818. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  15819. ctx->infos[idx].name.n = strlen(tensor->name) + 1;
  15820. ctx->infos[idx].name.data = strdup(tensor->name);
  15821. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  15822. ctx->infos[idx].ne[i] = 1;
  15823. }
  15824. ctx->infos[idx].n_dims = tensor->n_dims;
  15825. for (int i = 0; i < tensor->n_dims; i++) {
  15826. ctx->infos[idx].ne[i] = tensor->ne[i];
  15827. }
  15828. ctx->infos[idx].type = tensor->type;
  15829. ctx->infos[idx].offset = 0;
  15830. ctx->infos[idx].data = tensor->data;
  15831. ctx->infos[idx].size = ggml_nbytes(tensor);
  15832. if (ctx->header.n_tensors > 0) {
  15833. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  15834. }
  15835. ctx->header.n_tensors++;
  15836. }
  15837. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  15838. const int idx = gguf_find_tensor(ctx, name);
  15839. if (idx < 0) {
  15840. GGML_ASSERT(false && "tensor not found");
  15841. }
  15842. ctx->infos[idx].type = type;
  15843. }
  15844. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  15845. const int idx = gguf_find_tensor(ctx, name);
  15846. if (idx < 0) {
  15847. GGML_ASSERT(false && "tensor not found");
  15848. }
  15849. ctx->infos[idx].data = data;
  15850. ctx->infos[idx].size = size;
  15851. // update offsets
  15852. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  15853. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  15854. }
  15855. }
  15856. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  15857. // fwrite(&val->n, sizeof(val->n), 1, file);
  15858. // fwrite(val->data, sizeof(char), val->n, file);
  15859. //}
  15860. //
  15861. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  15862. // fwrite(val, sizeof(char), size, file);
  15863. //}
  15864. struct gguf_buf {
  15865. void * data;
  15866. size_t size;
  15867. size_t offset;
  15868. };
  15869. static struct gguf_buf gguf_buf_init(size_t size) {
  15870. struct gguf_buf buf = {
  15871. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  15872. /*buf.size =*/ size,
  15873. /*buf.offset =*/ 0,
  15874. };
  15875. return buf;
  15876. }
  15877. static void gguf_buf_free(struct gguf_buf buf) {
  15878. if (buf.data) {
  15879. free(buf.data);
  15880. }
  15881. }
  15882. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  15883. if (buf->offset + size > buf->size) {
  15884. buf->size = 1.5*(buf->offset + size);
  15885. if (buf->data) {
  15886. buf->data = realloc(buf->data, buf->size);
  15887. }
  15888. }
  15889. }
  15890. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  15891. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  15892. if (buf->data) {
  15893. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  15894. }
  15895. buf->offset += sizeof(val->n);
  15896. if (buf->data) {
  15897. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  15898. }
  15899. buf->offset += val->n;
  15900. }
  15901. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  15902. gguf_buf_grow(buf, el_size);
  15903. if (buf->data) {
  15904. memcpy((char *) buf->data + buf->offset, val, el_size);
  15905. }
  15906. buf->offset += el_size;
  15907. }
  15908. static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  15909. // write header
  15910. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  15911. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  15912. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  15913. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  15914. // write key-value pairs
  15915. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15916. struct gguf_kv * kv = &ctx->kv[i];
  15917. gguf_bwrite_str(buf, &kv->key);
  15918. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  15919. switch (kv->type) {
  15920. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  15921. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  15922. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  15923. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  15924. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  15925. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  15926. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  15927. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  15928. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  15929. case GGUF_TYPE_ARRAY:
  15930. {
  15931. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  15932. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  15933. switch (kv->value.arr.type) {
  15934. case GGUF_TYPE_UINT8:
  15935. case GGUF_TYPE_INT8:
  15936. case GGUF_TYPE_UINT16:
  15937. case GGUF_TYPE_INT16:
  15938. case GGUF_TYPE_UINT32:
  15939. case GGUF_TYPE_INT32:
  15940. case GGUF_TYPE_FLOAT32:
  15941. case GGUF_TYPE_BOOL:
  15942. {
  15943. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15944. } break;
  15945. case GGUF_TYPE_STRING:
  15946. {
  15947. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15948. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  15949. }
  15950. } break;
  15951. case GGUF_TYPE_ARRAY:
  15952. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15953. };
  15954. } break;
  15955. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15956. };
  15957. }
  15958. // write tensor infos
  15959. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15960. struct gguf_tensor_info * info = &ctx->infos[i];
  15961. gguf_bwrite_str(buf, &info->name);
  15962. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  15963. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15964. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  15965. }
  15966. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  15967. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  15968. }
  15969. // we require the data section to be aligned, so take into account any padding
  15970. {
  15971. const size_t offset = buf->offset;
  15972. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  15973. if (offset_pad != offset) {
  15974. uint8_t pad = 0;
  15975. for (size_t i = 0; i < offset_pad - offset; ++i) {
  15976. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15977. }
  15978. }
  15979. }
  15980. if (only_meta) {
  15981. return;
  15982. }
  15983. size_t offset = 0;
  15984. // write tensor data
  15985. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15986. struct gguf_tensor_info * info = &ctx->infos[i];
  15987. const size_t size = info->size;
  15988. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  15989. gguf_bwrite_el(buf, info->data, size);
  15990. if (size_pad != size) {
  15991. uint8_t pad = 0;
  15992. for (size_t j = 0; j < size_pad - size; ++j) {
  15993. gguf_bwrite_el(buf, &pad, sizeof(pad));
  15994. }
  15995. }
  15996. GGML_ASSERT(offset == info->offset);
  15997. offset += size_pad;
  15998. }
  15999. }
  16000. void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
  16001. FILE * file = fopen(fname, "wb");
  16002. if (!file) {
  16003. GGML_ASSERT(false && "failed to open file for writing");
  16004. }
  16005. struct gguf_buf buf = gguf_buf_init(16*1024);
  16006. gguf_write_to_buf(ctx, &buf, only_meta);
  16007. fwrite(buf.data, 1, buf.offset, file);
  16008. gguf_buf_free(buf);
  16009. fclose(file);
  16010. }
  16011. size_t gguf_get_meta_size(struct gguf_context * ctx) {
  16012. // no allocs - only compute size
  16013. struct gguf_buf buf = gguf_buf_init(0);
  16014. gguf_write_to_buf(ctx, &buf, true);
  16015. return buf.offset;
  16016. }
  16017. void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
  16018. struct gguf_buf buf = gguf_buf_init(16*1024);
  16019. gguf_write_to_buf(ctx, &buf, true);
  16020. memcpy(data, buf.data, buf.offset);
  16021. gguf_buf_free(buf);
  16022. }
  16023. ////////////////////////////////////////////////////////////////////////////////
  16024. int ggml_cpu_has_avx(void) {
  16025. #if defined(__AVX__)
  16026. return 1;
  16027. #else
  16028. return 0;
  16029. #endif
  16030. }
  16031. int ggml_cpu_has_avx2(void) {
  16032. #if defined(__AVX2__)
  16033. return 1;
  16034. #else
  16035. return 0;
  16036. #endif
  16037. }
  16038. int ggml_cpu_has_avx512(void) {
  16039. #if defined(__AVX512F__)
  16040. return 1;
  16041. #else
  16042. return 0;
  16043. #endif
  16044. }
  16045. int ggml_cpu_has_avx512_vbmi(void) {
  16046. #if defined(__AVX512VBMI__)
  16047. return 1;
  16048. #else
  16049. return 0;
  16050. #endif
  16051. }
  16052. int ggml_cpu_has_avx512_vnni(void) {
  16053. #if defined(__AVX512VNNI__)
  16054. return 1;
  16055. #else
  16056. return 0;
  16057. #endif
  16058. }
  16059. int ggml_cpu_has_fma(void) {
  16060. #if defined(__FMA__)
  16061. return 1;
  16062. #else
  16063. return 0;
  16064. #endif
  16065. }
  16066. int ggml_cpu_has_neon(void) {
  16067. #if defined(__ARM_NEON)
  16068. return 1;
  16069. #else
  16070. return 0;
  16071. #endif
  16072. }
  16073. int ggml_cpu_has_arm_fma(void) {
  16074. #if defined(__ARM_FEATURE_FMA)
  16075. return 1;
  16076. #else
  16077. return 0;
  16078. #endif
  16079. }
  16080. int ggml_cpu_has_f16c(void) {
  16081. #if defined(__F16C__)
  16082. return 1;
  16083. #else
  16084. return 0;
  16085. #endif
  16086. }
  16087. int ggml_cpu_has_fp16_va(void) {
  16088. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16089. return 1;
  16090. #else
  16091. return 0;
  16092. #endif
  16093. }
  16094. int ggml_cpu_has_wasm_simd(void) {
  16095. #if defined(__wasm_simd128__)
  16096. return 1;
  16097. #else
  16098. return 0;
  16099. #endif
  16100. }
  16101. int ggml_cpu_has_blas(void) {
  16102. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16103. return 1;
  16104. #else
  16105. return 0;
  16106. #endif
  16107. }
  16108. int ggml_cpu_has_cublas(void) {
  16109. #if defined(GGML_USE_CUBLAS)
  16110. return 1;
  16111. #else
  16112. return 0;
  16113. #endif
  16114. }
  16115. int ggml_cpu_has_clblast(void) {
  16116. #if defined(GGML_USE_CLBLAST)
  16117. return 1;
  16118. #else
  16119. return 0;
  16120. #endif
  16121. }
  16122. int ggml_cpu_has_gpublas(void) {
  16123. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16124. }
  16125. int ggml_cpu_has_sse3(void) {
  16126. #if defined(__SSE3__)
  16127. return 1;
  16128. #else
  16129. return 0;
  16130. #endif
  16131. }
  16132. int ggml_cpu_has_vsx(void) {
  16133. #if defined(__POWER9_VECTOR__)
  16134. return 1;
  16135. #else
  16136. return 0;
  16137. #endif
  16138. }
  16139. ////////////////////////////////////////////////////////////////////////////////