ggml-backend.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  13. return buft->iface.get_name(buft);
  14. }
  15. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  16. return buft->iface.alloc_buffer(buft, size);
  17. }
  18. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  19. return buft->iface.get_alignment(buft);
  20. }
  21. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  22. // get_max_size is optional, defaults to SIZE_MAX
  23. if (buft->iface.get_max_size) {
  24. return buft->iface.get_max_size(buft);
  25. }
  26. return SIZE_MAX;
  27. }
  28. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  29. // get_alloc_size is optional, defaults to ggml_nbytes
  30. if (buft->iface.get_alloc_size) {
  31. size_t size = buft->iface.get_alloc_size(buft, tensor);
  32. assert(size >= ggml_nbytes(tensor));
  33. return size;
  34. }
  35. return ggml_nbytes(tensor);
  36. }
  37. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  38. return buft->iface.supports_backend(buft, backend);
  39. }
  40. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  41. if (buft->iface.is_host) {
  42. return buft->iface.is_host(buft);
  43. }
  44. return false;
  45. }
  46. // backend buffer
  47. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  48. ggml_backend_buffer_type_t buft,
  49. struct ggml_backend_buffer_i iface,
  50. ggml_backend_buffer_context_t context,
  51. size_t size) {
  52. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  53. (*buffer) = (struct ggml_backend_buffer) {
  54. /* .interface = */ iface,
  55. /* .buft = */ buft,
  56. /* .context = */ context,
  57. /* .size = */ size,
  58. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  59. };
  60. return buffer;
  61. }
  62. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  63. return buffer->iface.get_name(buffer);
  64. }
  65. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  66. if (buffer == NULL) {
  67. return;
  68. }
  69. if (buffer->iface.free_buffer != NULL) {
  70. buffer->iface.free_buffer(buffer);
  71. }
  72. free(buffer);
  73. }
  74. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  75. return buffer->size;
  76. }
  77. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  78. void * base = buffer->iface.get_base(buffer);
  79. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  80. return base;
  81. }
  82. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  83. // init_tensor is optional
  84. if (buffer->iface.init_tensor) {
  85. buffer->iface.init_tensor(buffer, tensor);
  86. }
  87. }
  88. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  89. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  90. }
  91. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  92. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  93. }
  94. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  95. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  96. }
  97. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  98. buffer->iface.clear(buffer, value);
  99. }
  100. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  101. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  102. }
  103. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  104. buffer->usage = usage;
  105. // FIXME: add a generic callback to the buffer interface
  106. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  107. ggml_backend_multi_buffer_set_usage(buffer, usage);
  108. }
  109. }
  110. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  111. return buffer->buft;
  112. }
  113. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  114. if (buffer->iface.reset) {
  115. buffer->iface.reset(buffer);
  116. }
  117. }
  118. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  119. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  120. if (dst_buf->iface.cpy_tensor) {
  121. return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
  122. }
  123. return false;
  124. }
  125. // backend
  126. const char * ggml_backend_name(ggml_backend_t backend) {
  127. if (backend == NULL) {
  128. return "NULL";
  129. }
  130. return backend->iface.get_name(backend);
  131. }
  132. void ggml_backend_free(ggml_backend_t backend) {
  133. if (backend == NULL) {
  134. return;
  135. }
  136. backend->iface.free(backend);
  137. }
  138. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  139. return backend->iface.get_default_buffer_type(backend);
  140. }
  141. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  142. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  143. }
  144. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  145. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  146. }
  147. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  148. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  149. }
  150. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  151. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  152. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  153. if (backend->iface.set_tensor_async == NULL) {
  154. ggml_backend_tensor_set(tensor, data, offset, size);
  155. } else {
  156. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  157. }
  158. }
  159. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  160. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  161. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  162. if (backend->iface.get_tensor_async == NULL) {
  163. ggml_backend_tensor_get(tensor, data, offset, size);
  164. } else {
  165. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  166. }
  167. }
  168. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  169. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  170. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  171. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  172. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  173. if (!size) {
  174. return;
  175. }
  176. tensor->buffer->iface.set_tensor(buf, tensor, data, offset, size);
  177. }
  178. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  179. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  180. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  181. GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
  182. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  183. if (!size) {
  184. return;
  185. }
  186. tensor->buffer->iface.get_tensor(buf, tensor, data, offset, size);
  187. }
  188. void ggml_backend_synchronize(ggml_backend_t backend) {
  189. if (backend->iface.synchronize == NULL) {
  190. return;
  191. }
  192. backend->iface.synchronize(backend);
  193. }
  194. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  195. return backend->iface.graph_plan_create(backend, cgraph);
  196. }
  197. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  198. backend->iface.graph_plan_free(backend, plan);
  199. }
  200. void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  201. backend->iface.graph_plan_compute(backend, plan);
  202. }
  203. bool ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  204. return backend->iface.graph_compute(backend, cgraph);
  205. }
  206. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  207. return backend->iface.supports_op(backend, op);
  208. }
  209. // backend copy
  210. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  211. if (a->type != b->type) {
  212. return false;
  213. }
  214. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  215. if (a->ne[i] != b->ne[i]) {
  216. return false;
  217. }
  218. if (a->nb[i] != b->nb[i]) {
  219. return false;
  220. }
  221. }
  222. return true;
  223. }
  224. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  225. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  226. if (src == dst) {
  227. return;
  228. }
  229. if (ggml_backend_buffer_is_host(src->buffer)) {
  230. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  231. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  232. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  233. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  234. #ifndef NDEBUG
  235. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  236. #endif
  237. size_t nbytes = ggml_nbytes(src);
  238. void * data = malloc(nbytes);
  239. ggml_backend_tensor_get(src, data, 0, nbytes);
  240. ggml_backend_tensor_set(dst, data, 0, nbytes);
  241. free(data);
  242. }
  243. }
  244. void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
  245. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  246. if (src == dst) {
  247. return;
  248. }
  249. if (ggml_backend_buft_supports_backend(src->buffer->buft, backend) && ggml_backend_buft_supports_backend(dst->buffer->buft, backend)) {
  250. if (backend->iface.cpy_tensor_async != NULL) {
  251. if (backend->iface.cpy_tensor_async(backend, src, dst)) {
  252. return;
  253. }
  254. }
  255. }
  256. size_t nbytes = ggml_nbytes(src);
  257. if (ggml_backend_buffer_is_host(src->buffer)) {
  258. ggml_backend_tensor_set_async(backend, dst, src->data, 0, nbytes);
  259. }
  260. else {
  261. ggml_backend_tensor_copy(src, dst);
  262. }
  263. }
  264. // backend registry
  265. #define GGML_MAX_BACKENDS_REG 16
  266. struct ggml_backend_reg {
  267. char name[128];
  268. ggml_backend_init_fn init_fn;
  269. ggml_backend_buffer_type_t default_buffer_type;
  270. void * user_data;
  271. };
  272. static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
  273. static size_t ggml_backend_registry_count = 0;
  274. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  275. GGML_CALL static void ggml_backend_registry_init(void) {
  276. static bool initialized = false;
  277. if (initialized) {
  278. return;
  279. }
  280. initialized = true;
  281. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  282. // add forward decls here to avoid including the backend headers
  283. #ifdef GGML_USE_CUBLAS
  284. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  285. ggml_backend_cuda_reg_devices();
  286. #endif
  287. #ifdef GGML_USE_SYCL
  288. extern void ggml_backend_sycl_reg_devices(void);
  289. ggml_backend_sycl_reg_devices();
  290. #endif
  291. #ifdef GGML_USE_METAL
  292. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  293. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  294. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  295. #endif
  296. #ifdef GGML_USE_VULKAN
  297. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  298. ggml_backend_vk_reg_devices();
  299. #endif
  300. #ifdef GGML_USE_KOMPUTE
  301. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  302. ggml_backend_kompute_reg_devices();
  303. #endif
  304. }
  305. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  306. GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
  307. size_t id = ggml_backend_registry_count;
  308. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  309. /* .name = */ {0},
  310. /* .fn = */ init_fn,
  311. /* .default_buffer_type = */ default_buffer_type,
  312. /* .user_data = */ user_data,
  313. };
  314. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  315. #ifndef NDEBUG
  316. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  317. #endif
  318. ggml_backend_registry_count++;
  319. }
  320. size_t ggml_backend_reg_get_count(void) {
  321. ggml_backend_registry_init();
  322. return ggml_backend_registry_count;
  323. }
  324. size_t ggml_backend_reg_find_by_name(const char * name) {
  325. ggml_backend_registry_init();
  326. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  327. // TODO: case insensitive in a portable way
  328. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  329. return i;
  330. }
  331. }
  332. // not found
  333. return SIZE_MAX;
  334. }
  335. // init from backend:params string
  336. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  337. ggml_backend_registry_init();
  338. const char * params = strchr(backend_str, ':');
  339. char backend_name[128];
  340. if (params == NULL) {
  341. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  342. params = "";
  343. } else {
  344. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  345. params++;
  346. }
  347. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  348. if (backend_i == SIZE_MAX) {
  349. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  350. return NULL;
  351. }
  352. return ggml_backend_reg_init_backend(backend_i, params);
  353. }
  354. const char * ggml_backend_reg_get_name(size_t i) {
  355. ggml_backend_registry_init();
  356. GGML_ASSERT(i < ggml_backend_registry_count);
  357. return ggml_backend_registry[i].name;
  358. }
  359. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  360. ggml_backend_registry_init();
  361. GGML_ASSERT(i < ggml_backend_registry_count);
  362. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  363. }
  364. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  365. ggml_backend_registry_init();
  366. GGML_ASSERT(i < ggml_backend_registry_count);
  367. return ggml_backend_registry[i].default_buffer_type;
  368. }
  369. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  370. ggml_backend_registry_init();
  371. GGML_ASSERT(i < ggml_backend_registry_count);
  372. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  373. }
  374. // backend CPU
  375. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  376. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  377. return "CPU";
  378. GGML_UNUSED(buffer);
  379. }
  380. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  381. uintptr_t data = (uintptr_t)buffer->context;
  382. // align the buffer
  383. if (data % TENSOR_ALIGNMENT != 0) {
  384. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  385. }
  386. return (void *)data;
  387. }
  388. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  389. free(buffer->context);
  390. }
  391. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  392. memcpy((char *)tensor->data + offset, data, size);
  393. GGML_UNUSED(buffer);
  394. }
  395. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  396. memcpy(data, (const char *)tensor->data + offset, size);
  397. GGML_UNUSED(buffer);
  398. }
  399. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  400. if (ggml_backend_buffer_is_host(src->buffer)) {
  401. memcpy(dst->data, src->data, ggml_nbytes(src));
  402. return true;
  403. }
  404. return false;
  405. GGML_UNUSED(buffer);
  406. }
  407. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  408. memset(buffer->context, value, buffer->size);
  409. }
  410. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  411. /* .get_name = */ ggml_backend_cpu_buffer_name,
  412. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  413. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  414. /* .init_tensor = */ NULL, // no initialization required
  415. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  416. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  417. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  418. /* .clear = */ ggml_backend_cpu_buffer_clear,
  419. /* .reset = */ NULL,
  420. };
  421. // for buffers from ptr, free is not called
  422. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  423. /* .get_name = */ ggml_backend_cpu_buffer_name,
  424. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  425. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  426. /* .init_tensor = */ NULL, // no initialization required
  427. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  428. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  429. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  430. /* .clear = */ ggml_backend_cpu_buffer_clear,
  431. /* .reset = */ NULL,
  432. };
  433. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  434. return "CPU";
  435. GGML_UNUSED(buft);
  436. }
  437. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  438. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  439. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  440. if (data == NULL) {
  441. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  442. return NULL;
  443. }
  444. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  445. }
  446. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  447. return TENSOR_ALIGNMENT;
  448. GGML_UNUSED(buft);
  449. }
  450. GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  451. return ggml_backend_is_cpu(backend);
  452. GGML_UNUSED(buft);
  453. }
  454. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  455. return true;
  456. GGML_UNUSED(buft);
  457. }
  458. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  459. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  460. /* .iface = */ {
  461. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  462. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  463. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  464. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  465. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  466. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  467. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  468. },
  469. /* .context = */ NULL,
  470. };
  471. return &ggml_backend_cpu_buffer_type;
  472. }
  473. #ifdef GGML_USE_CPU_HBM
  474. // buffer type HBM
  475. #include <hbwmalloc.h>
  476. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  477. return "CPU_HBM";
  478. GGML_UNUSED(buft);
  479. }
  480. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  481. return "CPU_HBM";
  482. GGML_UNUSED(buf);
  483. }
  484. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  485. hbw_free(buffer->context);
  486. }
  487. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  488. //void * ptr = hbw_malloc(size);
  489. void * ptr;
  490. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  491. if (result != 0) {
  492. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  493. return NULL;
  494. }
  495. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  496. buffer->buft = buft;
  497. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  498. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  499. return buffer;
  500. }
  501. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  502. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  503. /* .iface = */ {
  504. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  505. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  506. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  507. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  508. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  509. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  510. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  511. },
  512. /* .context = */ NULL,
  513. };
  514. return &ggml_backend_cpu_buffer_type_hbm;
  515. }
  516. #endif
  517. struct ggml_backend_cpu_context {
  518. int n_threads;
  519. void * work_data;
  520. size_t work_size;
  521. ggml_abort_callback abort_callback;
  522. void * abort_callback_data;
  523. };
  524. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  525. return "CPU";
  526. GGML_UNUSED(backend);
  527. }
  528. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  529. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  530. free(cpu_ctx->work_data);
  531. free(cpu_ctx);
  532. free(backend);
  533. }
  534. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  535. return ggml_backend_cpu_buffer_type();
  536. GGML_UNUSED(backend);
  537. }
  538. struct ggml_backend_plan_cpu {
  539. struct ggml_cplan cplan;
  540. struct ggml_cgraph cgraph;
  541. };
  542. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  543. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  544. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  545. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  546. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  547. if (cpu_plan->cplan.work_size > 0) {
  548. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  549. }
  550. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  551. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  552. return cpu_plan;
  553. }
  554. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  555. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  556. free(cpu_plan->cplan.work_data);
  557. free(cpu_plan);
  558. GGML_UNUSED(backend);
  559. }
  560. GGML_CALL static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  561. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  562. ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  563. GGML_UNUSED(backend);
  564. }
  565. GGML_CALL static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  566. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  567. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  568. if (cpu_ctx->work_size < cplan.work_size) {
  569. // TODO: may be faster to free and use malloc to avoid the copy
  570. cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
  571. cpu_ctx->work_size = cplan.work_size;
  572. }
  573. cplan.work_data = cpu_ctx->work_data;
  574. cplan.abort_callback = cpu_ctx->abort_callback;
  575. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  576. ggml_graph_compute(cgraph, &cplan);
  577. return true;
  578. }
  579. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  580. switch (op->op) {
  581. case GGML_OP_CPY:
  582. return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS; // missing type_traits.from_float
  583. case GGML_OP_MUL_MAT:
  584. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  585. default:
  586. return true;
  587. }
  588. GGML_UNUSED(backend);
  589. }
  590. static struct ggml_backend_i cpu_backend_i = {
  591. /* .get_name = */ ggml_backend_cpu_name,
  592. /* .free = */ ggml_backend_cpu_free,
  593. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  594. /* .set_tensor_async = */ NULL,
  595. /* .get_tensor_async = */ NULL,
  596. /* .cpy_tensor_async = */ NULL,
  597. /* .synchronize = */ NULL,
  598. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  599. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  600. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  601. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  602. /* .supports_op = */ ggml_backend_cpu_supports_op,
  603. };
  604. ggml_backend_t ggml_backend_cpu_init(void) {
  605. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  606. if (ctx == NULL) {
  607. return NULL;
  608. }
  609. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  610. ctx->work_data = NULL;
  611. ctx->work_size = 0;
  612. ctx->abort_callback = NULL;
  613. ctx->abort_callback_data = NULL;
  614. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  615. if (cpu_backend == NULL) {
  616. free(ctx);
  617. return NULL;
  618. }
  619. *cpu_backend = (struct ggml_backend) {
  620. /* .interface = */ cpu_backend_i,
  621. /* .context = */ ctx
  622. };
  623. return cpu_backend;
  624. }
  625. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  626. return backend && backend->iface.get_name == ggml_backend_cpu_name;
  627. }
  628. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  629. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  630. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  631. ctx->n_threads = n_threads;
  632. }
  633. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  634. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  635. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  636. ctx->abort_callback = abort_callback;
  637. ctx->abort_callback_data = abort_callback_data;
  638. }
  639. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  640. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  641. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  642. }
  643. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  644. return ggml_backend_cpu_init();
  645. GGML_UNUSED(params);
  646. GGML_UNUSED(user_data);
  647. }
  648. // multi-buffer buffer
  649. struct ggml_backend_multi_buffer_context {
  650. ggml_backend_buffer_t * buffers;
  651. size_t n_buffers;
  652. };
  653. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  654. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  655. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  656. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  657. }
  658. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  659. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  660. for (size_t i = 0; i < ctx->n_buffers; i++) {
  661. ggml_backend_buffer_free(ctx->buffers[i]);
  662. }
  663. free(ctx->buffers);
  664. free(ctx);
  665. }
  666. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  667. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  668. for (size_t i = 0; i < ctx->n_buffers; i++) {
  669. ggml_backend_buffer_clear(ctx->buffers[i], value);
  670. }
  671. }
  672. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  673. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  674. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  675. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  676. /* .get_base = */ NULL,
  677. /* .init_tensor = */ NULL,
  678. /* .set_tensor = */ NULL,
  679. /* .get_tensor = */ NULL,
  680. /* .cpy_tensor = */ NULL,
  681. /* .clear = */ ggml_backend_multi_buffer_clear,
  682. /* .reset = */ NULL,
  683. };
  684. return multi_backend_buffer_i;
  685. }
  686. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  687. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  688. ctx->n_buffers = n_buffers;
  689. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  690. GGML_ASSERT(ctx->buffers != NULL);
  691. size_t total_size = 0;
  692. for (size_t i = 0; i < n_buffers; i++) {
  693. ctx->buffers[i] = buffers[i];
  694. total_size += ggml_backend_buffer_get_size(buffers[i]);
  695. }
  696. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  697. }
  698. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  699. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  700. }
  701. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  702. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  703. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  704. for (size_t i = 0; i < ctx->n_buffers; i++) {
  705. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  706. }
  707. }
  708. // creates a copy of the tensor with the same memory layout
  709. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  710. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  711. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  712. dup->nb[i] = tensor->nb[i];
  713. }
  714. return dup;
  715. }
  716. static bool ggml_is_view_op(enum ggml_op op) {
  717. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  718. }
  719. // scheduler
  720. #define GGML_MAX_BACKENDS 16
  721. #define GGML_MAX_SPLITS 256
  722. #define GGML_MAX_SPLIT_INPUTS 16
  723. struct ggml_backend_sched_split {
  724. int backend_id;
  725. int i_start;
  726. int i_end;
  727. struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
  728. int n_inputs;
  729. // graph view of this split
  730. struct ggml_cgraph graph;
  731. };
  732. struct ggml_backend_sched {
  733. bool is_reset; // true if the scheduler has been reset since the last graph split
  734. int n_backends;
  735. ggml_backend_t backends[GGML_MAX_BACKENDS];
  736. ggml_backend_buffer_type_t bufts[GGML_MAX_BACKENDS];
  737. ggml_gallocr_t galloc;
  738. // hash keys of the nodes in the graph
  739. struct ggml_hash_set hash_set;
  740. // hash values
  741. int * tensor_backend_id;
  742. struct ggml_tensor * (* tensor_copies)[GGML_MAX_BACKENDS];
  743. int * node_backend_ids; // [n_nodes]
  744. int n_nodes;
  745. // copy of the graph with modified inputs
  746. struct ggml_cgraph * graph;
  747. struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
  748. int n_splits;
  749. struct ggml_context * ctx;
  750. ggml_backend_sched_eval_callback callback_eval;
  751. void * callback_eval_user_data;
  752. // align context_buffer to GGML_MEM_ALIGN
  753. #ifdef _MSC_VER
  754. __declspec(align(GGML_MEM_ALIGN))
  755. #else
  756. __attribute__((aligned(GGML_MEM_ALIGN)))
  757. #endif
  758. char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  759. };
  760. #define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
  761. #define tensor_backend_id(node) sched->tensor_backend_id[hash_id(node)]
  762. #define tensor_backend(node) (tensor_backend_id(node) == -1 ? NULL : sched->backends[tensor_backend_id(node)])
  763. // returns the priority of the backend, lower id is higher priority
  764. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  765. for (int i = 0; i < sched->n_backends; i++) {
  766. if (sched->backends[i] == backend) {
  767. return i;
  768. }
  769. }
  770. return -1;
  771. }
  772. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
  773. if (buffer == NULL) {
  774. return -1;
  775. }
  776. // find highest prio backend that supports the buffer type
  777. for (int i = 0; i < sched->n_backends; i++) {
  778. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  779. return i;
  780. }
  781. }
  782. GGML_ASSERT(false && "tensor buffer type not supported by any backend");
  783. return -1; // silence warning
  784. }
  785. #if 0
  786. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug only
  787. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  788. #define GET_CAUSE(node) causes[hash_id(node)]
  789. #else
  790. #define SET_CAUSE(node, ...)
  791. #define GET_CAUSE(node) ""
  792. #endif
  793. // returns the backend that should be used for the node based on the current locations
  794. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  795. // TODO: use supports_op to check if the backend supports the op
  796. // assign pre-allocated nodes to their backend
  797. // dst
  798. int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->buffer);
  799. if (cur_backend != -1) {
  800. SET_CAUSE(node, "1.dst");
  801. return cur_backend;
  802. }
  803. // view_src
  804. if (tensor->view_src != NULL) {
  805. cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src->buffer);
  806. if (cur_backend != -1) {
  807. SET_CAUSE(node, "1.vsrc");
  808. return cur_backend;
  809. }
  810. }
  811. // assign nodes that use weights to the backend of the weights
  812. for (int i = 0; i < GGML_MAX_SRC; i++) {
  813. const struct ggml_tensor * src = tensor->src[i];
  814. if (src == NULL) {
  815. continue;
  816. }
  817. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  818. int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer);
  819. // operations with weights are always run on the same backend as the weights
  820. SET_CAUSE(node, "1.wgt%d", i);
  821. return src_backend;
  822. }
  823. }
  824. return -1;
  825. }
  826. static char * fmt_size(size_t size) {
  827. static char buffer[128];
  828. if (size >= 1024*1024) {
  829. sprintf(buffer, "%zuM", size/1024/1024);
  830. } else {
  831. sprintf(buffer, "%zuK", size/1024);
  832. }
  833. return buffer;
  834. }
  835. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  836. int cur_split = 0;
  837. for (int i = 0; i < graph->n_nodes; i++) {
  838. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  839. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  840. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  841. sched->splits[cur_split].n_inputs);
  842. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  843. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  844. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  845. }
  846. fprintf(stderr, "\n");
  847. cur_split++;
  848. }
  849. struct ggml_tensor * node = graph->nodes[i];
  850. if (ggml_is_view_op(node->op)) {
  851. continue;
  852. }
  853. ggml_backend_t tensor_backend = tensor_backend(node);
  854. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  855. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  856. for (int j = 0; j < GGML_MAX_SRC; j++) {
  857. struct ggml_tensor * src = node->src[j];
  858. if (src == NULL) {
  859. continue;
  860. }
  861. ggml_backend_t src_backend = tensor_backend(src);
  862. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  863. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  864. }
  865. fprintf(stderr, "\n");
  866. }
  867. }
  868. //#define DEBUG_PASS1
  869. //#define DEBUG_PASS2
  870. //#define DEBUG_PASS3
  871. //#define DEBUG_PASS4
  872. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  873. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  874. // reset splits
  875. sched->n_splits = 0;
  876. sched->is_reset = false;
  877. struct ggml_init_params params = {
  878. /* .mem_size = */ sizeof(sched->context_buffer),
  879. /* .mem_buffer = */ sched->context_buffer,
  880. /* .no_alloc = */ true
  881. };
  882. ggml_free(sched->ctx);
  883. sched->ctx = ggml_init(params);
  884. if (sched->ctx == NULL) {
  885. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  886. GGML_ASSERT(false);
  887. }
  888. // pass 1: assign backends to ops with pre-allocated inputs
  889. for (int i = 0; i < graph->n_leafs; i++) {
  890. struct ggml_tensor * leaf = graph->leafs[i];
  891. if (tensor_backend_id(leaf) != -1) {
  892. // do not overwrite user assignments
  893. continue;
  894. }
  895. tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  896. }
  897. for (int i = 0; i < graph->n_nodes; i++) {
  898. struct ggml_tensor * node = graph->nodes[i];
  899. if (tensor_backend_id(node) != -1) {
  900. // do not overwrite user assignments
  901. continue;
  902. }
  903. tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node);
  904. // src
  905. for (int j = 0; j < GGML_MAX_SRC; j++) {
  906. struct ggml_tensor * src = node->src[j];
  907. if (src == NULL) {
  908. continue;
  909. }
  910. if (tensor_backend_id(src) == -1) {
  911. tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src);
  912. }
  913. }
  914. }
  915. #ifdef DEBUG_PASS1
  916. fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  917. #endif
  918. // pass 2: expand current backend assignments
  919. // assign the same backend to adjacent nodes
  920. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  921. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  922. // pass 2.1 expand gpu up
  923. {
  924. int cur_backend_id = -1;
  925. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  926. struct ggml_tensor * node = graph->nodes[i];
  927. if (ggml_is_view_op(node->op)) {
  928. continue;
  929. }
  930. int tensor_backend_id = tensor_backend_id(node);
  931. if (tensor_backend_id != -1) {
  932. if (tensor_backend_id == sched->n_backends - 1) {
  933. // skip cpu (lowest prio backend)
  934. cur_backend_id = -1;
  935. } else {
  936. cur_backend_id = tensor_backend_id;
  937. }
  938. } else {
  939. tensor_backend_id(node) = cur_backend_id;
  940. SET_CAUSE(node, "2.1");
  941. }
  942. }
  943. }
  944. // pass 2.2 expand gpu down
  945. {
  946. int cur_backend_id = -1;
  947. for (int i = 0; i < graph->n_nodes; i++) {
  948. struct ggml_tensor * node = graph->nodes[i];
  949. if (ggml_is_view_op(node->op)) {
  950. continue;
  951. }
  952. int tensor_backend_id = tensor_backend_id(node);
  953. if (tensor_backend_id != -1) {
  954. if (tensor_backend_id == sched->n_backends - 1) {
  955. // skip cpu (lowest prio backend)
  956. cur_backend_id = -1;
  957. } else {
  958. cur_backend_id = tensor_backend_id;
  959. }
  960. } else {
  961. tensor_backend_id(node) = cur_backend_id;
  962. SET_CAUSE(node, "2.2");
  963. }
  964. }
  965. }
  966. // pass 2.3 expand rest up
  967. {
  968. int cur_backend_id = -1;
  969. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  970. struct ggml_tensor * node = graph->nodes[i];
  971. if (ggml_is_view_op(node->op)) {
  972. continue;
  973. }
  974. int tensor_backend_id = tensor_backend_id(node);
  975. if (tensor_backend_id != -1) {
  976. cur_backend_id = tensor_backend_id;
  977. } else {
  978. tensor_backend_id(node) = cur_backend_id;
  979. SET_CAUSE(node, "2.3");
  980. }
  981. }
  982. }
  983. // pass 2.4 expand rest down
  984. {
  985. int cur_backend_id = -1;
  986. for (int i = 0; i < graph->n_nodes; i++) {
  987. struct ggml_tensor * node = graph->nodes[i];
  988. if (ggml_is_view_op(node->op)) {
  989. continue;
  990. }
  991. int tensor_backend_id = tensor_backend_id(node);
  992. if (tensor_backend_id != -1) {
  993. cur_backend_id = tensor_backend_id;
  994. } else {
  995. tensor_backend_id(node) = cur_backend_id;
  996. SET_CAUSE(node, "2.4");
  997. }
  998. }
  999. }
  1000. #ifdef DEBUG_PASS2
  1001. fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  1002. #endif
  1003. // pass 3: assign backends to remaining src from dst and view_src
  1004. for (int i = 0; i < graph->n_nodes; i++) {
  1005. struct ggml_tensor * node = graph->nodes[i];
  1006. int cur_backend_id = tensor_backend_id(node);
  1007. if (node->view_src != NULL && cur_backend_id == -1) {
  1008. cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src);
  1009. SET_CAUSE(node, "3.vsrc");
  1010. }
  1011. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1012. struct ggml_tensor * src = node->src[j];
  1013. if (src == NULL) {
  1014. continue;
  1015. }
  1016. int src_backend_id = tensor_backend_id(src);
  1017. if (src_backend_id == -1) {
  1018. if (src->view_src != NULL) {
  1019. // views are always on the same backend as the source
  1020. tensor_backend_id(src) = tensor_backend_id(src->view_src);
  1021. SET_CAUSE(src, "3.vsrc");
  1022. } else {
  1023. tensor_backend_id(src) = cur_backend_id;
  1024. SET_CAUSE(src, "3.cur");
  1025. }
  1026. }
  1027. }
  1028. }
  1029. #ifdef DEBUG_PASS3
  1030. fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  1031. #endif
  1032. // pass 4: split graph, find tensors that need to be copied
  1033. {
  1034. int cur_split = 0;
  1035. // find the backend of the first split, skipping view ops
  1036. for (int i = 0; i < graph->n_nodes; i++) {
  1037. struct ggml_tensor * node = graph->nodes[i];
  1038. if (!ggml_is_view_op(node->op)) {
  1039. sched->splits[0].backend_id = tensor_backend_id(node);
  1040. break;
  1041. }
  1042. }
  1043. sched->splits[0].i_start = 0;
  1044. sched->splits[0].n_inputs = 0;
  1045. memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
  1046. int cur_backend_id = sched->splits[0].backend_id;
  1047. for (int i = 0; i < graph->n_nodes; i++) {
  1048. struct ggml_tensor * node = graph->nodes[i];
  1049. if (ggml_is_view_op(node->op)) {
  1050. continue;
  1051. }
  1052. int tensor_backend_id = tensor_backend_id(node);
  1053. GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now
  1054. if (tensor_backend_id != cur_backend_id) {
  1055. sched->splits[cur_split].i_end = i;
  1056. cur_split++;
  1057. GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
  1058. sched->splits[cur_split].backend_id = tensor_backend_id;
  1059. sched->splits[cur_split].i_start = i;
  1060. sched->splits[cur_split].n_inputs = 0;
  1061. cur_backend_id = tensor_backend_id;
  1062. }
  1063. // find inputs that are not on the same backend
  1064. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1065. struct ggml_tensor * src = node->src[j];
  1066. if (src == NULL) {
  1067. continue;
  1068. }
  1069. int src_backend_id = tensor_backend_id(src);
  1070. assert(src_backend_id != -1); // all inputs should be assigned by now
  1071. if (src_backend_id != tensor_backend_id) {
  1072. // create a copy of the input in the split's backend
  1073. size_t id = hash_id(src);
  1074. if (sched->tensor_copies[id][cur_backend_id] == NULL) {
  1075. ggml_backend_t backend = sched->backends[cur_backend_id];
  1076. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1077. ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
  1078. sched->tensor_copies[id][cur_backend_id] = tensor_copy;
  1079. tensor_backend_id(tensor_copy) = cur_backend_id;
  1080. SET_CAUSE(tensor_copy, "4.cpy");
  1081. int n_inputs = sched->splits[cur_split].n_inputs++;
  1082. GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
  1083. sched->splits[cur_split].inputs[n_inputs] = src;
  1084. }
  1085. node->src[j] = sched->tensor_copies[id][cur_backend_id];
  1086. }
  1087. }
  1088. }
  1089. sched->splits[cur_split].i_end = graph->n_nodes;
  1090. sched->n_splits = cur_split + 1;
  1091. }
  1092. #ifdef DEBUG_PASS4
  1093. fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  1094. #endif
  1095. #ifndef NDEBUG
  1096. // sanity check: all sources should have the same backend as the node
  1097. for (int i = 0; i < graph->n_nodes; i++) {
  1098. struct ggml_tensor * node = graph->nodes[i];
  1099. ggml_backend_t tensor_backend = tensor_backend(node);
  1100. if (tensor_backend == NULL) {
  1101. fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
  1102. }
  1103. if (node->view_src != NULL && tensor_backend != tensor_backend(node->view_src)) {
  1104. fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
  1105. node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
  1106. node->view_src->name, tensor_backend(node->view_src) ? ggml_backend_name(tensor_backend(node->view_src)) : "NULL");
  1107. }
  1108. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1109. struct ggml_tensor * src = node->src[j];
  1110. if (src == NULL) {
  1111. continue;
  1112. }
  1113. ggml_backend_t src_backend = tensor_backend(src);
  1114. if (src_backend != tensor_backend /* && src_backend != NULL */) {
  1115. fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
  1116. node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
  1117. j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
  1118. }
  1119. if (src->view_src != NULL && src_backend != tensor_backend(src->view_src)) {
  1120. fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
  1121. src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
  1122. src->view_src->name, tensor_backend(src->view_src) ? ggml_backend_name(tensor_backend(src->view_src)) : "NULL");
  1123. }
  1124. }
  1125. }
  1126. fflush(stderr);
  1127. #endif
  1128. // create copies of the graph for each split
  1129. // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
  1130. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
  1131. for (int i = 0; i < sched->n_splits; i++) {
  1132. struct ggml_backend_sched_split * split = &sched->splits[i];
  1133. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1134. for (int j = 0; j < split->n_inputs; j++) {
  1135. struct ggml_tensor * input = split->inputs[j];
  1136. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id];
  1137. // add a dependency to the input source so that it is not freed before the copy is done
  1138. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1139. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
  1140. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1141. // add a dependency to the input copy so that it is allocated at the start of the split
  1142. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1143. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1144. }
  1145. for (int j = split->i_start; j < split->i_end; j++) {
  1146. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1147. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1148. }
  1149. }
  1150. sched->graph = graph_copy;
  1151. }
  1152. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1153. // ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
  1154. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1155. #ifndef NDEBUG
  1156. fprintf(stderr, "ggml_backend_sched: failed to allocate graph, reserving\n");
  1157. #endif
  1158. ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
  1159. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1160. fprintf(stderr, "ggml_backend_sched: failed to allocate graph\n");
  1161. return false;
  1162. }
  1163. }
  1164. return true;
  1165. }
  1166. static bool ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1167. uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
  1168. uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
  1169. struct ggml_backend_sched_split * splits = sched->splits;
  1170. for (int i = 0; i < sched->n_splits; i++) {
  1171. struct ggml_backend_sched_split * split = &splits[i];
  1172. int split_backend_id = split->backend_id;
  1173. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1174. // copy the input tensors to the split backend
  1175. uint64_t copy_start_us = ggml_time_us();
  1176. for (int j = 0; j < split->n_inputs; j++) {
  1177. struct ggml_tensor * input = split->inputs[j];
  1178. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id];
  1179. GGML_ASSERT(input->buffer != NULL);
  1180. GGML_ASSERT(input_cpy->buffer != NULL);
  1181. ggml_backend_tensor_copy_async(split_backend, input, input_cpy);
  1182. }
  1183. //ggml_backend_synchronize(split_backend); // necessary to measure copy time
  1184. int64_t copy_end_us = ggml_time_us();
  1185. copy_us[split_backend_id] += copy_end_us - copy_start_us;
  1186. #if 0
  1187. char split_filename[GGML_MAX_NAME];
  1188. snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
  1189. ggml_graph_dump_dot(split->graph, NULL, split_filename);
  1190. #endif
  1191. uint64_t compute_start_us = ggml_time_us();
  1192. if (!sched->callback_eval) {
  1193. if (!ggml_backend_graph_compute(split_backend, &split->graph)) {
  1194. return false;
  1195. }
  1196. //ggml_backend_synchronize(split_backend); // necessary to measure compute time
  1197. } else {
  1198. // similar to ggml_backend_compare_graph_backend
  1199. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1200. struct ggml_tensor * t = split->graph.nodes[j0];
  1201. // check if the user needs data from this node
  1202. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1203. int j1 = j0;
  1204. // determine the range [j0, j1] of nodes that can be computed together
  1205. while (!need && j1 < split->graph.n_nodes - 1) {
  1206. t = split->graph.nodes[++j1];
  1207. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1208. }
  1209. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1210. if (!ggml_backend_graph_compute(split_backend, &gv)) {
  1211. return false;
  1212. }
  1213. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1214. break;
  1215. }
  1216. j0 = j1;
  1217. }
  1218. }
  1219. uint64_t compute_end_us = ggml_time_us();
  1220. compute_us[split_backend_id] += compute_end_us - compute_start_us;
  1221. }
  1222. #if 0
  1223. // per-backend timings
  1224. fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
  1225. for (int i = 0; i < sched->n_backends; i++) {
  1226. if (copy_us[i] > 0 || compute_us[i] > 0) {
  1227. fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
  1228. }
  1229. }
  1230. #endif
  1231. return true;
  1232. }
  1233. ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size) {
  1234. GGML_ASSERT(n_backends > 0);
  1235. GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
  1236. struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
  1237. // initialize hash table
  1238. sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
  1239. sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
  1240. sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
  1241. sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
  1242. sched->n_backends = n_backends;
  1243. for (int i = 0; i < n_backends; i++) {
  1244. sched->backends[i] = backends[i];
  1245. sched->bufts[i] = bufts ? bufts[i] : ggml_backend_get_default_buffer_type(backends[i]);
  1246. }
  1247. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1248. ggml_backend_sched_reset(sched);
  1249. return sched;
  1250. }
  1251. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1252. if (sched == NULL) {
  1253. return;
  1254. }
  1255. ggml_gallocr_free(sched->galloc);
  1256. ggml_free(sched->ctx);
  1257. free(sched->hash_set.keys);
  1258. free(sched->tensor_backend_id);
  1259. free(sched->tensor_copies);
  1260. free(sched->node_backend_ids);
  1261. free(sched);
  1262. }
  1263. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1264. // reset state for the next run
  1265. size_t hash_size = sched->hash_set.size;
  1266. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
  1267. memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
  1268. memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
  1269. sched->is_reset = true;
  1270. }
  1271. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1272. ggml_backend_sched_split_graph(sched, measure_graph);
  1273. if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids)) {
  1274. return false;
  1275. }
  1276. ggml_backend_sched_reset(sched);
  1277. return true;
  1278. }
  1279. bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1280. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
  1281. if (!sched->is_reset) {
  1282. ggml_backend_sched_reset(sched);
  1283. }
  1284. ggml_backend_sched_split_graph(sched, graph);
  1285. if (!ggml_backend_sched_alloc_splits(sched)) {
  1286. return false;
  1287. }
  1288. if (!ggml_backend_sched_compute_splits(sched)) {
  1289. return false;
  1290. }
  1291. return true;
  1292. }
  1293. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1294. sched->callback_eval = callback;
  1295. sched->callback_eval_user_data = user_data;
  1296. }
  1297. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1298. return sched->n_splits;
  1299. }
  1300. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1301. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1302. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1303. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1304. }
  1305. void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1306. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1307. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1308. tensor_backend_id(node) = backend_index;
  1309. }
  1310. ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1311. int backend_index = tensor_backend_id(node);
  1312. if (backend_index == -1) {
  1313. return NULL;
  1314. }
  1315. return sched->backends[backend_index];
  1316. }
  1317. // utils
  1318. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1319. GGML_ASSERT(tensor->buffer == NULL);
  1320. GGML_ASSERT(tensor->view_src != NULL);
  1321. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1322. GGML_ASSERT(tensor->view_src->data != NULL);
  1323. tensor->buffer = buffer;
  1324. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1325. tensor->backend = tensor->view_src->backend;
  1326. ggml_backend_buffer_init_tensor(buffer, tensor);
  1327. }
  1328. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1329. GGML_ASSERT(tensor->buffer == NULL);
  1330. GGML_ASSERT(tensor->data == NULL);
  1331. GGML_ASSERT(tensor->view_src == NULL);
  1332. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1333. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1334. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1335. tensor->buffer = buffer;
  1336. tensor->data = addr;
  1337. ggml_backend_buffer_init_tensor(buffer, tensor);
  1338. }
  1339. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1340. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1341. GGML_ASSERT(src != NULL);
  1342. GGML_ASSERT(src->data && "graph must be allocated");
  1343. size_t id = ggml_hash_insert(hash_set, src);
  1344. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1345. return node_copies[ggml_hash_find(hash_set, src)];
  1346. }
  1347. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1348. if (src->view_src != NULL) {
  1349. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1350. dst->view_offs = src->view_offs;
  1351. }
  1352. dst->op = src->op;
  1353. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1354. ggml_set_name(dst, src->name);
  1355. // copy src
  1356. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1357. struct ggml_tensor * s = src->src[i];
  1358. if (s == NULL) {
  1359. continue;
  1360. }
  1361. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1362. }
  1363. node_copies[id] = dst;
  1364. return dst;
  1365. }
  1366. static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1367. size_t id = ggml_hash_find(hash_set, src);
  1368. if (node_init[id]) {
  1369. return;
  1370. }
  1371. node_init[id] = true;
  1372. struct ggml_tensor * dst = node_copies[id];
  1373. if (dst->view_src != NULL) {
  1374. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1375. ggml_backend_view_init(dst->view_src->buffer, dst);
  1376. }
  1377. else {
  1378. ggml_backend_tensor_copy(src, dst);
  1379. }
  1380. // init src
  1381. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1382. struct ggml_tensor * s = src->src[i];
  1383. if (s == NULL) {
  1384. continue;
  1385. }
  1386. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1387. }
  1388. }
  1389. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1390. struct ggml_hash_set hash_set = {
  1391. /* .size = */ graph->visited_hash_table.size,
  1392. /* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT
  1393. };
  1394. struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT
  1395. bool * node_init = calloc(sizeof(node_init[0]), hash_set.size);
  1396. struct ggml_init_params params = {
  1397. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1398. /* .mem_buffer = */ NULL,
  1399. /* .no_alloc = */ true
  1400. };
  1401. struct ggml_context * ctx_allocated = ggml_init(params);
  1402. struct ggml_context * ctx_unallocated = ggml_init(params);
  1403. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1404. fprintf(stderr, "failed to allocate context for graph copy\n");
  1405. free(hash_set.keys);
  1406. free(node_copies);
  1407. free(node_init);
  1408. ggml_free(ctx_allocated);
  1409. ggml_free(ctx_unallocated);
  1410. return (struct ggml_backend_graph_copy) {
  1411. /* .buffer = */ NULL,
  1412. /* .ctx_allocated = */ NULL,
  1413. /* .ctx_unallocated = */ NULL,
  1414. /* .graph = */ NULL,
  1415. };
  1416. }
  1417. // dup nodes
  1418. for (int i = 0; i < graph->n_nodes; i++) {
  1419. struct ggml_tensor * node = graph->nodes[i];
  1420. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1421. }
  1422. // allocate nodes
  1423. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1424. if (buffer == NULL) {
  1425. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1426. free(hash_set.keys);
  1427. free(node_copies);
  1428. free(node_init);
  1429. ggml_free(ctx_allocated);
  1430. ggml_free(ctx_unallocated);
  1431. return (struct ggml_backend_graph_copy) {
  1432. /* .buffer = */ NULL,
  1433. /* .ctx_allocated = */ NULL,
  1434. /* .ctx_unallocated = */ NULL,
  1435. /* .graph = */ NULL,
  1436. };
  1437. }
  1438. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1439. // copy data and init views
  1440. for (int i = 0; i < graph->n_nodes; i++) {
  1441. struct ggml_tensor * node = graph->nodes[i];
  1442. graph_copy_init_tensor(hash_set, node_copies, node_init, node);
  1443. }
  1444. // build graph copy
  1445. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1446. for (int i = 0; i < graph->n_nodes; i++) {
  1447. struct ggml_tensor * node = graph->nodes[i];
  1448. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1449. graph_copy->nodes[i] = node_copy;
  1450. }
  1451. graph_copy->n_nodes = graph->n_nodes;
  1452. free(hash_set.keys);
  1453. free(node_copies);
  1454. free(node_init);
  1455. return (struct ggml_backend_graph_copy) {
  1456. /* .buffer = */ buffer,
  1457. /* .ctx_allocated = */ ctx_allocated,
  1458. /* .ctx_unallocated = */ ctx_unallocated,
  1459. /* .graph = */ graph_copy,
  1460. };
  1461. }
  1462. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1463. ggml_backend_buffer_free(copy.buffer);
  1464. ggml_free(copy.ctx_allocated);
  1465. ggml_free(copy.ctx_unallocated);
  1466. }
  1467. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1468. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1469. if (copy.buffer == NULL) {
  1470. return false;
  1471. }
  1472. struct ggml_cgraph * g1 = graph;
  1473. struct ggml_cgraph * g2 = copy.graph;
  1474. assert(g1->n_nodes == g2->n_nodes);
  1475. for (int i = 0; i < g1->n_nodes; i++) {
  1476. //printf("eval %d/%d\n", i, g1->n_nodes);
  1477. struct ggml_tensor * t1 = g1->nodes[i];
  1478. struct ggml_tensor * t2 = g2->nodes[i];
  1479. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1480. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1481. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1482. ggml_backend_graph_compute(backend1, &g1v);
  1483. ggml_backend_graph_compute(backend2, &g2v);
  1484. if (ggml_is_view_op(t1->op)) {
  1485. continue;
  1486. }
  1487. // compare results, calculate rms etc
  1488. if (!callback(i, t1, t2, user_data)) {
  1489. break;
  1490. }
  1491. }
  1492. ggml_backend_graph_copy_free(copy);
  1493. return true;
  1494. }