ggml.c 670 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. GGML_ASSERT(false);
  185. return NULL;
  186. }
  187. return aligned_memory;
  188. }
  189. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  190. #ifdef GGML_USE_CPU_HBM
  191. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  192. #else
  193. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  194. #endif
  195. #endif
  196. inline static void * ggml_malloc(size_t size) {
  197. if (size == 0) {
  198. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  199. return NULL;
  200. }
  201. void * result = malloc(size);
  202. if (result == NULL) {
  203. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  204. GGML_ASSERT(false);
  205. }
  206. return result;
  207. }
  208. // calloc
  209. inline static void * ggml_calloc(size_t num, size_t size) {
  210. if (num == 0 || size == 0) {
  211. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  212. return NULL;
  213. }
  214. void * result = calloc(num, size);
  215. if (result == NULL) {
  216. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  217. GGML_ASSERT(false);
  218. }
  219. return result;
  220. }
  221. #define GGML_MALLOC(size) ggml_malloc(size)
  222. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  223. #define GGML_FREE(ptr) free(ptr)
  224. #define UNUSED GGML_UNUSED
  225. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  226. #if defined(GGML_USE_ACCELERATE)
  227. #include <Accelerate/Accelerate.h>
  228. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  229. #include "ggml-opencl.h"
  230. #endif
  231. #elif defined(GGML_USE_OPENBLAS)
  232. #if defined(GGML_BLAS_USE_MKL)
  233. #include <mkl.h>
  234. #else
  235. #include <cblas.h>
  236. #endif
  237. #elif defined(GGML_USE_CUBLAS)
  238. #include "ggml-cuda.h"
  239. #elif defined(GGML_USE_CLBLAST)
  240. #include "ggml-opencl.h"
  241. #elif defined(GGML_USE_VULKAN)
  242. #include "ggml-vulkan.h"
  243. #elif defined(GGML_USE_SYCL)
  244. #include "ggml-sycl.h"
  245. #endif
  246. // floating point type used to accumulate sums
  247. typedef double ggml_float;
  248. #undef MIN
  249. #undef MAX
  250. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  251. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  252. //
  253. // global data
  254. //
  255. // precomputed gelu table for f16 (128 KB)
  256. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  257. // precomputed quick gelu table for f16 (128 KB)
  258. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  259. // precomputed silu table for f16 (128 KB)
  260. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  261. // precomputed exp table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  263. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  264. float ggml_table_f32_f16[1 << 16];
  265. // note: do not use these inside ggml.c
  266. // these are meant to be used via the ggml.h API
  267. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  268. return (float) GGML_FP16_TO_FP32(x);
  269. }
  270. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  271. return GGML_FP32_TO_FP16(x);
  272. }
  273. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  274. for (int i = 0; i < n; i++) {
  275. y[i] = GGML_FP16_TO_FP32(x[i]);
  276. }
  277. }
  278. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  279. int i = 0;
  280. #if defined(__F16C__)
  281. for (; i + 7 < n; i += 8) {
  282. __m256 x_vec = _mm256_loadu_ps(x + i);
  283. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  284. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  285. }
  286. for(; i + 3 < n; i += 4) {
  287. __m128 x_vec = _mm_loadu_ps(x + i);
  288. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  290. }
  291. #endif
  292. for (; i < n; i++) {
  293. y[i] = GGML_FP32_TO_FP16(x[i]);
  294. }
  295. }
  296. //
  297. // timing
  298. //
  299. #if defined(_MSC_VER) || defined(__MINGW32__)
  300. static int64_t timer_freq, timer_start;
  301. void ggml_time_init(void) {
  302. LARGE_INTEGER t;
  303. QueryPerformanceFrequency(&t);
  304. timer_freq = t.QuadPart;
  305. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  306. // and the uptime is high enough.
  307. // We subtract the program start time to reduce the likelihood of that happening.
  308. QueryPerformanceCounter(&t);
  309. timer_start = t.QuadPart;
  310. }
  311. int64_t ggml_time_ms(void) {
  312. LARGE_INTEGER t;
  313. QueryPerformanceCounter(&t);
  314. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  315. }
  316. int64_t ggml_time_us(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  320. }
  321. #else
  322. void ggml_time_init(void) {}
  323. int64_t ggml_time_ms(void) {
  324. struct timespec ts;
  325. clock_gettime(CLOCK_MONOTONIC, &ts);
  326. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  327. }
  328. int64_t ggml_time_us(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  332. }
  333. #endif
  334. int64_t ggml_cycles(void) {
  335. return clock();
  336. }
  337. int64_t ggml_cycles_per_ms(void) {
  338. return CLOCKS_PER_SEC/1000;
  339. }
  340. #ifdef GGML_PERF
  341. #define ggml_perf_time_ms() ggml_time_ms()
  342. #define ggml_perf_time_us() ggml_time_us()
  343. #define ggml_perf_cycles() ggml_cycles()
  344. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  345. #else
  346. #define ggml_perf_time_ms() 0
  347. #define ggml_perf_time_us() 0
  348. #define ggml_perf_cycles() 0
  349. #define ggml_perf_cycles_per_ms() 0
  350. #endif
  351. //
  352. // cache line
  353. //
  354. #if defined(__cpp_lib_hardware_interference_size)
  355. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  356. #else
  357. #if defined(__POWER9_VECTOR__)
  358. #define CACHE_LINE_SIZE 128
  359. #else
  360. #define CACHE_LINE_SIZE 64
  361. #endif
  362. #endif
  363. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  364. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  365. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  366. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  367. [GGML_TYPE_I8] = {
  368. .type_name = "i8",
  369. .blck_size = 1,
  370. .type_size = sizeof(int8_t),
  371. .is_quantized = false,
  372. },
  373. [GGML_TYPE_I16] = {
  374. .type_name = "i16",
  375. .blck_size = 1,
  376. .type_size = sizeof(int16_t),
  377. .is_quantized = false,
  378. },
  379. [GGML_TYPE_I32] = {
  380. .type_name = "i32",
  381. .blck_size = 1,
  382. .type_size = sizeof(int32_t),
  383. .is_quantized = false,
  384. },
  385. [GGML_TYPE_F32] = {
  386. .type_name = "f32",
  387. .blck_size = 1,
  388. .type_size = sizeof(float),
  389. .is_quantized = false,
  390. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  391. .vec_dot_type = GGML_TYPE_F32,
  392. .nrows = 1,
  393. },
  394. [GGML_TYPE_F16] = {
  395. .type_name = "f16",
  396. .blck_size = 1,
  397. .type_size = sizeof(ggml_fp16_t),
  398. .is_quantized = false,
  399. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  400. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  401. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  402. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  403. .vec_dot_type = GGML_TYPE_F16,
  404. .nrows = 1,
  405. },
  406. [GGML_TYPE_Q4_0] = {
  407. .type_name = "q4_0",
  408. .blck_size = QK4_0,
  409. .type_size = sizeof(block_q4_0),
  410. .is_quantized = true,
  411. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  412. .from_float = quantize_row_q4_0,
  413. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  414. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  415. .vec_dot_type = GGML_TYPE_Q8_0,
  416. #if defined (__ARM_FEATURE_MATMUL_INT8)
  417. .nrows = 2,
  418. #else
  419. .nrows = 1,
  420. #endif
  421. },
  422. [GGML_TYPE_Q4_1] = {
  423. .type_name = "q4_1",
  424. .blck_size = QK4_1,
  425. .type_size = sizeof(block_q4_1),
  426. .is_quantized = true,
  427. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  428. .from_float = quantize_row_q4_1,
  429. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  430. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  431. .vec_dot_type = GGML_TYPE_Q8_1,
  432. #if defined (__ARM_FEATURE_MATMUL_INT8)
  433. .nrows = 2,
  434. #else
  435. .nrows = 1,
  436. #endif
  437. },
  438. [4] = { // GGML_TYPE_Q4_2
  439. .type_name = "DEPRECATED",
  440. .blck_size = 0,
  441. .type_size = 0,
  442. .is_quantized = false,
  443. .to_float = NULL,
  444. .from_float = NULL,
  445. .from_float_reference = NULL,
  446. .vec_dot = NULL,
  447. .vec_dot_type = GGML_TYPE_COUNT,
  448. .nrows = 1,
  449. },
  450. [5] = { // GGML_TYPE_Q4_3
  451. .type_name = "DEPRECATED",
  452. .blck_size = 0,
  453. .type_size = 0,
  454. .is_quantized = false,
  455. .to_float = NULL,
  456. .from_float = NULL,
  457. .from_float_reference = NULL,
  458. .vec_dot = NULL,
  459. .vec_dot_type = GGML_TYPE_COUNT,
  460. .nrows = 1,
  461. },
  462. [GGML_TYPE_Q5_0] = {
  463. .type_name = "q5_0",
  464. .blck_size = QK5_0,
  465. .type_size = sizeof(block_q5_0),
  466. .is_quantized = true,
  467. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  468. .from_float = quantize_row_q5_0,
  469. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  470. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  471. .vec_dot_type = GGML_TYPE_Q8_0,
  472. .nrows = 1,
  473. },
  474. [GGML_TYPE_Q5_1] = {
  475. .type_name = "q5_1",
  476. .blck_size = QK5_1,
  477. .type_size = sizeof(block_q5_1),
  478. .is_quantized = true,
  479. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  480. .from_float = quantize_row_q5_1,
  481. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  482. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  483. .vec_dot_type = GGML_TYPE_Q8_1,
  484. .nrows = 1,
  485. },
  486. [GGML_TYPE_Q8_0] = {
  487. .type_name = "q8_0",
  488. .blck_size = QK8_0,
  489. .type_size = sizeof(block_q8_0),
  490. .is_quantized = true,
  491. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  492. .from_float = quantize_row_q8_0,
  493. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  494. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  495. .vec_dot_type = GGML_TYPE_Q8_0,
  496. #if defined (__ARM_FEATURE_MATMUL_INT8)
  497. .nrows = 2,
  498. #else
  499. .nrows = 1,
  500. #endif
  501. },
  502. [GGML_TYPE_Q8_1] = {
  503. .type_name = "q8_1",
  504. .blck_size = QK8_1,
  505. .type_size = sizeof(block_q8_1),
  506. .is_quantized = true,
  507. .from_float = quantize_row_q8_1,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  509. .vec_dot_type = GGML_TYPE_Q8_1,
  510. .nrows = 1,
  511. },
  512. [GGML_TYPE_Q2_K] = {
  513. .type_name = "q2_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q2_K),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  518. .from_float = quantize_row_q2_K,
  519. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  520. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. .nrows = 1,
  523. },
  524. [GGML_TYPE_Q3_K] = {
  525. .type_name = "q3_K",
  526. .blck_size = QK_K,
  527. .type_size = sizeof(block_q3_K),
  528. .is_quantized = true,
  529. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  530. .from_float = quantize_row_q3_K,
  531. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  532. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  533. .vec_dot_type = GGML_TYPE_Q8_K,
  534. .nrows = 1,
  535. },
  536. [GGML_TYPE_Q4_K] = {
  537. .type_name = "q4_K",
  538. .blck_size = QK_K,
  539. .type_size = sizeof(block_q4_K),
  540. .is_quantized = true,
  541. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  542. .from_float = quantize_row_q4_K,
  543. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  544. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  545. .vec_dot_type = GGML_TYPE_Q8_K,
  546. .nrows = 1,
  547. },
  548. [GGML_TYPE_Q5_K] = {
  549. .type_name = "q5_K",
  550. .blck_size = QK_K,
  551. .type_size = sizeof(block_q5_K),
  552. .is_quantized = true,
  553. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  554. .from_float = quantize_row_q5_K,
  555. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  556. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  557. .vec_dot_type = GGML_TYPE_Q8_K,
  558. .nrows = 1,
  559. },
  560. [GGML_TYPE_Q6_K] = {
  561. .type_name = "q6_K",
  562. .blck_size = QK_K,
  563. .type_size = sizeof(block_q6_K),
  564. .is_quantized = true,
  565. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  566. .from_float = quantize_row_q6_K,
  567. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  568. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  569. .vec_dot_type = GGML_TYPE_Q8_K,
  570. .nrows = 1,
  571. },
  572. [GGML_TYPE_IQ2_XXS] = {
  573. .type_name = "iq2_xxs",
  574. .blck_size = QK_K,
  575. .type_size = sizeof(block_iq2_xxs),
  576. .is_quantized = true,
  577. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  578. .from_float = NULL,
  579. .from_float_reference = NULL,
  580. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  581. .vec_dot_type = GGML_TYPE_Q8_K,
  582. .nrows = 1,
  583. },
  584. [GGML_TYPE_IQ2_XS] = {
  585. .type_name = "iq2_xs",
  586. .blck_size = QK_K,
  587. .type_size = sizeof(block_iq2_xs),
  588. .is_quantized = true,
  589. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  590. .from_float = NULL,
  591. .from_float_reference = NULL,
  592. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  593. .vec_dot_type = GGML_TYPE_Q8_K,
  594. .nrows = 1,
  595. },
  596. [GGML_TYPE_IQ3_XXS] = {
  597. .type_name = "iq3_xxs",
  598. .blck_size = QK_K,
  599. .type_size = sizeof(block_iq3_xxs),
  600. .is_quantized = true,
  601. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  602. .from_float = quantize_row_iq3_xxs,
  603. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  604. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  605. .vec_dot_type = GGML_TYPE_Q8_K,
  606. .nrows = 1,
  607. },
  608. [GGML_TYPE_Q8_K] = {
  609. .type_name = "q8_K",
  610. .blck_size = QK_K,
  611. .type_size = sizeof(block_q8_K),
  612. .is_quantized = true,
  613. .from_float = quantize_row_q8_K,
  614. }
  615. };
  616. // For internal test use
  617. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  618. GGML_ASSERT(type < GGML_TYPE_COUNT);
  619. return type_traits[type];
  620. }
  621. //
  622. // simd mappings
  623. //
  624. #if defined(__ARM_NEON)
  625. #if !defined(__aarch64__)
  626. // 64-bit compatibility
  627. inline static float vaddvq_f32(float32x4_t v) {
  628. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  629. }
  630. #endif
  631. #endif
  632. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  633. // we then implement the fundamental computation operations below using only these macros
  634. // adding support for new architectures requires to define the corresponding SIMD macros
  635. //
  636. // GGML_F32_STEP / GGML_F16_STEP
  637. // number of elements to process in a single step
  638. //
  639. // GGML_F32_EPR / GGML_F16_EPR
  640. // number of elements to fit in a single register
  641. //
  642. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  643. #define GGML_SIMD
  644. // F32 NEON
  645. #define GGML_F32_STEP 16
  646. #define GGML_F32_EPR 4
  647. #define GGML_F32x4 float32x4_t
  648. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  649. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  650. #define GGML_F32x4_LOAD vld1q_f32
  651. #define GGML_F32x4_STORE vst1q_f32
  652. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  653. #define GGML_F32x4_ADD vaddq_f32
  654. #define GGML_F32x4_MUL vmulq_f32
  655. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  656. #define GGML_F32x4_REDUCE(res, x) \
  657. { \
  658. int offset = GGML_F32_ARR >> 1; \
  659. for (int i = 0; i < offset; ++i) { \
  660. x[i] = vaddq_f32(x[i], x[offset+i]); \
  661. } \
  662. offset >>= 1; \
  663. for (int i = 0; i < offset; ++i) { \
  664. x[i] = vaddq_f32(x[i], x[offset+i]); \
  665. } \
  666. offset >>= 1; \
  667. for (int i = 0; i < offset; ++i) { \
  668. x[i] = vaddq_f32(x[i], x[offset+i]); \
  669. } \
  670. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  671. }
  672. #define GGML_F32_VEC GGML_F32x4
  673. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  674. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  675. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  676. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  677. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  678. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  679. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  680. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  681. // F16 NEON
  682. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  683. #define GGML_F16_STEP 32
  684. #define GGML_F16_EPR 8
  685. #define GGML_F16x8 float16x8_t
  686. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  687. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  688. #define GGML_F16x8_LOAD vld1q_f16
  689. #define GGML_F16x8_STORE vst1q_f16
  690. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  691. #define GGML_F16x8_ADD vaddq_f16
  692. #define GGML_F16x8_MUL vmulq_f16
  693. #define GGML_F16x8_REDUCE(res, x) \
  694. do { \
  695. int offset = GGML_F16_ARR >> 1; \
  696. for (int i = 0; i < offset; ++i) { \
  697. x[i] = vaddq_f16(x[i], x[offset+i]); \
  698. } \
  699. offset >>= 1; \
  700. for (int i = 0; i < offset; ++i) { \
  701. x[i] = vaddq_f16(x[i], x[offset+i]); \
  702. } \
  703. offset >>= 1; \
  704. for (int i = 0; i < offset; ++i) { \
  705. x[i] = vaddq_f16(x[i], x[offset+i]); \
  706. } \
  707. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  708. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  709. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  710. } while (0)
  711. #define GGML_F16_VEC GGML_F16x8
  712. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  713. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  714. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  715. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  716. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  717. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  718. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  719. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  720. #else
  721. // if FP16 vector arithmetic is not supported, we use FP32 instead
  722. // and take advantage of the vcvt_ functions to convert to/from FP16
  723. #define GGML_F16_STEP 16
  724. #define GGML_F16_EPR 4
  725. #define GGML_F32Cx4 float32x4_t
  726. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  727. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  728. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  729. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  730. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  731. #define GGML_F32Cx4_ADD vaddq_f32
  732. #define GGML_F32Cx4_MUL vmulq_f32
  733. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  734. #define GGML_F16_VEC GGML_F32Cx4
  735. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  736. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  737. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  738. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  739. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  740. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  741. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  742. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  743. #endif
  744. #elif defined(__AVX__)
  745. #define GGML_SIMD
  746. // F32 AVX
  747. #define GGML_F32_STEP 32
  748. #define GGML_F32_EPR 8
  749. #define GGML_F32x8 __m256
  750. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  751. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  752. #define GGML_F32x8_LOAD _mm256_loadu_ps
  753. #define GGML_F32x8_STORE _mm256_storeu_ps
  754. #if defined(__FMA__)
  755. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  756. #else
  757. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  758. #endif
  759. #define GGML_F32x8_ADD _mm256_add_ps
  760. #define GGML_F32x8_MUL _mm256_mul_ps
  761. #define GGML_F32x8_REDUCE(res, x) \
  762. do { \
  763. int offset = GGML_F32_ARR >> 1; \
  764. for (int i = 0; i < offset; ++i) { \
  765. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  766. } \
  767. offset >>= 1; \
  768. for (int i = 0; i < offset; ++i) { \
  769. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  770. } \
  771. offset >>= 1; \
  772. for (int i = 0; i < offset; ++i) { \
  773. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  774. } \
  775. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  776. _mm256_extractf128_ps(x[0], 1)); \
  777. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  778. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  779. } while (0)
  780. // TODO: is this optimal ?
  781. #define GGML_F32_VEC GGML_F32x8
  782. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  783. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  784. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  785. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  786. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  787. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  788. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  789. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  790. // F16 AVX
  791. #define GGML_F16_STEP 32
  792. #define GGML_F16_EPR 8
  793. // F16 arithmetic is not supported by AVX, so we use F32 instead
  794. #define GGML_F32Cx8 __m256
  795. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  796. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  797. #if defined(__F16C__)
  798. // the _mm256_cvt intrinsics require F16C
  799. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  800. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  801. #else
  802. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  803. float tmp[8];
  804. for (int i = 0; i < 8; i++) {
  805. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  806. }
  807. return _mm256_loadu_ps(tmp);
  808. }
  809. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  810. float arr[8];
  811. _mm256_storeu_ps(arr, y);
  812. for (int i = 0; i < 8; i++)
  813. x[i] = GGML_FP32_TO_FP16(arr[i]);
  814. }
  815. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  816. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  817. #endif
  818. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  819. #define GGML_F32Cx8_ADD _mm256_add_ps
  820. #define GGML_F32Cx8_MUL _mm256_mul_ps
  821. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  822. #define GGML_F16_VEC GGML_F32Cx8
  823. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  824. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  825. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  826. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  827. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  828. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  829. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  830. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  831. #elif defined(__POWER9_VECTOR__)
  832. #define GGML_SIMD
  833. // F32 POWER9
  834. #define GGML_F32_STEP 32
  835. #define GGML_F32_EPR 4
  836. #define GGML_F32x4 vector float
  837. #define GGML_F32x4_ZERO 0.0f
  838. #define GGML_F32x4_SET1 vec_splats
  839. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  840. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  841. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  842. #define GGML_F32x4_ADD vec_add
  843. #define GGML_F32x4_MUL vec_mul
  844. #define GGML_F32x4_REDUCE(res, x) \
  845. { \
  846. int offset = GGML_F32_ARR >> 1; \
  847. for (int i = 0; i < offset; ++i) { \
  848. x[i] = vec_add(x[i], x[offset+i]); \
  849. } \
  850. offset >>= 1; \
  851. for (int i = 0; i < offset; ++i) { \
  852. x[i] = vec_add(x[i], x[offset+i]); \
  853. } \
  854. offset >>= 1; \
  855. for (int i = 0; i < offset; ++i) { \
  856. x[i] = vec_add(x[i], x[offset+i]); \
  857. } \
  858. res = vec_extract(x[0], 0) + \
  859. vec_extract(x[0], 1) + \
  860. vec_extract(x[0], 2) + \
  861. vec_extract(x[0], 3); \
  862. }
  863. #define GGML_F32_VEC GGML_F32x4
  864. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  865. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  866. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  867. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  868. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  869. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  870. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  871. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  872. // F16 POWER9
  873. #define GGML_F16_STEP GGML_F32_STEP
  874. #define GGML_F16_EPR GGML_F32_EPR
  875. #define GGML_F16_VEC GGML_F32x4
  876. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  879. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  880. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  881. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  882. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  883. vec_extract_fp32_from_shortl(vec_xl(0, p))
  884. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  885. #define GGML_F16_VEC_STORE(p, r, i) \
  886. if (i & 0x1) \
  887. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  888. r[i - GGML_ENDIAN_BYTE(0)]), \
  889. 0, p - GGML_F16_EPR)
  890. #elif defined(__wasm_simd128__)
  891. #define GGML_SIMD
  892. // F32 WASM
  893. #define GGML_F32_STEP 16
  894. #define GGML_F32_EPR 4
  895. #define GGML_F32x4 v128_t
  896. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  897. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  898. #define GGML_F32x4_LOAD wasm_v128_load
  899. #define GGML_F32x4_STORE wasm_v128_store
  900. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  901. #define GGML_F32x4_ADD wasm_f32x4_add
  902. #define GGML_F32x4_MUL wasm_f32x4_mul
  903. #define GGML_F32x4_REDUCE(res, x) \
  904. { \
  905. int offset = GGML_F32_ARR >> 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  908. } \
  909. offset >>= 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  912. } \
  913. offset >>= 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  916. } \
  917. res = wasm_f32x4_extract_lane(x[0], 0) + \
  918. wasm_f32x4_extract_lane(x[0], 1) + \
  919. wasm_f32x4_extract_lane(x[0], 2) + \
  920. wasm_f32x4_extract_lane(x[0], 3); \
  921. }
  922. #define GGML_F32_VEC GGML_F32x4
  923. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  924. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  925. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  926. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  927. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  928. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  929. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  930. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  931. // F16 WASM
  932. #define GGML_F16_STEP 16
  933. #define GGML_F16_EPR 4
  934. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  935. float tmp[4];
  936. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  937. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  938. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  939. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  940. return wasm_v128_load(tmp);
  941. }
  942. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  943. float tmp[4];
  944. wasm_v128_store(tmp, x);
  945. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  946. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  947. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  948. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  949. }
  950. #define GGML_F16x4 v128_t
  951. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  952. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  953. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  954. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  955. #define GGML_F16x4_FMA GGML_F32x4_FMA
  956. #define GGML_F16x4_ADD wasm_f32x4_add
  957. #define GGML_F16x4_MUL wasm_f32x4_mul
  958. #define GGML_F16x4_REDUCE(res, x) \
  959. { \
  960. int offset = GGML_F16_ARR >> 1; \
  961. for (int i = 0; i < offset; ++i) { \
  962. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  963. } \
  964. offset >>= 1; \
  965. for (int i = 0; i < offset; ++i) { \
  966. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  967. } \
  968. offset >>= 1; \
  969. for (int i = 0; i < offset; ++i) { \
  970. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  971. } \
  972. res = wasm_f32x4_extract_lane(x[0], 0) + \
  973. wasm_f32x4_extract_lane(x[0], 1) + \
  974. wasm_f32x4_extract_lane(x[0], 2) + \
  975. wasm_f32x4_extract_lane(x[0], 3); \
  976. }
  977. #define GGML_F16_VEC GGML_F16x4
  978. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  979. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  980. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  981. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  982. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  983. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  984. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  985. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  986. #elif defined(__SSE3__)
  987. #define GGML_SIMD
  988. // F32 SSE
  989. #define GGML_F32_STEP 32
  990. #define GGML_F32_EPR 4
  991. #define GGML_F32x4 __m128
  992. #define GGML_F32x4_ZERO _mm_setzero_ps()
  993. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  994. #define GGML_F32x4_LOAD _mm_loadu_ps
  995. #define GGML_F32x4_STORE _mm_storeu_ps
  996. #if defined(__FMA__)
  997. // TODO: Does this work?
  998. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  999. #else
  1000. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1001. #endif
  1002. #define GGML_F32x4_ADD _mm_add_ps
  1003. #define GGML_F32x4_MUL _mm_mul_ps
  1004. #define GGML_F32x4_REDUCE(res, x) \
  1005. { \
  1006. int offset = GGML_F32_ARR >> 1; \
  1007. for (int i = 0; i < offset; ++i) { \
  1008. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1009. } \
  1010. offset >>= 1; \
  1011. for (int i = 0; i < offset; ++i) { \
  1012. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1013. } \
  1014. offset >>= 1; \
  1015. for (int i = 0; i < offset; ++i) { \
  1016. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1017. } \
  1018. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1019. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1020. }
  1021. // TODO: is this optimal ?
  1022. #define GGML_F32_VEC GGML_F32x4
  1023. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1024. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1025. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1026. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1027. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1028. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1029. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1030. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1031. // F16 SSE
  1032. #define GGML_F16_STEP 32
  1033. #define GGML_F16_EPR 4
  1034. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1035. float tmp[4];
  1036. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1037. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1038. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1039. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1040. return _mm_loadu_ps(tmp);
  1041. }
  1042. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1043. float arr[4];
  1044. _mm_storeu_ps(arr, y);
  1045. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1046. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1047. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1048. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1049. }
  1050. #define GGML_F32Cx4 __m128
  1051. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1052. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1053. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1054. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1055. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1056. #define GGML_F32Cx4_ADD _mm_add_ps
  1057. #define GGML_F32Cx4_MUL _mm_mul_ps
  1058. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1059. #define GGML_F16_VEC GGML_F32Cx4
  1060. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1061. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1062. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1063. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1064. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1065. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1066. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1067. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1068. #endif
  1069. // GGML_F32_ARR / GGML_F16_ARR
  1070. // number of registers to use per step
  1071. #ifdef GGML_SIMD
  1072. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1073. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1074. #endif
  1075. //
  1076. // fundamental operations
  1077. //
  1078. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1079. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1080. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1081. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1082. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1083. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1084. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1085. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1086. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1087. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1088. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1089. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1090. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1091. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1092. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1093. assert(nrc == 1);
  1094. UNUSED(nrc);
  1095. UNUSED(bx);
  1096. UNUSED(by);
  1097. UNUSED(bs);
  1098. #ifdef GGML_SIMD
  1099. float sumf = 0.0f;
  1100. const int np = (n & ~(GGML_F32_STEP - 1));
  1101. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1102. GGML_F32_VEC ax[GGML_F32_ARR];
  1103. GGML_F32_VEC ay[GGML_F32_ARR];
  1104. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1105. for (int j = 0; j < GGML_F32_ARR; j++) {
  1106. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1107. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1108. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1109. }
  1110. }
  1111. // reduce sum0..sum3 to sum0
  1112. GGML_F32_VEC_REDUCE(sumf, sum);
  1113. // leftovers
  1114. for (int i = np; i < n; ++i) {
  1115. sumf += x[i]*y[i];
  1116. }
  1117. #else
  1118. // scalar
  1119. ggml_float sumf = 0.0;
  1120. for (int i = 0; i < n; ++i) {
  1121. sumf += (ggml_float)(x[i]*y[i]);
  1122. }
  1123. #endif
  1124. *s = sumf;
  1125. }
  1126. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1127. assert(nrc == 1);
  1128. UNUSED(nrc);
  1129. UNUSED(bx);
  1130. UNUSED(by);
  1131. UNUSED(bs);
  1132. ggml_float sumf = 0.0;
  1133. #if defined(GGML_SIMD)
  1134. const int np = (n & ~(GGML_F16_STEP - 1));
  1135. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1136. GGML_F16_VEC ax[GGML_F16_ARR];
  1137. GGML_F16_VEC ay[GGML_F16_ARR];
  1138. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1139. for (int j = 0; j < GGML_F16_ARR; j++) {
  1140. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1141. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1142. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1143. }
  1144. }
  1145. // reduce sum0..sum3 to sum0
  1146. GGML_F16_VEC_REDUCE(sumf, sum);
  1147. // leftovers
  1148. for (int i = np; i < n; ++i) {
  1149. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1150. }
  1151. #else
  1152. for (int i = 0; i < n; ++i) {
  1153. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1154. }
  1155. #endif
  1156. *s = sumf;
  1157. }
  1158. // compute GGML_VEC_DOT_UNROLL dot products at once
  1159. // xs - x row stride in bytes
  1160. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1161. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1162. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1163. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1164. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1165. }
  1166. #if defined(GGML_SIMD)
  1167. const int np = (n & ~(GGML_F16_STEP - 1));
  1168. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1169. GGML_F16_VEC ax[GGML_F16_ARR];
  1170. GGML_F16_VEC ay[GGML_F16_ARR];
  1171. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1172. for (int j = 0; j < GGML_F16_ARR; j++) {
  1173. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1174. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1175. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1176. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1177. }
  1178. }
  1179. }
  1180. // reduce sum0..sum3 to sum0
  1181. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1182. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1183. }
  1184. // leftovers
  1185. for (int i = np; i < n; ++i) {
  1186. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1187. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1188. }
  1189. }
  1190. #else
  1191. for (int i = 0; i < n; ++i) {
  1192. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1193. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1194. }
  1195. }
  1196. #endif
  1197. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1198. s[i] = sumf[i];
  1199. }
  1200. }
  1201. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1202. #if defined(GGML_SIMD)
  1203. const int np = (n & ~(GGML_F32_STEP - 1));
  1204. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1205. GGML_F32_VEC ax[GGML_F32_ARR];
  1206. GGML_F32_VEC ay[GGML_F32_ARR];
  1207. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1208. for (int j = 0; j < GGML_F32_ARR; j++) {
  1209. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1210. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1211. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1212. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1213. }
  1214. }
  1215. // leftovers
  1216. for (int i = np; i < n; ++i) {
  1217. y[i] += x[i]*v;
  1218. }
  1219. #else
  1220. // scalar
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] += x[i]*v;
  1223. }
  1224. #endif
  1225. }
  1226. // xs and vs are byte strides of x and v
  1227. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1228. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1229. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1230. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1231. x[i] = (const float *) ((const char *) xv + i*xs);
  1232. v[i] = (const float *) ((const char *) vv + i*vs);
  1233. }
  1234. #if defined(GGML_SIMD)
  1235. const int np = (n & ~(GGML_F32_STEP - 1));
  1236. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1237. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1238. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1239. }
  1240. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1241. GGML_F32_VEC ay[GGML_F32_ARR];
  1242. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1243. for (int j = 0; j < GGML_F32_ARR; j++) {
  1244. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1245. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1246. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1247. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1248. }
  1249. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1250. }
  1251. }
  1252. // leftovers
  1253. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1254. for (int i = np; i < n; ++i) {
  1255. y[i] += x[k][i]*v[k][0];
  1256. }
  1257. }
  1258. #else
  1259. // scalar
  1260. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1261. for (int i = 0; i < n; ++i) {
  1262. y[i] += x[k][i]*v[k][0];
  1263. }
  1264. }
  1265. #endif
  1266. }
  1267. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1268. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1269. #if defined(GGML_USE_ACCELERATE)
  1270. vDSP_vsmul(y, 1, &v, y, 1, n);
  1271. #elif defined(GGML_SIMD)
  1272. const int np = (n & ~(GGML_F32_STEP - 1));
  1273. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1274. GGML_F32_VEC ay[GGML_F32_ARR];
  1275. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1276. for (int j = 0; j < GGML_F32_ARR; j++) {
  1277. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1278. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1279. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1280. }
  1281. }
  1282. // leftovers
  1283. for (int i = np; i < n; ++i) {
  1284. y[i] *= v;
  1285. }
  1286. #else
  1287. // scalar
  1288. for (int i = 0; i < n; ++i) {
  1289. y[i] *= v;
  1290. }
  1291. #endif
  1292. }
  1293. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1294. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1295. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1296. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1297. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1298. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1299. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1300. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1301. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1302. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1303. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1304. // TODO: optimize performance
  1305. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1306. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1307. static const float GELU_COEF_A = 0.044715f;
  1308. static const float GELU_QUICK_COEF = -1.702f;
  1309. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1310. inline static float ggml_gelu_f32(float x) {
  1311. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1312. }
  1313. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1314. const uint16_t * i16 = (const uint16_t *) x;
  1315. for (int i = 0; i < n; ++i) {
  1316. y[i] = ggml_table_gelu_f16[i16[i]];
  1317. }
  1318. }
  1319. #ifdef GGML_GELU_FP16
  1320. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1321. uint16_t t;
  1322. for (int i = 0; i < n; ++i) {
  1323. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1324. memcpy(&t, &fp16, sizeof(uint16_t));
  1325. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1326. }
  1327. }
  1328. #else
  1329. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1330. for (int i = 0; i < n; ++i) {
  1331. y[i] = ggml_gelu_f32(x[i]);
  1332. }
  1333. }
  1334. #endif
  1335. inline static float ggml_gelu_quick_f32(float x) {
  1336. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1337. }
  1338. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1339. // const uint16_t * i16 = (const uint16_t *) x;
  1340. // for (int i = 0; i < n; ++i) {
  1341. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1342. // }
  1343. //}
  1344. #ifdef GGML_GELU_QUICK_FP16
  1345. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1346. uint16_t t;
  1347. for (int i = 0; i < n; ++i) {
  1348. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1349. memcpy(&t, &fp16, sizeof(uint16_t));
  1350. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1351. }
  1352. }
  1353. #else
  1354. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1355. for (int i = 0; i < n; ++i) {
  1356. y[i] = ggml_gelu_quick_f32(x[i]);
  1357. }
  1358. }
  1359. #endif
  1360. // Sigmoid Linear Unit (SiLU) function
  1361. inline static float ggml_silu_f32(float x) {
  1362. return x/(1.0f + expf(-x));
  1363. }
  1364. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1365. // const uint16_t * i16 = (const uint16_t *) x;
  1366. // for (int i = 0; i < n; ++i) {
  1367. // y[i] = ggml_table_silu_f16[i16[i]];
  1368. // }
  1369. //}
  1370. #ifdef GGML_SILU_FP16
  1371. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1372. uint16_t t;
  1373. for (int i = 0; i < n; ++i) {
  1374. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1375. memcpy(&t, &fp16, sizeof(uint16_t));
  1376. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1377. }
  1378. }
  1379. #else
  1380. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1381. for (int i = 0; i < n; ++i) {
  1382. y[i] = ggml_silu_f32(x[i]);
  1383. }
  1384. }
  1385. #endif
  1386. inline static float ggml_silu_backward_f32(float x, float dy) {
  1387. const float s = 1.0f/(1.0f + expf(-x));
  1388. return dy*s*(1.0f + x*(1.0f - s));
  1389. }
  1390. #ifdef GGML_SILU_FP16
  1391. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1392. for (int i = 0; i < n; ++i) {
  1393. // we did not use x[i] to compute forward silu but its f16 equivalent
  1394. // take derivative at f16 of x[i]:
  1395. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1396. float usedx = GGML_FP16_TO_FP32(fp16);
  1397. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1398. }
  1399. }
  1400. #else
  1401. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1402. for (int i = 0; i < n; ++i) {
  1403. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1404. }
  1405. }
  1406. #endif
  1407. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1408. #ifndef GGML_USE_ACCELERATE
  1409. ggml_float sum = 0.0;
  1410. for (int i = 0; i < n; ++i) {
  1411. sum += (ggml_float)x[i];
  1412. }
  1413. *s = sum;
  1414. #else
  1415. vDSP_sve(x, 1, s, n);
  1416. #endif
  1417. }
  1418. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1419. ggml_float sum = 0.0;
  1420. for (int i = 0; i < n; ++i) {
  1421. sum += (ggml_float)x[i];
  1422. }
  1423. *s = sum;
  1424. }
  1425. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1426. float sum = 0.0f;
  1427. for (int i = 0; i < n; ++i) {
  1428. sum += GGML_FP16_TO_FP32(x[i]);
  1429. }
  1430. *s = sum;
  1431. }
  1432. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1433. #ifndef GGML_USE_ACCELERATE
  1434. float max = -INFINITY;
  1435. for (int i = 0; i < n; ++i) {
  1436. max = MAX(max, x[i]);
  1437. }
  1438. *s = max;
  1439. #else
  1440. vDSP_maxv(x, 1, s, n);
  1441. #endif
  1442. }
  1443. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1444. ggml_vec_norm_f32(n, s, x);
  1445. *s = 1.f/(*s);
  1446. }
  1447. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1448. float max = -INFINITY;
  1449. int idx = 0;
  1450. for (int i = 0; i < n; ++i) {
  1451. max = MAX(max, x[i]);
  1452. if (max == x[i]) { idx = i; }
  1453. }
  1454. *s = idx;
  1455. }
  1456. //
  1457. // data types
  1458. //
  1459. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1460. "NONE",
  1461. "DUP",
  1462. "ADD",
  1463. "ADD1",
  1464. "ACC",
  1465. "SUB",
  1466. "MUL",
  1467. "DIV",
  1468. "SQR",
  1469. "SQRT",
  1470. "LOG",
  1471. "SUM",
  1472. "SUM_ROWS",
  1473. "MEAN",
  1474. "ARGMAX",
  1475. "REPEAT",
  1476. "REPEAT_BACK",
  1477. "CONCAT",
  1478. "SILU_BACK",
  1479. "NORM",
  1480. "RMS_NORM",
  1481. "RMS_NORM_BACK",
  1482. "GROUP_NORM",
  1483. "MUL_MAT",
  1484. "MUL_MAT_ID",
  1485. "OUT_PROD",
  1486. "SCALE",
  1487. "SET",
  1488. "CPY",
  1489. "CONT",
  1490. "RESHAPE",
  1491. "VIEW",
  1492. "PERMUTE",
  1493. "TRANSPOSE",
  1494. "GET_ROWS",
  1495. "GET_ROWS_BACK",
  1496. "DIAG",
  1497. "DIAG_MASK_INF",
  1498. "DIAG_MASK_ZERO",
  1499. "SOFT_MAX",
  1500. "SOFT_MAX_BACK",
  1501. "ROPE",
  1502. "ROPE_BACK",
  1503. "ALIBI",
  1504. "CLAMP",
  1505. "CONV_TRANSPOSE_1D",
  1506. "IM2COL",
  1507. "CONV_TRANSPOSE_2D",
  1508. "POOL_1D",
  1509. "POOL_2D",
  1510. "UPSCALE",
  1511. "PAD",
  1512. "ARGSORT",
  1513. "LEAKY_RELU",
  1514. "FLASH_ATTN",
  1515. "FLASH_FF",
  1516. "FLASH_ATTN_BACK",
  1517. "WIN_PART",
  1518. "WIN_UNPART",
  1519. "GET_REL_POS",
  1520. "ADD_REL_POS",
  1521. "UNARY",
  1522. "MAP_UNARY",
  1523. "MAP_BINARY",
  1524. "MAP_CUSTOM1_F32",
  1525. "MAP_CUSTOM2_F32",
  1526. "MAP_CUSTOM3_F32",
  1527. "MAP_CUSTOM1",
  1528. "MAP_CUSTOM2",
  1529. "MAP_CUSTOM3",
  1530. "CROSS_ENTROPY_LOSS",
  1531. "CROSS_ENTROPY_LOSS_BACK",
  1532. };
  1533. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1534. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1535. "none",
  1536. "x",
  1537. "x+y",
  1538. "x+y",
  1539. "view(x,nb,offset)+=y->x",
  1540. "x-y",
  1541. "x*y",
  1542. "x/y",
  1543. "x^2",
  1544. "√x",
  1545. "log(x)",
  1546. "Σx",
  1547. "Σx_k",
  1548. "Σx/n",
  1549. "argmax(x)",
  1550. "repeat(x)",
  1551. "repeat_back(x)",
  1552. "concat(x, y)",
  1553. "silu_back(x)",
  1554. "norm(x)",
  1555. "rms_norm(x)",
  1556. "rms_norm_back(x)",
  1557. "group_norm(x)",
  1558. "X*Y",
  1559. "X[i]*Y",
  1560. "X*Y",
  1561. "x*v",
  1562. "y-\\>view(x)",
  1563. "x-\\>y",
  1564. "cont(x)",
  1565. "reshape(x)",
  1566. "view(x)",
  1567. "permute(x)",
  1568. "transpose(x)",
  1569. "get_rows(x)",
  1570. "get_rows_back(x)",
  1571. "diag(x)",
  1572. "diag_mask_inf(x)",
  1573. "diag_mask_zero(x)",
  1574. "soft_max(x)",
  1575. "soft_max_back(x)",
  1576. "rope(x)",
  1577. "rope_back(x)",
  1578. "alibi(x)",
  1579. "clamp(x)",
  1580. "conv_transpose_1d(x)",
  1581. "im2col(x)",
  1582. "conv_transpose_2d(x)",
  1583. "pool_1d(x)",
  1584. "pool_2d(x)",
  1585. "upscale(x)",
  1586. "pad(x)",
  1587. "argsort(x)",
  1588. "leaky_relu(x)",
  1589. "flash_attn(x)",
  1590. "flash_ff(x)",
  1591. "flash_attn_back(x)",
  1592. "win_part(x)",
  1593. "win_unpart(x)",
  1594. "get_rel_pos(x)",
  1595. "add_rel_pos(x)",
  1596. "unary(x)",
  1597. "f(x)",
  1598. "f(x,y)",
  1599. "custom_f32(x)",
  1600. "custom_f32(x,y)",
  1601. "custom_f32(x,y,z)",
  1602. "custom(x)",
  1603. "custom(x,y)",
  1604. "custom(x,y,z)",
  1605. "cross_entropy_loss(x,y)",
  1606. "cross_entropy_loss_back(x,y)",
  1607. };
  1608. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1609. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1610. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1611. "ABS",
  1612. "SGN",
  1613. "NEG",
  1614. "STEP",
  1615. "TANH",
  1616. "ELU",
  1617. "RELU",
  1618. "GELU",
  1619. "GELU_QUICK",
  1620. "SILU",
  1621. "HARDSWISH",
  1622. "HARDSIGMOID",
  1623. };
  1624. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1625. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1626. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1627. // WARN:
  1628. // Mis-configuration can lead to problem that's hard to reason about:
  1629. // * At best it crash or talks nosense.
  1630. // * At worst it talks slightly difference but hard to perceive.
  1631. //
  1632. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1633. // Take care about compile options (e.g., GGML_USE_xxx).
  1634. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1635. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1636. static void ggml_setup_op_has_task_pass(void) {
  1637. { // INIT
  1638. bool * p = GGML_OP_HAS_INIT;
  1639. p[GGML_OP_ACC ] = true;
  1640. p[GGML_OP_MUL_MAT ] = true;
  1641. p[GGML_OP_MUL_MAT_ID ] = true;
  1642. p[GGML_OP_OUT_PROD ] = true;
  1643. p[GGML_OP_SET ] = true;
  1644. p[GGML_OP_GET_ROWS_BACK ] = true;
  1645. p[GGML_OP_DIAG_MASK_INF ] = true;
  1646. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1647. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1648. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1649. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1650. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1651. p[GGML_OP_ADD_REL_POS ] = true;
  1652. }
  1653. { // FINALIZE
  1654. bool * p = GGML_OP_HAS_FINALIZE;
  1655. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1656. }
  1657. }
  1658. //
  1659. // ggml context
  1660. //
  1661. struct ggml_context {
  1662. size_t mem_size;
  1663. void * mem_buffer;
  1664. bool mem_buffer_owned;
  1665. bool no_alloc;
  1666. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1667. int n_objects;
  1668. struct ggml_object * objects_begin;
  1669. struct ggml_object * objects_end;
  1670. struct ggml_scratch scratch;
  1671. struct ggml_scratch scratch_save;
  1672. };
  1673. struct ggml_context_container {
  1674. bool used;
  1675. struct ggml_context context;
  1676. };
  1677. //
  1678. // NUMA support
  1679. //
  1680. #define GGML_NUMA_MAX_NODES 8
  1681. #define GGML_NUMA_MAX_CPUS 512
  1682. struct ggml_numa_node {
  1683. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1684. uint32_t n_cpus;
  1685. };
  1686. struct ggml_numa_nodes {
  1687. enum ggml_numa_strategy numa_strategy;
  1688. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1689. uint32_t n_nodes;
  1690. uint32_t total_cpus; // hardware threads on system
  1691. uint32_t current_node; // node on which main process is execting
  1692. #ifdef __linux__
  1693. cpu_set_t cpuset; // cpuset from numactl
  1694. #else
  1695. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1696. #endif
  1697. };
  1698. //
  1699. // ggml state
  1700. //
  1701. struct ggml_state {
  1702. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1703. struct ggml_numa_nodes numa;
  1704. };
  1705. // global state
  1706. static struct ggml_state g_state;
  1707. static atomic_int g_state_barrier = 0;
  1708. // barrier via spin lock
  1709. inline static void ggml_critical_section_start(void) {
  1710. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1711. while (processing > 0) {
  1712. // wait for other threads to finish
  1713. atomic_fetch_sub(&g_state_barrier, 1);
  1714. sched_yield(); // TODO: reconsider this
  1715. processing = atomic_fetch_add(&g_state_barrier, 1);
  1716. }
  1717. }
  1718. // TODO: make this somehow automatically executed
  1719. // some sort of "sentry" mechanism
  1720. inline static void ggml_critical_section_end(void) {
  1721. atomic_fetch_sub(&g_state_barrier, 1);
  1722. }
  1723. #ifdef __linux__
  1724. static cpu_set_t ggml_get_numa_affinity(void) {
  1725. cpu_set_t cpuset;
  1726. pthread_t thread;
  1727. thread = pthread_self();
  1728. CPU_ZERO(&cpuset);
  1729. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1730. return cpuset;
  1731. }
  1732. #else
  1733. static uint32_t ggml_get_numa_affinity(void) {
  1734. return 0; // no NUMA support
  1735. }
  1736. #endif
  1737. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1738. if (g_state.numa.n_nodes > 0) {
  1739. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1740. return;
  1741. }
  1742. #ifdef __linux__
  1743. struct stat st;
  1744. char path[256];
  1745. int rv;
  1746. // set numa scheme
  1747. g_state.numa.numa_strategy = numa_flag;
  1748. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1749. g_state.numa.cpuset = ggml_get_numa_affinity();
  1750. // enumerate nodes
  1751. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1752. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1753. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1754. if (stat(path, &st) != 0) { break; }
  1755. ++g_state.numa.n_nodes;
  1756. }
  1757. // enumerate CPUs
  1758. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1759. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1760. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1761. if (stat(path, &st) != 0) { break; }
  1762. ++g_state.numa.total_cpus;
  1763. }
  1764. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1765. // figure out which node we're on
  1766. uint current_cpu;
  1767. int getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1768. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1769. g_state.numa.n_nodes = 0;
  1770. return;
  1771. }
  1772. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1773. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1774. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1775. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1776. node->n_cpus = 0;
  1777. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1778. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1779. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1780. if (stat(path, &st) == 0) {
  1781. node->cpus[node->n_cpus++] = c;
  1782. GGML_PRINT_DEBUG(" %u", c);
  1783. }
  1784. }
  1785. GGML_PRINT_DEBUG("\n");
  1786. }
  1787. if (ggml_is_numa()) {
  1788. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1789. if (fptr != NULL) {
  1790. char buf[42];
  1791. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1792. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1793. }
  1794. fclose(fptr);
  1795. }
  1796. }
  1797. #else
  1798. GGML_UNUSED(numa_flag);
  1799. // TODO
  1800. #endif
  1801. }
  1802. bool ggml_is_numa(void) {
  1803. return g_state.numa.n_nodes > 1;
  1804. }
  1805. ////////////////////////////////////////////////////////////////////////////////
  1806. void ggml_print_object(const struct ggml_object * obj) {
  1807. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1808. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1809. }
  1810. void ggml_print_objects(const struct ggml_context * ctx) {
  1811. struct ggml_object * obj = ctx->objects_begin;
  1812. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1813. while (obj != NULL) {
  1814. ggml_print_object(obj);
  1815. obj = obj->next;
  1816. }
  1817. GGML_PRINT("%s: --- end ---\n", __func__);
  1818. }
  1819. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1820. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1821. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1822. }
  1823. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1824. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1825. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1826. }
  1827. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1828. size_t nbytes;
  1829. size_t blck_size = ggml_blck_size(tensor->type);
  1830. if (blck_size == 1) {
  1831. nbytes = ggml_type_size(tensor->type);
  1832. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1833. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1834. }
  1835. }
  1836. else {
  1837. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1838. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1839. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1840. }
  1841. }
  1842. return nbytes;
  1843. }
  1844. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1845. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1846. }
  1847. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1848. return type_traits[type].blck_size;
  1849. }
  1850. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1851. return type_traits[type].type_size;
  1852. }
  1853. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1854. assert(ne % ggml_blck_size(type) == 0);
  1855. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1856. }
  1857. double ggml_type_sizef(enum ggml_type type) {
  1858. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1859. }
  1860. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1861. return type_traits[type].type_name;
  1862. }
  1863. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1864. return type_traits[type].is_quantized;
  1865. }
  1866. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1867. return GGML_OP_NAME[op];
  1868. }
  1869. const char * ggml_op_symbol(enum ggml_op op) {
  1870. return GGML_OP_SYMBOL[op];
  1871. }
  1872. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1873. return GGML_UNARY_OP_NAME[op];
  1874. }
  1875. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1876. if (t->op == GGML_OP_UNARY) {
  1877. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1878. return ggml_unary_op_name(uop);
  1879. }
  1880. else {
  1881. return ggml_op_name(t->op);
  1882. }
  1883. }
  1884. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1885. return ggml_type_size(tensor->type);
  1886. }
  1887. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1888. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1889. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1890. }
  1891. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1892. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1893. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1894. }
  1895. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1896. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1897. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1898. }
  1899. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1900. return tensor->ne[3] == 1;
  1901. }
  1902. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1903. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1904. if (tensor->ne[i] > 1) {
  1905. return i + 1;
  1906. }
  1907. }
  1908. return 1;
  1909. }
  1910. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1911. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1912. return (t0->ne[0] == t1->ne[0]) &&
  1913. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1914. (t1->ne[3]%t0->ne[3] == 0);
  1915. }
  1916. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1917. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1918. return (t0->ne[1] == t1->ne[1]) &&
  1919. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1920. (t1->ne[3]%t0->ne[3] == 0);
  1921. }
  1922. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1923. enum ggml_type wtype = GGML_TYPE_COUNT;
  1924. switch (ftype) {
  1925. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1926. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1927. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1928. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1929. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1930. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1931. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1932. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1933. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1934. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1935. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1936. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1937. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1938. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1939. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1940. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1941. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1942. }
  1943. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1944. return wtype;
  1945. }
  1946. size_t ggml_tensor_overhead(void) {
  1947. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1948. }
  1949. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1950. return tensor->nb[0] > tensor->nb[1];
  1951. }
  1952. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1953. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1954. return
  1955. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1956. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1957. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1958. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1959. }
  1960. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1961. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1962. return
  1963. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1964. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1965. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1966. }
  1967. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1969. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1970. }
  1971. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1972. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1973. return
  1974. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1975. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1976. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1977. }
  1978. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1979. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1980. return
  1981. (t0->ne[0] == t1->ne[0] ) &&
  1982. (t0->ne[1] == t1->ne[1] ) &&
  1983. (t0->ne[2] == t1->ne[2] ) &&
  1984. (t0->ne[3] == t1->ne[3] );
  1985. }
  1986. // check if t1 can be represented as a repeatition of t0
  1987. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1988. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1989. return
  1990. (t1->ne[0]%t0->ne[0] == 0) &&
  1991. (t1->ne[1]%t0->ne[1] == 0) &&
  1992. (t1->ne[2]%t0->ne[2] == 0) &&
  1993. (t1->ne[3]%t0->ne[3] == 0);
  1994. }
  1995. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1996. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1997. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1998. }
  1999. static inline int ggml_up32(int n) {
  2000. return (n + 31) & ~31;
  2001. }
  2002. //static inline int ggml_up64(int n) {
  2003. // return (n + 63) & ~63;
  2004. //}
  2005. static inline int ggml_up(int n, int m) {
  2006. // assert m is a power of 2
  2007. GGML_ASSERT((m & (m - 1)) == 0);
  2008. return (n + m - 1) & ~(m - 1);
  2009. }
  2010. // assert that pointer is aligned to GGML_MEM_ALIGN
  2011. #define ggml_assert_aligned(ptr) \
  2012. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2013. ////////////////////////////////////////////////////////////////////////////////
  2014. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2015. // make this function thread safe
  2016. ggml_critical_section_start();
  2017. static bool is_first_call = true;
  2018. if (is_first_call) {
  2019. // initialize time system (required on Windows)
  2020. ggml_time_init();
  2021. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2022. {
  2023. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2024. ggml_fp16_t ii;
  2025. for (int i = 0; i < (1 << 16); ++i) {
  2026. uint16_t ui = i;
  2027. memcpy(&ii, &ui, sizeof(ii));
  2028. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2029. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2030. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2031. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2032. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2033. }
  2034. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2035. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2036. }
  2037. // initialize g_state
  2038. {
  2039. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2040. g_state = (struct ggml_state) {
  2041. /*.contexts =*/ { { 0 } },
  2042. /*.numa =*/ {
  2043. .n_nodes = 0,
  2044. .total_cpus = 0,
  2045. },
  2046. };
  2047. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2048. g_state.contexts[i].used = false;
  2049. }
  2050. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2051. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2052. }
  2053. #if defined(GGML_USE_CUBLAS)
  2054. ggml_init_cublas();
  2055. #elif defined(GGML_USE_CLBLAST)
  2056. ggml_cl_init();
  2057. #elif defined(GGML_USE_VULKAN)
  2058. ggml_vk_init_cpu_assist();
  2059. #elif defined(GGML_USE_SYCL)
  2060. ggml_init_sycl();
  2061. #endif
  2062. ggml_setup_op_has_task_pass();
  2063. is_first_call = false;
  2064. }
  2065. // find non-used context in g_state
  2066. struct ggml_context * ctx = NULL;
  2067. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2068. if (!g_state.contexts[i].used) {
  2069. g_state.contexts[i].used = true;
  2070. ctx = &g_state.contexts[i].context;
  2071. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2072. break;
  2073. }
  2074. }
  2075. if (ctx == NULL) {
  2076. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2077. ggml_critical_section_end();
  2078. return NULL;
  2079. }
  2080. // allow to call ggml_init with 0 size
  2081. if (params.mem_size == 0) {
  2082. params.mem_size = GGML_MEM_ALIGN;
  2083. }
  2084. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2085. *ctx = (struct ggml_context) {
  2086. /*.mem_size =*/ mem_size,
  2087. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2088. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2089. /*.no_alloc =*/ params.no_alloc,
  2090. /*.no_alloc_save =*/ params.no_alloc,
  2091. /*.n_objects =*/ 0,
  2092. /*.objects_begin =*/ NULL,
  2093. /*.objects_end =*/ NULL,
  2094. /*.scratch =*/ { 0, 0, NULL, },
  2095. /*.scratch_save =*/ { 0, 0, NULL, },
  2096. };
  2097. GGML_ASSERT(ctx->mem_buffer != NULL);
  2098. ggml_assert_aligned(ctx->mem_buffer);
  2099. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2100. ggml_critical_section_end();
  2101. return ctx;
  2102. }
  2103. void ggml_free(struct ggml_context * ctx) {
  2104. if (ctx == NULL) {
  2105. return;
  2106. }
  2107. // make this function thread safe
  2108. ggml_critical_section_start();
  2109. bool found = false;
  2110. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2111. if (&g_state.contexts[i].context == ctx) {
  2112. g_state.contexts[i].used = false;
  2113. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2114. __func__, i, ggml_used_mem(ctx));
  2115. if (ctx->mem_buffer_owned) {
  2116. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2117. }
  2118. found = true;
  2119. break;
  2120. }
  2121. }
  2122. if (!found) {
  2123. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2124. }
  2125. ggml_critical_section_end();
  2126. }
  2127. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2128. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2129. }
  2130. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2131. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2132. ctx->scratch = scratch;
  2133. return result;
  2134. }
  2135. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2136. return ctx->no_alloc;
  2137. }
  2138. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2139. ctx->no_alloc = no_alloc;
  2140. }
  2141. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2142. return ctx->mem_buffer;
  2143. }
  2144. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2145. return ctx->mem_size;
  2146. }
  2147. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2148. size_t max_size = 0;
  2149. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2150. size_t bytes = ggml_nbytes(tensor);
  2151. max_size = MAX(max_size, bytes);
  2152. }
  2153. return max_size;
  2154. }
  2155. // IMPORTANT:
  2156. // when creating "opt" tensors, always save and load the scratch buffer
  2157. // this is an error prone process, but it is necessary to support inplace
  2158. // operators when using scratch buffers
  2159. // TODO: implement a better way
  2160. static void ggml_scratch_save(struct ggml_context * ctx) {
  2161. // this is needed to allow opt tensors to store their data
  2162. // TODO: again, need to find a better way
  2163. ctx->no_alloc_save = ctx->no_alloc;
  2164. ctx->no_alloc = false;
  2165. ctx->scratch_save = ctx->scratch;
  2166. ctx->scratch.data = NULL;
  2167. }
  2168. static void ggml_scratch_load(struct ggml_context * ctx) {
  2169. ctx->no_alloc = ctx->no_alloc_save;
  2170. ctx->scratch = ctx->scratch_save;
  2171. }
  2172. ////////////////////////////////////////////////////////////////////////////////
  2173. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2174. // always insert objects at the end of the context's memory pool
  2175. struct ggml_object * obj_cur = ctx->objects_end;
  2176. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2177. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2178. const size_t cur_end = cur_offs + cur_size;
  2179. // align to GGML_MEM_ALIGN
  2180. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2181. char * const mem_buffer = ctx->mem_buffer;
  2182. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2183. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2184. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2185. __func__, cur_end + size_needed, ctx->mem_size);
  2186. assert(false);
  2187. return NULL;
  2188. }
  2189. *obj_new = (struct ggml_object) {
  2190. .offs = cur_end + GGML_OBJECT_SIZE,
  2191. .size = size_needed,
  2192. .next = NULL,
  2193. .type = type,
  2194. };
  2195. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2196. if (obj_cur != NULL) {
  2197. obj_cur->next = obj_new;
  2198. } else {
  2199. // this is the first object in this context
  2200. ctx->objects_begin = obj_new;
  2201. }
  2202. ctx->objects_end = obj_new;
  2203. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2204. return obj_new;
  2205. }
  2206. static struct ggml_tensor * ggml_new_tensor_impl(
  2207. struct ggml_context * ctx,
  2208. enum ggml_type type,
  2209. int n_dims,
  2210. const int64_t * ne,
  2211. struct ggml_tensor * view_src,
  2212. size_t view_offs) {
  2213. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2214. // find the base tensor and absolute offset
  2215. if (view_src != NULL && view_src->view_src != NULL) {
  2216. view_offs += view_src->view_offs;
  2217. view_src = view_src->view_src;
  2218. }
  2219. size_t data_size = ggml_row_size(type, ne[0]);
  2220. for (int i = 1; i < n_dims; i++) {
  2221. data_size *= ne[i];
  2222. }
  2223. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2224. void * data = view_src != NULL ? view_src->data : NULL;
  2225. if (data != NULL) {
  2226. data = (char *) data + view_offs;
  2227. }
  2228. size_t obj_alloc_size = 0;
  2229. if (view_src == NULL && !ctx->no_alloc) {
  2230. if (ctx->scratch.data != NULL) {
  2231. // allocate tensor data in the scratch buffer
  2232. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2233. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2234. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2235. assert(false);
  2236. return NULL;
  2237. }
  2238. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2239. ctx->scratch.offs += data_size;
  2240. } else {
  2241. // allocate tensor data in the context's memory pool
  2242. obj_alloc_size = data_size;
  2243. }
  2244. }
  2245. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2246. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2247. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2248. *result = (struct ggml_tensor) {
  2249. /*.type =*/ type,
  2250. /*.backend =*/ GGML_BACKEND_CPU,
  2251. /*.buffer =*/ NULL,
  2252. /*.ne =*/ { 1, 1, 1, 1 },
  2253. /*.nb =*/ { 0, 0, 0, 0 },
  2254. /*.op =*/ GGML_OP_NONE,
  2255. /*.op_params =*/ { 0 },
  2256. /*.flags =*/ 0,
  2257. /*.grad =*/ NULL,
  2258. /*.src =*/ { NULL },
  2259. /*.perf_runs =*/ 0,
  2260. /*.perf_cycles =*/ 0,
  2261. /*.perf_time_us =*/ 0,
  2262. /*.view_src =*/ view_src,
  2263. /*.view_offs =*/ view_offs,
  2264. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2265. /*.name =*/ { 0 },
  2266. /*.extra =*/ NULL,
  2267. /*.padding =*/ { 0 },
  2268. };
  2269. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2270. //ggml_assert_aligned(result->data);
  2271. for (int i = 0; i < n_dims; i++) {
  2272. result->ne[i] = ne[i];
  2273. }
  2274. result->nb[0] = ggml_type_size(type);
  2275. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2276. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2277. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2278. }
  2279. ctx->n_objects++;
  2280. return result;
  2281. }
  2282. struct ggml_tensor * ggml_new_tensor(
  2283. struct ggml_context * ctx,
  2284. enum ggml_type type,
  2285. int n_dims,
  2286. const int64_t * ne) {
  2287. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2288. }
  2289. struct ggml_tensor * ggml_new_tensor_1d(
  2290. struct ggml_context * ctx,
  2291. enum ggml_type type,
  2292. int64_t ne0) {
  2293. return ggml_new_tensor(ctx, type, 1, &ne0);
  2294. }
  2295. struct ggml_tensor * ggml_new_tensor_2d(
  2296. struct ggml_context * ctx,
  2297. enum ggml_type type,
  2298. int64_t ne0,
  2299. int64_t ne1) {
  2300. const int64_t ne[2] = { ne0, ne1 };
  2301. return ggml_new_tensor(ctx, type, 2, ne);
  2302. }
  2303. struct ggml_tensor * ggml_new_tensor_3d(
  2304. struct ggml_context * ctx,
  2305. enum ggml_type type,
  2306. int64_t ne0,
  2307. int64_t ne1,
  2308. int64_t ne2) {
  2309. const int64_t ne[3] = { ne0, ne1, ne2 };
  2310. return ggml_new_tensor(ctx, type, 3, ne);
  2311. }
  2312. struct ggml_tensor * ggml_new_tensor_4d(
  2313. struct ggml_context * ctx,
  2314. enum ggml_type type,
  2315. int64_t ne0,
  2316. int64_t ne1,
  2317. int64_t ne2,
  2318. int64_t ne3) {
  2319. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2320. return ggml_new_tensor(ctx, type, 4, ne);
  2321. }
  2322. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2323. ggml_scratch_save(ctx);
  2324. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2325. ggml_scratch_load(ctx);
  2326. ggml_set_i32(result, value);
  2327. return result;
  2328. }
  2329. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2330. ggml_scratch_save(ctx);
  2331. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2332. ggml_scratch_load(ctx);
  2333. ggml_set_f32(result, value);
  2334. return result;
  2335. }
  2336. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2337. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2338. }
  2339. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2340. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2341. assert(params_size <= GGML_MAX_OP_PARAMS);
  2342. memcpy(tensor->op_params, params, params_size);
  2343. }
  2344. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2345. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2346. return ((const int32_t *)(tensor->op_params))[i];
  2347. }
  2348. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2349. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2350. ((int32_t *)(tensor->op_params))[i] = value;
  2351. }
  2352. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2353. memset(tensor->data, 0, ggml_nbytes(tensor));
  2354. return tensor;
  2355. }
  2356. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2357. const int n = ggml_nrows(tensor);
  2358. const int nc = tensor->ne[0];
  2359. const size_t n1 = tensor->nb[1];
  2360. char * const data = tensor->data;
  2361. switch (tensor->type) {
  2362. case GGML_TYPE_I8:
  2363. {
  2364. assert(tensor->nb[0] == sizeof(int8_t));
  2365. for (int i = 0; i < n; i++) {
  2366. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2367. }
  2368. } break;
  2369. case GGML_TYPE_I16:
  2370. {
  2371. assert(tensor->nb[0] == sizeof(int16_t));
  2372. for (int i = 0; i < n; i++) {
  2373. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2374. }
  2375. } break;
  2376. case GGML_TYPE_I32:
  2377. {
  2378. assert(tensor->nb[0] == sizeof(int32_t));
  2379. for (int i = 0; i < n; i++) {
  2380. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2381. }
  2382. } break;
  2383. case GGML_TYPE_F16:
  2384. {
  2385. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2386. for (int i = 0; i < n; i++) {
  2387. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2388. }
  2389. } break;
  2390. case GGML_TYPE_F32:
  2391. {
  2392. assert(tensor->nb[0] == sizeof(float));
  2393. for (int i = 0; i < n; i++) {
  2394. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2395. }
  2396. } break;
  2397. default:
  2398. {
  2399. GGML_ASSERT(false);
  2400. } break;
  2401. }
  2402. return tensor;
  2403. }
  2404. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2405. const int n = ggml_nrows(tensor);
  2406. const int nc = tensor->ne[0];
  2407. const size_t n1 = tensor->nb[1];
  2408. char * const data = tensor->data;
  2409. switch (tensor->type) {
  2410. case GGML_TYPE_I8:
  2411. {
  2412. assert(tensor->nb[0] == sizeof(int8_t));
  2413. for (int i = 0; i < n; i++) {
  2414. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2415. }
  2416. } break;
  2417. case GGML_TYPE_I16:
  2418. {
  2419. assert(tensor->nb[0] == sizeof(int16_t));
  2420. for (int i = 0; i < n; i++) {
  2421. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2422. }
  2423. } break;
  2424. case GGML_TYPE_I32:
  2425. {
  2426. assert(tensor->nb[0] == sizeof(int32_t));
  2427. for (int i = 0; i < n; i++) {
  2428. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2429. }
  2430. } break;
  2431. case GGML_TYPE_F16:
  2432. {
  2433. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2434. for (int i = 0; i < n; i++) {
  2435. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2436. }
  2437. } break;
  2438. case GGML_TYPE_F32:
  2439. {
  2440. assert(tensor->nb[0] == sizeof(float));
  2441. for (int i = 0; i < n; i++) {
  2442. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2443. }
  2444. } break;
  2445. default:
  2446. {
  2447. GGML_ASSERT(false);
  2448. } break;
  2449. }
  2450. return tensor;
  2451. }
  2452. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2453. const int64_t ne2 = tensor->ne[2];
  2454. const int64_t ne1 = tensor->ne[1];
  2455. const int64_t ne0 = tensor->ne[0];
  2456. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2457. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2458. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2459. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2460. if (i0) {
  2461. * i0 = i0_;
  2462. }
  2463. if (i1) {
  2464. * i1 = i1_;
  2465. }
  2466. if (i2) {
  2467. * i2 = i2_;
  2468. }
  2469. if (i3) {
  2470. * i3 = i3_;
  2471. }
  2472. }
  2473. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2474. if (!ggml_is_contiguous(tensor)) {
  2475. int64_t id[4] = { 0, 0, 0, 0 };
  2476. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2477. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2478. }
  2479. switch (tensor->type) {
  2480. case GGML_TYPE_I8:
  2481. {
  2482. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2483. return ((int8_t *)(tensor->data))[i];
  2484. }
  2485. case GGML_TYPE_I16:
  2486. {
  2487. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2488. return ((int16_t *)(tensor->data))[i];
  2489. }
  2490. case GGML_TYPE_I32:
  2491. {
  2492. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2493. return ((int32_t *)(tensor->data))[i];
  2494. }
  2495. case GGML_TYPE_F16:
  2496. {
  2497. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2498. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2499. }
  2500. case GGML_TYPE_F32:
  2501. {
  2502. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2503. return ((float *)(tensor->data))[i];
  2504. }
  2505. default:
  2506. {
  2507. GGML_ASSERT(false);
  2508. }
  2509. }
  2510. return 0.0f;
  2511. }
  2512. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2513. if (!ggml_is_contiguous(tensor)) {
  2514. int64_t id[4] = { 0, 0, 0, 0 };
  2515. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2516. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2517. return;
  2518. }
  2519. switch (tensor->type) {
  2520. case GGML_TYPE_I8:
  2521. {
  2522. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2523. ((int8_t *)(tensor->data))[i] = value;
  2524. } break;
  2525. case GGML_TYPE_I16:
  2526. {
  2527. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2528. ((int16_t *)(tensor->data))[i] = value;
  2529. } break;
  2530. case GGML_TYPE_I32:
  2531. {
  2532. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2533. ((int32_t *)(tensor->data))[i] = value;
  2534. } break;
  2535. case GGML_TYPE_F16:
  2536. {
  2537. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2538. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2539. } break;
  2540. case GGML_TYPE_F32:
  2541. {
  2542. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2543. ((float *)(tensor->data))[i] = value;
  2544. } break;
  2545. default:
  2546. {
  2547. GGML_ASSERT(false);
  2548. } break;
  2549. }
  2550. }
  2551. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2552. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2553. switch (tensor->type) {
  2554. case GGML_TYPE_I8:
  2555. return ((int8_t *) data)[0];
  2556. case GGML_TYPE_I16:
  2557. return ((int16_t *) data)[0];
  2558. case GGML_TYPE_I32:
  2559. return ((int32_t *) data)[0];
  2560. case GGML_TYPE_F16:
  2561. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2562. case GGML_TYPE_F32:
  2563. return ((float *) data)[0];
  2564. default:
  2565. GGML_ASSERT(false);
  2566. }
  2567. return 0.0f;
  2568. }
  2569. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2570. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2571. switch (tensor->type) {
  2572. case GGML_TYPE_I8:
  2573. {
  2574. ((int8_t *)(data))[0] = value;
  2575. } break;
  2576. case GGML_TYPE_I16:
  2577. {
  2578. ((int16_t *)(data))[0] = value;
  2579. } break;
  2580. case GGML_TYPE_I32:
  2581. {
  2582. ((int32_t *)(data))[0] = value;
  2583. } break;
  2584. case GGML_TYPE_F16:
  2585. {
  2586. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2587. } break;
  2588. case GGML_TYPE_F32:
  2589. {
  2590. ((float *)(data))[0] = value;
  2591. } break;
  2592. default:
  2593. {
  2594. GGML_ASSERT(false);
  2595. } break;
  2596. }
  2597. }
  2598. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2599. if (!ggml_is_contiguous(tensor)) {
  2600. int64_t id[4] = { 0, 0, 0, 0 };
  2601. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2602. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2603. }
  2604. switch (tensor->type) {
  2605. case GGML_TYPE_I8:
  2606. {
  2607. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2608. return ((int8_t *)(tensor->data))[i];
  2609. }
  2610. case GGML_TYPE_I16:
  2611. {
  2612. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2613. return ((int16_t *)(tensor->data))[i];
  2614. }
  2615. case GGML_TYPE_I32:
  2616. {
  2617. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2618. return ((int32_t *)(tensor->data))[i];
  2619. }
  2620. case GGML_TYPE_F16:
  2621. {
  2622. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2623. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2624. }
  2625. case GGML_TYPE_F32:
  2626. {
  2627. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2628. return ((float *)(tensor->data))[i];
  2629. }
  2630. default:
  2631. {
  2632. GGML_ASSERT(false);
  2633. }
  2634. }
  2635. return 0.0f;
  2636. }
  2637. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2638. if (!ggml_is_contiguous(tensor)) {
  2639. int64_t id[4] = { 0, 0, 0, 0 };
  2640. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2641. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2642. return;
  2643. }
  2644. switch (tensor->type) {
  2645. case GGML_TYPE_I8:
  2646. {
  2647. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2648. ((int8_t *)(tensor->data))[i] = value;
  2649. } break;
  2650. case GGML_TYPE_I16:
  2651. {
  2652. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2653. ((int16_t *)(tensor->data))[i] = value;
  2654. } break;
  2655. case GGML_TYPE_I32:
  2656. {
  2657. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2658. ((int32_t *)(tensor->data))[i] = value;
  2659. } break;
  2660. case GGML_TYPE_F16:
  2661. {
  2662. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2663. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2664. } break;
  2665. case GGML_TYPE_F32:
  2666. {
  2667. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2668. ((float *)(tensor->data))[i] = value;
  2669. } break;
  2670. default:
  2671. {
  2672. GGML_ASSERT(false);
  2673. } break;
  2674. }
  2675. }
  2676. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2677. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2678. switch (tensor->type) {
  2679. case GGML_TYPE_I8:
  2680. return ((int8_t *) data)[0];
  2681. case GGML_TYPE_I16:
  2682. return ((int16_t *) data)[0];
  2683. case GGML_TYPE_I32:
  2684. return ((int32_t *) data)[0];
  2685. case GGML_TYPE_F16:
  2686. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2687. case GGML_TYPE_F32:
  2688. return ((float *) data)[0];
  2689. default:
  2690. GGML_ASSERT(false);
  2691. }
  2692. return 0.0f;
  2693. }
  2694. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2695. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2696. switch (tensor->type) {
  2697. case GGML_TYPE_I8:
  2698. {
  2699. ((int8_t *)(data))[0] = value;
  2700. } break;
  2701. case GGML_TYPE_I16:
  2702. {
  2703. ((int16_t *)(data))[0] = value;
  2704. } break;
  2705. case GGML_TYPE_I32:
  2706. {
  2707. ((int32_t *)(data))[0] = value;
  2708. } break;
  2709. case GGML_TYPE_F16:
  2710. {
  2711. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2712. } break;
  2713. case GGML_TYPE_F32:
  2714. {
  2715. ((float *)(data))[0] = value;
  2716. } break;
  2717. default:
  2718. {
  2719. GGML_ASSERT(false);
  2720. } break;
  2721. }
  2722. }
  2723. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2724. return tensor->data;
  2725. }
  2726. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2727. assert(tensor->type == GGML_TYPE_F32);
  2728. return (float *)(tensor->data);
  2729. }
  2730. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2731. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2732. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2733. }
  2734. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2735. return tensor->name;
  2736. }
  2737. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2738. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2739. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2740. return tensor;
  2741. }
  2742. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2743. va_list args;
  2744. va_start(args, fmt);
  2745. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2746. va_end(args);
  2747. return tensor;
  2748. }
  2749. struct ggml_tensor * ggml_view_tensor(
  2750. struct ggml_context * ctx,
  2751. struct ggml_tensor * src) {
  2752. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2753. ggml_format_name(result, "%s (view)", src->name);
  2754. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2755. result->nb[i] = src->nb[i];
  2756. }
  2757. return result;
  2758. }
  2759. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2760. struct ggml_object * obj = ctx->objects_begin;
  2761. char * const mem_buffer = ctx->mem_buffer;
  2762. while (obj != NULL) {
  2763. if (obj->type == GGML_OBJECT_TENSOR) {
  2764. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2765. }
  2766. obj = obj->next;
  2767. }
  2768. return NULL;
  2769. }
  2770. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2771. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2772. obj = obj->next;
  2773. char * const mem_buffer = ctx->mem_buffer;
  2774. while (obj != NULL) {
  2775. if (obj->type == GGML_OBJECT_TENSOR) {
  2776. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2777. }
  2778. obj = obj->next;
  2779. }
  2780. return NULL;
  2781. }
  2782. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2783. struct ggml_object * obj = ctx->objects_begin;
  2784. char * const mem_buffer = ctx->mem_buffer;
  2785. while (obj != NULL) {
  2786. if (obj->type == GGML_OBJECT_TENSOR) {
  2787. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2788. if (strcmp(cur->name, name) == 0) {
  2789. return cur;
  2790. }
  2791. }
  2792. obj = obj->next;
  2793. }
  2794. return NULL;
  2795. }
  2796. ////////////////////////////////////////////////////////////////////////////////
  2797. // ggml_dup
  2798. static struct ggml_tensor * ggml_dup_impl(
  2799. struct ggml_context * ctx,
  2800. struct ggml_tensor * a,
  2801. bool inplace) {
  2802. bool is_node = false;
  2803. if (!inplace && (a->grad)) {
  2804. is_node = true;
  2805. }
  2806. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2807. result->op = GGML_OP_DUP;
  2808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2809. result->src[0] = a;
  2810. return result;
  2811. }
  2812. struct ggml_tensor * ggml_dup(
  2813. struct ggml_context * ctx,
  2814. struct ggml_tensor * a) {
  2815. return ggml_dup_impl(ctx, a, false);
  2816. }
  2817. struct ggml_tensor * ggml_dup_inplace(
  2818. struct ggml_context * ctx,
  2819. struct ggml_tensor * a) {
  2820. return ggml_dup_impl(ctx, a, true);
  2821. }
  2822. // ggml_add
  2823. static struct ggml_tensor * ggml_add_impl(
  2824. struct ggml_context * ctx,
  2825. struct ggml_tensor * a,
  2826. struct ggml_tensor * b,
  2827. bool inplace) {
  2828. GGML_ASSERT(ggml_can_repeat(b, a));
  2829. bool is_node = false;
  2830. if (!inplace && (a->grad || b->grad)) {
  2831. // TODO: support backward pass for broadcasting
  2832. GGML_ASSERT(ggml_are_same_shape(a, b));
  2833. is_node = true;
  2834. }
  2835. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2836. result->op = GGML_OP_ADD;
  2837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2838. result->src[0] = a;
  2839. result->src[1] = b;
  2840. return result;
  2841. }
  2842. struct ggml_tensor * ggml_add(
  2843. struct ggml_context * ctx,
  2844. struct ggml_tensor * a,
  2845. struct ggml_tensor * b) {
  2846. return ggml_add_impl(ctx, a, b, false);
  2847. }
  2848. struct ggml_tensor * ggml_add_inplace(
  2849. struct ggml_context * ctx,
  2850. struct ggml_tensor * a,
  2851. struct ggml_tensor * b) {
  2852. return ggml_add_impl(ctx, a, b, true);
  2853. }
  2854. // ggml_add_cast
  2855. static struct ggml_tensor * ggml_add_cast_impl(
  2856. struct ggml_context * ctx,
  2857. struct ggml_tensor * a,
  2858. struct ggml_tensor * b,
  2859. enum ggml_type type) {
  2860. // TODO: support less-strict constraint
  2861. // GGML_ASSERT(ggml_can_repeat(b, a));
  2862. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2863. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2864. bool is_node = false;
  2865. if (a->grad || b->grad) {
  2866. // TODO: support backward pass for broadcasting
  2867. GGML_ASSERT(ggml_are_same_shape(a, b));
  2868. is_node = true;
  2869. }
  2870. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2871. result->op = GGML_OP_ADD;
  2872. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2873. result->src[0] = a;
  2874. result->src[1] = b;
  2875. return result;
  2876. }
  2877. struct ggml_tensor * ggml_add_cast(
  2878. struct ggml_context * ctx,
  2879. struct ggml_tensor * a,
  2880. struct ggml_tensor * b,
  2881. enum ggml_type type) {
  2882. return ggml_add_cast_impl(ctx, a, b, type);
  2883. }
  2884. // ggml_add1
  2885. static struct ggml_tensor * ggml_add1_impl(
  2886. struct ggml_context * ctx,
  2887. struct ggml_tensor * a,
  2888. struct ggml_tensor * b,
  2889. bool inplace) {
  2890. GGML_ASSERT(ggml_is_scalar(b));
  2891. GGML_ASSERT(ggml_is_padded_1d(a));
  2892. bool is_node = false;
  2893. if (a->grad || b->grad) {
  2894. is_node = true;
  2895. }
  2896. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2897. result->op = GGML_OP_ADD1;
  2898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2899. result->src[0] = a;
  2900. result->src[1] = b;
  2901. return result;
  2902. }
  2903. struct ggml_tensor * ggml_add1(
  2904. struct ggml_context * ctx,
  2905. struct ggml_tensor * a,
  2906. struct ggml_tensor * b) {
  2907. return ggml_add1_impl(ctx, a, b, false);
  2908. }
  2909. struct ggml_tensor * ggml_add1_inplace(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. struct ggml_tensor * b) {
  2913. return ggml_add1_impl(ctx, a, b, true);
  2914. }
  2915. // ggml_acc
  2916. static struct ggml_tensor * ggml_acc_impl(
  2917. struct ggml_context * ctx,
  2918. struct ggml_tensor * a,
  2919. struct ggml_tensor * b,
  2920. size_t nb1,
  2921. size_t nb2,
  2922. size_t nb3,
  2923. size_t offset,
  2924. bool inplace) {
  2925. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2926. GGML_ASSERT(ggml_is_contiguous(a));
  2927. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2928. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2929. bool is_node = false;
  2930. if (!inplace && (a->grad || b->grad)) {
  2931. is_node = true;
  2932. }
  2933. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2934. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2935. ggml_set_op_params(result, params, sizeof(params));
  2936. result->op = GGML_OP_ACC;
  2937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2938. result->src[0] = a;
  2939. result->src[1] = b;
  2940. return result;
  2941. }
  2942. struct ggml_tensor * ggml_acc(
  2943. struct ggml_context * ctx,
  2944. struct ggml_tensor * a,
  2945. struct ggml_tensor * b,
  2946. size_t nb1,
  2947. size_t nb2,
  2948. size_t nb3,
  2949. size_t offset) {
  2950. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2951. }
  2952. struct ggml_tensor * ggml_acc_inplace(
  2953. struct ggml_context * ctx,
  2954. struct ggml_tensor * a,
  2955. struct ggml_tensor * b,
  2956. size_t nb1,
  2957. size_t nb2,
  2958. size_t nb3,
  2959. size_t offset) {
  2960. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2961. }
  2962. // ggml_sub
  2963. static struct ggml_tensor * ggml_sub_impl(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * a,
  2966. struct ggml_tensor * b,
  2967. bool inplace) {
  2968. GGML_ASSERT(ggml_are_same_shape(a, b));
  2969. bool is_node = false;
  2970. if (!inplace && (a->grad || b->grad)) {
  2971. is_node = true;
  2972. }
  2973. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2974. result->op = GGML_OP_SUB;
  2975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2976. result->src[0] = a;
  2977. result->src[1] = b;
  2978. return result;
  2979. }
  2980. struct ggml_tensor * ggml_sub(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a,
  2983. struct ggml_tensor * b) {
  2984. return ggml_sub_impl(ctx, a, b, false);
  2985. }
  2986. struct ggml_tensor * ggml_sub_inplace(
  2987. struct ggml_context * ctx,
  2988. struct ggml_tensor * a,
  2989. struct ggml_tensor * b) {
  2990. return ggml_sub_impl(ctx, a, b, true);
  2991. }
  2992. // ggml_mul
  2993. static struct ggml_tensor * ggml_mul_impl(
  2994. struct ggml_context * ctx,
  2995. struct ggml_tensor * a,
  2996. struct ggml_tensor * b,
  2997. bool inplace) {
  2998. GGML_ASSERT(ggml_can_repeat(b, a));
  2999. bool is_node = false;
  3000. if (!inplace && (a->grad || b->grad)) {
  3001. // TODO: support backward pass for broadcasting
  3002. GGML_ASSERT(ggml_are_same_shape(a, b));
  3003. is_node = true;
  3004. }
  3005. if (inplace) {
  3006. GGML_ASSERT(!is_node);
  3007. }
  3008. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3009. result->op = GGML_OP_MUL;
  3010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3011. result->src[0] = a;
  3012. result->src[1] = b;
  3013. return result;
  3014. }
  3015. struct ggml_tensor * ggml_mul(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a,
  3018. struct ggml_tensor * b) {
  3019. return ggml_mul_impl(ctx, a, b, false);
  3020. }
  3021. struct ggml_tensor * ggml_mul_inplace(
  3022. struct ggml_context * ctx,
  3023. struct ggml_tensor * a,
  3024. struct ggml_tensor * b) {
  3025. return ggml_mul_impl(ctx, a, b, true);
  3026. }
  3027. // ggml_div
  3028. static struct ggml_tensor * ggml_div_impl(
  3029. struct ggml_context * ctx,
  3030. struct ggml_tensor * a,
  3031. struct ggml_tensor * b,
  3032. bool inplace) {
  3033. GGML_ASSERT(ggml_can_repeat(b, a));
  3034. bool is_node = false;
  3035. if (!inplace && (a->grad || b->grad)) {
  3036. is_node = true;
  3037. }
  3038. if (inplace) {
  3039. GGML_ASSERT(!is_node);
  3040. }
  3041. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3042. result->op = GGML_OP_DIV;
  3043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3044. result->src[0] = a;
  3045. result->src[1] = b;
  3046. return result;
  3047. }
  3048. struct ggml_tensor * ggml_div(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a,
  3051. struct ggml_tensor * b) {
  3052. return ggml_div_impl(ctx, a, b, false);
  3053. }
  3054. struct ggml_tensor * ggml_div_inplace(
  3055. struct ggml_context * ctx,
  3056. struct ggml_tensor * a,
  3057. struct ggml_tensor * b) {
  3058. return ggml_div_impl(ctx, a, b, true);
  3059. }
  3060. // ggml_sqr
  3061. static struct ggml_tensor * ggml_sqr_impl(
  3062. struct ggml_context * ctx,
  3063. struct ggml_tensor * a,
  3064. bool inplace) {
  3065. bool is_node = false;
  3066. if (!inplace && (a->grad)) {
  3067. is_node = true;
  3068. }
  3069. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3070. result->op = GGML_OP_SQR;
  3071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3072. result->src[0] = a;
  3073. return result;
  3074. }
  3075. struct ggml_tensor * ggml_sqr(
  3076. struct ggml_context * ctx,
  3077. struct ggml_tensor * a) {
  3078. return ggml_sqr_impl(ctx, a, false);
  3079. }
  3080. struct ggml_tensor * ggml_sqr_inplace(
  3081. struct ggml_context * ctx,
  3082. struct ggml_tensor * a) {
  3083. return ggml_sqr_impl(ctx, a, true);
  3084. }
  3085. // ggml_sqrt
  3086. static struct ggml_tensor * ggml_sqrt_impl(
  3087. struct ggml_context * ctx,
  3088. struct ggml_tensor * a,
  3089. bool inplace) {
  3090. bool is_node = false;
  3091. if (!inplace && (a->grad)) {
  3092. is_node = true;
  3093. }
  3094. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3095. result->op = GGML_OP_SQRT;
  3096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3097. result->src[0] = a;
  3098. return result;
  3099. }
  3100. struct ggml_tensor * ggml_sqrt(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_sqrt_impl(ctx, a, false);
  3104. }
  3105. struct ggml_tensor * ggml_sqrt_inplace(
  3106. struct ggml_context * ctx,
  3107. struct ggml_tensor * a) {
  3108. return ggml_sqrt_impl(ctx, a, true);
  3109. }
  3110. // ggml_log
  3111. static struct ggml_tensor * ggml_log_impl(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a,
  3114. bool inplace) {
  3115. bool is_node = false;
  3116. if (!inplace && (a->grad)) {
  3117. is_node = true;
  3118. }
  3119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3120. result->op = GGML_OP_LOG;
  3121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3122. result->src[0] = a;
  3123. return result;
  3124. }
  3125. struct ggml_tensor * ggml_log(
  3126. struct ggml_context * ctx,
  3127. struct ggml_tensor * a) {
  3128. return ggml_log_impl(ctx, a, false);
  3129. }
  3130. struct ggml_tensor * ggml_log_inplace(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a) {
  3133. return ggml_log_impl(ctx, a, true);
  3134. }
  3135. // ggml_sum
  3136. struct ggml_tensor * ggml_sum(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a) {
  3139. bool is_node = false;
  3140. if (a->grad) {
  3141. is_node = true;
  3142. }
  3143. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3144. result->op = GGML_OP_SUM;
  3145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3146. result->src[0] = a;
  3147. return result;
  3148. }
  3149. // ggml_sum_rows
  3150. struct ggml_tensor * ggml_sum_rows(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. bool is_node = false;
  3154. if (a->grad) {
  3155. is_node = true;
  3156. }
  3157. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3158. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3159. ne[i] = a->ne[i];
  3160. }
  3161. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3162. result->op = GGML_OP_SUM_ROWS;
  3163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3164. result->src[0] = a;
  3165. return result;
  3166. }
  3167. // ggml_mean
  3168. struct ggml_tensor * ggml_mean(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a) {
  3171. bool is_node = false;
  3172. if (a->grad) {
  3173. GGML_ASSERT(false); // TODO: implement
  3174. is_node = true;
  3175. }
  3176. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3177. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3178. result->op = GGML_OP_MEAN;
  3179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3180. result->src[0] = a;
  3181. return result;
  3182. }
  3183. // ggml_argmax
  3184. struct ggml_tensor * ggml_argmax(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a) {
  3187. GGML_ASSERT(ggml_is_matrix(a));
  3188. bool is_node = false;
  3189. if (a->grad) {
  3190. GGML_ASSERT(false);
  3191. is_node = true;
  3192. }
  3193. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3194. result->op = GGML_OP_ARGMAX;
  3195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3196. result->src[0] = a;
  3197. return result;
  3198. }
  3199. // ggml_repeat
  3200. struct ggml_tensor * ggml_repeat(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. struct ggml_tensor * b) {
  3204. GGML_ASSERT(ggml_can_repeat(a, b));
  3205. bool is_node = false;
  3206. if (a->grad) {
  3207. is_node = true;
  3208. }
  3209. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3210. result->op = GGML_OP_REPEAT;
  3211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3212. result->src[0] = a;
  3213. return result;
  3214. }
  3215. // ggml_repeat_back
  3216. struct ggml_tensor * ggml_repeat_back(
  3217. struct ggml_context * ctx,
  3218. struct ggml_tensor * a,
  3219. struct ggml_tensor * b) {
  3220. GGML_ASSERT(ggml_can_repeat(b, a));
  3221. bool is_node = false;
  3222. if (a->grad) {
  3223. is_node = true;
  3224. }
  3225. if (ggml_are_same_shape(a, b) && !is_node) {
  3226. return a;
  3227. }
  3228. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3229. result->op = GGML_OP_REPEAT_BACK;
  3230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3231. result->src[0] = a;
  3232. return result;
  3233. }
  3234. // ggml_concat
  3235. struct ggml_tensor * ggml_concat(
  3236. struct ggml_context* ctx,
  3237. struct ggml_tensor* a,
  3238. struct ggml_tensor* b) {
  3239. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3240. bool is_node = false;
  3241. if (a->grad || b->grad) {
  3242. is_node = true;
  3243. }
  3244. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3245. result->op = GGML_OP_CONCAT;
  3246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3247. result->src[0] = a;
  3248. result->src[1] = b;
  3249. return result;
  3250. }
  3251. // ggml_abs
  3252. struct ggml_tensor * ggml_abs(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a) {
  3255. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3256. }
  3257. struct ggml_tensor * ggml_abs_inplace(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a) {
  3260. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3261. }
  3262. // ggml_sgn
  3263. struct ggml_tensor * ggml_sgn(
  3264. struct ggml_context * ctx,
  3265. struct ggml_tensor * a) {
  3266. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3267. }
  3268. struct ggml_tensor * ggml_sgn_inplace(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a) {
  3271. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3272. }
  3273. // ggml_neg
  3274. struct ggml_tensor * ggml_neg(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a) {
  3277. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3278. }
  3279. struct ggml_tensor * ggml_neg_inplace(
  3280. struct ggml_context * ctx,
  3281. struct ggml_tensor * a) {
  3282. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3283. }
  3284. // ggml_step
  3285. struct ggml_tensor * ggml_step(
  3286. struct ggml_context * ctx,
  3287. struct ggml_tensor * a) {
  3288. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3289. }
  3290. struct ggml_tensor * ggml_step_inplace(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a) {
  3293. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3294. }
  3295. // ggml_tanh
  3296. struct ggml_tensor * ggml_tanh(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a) {
  3299. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3300. }
  3301. struct ggml_tensor * ggml_tanh_inplace(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a) {
  3304. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3305. }
  3306. // ggml_elu
  3307. struct ggml_tensor * ggml_elu(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a) {
  3310. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3311. }
  3312. struct ggml_tensor * ggml_elu_inplace(
  3313. struct ggml_context * ctx,
  3314. struct ggml_tensor * a) {
  3315. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3316. }
  3317. // ggml_relu
  3318. struct ggml_tensor * ggml_relu(
  3319. struct ggml_context * ctx,
  3320. struct ggml_tensor * a) {
  3321. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3322. }
  3323. struct ggml_tensor * ggml_relu_inplace(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a) {
  3326. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3327. }
  3328. // ggml_leaky_relu
  3329. struct ggml_tensor * ggml_leaky_relu(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3332. bool is_node = false;
  3333. if (!inplace && (a->grad)) {
  3334. is_node = true;
  3335. }
  3336. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3337. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3338. result->op = GGML_OP_LEAKY_RELU;
  3339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3340. result->src[0] = a;
  3341. return result;
  3342. }
  3343. // ggml_gelu
  3344. struct ggml_tensor * ggml_gelu(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a) {
  3347. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3348. }
  3349. struct ggml_tensor * ggml_gelu_inplace(
  3350. struct ggml_context * ctx,
  3351. struct ggml_tensor * a) {
  3352. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3353. }
  3354. // ggml_gelu_quick
  3355. struct ggml_tensor * ggml_gelu_quick(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a) {
  3358. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3359. }
  3360. struct ggml_tensor * ggml_gelu_quick_inplace(
  3361. struct ggml_context * ctx,
  3362. struct ggml_tensor * a) {
  3363. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3364. }
  3365. // ggml_silu
  3366. struct ggml_tensor * ggml_silu(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a) {
  3369. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3370. }
  3371. struct ggml_tensor * ggml_silu_inplace(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a) {
  3374. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3375. }
  3376. // ggml_silu_back
  3377. struct ggml_tensor * ggml_silu_back(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a,
  3380. struct ggml_tensor * b) {
  3381. bool is_node = false;
  3382. if (a->grad || b->grad) {
  3383. // TODO: implement backward
  3384. is_node = true;
  3385. }
  3386. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3387. result->op = GGML_OP_SILU_BACK;
  3388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3389. result->src[0] = a;
  3390. result->src[1] = b;
  3391. return result;
  3392. }
  3393. // ggml hardswish
  3394. struct ggml_tensor * ggml_hardswish(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a) {
  3397. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3398. }
  3399. // ggml hardsigmoid
  3400. struct ggml_tensor * ggml_hardsigmoid(
  3401. struct ggml_context * ctx,
  3402. struct ggml_tensor * a) {
  3403. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3404. }
  3405. // ggml_norm
  3406. static struct ggml_tensor * ggml_norm_impl(
  3407. struct ggml_context * ctx,
  3408. struct ggml_tensor * a,
  3409. float eps,
  3410. bool inplace) {
  3411. bool is_node = false;
  3412. if (!inplace && (a->grad)) {
  3413. GGML_ASSERT(false); // TODO: implement backward
  3414. is_node = true;
  3415. }
  3416. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3417. ggml_set_op_params(result, &eps, sizeof(eps));
  3418. result->op = GGML_OP_NORM;
  3419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3420. result->src[0] = a;
  3421. return result;
  3422. }
  3423. struct ggml_tensor * ggml_norm(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a,
  3426. float eps) {
  3427. return ggml_norm_impl(ctx, a, eps, false);
  3428. }
  3429. struct ggml_tensor * ggml_norm_inplace(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a,
  3432. float eps) {
  3433. return ggml_norm_impl(ctx, a, eps, true);
  3434. }
  3435. // ggml_rms_norm
  3436. static struct ggml_tensor * ggml_rms_norm_impl(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a,
  3439. float eps,
  3440. bool inplace) {
  3441. bool is_node = false;
  3442. if (!inplace && (a->grad)) {
  3443. is_node = true;
  3444. }
  3445. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3446. ggml_set_op_params(result, &eps, sizeof(eps));
  3447. result->op = GGML_OP_RMS_NORM;
  3448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3449. result->src[0] = a;
  3450. return result;
  3451. }
  3452. struct ggml_tensor * ggml_rms_norm(
  3453. struct ggml_context * ctx,
  3454. struct ggml_tensor * a,
  3455. float eps) {
  3456. return ggml_rms_norm_impl(ctx, a, eps, false);
  3457. }
  3458. struct ggml_tensor * ggml_rms_norm_inplace(
  3459. struct ggml_context * ctx,
  3460. struct ggml_tensor * a,
  3461. float eps) {
  3462. return ggml_rms_norm_impl(ctx, a, eps, true);
  3463. }
  3464. // ggml_rms_norm_back
  3465. struct ggml_tensor * ggml_rms_norm_back(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a,
  3468. struct ggml_tensor * b,
  3469. float eps) {
  3470. bool is_node = false;
  3471. if (a->grad) {
  3472. // TODO: implement backward
  3473. is_node = true;
  3474. }
  3475. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3476. ggml_set_op_params(result, &eps, sizeof(eps));
  3477. result->op = GGML_OP_RMS_NORM_BACK;
  3478. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3479. result->src[0] = a;
  3480. result->src[1] = b;
  3481. return result;
  3482. }
  3483. // ggml_group_norm
  3484. static struct ggml_tensor * ggml_group_norm_impl(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. int n_groups,
  3488. bool inplace) {
  3489. bool is_node = false;
  3490. if (!inplace && (a->grad)) {
  3491. GGML_ASSERT(false); // TODO: implement backward
  3492. is_node = true;
  3493. }
  3494. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3495. result->op_params[0] = n_groups;
  3496. result->op = GGML_OP_GROUP_NORM;
  3497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3498. result->src[0] = a;
  3499. return result;
  3500. }
  3501. struct ggml_tensor * ggml_group_norm(
  3502. struct ggml_context * ctx,
  3503. struct ggml_tensor * a,
  3504. int n_groups) {
  3505. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3506. }
  3507. struct ggml_tensor * ggml_group_norm_inplace(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. int n_groups) {
  3511. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3512. }
  3513. // ggml_mul_mat
  3514. struct ggml_tensor * ggml_mul_mat(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a,
  3517. struct ggml_tensor * b) {
  3518. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3519. GGML_ASSERT(!ggml_is_transposed(a));
  3520. bool is_node = false;
  3521. if (a->grad || b->grad) {
  3522. is_node = true;
  3523. }
  3524. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3525. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3526. result->op = GGML_OP_MUL_MAT;
  3527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3528. result->src[0] = a;
  3529. result->src[1] = b;
  3530. return result;
  3531. }
  3532. void ggml_mul_mat_set_prec(
  3533. struct ggml_tensor * a,
  3534. enum ggml_prec prec) {
  3535. const int32_t prec_i32 = (int32_t) prec;
  3536. ggml_set_op_params_i32(a, 0, prec_i32);
  3537. }
  3538. // ggml_mul_mat_id
  3539. struct ggml_tensor * ggml_mul_mat_id(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * const as[],
  3542. int n_as,
  3543. struct ggml_tensor * ids,
  3544. int id,
  3545. struct ggml_tensor * b) {
  3546. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3547. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3548. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3549. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3550. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3551. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3552. bool is_node = false;
  3553. if (as[0]->grad || b->grad) {
  3554. is_node = true;
  3555. }
  3556. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3557. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3558. ggml_set_op_params_i32(result, 0, id);
  3559. ggml_set_op_params_i32(result, 1, n_as);
  3560. result->op = GGML_OP_MUL_MAT_ID;
  3561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3562. result->src[0] = ids;
  3563. result->src[1] = b;
  3564. for (int i = 0; i < n_as; i++) {
  3565. struct ggml_tensor * a = as[i];
  3566. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3567. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3568. GGML_ASSERT(!ggml_is_transposed(a));
  3569. result->src[i + 2] = a;
  3570. }
  3571. return result;
  3572. }
  3573. // ggml_out_prod
  3574. struct ggml_tensor * ggml_out_prod(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a,
  3577. struct ggml_tensor * b) {
  3578. GGML_ASSERT(ggml_can_out_prod(a, b));
  3579. GGML_ASSERT(!ggml_is_transposed(a));
  3580. bool is_node = false;
  3581. if (a->grad || b->grad) {
  3582. is_node = true;
  3583. }
  3584. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3585. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3586. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3587. result->op = GGML_OP_OUT_PROD;
  3588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3589. result->src[0] = a;
  3590. result->src[1] = b;
  3591. return result;
  3592. }
  3593. // ggml_scale
  3594. static struct ggml_tensor * ggml_scale_impl(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a,
  3597. float s,
  3598. bool inplace) {
  3599. GGML_ASSERT(ggml_is_padded_1d(a));
  3600. bool is_node = false;
  3601. if (a->grad) {
  3602. is_node = true;
  3603. }
  3604. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3605. ggml_set_op_params(result, &s, sizeof(s));
  3606. result->op = GGML_OP_SCALE;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src[0] = a;
  3609. return result;
  3610. }
  3611. struct ggml_tensor * ggml_scale(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a,
  3614. float s) {
  3615. return ggml_scale_impl(ctx, a, s, false);
  3616. }
  3617. struct ggml_tensor * ggml_scale_inplace(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a,
  3620. float s) {
  3621. return ggml_scale_impl(ctx, a, s, true);
  3622. }
  3623. // ggml_set
  3624. static struct ggml_tensor * ggml_set_impl(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a,
  3627. struct ggml_tensor * b,
  3628. size_t nb1,
  3629. size_t nb2,
  3630. size_t nb3,
  3631. size_t offset,
  3632. bool inplace) {
  3633. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3634. bool is_node = false;
  3635. if (a->grad || b->grad) {
  3636. is_node = true;
  3637. }
  3638. // make a view of the destination
  3639. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3640. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3641. ggml_set_op_params(result, params, sizeof(params));
  3642. result->op = GGML_OP_SET;
  3643. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3644. result->src[0] = a;
  3645. result->src[1] = b;
  3646. return result;
  3647. }
  3648. struct ggml_tensor * ggml_set(
  3649. struct ggml_context * ctx,
  3650. struct ggml_tensor * a,
  3651. struct ggml_tensor * b,
  3652. size_t nb1,
  3653. size_t nb2,
  3654. size_t nb3,
  3655. size_t offset) {
  3656. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3657. }
  3658. struct ggml_tensor * ggml_set_inplace(
  3659. struct ggml_context * ctx,
  3660. struct ggml_tensor * a,
  3661. struct ggml_tensor * b,
  3662. size_t nb1,
  3663. size_t nb2,
  3664. size_t nb3,
  3665. size_t offset) {
  3666. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3667. }
  3668. struct ggml_tensor * ggml_set_1d(
  3669. struct ggml_context * ctx,
  3670. struct ggml_tensor * a,
  3671. struct ggml_tensor * b,
  3672. size_t offset) {
  3673. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3674. }
  3675. struct ggml_tensor * ggml_set_1d_inplace(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. struct ggml_tensor * b,
  3679. size_t offset) {
  3680. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3681. }
  3682. struct ggml_tensor * ggml_set_2d(
  3683. struct ggml_context * ctx,
  3684. struct ggml_tensor * a,
  3685. struct ggml_tensor * b,
  3686. size_t nb1,
  3687. size_t offset) {
  3688. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3689. }
  3690. struct ggml_tensor * ggml_set_2d_inplace(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a,
  3693. struct ggml_tensor * b,
  3694. size_t nb1,
  3695. size_t offset) {
  3696. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3697. }
  3698. // ggml_cpy
  3699. static struct ggml_tensor * ggml_cpy_impl(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. struct ggml_tensor * b) {
  3703. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3704. bool is_node = false;
  3705. if (a->grad || b->grad) {
  3706. // inplace is false and either one have a grad
  3707. is_node = true;
  3708. }
  3709. // make a view of the destination
  3710. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3711. if (strlen(b->name) > 0) {
  3712. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3713. } else {
  3714. ggml_format_name(result, "%s (copy)", a->name);
  3715. }
  3716. result->op = GGML_OP_CPY;
  3717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3718. result->src[0] = a;
  3719. result->src[1] = b;
  3720. return result;
  3721. }
  3722. struct ggml_tensor * ggml_cpy(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. struct ggml_tensor * b) {
  3726. return ggml_cpy_impl(ctx, a, b);
  3727. }
  3728. struct ggml_tensor * ggml_cast(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. enum ggml_type type) {
  3732. bool is_node = false;
  3733. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3734. ggml_format_name(result, "%s (copy)", a->name);
  3735. result->op = GGML_OP_CPY;
  3736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3737. result->src[0] = a;
  3738. result->src[1] = result;
  3739. return result;
  3740. }
  3741. // ggml_cont
  3742. static struct ggml_tensor * ggml_cont_impl(
  3743. struct ggml_context * ctx,
  3744. struct ggml_tensor * a) {
  3745. bool is_node = false;
  3746. if (a->grad) {
  3747. is_node = true;
  3748. }
  3749. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3750. ggml_format_name(result, "%s (cont)", a->name);
  3751. result->op = GGML_OP_CONT;
  3752. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3753. result->src[0] = a;
  3754. return result;
  3755. }
  3756. struct ggml_tensor * ggml_cont(
  3757. struct ggml_context * ctx,
  3758. struct ggml_tensor * a) {
  3759. return ggml_cont_impl(ctx, a);
  3760. }
  3761. // make contiguous, with new shape
  3762. GGML_API struct ggml_tensor * ggml_cont_1d(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. int64_t ne0) {
  3766. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3767. }
  3768. GGML_API struct ggml_tensor * ggml_cont_2d(
  3769. struct ggml_context * ctx,
  3770. struct ggml_tensor * a,
  3771. int64_t ne0,
  3772. int64_t ne1) {
  3773. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3774. }
  3775. GGML_API struct ggml_tensor * ggml_cont_3d(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a,
  3778. int64_t ne0,
  3779. int64_t ne1,
  3780. int64_t ne2) {
  3781. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3782. }
  3783. struct ggml_tensor * ggml_cont_4d(
  3784. struct ggml_context * ctx,
  3785. struct ggml_tensor * a,
  3786. int64_t ne0,
  3787. int64_t ne1,
  3788. int64_t ne2,
  3789. int64_t ne3) {
  3790. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3791. bool is_node = false;
  3792. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3793. ggml_format_name(result, "%s (cont)", a->name);
  3794. result->op = GGML_OP_CONT;
  3795. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3796. result->src[0] = a;
  3797. return result;
  3798. }
  3799. // ggml_reshape
  3800. struct ggml_tensor * ggml_reshape(
  3801. struct ggml_context * ctx,
  3802. struct ggml_tensor * a,
  3803. struct ggml_tensor * b) {
  3804. GGML_ASSERT(ggml_is_contiguous(a));
  3805. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3806. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3807. bool is_node = false;
  3808. if (a->grad) {
  3809. is_node = true;
  3810. }
  3811. if (b->grad) {
  3812. // gradient propagation is not supported
  3813. //GGML_ASSERT(false);
  3814. }
  3815. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3816. ggml_format_name(result, "%s (reshaped)", a->name);
  3817. result->op = GGML_OP_RESHAPE;
  3818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3819. result->src[0] = a;
  3820. return result;
  3821. }
  3822. struct ggml_tensor * ggml_reshape_1d(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. int64_t ne0) {
  3826. GGML_ASSERT(ggml_is_contiguous(a));
  3827. GGML_ASSERT(ggml_nelements(a) == ne0);
  3828. bool is_node = false;
  3829. if (a->grad) {
  3830. is_node = true;
  3831. }
  3832. const int64_t ne[1] = { ne0 };
  3833. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3834. ggml_format_name(result, "%s (reshaped)", a->name);
  3835. result->op = GGML_OP_RESHAPE;
  3836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3837. result->src[0] = a;
  3838. return result;
  3839. }
  3840. struct ggml_tensor * ggml_reshape_2d(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a,
  3843. int64_t ne0,
  3844. int64_t ne1) {
  3845. GGML_ASSERT(ggml_is_contiguous(a));
  3846. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3847. bool is_node = false;
  3848. if (a->grad) {
  3849. is_node = true;
  3850. }
  3851. const int64_t ne[2] = { ne0, ne1 };
  3852. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3853. ggml_format_name(result, "%s (reshaped)", a->name);
  3854. result->op = GGML_OP_RESHAPE;
  3855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3856. result->src[0] = a;
  3857. return result;
  3858. }
  3859. struct ggml_tensor * ggml_reshape_3d(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. int64_t ne0,
  3863. int64_t ne1,
  3864. int64_t ne2) {
  3865. GGML_ASSERT(ggml_is_contiguous(a));
  3866. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3867. bool is_node = false;
  3868. if (a->grad) {
  3869. is_node = true;
  3870. }
  3871. const int64_t ne[3] = { ne0, ne1, ne2 };
  3872. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3873. ggml_format_name(result, "%s (reshaped)", a->name);
  3874. result->op = GGML_OP_RESHAPE;
  3875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3876. result->src[0] = a;
  3877. return result;
  3878. }
  3879. struct ggml_tensor * ggml_reshape_4d(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a,
  3882. int64_t ne0,
  3883. int64_t ne1,
  3884. int64_t ne2,
  3885. int64_t ne3) {
  3886. GGML_ASSERT(ggml_is_contiguous(a));
  3887. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3888. bool is_node = false;
  3889. if (a->grad) {
  3890. is_node = true;
  3891. }
  3892. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3893. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3894. ggml_format_name(result, "%s (reshaped)", a->name);
  3895. result->op = GGML_OP_RESHAPE;
  3896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3897. result->src[0] = a;
  3898. return result;
  3899. }
  3900. static struct ggml_tensor * ggml_view_impl(
  3901. struct ggml_context * ctx,
  3902. struct ggml_tensor * a,
  3903. int n_dims,
  3904. const int64_t * ne,
  3905. size_t offset) {
  3906. bool is_node = false;
  3907. if (a->grad) {
  3908. is_node = true;
  3909. }
  3910. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3911. ggml_format_name(result, "%s (view)", a->name);
  3912. ggml_set_op_params(result, &offset, sizeof(offset));
  3913. result->op = GGML_OP_VIEW;
  3914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3915. result->src[0] = a;
  3916. return result;
  3917. }
  3918. // ggml_view_1d
  3919. struct ggml_tensor * ggml_view_1d(
  3920. struct ggml_context * ctx,
  3921. struct ggml_tensor * a,
  3922. int64_t ne0,
  3923. size_t offset) {
  3924. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3925. return result;
  3926. }
  3927. // ggml_view_2d
  3928. struct ggml_tensor * ggml_view_2d(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. int64_t ne0,
  3932. int64_t ne1,
  3933. size_t nb1,
  3934. size_t offset) {
  3935. const int64_t ne[2] = { ne0, ne1 };
  3936. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3937. result->nb[1] = nb1;
  3938. result->nb[2] = result->nb[1]*ne1;
  3939. result->nb[3] = result->nb[2];
  3940. return result;
  3941. }
  3942. // ggml_view_3d
  3943. struct ggml_tensor * ggml_view_3d(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. int64_t ne0,
  3947. int64_t ne1,
  3948. int64_t ne2,
  3949. size_t nb1,
  3950. size_t nb2,
  3951. size_t offset) {
  3952. const int64_t ne[3] = { ne0, ne1, ne2 };
  3953. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3954. result->nb[1] = nb1;
  3955. result->nb[2] = nb2;
  3956. result->nb[3] = result->nb[2]*ne2;
  3957. return result;
  3958. }
  3959. // ggml_view_4d
  3960. struct ggml_tensor * ggml_view_4d(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a,
  3963. int64_t ne0,
  3964. int64_t ne1,
  3965. int64_t ne2,
  3966. int64_t ne3,
  3967. size_t nb1,
  3968. size_t nb2,
  3969. size_t nb3,
  3970. size_t offset) {
  3971. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3972. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3973. result->nb[1] = nb1;
  3974. result->nb[2] = nb2;
  3975. result->nb[3] = nb3;
  3976. return result;
  3977. }
  3978. // ggml_permute
  3979. struct ggml_tensor * ggml_permute(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a,
  3982. int axis0,
  3983. int axis1,
  3984. int axis2,
  3985. int axis3) {
  3986. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3987. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3988. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3989. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3990. GGML_ASSERT(axis0 != axis1);
  3991. GGML_ASSERT(axis0 != axis2);
  3992. GGML_ASSERT(axis0 != axis3);
  3993. GGML_ASSERT(axis1 != axis2);
  3994. GGML_ASSERT(axis1 != axis3);
  3995. GGML_ASSERT(axis2 != axis3);
  3996. bool is_node = false;
  3997. if (a->grad) {
  3998. is_node = true;
  3999. }
  4000. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4001. ggml_format_name(result, "%s (permuted)", a->name);
  4002. int ne[GGML_MAX_DIMS];
  4003. int nb[GGML_MAX_DIMS];
  4004. ne[axis0] = a->ne[0];
  4005. ne[axis1] = a->ne[1];
  4006. ne[axis2] = a->ne[2];
  4007. ne[axis3] = a->ne[3];
  4008. nb[axis0] = a->nb[0];
  4009. nb[axis1] = a->nb[1];
  4010. nb[axis2] = a->nb[2];
  4011. nb[axis3] = a->nb[3];
  4012. result->ne[0] = ne[0];
  4013. result->ne[1] = ne[1];
  4014. result->ne[2] = ne[2];
  4015. result->ne[3] = ne[3];
  4016. result->nb[0] = nb[0];
  4017. result->nb[1] = nb[1];
  4018. result->nb[2] = nb[2];
  4019. result->nb[3] = nb[3];
  4020. result->op = GGML_OP_PERMUTE;
  4021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4022. result->src[0] = a;
  4023. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4024. ggml_set_op_params(result, params, sizeof(params));
  4025. return result;
  4026. }
  4027. // ggml_transpose
  4028. struct ggml_tensor * ggml_transpose(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a) {
  4031. bool is_node = false;
  4032. if (a->grad) {
  4033. is_node = true;
  4034. }
  4035. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4036. ggml_format_name(result, "%s (transposed)", a->name);
  4037. result->ne[0] = a->ne[1];
  4038. result->ne[1] = a->ne[0];
  4039. result->nb[0] = a->nb[1];
  4040. result->nb[1] = a->nb[0];
  4041. result->op = GGML_OP_TRANSPOSE;
  4042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4043. result->src[0] = a;
  4044. return result;
  4045. }
  4046. // ggml_get_rows
  4047. struct ggml_tensor * ggml_get_rows(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. struct ggml_tensor * b) {
  4051. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4052. GGML_ASSERT(b->ne[3] == 1);
  4053. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4054. bool is_node = false;
  4055. if (a->grad || b->grad) {
  4056. is_node = true;
  4057. }
  4058. // TODO: implement non F32 return
  4059. enum ggml_type type = GGML_TYPE_F32;
  4060. if (a->type == GGML_TYPE_I32) {
  4061. type = a->type;
  4062. }
  4063. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4064. result->op = GGML_OP_GET_ROWS;
  4065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4066. result->src[0] = a;
  4067. result->src[1] = b;
  4068. return result;
  4069. }
  4070. // ggml_get_rows_back
  4071. struct ggml_tensor * ggml_get_rows_back(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. struct ggml_tensor * b,
  4075. struct ggml_tensor * c) {
  4076. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4077. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4078. bool is_node = false;
  4079. if (a->grad || b->grad) {
  4080. is_node = true;
  4081. }
  4082. // TODO: implement non F32 return
  4083. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4084. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4085. result->op = GGML_OP_GET_ROWS_BACK;
  4086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4087. result->src[0] = a;
  4088. result->src[1] = b;
  4089. return result;
  4090. }
  4091. // ggml_diag
  4092. struct ggml_tensor * ggml_diag(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a) {
  4095. GGML_ASSERT(a->ne[1] == 1);
  4096. bool is_node = false;
  4097. if (a->grad) {
  4098. is_node = true;
  4099. }
  4100. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4101. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4102. result->op = GGML_OP_DIAG;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src[0] = a;
  4105. return result;
  4106. }
  4107. // ggml_diag_mask_inf
  4108. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. int n_past,
  4112. bool inplace) {
  4113. bool is_node = false;
  4114. if (a->grad) {
  4115. is_node = true;
  4116. }
  4117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4118. int32_t params[] = { n_past };
  4119. ggml_set_op_params(result, params, sizeof(params));
  4120. result->op = GGML_OP_DIAG_MASK_INF;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src[0] = a;
  4123. return result;
  4124. }
  4125. struct ggml_tensor * ggml_diag_mask_inf(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. int n_past) {
  4129. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4130. }
  4131. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. int n_past) {
  4135. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4136. }
  4137. // ggml_diag_mask_zero
  4138. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. int n_past,
  4142. bool inplace) {
  4143. bool is_node = false;
  4144. if (a->grad) {
  4145. is_node = true;
  4146. }
  4147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4148. int32_t params[] = { n_past };
  4149. ggml_set_op_params(result, params, sizeof(params));
  4150. result->op = GGML_OP_DIAG_MASK_ZERO;
  4151. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4152. result->src[0] = a;
  4153. return result;
  4154. }
  4155. struct ggml_tensor * ggml_diag_mask_zero(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. int n_past) {
  4159. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4160. }
  4161. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4162. struct ggml_context * ctx,
  4163. struct ggml_tensor * a,
  4164. int n_past) {
  4165. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4166. }
  4167. // ggml_soft_max
  4168. static struct ggml_tensor * ggml_soft_max_impl(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. struct ggml_tensor * mask,
  4172. struct ggml_tensor * pos,
  4173. float scale,
  4174. float max_bias,
  4175. bool inplace) {
  4176. GGML_ASSERT(ggml_is_contiguous(a));
  4177. if (mask) {
  4178. GGML_ASSERT(ggml_is_contiguous(mask));
  4179. GGML_ASSERT(ggml_is_matrix(mask));
  4180. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4181. }
  4182. if (pos) {
  4183. GGML_ASSERT(ggml_is_vector(pos));
  4184. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4185. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4186. }
  4187. if (max_bias > 0.0f) {
  4188. GGML_ASSERT(pos);
  4189. }
  4190. bool is_node = false;
  4191. if (a->grad) {
  4192. is_node = true;
  4193. }
  4194. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4195. float params[] = { scale, max_bias };
  4196. ggml_set_op_params(result, params, sizeof(params));
  4197. result->op = GGML_OP_SOFT_MAX;
  4198. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4199. result->src[0] = a;
  4200. result->src[1] = mask;
  4201. result->src[2] = pos;
  4202. return result;
  4203. }
  4204. struct ggml_tensor * ggml_soft_max(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a) {
  4207. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4208. }
  4209. struct ggml_tensor * ggml_soft_max_inplace(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a) {
  4212. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4213. }
  4214. struct ggml_tensor * ggml_soft_max_ext(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. struct ggml_tensor * mask,
  4218. struct ggml_tensor * pos,
  4219. float scale,
  4220. float max_bias) {
  4221. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4222. }
  4223. // ggml_soft_max_back
  4224. static struct ggml_tensor * ggml_soft_max_back_impl(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. struct ggml_tensor * b,
  4228. bool inplace) {
  4229. bool is_node = false;
  4230. if (a->grad || b->grad) {
  4231. is_node = true; // TODO : implement backward pass
  4232. }
  4233. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4234. result->op = GGML_OP_SOFT_MAX_BACK;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src[0] = a;
  4237. result->src[1] = b;
  4238. return result;
  4239. }
  4240. struct ggml_tensor * ggml_soft_max_back(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a,
  4243. struct ggml_tensor * b) {
  4244. return ggml_soft_max_back_impl(ctx, a, b, false);
  4245. }
  4246. struct ggml_tensor * ggml_soft_max_back_inplace(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. struct ggml_tensor * b) {
  4250. return ggml_soft_max_back_impl(ctx, a, b, true);
  4251. }
  4252. // ggml_rope
  4253. static struct ggml_tensor * ggml_rope_impl(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b,
  4257. int n_dims,
  4258. int mode,
  4259. int n_ctx,
  4260. int n_orig_ctx,
  4261. float freq_base,
  4262. float freq_scale,
  4263. float ext_factor,
  4264. float attn_factor,
  4265. float beta_fast,
  4266. float beta_slow,
  4267. float xpos_base,
  4268. bool xpos_down,
  4269. bool inplace) {
  4270. GGML_ASSERT(ggml_is_vector(b));
  4271. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4272. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4273. bool is_node = false;
  4274. if (a->grad) {
  4275. is_node = true;
  4276. }
  4277. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4278. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4279. memcpy(params + 5, &freq_base, sizeof(float));
  4280. memcpy(params + 6, &freq_scale, sizeof(float));
  4281. memcpy(params + 7, &ext_factor, sizeof(float));
  4282. memcpy(params + 8, &attn_factor, sizeof(float));
  4283. memcpy(params + 9, &beta_fast, sizeof(float));
  4284. memcpy(params + 10, &beta_slow, sizeof(float));
  4285. memcpy(params + 11, &xpos_base, sizeof(float));
  4286. memcpy(params + 12, &xpos_down, sizeof(bool));
  4287. ggml_set_op_params(result, params, sizeof(params));
  4288. result->op = GGML_OP_ROPE;
  4289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4290. result->src[0] = a;
  4291. result->src[1] = b;
  4292. return result;
  4293. }
  4294. struct ggml_tensor * ggml_rope(
  4295. struct ggml_context * ctx,
  4296. struct ggml_tensor * a,
  4297. struct ggml_tensor * b,
  4298. int n_dims,
  4299. int mode,
  4300. int n_ctx) {
  4301. return ggml_rope_impl(
  4302. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4303. );
  4304. }
  4305. struct ggml_tensor * ggml_rope_inplace(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a,
  4308. struct ggml_tensor * b,
  4309. int n_dims,
  4310. int mode,
  4311. int n_ctx) {
  4312. return ggml_rope_impl(
  4313. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4314. );
  4315. }
  4316. struct ggml_tensor * ggml_rope_custom(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b,
  4320. int n_dims,
  4321. int mode,
  4322. int n_ctx,
  4323. int n_orig_ctx,
  4324. float freq_base,
  4325. float freq_scale,
  4326. float ext_factor,
  4327. float attn_factor,
  4328. float beta_fast,
  4329. float beta_slow) {
  4330. return ggml_rope_impl(
  4331. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4332. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4333. );
  4334. }
  4335. struct ggml_tensor * ggml_rope_custom_inplace(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. struct ggml_tensor * b,
  4339. int n_dims,
  4340. int mode,
  4341. int n_ctx,
  4342. int n_orig_ctx,
  4343. float freq_base,
  4344. float freq_scale,
  4345. float ext_factor,
  4346. float attn_factor,
  4347. float beta_fast,
  4348. float beta_slow) {
  4349. return ggml_rope_impl(
  4350. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4351. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4352. );
  4353. }
  4354. struct ggml_tensor * ggml_rope_xpos_inplace(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. struct ggml_tensor * b,
  4358. int n_dims,
  4359. float base,
  4360. bool down) {
  4361. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4362. }
  4363. // ggml_rope_back
  4364. struct ggml_tensor * ggml_rope_back(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a,
  4367. struct ggml_tensor * b,
  4368. int n_dims,
  4369. int mode,
  4370. int n_ctx,
  4371. int n_orig_ctx,
  4372. float freq_base,
  4373. float freq_scale,
  4374. float ext_factor,
  4375. float attn_factor,
  4376. float beta_fast,
  4377. float beta_slow,
  4378. float xpos_base,
  4379. bool xpos_down) {
  4380. GGML_ASSERT(ggml_is_vector(b));
  4381. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4382. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4383. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4384. bool is_node = false;
  4385. if (a->grad) {
  4386. is_node = false; // TODO: implement backward
  4387. }
  4388. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4389. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4390. memcpy(params + 5, &freq_base, sizeof(float));
  4391. memcpy(params + 6, &freq_scale, sizeof(float));
  4392. memcpy(params + 7, &ext_factor, sizeof(float));
  4393. memcpy(params + 8, &attn_factor, sizeof(float));
  4394. memcpy(params + 9, &beta_fast, sizeof(float));
  4395. memcpy(params + 10, &beta_slow, sizeof(float));
  4396. memcpy(params + 11, &xpos_base, sizeof(float));
  4397. memcpy(params + 12, &xpos_down, sizeof(bool));
  4398. ggml_set_op_params(result, params, sizeof(params));
  4399. result->op = GGML_OP_ROPE_BACK;
  4400. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4401. result->src[0] = a;
  4402. result->src[1] = b;
  4403. return result;
  4404. }
  4405. // ggml_alibi
  4406. struct ggml_tensor * ggml_alibi(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. int n_past,
  4410. int n_head,
  4411. float bias_max) {
  4412. GGML_ASSERT(n_past >= 0);
  4413. bool is_node = false;
  4414. if (a->grad) {
  4415. GGML_ASSERT(false); // TODO: implement backward
  4416. is_node = true;
  4417. }
  4418. // TODO: when implement backward, fix this:
  4419. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4420. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4421. int32_t op_params[3] = { n_past, n_head };
  4422. memcpy(op_params + 2, &bias_max, sizeof(float));
  4423. ggml_set_op_params(result, op_params, sizeof(op_params));
  4424. result->op = GGML_OP_ALIBI;
  4425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4426. result->src[0] = a;
  4427. return result;
  4428. }
  4429. // ggml_clamp
  4430. struct ggml_tensor * ggml_clamp(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. float min,
  4434. float max) {
  4435. bool is_node = false;
  4436. if (a->grad) {
  4437. GGML_ASSERT(false); // TODO: implement backward
  4438. is_node = true;
  4439. }
  4440. // TODO: when implement backward, fix this:
  4441. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4442. float params[] = { min, max };
  4443. ggml_set_op_params(result, params, sizeof(params));
  4444. result->op = GGML_OP_CLAMP;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src[0] = a;
  4447. return result;
  4448. }
  4449. // ggml_conv_1d
  4450. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4451. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4452. }
  4453. GGML_API struct ggml_tensor * ggml_conv_1d(
  4454. struct ggml_context * ctx,
  4455. struct ggml_tensor * a,
  4456. struct ggml_tensor * b,
  4457. int s0,
  4458. int p0,
  4459. int d0) {
  4460. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4461. struct ggml_tensor * result =
  4462. ggml_mul_mat(ctx,
  4463. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4464. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4465. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4466. return result;
  4467. }
  4468. // ggml_conv_1d_ph
  4469. struct ggml_tensor* ggml_conv_1d_ph(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. struct ggml_tensor * b,
  4473. int s,
  4474. int d) {
  4475. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4476. }
  4477. // ggml_conv_transpose_1d
  4478. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4479. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4480. }
  4481. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a,
  4484. struct ggml_tensor * b,
  4485. int s0,
  4486. int p0,
  4487. int d0) {
  4488. GGML_ASSERT(ggml_is_matrix(b));
  4489. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4490. GGML_ASSERT(a->ne[3] == 1);
  4491. GGML_ASSERT(p0 == 0);
  4492. GGML_ASSERT(d0 == 1);
  4493. bool is_node = false;
  4494. if (a->grad || b->grad) {
  4495. GGML_ASSERT(false); // TODO: implement backward
  4496. is_node = true;
  4497. }
  4498. const int64_t ne[4] = {
  4499. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4500. a->ne[1], b->ne[2], 1,
  4501. };
  4502. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4503. int32_t params[] = { s0, p0, d0 };
  4504. ggml_set_op_params(result, params, sizeof(params));
  4505. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4507. result->src[0] = a;
  4508. result->src[1] = b;
  4509. return result;
  4510. }
  4511. // ggml_conv_depthwise
  4512. struct ggml_tensor * ggml_conv_depthwise_2d(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a,
  4515. struct ggml_tensor * b,
  4516. int s0,
  4517. int s1,
  4518. int p0,
  4519. int p1,
  4520. int d0,
  4521. int d1) {
  4522. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4523. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4524. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4525. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4526. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4527. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4528. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4529. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4530. return result;
  4531. }
  4532. // ggml_conv_2d
  4533. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4534. // a: [OC,IC, KH, KW]
  4535. // b: [N, IC, IH, IW]
  4536. // result: [N, OH, OW, IC*KH*KW]
  4537. struct ggml_tensor * ggml_im2col(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. struct ggml_tensor * b,
  4541. int s0,
  4542. int s1,
  4543. int p0,
  4544. int p1,
  4545. int d0,
  4546. int d1,
  4547. bool is_2D,
  4548. enum ggml_type dst_type) {
  4549. if(is_2D) {
  4550. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4551. } else {
  4552. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4553. }
  4554. bool is_node = false;
  4555. if (a->grad || b->grad) {
  4556. GGML_ASSERT(false); // TODO: implement backward
  4557. is_node = true;
  4558. }
  4559. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4560. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4561. const int64_t ne[4] = {
  4562. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4563. OW,
  4564. is_2D ? OH : b->ne[2],
  4565. is_2D ? b->ne[3] : 1,
  4566. };
  4567. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4568. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4569. ggml_set_op_params(result, params, sizeof(params));
  4570. result->op = GGML_OP_IM2COL;
  4571. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4572. result->src[0] = a;
  4573. result->src[1] = b;
  4574. return result;
  4575. }
  4576. // a: [OC,IC, KH, KW]
  4577. // b: [N, IC, IH, IW]
  4578. // result: [N, OC, OH, OW]
  4579. struct ggml_tensor * ggml_conv_2d(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a,
  4582. struct ggml_tensor * b,
  4583. int s0,
  4584. int s1,
  4585. int p0,
  4586. int p1,
  4587. int d0,
  4588. int d1) {
  4589. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4590. struct ggml_tensor * result =
  4591. ggml_mul_mat(ctx,
  4592. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4593. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4594. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4595. return result;
  4596. }
  4597. // ggml_conv_2d_sk_p0
  4598. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a,
  4601. struct ggml_tensor * b) {
  4602. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4603. }
  4604. // ggml_conv_2d_s1_ph
  4605. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a,
  4608. struct ggml_tensor * b) {
  4609. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4610. }
  4611. // ggml_conv_transpose_2d_p0
  4612. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4613. return (ins - 1) * s - 2 * p + ks;
  4614. }
  4615. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4616. struct ggml_context * ctx,
  4617. struct ggml_tensor * a,
  4618. struct ggml_tensor * b,
  4619. int stride) {
  4620. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4621. bool is_node = false;
  4622. if (a->grad || b->grad) {
  4623. GGML_ASSERT(false); // TODO: implement backward
  4624. is_node = true;
  4625. }
  4626. const int64_t ne[4] = {
  4627. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4628. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4629. a->ne[2], b->ne[3],
  4630. };
  4631. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4632. ggml_set_op_params_i32(result, 0, stride);
  4633. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4635. result->src[0] = a;
  4636. result->src[1] = b;
  4637. return result;
  4638. }
  4639. // ggml_pool_*
  4640. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4641. return (ins + 2 * p - ks) / s + 1;
  4642. }
  4643. // ggml_pool_1d
  4644. struct ggml_tensor * ggml_pool_1d(
  4645. struct ggml_context * ctx,
  4646. struct ggml_tensor * a,
  4647. enum ggml_op_pool op,
  4648. int k0,
  4649. int s0,
  4650. int p0) {
  4651. bool is_node = false;
  4652. if (a->grad) {
  4653. GGML_ASSERT(false); // TODO: implement backward
  4654. is_node = true;
  4655. }
  4656. const int64_t ne[2] = {
  4657. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4658. a->ne[1],
  4659. };
  4660. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4661. int32_t params[] = { op, k0, s0, p0 };
  4662. ggml_set_op_params(result, params, sizeof(params));
  4663. result->op = GGML_OP_POOL_1D;
  4664. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4665. result->src[0] = a;
  4666. return result;
  4667. }
  4668. // ggml_pool_2d
  4669. struct ggml_tensor * ggml_pool_2d(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. enum ggml_op_pool op,
  4673. int k0,
  4674. int k1,
  4675. int s0,
  4676. int s1,
  4677. float p0,
  4678. float p1) {
  4679. bool is_node = false;
  4680. if (a->grad) {
  4681. GGML_ASSERT(false); // TODO: implement backward
  4682. is_node = true;
  4683. }
  4684. struct ggml_tensor * result;
  4685. const int64_t ne[3] = {
  4686. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4687. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4688. a->ne[2],
  4689. };
  4690. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4691. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4692. ggml_set_op_params(result, params, sizeof(params));
  4693. result->op = GGML_OP_POOL_2D;
  4694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4695. result->src[0] = a;
  4696. return result;
  4697. }
  4698. // ggml_upscale
  4699. static struct ggml_tensor * ggml_upscale_impl(
  4700. struct ggml_context * ctx,
  4701. struct ggml_tensor * a,
  4702. int scale_factor) {
  4703. bool is_node = false;
  4704. if (a->grad) {
  4705. GGML_ASSERT(false); // TODO: implement backward
  4706. is_node = true;
  4707. }
  4708. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4709. a->ne[0] * scale_factor,
  4710. a->ne[1] * scale_factor,
  4711. a->ne[2], a->ne[3]);
  4712. result->op = GGML_OP_UPSCALE;
  4713. result->op_params[0] = scale_factor;
  4714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4715. result->src[0] = a;
  4716. return result;
  4717. }
  4718. struct ggml_tensor * ggml_pad(
  4719. struct ggml_context * ctx,
  4720. struct ggml_tensor * a,
  4721. int p0, int p1, int p2, int p3) {
  4722. bool is_node = false;
  4723. if (a->grad) {
  4724. GGML_ASSERT(false); // TODO: implement backward
  4725. is_node = true;
  4726. }
  4727. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4728. a->ne[0] + p0,
  4729. a->ne[1] + p1,
  4730. a->ne[2] + p2,
  4731. a->ne[3] + p3);
  4732. result->op = GGML_OP_PAD;
  4733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4734. result->src[0] = a;
  4735. return result;
  4736. }
  4737. struct ggml_tensor * ggml_upscale(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. int scale_factor) {
  4741. return ggml_upscale_impl(ctx, a, scale_factor);
  4742. }
  4743. // ggml_argsort
  4744. struct ggml_tensor * ggml_argsort(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. enum ggml_sort_order order) {
  4748. bool is_node = false;
  4749. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4750. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4751. result->op = GGML_OP_ARGSORT;
  4752. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4753. result->src[0] = a;
  4754. return result;
  4755. }
  4756. // ggml_top_k
  4757. struct ggml_tensor * ggml_top_k(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * a,
  4760. int k) {
  4761. GGML_ASSERT(a->ne[0] >= k);
  4762. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4763. result = ggml_view_4d(ctx, result,
  4764. k, result->ne[1], result->ne[2], result->ne[3],
  4765. result->nb[1], result->nb[2], result->nb[3],
  4766. 0);
  4767. return result;
  4768. }
  4769. // ggml_flash_attn
  4770. struct ggml_tensor * ggml_flash_attn(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * q,
  4773. struct ggml_tensor * k,
  4774. struct ggml_tensor * v,
  4775. bool masked) {
  4776. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4777. // TODO: check if vT can be multiplied by (k*qT)
  4778. bool is_node = false;
  4779. if (q->grad || k->grad || v->grad) {
  4780. is_node = true;
  4781. }
  4782. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4783. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4784. int32_t t = masked ? 1 : 0;
  4785. ggml_set_op_params(result, &t, sizeof(t));
  4786. result->op = GGML_OP_FLASH_ATTN;
  4787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4788. result->src[0] = q;
  4789. result->src[1] = k;
  4790. result->src[2] = v;
  4791. return result;
  4792. }
  4793. // ggml_flash_ff
  4794. struct ggml_tensor * ggml_flash_ff(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a,
  4797. struct ggml_tensor * b0,
  4798. struct ggml_tensor * b1,
  4799. struct ggml_tensor * c0,
  4800. struct ggml_tensor * c1) {
  4801. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4802. // TODO: more checks
  4803. bool is_node = false;
  4804. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4805. is_node = true;
  4806. }
  4807. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4808. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4809. result->op = GGML_OP_FLASH_FF;
  4810. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4811. result->src[0] = a;
  4812. result->src[1] = b0;
  4813. result->src[2] = b1;
  4814. result->src[3] = c0;
  4815. result->src[4] = c1;
  4816. return result;
  4817. }
  4818. // ggml_flash_attn_back
  4819. struct ggml_tensor * ggml_flash_attn_back(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * q,
  4822. struct ggml_tensor * k,
  4823. struct ggml_tensor * v,
  4824. struct ggml_tensor * d,
  4825. bool masked) {
  4826. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4827. // TODO: check if vT can be multiplied by (k*qT)
  4828. // d shape [D,N,ne2,ne3]
  4829. // q shape [D,N,ne2,ne3]
  4830. // k shape [D,M,kvne2,ne3]
  4831. // v shape [M,D,kvne2,ne3]
  4832. const int64_t D = q->ne[0];
  4833. const int64_t N = q->ne[1];
  4834. const int64_t M = k->ne[1];
  4835. const int64_t ne2 = q->ne[2];
  4836. const int64_t ne3 = q->ne[3];
  4837. const int64_t kvne2 = k->ne[2];
  4838. GGML_ASSERT(k->ne[0] == D);
  4839. GGML_ASSERT(v->ne[0] == M);
  4840. GGML_ASSERT(v->ne[1] == D);
  4841. GGML_ASSERT(d->ne[0] == D);
  4842. GGML_ASSERT(d->ne[1] == N);
  4843. GGML_ASSERT(k->ne[2] == kvne2);
  4844. GGML_ASSERT(k->ne[3] == ne3);
  4845. GGML_ASSERT(v->ne[2] == kvne2);
  4846. GGML_ASSERT(v->ne[3] == ne3);
  4847. GGML_ASSERT(d->ne[2] == ne2);
  4848. GGML_ASSERT(d->ne[3] == ne3);
  4849. GGML_ASSERT(ne2 % kvne2 == 0);
  4850. bool is_node = false;
  4851. if (q->grad || k->grad || v->grad) {
  4852. // when using this operation (in backwards pass) these grads are set.
  4853. // we don't want to create (big) grad of our result, so is_node is false.
  4854. is_node = false;
  4855. }
  4856. // store gradients of q, k and v as continuous tensors concatenated in result.
  4857. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4858. const int64_t elem_q = ggml_nelements(q);
  4859. const int64_t elem_k = ggml_nelements(k);
  4860. const int64_t elem_v = ggml_nelements(v);
  4861. enum ggml_type result_type = GGML_TYPE_F32;
  4862. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4863. const size_t tsize = ggml_type_size(result_type);
  4864. const size_t offs_q = 0;
  4865. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4866. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4867. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4868. const size_t nelements = (end + tsize - 1)/tsize;
  4869. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4870. int32_t masked_i = masked ? 1 : 0;
  4871. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4872. result->op = GGML_OP_FLASH_ATTN_BACK;
  4873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4874. result->src[0] = q;
  4875. result->src[1] = k;
  4876. result->src[2] = v;
  4877. result->src[3] = d;
  4878. return result;
  4879. }
  4880. // ggml_win_part
  4881. struct ggml_tensor * ggml_win_part(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. int w) {
  4885. GGML_ASSERT(a->ne[3] == 1);
  4886. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4887. bool is_node = false;
  4888. if (a->grad) {
  4889. GGML_ASSERT(false); // TODO: implement backward
  4890. is_node = true;
  4891. }
  4892. // padding
  4893. const int px = (w - a->ne[1]%w)%w;
  4894. const int py = (w - a->ne[2]%w)%w;
  4895. const int npx = (px + a->ne[1])/w;
  4896. const int npy = (py + a->ne[2])/w;
  4897. const int np = npx*npy;
  4898. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4899. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4900. int32_t params[] = { npx, npy, w };
  4901. ggml_set_op_params(result, params, sizeof(params));
  4902. result->op = GGML_OP_WIN_PART;
  4903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4904. result->src[0] = a;
  4905. return result;
  4906. }
  4907. // ggml_win_unpart
  4908. struct ggml_tensor * ggml_win_unpart(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. int w0,
  4912. int h0,
  4913. int w) {
  4914. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4915. bool is_node = false;
  4916. if (a->grad) {
  4917. GGML_ASSERT(false); // TODO: implement backward
  4918. is_node = true;
  4919. }
  4920. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4921. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4922. int32_t params[] = { w };
  4923. ggml_set_op_params(result, params, sizeof(params));
  4924. result->op = GGML_OP_WIN_UNPART;
  4925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4926. result->src[0] = a;
  4927. return result;
  4928. }
  4929. // ggml_get_rel_pos
  4930. struct ggml_tensor * ggml_get_rel_pos(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. int qh,
  4934. int kh) {
  4935. GGML_ASSERT(qh == kh);
  4936. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4937. bool is_node = false;
  4938. if (a->grad) {
  4939. GGML_ASSERT(false); // TODO: implement backward
  4940. is_node = true;
  4941. }
  4942. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4943. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4944. result->op = GGML_OP_GET_REL_POS;
  4945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4946. result->src[0] = a;
  4947. return result;
  4948. }
  4949. // ggml_add_rel_pos
  4950. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a,
  4953. struct ggml_tensor * pw,
  4954. struct ggml_tensor * ph,
  4955. bool inplace) {
  4956. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4957. GGML_ASSERT(ggml_is_contiguous(a));
  4958. GGML_ASSERT(ggml_is_contiguous(pw));
  4959. GGML_ASSERT(ggml_is_contiguous(ph));
  4960. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4961. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4962. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4963. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4964. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4965. bool is_node = false;
  4966. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4967. is_node = true;
  4968. }
  4969. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4970. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4971. result->op = GGML_OP_ADD_REL_POS;
  4972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4973. result->src[0] = a;
  4974. result->src[1] = pw;
  4975. result->src[2] = ph;
  4976. return result;
  4977. }
  4978. struct ggml_tensor * ggml_add_rel_pos(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. struct ggml_tensor * pw,
  4982. struct ggml_tensor * ph) {
  4983. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4984. }
  4985. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a,
  4988. struct ggml_tensor * pw,
  4989. struct ggml_tensor * ph) {
  4990. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4991. }
  4992. // gmml_unary
  4993. static struct ggml_tensor * ggml_unary_impl(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. enum ggml_unary_op op,
  4997. bool inplace) {
  4998. bool is_node = false;
  4999. if (!inplace && (a->grad)) {
  5000. is_node = true;
  5001. }
  5002. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5003. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5004. result->op = GGML_OP_UNARY;
  5005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5006. result->src[0] = a;
  5007. return result;
  5008. }
  5009. struct ggml_tensor * ggml_unary(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. enum ggml_unary_op op) {
  5013. return ggml_unary_impl(ctx, a, op, false);
  5014. }
  5015. struct ggml_tensor * ggml_unary_inplace(
  5016. struct ggml_context * ctx,
  5017. struct ggml_tensor * a,
  5018. enum ggml_unary_op op) {
  5019. return ggml_unary_impl(ctx, a, op, true);
  5020. }
  5021. // ggml_map_unary
  5022. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5023. struct ggml_context * ctx,
  5024. struct ggml_tensor * a,
  5025. const ggml_unary_op_f32_t fun,
  5026. bool inplace) {
  5027. bool is_node = false;
  5028. if (!inplace && a->grad) {
  5029. is_node = true;
  5030. }
  5031. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5032. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5033. result->op = GGML_OP_MAP_UNARY;
  5034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5035. result->src[0] = a;
  5036. return result;
  5037. }
  5038. struct ggml_tensor * ggml_map_unary_f32(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a,
  5041. const ggml_unary_op_f32_t fun) {
  5042. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5043. }
  5044. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. const ggml_unary_op_f32_t fun) {
  5048. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5049. }
  5050. // ggml_map_binary
  5051. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. struct ggml_tensor * b,
  5055. const ggml_binary_op_f32_t fun,
  5056. bool inplace) {
  5057. GGML_ASSERT(ggml_are_same_shape(a, b));
  5058. bool is_node = false;
  5059. if (!inplace && (a->grad || b->grad)) {
  5060. is_node = true;
  5061. }
  5062. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5063. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5064. result->op = GGML_OP_MAP_BINARY;
  5065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5066. result->src[0] = a;
  5067. result->src[1] = b;
  5068. return result;
  5069. }
  5070. struct ggml_tensor * ggml_map_binary_f32(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. struct ggml_tensor * b,
  5074. const ggml_binary_op_f32_t fun) {
  5075. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5076. }
  5077. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * a,
  5080. struct ggml_tensor * b,
  5081. const ggml_binary_op_f32_t fun) {
  5082. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5083. }
  5084. // ggml_map_custom1_f32
  5085. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5086. struct ggml_context * ctx,
  5087. struct ggml_tensor * a,
  5088. const ggml_custom1_op_f32_t fun,
  5089. bool inplace) {
  5090. bool is_node = false;
  5091. if (!inplace && a->grad) {
  5092. is_node = true;
  5093. }
  5094. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5095. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5096. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5098. result->src[0] = a;
  5099. return result;
  5100. }
  5101. struct ggml_tensor * ggml_map_custom1_f32(
  5102. struct ggml_context * ctx,
  5103. struct ggml_tensor * a,
  5104. const ggml_custom1_op_f32_t fun) {
  5105. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5106. }
  5107. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5108. struct ggml_context * ctx,
  5109. struct ggml_tensor * a,
  5110. const ggml_custom1_op_f32_t fun) {
  5111. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5112. }
  5113. // ggml_map_custom2_f32
  5114. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5115. struct ggml_context * ctx,
  5116. struct ggml_tensor * a,
  5117. struct ggml_tensor * b,
  5118. const ggml_custom2_op_f32_t fun,
  5119. bool inplace) {
  5120. bool is_node = false;
  5121. if (!inplace && (a->grad || b->grad)) {
  5122. is_node = true;
  5123. }
  5124. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5125. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5126. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5128. result->src[0] = a;
  5129. result->src[1] = b;
  5130. return result;
  5131. }
  5132. struct ggml_tensor * ggml_map_custom2_f32(
  5133. struct ggml_context * ctx,
  5134. struct ggml_tensor * a,
  5135. struct ggml_tensor * b,
  5136. const ggml_custom2_op_f32_t fun) {
  5137. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5138. }
  5139. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5140. struct ggml_context * ctx,
  5141. struct ggml_tensor * a,
  5142. struct ggml_tensor * b,
  5143. const ggml_custom2_op_f32_t fun) {
  5144. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5145. }
  5146. // ggml_map_custom3_f32
  5147. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5148. struct ggml_context * ctx,
  5149. struct ggml_tensor * a,
  5150. struct ggml_tensor * b,
  5151. struct ggml_tensor * c,
  5152. const ggml_custom3_op_f32_t fun,
  5153. bool inplace) {
  5154. bool is_node = false;
  5155. if (!inplace && (a->grad || b->grad || c->grad)) {
  5156. is_node = true;
  5157. }
  5158. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5159. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5160. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5162. result->src[0] = a;
  5163. result->src[1] = b;
  5164. result->src[2] = c;
  5165. return result;
  5166. }
  5167. struct ggml_tensor * ggml_map_custom3_f32(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * a,
  5170. struct ggml_tensor * b,
  5171. struct ggml_tensor * c,
  5172. const ggml_custom3_op_f32_t fun) {
  5173. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5174. }
  5175. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5176. struct ggml_context * ctx,
  5177. struct ggml_tensor * a,
  5178. struct ggml_tensor * b,
  5179. struct ggml_tensor * c,
  5180. const ggml_custom3_op_f32_t fun) {
  5181. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5182. }
  5183. // ggml_map_custom1
  5184. struct ggml_map_custom1_op_params {
  5185. ggml_custom1_op_t fun;
  5186. int n_tasks;
  5187. void * userdata;
  5188. };
  5189. static struct ggml_tensor * ggml_map_custom1_impl(
  5190. struct ggml_context * ctx,
  5191. struct ggml_tensor * a,
  5192. const ggml_custom1_op_t fun,
  5193. int n_tasks,
  5194. void * userdata,
  5195. bool inplace) {
  5196. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5197. bool is_node = false;
  5198. if (!inplace && a->grad) {
  5199. is_node = true;
  5200. }
  5201. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5202. struct ggml_map_custom1_op_params params = {
  5203. /*.fun =*/ fun,
  5204. /*.n_tasks =*/ n_tasks,
  5205. /*.userdata =*/ userdata
  5206. };
  5207. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5208. result->op = GGML_OP_MAP_CUSTOM1;
  5209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5210. result->src[0] = a;
  5211. return result;
  5212. }
  5213. struct ggml_tensor * ggml_map_custom1(
  5214. struct ggml_context * ctx,
  5215. struct ggml_tensor * a,
  5216. const ggml_custom1_op_t fun,
  5217. int n_tasks,
  5218. void * userdata) {
  5219. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5220. }
  5221. struct ggml_tensor * ggml_map_custom1_inplace(
  5222. struct ggml_context * ctx,
  5223. struct ggml_tensor * a,
  5224. const ggml_custom1_op_t fun,
  5225. int n_tasks,
  5226. void * userdata) {
  5227. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5228. }
  5229. // ggml_map_custom2
  5230. struct ggml_map_custom2_op_params {
  5231. ggml_custom2_op_t fun;
  5232. int n_tasks;
  5233. void * userdata;
  5234. };
  5235. static struct ggml_tensor * ggml_map_custom2_impl(
  5236. struct ggml_context * ctx,
  5237. struct ggml_tensor * a,
  5238. struct ggml_tensor * b,
  5239. const ggml_custom2_op_t fun,
  5240. int n_tasks,
  5241. void * userdata,
  5242. bool inplace) {
  5243. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5244. bool is_node = false;
  5245. if (!inplace && (a->grad || b->grad)) {
  5246. is_node = true;
  5247. }
  5248. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5249. struct ggml_map_custom2_op_params params = {
  5250. /*.fun =*/ fun,
  5251. /*.n_tasks =*/ n_tasks,
  5252. /*.userdata =*/ userdata
  5253. };
  5254. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5255. result->op = GGML_OP_MAP_CUSTOM2;
  5256. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5257. result->src[0] = a;
  5258. result->src[1] = b;
  5259. return result;
  5260. }
  5261. struct ggml_tensor * ggml_map_custom2(
  5262. struct ggml_context * ctx,
  5263. struct ggml_tensor * a,
  5264. struct ggml_tensor * b,
  5265. const ggml_custom2_op_t fun,
  5266. int n_tasks,
  5267. void * userdata) {
  5268. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5269. }
  5270. struct ggml_tensor * ggml_map_custom2_inplace(
  5271. struct ggml_context * ctx,
  5272. struct ggml_tensor * a,
  5273. struct ggml_tensor * b,
  5274. const ggml_custom2_op_t fun,
  5275. int n_tasks,
  5276. void * userdata) {
  5277. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5278. }
  5279. // ggml_map_custom3
  5280. struct ggml_map_custom3_op_params {
  5281. ggml_custom3_op_t fun;
  5282. int n_tasks;
  5283. void * userdata;
  5284. };
  5285. static struct ggml_tensor * ggml_map_custom3_impl(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * a,
  5288. struct ggml_tensor * b,
  5289. struct ggml_tensor * c,
  5290. const ggml_custom3_op_t fun,
  5291. int n_tasks,
  5292. void * userdata,
  5293. bool inplace) {
  5294. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5295. bool is_node = false;
  5296. if (!inplace && (a->grad || b->grad || c->grad)) {
  5297. is_node = true;
  5298. }
  5299. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5300. struct ggml_map_custom3_op_params params = {
  5301. /*.fun =*/ fun,
  5302. /*.n_tasks =*/ n_tasks,
  5303. /*.userdata =*/ userdata
  5304. };
  5305. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5306. result->op = GGML_OP_MAP_CUSTOM3;
  5307. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5308. result->src[0] = a;
  5309. result->src[1] = b;
  5310. result->src[2] = c;
  5311. return result;
  5312. }
  5313. struct ggml_tensor * ggml_map_custom3(
  5314. struct ggml_context * ctx,
  5315. struct ggml_tensor * a,
  5316. struct ggml_tensor * b,
  5317. struct ggml_tensor * c,
  5318. const ggml_custom3_op_t fun,
  5319. int n_tasks,
  5320. void * userdata) {
  5321. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5322. }
  5323. struct ggml_tensor * ggml_map_custom3_inplace(
  5324. struct ggml_context * ctx,
  5325. struct ggml_tensor * a,
  5326. struct ggml_tensor * b,
  5327. struct ggml_tensor * c,
  5328. const ggml_custom3_op_t fun,
  5329. int n_tasks,
  5330. void * userdata) {
  5331. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5332. }
  5333. // ggml_cross_entropy_loss
  5334. struct ggml_tensor * ggml_cross_entropy_loss(
  5335. struct ggml_context * ctx,
  5336. struct ggml_tensor * a,
  5337. struct ggml_tensor * b) {
  5338. GGML_ASSERT(ggml_are_same_shape(a, b));
  5339. bool is_node = false;
  5340. if (a->grad || b->grad) {
  5341. is_node = true;
  5342. }
  5343. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5344. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5346. result->src[0] = a;
  5347. result->src[1] = b;
  5348. return result;
  5349. }
  5350. // ggml_cross_entropy_loss_back
  5351. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5352. struct ggml_context * ctx,
  5353. struct ggml_tensor * a,
  5354. struct ggml_tensor * b,
  5355. struct ggml_tensor * c) {
  5356. GGML_ASSERT(ggml_are_same_shape(a, b));
  5357. GGML_ASSERT(ggml_is_scalar(c));
  5358. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5359. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5360. result->grad = NULL;
  5361. result->src[0] = a;
  5362. result->src[1] = b;
  5363. result->src[2] = c;
  5364. return result;
  5365. }
  5366. ////////////////////////////////////////////////////////////////////////////////
  5367. void ggml_set_param(
  5368. struct ggml_context * ctx,
  5369. struct ggml_tensor * tensor) {
  5370. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5371. GGML_ASSERT(tensor->grad == NULL);
  5372. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5373. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5374. }
  5375. // ggml_compute_forward_dup
  5376. static void ggml_compute_forward_dup_same_cont(
  5377. const struct ggml_compute_params * params,
  5378. const struct ggml_tensor * src0,
  5379. struct ggml_tensor * dst) {
  5380. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5381. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5382. GGML_ASSERT(src0->type == dst->type);
  5383. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5384. return;
  5385. }
  5386. const size_t nb00 = src0->nb[0];
  5387. const size_t nb0 = dst->nb[0];
  5388. const int ith = params->ith; // thread index
  5389. const int nth = params->nth; // number of threads
  5390. // parallelize by elements
  5391. const int ne = ggml_nelements(dst);
  5392. const int dr = (ne + nth - 1) / nth;
  5393. const int ie0 = dr * ith;
  5394. const int ie1 = MIN(ie0 + dr, ne);
  5395. if (ie0 < ie1) {
  5396. memcpy(
  5397. ((char *) dst->data + ie0*nb0),
  5398. ((char *) src0->data + ie0*nb00),
  5399. (ie1 - ie0) * ggml_type_size(src0->type));
  5400. }
  5401. }
  5402. static void ggml_compute_forward_dup_f16(
  5403. const struct ggml_compute_params * params,
  5404. const struct ggml_tensor * src0,
  5405. struct ggml_tensor * dst) {
  5406. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5408. return;
  5409. }
  5410. GGML_TENSOR_UNARY_OP_LOCALS
  5411. const int ith = params->ith; // thread index
  5412. const int nth = params->nth; // number of threads
  5413. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5414. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5415. return;
  5416. }
  5417. // parallelize by rows
  5418. const int nr = ne01;
  5419. // number of rows per thread
  5420. const int dr = (nr + nth - 1) / nth;
  5421. // row range for this thread
  5422. const int ir0 = dr * ith;
  5423. const int ir1 = MIN(ir0 + dr, nr);
  5424. if (src0->type == dst->type &&
  5425. ne00 == ne0 &&
  5426. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5427. // copy by rows
  5428. const size_t rs = ne00*nb00;
  5429. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5430. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5431. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5432. memcpy(
  5433. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5434. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5435. rs);
  5436. }
  5437. }
  5438. }
  5439. return;
  5440. }
  5441. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5442. if (ggml_is_contiguous(dst)) {
  5443. if (nb00 == sizeof(ggml_fp16_t)) {
  5444. if (dst->type == GGML_TYPE_F16) {
  5445. size_t id = 0;
  5446. const size_t rs = ne00 * nb00;
  5447. char * dst_ptr = (char *) dst->data;
  5448. for (int i03 = 0; i03 < ne03; i03++) {
  5449. for (int i02 = 0; i02 < ne02; i02++) {
  5450. id += rs * ir0;
  5451. for (int i01 = ir0; i01 < ir1; i01++) {
  5452. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5453. memcpy(dst_ptr + id, src0_ptr, rs);
  5454. id += rs;
  5455. }
  5456. id += rs * (ne01 - ir1);
  5457. }
  5458. }
  5459. } else if (dst->type == GGML_TYPE_F32) {
  5460. size_t id = 0;
  5461. float * dst_ptr = (float *) dst->data;
  5462. for (int i03 = 0; i03 < ne03; i03++) {
  5463. for (int i02 = 0; i02 < ne02; i02++) {
  5464. id += ne00 * ir0;
  5465. for (int i01 = ir0; i01 < ir1; i01++) {
  5466. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5467. for (int i00 = 0; i00 < ne00; i00++) {
  5468. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5469. id++;
  5470. }
  5471. }
  5472. id += ne00 * (ne01 - ir1);
  5473. }
  5474. }
  5475. } else if (type_traits[dst->type].from_float) {
  5476. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5477. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5478. size_t id = 0;
  5479. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5480. char * dst_ptr = (char *) dst->data;
  5481. for (int i03 = 0; i03 < ne03; i03++) {
  5482. for (int i02 = 0; i02 < ne02; i02++) {
  5483. id += rs * ir0;
  5484. for (int i01 = ir0; i01 < ir1; i01++) {
  5485. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5486. for (int i00 = 0; i00 < ne00; i00++) {
  5487. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5488. }
  5489. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5490. id += rs;
  5491. }
  5492. id += rs * (ne01 - ir1);
  5493. }
  5494. }
  5495. } else {
  5496. GGML_ASSERT(false); // TODO: implement
  5497. }
  5498. } else {
  5499. //printf("%s: this is not optimal - fix me\n", __func__);
  5500. if (dst->type == GGML_TYPE_F32) {
  5501. size_t id = 0;
  5502. float * dst_ptr = (float *) dst->data;
  5503. for (int i03 = 0; i03 < ne03; i03++) {
  5504. for (int i02 = 0; i02 < ne02; i02++) {
  5505. id += ne00 * ir0;
  5506. for (int i01 = ir0; i01 < ir1; i01++) {
  5507. for (int i00 = 0; i00 < ne00; i00++) {
  5508. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5509. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5510. id++;
  5511. }
  5512. }
  5513. id += ne00 * (ne01 - ir1);
  5514. }
  5515. }
  5516. } else if (dst->type == GGML_TYPE_F16) {
  5517. size_t id = 0;
  5518. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5519. for (int i03 = 0; i03 < ne03; i03++) {
  5520. for (int i02 = 0; i02 < ne02; i02++) {
  5521. id += ne00 * ir0;
  5522. for (int i01 = ir0; i01 < ir1; i01++) {
  5523. for (int i00 = 0; i00 < ne00; i00++) {
  5524. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5525. dst_ptr[id] = *src0_ptr;
  5526. id++;
  5527. }
  5528. }
  5529. id += ne00 * (ne01 - ir1);
  5530. }
  5531. }
  5532. } else {
  5533. GGML_ASSERT(false); // TODO: implement
  5534. }
  5535. }
  5536. return;
  5537. }
  5538. // dst counters
  5539. int64_t i10 = 0;
  5540. int64_t i11 = 0;
  5541. int64_t i12 = 0;
  5542. int64_t i13 = 0;
  5543. if (dst->type == GGML_TYPE_F16) {
  5544. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5545. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5546. i10 += ne00 * ir0;
  5547. while (i10 >= ne0) {
  5548. i10 -= ne0;
  5549. if (++i11 == ne1) {
  5550. i11 = 0;
  5551. if (++i12 == ne2) {
  5552. i12 = 0;
  5553. if (++i13 == ne3) {
  5554. i13 = 0;
  5555. }
  5556. }
  5557. }
  5558. }
  5559. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5560. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5561. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5562. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5563. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5564. if (++i10 == ne00) {
  5565. i10 = 0;
  5566. if (++i11 == ne01) {
  5567. i11 = 0;
  5568. if (++i12 == ne02) {
  5569. i12 = 0;
  5570. if (++i13 == ne03) {
  5571. i13 = 0;
  5572. }
  5573. }
  5574. }
  5575. }
  5576. }
  5577. }
  5578. i10 += ne00 * (ne01 - ir1);
  5579. while (i10 >= ne0) {
  5580. i10 -= ne0;
  5581. if (++i11 == ne1) {
  5582. i11 = 0;
  5583. if (++i12 == ne2) {
  5584. i12 = 0;
  5585. if (++i13 == ne3) {
  5586. i13 = 0;
  5587. }
  5588. }
  5589. }
  5590. }
  5591. }
  5592. }
  5593. } else if (dst->type == GGML_TYPE_F32) {
  5594. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5595. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5596. i10 += ne00 * ir0;
  5597. while (i10 >= ne0) {
  5598. i10 -= ne0;
  5599. if (++i11 == ne1) {
  5600. i11 = 0;
  5601. if (++i12 == ne2) {
  5602. i12 = 0;
  5603. if (++i13 == ne3) {
  5604. i13 = 0;
  5605. }
  5606. }
  5607. }
  5608. }
  5609. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5610. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5611. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5612. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5613. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5614. if (++i10 == ne0) {
  5615. i10 = 0;
  5616. if (++i11 == ne1) {
  5617. i11 = 0;
  5618. if (++i12 == ne2) {
  5619. i12 = 0;
  5620. if (++i13 == ne3) {
  5621. i13 = 0;
  5622. }
  5623. }
  5624. }
  5625. }
  5626. }
  5627. }
  5628. i10 += ne00 * (ne01 - ir1);
  5629. while (i10 >= ne0) {
  5630. i10 -= ne0;
  5631. if (++i11 == ne1) {
  5632. i11 = 0;
  5633. if (++i12 == ne2) {
  5634. i12 = 0;
  5635. if (++i13 == ne3) {
  5636. i13 = 0;
  5637. }
  5638. }
  5639. }
  5640. }
  5641. }
  5642. }
  5643. } else {
  5644. GGML_ASSERT(false); // TODO: implement
  5645. }
  5646. }
  5647. static void ggml_compute_forward_dup_f32(
  5648. const struct ggml_compute_params * params,
  5649. const struct ggml_tensor * src0,
  5650. struct ggml_tensor * dst) {
  5651. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5652. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5653. return;
  5654. }
  5655. GGML_TENSOR_UNARY_OP_LOCALS
  5656. const int ith = params->ith; // thread index
  5657. const int nth = params->nth; // number of threads
  5658. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5659. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5660. return;
  5661. }
  5662. // parallelize by rows
  5663. const int nr = ne01;
  5664. // number of rows per thread
  5665. const int dr = (nr + nth - 1) / nth;
  5666. // row range for this thread
  5667. const int ir0 = dr * ith;
  5668. const int ir1 = MIN(ir0 + dr, nr);
  5669. if (src0->type == dst->type &&
  5670. ne00 == ne0 &&
  5671. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5672. // copy by rows
  5673. const size_t rs = ne00*nb00;
  5674. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5675. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5676. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5677. memcpy(
  5678. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5679. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5680. rs);
  5681. }
  5682. }
  5683. }
  5684. return;
  5685. }
  5686. if (ggml_is_contiguous(dst)) {
  5687. // TODO: simplify
  5688. if (nb00 == sizeof(float)) {
  5689. if (dst->type == GGML_TYPE_F32) {
  5690. size_t id = 0;
  5691. const size_t rs = ne00 * nb00;
  5692. char * dst_ptr = (char *) dst->data;
  5693. for (int i03 = 0; i03 < ne03; i03++) {
  5694. for (int i02 = 0; i02 < ne02; i02++) {
  5695. id += rs * ir0;
  5696. for (int i01 = ir0; i01 < ir1; i01++) {
  5697. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5698. memcpy(dst_ptr + id, src0_ptr, rs);
  5699. id += rs;
  5700. }
  5701. id += rs * (ne01 - ir1);
  5702. }
  5703. }
  5704. } else if (type_traits[dst->type].from_float) {
  5705. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5706. size_t id = 0;
  5707. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5708. char * dst_ptr = (char *) dst->data;
  5709. for (int i03 = 0; i03 < ne03; i03++) {
  5710. for (int i02 = 0; i02 < ne02; i02++) {
  5711. id += rs * ir0;
  5712. for (int i01 = ir0; i01 < ir1; i01++) {
  5713. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5714. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5715. id += rs;
  5716. }
  5717. id += rs * (ne01 - ir1);
  5718. }
  5719. }
  5720. } else {
  5721. GGML_ASSERT(false); // TODO: implement
  5722. }
  5723. } else {
  5724. //printf("%s: this is not optimal - fix me\n", __func__);
  5725. if (dst->type == GGML_TYPE_F32) {
  5726. size_t id = 0;
  5727. float * dst_ptr = (float *) dst->data;
  5728. for (int i03 = 0; i03 < ne03; i03++) {
  5729. for (int i02 = 0; i02 < ne02; i02++) {
  5730. id += ne00 * ir0;
  5731. for (int i01 = ir0; i01 < ir1; i01++) {
  5732. for (int i00 = 0; i00 < ne00; i00++) {
  5733. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5734. dst_ptr[id] = *src0_ptr;
  5735. id++;
  5736. }
  5737. }
  5738. id += ne00 * (ne01 - ir1);
  5739. }
  5740. }
  5741. } else if (dst->type == GGML_TYPE_F16) {
  5742. size_t id = 0;
  5743. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5744. for (int i03 = 0; i03 < ne03; i03++) {
  5745. for (int i02 = 0; i02 < ne02; i02++) {
  5746. id += ne00 * ir0;
  5747. for (int i01 = ir0; i01 < ir1; i01++) {
  5748. for (int i00 = 0; i00 < ne00; i00++) {
  5749. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5750. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5751. id++;
  5752. }
  5753. }
  5754. id += ne00 * (ne01 - ir1);
  5755. }
  5756. }
  5757. } else {
  5758. GGML_ASSERT(false); // TODO: implement
  5759. }
  5760. }
  5761. return;
  5762. }
  5763. // dst counters
  5764. int64_t i10 = 0;
  5765. int64_t i11 = 0;
  5766. int64_t i12 = 0;
  5767. int64_t i13 = 0;
  5768. if (dst->type == GGML_TYPE_F32) {
  5769. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5770. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5771. i10 += ne00 * ir0;
  5772. while (i10 >= ne0) {
  5773. i10 -= ne0;
  5774. if (++i11 == ne1) {
  5775. i11 = 0;
  5776. if (++i12 == ne2) {
  5777. i12 = 0;
  5778. if (++i13 == ne3) {
  5779. i13 = 0;
  5780. }
  5781. }
  5782. }
  5783. }
  5784. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5785. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5786. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5787. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5788. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5789. if (++i10 == ne0) {
  5790. i10 = 0;
  5791. if (++i11 == ne1) {
  5792. i11 = 0;
  5793. if (++i12 == ne2) {
  5794. i12 = 0;
  5795. if (++i13 == ne3) {
  5796. i13 = 0;
  5797. }
  5798. }
  5799. }
  5800. }
  5801. }
  5802. }
  5803. i10 += ne00 * (ne01 - ir1);
  5804. while (i10 >= ne0) {
  5805. i10 -= ne0;
  5806. if (++i11 == ne1) {
  5807. i11 = 0;
  5808. if (++i12 == ne2) {
  5809. i12 = 0;
  5810. if (++i13 == ne3) {
  5811. i13 = 0;
  5812. }
  5813. }
  5814. }
  5815. }
  5816. }
  5817. }
  5818. } else if (dst->type == GGML_TYPE_F16) {
  5819. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5820. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5821. i10 += ne00 * ir0;
  5822. while (i10 >= ne0) {
  5823. i10 -= ne0;
  5824. if (++i11 == ne1) {
  5825. i11 = 0;
  5826. if (++i12 == ne2) {
  5827. i12 = 0;
  5828. if (++i13 == ne3) {
  5829. i13 = 0;
  5830. }
  5831. }
  5832. }
  5833. }
  5834. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5835. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5836. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5837. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5838. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5839. if (++i10 == ne0) {
  5840. i10 = 0;
  5841. if (++i11 == ne1) {
  5842. i11 = 0;
  5843. if (++i12 == ne2) {
  5844. i12 = 0;
  5845. if (++i13 == ne3) {
  5846. i13 = 0;
  5847. }
  5848. }
  5849. }
  5850. }
  5851. }
  5852. }
  5853. i10 += ne00 * (ne01 - ir1);
  5854. while (i10 >= ne0) {
  5855. i10 -= ne0;
  5856. if (++i11 == ne1) {
  5857. i11 = 0;
  5858. if (++i12 == ne2) {
  5859. i12 = 0;
  5860. if (++i13 == ne3) {
  5861. i13 = 0;
  5862. }
  5863. }
  5864. }
  5865. }
  5866. }
  5867. }
  5868. } else {
  5869. GGML_ASSERT(false); // TODO: implement
  5870. }
  5871. }
  5872. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5873. static void ggml_compute_forward_dup_bytes(
  5874. const struct ggml_compute_params * params,
  5875. const struct ggml_tensor * src0,
  5876. struct ggml_tensor * dst) {
  5877. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5878. GGML_ASSERT(src0->type == dst->type);
  5879. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5880. return;
  5881. }
  5882. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5883. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5884. return;
  5885. }
  5886. GGML_TENSOR_UNARY_OP_LOCALS;
  5887. const size_t type_size = ggml_type_size(src0->type);
  5888. const int ith = params->ith; // thread index
  5889. const int nth = params->nth; // number of threads
  5890. // parallelize by rows
  5891. const int nr = ne01;
  5892. // number of rows per thread
  5893. const int dr = (nr + nth - 1) / nth;
  5894. // row range for this thread
  5895. const int ir0 = dr * ith;
  5896. const int ir1 = MIN(ir0 + dr, nr);
  5897. if (src0->type == dst->type &&
  5898. ne00 == ne0 &&
  5899. nb00 == type_size && nb0 == type_size) {
  5900. // copy by rows
  5901. const size_t rs = ne00 * type_size;
  5902. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5903. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5904. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5905. memcpy(
  5906. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5907. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5908. rs);
  5909. }
  5910. }
  5911. }
  5912. return;
  5913. }
  5914. if (ggml_is_contiguous(dst)) {
  5915. size_t id = 0;
  5916. char * dst_ptr = (char *) dst->data;
  5917. const size_t rs = ne00 * type_size;
  5918. if (nb00 == type_size) {
  5919. // src0 is contigous on first dimension, copy by rows
  5920. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5921. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5922. id += rs * ir0;
  5923. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5924. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5925. memcpy(dst_ptr + id, src0_ptr, rs);
  5926. id += rs;
  5927. }
  5928. id += rs * (ne01 - ir1);
  5929. }
  5930. }
  5931. } else {
  5932. //printf("%s: this is not optimal - fix me\n", __func__);
  5933. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5934. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5935. id += rs * ir0;
  5936. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5937. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5938. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5939. memcpy(dst_ptr + id, src0_ptr, type_size);
  5940. id += type_size;
  5941. }
  5942. }
  5943. id += rs * (ne01 - ir1);
  5944. }
  5945. }
  5946. }
  5947. return;
  5948. }
  5949. // dst counters
  5950. int64_t i10 = 0;
  5951. int64_t i11 = 0;
  5952. int64_t i12 = 0;
  5953. int64_t i13 = 0;
  5954. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5955. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5956. i10 += ne00 * ir0;
  5957. while (i10 >= ne0) {
  5958. i10 -= ne0;
  5959. if (++i11 == ne1) {
  5960. i11 = 0;
  5961. if (++i12 == ne2) {
  5962. i12 = 0;
  5963. if (++i13 == ne3) {
  5964. i13 = 0;
  5965. }
  5966. }
  5967. }
  5968. }
  5969. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5970. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5971. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5972. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5973. memcpy(dst_ptr, src0_ptr, type_size);
  5974. if (++i10 == ne0) {
  5975. i10 = 0;
  5976. if (++i11 == ne1) {
  5977. i11 = 0;
  5978. if (++i12 == ne2) {
  5979. i12 = 0;
  5980. if (++i13 == ne3) {
  5981. i13 = 0;
  5982. }
  5983. }
  5984. }
  5985. }
  5986. }
  5987. }
  5988. i10 += ne00 * (ne01 - ir1);
  5989. while (i10 >= ne0) {
  5990. i10 -= ne0;
  5991. if (++i11 == ne1) {
  5992. i11 = 0;
  5993. if (++i12 == ne2) {
  5994. i12 = 0;
  5995. if (++i13 == ne3) {
  5996. i13 = 0;
  5997. }
  5998. }
  5999. }
  6000. }
  6001. }
  6002. }
  6003. }
  6004. static void ggml_compute_forward_dup(
  6005. const struct ggml_compute_params * params,
  6006. const struct ggml_tensor * src0,
  6007. struct ggml_tensor * dst) {
  6008. if (src0->type == dst->type) {
  6009. ggml_compute_forward_dup_bytes(params, src0, dst);
  6010. return;
  6011. }
  6012. switch (src0->type) {
  6013. case GGML_TYPE_F16:
  6014. {
  6015. ggml_compute_forward_dup_f16(params, src0, dst);
  6016. } break;
  6017. case GGML_TYPE_F32:
  6018. {
  6019. ggml_compute_forward_dup_f32(params, src0, dst);
  6020. } break;
  6021. default:
  6022. {
  6023. GGML_ASSERT(false);
  6024. } break;
  6025. }
  6026. }
  6027. // ggml_compute_forward_add
  6028. static void ggml_compute_forward_add_f32(
  6029. const struct ggml_compute_params * params,
  6030. const struct ggml_tensor * src0,
  6031. const struct ggml_tensor * src1,
  6032. struct ggml_tensor * dst) {
  6033. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6034. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6035. return;
  6036. }
  6037. const int ith = params->ith;
  6038. const int nth = params->nth;
  6039. #ifdef GGML_USE_CLBLAST
  6040. if (src1->backend == GGML_BACKEND_GPU) {
  6041. // TODO: OpenCL kernel support full broadcast
  6042. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6043. if (ith == 0) {
  6044. ggml_cl_add(src0, src1, dst);
  6045. }
  6046. return;
  6047. }
  6048. #endif
  6049. const int nr = ggml_nrows(src0);
  6050. GGML_TENSOR_BINARY_OP_LOCALS
  6051. GGML_ASSERT( nb0 == sizeof(float));
  6052. GGML_ASSERT(nb00 == sizeof(float));
  6053. // rows per thread
  6054. const int dr = (nr + nth - 1)/nth;
  6055. // row range for this thread
  6056. const int ir0 = dr*ith;
  6057. const int ir1 = MIN(ir0 + dr, nr);
  6058. if (nb10 == sizeof(float)) {
  6059. for (int ir = ir0; ir < ir1; ++ir) {
  6060. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6061. const int64_t i03 = ir/(ne02*ne01);
  6062. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6063. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6064. const int64_t i13 = i03 % ne13;
  6065. const int64_t i12 = i02 % ne12;
  6066. const int64_t i11 = i01 % ne11;
  6067. const int64_t nr0 = ne00 / ne10;
  6068. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6069. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6070. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6071. for (int64_t r = 0; r < nr0; ++r) {
  6072. #ifdef GGML_USE_ACCELERATE
  6073. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6074. #else
  6075. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6076. #endif
  6077. }
  6078. }
  6079. } else {
  6080. // src1 is not contiguous
  6081. for (int ir = ir0; ir < ir1; ++ir) {
  6082. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6083. const int64_t i03 = ir/(ne02*ne01);
  6084. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6085. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6086. const int64_t i13 = i03 % ne13;
  6087. const int64_t i12 = i02 % ne12;
  6088. const int64_t i11 = i01 % ne11;
  6089. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6090. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6091. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6092. const int64_t i10 = i0 % ne10;
  6093. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6094. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6095. }
  6096. }
  6097. }
  6098. }
  6099. static void ggml_compute_forward_add_f16_f32(
  6100. const struct ggml_compute_params * params,
  6101. const struct ggml_tensor * src0,
  6102. const struct ggml_tensor * src1,
  6103. struct ggml_tensor * dst) {
  6104. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6105. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6106. return;
  6107. }
  6108. const int ith = params->ith;
  6109. const int nth = params->nth;
  6110. const int nr = ggml_nrows(src0);
  6111. GGML_TENSOR_BINARY_OP_LOCALS
  6112. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6113. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6114. if (dst->type == GGML_TYPE_F32) {
  6115. GGML_ASSERT( nb0 == sizeof(float));
  6116. }
  6117. else {
  6118. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6119. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6120. }
  6121. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6122. // rows per thread
  6123. const int dr = (nr + nth - 1)/nth;
  6124. // row range for this thread
  6125. const int ir0 = dr*ith;
  6126. const int ir1 = MIN(ir0 + dr, nr);
  6127. if (nb10 == sizeof(float)) {
  6128. if (dst->type == GGML_TYPE_F16) {
  6129. for (int ir = ir0; ir < ir1; ++ir) {
  6130. // src0, src1 and dst are same shape => same indices
  6131. const int i3 = ir/(ne2*ne1);
  6132. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6133. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6134. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6135. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6136. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6137. for (int i = 0; i < ne0; i++) {
  6138. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6139. }
  6140. }
  6141. } else {
  6142. for (int ir = ir0; ir < ir1; ++ir) {
  6143. // src0, src1 and dst are same shape => same indices
  6144. const int i3 = ir/(ne2*ne1);
  6145. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6146. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6147. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6148. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6149. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6150. for (int i = 0; i < ne0; i++) {
  6151. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6152. }
  6153. }
  6154. }
  6155. }
  6156. else {
  6157. // src1 is not contiguous
  6158. GGML_ASSERT(false);
  6159. }
  6160. }
  6161. static void ggml_compute_forward_add_f16_f16(
  6162. const struct ggml_compute_params * params,
  6163. const struct ggml_tensor * src0,
  6164. const struct ggml_tensor * src1,
  6165. struct ggml_tensor * dst) {
  6166. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6167. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6168. return;
  6169. }
  6170. const int ith = params->ith;
  6171. const int nth = params->nth;
  6172. const int nr = ggml_nrows(src0);
  6173. GGML_TENSOR_BINARY_OP_LOCALS
  6174. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6175. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6176. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6177. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6178. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6179. // rows per thread
  6180. const int dr = (nr + nth - 1)/nth;
  6181. // row range for this thread
  6182. const int ir0 = dr*ith;
  6183. const int ir1 = MIN(ir0 + dr, nr);
  6184. if (nb10 == sizeof(ggml_fp16_t)) {
  6185. for (int ir = ir0; ir < ir1; ++ir) {
  6186. // src0, src1 and dst are same shape => same indices
  6187. const int i3 = ir/(ne2*ne1);
  6188. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6189. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6190. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6191. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6192. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6193. for (int i = 0; i < ne0; i++) {
  6194. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6195. }
  6196. }
  6197. }
  6198. else {
  6199. // src1 is not contiguous
  6200. GGML_ASSERT(false);
  6201. }
  6202. }
  6203. static void ggml_compute_forward_add_q_f32(
  6204. const struct ggml_compute_params * params,
  6205. const struct ggml_tensor * src0,
  6206. const struct ggml_tensor * src1,
  6207. struct ggml_tensor * dst) {
  6208. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6209. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6210. return;
  6211. }
  6212. const int nr = ggml_nrows(src0);
  6213. GGML_TENSOR_BINARY_OP_LOCALS
  6214. const int ith = params->ith;
  6215. const int nth = params->nth;
  6216. const enum ggml_type type = src0->type;
  6217. const enum ggml_type dtype = dst->type;
  6218. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6219. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6220. // we don't support permuted src0 or src1
  6221. GGML_ASSERT(nb00 == ggml_type_size(type));
  6222. GGML_ASSERT(nb10 == sizeof(float));
  6223. // dst cannot be transposed or permuted
  6224. GGML_ASSERT(nb0 <= nb1);
  6225. GGML_ASSERT(nb1 <= nb2);
  6226. GGML_ASSERT(nb2 <= nb3);
  6227. GGML_ASSERT(ggml_is_quantized(src0->type));
  6228. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6229. // rows per thread
  6230. const int dr = (nr + nth - 1)/nth;
  6231. // row range for this thread
  6232. const int ir0 = dr*ith;
  6233. const int ir1 = MIN(ir0 + dr, nr);
  6234. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6235. for (int ir = ir0; ir < ir1; ++ir) {
  6236. // src0 indices
  6237. const int i03 = ir/(ne02*ne01);
  6238. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6239. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6240. // src1 and dst are same shape as src0 => same indices
  6241. const int i13 = i03;
  6242. const int i12 = i02;
  6243. const int i11 = i01;
  6244. const int i3 = i03;
  6245. const int i2 = i02;
  6246. const int i1 = i01;
  6247. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6248. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6249. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6250. assert(ne00 % 32 == 0);
  6251. // unquantize row from src0 to temp buffer
  6252. dequantize_row_q(src0_row, wdata, ne00);
  6253. // add src1
  6254. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6255. // quantize row to dst
  6256. if (quantize_row_q != NULL) {
  6257. quantize_row_q(wdata, dst_row, ne00);
  6258. } else {
  6259. memcpy(dst_row, wdata, ne0*nb0);
  6260. }
  6261. }
  6262. }
  6263. static void ggml_compute_forward_add(
  6264. const struct ggml_compute_params * params,
  6265. const struct ggml_tensor * src0,
  6266. const struct ggml_tensor * src1,
  6267. struct ggml_tensor * dst) {
  6268. switch (src0->type) {
  6269. case GGML_TYPE_F32:
  6270. {
  6271. if (src1->type == GGML_TYPE_F32) {
  6272. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6273. }
  6274. else {
  6275. GGML_ASSERT(false);
  6276. }
  6277. } break;
  6278. case GGML_TYPE_F16:
  6279. {
  6280. if (src1->type == GGML_TYPE_F16) {
  6281. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6282. }
  6283. else if (src1->type == GGML_TYPE_F32) {
  6284. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6285. }
  6286. else {
  6287. GGML_ASSERT(false);
  6288. }
  6289. } break;
  6290. case GGML_TYPE_Q4_0:
  6291. case GGML_TYPE_Q4_1:
  6292. case GGML_TYPE_Q5_0:
  6293. case GGML_TYPE_Q5_1:
  6294. case GGML_TYPE_Q8_0:
  6295. case GGML_TYPE_Q2_K:
  6296. case GGML_TYPE_Q3_K:
  6297. case GGML_TYPE_Q4_K:
  6298. case GGML_TYPE_Q5_K:
  6299. case GGML_TYPE_Q6_K:
  6300. case GGML_TYPE_IQ2_XXS:
  6301. case GGML_TYPE_IQ2_XS:
  6302. case GGML_TYPE_IQ3_XXS:
  6303. {
  6304. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6305. } break;
  6306. default:
  6307. {
  6308. GGML_ASSERT(false);
  6309. } break;
  6310. }
  6311. }
  6312. // ggml_compute_forward_add1
  6313. static void ggml_compute_forward_add1_f32(
  6314. const struct ggml_compute_params * params,
  6315. const struct ggml_tensor * src0,
  6316. const struct ggml_tensor * src1,
  6317. struct ggml_tensor * dst) {
  6318. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6319. GGML_ASSERT(ggml_is_scalar(src1));
  6320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6321. return;
  6322. }
  6323. const int ith = params->ith;
  6324. const int nth = params->nth;
  6325. const int nr = ggml_nrows(src0);
  6326. GGML_TENSOR_UNARY_OP_LOCALS
  6327. GGML_ASSERT( nb0 == sizeof(float));
  6328. GGML_ASSERT(nb00 == sizeof(float));
  6329. // rows per thread
  6330. const int dr = (nr + nth - 1)/nth;
  6331. // row range for this thread
  6332. const int ir0 = dr*ith;
  6333. const int ir1 = MIN(ir0 + dr, nr);
  6334. for (int ir = ir0; ir < ir1; ++ir) {
  6335. // src0 and dst are same shape => same indices
  6336. const int i3 = ir/(ne2*ne1);
  6337. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6338. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6339. #ifdef GGML_USE_ACCELERATE
  6340. UNUSED(ggml_vec_add1_f32);
  6341. vDSP_vadd(
  6342. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6343. (float *) ((char *) src1->data), 0,
  6344. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6345. ne0);
  6346. #else
  6347. ggml_vec_add1_f32(ne0,
  6348. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6349. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6350. *(float *) src1->data);
  6351. #endif
  6352. }
  6353. }
  6354. static void ggml_compute_forward_add1_f16_f32(
  6355. const struct ggml_compute_params * params,
  6356. const struct ggml_tensor * src0,
  6357. const struct ggml_tensor * src1,
  6358. struct ggml_tensor * dst) {
  6359. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6360. GGML_ASSERT(ggml_is_scalar(src1));
  6361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6362. return;
  6363. }
  6364. // scalar to add
  6365. const float v = *(float *) src1->data;
  6366. const int ith = params->ith;
  6367. const int nth = params->nth;
  6368. const int nr = ggml_nrows(src0);
  6369. GGML_TENSOR_UNARY_OP_LOCALS
  6370. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6371. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6372. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6373. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6374. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6375. // rows per thread
  6376. const int dr = (nr + nth - 1)/nth;
  6377. // row range for this thread
  6378. const int ir0 = dr*ith;
  6379. const int ir1 = MIN(ir0 + dr, nr);
  6380. for (int ir = ir0; ir < ir1; ++ir) {
  6381. // src0 and dst are same shape => same indices
  6382. const int i3 = ir/(ne2*ne1);
  6383. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6384. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6385. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6386. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6387. for (int i = 0; i < ne0; i++) {
  6388. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6389. }
  6390. }
  6391. }
  6392. static void ggml_compute_forward_add1_f16_f16(
  6393. const struct ggml_compute_params * params,
  6394. const struct ggml_tensor * src0,
  6395. const struct ggml_tensor * src1,
  6396. struct ggml_tensor * dst) {
  6397. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6398. GGML_ASSERT(ggml_is_scalar(src1));
  6399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6400. return;
  6401. }
  6402. // scalar to add
  6403. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6404. const int ith = params->ith;
  6405. const int nth = params->nth;
  6406. const int nr = ggml_nrows(src0);
  6407. GGML_TENSOR_UNARY_OP_LOCALS
  6408. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6409. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6410. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6411. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6412. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6413. // rows per thread
  6414. const int dr = (nr + nth - 1)/nth;
  6415. // row range for this thread
  6416. const int ir0 = dr*ith;
  6417. const int ir1 = MIN(ir0 + dr, nr);
  6418. for (int ir = ir0; ir < ir1; ++ir) {
  6419. // src0 and dst are same shape => same indices
  6420. const int i3 = ir/(ne2*ne1);
  6421. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6422. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6423. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6424. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6425. for (int i = 0; i < ne0; i++) {
  6426. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6427. }
  6428. }
  6429. }
  6430. static void ggml_compute_forward_add1_q_f32(
  6431. const struct ggml_compute_params * params,
  6432. const struct ggml_tensor * src0,
  6433. const struct ggml_tensor * src1,
  6434. struct ggml_tensor * dst) {
  6435. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6436. GGML_ASSERT(ggml_is_scalar(src1));
  6437. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6438. return;
  6439. }
  6440. // scalar to add
  6441. const float v = *(float *) src1->data;
  6442. const int ith = params->ith;
  6443. const int nth = params->nth;
  6444. const int nr = ggml_nrows(src0);
  6445. GGML_TENSOR_UNARY_OP_LOCALS
  6446. const enum ggml_type type = src0->type;
  6447. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6448. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6449. // we don't support permuted src0
  6450. GGML_ASSERT(nb00 == ggml_type_size(type));
  6451. // dst cannot be transposed or permuted
  6452. GGML_ASSERT(nb0 <= nb1);
  6453. GGML_ASSERT(nb1 <= nb2);
  6454. GGML_ASSERT(nb2 <= nb3);
  6455. GGML_ASSERT(ggml_is_quantized(src0->type));
  6456. GGML_ASSERT(dst->type == src0->type);
  6457. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6458. // rows per thread
  6459. const int dr = (nr + nth - 1)/nth;
  6460. // row range for this thread
  6461. const int ir0 = dr*ith;
  6462. const int ir1 = MIN(ir0 + dr, nr);
  6463. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6464. for (int ir = ir0; ir < ir1; ++ir) {
  6465. // src0 and dst are same shape => same indices
  6466. const int i3 = ir/(ne2*ne1);
  6467. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6468. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6469. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6470. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6471. assert(ne0 % 32 == 0);
  6472. // unquantize row from src0 to temp buffer
  6473. dequantize_row_q(src0_row, wdata, ne0);
  6474. // add src1
  6475. ggml_vec_acc1_f32(ne0, wdata, v);
  6476. // quantize row to dst
  6477. quantize_row_q(wdata, dst_row, ne0);
  6478. }
  6479. }
  6480. static void ggml_compute_forward_add1(
  6481. const struct ggml_compute_params * params,
  6482. const struct ggml_tensor * src0,
  6483. const struct ggml_tensor * src1,
  6484. struct ggml_tensor * dst) {
  6485. switch (src0->type) {
  6486. case GGML_TYPE_F32:
  6487. {
  6488. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6489. } break;
  6490. case GGML_TYPE_F16:
  6491. {
  6492. if (src1->type == GGML_TYPE_F16) {
  6493. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6494. }
  6495. else if (src1->type == GGML_TYPE_F32) {
  6496. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6497. }
  6498. else {
  6499. GGML_ASSERT(false);
  6500. }
  6501. } break;
  6502. case GGML_TYPE_Q4_0:
  6503. case GGML_TYPE_Q4_1:
  6504. case GGML_TYPE_Q5_0:
  6505. case GGML_TYPE_Q5_1:
  6506. case GGML_TYPE_Q8_0:
  6507. case GGML_TYPE_Q8_1:
  6508. case GGML_TYPE_Q2_K:
  6509. case GGML_TYPE_Q3_K:
  6510. case GGML_TYPE_Q4_K:
  6511. case GGML_TYPE_Q5_K:
  6512. case GGML_TYPE_Q6_K:
  6513. case GGML_TYPE_IQ2_XXS:
  6514. case GGML_TYPE_IQ2_XS:
  6515. case GGML_TYPE_IQ3_XXS:
  6516. {
  6517. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6518. } break;
  6519. default:
  6520. {
  6521. GGML_ASSERT(false);
  6522. } break;
  6523. }
  6524. }
  6525. // ggml_compute_forward_acc
  6526. static void ggml_compute_forward_acc_f32(
  6527. const struct ggml_compute_params * params,
  6528. const struct ggml_tensor * src0,
  6529. const struct ggml_tensor * src1,
  6530. struct ggml_tensor * dst) {
  6531. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6532. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6533. // view src0 and dst with these strides and data offset inbytes during acc
  6534. // nb0 is implicitly element_size because src0 and dst are contiguous
  6535. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6536. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6537. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6538. size_t offset = ((int32_t *) dst->op_params)[3];
  6539. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6540. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6541. if (params->ith != 0) {
  6542. return;
  6543. }
  6544. // memcpy needs to be synchronized across threads to avoid race conditions.
  6545. // => do it in INIT phase
  6546. memcpy(
  6547. ((char *) dst->data),
  6548. ((char *) src0->data),
  6549. ggml_nbytes(dst));
  6550. }
  6551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6552. return;
  6553. }
  6554. const int ith = params->ith;
  6555. const int nth = params->nth;
  6556. const int nr = ggml_nrows(src1);
  6557. const int nc = src1->ne[0];
  6558. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6559. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6560. // src0 and dst as viewed during acc
  6561. const size_t nb0 = ggml_element_size(src0);
  6562. const size_t nb00 = nb0;
  6563. const size_t nb01 = nb1;
  6564. const size_t nb02 = nb2;
  6565. const size_t nb03 = nb3;
  6566. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6567. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6568. GGML_ASSERT(nb10 == sizeof(float));
  6569. // rows per thread
  6570. const int dr = (nr + nth - 1)/nth;
  6571. // row range for this thread
  6572. const int ir0 = dr*ith;
  6573. const int ir1 = MIN(ir0 + dr, nr);
  6574. for (int ir = ir0; ir < ir1; ++ir) {
  6575. // src0 and dst are viewed with shape of src1 and offset
  6576. // => same indices
  6577. const int i3 = ir/(ne12*ne11);
  6578. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6579. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6580. #ifdef GGML_USE_ACCELERATE
  6581. vDSP_vadd(
  6582. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6583. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6584. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6585. #else
  6586. ggml_vec_add_f32(nc,
  6587. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6588. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6589. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6590. #endif
  6591. }
  6592. }
  6593. static void ggml_compute_forward_acc(
  6594. const struct ggml_compute_params * params,
  6595. const struct ggml_tensor * src0,
  6596. const struct ggml_tensor * src1,
  6597. struct ggml_tensor * dst) {
  6598. switch (src0->type) {
  6599. case GGML_TYPE_F32:
  6600. {
  6601. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6602. } break;
  6603. case GGML_TYPE_F16:
  6604. case GGML_TYPE_Q4_0:
  6605. case GGML_TYPE_Q4_1:
  6606. case GGML_TYPE_Q5_0:
  6607. case GGML_TYPE_Q5_1:
  6608. case GGML_TYPE_Q8_0:
  6609. case GGML_TYPE_Q8_1:
  6610. case GGML_TYPE_Q2_K:
  6611. case GGML_TYPE_Q3_K:
  6612. case GGML_TYPE_Q4_K:
  6613. case GGML_TYPE_Q5_K:
  6614. case GGML_TYPE_Q6_K:
  6615. case GGML_TYPE_IQ2_XXS:
  6616. case GGML_TYPE_IQ2_XS:
  6617. case GGML_TYPE_IQ3_XXS:
  6618. default:
  6619. {
  6620. GGML_ASSERT(false);
  6621. } break;
  6622. }
  6623. }
  6624. // ggml_compute_forward_sub
  6625. static void ggml_compute_forward_sub_f32(
  6626. const struct ggml_compute_params * params,
  6627. const struct ggml_tensor * src0,
  6628. const struct ggml_tensor * src1,
  6629. struct ggml_tensor * dst) {
  6630. assert(params->ith == 0);
  6631. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6632. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6633. return;
  6634. }
  6635. const int nr = ggml_nrows(src0);
  6636. GGML_TENSOR_BINARY_OP_LOCALS
  6637. GGML_ASSERT( nb0 == sizeof(float));
  6638. GGML_ASSERT(nb00 == sizeof(float));
  6639. if (nb10 == sizeof(float)) {
  6640. for (int ir = 0; ir < nr; ++ir) {
  6641. // src0, src1 and dst are same shape => same indices
  6642. const int i3 = ir/(ne2*ne1);
  6643. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6644. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6645. #ifdef GGML_USE_ACCELERATE
  6646. vDSP_vsub(
  6647. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6648. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6649. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6650. ne0);
  6651. #else
  6652. ggml_vec_sub_f32(ne0,
  6653. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6654. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6655. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6656. #endif
  6657. // }
  6658. // }
  6659. }
  6660. } else {
  6661. // src1 is not contiguous
  6662. for (int ir = 0; ir < nr; ++ir) {
  6663. // src0, src1 and dst are same shape => same indices
  6664. const int i3 = ir/(ne2*ne1);
  6665. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6666. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6667. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6668. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6669. for (int i0 = 0; i0 < ne0; i0++) {
  6670. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6671. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6672. }
  6673. }
  6674. }
  6675. }
  6676. static void ggml_compute_forward_sub(
  6677. const struct ggml_compute_params * params,
  6678. const struct ggml_tensor * src0,
  6679. const struct ggml_tensor * src1,
  6680. struct ggml_tensor * dst) {
  6681. switch (src0->type) {
  6682. case GGML_TYPE_F32:
  6683. {
  6684. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6685. } break;
  6686. default:
  6687. {
  6688. GGML_ASSERT(false);
  6689. } break;
  6690. }
  6691. }
  6692. // ggml_compute_forward_mul
  6693. static void ggml_compute_forward_mul_f32(
  6694. const struct ggml_compute_params * params,
  6695. const struct ggml_tensor * src0,
  6696. const struct ggml_tensor * src1,
  6697. struct ggml_tensor * dst) {
  6698. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6699. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6700. return;
  6701. }
  6702. const int ith = params->ith;
  6703. const int nth = params->nth;
  6704. #if defined(GGML_USE_CLBLAST)
  6705. if (src1->backend == GGML_BACKEND_GPU) {
  6706. // TODO: OpenCL kernel support full broadcast
  6707. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6708. if (ith == 0) {
  6709. ggml_cl_mul(src0, src1, dst);
  6710. }
  6711. return;
  6712. }
  6713. #endif
  6714. const int64_t nr = ggml_nrows(src0);
  6715. GGML_TENSOR_BINARY_OP_LOCALS
  6716. GGML_ASSERT( nb0 == sizeof(float));
  6717. GGML_ASSERT(nb00 == sizeof(float));
  6718. if (nb10 == sizeof(float)) {
  6719. for (int64_t ir = ith; ir < nr; ir += nth) {
  6720. // src0 and dst are same shape => same indices
  6721. const int64_t i03 = ir/(ne02*ne01);
  6722. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6723. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6724. const int64_t i13 = i03 % ne13;
  6725. const int64_t i12 = i02 % ne12;
  6726. const int64_t i11 = i01 % ne11;
  6727. const int64_t nr0 = ne00 / ne10;
  6728. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6729. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6730. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6731. for (int64_t r = 0 ; r < nr0; ++r) {
  6732. #ifdef GGML_USE_ACCELERATE
  6733. UNUSED(ggml_vec_mul_f32);
  6734. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6735. #else
  6736. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6737. #endif
  6738. }
  6739. }
  6740. } else {
  6741. // src1 is not contiguous
  6742. for (int64_t ir = ith; ir < nr; ir += nth) {
  6743. // src0 and dst are same shape => same indices
  6744. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6745. const int64_t i03 = ir/(ne02*ne01);
  6746. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6747. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6748. const int64_t i13 = i03 % ne13;
  6749. const int64_t i12 = i02 % ne12;
  6750. const int64_t i11 = i01 % ne11;
  6751. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6752. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6753. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6754. const int64_t i10 = i0 % ne10;
  6755. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6756. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6757. }
  6758. }
  6759. }
  6760. }
  6761. static void ggml_compute_forward_mul(
  6762. const struct ggml_compute_params * params,
  6763. const struct ggml_tensor * src0,
  6764. const struct ggml_tensor * src1,
  6765. struct ggml_tensor * dst) {
  6766. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6767. switch (src0->type) {
  6768. case GGML_TYPE_F32:
  6769. {
  6770. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6771. } break;
  6772. default:
  6773. {
  6774. GGML_ASSERT(false);
  6775. } break;
  6776. }
  6777. }
  6778. // ggml_compute_forward_div
  6779. static void ggml_compute_forward_div_f32(
  6780. const struct ggml_compute_params * params,
  6781. const struct ggml_tensor * src0,
  6782. const struct ggml_tensor * src1,
  6783. struct ggml_tensor * dst) {
  6784. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6786. return;
  6787. }
  6788. const int ith = params->ith;
  6789. const int nth = params->nth;
  6790. const int64_t nr = ggml_nrows(src0);
  6791. GGML_TENSOR_BINARY_OP_LOCALS
  6792. GGML_ASSERT( nb0 == sizeof(float));
  6793. GGML_ASSERT(nb00 == sizeof(float));
  6794. if (nb10 == sizeof(float)) {
  6795. for (int64_t ir = ith; ir < nr; ir += nth) {
  6796. // src0 and dst are same shape => same indices
  6797. const int64_t i03 = ir/(ne02*ne01);
  6798. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6799. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6800. const int64_t i13 = i03 % ne13;
  6801. const int64_t i12 = i02 % ne12;
  6802. const int64_t i11 = i01 % ne11;
  6803. const int64_t nr0 = ne00 / ne10;
  6804. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6805. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6806. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6807. for (int64_t r = 0; r < nr0; ++r) {
  6808. #ifdef GGML_USE_ACCELERATE
  6809. UNUSED(ggml_vec_div_f32);
  6810. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6811. #else
  6812. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6813. #endif
  6814. }
  6815. }
  6816. } else {
  6817. // src1 is not contiguous
  6818. for (int64_t ir = ith; ir < nr; ir += nth) {
  6819. // src0 and dst are same shape => same indices
  6820. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6821. const int64_t i03 = ir/(ne02*ne01);
  6822. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6823. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6824. const int64_t i13 = i03 % ne13;
  6825. const int64_t i12 = i02 % ne12;
  6826. const int64_t i11 = i01 % ne11;
  6827. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6828. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6829. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6830. const int64_t i10 = i0 % ne10;
  6831. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6832. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6833. }
  6834. }
  6835. }
  6836. }
  6837. static void ggml_compute_forward_div(
  6838. const struct ggml_compute_params * params,
  6839. const struct ggml_tensor * src0,
  6840. const struct ggml_tensor * src1,
  6841. struct ggml_tensor * dst) {
  6842. switch (src0->type) {
  6843. case GGML_TYPE_F32:
  6844. {
  6845. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6846. } break;
  6847. default:
  6848. {
  6849. GGML_ASSERT(false);
  6850. } break;
  6851. }
  6852. }
  6853. // ggml_compute_forward_sqr
  6854. static void ggml_compute_forward_sqr_f32(
  6855. const struct ggml_compute_params * params,
  6856. const struct ggml_tensor * src0,
  6857. struct ggml_tensor * dst) {
  6858. assert(params->ith == 0);
  6859. assert(ggml_are_same_shape(src0, dst));
  6860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6861. return;
  6862. }
  6863. const int n = ggml_nrows(src0);
  6864. const int nc = src0->ne[0];
  6865. assert( dst->nb[0] == sizeof(float));
  6866. assert(src0->nb[0] == sizeof(float));
  6867. for (int i = 0; i < n; i++) {
  6868. ggml_vec_sqr_f32(nc,
  6869. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6870. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6871. }
  6872. }
  6873. static void ggml_compute_forward_sqr(
  6874. const struct ggml_compute_params * params,
  6875. const struct ggml_tensor * src0,
  6876. struct ggml_tensor * dst) {
  6877. switch (src0->type) {
  6878. case GGML_TYPE_F32:
  6879. {
  6880. ggml_compute_forward_sqr_f32(params, src0, dst);
  6881. } break;
  6882. default:
  6883. {
  6884. GGML_ASSERT(false);
  6885. } break;
  6886. }
  6887. }
  6888. // ggml_compute_forward_sqrt
  6889. static void ggml_compute_forward_sqrt_f32(
  6890. const struct ggml_compute_params * params,
  6891. const struct ggml_tensor * src0,
  6892. struct ggml_tensor * dst) {
  6893. assert(params->ith == 0);
  6894. assert(ggml_are_same_shape(src0, dst));
  6895. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6896. return;
  6897. }
  6898. const int n = ggml_nrows(src0);
  6899. const int nc = src0->ne[0];
  6900. assert( dst->nb[0] == sizeof(float));
  6901. assert(src0->nb[0] == sizeof(float));
  6902. for (int i = 0; i < n; i++) {
  6903. ggml_vec_sqrt_f32(nc,
  6904. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6905. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6906. }
  6907. }
  6908. static void ggml_compute_forward_sqrt(
  6909. const struct ggml_compute_params * params,
  6910. const struct ggml_tensor * src0,
  6911. struct ggml_tensor * dst) {
  6912. switch (src0->type) {
  6913. case GGML_TYPE_F32:
  6914. {
  6915. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6916. } break;
  6917. default:
  6918. {
  6919. GGML_ASSERT(false);
  6920. } break;
  6921. }
  6922. }
  6923. // ggml_compute_forward_log
  6924. static void ggml_compute_forward_log_f32(
  6925. const struct ggml_compute_params * params,
  6926. const struct ggml_tensor * src0,
  6927. struct ggml_tensor * dst) {
  6928. GGML_ASSERT(params->ith == 0);
  6929. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6931. return;
  6932. }
  6933. const int n = ggml_nrows(src0);
  6934. const int nc = src0->ne[0];
  6935. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6936. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6937. for (int i = 0; i < n; i++) {
  6938. ggml_vec_log_f32(nc,
  6939. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6940. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6941. }
  6942. }
  6943. static void ggml_compute_forward_log(
  6944. const struct ggml_compute_params * params,
  6945. const struct ggml_tensor * src0,
  6946. struct ggml_tensor * dst) {
  6947. switch (src0->type) {
  6948. case GGML_TYPE_F32:
  6949. {
  6950. ggml_compute_forward_log_f32(params, src0, dst);
  6951. } break;
  6952. default:
  6953. {
  6954. GGML_ASSERT(false);
  6955. } break;
  6956. }
  6957. }
  6958. // ggml_compute_forward_sum
  6959. static void ggml_compute_forward_sum_f32(
  6960. const struct ggml_compute_params * params,
  6961. const struct ggml_tensor * src0,
  6962. struct ggml_tensor * dst) {
  6963. assert(params->ith == 0);
  6964. assert(ggml_is_scalar(dst));
  6965. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6966. return;
  6967. }
  6968. assert(ggml_is_scalar(dst));
  6969. assert(src0->nb[0] == sizeof(float));
  6970. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6971. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6972. ggml_float sum = 0;
  6973. ggml_float row_sum = 0;
  6974. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6975. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6976. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6977. ggml_vec_sum_f32_ggf(ne00,
  6978. &row_sum,
  6979. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6980. sum += row_sum;
  6981. }
  6982. }
  6983. }
  6984. ((float *) dst->data)[0] = sum;
  6985. }
  6986. static void ggml_compute_forward_sum_f16(
  6987. const struct ggml_compute_params * params,
  6988. const struct ggml_tensor * src0,
  6989. struct ggml_tensor * dst) {
  6990. assert(params->ith == 0);
  6991. assert(ggml_is_scalar(dst));
  6992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6993. return;
  6994. }
  6995. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6996. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6997. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6998. float sum = 0;
  6999. float row_sum = 0;
  7000. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7001. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7002. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7003. ggml_vec_sum_f16_ggf(ne00,
  7004. &row_sum,
  7005. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7006. sum += row_sum;
  7007. }
  7008. }
  7009. }
  7010. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7011. }
  7012. static void ggml_compute_forward_sum(
  7013. const struct ggml_compute_params * params,
  7014. const struct ggml_tensor * src0,
  7015. struct ggml_tensor * dst) {
  7016. switch (src0->type) {
  7017. case GGML_TYPE_F32:
  7018. {
  7019. ggml_compute_forward_sum_f32(params, src0, dst);
  7020. } break;
  7021. case GGML_TYPE_F16:
  7022. {
  7023. ggml_compute_forward_sum_f16(params, src0, dst);
  7024. } break;
  7025. default:
  7026. {
  7027. GGML_ASSERT(false);
  7028. } break;
  7029. }
  7030. }
  7031. // ggml_compute_forward_sum_rows
  7032. static void ggml_compute_forward_sum_rows_f32(
  7033. const struct ggml_compute_params * params,
  7034. const struct ggml_tensor * src0,
  7035. struct ggml_tensor * dst) {
  7036. GGML_ASSERT(params->ith == 0);
  7037. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7038. return;
  7039. }
  7040. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7041. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7042. GGML_TENSOR_UNARY_OP_LOCALS
  7043. GGML_ASSERT(ne0 == 1);
  7044. GGML_ASSERT(ne1 == ne01);
  7045. GGML_ASSERT(ne2 == ne02);
  7046. GGML_ASSERT(ne3 == ne03);
  7047. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7048. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7049. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7050. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7051. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7052. float row_sum = 0;
  7053. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7054. dst_row[0] = row_sum;
  7055. }
  7056. }
  7057. }
  7058. }
  7059. static void ggml_compute_forward_sum_rows(
  7060. const struct ggml_compute_params * params,
  7061. const struct ggml_tensor * src0,
  7062. struct ggml_tensor * dst) {
  7063. switch (src0->type) {
  7064. case GGML_TYPE_F32:
  7065. {
  7066. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7067. } break;
  7068. default:
  7069. {
  7070. GGML_ASSERT(false);
  7071. } break;
  7072. }
  7073. }
  7074. // ggml_compute_forward_mean
  7075. static void ggml_compute_forward_mean_f32(
  7076. const struct ggml_compute_params * params,
  7077. const struct ggml_tensor * src0,
  7078. struct ggml_tensor * dst) {
  7079. assert(params->ith == 0);
  7080. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7081. return;
  7082. }
  7083. assert(src0->nb[0] == sizeof(float));
  7084. GGML_TENSOR_UNARY_OP_LOCALS
  7085. assert(ne0 == 1);
  7086. assert(ne1 == ne01);
  7087. assert(ne2 == ne02);
  7088. assert(ne3 == ne03);
  7089. UNUSED(ne0);
  7090. UNUSED(ne1);
  7091. UNUSED(ne2);
  7092. UNUSED(ne3);
  7093. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7094. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7095. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7096. ggml_vec_sum_f32(ne00,
  7097. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7098. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7099. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7100. }
  7101. }
  7102. }
  7103. }
  7104. static void ggml_compute_forward_mean(
  7105. const struct ggml_compute_params * params,
  7106. const struct ggml_tensor * src0,
  7107. struct ggml_tensor * dst) {
  7108. switch (src0->type) {
  7109. case GGML_TYPE_F32:
  7110. {
  7111. ggml_compute_forward_mean_f32(params, src0, dst);
  7112. } break;
  7113. default:
  7114. {
  7115. GGML_ASSERT(false);
  7116. } break;
  7117. }
  7118. }
  7119. // ggml_compute_forward_argmax
  7120. static void ggml_compute_forward_argmax_f32(
  7121. const struct ggml_compute_params * params,
  7122. const struct ggml_tensor * src0,
  7123. struct ggml_tensor * dst) {
  7124. assert(params->ith == 0);
  7125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7126. return;
  7127. }
  7128. assert(src0->nb[0] == sizeof(float));
  7129. assert(dst->nb[0] == sizeof(float));
  7130. const int64_t ne00 = src0->ne[0];
  7131. const int64_t ne01 = src0->ne[1];
  7132. const size_t nb01 = src0->nb[1];
  7133. const size_t nb0 = dst->nb[0];
  7134. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7135. float * src = (float *) ((char *) src0->data + i1*nb01);
  7136. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7137. int v = 0;
  7138. ggml_vec_argmax_f32(ne00, &v, src);
  7139. dst_[0] = v;
  7140. }
  7141. }
  7142. static void ggml_compute_forward_argmax(
  7143. const struct ggml_compute_params * params,
  7144. const struct ggml_tensor * src0,
  7145. struct ggml_tensor * dst) {
  7146. switch (src0->type) {
  7147. case GGML_TYPE_F32:
  7148. {
  7149. ggml_compute_forward_argmax_f32(params, src0, dst);
  7150. } break;
  7151. default:
  7152. {
  7153. GGML_ASSERT(false);
  7154. } break;
  7155. }
  7156. }
  7157. // ggml_compute_forward_repeat
  7158. static void ggml_compute_forward_repeat_f32(
  7159. const struct ggml_compute_params * params,
  7160. const struct ggml_tensor * src0,
  7161. struct ggml_tensor * dst) {
  7162. GGML_ASSERT(params->ith == 0);
  7163. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7165. return;
  7166. }
  7167. GGML_TENSOR_UNARY_OP_LOCALS
  7168. // guaranteed to be an integer due to the check in ggml_can_repeat
  7169. const int nr0 = (int)(ne0/ne00);
  7170. const int nr1 = (int)(ne1/ne01);
  7171. const int nr2 = (int)(ne2/ne02);
  7172. const int nr3 = (int)(ne3/ne03);
  7173. // TODO: support for transposed / permuted tensors
  7174. GGML_ASSERT(nb0 == sizeof(float));
  7175. GGML_ASSERT(nb00 == sizeof(float));
  7176. // TODO: maybe this is not optimal?
  7177. for (int i3 = 0; i3 < nr3; i3++) {
  7178. for (int k3 = 0; k3 < ne03; k3++) {
  7179. for (int i2 = 0; i2 < nr2; i2++) {
  7180. for (int k2 = 0; k2 < ne02; k2++) {
  7181. for (int i1 = 0; i1 < nr1; i1++) {
  7182. for (int k1 = 0; k1 < ne01; k1++) {
  7183. for (int i0 = 0; i0 < nr0; i0++) {
  7184. ggml_vec_cpy_f32(ne00,
  7185. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7186. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7187. }
  7188. }
  7189. }
  7190. }
  7191. }
  7192. }
  7193. }
  7194. }
  7195. static void ggml_compute_forward_repeat_f16(
  7196. const struct ggml_compute_params * params,
  7197. const struct ggml_tensor * src0,
  7198. struct ggml_tensor * dst) {
  7199. GGML_ASSERT(params->ith == 0);
  7200. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7202. return;
  7203. }
  7204. GGML_TENSOR_UNARY_OP_LOCALS
  7205. // guaranteed to be an integer due to the check in ggml_can_repeat
  7206. const int nr0 = (int)(ne0/ne00);
  7207. const int nr1 = (int)(ne1/ne01);
  7208. const int nr2 = (int)(ne2/ne02);
  7209. const int nr3 = (int)(ne3/ne03);
  7210. // TODO: support for transposed / permuted tensors
  7211. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7212. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7213. // TODO: maybe this is not optimal?
  7214. for (int i3 = 0; i3 < nr3; i3++) {
  7215. for (int k3 = 0; k3 < ne03; k3++) {
  7216. for (int i2 = 0; i2 < nr2; i2++) {
  7217. for (int k2 = 0; k2 < ne02; k2++) {
  7218. for (int i1 = 0; i1 < nr1; i1++) {
  7219. for (int k1 = 0; k1 < ne01; k1++) {
  7220. for (int i0 = 0; i0 < nr0; i0++) {
  7221. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7222. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7223. // ggml_vec_cpy_f16(ne00, y, x)
  7224. for (int i = 0; i < ne00; ++i) {
  7225. y[i] = x[i];
  7226. }
  7227. }
  7228. }
  7229. }
  7230. }
  7231. }
  7232. }
  7233. }
  7234. }
  7235. static void ggml_compute_forward_repeat(
  7236. const struct ggml_compute_params * params,
  7237. const struct ggml_tensor * src0,
  7238. struct ggml_tensor * dst) {
  7239. switch (src0->type) {
  7240. case GGML_TYPE_F16:
  7241. case GGML_TYPE_I16:
  7242. {
  7243. ggml_compute_forward_repeat_f16(params, src0, dst);
  7244. } break;
  7245. case GGML_TYPE_F32:
  7246. case GGML_TYPE_I32:
  7247. {
  7248. ggml_compute_forward_repeat_f32(params, src0, dst);
  7249. } break;
  7250. default:
  7251. {
  7252. GGML_ASSERT(false);
  7253. } break;
  7254. }
  7255. }
  7256. // ggml_compute_forward_repeat_back
  7257. static void ggml_compute_forward_repeat_back_f32(
  7258. const struct ggml_compute_params * params,
  7259. const struct ggml_tensor * src0,
  7260. struct ggml_tensor * dst) {
  7261. GGML_ASSERT(params->ith == 0);
  7262. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7263. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7264. return;
  7265. }
  7266. GGML_TENSOR_UNARY_OP_LOCALS
  7267. // guaranteed to be an integer due to the check in ggml_can_repeat
  7268. const int nr0 = (int)(ne00/ne0);
  7269. const int nr1 = (int)(ne01/ne1);
  7270. const int nr2 = (int)(ne02/ne2);
  7271. const int nr3 = (int)(ne03/ne3);
  7272. // TODO: support for transposed / permuted tensors
  7273. GGML_ASSERT(nb0 == sizeof(float));
  7274. GGML_ASSERT(nb00 == sizeof(float));
  7275. if (ggml_is_contiguous(dst)) {
  7276. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7277. } else {
  7278. for (int k3 = 0; k3 < ne3; k3++) {
  7279. for (int k2 = 0; k2 < ne2; k2++) {
  7280. for (int k1 = 0; k1 < ne1; k1++) {
  7281. ggml_vec_set_f32(ne0,
  7282. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7283. 0);
  7284. }
  7285. }
  7286. }
  7287. }
  7288. // TODO: maybe this is not optimal?
  7289. for (int i3 = 0; i3 < nr3; i3++) {
  7290. for (int k3 = 0; k3 < ne3; k3++) {
  7291. for (int i2 = 0; i2 < nr2; i2++) {
  7292. for (int k2 = 0; k2 < ne2; k2++) {
  7293. for (int i1 = 0; i1 < nr1; i1++) {
  7294. for (int k1 = 0; k1 < ne1; k1++) {
  7295. for (int i0 = 0; i0 < nr0; i0++) {
  7296. ggml_vec_acc_f32(ne0,
  7297. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7298. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7299. }
  7300. }
  7301. }
  7302. }
  7303. }
  7304. }
  7305. }
  7306. }
  7307. static void ggml_compute_forward_repeat_back(
  7308. const struct ggml_compute_params * params,
  7309. const struct ggml_tensor * src0,
  7310. struct ggml_tensor * dst) {
  7311. switch (src0->type) {
  7312. case GGML_TYPE_F32:
  7313. {
  7314. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7315. } break;
  7316. default:
  7317. {
  7318. GGML_ASSERT(false);
  7319. } break;
  7320. }
  7321. }
  7322. // ggml_compute_forward_concat
  7323. static void ggml_compute_forward_concat_f32(
  7324. const struct ggml_compute_params * params,
  7325. const struct ggml_tensor * src0,
  7326. const struct ggml_tensor * src1,
  7327. struct ggml_tensor * dst) {
  7328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7329. return;
  7330. }
  7331. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7332. const int ith = params->ith;
  7333. const int nth = params->nth;
  7334. GGML_TENSOR_BINARY_OP_LOCALS
  7335. // TODO: support for transposed / permuted tensors
  7336. GGML_ASSERT(nb0 == sizeof(float));
  7337. GGML_ASSERT(nb00 == sizeof(float));
  7338. GGML_ASSERT(nb10 == sizeof(float));
  7339. for (int i3 = 0; i3 < ne3; i3++) {
  7340. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7341. if (i2 < ne02) { // src0
  7342. for (int i1 = 0; i1 < ne1; i1++) {
  7343. for (int i0 = 0; i0 < ne0; i0++) {
  7344. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7345. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7346. *y = *x;
  7347. }
  7348. }
  7349. } // src1
  7350. else {
  7351. for (int i1 = 0; i1 < ne1; i1++) {
  7352. for (int i0 = 0; i0 < ne0; i0++) {
  7353. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7354. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7355. *y = *x;
  7356. }
  7357. }
  7358. }
  7359. }
  7360. }
  7361. }
  7362. static void ggml_compute_forward_concat(
  7363. const struct ggml_compute_params* params,
  7364. const struct ggml_tensor* src0,
  7365. const struct ggml_tensor* src1,
  7366. struct ggml_tensor* dst) {
  7367. switch (src0->type) {
  7368. case GGML_TYPE_F32:
  7369. case GGML_TYPE_I32:
  7370. {
  7371. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7372. } break;
  7373. default:
  7374. {
  7375. GGML_ASSERT(false);
  7376. } break;
  7377. }
  7378. }
  7379. // ggml_compute_forward_abs
  7380. static void ggml_compute_forward_abs_f32(
  7381. const struct ggml_compute_params * params,
  7382. const struct ggml_tensor * src0,
  7383. struct ggml_tensor * dst) {
  7384. assert(params->ith == 0);
  7385. assert(ggml_are_same_shape(src0, dst));
  7386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7387. return;
  7388. }
  7389. const int n = ggml_nrows(src0);
  7390. const int nc = src0->ne[0];
  7391. assert(dst->nb[0] == sizeof(float));
  7392. assert(src0->nb[0] == sizeof(float));
  7393. for (int i = 0; i < n; i++) {
  7394. ggml_vec_abs_f32(nc,
  7395. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7396. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7397. }
  7398. }
  7399. static void ggml_compute_forward_abs(
  7400. const struct ggml_compute_params * params,
  7401. const struct ggml_tensor * src0,
  7402. struct ggml_tensor * dst) {
  7403. switch (src0->type) {
  7404. case GGML_TYPE_F32:
  7405. {
  7406. ggml_compute_forward_abs_f32(params, src0, dst);
  7407. } break;
  7408. default:
  7409. {
  7410. GGML_ASSERT(false);
  7411. } break;
  7412. }
  7413. }
  7414. // ggml_compute_forward_sgn
  7415. static void ggml_compute_forward_sgn_f32(
  7416. const struct ggml_compute_params * params,
  7417. const struct ggml_tensor * src0,
  7418. struct ggml_tensor * dst) {
  7419. assert(params->ith == 0);
  7420. assert(ggml_are_same_shape(src0, dst));
  7421. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7422. return;
  7423. }
  7424. const int n = ggml_nrows(src0);
  7425. const int nc = src0->ne[0];
  7426. assert(dst->nb[0] == sizeof(float));
  7427. assert(src0->nb[0] == sizeof(float));
  7428. for (int i = 0; i < n; i++) {
  7429. ggml_vec_sgn_f32(nc,
  7430. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7431. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7432. }
  7433. }
  7434. static void ggml_compute_forward_sgn(
  7435. const struct ggml_compute_params * params,
  7436. const struct ggml_tensor * src0,
  7437. struct ggml_tensor * dst) {
  7438. switch (src0->type) {
  7439. case GGML_TYPE_F32:
  7440. {
  7441. ggml_compute_forward_sgn_f32(params, src0, dst);
  7442. } break;
  7443. default:
  7444. {
  7445. GGML_ASSERT(false);
  7446. } break;
  7447. }
  7448. }
  7449. // ggml_compute_forward_neg
  7450. static void ggml_compute_forward_neg_f32(
  7451. const struct ggml_compute_params * params,
  7452. const struct ggml_tensor * src0,
  7453. struct ggml_tensor * dst) {
  7454. assert(params->ith == 0);
  7455. assert(ggml_are_same_shape(src0, dst));
  7456. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7457. return;
  7458. }
  7459. const int n = ggml_nrows(src0);
  7460. const int nc = src0->ne[0];
  7461. assert(dst->nb[0] == sizeof(float));
  7462. assert(src0->nb[0] == sizeof(float));
  7463. for (int i = 0; i < n; i++) {
  7464. ggml_vec_neg_f32(nc,
  7465. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7466. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7467. }
  7468. }
  7469. static void ggml_compute_forward_neg(
  7470. const struct ggml_compute_params * params,
  7471. const struct ggml_tensor * src0,
  7472. struct ggml_tensor * dst) {
  7473. switch (src0->type) {
  7474. case GGML_TYPE_F32:
  7475. {
  7476. ggml_compute_forward_neg_f32(params, src0, dst);
  7477. } break;
  7478. default:
  7479. {
  7480. GGML_ASSERT(false);
  7481. } break;
  7482. }
  7483. }
  7484. // ggml_compute_forward_step
  7485. static void ggml_compute_forward_step_f32(
  7486. const struct ggml_compute_params * params,
  7487. const struct ggml_tensor * src0,
  7488. struct ggml_tensor * dst) {
  7489. assert(params->ith == 0);
  7490. assert(ggml_are_same_shape(src0, dst));
  7491. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7492. return;
  7493. }
  7494. const int n = ggml_nrows(src0);
  7495. const int nc = src0->ne[0];
  7496. assert(dst->nb[0] == sizeof(float));
  7497. assert(src0->nb[0] == sizeof(float));
  7498. for (int i = 0; i < n; i++) {
  7499. ggml_vec_step_f32(nc,
  7500. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7501. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7502. }
  7503. }
  7504. static void ggml_compute_forward_step(
  7505. const struct ggml_compute_params * params,
  7506. const struct ggml_tensor * src0,
  7507. struct ggml_tensor * dst) {
  7508. switch (src0->type) {
  7509. case GGML_TYPE_F32:
  7510. {
  7511. ggml_compute_forward_step_f32(params, src0, dst);
  7512. } break;
  7513. default:
  7514. {
  7515. GGML_ASSERT(false);
  7516. } break;
  7517. }
  7518. }
  7519. // ggml_compute_forward_tanh
  7520. static void ggml_compute_forward_tanh_f32(
  7521. const struct ggml_compute_params * params,
  7522. const struct ggml_tensor * src0,
  7523. struct ggml_tensor * dst) {
  7524. assert(params->ith == 0);
  7525. assert(ggml_are_same_shape(src0, dst));
  7526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7527. return;
  7528. }
  7529. const int n = ggml_nrows(src0);
  7530. const int nc = src0->ne[0];
  7531. assert(dst->nb[0] == sizeof(float));
  7532. assert(src0->nb[0] == sizeof(float));
  7533. for (int i = 0; i < n; i++) {
  7534. ggml_vec_tanh_f32(nc,
  7535. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7536. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7537. }
  7538. }
  7539. static void ggml_compute_forward_tanh(
  7540. const struct ggml_compute_params * params,
  7541. const struct ggml_tensor * src0,
  7542. struct ggml_tensor * dst) {
  7543. switch (src0->type) {
  7544. case GGML_TYPE_F32:
  7545. {
  7546. ggml_compute_forward_tanh_f32(params, src0, dst);
  7547. } break;
  7548. default:
  7549. {
  7550. GGML_ASSERT(false);
  7551. } break;
  7552. }
  7553. }
  7554. // ggml_compute_forward_elu
  7555. static void ggml_compute_forward_elu_f32(
  7556. const struct ggml_compute_params * params,
  7557. const struct ggml_tensor * src0,
  7558. struct ggml_tensor * dst) {
  7559. assert(params->ith == 0);
  7560. assert(ggml_are_same_shape(src0, dst));
  7561. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7562. return;
  7563. }
  7564. const int n = ggml_nrows(src0);
  7565. const int nc = src0->ne[0];
  7566. assert(dst->nb[0] == sizeof(float));
  7567. assert(src0->nb[0] == sizeof(float));
  7568. for (int i = 0; i < n; i++) {
  7569. ggml_vec_elu_f32(nc,
  7570. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7571. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7572. }
  7573. }
  7574. static void ggml_compute_forward_elu(
  7575. const struct ggml_compute_params * params,
  7576. const struct ggml_tensor * src0,
  7577. struct ggml_tensor * dst) {
  7578. switch (src0->type) {
  7579. case GGML_TYPE_F32:
  7580. {
  7581. ggml_compute_forward_elu_f32(params, src0, dst);
  7582. } break;
  7583. default:
  7584. {
  7585. GGML_ASSERT(false);
  7586. } break;
  7587. }
  7588. }
  7589. // ggml_compute_forward_relu
  7590. static void ggml_compute_forward_relu_f32(
  7591. const struct ggml_compute_params * params,
  7592. const struct ggml_tensor * src0,
  7593. struct ggml_tensor * dst) {
  7594. assert(params->ith == 0);
  7595. assert(ggml_are_same_shape(src0, dst));
  7596. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7597. return;
  7598. }
  7599. const int n = ggml_nrows(src0);
  7600. const int nc = src0->ne[0];
  7601. assert(dst->nb[0] == sizeof(float));
  7602. assert(src0->nb[0] == sizeof(float));
  7603. for (int i = 0; i < n; i++) {
  7604. ggml_vec_relu_f32(nc,
  7605. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7606. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7607. }
  7608. }
  7609. static void ggml_compute_forward_relu(
  7610. const struct ggml_compute_params * params,
  7611. const struct ggml_tensor * src0,
  7612. struct ggml_tensor * dst) {
  7613. switch (src0->type) {
  7614. case GGML_TYPE_F32:
  7615. {
  7616. ggml_compute_forward_relu_f32(params, src0, dst);
  7617. } break;
  7618. default:
  7619. {
  7620. GGML_ASSERT(false);
  7621. } break;
  7622. }
  7623. }
  7624. // ggml_compute_forward_gelu
  7625. static void ggml_compute_forward_gelu_f32(
  7626. const struct ggml_compute_params * params,
  7627. const struct ggml_tensor * src0,
  7628. struct ggml_tensor * dst) {
  7629. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7630. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7631. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7632. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7633. return;
  7634. }
  7635. const int ith = params->ith;
  7636. const int nth = params->nth;
  7637. const int nc = src0->ne[0];
  7638. const int nr = ggml_nrows(src0);
  7639. // rows per thread
  7640. const int dr = (nr + nth - 1)/nth;
  7641. // row range for this thread
  7642. const int ir0 = dr*ith;
  7643. const int ir1 = MIN(ir0 + dr, nr);
  7644. for (int i1 = ir0; i1 < ir1; i1++) {
  7645. ggml_vec_gelu_f32(nc,
  7646. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7647. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7648. #ifndef NDEBUG
  7649. for (int k = 0; k < nc; k++) {
  7650. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7651. UNUSED(x);
  7652. assert(!isnan(x));
  7653. assert(!isinf(x));
  7654. }
  7655. #endif
  7656. }
  7657. }
  7658. static void ggml_compute_forward_gelu(
  7659. const struct ggml_compute_params * params,
  7660. const struct ggml_tensor * src0,
  7661. struct ggml_tensor * dst) {
  7662. switch (src0->type) {
  7663. case GGML_TYPE_F32:
  7664. {
  7665. ggml_compute_forward_gelu_f32(params, src0, dst);
  7666. } break;
  7667. default:
  7668. {
  7669. GGML_ASSERT(false);
  7670. } break;
  7671. }
  7672. }
  7673. // ggml_compute_forward_gelu_quick
  7674. static void ggml_compute_forward_gelu_quick_f32(
  7675. const struct ggml_compute_params * params,
  7676. const struct ggml_tensor * src0,
  7677. struct ggml_tensor * dst) {
  7678. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7679. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7680. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7681. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7682. return;
  7683. }
  7684. const int ith = params->ith;
  7685. const int nth = params->nth;
  7686. const int nc = src0->ne[0];
  7687. const int nr = ggml_nrows(src0);
  7688. // rows per thread
  7689. const int dr = (nr + nth - 1)/nth;
  7690. // row range for this thread
  7691. const int ir0 = dr*ith;
  7692. const int ir1 = MIN(ir0 + dr, nr);
  7693. for (int i1 = ir0; i1 < ir1; i1++) {
  7694. ggml_vec_gelu_quick_f32(nc,
  7695. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7696. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7697. #ifndef NDEBUG
  7698. for (int k = 0; k < nc; k++) {
  7699. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7700. UNUSED(x);
  7701. assert(!isnan(x));
  7702. assert(!isinf(x));
  7703. }
  7704. #endif
  7705. }
  7706. }
  7707. static void ggml_compute_forward_gelu_quick(
  7708. const struct ggml_compute_params * params,
  7709. const struct ggml_tensor * src0,
  7710. struct ggml_tensor * dst) {
  7711. switch (src0->type) {
  7712. case GGML_TYPE_F32:
  7713. {
  7714. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7715. } break;
  7716. default:
  7717. {
  7718. GGML_ASSERT(false);
  7719. } break;
  7720. }
  7721. }
  7722. // ggml_compute_forward_silu
  7723. static void ggml_compute_forward_silu_f32(
  7724. const struct ggml_compute_params * params,
  7725. const struct ggml_tensor * src0,
  7726. struct ggml_tensor * dst) {
  7727. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7728. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7729. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7730. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7731. return;
  7732. }
  7733. const int ith = params->ith;
  7734. const int nth = params->nth;
  7735. const int nc = src0->ne[0];
  7736. const int nr = ggml_nrows(src0);
  7737. // rows per thread
  7738. const int dr = (nr + nth - 1)/nth;
  7739. // row range for this thread
  7740. const int ir0 = dr*ith;
  7741. const int ir1 = MIN(ir0 + dr, nr);
  7742. for (int i1 = ir0; i1 < ir1; i1++) {
  7743. ggml_vec_silu_f32(nc,
  7744. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7745. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7746. #ifndef NDEBUG
  7747. for (int k = 0; k < nc; k++) {
  7748. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7749. UNUSED(x);
  7750. assert(!isnan(x));
  7751. assert(!isinf(x));
  7752. }
  7753. #endif
  7754. }
  7755. }
  7756. static void ggml_compute_forward_silu(
  7757. const struct ggml_compute_params * params,
  7758. const struct ggml_tensor * src0,
  7759. struct ggml_tensor * dst) {
  7760. switch (src0->type) {
  7761. case GGML_TYPE_F32:
  7762. {
  7763. ggml_compute_forward_silu_f32(params, src0, dst);
  7764. } break;
  7765. default:
  7766. {
  7767. GGML_ASSERT(false);
  7768. } break;
  7769. }
  7770. }
  7771. // ggml_compute_forward_leaky_relu
  7772. static void ggml_compute_forward_leaky_relu_f32(
  7773. const struct ggml_compute_params * params,
  7774. const struct ggml_tensor * src0,
  7775. struct ggml_tensor * dst) {
  7776. assert(params->ith == 0);
  7777. assert(ggml_are_same_shape(src0, dst));
  7778. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7779. return;
  7780. }
  7781. const int n = ggml_nrows(src0);
  7782. const int nc = src0->ne[0];
  7783. float negative_slope;
  7784. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7785. assert(dst->nb[0] == sizeof(float));
  7786. assert(src0->nb[0] == sizeof(float));
  7787. for (int i = 0; i < n; i++) {
  7788. ggml_vec_leaky_relu_f32(nc,
  7789. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7790. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7791. }
  7792. }
  7793. static void ggml_compute_forward_leaky_relu(
  7794. const struct ggml_compute_params * params,
  7795. const struct ggml_tensor * src0,
  7796. struct ggml_tensor * dst) {
  7797. switch (src0->type) {
  7798. case GGML_TYPE_F32:
  7799. {
  7800. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7801. } break;
  7802. default:
  7803. {
  7804. GGML_ASSERT(false);
  7805. } break;
  7806. }
  7807. }
  7808. // ggml_compute_forward_silu_back
  7809. static void ggml_compute_forward_silu_back_f32(
  7810. const struct ggml_compute_params * params,
  7811. const struct ggml_tensor * src0,
  7812. const struct ggml_tensor * grad,
  7813. struct ggml_tensor * dst) {
  7814. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7815. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7816. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7817. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7818. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7819. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7820. return;
  7821. }
  7822. const int ith = params->ith;
  7823. const int nth = params->nth;
  7824. const int nc = src0->ne[0];
  7825. const int nr = ggml_nrows(src0);
  7826. // rows per thread
  7827. const int dr = (nr + nth - 1)/nth;
  7828. // row range for this thread
  7829. const int ir0 = dr*ith;
  7830. const int ir1 = MIN(ir0 + dr, nr);
  7831. for (int i1 = ir0; i1 < ir1; i1++) {
  7832. ggml_vec_silu_backward_f32(nc,
  7833. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7834. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7835. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7836. #ifndef NDEBUG
  7837. for (int k = 0; k < nc; k++) {
  7838. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7839. UNUSED(x);
  7840. assert(!isnan(x));
  7841. assert(!isinf(x));
  7842. }
  7843. #endif
  7844. }
  7845. }
  7846. static void ggml_compute_forward_silu_back(
  7847. const struct ggml_compute_params * params,
  7848. const struct ggml_tensor * src0,
  7849. const struct ggml_tensor * grad,
  7850. struct ggml_tensor * dst) {
  7851. switch (src0->type) {
  7852. case GGML_TYPE_F32:
  7853. {
  7854. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7855. } break;
  7856. default:
  7857. {
  7858. GGML_ASSERT(false);
  7859. } break;
  7860. }
  7861. }
  7862. static void ggml_compute_forward_hardswish_f32(
  7863. const struct ggml_compute_params * params,
  7864. const struct ggml_tensor * src0,
  7865. struct ggml_tensor * dst) {
  7866. assert(params->ith == 0);
  7867. assert(ggml_are_same_shape(src0, dst));
  7868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7869. return;
  7870. }
  7871. const int n = ggml_nrows(src0);
  7872. const int nc = src0->ne[0];
  7873. assert(dst->nb[0] == sizeof(float));
  7874. assert(src0->nb[0] == sizeof(float));
  7875. for (int i = 0; i < n; i++) {
  7876. ggml_vec_hardswish_f32(nc,
  7877. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7878. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7879. }
  7880. }
  7881. static void ggml_compute_forward_hardswish(
  7882. const struct ggml_compute_params * params,
  7883. const struct ggml_tensor * src0,
  7884. struct ggml_tensor * dst) {
  7885. switch (src0->type) {
  7886. case GGML_TYPE_F32:
  7887. {
  7888. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7889. } break;
  7890. default:
  7891. {
  7892. GGML_ASSERT(false);
  7893. } break;
  7894. }
  7895. }
  7896. static void ggml_compute_forward_hardsigmoid_f32(
  7897. const struct ggml_compute_params * params,
  7898. const struct ggml_tensor * src0,
  7899. struct ggml_tensor * dst) {
  7900. assert(params->ith == 0);
  7901. assert(ggml_are_same_shape(src0, dst));
  7902. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7903. return;
  7904. }
  7905. const int n = ggml_nrows(src0);
  7906. const int nc = src0->ne[0];
  7907. assert(dst->nb[0] == sizeof(float));
  7908. assert(src0->nb[0] == sizeof(float));
  7909. for (int i = 0; i < n; i++) {
  7910. ggml_vec_hardsigmoid_f32(nc,
  7911. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7912. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7913. }
  7914. }
  7915. static void ggml_compute_forward_hardsigmoid(
  7916. const struct ggml_compute_params * params,
  7917. const struct ggml_tensor * src0,
  7918. struct ggml_tensor * dst) {
  7919. switch (src0->type) {
  7920. case GGML_TYPE_F32:
  7921. {
  7922. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7923. } break;
  7924. default:
  7925. {
  7926. GGML_ASSERT(false);
  7927. } break;
  7928. }
  7929. }
  7930. // ggml_compute_forward_norm
  7931. static void ggml_compute_forward_norm_f32(
  7932. const struct ggml_compute_params * params,
  7933. const struct ggml_tensor * src0,
  7934. struct ggml_tensor * dst) {
  7935. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7937. return;
  7938. }
  7939. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7940. const int ith = params->ith;
  7941. const int nth = params->nth;
  7942. GGML_TENSOR_UNARY_OP_LOCALS
  7943. float eps;
  7944. memcpy(&eps, dst->op_params, sizeof(float));
  7945. GGML_ASSERT(eps > 0.0f);
  7946. // TODO: optimize
  7947. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7948. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7949. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7950. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7951. ggml_float sum = 0.0;
  7952. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7953. sum += (ggml_float)x[i00];
  7954. }
  7955. float mean = sum/ne00;
  7956. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7957. ggml_float sum2 = 0.0;
  7958. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7959. float v = x[i00] - mean;
  7960. y[i00] = v;
  7961. sum2 += (ggml_float)(v*v);
  7962. }
  7963. float variance = sum2/ne00;
  7964. const float scale = 1.0f/sqrtf(variance + eps);
  7965. ggml_vec_scale_f32(ne00, y, scale);
  7966. }
  7967. }
  7968. }
  7969. }
  7970. static void ggml_compute_forward_norm(
  7971. const struct ggml_compute_params * params,
  7972. const struct ggml_tensor * src0,
  7973. struct ggml_tensor * dst) {
  7974. switch (src0->type) {
  7975. case GGML_TYPE_F32:
  7976. {
  7977. ggml_compute_forward_norm_f32(params, src0, dst);
  7978. } break;
  7979. default:
  7980. {
  7981. GGML_ASSERT(false);
  7982. } break;
  7983. }
  7984. }
  7985. // ggml_compute_forward_group_rms_norm
  7986. static void ggml_compute_forward_rms_norm_f32(
  7987. const struct ggml_compute_params * params,
  7988. const struct ggml_tensor * src0,
  7989. struct ggml_tensor * dst) {
  7990. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7991. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7992. return;
  7993. }
  7994. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7995. const int ith = params->ith;
  7996. const int nth = params->nth;
  7997. GGML_TENSOR_UNARY_OP_LOCALS
  7998. float eps;
  7999. memcpy(&eps, dst->op_params, sizeof(float));
  8000. GGML_ASSERT(eps > 0.0f);
  8001. // TODO: optimize
  8002. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8003. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8004. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8005. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8006. ggml_float sum = 0.0;
  8007. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8008. sum += (ggml_float)(x[i00] * x[i00]);
  8009. }
  8010. const float mean = sum/ne00;
  8011. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8012. memcpy(y, x, ne00 * sizeof(float));
  8013. // for (int i00 = 0; i00 < ne00; i00++) {
  8014. // y[i00] = x[i00];
  8015. // }
  8016. const float scale = 1.0f/sqrtf(mean + eps);
  8017. ggml_vec_scale_f32(ne00, y, scale);
  8018. }
  8019. }
  8020. }
  8021. }
  8022. static void ggml_compute_forward_rms_norm(
  8023. const struct ggml_compute_params * params,
  8024. const struct ggml_tensor * src0,
  8025. struct ggml_tensor * dst) {
  8026. switch (src0->type) {
  8027. case GGML_TYPE_F32:
  8028. {
  8029. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8030. } break;
  8031. default:
  8032. {
  8033. GGML_ASSERT(false);
  8034. } break;
  8035. }
  8036. }
  8037. static void ggml_compute_forward_rms_norm_back_f32(
  8038. const struct ggml_compute_params * params,
  8039. const struct ggml_tensor * src0,
  8040. const struct ggml_tensor * src1,
  8041. struct ggml_tensor * dst) {
  8042. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8043. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8044. return;
  8045. }
  8046. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8047. const int ith = params->ith;
  8048. const int nth = params->nth;
  8049. GGML_TENSOR_BINARY_OP_LOCALS
  8050. float eps;
  8051. memcpy(&eps, dst->op_params, sizeof(float));
  8052. // TODO: optimize
  8053. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8054. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8055. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8056. // src1 is same shape as src0 => same indices
  8057. const int64_t i11 = i01;
  8058. const int64_t i12 = i02;
  8059. const int64_t i13 = i03;
  8060. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8061. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8062. ggml_float sum_xx = 0.0;
  8063. ggml_float sum_xdz = 0.0;
  8064. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8065. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8066. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8067. }
  8068. //const float mean = (float)(sum_xx)/ne00;
  8069. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8070. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8071. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8072. // we could cache rms from forward pass to improve performance.
  8073. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8074. //const float rms = sqrtf(mean_eps);
  8075. const float rrms = 1.0f / sqrtf(mean_eps);
  8076. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8077. {
  8078. // z = rms_norm(x)
  8079. //
  8080. // rms_norm(src0) =
  8081. // scale(
  8082. // src0,
  8083. // div(
  8084. // 1,
  8085. // sqrt(
  8086. // add(
  8087. // scale(
  8088. // sum(
  8089. // sqr(
  8090. // src0)),
  8091. // (1.0/N)),
  8092. // eps))));
  8093. // postorder:
  8094. // ## op args grad
  8095. // 00 param src0 grad[#00]
  8096. // 01 const 1
  8097. // 02 sqr (#00) grad[#02]
  8098. // 03 sum (#02) grad[#03]
  8099. // 04 const 1/N
  8100. // 05 scale (#03, #04) grad[#05]
  8101. // 06 const eps
  8102. // 07 add (#05, #06) grad[#07]
  8103. // 08 sqrt (#07) grad[#08]
  8104. // 09 div (#01,#08) grad[#09]
  8105. // 10 scale (#00,#09) grad[#10]
  8106. //
  8107. // backward pass, given grad[#10]
  8108. // #10: scale
  8109. // grad[#00] += scale(grad[#10],#09)
  8110. // grad[#09] += sum(mul(grad[#10],#00))
  8111. // #09: div
  8112. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8113. // #08: sqrt
  8114. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8115. // #07: add
  8116. // grad[#05] += grad[#07]
  8117. // #05: scale
  8118. // grad[#03] += scale(grad[#05],#04)
  8119. // #03: sum
  8120. // grad[#02] += repeat(grad[#03], #02)
  8121. // #02:
  8122. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8123. //
  8124. // substitute and simplify:
  8125. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8126. // grad[#02] = repeat(grad[#03], #02)
  8127. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8128. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8129. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8130. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8131. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8132. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8133. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8134. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8135. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8136. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8137. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8138. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8139. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8140. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8141. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8142. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8143. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8144. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8145. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8146. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8147. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8148. // a = b*c + d*e
  8149. // a = b*c*f/f + d*e*f/f
  8150. // a = (b*c*f + d*e*f)*(1/f)
  8151. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8152. // a = (b + d*e/c)*c
  8153. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8154. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8155. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8156. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8157. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8158. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8159. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8160. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8161. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8162. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8163. }
  8164. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8165. // post-order:
  8166. // dx := x
  8167. // dx := scale(dx,-mean_xdz/mean_eps)
  8168. // dx := add(dx, dz)
  8169. // dx := scale(dx, rrms)
  8170. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8171. ggml_vec_cpy_f32 (ne00, dx, x);
  8172. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8173. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8174. ggml_vec_acc_f32 (ne00, dx, dz);
  8175. ggml_vec_scale_f32(ne00, dx, rrms);
  8176. }
  8177. }
  8178. }
  8179. }
  8180. static void ggml_compute_forward_rms_norm_back(
  8181. const struct ggml_compute_params * params,
  8182. const struct ggml_tensor * src0,
  8183. const struct ggml_tensor * src1,
  8184. struct ggml_tensor * dst) {
  8185. switch (src0->type) {
  8186. case GGML_TYPE_F32:
  8187. {
  8188. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8189. } break;
  8190. default:
  8191. {
  8192. GGML_ASSERT(false);
  8193. } break;
  8194. }
  8195. }
  8196. // ggml_compute_forward_group_norm
  8197. static void ggml_compute_forward_group_norm_f32(
  8198. const struct ggml_compute_params * params,
  8199. const struct ggml_tensor * src0,
  8200. struct ggml_tensor * dst) {
  8201. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8202. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8203. return;
  8204. }
  8205. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8206. const int ith = params->ith;
  8207. const int nth = params->nth;
  8208. GGML_TENSOR_UNARY_OP_LOCALS
  8209. const float eps = 1e-6f; // TODO: make this a parameter
  8210. // TODO: optimize
  8211. int n_channels = src0->ne[2];
  8212. int n_groups = dst->op_params[0];
  8213. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8214. for (int i = ith; i < n_groups; i+=nth) {
  8215. int start = i * n_channels_per_group;
  8216. int end = start + n_channels_per_group;
  8217. if (end > n_channels) {
  8218. end = n_channels;
  8219. }
  8220. int step = end - start;
  8221. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8222. ggml_float sum = 0.0;
  8223. for (int64_t i02 = start; i02 < end; i02++) {
  8224. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8225. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8226. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8227. sum += (ggml_float)x[i00];
  8228. }
  8229. }
  8230. }
  8231. float mean = sum / (ne00 * ne01 * step);
  8232. ggml_float sum2 = 0.0;
  8233. for (int64_t i02 = start; i02 < end; i02++) {
  8234. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8235. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8236. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8237. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8238. float v = x[i00] - mean;
  8239. y[i00] = v;
  8240. sum2 += (ggml_float)(v * v);
  8241. }
  8242. }
  8243. }
  8244. float variance = sum2 / (ne00 * ne01 * step);
  8245. const float scale = 1.0f / sqrtf(variance + eps);
  8246. for (int64_t i02 = start; i02 < end; i02++) {
  8247. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8248. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8249. ggml_vec_scale_f32(ne00, y, scale);
  8250. }
  8251. }
  8252. }
  8253. }
  8254. }
  8255. static void ggml_compute_forward_group_norm(
  8256. const struct ggml_compute_params * params,
  8257. const struct ggml_tensor * src0,
  8258. struct ggml_tensor * dst) {
  8259. switch (src0->type) {
  8260. case GGML_TYPE_F32:
  8261. {
  8262. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8263. } break;
  8264. default:
  8265. {
  8266. GGML_ASSERT(false);
  8267. } break;
  8268. }
  8269. }
  8270. // ggml_compute_forward_mul_mat
  8271. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8272. // helper function to determine if it is better to use BLAS or not
  8273. // for large matrices, BLAS is faster
  8274. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8275. const struct ggml_tensor * src0 = dst->src[0];
  8276. const struct ggml_tensor * src1 = dst->src[1];
  8277. //const int64_t ne00 = src0->ne[0];
  8278. //const int64_t ne01 = src0->ne[1];
  8279. const int64_t ne10 = src1->ne[0];
  8280. const int64_t ne0 = dst->ne[0];
  8281. const int64_t ne1 = dst->ne[1];
  8282. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8283. // all the experts for each batch element and the processing would become incredibly slow
  8284. // TODO: find the optimal values for these
  8285. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8286. ggml_is_contiguous(src0) &&
  8287. ggml_is_contiguous(src1) &&
  8288. //src0->type == GGML_TYPE_F32 &&
  8289. src1->type == GGML_TYPE_F32 &&
  8290. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8291. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8292. return true;
  8293. }
  8294. return false;
  8295. }
  8296. #endif
  8297. static void ggml_compute_forward_mul_mat(
  8298. const struct ggml_compute_params * params,
  8299. const struct ggml_tensor * src0,
  8300. const struct ggml_tensor * src1,
  8301. struct ggml_tensor * dst) {
  8302. int64_t t0 = ggml_perf_time_us();
  8303. UNUSED(t0);
  8304. GGML_TENSOR_BINARY_OP_LOCALS
  8305. const int ith = params->ith;
  8306. const int nth = params->nth;
  8307. const enum ggml_type type = src0->type;
  8308. const bool src1_cont = ggml_is_contiguous(src1);
  8309. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8310. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8311. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8312. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8313. GGML_ASSERT(ne0 == ne01);
  8314. GGML_ASSERT(ne1 == ne11);
  8315. GGML_ASSERT(ne2 == ne12);
  8316. GGML_ASSERT(ne3 == ne13);
  8317. // we don't support permuted src0 or src1
  8318. GGML_ASSERT(nb00 == ggml_type_size(type));
  8319. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8320. // dst cannot be transposed or permuted
  8321. GGML_ASSERT(nb0 == sizeof(float));
  8322. GGML_ASSERT(nb0 <= nb1);
  8323. GGML_ASSERT(nb1 <= nb2);
  8324. GGML_ASSERT(nb2 <= nb3);
  8325. // broadcast factors
  8326. const int64_t r2 = ne12/ne02;
  8327. const int64_t r3 = ne13/ne03;
  8328. // nb01 >= nb00 - src0 is not transposed
  8329. // compute by src0 rows
  8330. #if defined(GGML_USE_CLBLAST)
  8331. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8332. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8333. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8334. }
  8335. return;
  8336. }
  8337. #endif
  8338. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8339. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8340. const int64_t ne_plane = ne01*ne00;
  8341. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8342. UNUSED(desired_wsize);
  8343. if (params->type == GGML_TASK_INIT) {
  8344. if (type != GGML_TYPE_F32) {
  8345. assert(params->wsize >= desired_wsize);
  8346. // parallelize by src0 rows
  8347. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8348. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8349. // broadcast src0 into src1 across 2nd,3rd dimension
  8350. const int64_t i03 = i13/r3;
  8351. const int64_t i02 = i12/r2;
  8352. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8353. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8354. ggml_to_float_t const to_float = type_traits[type].to_float;
  8355. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8356. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8357. }
  8358. }
  8359. }
  8360. }
  8361. return;
  8362. }
  8363. if (params->type == GGML_TASK_FINALIZE) {
  8364. return;
  8365. }
  8366. // perform sgemm, parallelization controlled by blas lib
  8367. if (ith != 0) {
  8368. return;
  8369. }
  8370. //const int64_t tgemm0 = ggml_perf_time_us();
  8371. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8372. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8373. const int64_t i03 = i13/r3;
  8374. const int64_t i02 = i12/r2;
  8375. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8376. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8377. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8378. if (type != GGML_TYPE_F32) {
  8379. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8380. }
  8381. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8382. ne1, ne01, ne10,
  8383. 1.0f, y, ne10,
  8384. x, ne00,
  8385. 0.0f, d, ne01);
  8386. }
  8387. }
  8388. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8389. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8390. return;
  8391. }
  8392. #endif
  8393. if (params->type == GGML_TASK_INIT) {
  8394. if (ith != 0) {
  8395. return;
  8396. }
  8397. if (src1->type != vec_dot_type) {
  8398. char * wdata = params->wdata;
  8399. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8400. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8401. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8402. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8403. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8404. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8405. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8406. wdata += row_size;
  8407. }
  8408. }
  8409. }
  8410. }
  8411. return;
  8412. }
  8413. if (params->type == GGML_TASK_FINALIZE) {
  8414. return;
  8415. }
  8416. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8417. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8418. const int64_t nr0 = ne01; // src0 rows
  8419. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8420. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8421. // distribute the thread work across the inner or outer loop based on which one is larger
  8422. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8423. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8424. const int64_t ith0 = ith % nth0;
  8425. const int64_t ith1 = ith / nth0;
  8426. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8427. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8428. const int64_t ir010 = dr0*ith0;
  8429. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8430. const int64_t ir110 = dr1*ith1;
  8431. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8432. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8433. // threads with no work simply yield (not sure if it helps)
  8434. if (ir010 >= ir011 || ir110 >= ir111) {
  8435. sched_yield();
  8436. return;
  8437. }
  8438. assert(ne12 % ne02 == 0);
  8439. assert(ne13 % ne03 == 0);
  8440. // block-tiling attempt
  8441. const int64_t blck_0 = 16;
  8442. const int64_t blck_1 = 16;
  8443. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8444. int64_t nrc = vec_dot_num_rows;
  8445. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8446. // this check can be removed once they are extended to support odd numbered rows/cols too
  8447. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8448. nrc = 1;
  8449. }
  8450. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8451. // attempt to reduce false-sharing (does not seem to make a difference)
  8452. // 16 * 2, accounting for mmla kernels
  8453. float tmp[32];
  8454. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8455. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8456. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8457. const int64_t i13 = (ir1/(ne12*ne1));
  8458. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8459. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8460. // broadcast src0 into src1
  8461. const int64_t i03 = i13/r3;
  8462. const int64_t i02 = i12/r2;
  8463. const int64_t i1 = i11;
  8464. const int64_t i2 = i12;
  8465. const int64_t i3 = i13;
  8466. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8467. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8468. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8469. // the original src1 data pointer, so we should index using the indices directly
  8470. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8471. const char * src1_col = (const char *) wdata +
  8472. (src1_cont || src1->type != vec_dot_type
  8473. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8474. : (i11*nb11 + i12*nb12 + i13*nb13));
  8475. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8476. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8477. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8478. //}
  8479. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8480. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8481. }
  8482. for (int cn = 0; cn < nrc; ++cn) {
  8483. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8484. }
  8485. }
  8486. }
  8487. }
  8488. }
  8489. // ggml_compute_forward_mul_mat_id
  8490. static void ggml_compute_forward_mul_mat_id(
  8491. const struct ggml_compute_params * params,
  8492. const struct ggml_tensor * ids,
  8493. const struct ggml_tensor * src1,
  8494. struct ggml_tensor * dst) {
  8495. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8496. GGML_TENSOR_BINARY_OP_LOCALS
  8497. const int ith = params->ith;
  8498. const int nth = params->nth;
  8499. const enum ggml_type type = src0->type;
  8500. const bool src1_cont = ggml_is_contiguous(src1);
  8501. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8502. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8503. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8504. GGML_ASSERT(ne0 == ne01);
  8505. GGML_ASSERT(ne1 == ne11);
  8506. GGML_ASSERT(ne2 == ne12);
  8507. GGML_ASSERT(ne3 == ne13);
  8508. // we don't support permuted src0 or src1
  8509. GGML_ASSERT(nb00 == ggml_type_size(type));
  8510. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8511. // dst cannot be transposed or permuted
  8512. GGML_ASSERT(nb0 == sizeof(float));
  8513. GGML_ASSERT(nb0 <= nb1);
  8514. GGML_ASSERT(nb1 <= nb2);
  8515. GGML_ASSERT(nb2 <= nb3);
  8516. // broadcast factors
  8517. const int64_t r2 = ne12/ne02;
  8518. const int64_t r3 = ne13/ne03;
  8519. // row groups
  8520. const int id = ggml_get_op_params_i32(dst, 0);
  8521. const int n_as = ggml_get_op_params_i32(dst, 1);
  8522. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8523. (char *) params->wdata :
  8524. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8525. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8526. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8527. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8528. if (params->type == GGML_TASK_INIT) {
  8529. if (ith != 0) {
  8530. return;
  8531. }
  8532. char * wdata = params->wdata;
  8533. if (src1->type != vec_dot_type) {
  8534. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8535. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8536. assert(src1->type == GGML_TYPE_F32);
  8537. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8538. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8539. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8540. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8541. wdata += row_size;
  8542. }
  8543. }
  8544. }
  8545. }
  8546. // initialize matrix_row_counts
  8547. GGML_ASSERT(wdata == wdata_src1_end);
  8548. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8549. // group rows by src0 matrix
  8550. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8551. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8552. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8553. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8554. matrix_row_counts[row_id] += 1;
  8555. }
  8556. return;
  8557. }
  8558. if (params->type == GGML_TASK_FINALIZE) {
  8559. return;
  8560. }
  8561. // compute each matrix multiplication in sequence
  8562. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8563. const int64_t cne1 = matrix_row_counts[cur_a];
  8564. if (cne1 == 0) {
  8565. continue;
  8566. }
  8567. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8568. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8569. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8570. const int64_t nr0 = ne01; // src0 rows
  8571. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8572. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8573. // distribute the thread work across the inner or outer loop based on which one is larger
  8574. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8575. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8576. const int64_t ith0 = ith % nth0;
  8577. const int64_t ith1 = ith / nth0;
  8578. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8579. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8580. const int64_t ir010 = dr0*ith0;
  8581. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8582. const int64_t ir110 = dr1*ith1;
  8583. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8584. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8585. // threads with no work simply yield (not sure if it helps)
  8586. if (ir010 >= ir011 || ir110 >= ir111) {
  8587. sched_yield();
  8588. continue;
  8589. }
  8590. assert(ne12 % ne02 == 0);
  8591. assert(ne13 % ne03 == 0);
  8592. // block-tiling attempt
  8593. const int64_t blck_0 = 16;
  8594. const int64_t blck_1 = 16;
  8595. // attempt to reduce false-sharing (does not seem to make a difference)
  8596. float tmp[16];
  8597. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8598. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8599. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8600. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8601. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8602. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8603. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8604. // broadcast src0 into src1
  8605. const int64_t i03 = i13/r3;
  8606. const int64_t i02 = i12/r2;
  8607. const int64_t i1 = i11;
  8608. const int64_t i2 = i12;
  8609. const int64_t i3 = i13;
  8610. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8611. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8612. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8613. // the original src1 data pointer, so we should index using the indices directly
  8614. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8615. const char * src1_col = (const char *) wdata +
  8616. (src1_cont || src1->type != vec_dot_type
  8617. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8618. : (i11*nb11 + i12*nb12 + i13*nb13));
  8619. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8620. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8621. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8622. //}
  8623. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8624. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8625. }
  8626. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8627. }
  8628. }
  8629. }
  8630. }
  8631. #undef MMID_MATRIX_ROW
  8632. }
  8633. // ggml_compute_forward_out_prod
  8634. static void ggml_compute_forward_out_prod_f32(
  8635. const struct ggml_compute_params * params,
  8636. const struct ggml_tensor * src0,
  8637. const struct ggml_tensor * src1,
  8638. struct ggml_tensor * dst) {
  8639. // int64_t t0 = ggml_perf_time_us();
  8640. // UNUSED(t0);
  8641. GGML_TENSOR_BINARY_OP_LOCALS
  8642. const int ith = params->ith;
  8643. const int nth = params->nth;
  8644. GGML_ASSERT(ne0 == ne00);
  8645. GGML_ASSERT(ne1 == ne10);
  8646. GGML_ASSERT(ne2 == ne02);
  8647. GGML_ASSERT(ne02 == ne12);
  8648. GGML_ASSERT(ne3 == ne13);
  8649. GGML_ASSERT(ne03 == ne13);
  8650. // we don't support permuted src0 or src1
  8651. GGML_ASSERT(nb00 == sizeof(float));
  8652. // dst cannot be transposed or permuted
  8653. GGML_ASSERT(nb0 == sizeof(float));
  8654. // GGML_ASSERT(nb0 <= nb1);
  8655. // GGML_ASSERT(nb1 <= nb2);
  8656. // GGML_ASSERT(nb2 <= nb3);
  8657. // nb01 >= nb00 - src0 is not transposed
  8658. // compute by src0 rows
  8659. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8660. // TODO: #if defined(GGML_USE_CLBLAST)
  8661. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8662. bool use_blas = ggml_is_matrix(src0) &&
  8663. ggml_is_matrix(src1) &&
  8664. ggml_is_contiguous(src0) &&
  8665. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8666. #endif
  8667. if (params->type == GGML_TASK_INIT) {
  8668. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8669. if (use_blas) {
  8670. return;
  8671. }
  8672. #endif
  8673. if (ith != 0) {
  8674. return;
  8675. }
  8676. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8677. return;
  8678. }
  8679. if (params->type == GGML_TASK_FINALIZE) {
  8680. return;
  8681. }
  8682. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8683. if (use_blas) {
  8684. if (params->ith != 0) { // All threads other than the first do no work.
  8685. return;
  8686. }
  8687. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8688. // src0: (k,n)
  8689. // src1: (k,m)
  8690. // dst: (m,n)
  8691. //
  8692. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8693. // Also expressed as (major,minor)
  8694. // a: (m,k): so src1 transposed
  8695. // b: (k,n): so src0
  8696. // c: (m,n)
  8697. //
  8698. // However, if ggml_is_transposed(src1) is true, then
  8699. // src1->data already contains a transposed version, so sgemm mustn't
  8700. // transpose it further.
  8701. int n = src0->ne[0];
  8702. int k = src0->ne[1];
  8703. int m = src1->ne[0];
  8704. int transposeA, lda;
  8705. if (!ggml_is_transposed(src1)) {
  8706. transposeA = CblasTrans;
  8707. lda = m;
  8708. } else {
  8709. transposeA = CblasNoTrans;
  8710. lda = k;
  8711. }
  8712. float * a = (float *) ((char *) src1->data);
  8713. float * b = (float *) ((char *) src0->data);
  8714. float * c = (float *) ((char *) dst->data);
  8715. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8716. return;
  8717. }
  8718. #endif
  8719. // dst[:,:,:,:] = 0
  8720. // for i2,i3:
  8721. // for i1:
  8722. // for i01:
  8723. // for i0:
  8724. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8725. // parallelize by last three dimensions
  8726. // total rows in dst
  8727. const int64_t nr = ne1*ne2*ne3;
  8728. // rows per thread
  8729. const int64_t dr = (nr + nth - 1)/nth;
  8730. // row range for this thread
  8731. const int64_t ir0 = dr*ith;
  8732. const int64_t ir1 = MIN(ir0 + dr, nr);
  8733. // block-tiling attempt
  8734. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8735. const int64_t blck_1 = 16;
  8736. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8737. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8738. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8739. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8740. for (int64_t ir = bir; ir < bir1; ++ir) {
  8741. // dst indices
  8742. const int64_t i3 = ir/(ne2*ne1);
  8743. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8744. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8745. const int64_t i02 = i2;
  8746. const int64_t i03 = i3;
  8747. //const int64_t i10 = i1;
  8748. const int64_t i12 = i2;
  8749. const int64_t i13 = i3;
  8750. #if GGML_VEC_MAD_UNROLL > 2
  8751. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8752. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8753. const int64_t i11 = i01;
  8754. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8755. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8756. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8757. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8758. }
  8759. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8760. const int64_t i11 = i01;
  8761. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8762. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8763. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8764. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8765. }
  8766. #else
  8767. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8768. const int64_t i11 = i01;
  8769. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8770. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8771. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8772. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8773. }
  8774. #endif
  8775. }
  8776. }
  8777. }
  8778. //int64_t t1 = ggml_perf_time_us();
  8779. //static int64_t acc = 0;
  8780. //acc += t1 - t0;
  8781. //if (t1 - t0 > 10) {
  8782. // printf("\n");
  8783. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8784. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8785. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8786. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8787. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8788. //}
  8789. }
  8790. static void ggml_compute_forward_out_prod_q_f32(
  8791. const struct ggml_compute_params * params,
  8792. const struct ggml_tensor * src0,
  8793. const struct ggml_tensor * src1,
  8794. struct ggml_tensor * dst) {
  8795. // int64_t t0 = ggml_perf_time_us();
  8796. // UNUSED(t0);
  8797. GGML_TENSOR_BINARY_OP_LOCALS;
  8798. const int ith = params->ith;
  8799. const int nth = params->nth;
  8800. const enum ggml_type type = src0->type;
  8801. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8802. GGML_ASSERT(ne02 == ne12);
  8803. GGML_ASSERT(ne03 == ne13);
  8804. GGML_ASSERT(ne2 == ne12);
  8805. GGML_ASSERT(ne3 == ne13);
  8806. // we don't support permuted src0 dim0
  8807. GGML_ASSERT(nb00 == ggml_type_size(type));
  8808. // dst dim0 cannot be transposed or permuted
  8809. GGML_ASSERT(nb0 == sizeof(float));
  8810. // GGML_ASSERT(nb0 <= nb1);
  8811. // GGML_ASSERT(nb1 <= nb2);
  8812. // GGML_ASSERT(nb2 <= nb3);
  8813. GGML_ASSERT(ne0 == ne00);
  8814. GGML_ASSERT(ne1 == ne10);
  8815. GGML_ASSERT(ne2 == ne02);
  8816. GGML_ASSERT(ne3 == ne03);
  8817. // nb01 >= nb00 - src0 is not transposed
  8818. // compute by src0 rows
  8819. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8820. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8821. if (params->type == GGML_TASK_INIT) {
  8822. if (ith != 0) {
  8823. return;
  8824. }
  8825. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8826. return;
  8827. }
  8828. if (params->type == GGML_TASK_FINALIZE) {
  8829. return;
  8830. }
  8831. // parallelize by last three dimensions
  8832. // total rows in dst
  8833. const int64_t nr = ne1*ne2*ne3;
  8834. // rows per thread
  8835. const int64_t dr = (nr + nth - 1)/nth;
  8836. // row range for this thread
  8837. const int64_t ir0 = dr*ith;
  8838. const int64_t ir1 = MIN(ir0 + dr, nr);
  8839. // dst[:,:,:,:] = 0
  8840. // for i2,i3:
  8841. // for i1:
  8842. // for i01:
  8843. // for i0:
  8844. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8845. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8846. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8847. // dst indices
  8848. const int64_t i3 = ir/(ne2*ne1);
  8849. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8850. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8851. const int64_t i02 = i2;
  8852. const int64_t i03 = i3;
  8853. //const int64_t i10 = i1;
  8854. const int64_t i12 = i2;
  8855. const int64_t i13 = i3;
  8856. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8857. const int64_t i11 = i01;
  8858. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8859. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8860. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8861. dequantize_row_q(s0, wdata, ne0);
  8862. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8863. }
  8864. }
  8865. //int64_t t1 = ggml_perf_time_us();
  8866. //static int64_t acc = 0;
  8867. //acc += t1 - t0;
  8868. //if (t1 - t0 > 10) {
  8869. // printf("\n");
  8870. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8871. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8872. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8873. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8874. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8875. //}
  8876. }
  8877. static void ggml_compute_forward_out_prod(
  8878. const struct ggml_compute_params * params,
  8879. const struct ggml_tensor * src0,
  8880. const struct ggml_tensor * src1,
  8881. struct ggml_tensor * dst) {
  8882. switch (src0->type) {
  8883. case GGML_TYPE_Q4_0:
  8884. case GGML_TYPE_Q4_1:
  8885. case GGML_TYPE_Q5_0:
  8886. case GGML_TYPE_Q5_1:
  8887. case GGML_TYPE_Q8_0:
  8888. case GGML_TYPE_Q2_K:
  8889. case GGML_TYPE_Q3_K:
  8890. case GGML_TYPE_Q4_K:
  8891. case GGML_TYPE_Q5_K:
  8892. case GGML_TYPE_Q6_K:
  8893. case GGML_TYPE_IQ2_XXS:
  8894. case GGML_TYPE_IQ2_XS:
  8895. case GGML_TYPE_IQ3_XXS:
  8896. {
  8897. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8898. } break;
  8899. case GGML_TYPE_F16:
  8900. {
  8901. GGML_ASSERT(false); // todo
  8902. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8903. } break;
  8904. case GGML_TYPE_F32:
  8905. {
  8906. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8907. } break;
  8908. default:
  8909. {
  8910. GGML_ASSERT(false);
  8911. } break;
  8912. }
  8913. }
  8914. // ggml_compute_forward_scale
  8915. static void ggml_compute_forward_scale_f32(
  8916. const struct ggml_compute_params * params,
  8917. const struct ggml_tensor * src0,
  8918. struct ggml_tensor * dst) {
  8919. GGML_ASSERT(ggml_is_contiguous(src0));
  8920. GGML_ASSERT(ggml_is_contiguous(dst));
  8921. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8922. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8923. return;
  8924. }
  8925. // scale factor
  8926. float v;
  8927. memcpy(&v, dst->op_params, sizeof(float));
  8928. const int ith = params->ith;
  8929. const int nth = params->nth;
  8930. const int nc = src0->ne[0];
  8931. const int nr = ggml_nrows(src0);
  8932. // rows per thread
  8933. const int dr = (nr + nth - 1)/nth;
  8934. // row range for this thread
  8935. const int ir0 = dr*ith;
  8936. const int ir1 = MIN(ir0 + dr, nr);
  8937. const size_t nb01 = src0->nb[1];
  8938. const size_t nb1 = dst->nb[1];
  8939. for (int i1 = ir0; i1 < ir1; i1++) {
  8940. if (dst->data != src0->data) {
  8941. // src0 is same shape as dst => same indices
  8942. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8943. }
  8944. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8945. }
  8946. }
  8947. static void ggml_compute_forward_scale(
  8948. const struct ggml_compute_params * params,
  8949. const struct ggml_tensor * src0,
  8950. struct ggml_tensor * dst) {
  8951. switch (src0->type) {
  8952. case GGML_TYPE_F32:
  8953. {
  8954. ggml_compute_forward_scale_f32(params, src0, dst);
  8955. } break;
  8956. default:
  8957. {
  8958. GGML_ASSERT(false);
  8959. } break;
  8960. }
  8961. }
  8962. // ggml_compute_forward_set
  8963. static void ggml_compute_forward_set_f32(
  8964. const struct ggml_compute_params * params,
  8965. const struct ggml_tensor * src0,
  8966. const struct ggml_tensor * src1,
  8967. struct ggml_tensor * dst) {
  8968. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8969. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8970. // view src0 and dst with these strides and data offset inbytes during set
  8971. // nb0 is implicitly element_size because src0 and dst are contiguous
  8972. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8973. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8974. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8975. size_t offset = ((int32_t *) dst->op_params)[3];
  8976. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8977. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8978. if (params->ith != 0) {
  8979. return;
  8980. }
  8981. // memcpy needs to be synchronized across threads to avoid race conditions.
  8982. // => do it in INIT phase
  8983. memcpy(
  8984. ((char *) dst->data),
  8985. ((char *) src0->data),
  8986. ggml_nbytes(dst));
  8987. }
  8988. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8989. return;
  8990. }
  8991. const int ith = params->ith;
  8992. const int nth = params->nth;
  8993. const int nr = ggml_nrows(src1);
  8994. const int nc = src1->ne[0];
  8995. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8996. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8997. // src0 and dst as viewed during set
  8998. const size_t nb0 = ggml_element_size(src0);
  8999. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9000. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9001. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9002. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9003. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9004. GGML_ASSERT(nb10 == sizeof(float));
  9005. // rows per thread
  9006. const int dr = (nr + nth - 1)/nth;
  9007. // row range for this thread
  9008. const int ir0 = dr*ith;
  9009. const int ir1 = MIN(ir0 + dr, nr);
  9010. for (int ir = ir0; ir < ir1; ++ir) {
  9011. // src0 and dst are viewed with shape of src1 and offset
  9012. // => same indices
  9013. const int i3 = ir/(ne12*ne11);
  9014. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9015. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9016. ggml_vec_cpy_f32(nc,
  9017. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9018. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9019. }
  9020. }
  9021. static void ggml_compute_forward_set(
  9022. const struct ggml_compute_params * params,
  9023. const struct ggml_tensor * src0,
  9024. const struct ggml_tensor * src1,
  9025. struct ggml_tensor * dst) {
  9026. switch (src0->type) {
  9027. case GGML_TYPE_F32:
  9028. {
  9029. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9030. } break;
  9031. case GGML_TYPE_F16:
  9032. case GGML_TYPE_Q4_0:
  9033. case GGML_TYPE_Q4_1:
  9034. case GGML_TYPE_Q5_0:
  9035. case GGML_TYPE_Q5_1:
  9036. case GGML_TYPE_Q8_0:
  9037. case GGML_TYPE_Q8_1:
  9038. case GGML_TYPE_Q2_K:
  9039. case GGML_TYPE_Q3_K:
  9040. case GGML_TYPE_Q4_K:
  9041. case GGML_TYPE_Q5_K:
  9042. case GGML_TYPE_Q6_K:
  9043. case GGML_TYPE_IQ2_XXS:
  9044. case GGML_TYPE_IQ2_XS:
  9045. case GGML_TYPE_IQ3_XXS:
  9046. default:
  9047. {
  9048. GGML_ASSERT(false);
  9049. } break;
  9050. }
  9051. }
  9052. // ggml_compute_forward_cpy
  9053. static void ggml_compute_forward_cpy(
  9054. const struct ggml_compute_params * params,
  9055. const struct ggml_tensor * src0,
  9056. struct ggml_tensor * dst) {
  9057. ggml_compute_forward_dup(params, src0, dst);
  9058. }
  9059. // ggml_compute_forward_cont
  9060. static void ggml_compute_forward_cont(
  9061. const struct ggml_compute_params * params,
  9062. const struct ggml_tensor * src0,
  9063. struct ggml_tensor * dst) {
  9064. ggml_compute_forward_dup(params, src0, dst);
  9065. }
  9066. // ggml_compute_forward_reshape
  9067. static void ggml_compute_forward_reshape(
  9068. const struct ggml_compute_params * params,
  9069. const struct ggml_tensor * src0,
  9070. struct ggml_tensor * dst) {
  9071. // NOP
  9072. UNUSED(params);
  9073. UNUSED(src0);
  9074. UNUSED(dst);
  9075. }
  9076. // ggml_compute_forward_view
  9077. static void ggml_compute_forward_view(
  9078. const struct ggml_compute_params * params,
  9079. const struct ggml_tensor * src0) {
  9080. // NOP
  9081. UNUSED(params);
  9082. UNUSED(src0);
  9083. }
  9084. // ggml_compute_forward_permute
  9085. static void ggml_compute_forward_permute(
  9086. const struct ggml_compute_params * params,
  9087. const struct ggml_tensor * src0) {
  9088. // NOP
  9089. UNUSED(params);
  9090. UNUSED(src0);
  9091. }
  9092. // ggml_compute_forward_transpose
  9093. static void ggml_compute_forward_transpose(
  9094. const struct ggml_compute_params * params,
  9095. const struct ggml_tensor * src0) {
  9096. // NOP
  9097. UNUSED(params);
  9098. UNUSED(src0);
  9099. }
  9100. // ggml_compute_forward_get_rows
  9101. static void ggml_compute_forward_get_rows_q(
  9102. const struct ggml_compute_params * params,
  9103. const struct ggml_tensor * src0,
  9104. const struct ggml_tensor * src1,
  9105. struct ggml_tensor * dst) {
  9106. assert(params->ith == 0);
  9107. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9108. return;
  9109. }
  9110. GGML_TENSOR_BINARY_OP_LOCALS
  9111. const int64_t nc = ne00;
  9112. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9113. const enum ggml_type type = src0->type;
  9114. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9115. assert(ne0 == nc);
  9116. assert(ne02 == ne11);
  9117. assert(nb00 == ggml_type_size(type));
  9118. assert(ggml_nrows(dst) == nr);
  9119. // TODO: multi-thread
  9120. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9121. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9122. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9123. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9124. dequantize_row_q(
  9125. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9126. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9127. }
  9128. }
  9129. }
  9130. }
  9131. static void ggml_compute_forward_get_rows_f16(
  9132. const struct ggml_compute_params * params,
  9133. const struct ggml_tensor * src0,
  9134. const struct ggml_tensor * src1,
  9135. struct ggml_tensor * dst) {
  9136. assert(params->ith == 0);
  9137. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9138. return;
  9139. }
  9140. GGML_TENSOR_BINARY_OP_LOCALS
  9141. const int64_t nc = ne00;
  9142. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9143. assert(ne0 == nc);
  9144. assert(ne02 == ne11);
  9145. assert(nb00 == sizeof(ggml_fp16_t));
  9146. assert(ggml_nrows(dst) == nr);
  9147. // TODO: multi-thread
  9148. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9149. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9150. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9151. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9152. ggml_fp16_to_fp32_row(
  9153. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9154. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9155. }
  9156. }
  9157. }
  9158. }
  9159. static void ggml_compute_forward_get_rows_f32(
  9160. const struct ggml_compute_params * params,
  9161. const struct ggml_tensor * src0,
  9162. const struct ggml_tensor * src1,
  9163. struct ggml_tensor * dst) {
  9164. assert(params->ith == 0);
  9165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9166. return;
  9167. }
  9168. GGML_TENSOR_BINARY_OP_LOCALS
  9169. const int64_t nc = ne00;
  9170. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9171. assert(ne0 == nc);
  9172. assert(ne02 == ne11);
  9173. assert(nb00 == sizeof(float));
  9174. assert(ggml_nrows(dst) == nr);
  9175. // TODO: multi-thread
  9176. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9177. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9178. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9179. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9180. ggml_vec_cpy_f32(nc,
  9181. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9182. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9183. }
  9184. }
  9185. }
  9186. }
  9187. static void ggml_compute_forward_get_rows(
  9188. const struct ggml_compute_params * params,
  9189. const struct ggml_tensor * src0,
  9190. const struct ggml_tensor * src1,
  9191. struct ggml_tensor * dst) {
  9192. switch (src0->type) {
  9193. case GGML_TYPE_Q4_0:
  9194. case GGML_TYPE_Q4_1:
  9195. case GGML_TYPE_Q5_0:
  9196. case GGML_TYPE_Q5_1:
  9197. case GGML_TYPE_Q8_0:
  9198. case GGML_TYPE_Q8_1:
  9199. case GGML_TYPE_Q2_K:
  9200. case GGML_TYPE_Q3_K:
  9201. case GGML_TYPE_Q4_K:
  9202. case GGML_TYPE_Q5_K:
  9203. case GGML_TYPE_Q6_K:
  9204. case GGML_TYPE_IQ2_XXS:
  9205. case GGML_TYPE_IQ2_XS:
  9206. case GGML_TYPE_IQ3_XXS:
  9207. {
  9208. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9209. } break;
  9210. case GGML_TYPE_F16:
  9211. {
  9212. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9213. } break;
  9214. case GGML_TYPE_F32:
  9215. case GGML_TYPE_I32:
  9216. {
  9217. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9218. } break;
  9219. default:
  9220. {
  9221. GGML_ASSERT(false);
  9222. } break;
  9223. }
  9224. //static bool first = true;
  9225. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9226. //if (first) {
  9227. // first = false;
  9228. //} else {
  9229. // for (int k = 0; k < dst->ne[1]; ++k) {
  9230. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9231. // for (int i = 0; i < 16; ++i) {
  9232. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9233. // }
  9234. // printf("\n");
  9235. // }
  9236. // printf("\n");
  9237. // }
  9238. // printf("\n");
  9239. // exit(0);
  9240. //}
  9241. }
  9242. // ggml_compute_forward_get_rows_back
  9243. static void ggml_compute_forward_get_rows_back_f32_f16(
  9244. const struct ggml_compute_params * params,
  9245. const struct ggml_tensor * src0,
  9246. const struct ggml_tensor * src1,
  9247. struct ggml_tensor * dst) {
  9248. GGML_ASSERT(params->ith == 0);
  9249. GGML_ASSERT(ggml_is_contiguous(dst));
  9250. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9251. if (params->type == GGML_TASK_INIT) {
  9252. if (params->ith != 0) {
  9253. return;
  9254. }
  9255. memset(dst->data, 0, ggml_nbytes(dst));
  9256. }
  9257. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9258. return;
  9259. }
  9260. const int nc = src0->ne[0];
  9261. const int nr = ggml_nelements(src1);
  9262. GGML_ASSERT( dst->ne[0] == nc);
  9263. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9264. for (int i = 0; i < nr; ++i) {
  9265. const int r = ((int32_t *) src1->data)[i];
  9266. for (int j = 0; j < nc; ++j) {
  9267. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9268. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9269. }
  9270. }
  9271. }
  9272. static void ggml_compute_forward_get_rows_back_f32(
  9273. const struct ggml_compute_params * params,
  9274. const struct ggml_tensor * src0,
  9275. const struct ggml_tensor * src1,
  9276. struct ggml_tensor * dst) {
  9277. GGML_ASSERT(params->ith == 0);
  9278. GGML_ASSERT(ggml_is_contiguous(dst));
  9279. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9280. if (params->type == GGML_TASK_INIT) {
  9281. if (params->ith != 0) {
  9282. return;
  9283. }
  9284. memset(dst->data, 0, ggml_nbytes(dst));
  9285. }
  9286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9287. return;
  9288. }
  9289. const int nc = src0->ne[0];
  9290. const int nr = ggml_nelements(src1);
  9291. GGML_ASSERT( dst->ne[0] == nc);
  9292. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9293. for (int i = 0; i < nr; ++i) {
  9294. const int r = ((int32_t *) src1->data)[i];
  9295. ggml_vec_add_f32(nc,
  9296. (float *) ((char *) dst->data + r*dst->nb[1]),
  9297. (float *) ((char *) dst->data + r*dst->nb[1]),
  9298. (float *) ((char *) src0->data + i*src0->nb[1]));
  9299. }
  9300. }
  9301. static void ggml_compute_forward_get_rows_back(
  9302. const struct ggml_compute_params * params,
  9303. const struct ggml_tensor * src0,
  9304. const struct ggml_tensor * src1,
  9305. struct ggml_tensor * dst) {
  9306. switch (src0->type) {
  9307. case GGML_TYPE_F16:
  9308. {
  9309. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9310. } break;
  9311. case GGML_TYPE_F32:
  9312. {
  9313. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9314. } break;
  9315. default:
  9316. {
  9317. GGML_ASSERT(false);
  9318. } break;
  9319. }
  9320. //static bool first = true;
  9321. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9322. //if (first) {
  9323. // first = false;
  9324. //} else {
  9325. // for (int k = 0; k < dst->ne[1]; ++k) {
  9326. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9327. // for (int i = 0; i < 16; ++i) {
  9328. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9329. // }
  9330. // printf("\n");
  9331. // }
  9332. // printf("\n");
  9333. // }
  9334. // printf("\n");
  9335. // exit(0);
  9336. //}
  9337. }
  9338. // ggml_compute_forward_diag
  9339. static void ggml_compute_forward_diag_f32(
  9340. const struct ggml_compute_params * params,
  9341. const struct ggml_tensor * src0,
  9342. struct ggml_tensor * dst) {
  9343. GGML_ASSERT(params->ith == 0);
  9344. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9345. return;
  9346. }
  9347. // TODO: handle transposed/permuted matrices
  9348. GGML_TENSOR_UNARY_OP_LOCALS
  9349. GGML_ASSERT(ne00 == ne0);
  9350. GGML_ASSERT(ne00 == ne1);
  9351. GGML_ASSERT(ne01 == 1);
  9352. GGML_ASSERT(ne02 == ne2);
  9353. GGML_ASSERT(ne03 == ne3);
  9354. GGML_ASSERT(nb00 == sizeof(float));
  9355. GGML_ASSERT(nb0 == sizeof(float));
  9356. for (int i3 = 0; i3 < ne3; i3++) {
  9357. for (int i2 = 0; i2 < ne2; i2++) {
  9358. for (int i1 = 0; i1 < ne1; i1++) {
  9359. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9360. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9361. for (int i0 = 0; i0 < i1; i0++) {
  9362. d[i0] = 0;
  9363. }
  9364. d[i1] = s[i1];
  9365. for (int i0 = i1+1; i0 < ne0; i0++) {
  9366. d[i0] = 0;
  9367. }
  9368. }
  9369. }
  9370. }
  9371. }
  9372. static void ggml_compute_forward_diag(
  9373. const struct ggml_compute_params * params,
  9374. const struct ggml_tensor * src0,
  9375. struct ggml_tensor * dst) {
  9376. switch (src0->type) {
  9377. case GGML_TYPE_F32:
  9378. {
  9379. ggml_compute_forward_diag_f32(params, src0, dst);
  9380. } break;
  9381. default:
  9382. {
  9383. GGML_ASSERT(false);
  9384. } break;
  9385. }
  9386. }
  9387. // ggml_compute_forward_diag_mask_inf
  9388. static void ggml_compute_forward_diag_mask_f32(
  9389. const struct ggml_compute_params * params,
  9390. const struct ggml_tensor * src0,
  9391. struct ggml_tensor * dst,
  9392. const float value) {
  9393. const int ith = params->ith;
  9394. const int nth = params->nth;
  9395. const int n_past = ((int32_t *) dst->op_params)[0];
  9396. const bool inplace = src0->data == dst->data;
  9397. GGML_ASSERT(n_past >= 0);
  9398. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9399. if (ith != 0) {
  9400. return;
  9401. }
  9402. // memcpy needs to be synchronized across threads to avoid race conditions.
  9403. // => do it in INIT phase
  9404. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9405. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9406. memcpy(
  9407. ((char *) dst->data),
  9408. ((char *) src0->data),
  9409. ggml_nbytes(dst));
  9410. }
  9411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9412. return;
  9413. }
  9414. // TODO: handle transposed/permuted matrices
  9415. const int n = ggml_nrows(src0);
  9416. const int nc = src0->ne[0];
  9417. const int nr = src0->ne[1];
  9418. const int nz = n/nr;
  9419. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9420. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9421. for (int k = 0; k < nz; k++) {
  9422. for (int j = ith; j < nr; j += nth) {
  9423. for (int i = n_past; i < nc; i++) {
  9424. if (i > n_past + j) {
  9425. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9426. }
  9427. }
  9428. }
  9429. }
  9430. }
  9431. static void ggml_compute_forward_diag_mask_inf(
  9432. const struct ggml_compute_params * params,
  9433. const struct ggml_tensor * src0,
  9434. struct ggml_tensor * dst) {
  9435. switch (src0->type) {
  9436. case GGML_TYPE_F32:
  9437. {
  9438. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9439. } break;
  9440. default:
  9441. {
  9442. GGML_ASSERT(false);
  9443. } break;
  9444. }
  9445. }
  9446. static void ggml_compute_forward_diag_mask_zero(
  9447. const struct ggml_compute_params * params,
  9448. const struct ggml_tensor * src0,
  9449. struct ggml_tensor * dst) {
  9450. switch (src0->type) {
  9451. case GGML_TYPE_F32:
  9452. {
  9453. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9454. } break;
  9455. default:
  9456. {
  9457. GGML_ASSERT(false);
  9458. } break;
  9459. }
  9460. }
  9461. // ggml_compute_forward_soft_max
  9462. static void ggml_compute_forward_soft_max_f32(
  9463. const struct ggml_compute_params * params,
  9464. const struct ggml_tensor * src0,
  9465. const struct ggml_tensor * src1,
  9466. const struct ggml_tensor * src2,
  9467. struct ggml_tensor * dst) {
  9468. assert(ggml_is_contiguous(dst));
  9469. assert(ggml_are_same_shape(src0, dst));
  9470. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9471. return;
  9472. }
  9473. float scale = 1.0f;
  9474. float max_bias = 0.0f;
  9475. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9476. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9477. // TODO: handle transposed/permuted matrices
  9478. const int ith = params->ith;
  9479. const int nth = params->nth;
  9480. GGML_TENSOR_UNARY_OP_LOCALS
  9481. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9482. // TODO: is this supposed to be ceil instead of floor?
  9483. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9484. const uint32_t n_head_kv = ne02;
  9485. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9486. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9487. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9488. const int nc = src0->ne[0];
  9489. const int nr = ggml_nrows(src0);
  9490. // rows per thread
  9491. const int dr = (nr + nth - 1)/nth;
  9492. // row range for this thread
  9493. const int ir0 = dr*ith;
  9494. const int ir1 = MIN(ir0 + dr, nr);
  9495. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9496. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9497. float * pos = src2 ? (float *) src2->data : src0->data;
  9498. for (int i1 = ir0; i1 < ir1; i1++) {
  9499. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9500. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9501. // broadcast the mask across rows
  9502. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9503. ggml_vec_cpy_f32 (nc, wp, sp);
  9504. ggml_vec_scale_f32(nc, wp, scale);
  9505. if (mp) {
  9506. ggml_vec_acc_f32(nc, wp, mp);
  9507. }
  9508. // ALiBi bias
  9509. if (max_bias > 0.0f) {
  9510. const uint32_t h = (i1/ne01)%ne02; // head
  9511. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9512. for (int i = 0; i < nc; i++) {
  9513. wp[i] = wp[i] + slope*pos[i];
  9514. }
  9515. }
  9516. #ifndef NDEBUG
  9517. for (int i = 0; i < nc; ++i) {
  9518. //printf("p[%d] = %f\n", i, p[i]);
  9519. assert(!isnan(wp[i]));
  9520. }
  9521. #endif
  9522. float max = -INFINITY;
  9523. ggml_vec_max_f32(nc, &max, wp);
  9524. ggml_float sum = 0.0;
  9525. uint16_t scvt;
  9526. for (int i = 0; i < nc; i++) {
  9527. if (wp[i] == -INFINITY) {
  9528. dp[i] = 0.0f;
  9529. } else {
  9530. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9531. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9532. memcpy(&scvt, &s, sizeof(scvt));
  9533. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9534. sum += (ggml_float)val;
  9535. dp[i] = val;
  9536. }
  9537. }
  9538. assert(sum > 0.0);
  9539. sum = 1.0/sum;
  9540. ggml_vec_scale_f32(nc, dp, sum);
  9541. #ifndef NDEBUG
  9542. for (int i = 0; i < nc; ++i) {
  9543. assert(!isnan(dp[i]));
  9544. assert(!isinf(dp[i]));
  9545. }
  9546. #endif
  9547. }
  9548. }
  9549. static void ggml_compute_forward_soft_max(
  9550. const struct ggml_compute_params * params,
  9551. const struct ggml_tensor * src0,
  9552. const struct ggml_tensor * src1,
  9553. const struct ggml_tensor * src2,
  9554. struct ggml_tensor * dst) {
  9555. switch (src0->type) {
  9556. case GGML_TYPE_F32:
  9557. {
  9558. ggml_compute_forward_soft_max_f32(params, src0, src1, src2, dst);
  9559. } break;
  9560. default:
  9561. {
  9562. GGML_ASSERT(false);
  9563. } break;
  9564. }
  9565. }
  9566. // ggml_compute_forward_soft_max_back
  9567. static void ggml_compute_forward_soft_max_back_f32(
  9568. const struct ggml_compute_params * params,
  9569. const struct ggml_tensor * src0,
  9570. const struct ggml_tensor * src1,
  9571. struct ggml_tensor * dst) {
  9572. GGML_ASSERT(ggml_is_contiguous(src0));
  9573. GGML_ASSERT(ggml_is_contiguous(src1));
  9574. GGML_ASSERT(ggml_is_contiguous(dst));
  9575. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9576. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9577. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9578. return;
  9579. }
  9580. // TODO: handle transposed/permuted matrices
  9581. const int ith = params->ith;
  9582. const int nth = params->nth;
  9583. const int nc = src0->ne[0];
  9584. const int nr = ggml_nrows(src0);
  9585. // rows per thread
  9586. const int dr = (nr + nth - 1)/nth;
  9587. // row range for this thread
  9588. const int ir0 = dr*ith;
  9589. const int ir1 = MIN(ir0 + dr, nr);
  9590. for (int i1 = ir0; i1 < ir1; i1++) {
  9591. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9592. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9593. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9594. #ifndef NDEBUG
  9595. for (int i = 0; i < nc; ++i) {
  9596. //printf("p[%d] = %f\n", i, p[i]);
  9597. assert(!isnan(dy[i]));
  9598. assert(!isnan(y[i]));
  9599. }
  9600. #endif
  9601. // Jii = yi - yi*yi
  9602. // Jij = -yi*yj
  9603. // J = diag(y)-y.T*y
  9604. // dx = J * dy
  9605. // dxk = sum_i(Jki * dyi)
  9606. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9607. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9608. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9609. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9610. // dxk = -yk * dot(y, dy) + yk*dyk
  9611. // dxk = yk * (- dot(y, dy) + dyk)
  9612. // dxk = yk * (dyk - dot(y, dy))
  9613. //
  9614. // post-order:
  9615. // dot_y_dy := dot(y, dy)
  9616. // dx := dy
  9617. // dx := dx - dot_y_dy
  9618. // dx := dx * y
  9619. // linear runtime, no additional memory
  9620. float dot_y_dy = 0;
  9621. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9622. ggml_vec_cpy_f32 (nc, dx, dy);
  9623. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9624. ggml_vec_mul_f32 (nc, dx, dx, y);
  9625. #ifndef NDEBUG
  9626. for (int i = 0; i < nc; ++i) {
  9627. assert(!isnan(dx[i]));
  9628. assert(!isinf(dx[i]));
  9629. }
  9630. #endif
  9631. }
  9632. }
  9633. static void ggml_compute_forward_soft_max_back(
  9634. const struct ggml_compute_params * params,
  9635. const struct ggml_tensor * src0,
  9636. const struct ggml_tensor * src1,
  9637. struct ggml_tensor * dst) {
  9638. switch (src0->type) {
  9639. case GGML_TYPE_F32:
  9640. {
  9641. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9642. } break;
  9643. default:
  9644. {
  9645. GGML_ASSERT(false);
  9646. } break;
  9647. }
  9648. }
  9649. // ggml_compute_forward_alibi
  9650. static void ggml_compute_forward_alibi_f32(
  9651. const struct ggml_compute_params * params,
  9652. const struct ggml_tensor * src0,
  9653. struct ggml_tensor * dst) {
  9654. assert(params->ith == 0);
  9655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9656. return;
  9657. }
  9658. //const int n_past = ((int32_t *) dst->op_params)[0];
  9659. const int n_head = ((int32_t *) dst->op_params)[1];
  9660. float max_bias;
  9661. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9662. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9663. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9664. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9665. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9666. const int64_t n = ggml_nrows(src0);
  9667. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9668. const size_t nb0 = src0->nb[0];
  9669. const size_t nb1 = src0->nb[1];
  9670. const size_t nb2 = src0->nb[2];
  9671. //const int nb3 = src0->nb[3];
  9672. GGML_ASSERT(nb0 == sizeof(float));
  9673. GGML_ASSERT(n_head == ne2);
  9674. // add alibi to src0 (KQ_scaled)
  9675. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9676. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9677. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9678. for (int64_t k = 0; k < ne2_ne3; k++) {
  9679. // TODO: k*nb2 or k*nb3
  9680. float m_k;
  9681. if (k < n_heads_log2_floor) {
  9682. m_k = powf(m0, k + 1);
  9683. } else {
  9684. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9685. }
  9686. for (int64_t i = 0; i < ne0; i++) {
  9687. for (int64_t j = 0; j < ne1; j++) {
  9688. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9689. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9690. pdst[0] = i * m_k + src[0];
  9691. }
  9692. }
  9693. }
  9694. }
  9695. static void ggml_compute_forward_alibi_f16(
  9696. const struct ggml_compute_params * params,
  9697. const struct ggml_tensor * src0,
  9698. struct ggml_tensor * dst) {
  9699. assert(params->ith == 0);
  9700. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9701. return;
  9702. }
  9703. //const int n_past = ((int32_t *) dst->op_params)[0];
  9704. const int n_head = ((int32_t *) dst->op_params)[1];
  9705. float max_bias;
  9706. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9707. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9708. const int ne1 = src0->ne[1]; // seq_len_without_past
  9709. const int ne2 = src0->ne[2]; // n_head -> this is k
  9710. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9711. const int n = ggml_nrows(src0);
  9712. const int ne2_ne3 = n/ne1; // ne2*ne3
  9713. const int nb0 = src0->nb[0];
  9714. const int nb1 = src0->nb[1];
  9715. const int nb2 = src0->nb[2];
  9716. //const int nb3 = src0->nb[3];
  9717. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9718. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9719. GGML_ASSERT(n_head == ne2);
  9720. // add alibi to src0 (KQ_scaled)
  9721. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9722. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9723. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9724. for (int k = 0; k < ne2_ne3; k++) {
  9725. // TODO: k*nb2 or k*nb3
  9726. float m_k;
  9727. if (k < n_heads_log2_floor) {
  9728. m_k = powf(m0, k + 1);
  9729. } else {
  9730. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9731. }
  9732. for (int i = 0; i < ne0; i++) {
  9733. for (int j = 0; j < ne1; j++) {
  9734. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9735. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9736. // we return F32
  9737. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9738. }
  9739. }
  9740. }
  9741. }
  9742. static void ggml_compute_forward_alibi(
  9743. const struct ggml_compute_params * params,
  9744. const struct ggml_tensor * src0,
  9745. struct ggml_tensor * dst) {
  9746. switch (src0->type) {
  9747. case GGML_TYPE_F16:
  9748. {
  9749. ggml_compute_forward_alibi_f16(params, src0, dst);
  9750. } break;
  9751. case GGML_TYPE_F32:
  9752. {
  9753. ggml_compute_forward_alibi_f32(params, src0, dst);
  9754. } break;
  9755. case GGML_TYPE_Q4_0:
  9756. case GGML_TYPE_Q4_1:
  9757. case GGML_TYPE_Q5_0:
  9758. case GGML_TYPE_Q5_1:
  9759. case GGML_TYPE_Q8_0:
  9760. case GGML_TYPE_Q8_1:
  9761. case GGML_TYPE_Q2_K:
  9762. case GGML_TYPE_Q3_K:
  9763. case GGML_TYPE_Q4_K:
  9764. case GGML_TYPE_Q5_K:
  9765. case GGML_TYPE_Q6_K:
  9766. case GGML_TYPE_IQ2_XXS:
  9767. case GGML_TYPE_IQ2_XS:
  9768. case GGML_TYPE_IQ3_XXS:
  9769. case GGML_TYPE_Q8_K:
  9770. case GGML_TYPE_I8:
  9771. case GGML_TYPE_I16:
  9772. case GGML_TYPE_I32:
  9773. case GGML_TYPE_COUNT:
  9774. {
  9775. GGML_ASSERT(false);
  9776. } break;
  9777. }
  9778. }
  9779. // ggml_compute_forward_clamp
  9780. static void ggml_compute_forward_clamp_f32(
  9781. const struct ggml_compute_params * params,
  9782. const struct ggml_tensor * src0,
  9783. struct ggml_tensor * dst) {
  9784. assert(params->ith == 0);
  9785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9786. return;
  9787. }
  9788. float min;
  9789. float max;
  9790. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9791. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9792. const int ith = params->ith;
  9793. const int nth = params->nth;
  9794. const int n = ggml_nrows(src0);
  9795. const int nc = src0->ne[0];
  9796. const size_t nb00 = src0->nb[0];
  9797. const size_t nb01 = src0->nb[1];
  9798. const size_t nb0 = dst->nb[0];
  9799. const size_t nb1 = dst->nb[1];
  9800. GGML_ASSERT( nb0 == sizeof(float));
  9801. GGML_ASSERT(nb00 == sizeof(float));
  9802. for (int j = ith; j < n; j += nth) {
  9803. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9804. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9805. for (int i = 0; i < nc; i++) {
  9806. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9807. }
  9808. }
  9809. }
  9810. static void ggml_compute_forward_clamp(
  9811. const struct ggml_compute_params * params,
  9812. const struct ggml_tensor * src0,
  9813. struct ggml_tensor * dst) {
  9814. switch (src0->type) {
  9815. case GGML_TYPE_F32:
  9816. {
  9817. ggml_compute_forward_clamp_f32(params, src0, dst);
  9818. } break;
  9819. case GGML_TYPE_F16:
  9820. case GGML_TYPE_Q4_0:
  9821. case GGML_TYPE_Q4_1:
  9822. case GGML_TYPE_Q5_0:
  9823. case GGML_TYPE_Q5_1:
  9824. case GGML_TYPE_Q8_0:
  9825. case GGML_TYPE_Q8_1:
  9826. case GGML_TYPE_Q2_K:
  9827. case GGML_TYPE_Q3_K:
  9828. case GGML_TYPE_Q4_K:
  9829. case GGML_TYPE_Q5_K:
  9830. case GGML_TYPE_Q6_K:
  9831. case GGML_TYPE_IQ2_XXS:
  9832. case GGML_TYPE_IQ2_XS:
  9833. case GGML_TYPE_IQ3_XXS:
  9834. case GGML_TYPE_Q8_K:
  9835. case GGML_TYPE_I8:
  9836. case GGML_TYPE_I16:
  9837. case GGML_TYPE_I32:
  9838. case GGML_TYPE_COUNT:
  9839. {
  9840. GGML_ASSERT(false);
  9841. } break;
  9842. }
  9843. }
  9844. // ggml_compute_forward_rope
  9845. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9846. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9847. return 1 - MIN(1, MAX(0, y));
  9848. }
  9849. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9850. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9851. static void rope_yarn(
  9852. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9853. float * cos_theta, float * sin_theta
  9854. ) {
  9855. // Get n-d rotational scaling corrected for extrapolation
  9856. float theta_interp = freq_scale * theta_extrap;
  9857. float theta = theta_interp;
  9858. if (ext_factor != 0.0f) {
  9859. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9860. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9861. // Get n-d magnitude scaling corrected for interpolation
  9862. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9863. }
  9864. *cos_theta = cosf(theta) * mscale;
  9865. *sin_theta = sinf(theta) * mscale;
  9866. }
  9867. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9868. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9869. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9870. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9871. }
  9872. static void ggml_rope_cache_init(
  9873. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9874. float * cache, float sin_sign, float theta_scale
  9875. ) {
  9876. float theta = theta_base;
  9877. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9878. rope_yarn(
  9879. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9880. );
  9881. cache[i0 + 1] *= sin_sign;
  9882. theta *= theta_scale;
  9883. }
  9884. }
  9885. GGML_CALL void ggml_rope_yarn_corr_dims(
  9886. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9887. ) {
  9888. // start and end correction dims
  9889. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  9890. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  9891. dims[0] = MAX(0, start);
  9892. dims[1] = MIN(n_dims - 1, end);
  9893. }
  9894. static void ggml_compute_forward_rope_f32(
  9895. const struct ggml_compute_params * params,
  9896. const struct ggml_tensor * src0,
  9897. const struct ggml_tensor * src1,
  9898. struct ggml_tensor * dst,
  9899. const bool forward) {
  9900. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9901. return;
  9902. }
  9903. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9904. // these two only relevant for xPos RoPE:
  9905. float xpos_base;
  9906. bool xpos_down;
  9907. //const int n_past = ((int32_t *) dst->op_params)[0];
  9908. const int n_dims = ((int32_t *) dst->op_params)[1];
  9909. const int mode = ((int32_t *) dst->op_params)[2];
  9910. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9911. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9912. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9913. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9914. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9915. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9916. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9917. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9918. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9919. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9920. GGML_TENSOR_UNARY_OP_LOCALS
  9921. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9922. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9923. GGML_ASSERT(nb00 == sizeof(float));
  9924. const int ith = params->ith;
  9925. const int nth = params->nth;
  9926. const int nr = ggml_nrows(dst);
  9927. GGML_ASSERT(n_dims <= ne0);
  9928. GGML_ASSERT(n_dims % 2 == 0);
  9929. // rows per thread
  9930. const int dr = (nr + nth - 1)/nth;
  9931. // row range for this thread
  9932. const int ir0 = dr*ith;
  9933. const int ir1 = MIN(ir0 + dr, nr);
  9934. // row index used to determine which thread to use
  9935. int ir = 0;
  9936. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9937. const float inv_ndims = -1.f/n_dims;
  9938. float corr_dims[2];
  9939. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9940. const bool is_neox = mode & 2;
  9941. const bool is_glm = mode & 4;
  9942. // backward process uses inverse rotation by cos and sin.
  9943. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9944. // this essentially just switches the sign of sin.
  9945. const float sin_sign = forward ? 1.0f : -1.0f;
  9946. const int32_t * pos = (const int32_t *) src1->data;
  9947. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9948. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9949. const int64_t p = pos[i2];
  9950. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9951. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9952. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9953. }
  9954. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9955. if (ir++ < ir0) continue;
  9956. if (ir > ir1) break;
  9957. float theta_base = (float)p;
  9958. if (is_glm) {
  9959. theta_base = MIN(p, n_ctx - 2);
  9960. float block_theta = MAX(p - (n_ctx - 2), 0);
  9961. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9962. const float cos_theta = cosf(theta_base);
  9963. const float sin_theta = sinf(theta_base) * sin_sign;
  9964. const float cos_block_theta = cosf(block_theta);
  9965. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9966. theta_base *= theta_scale;
  9967. block_theta *= theta_scale;
  9968. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9969. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9970. const float x0 = src[0];
  9971. const float x1 = src[n_dims/2];
  9972. const float x2 = src[n_dims];
  9973. const float x3 = src[n_dims/2*3];
  9974. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9975. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9976. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9977. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9978. }
  9979. } else if (!is_neox) {
  9980. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9981. const float cos_theta = cache[i0 + 0];
  9982. const float sin_theta = cache[i0 + 1];
  9983. // zeta scaling for xPos only:
  9984. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9985. if (xpos_down) zeta = 1.0f / zeta;
  9986. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9987. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9988. const float x0 = src[0];
  9989. const float x1 = src[1];
  9990. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9991. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9992. }
  9993. } else {
  9994. // TODO: this might be wrong for ne0 != n_dims - need double check
  9995. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9996. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9997. theta_base *= freq_scale;
  9998. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9999. if (ic < n_dims) {
  10000. const int64_t ib = 0;
  10001. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10002. float cur_rot = inv_ndims * ic - ib;
  10003. float cos_theta, sin_theta;
  10004. rope_yarn(
  10005. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10006. &cos_theta, &sin_theta
  10007. );
  10008. sin_theta *= sin_sign;
  10009. theta_base *= theta_scale;
  10010. const int64_t i0 = ib*n_dims + ic/2;
  10011. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10012. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10013. const float x0 = src[0];
  10014. const float x1 = src[n_dims/2];
  10015. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10016. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10017. } else {
  10018. const int64_t i0 = ic;
  10019. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10020. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10021. dst_data[0] = src[0];
  10022. dst_data[1] = src[1];
  10023. }
  10024. }
  10025. }
  10026. }
  10027. }
  10028. }
  10029. }
  10030. static void ggml_compute_forward_rope_f16(
  10031. const struct ggml_compute_params * params,
  10032. const struct ggml_tensor * src0,
  10033. const struct ggml_tensor * src1,
  10034. struct ggml_tensor * dst,
  10035. const bool forward) {
  10036. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10037. return;
  10038. }
  10039. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10040. //const int n_past = ((int32_t *) dst->op_params)[0];
  10041. const int n_dims = ((int32_t *) dst->op_params)[1];
  10042. const int mode = ((int32_t *) dst->op_params)[2];
  10043. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10044. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10045. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10046. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10047. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10048. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10049. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10050. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10051. GGML_TENSOR_UNARY_OP_LOCALS
  10052. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10053. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10054. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10055. const int ith = params->ith;
  10056. const int nth = params->nth;
  10057. const int nr = ggml_nrows(dst);
  10058. GGML_ASSERT(n_dims <= ne0);
  10059. GGML_ASSERT(n_dims % 2 == 0);
  10060. // rows per thread
  10061. const int dr = (nr + nth - 1)/nth;
  10062. // row range for this thread
  10063. const int ir0 = dr*ith;
  10064. const int ir1 = MIN(ir0 + dr, nr);
  10065. // row index used to determine which thread to use
  10066. int ir = 0;
  10067. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10068. const float inv_ndims = -1.f/n_dims;
  10069. float corr_dims[2];
  10070. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10071. const bool is_neox = mode & 2;
  10072. const bool is_glm = mode & 4;
  10073. // backward process uses inverse rotation by cos and sin.
  10074. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10075. // this essentially just switches the sign of sin.
  10076. const float sin_sign = forward ? 1.0f : -1.0f;
  10077. const int32_t * pos = (const int32_t *) src1->data;
  10078. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10079. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10080. const int64_t p = pos[i2];
  10081. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10082. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10083. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10084. }
  10085. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10086. if (ir++ < ir0) continue;
  10087. if (ir > ir1) break;
  10088. float theta_base = (float)p;
  10089. if (is_glm) {
  10090. theta_base = MIN(p, n_ctx - 2);
  10091. float block_theta = MAX(p - (n_ctx - 2), 0);
  10092. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10093. const float cos_theta = cosf(theta_base);
  10094. const float sin_theta = sinf(theta_base) * sin_sign;
  10095. const float cos_block_theta = cosf(block_theta);
  10096. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10097. theta_base *= theta_scale;
  10098. block_theta *= theta_scale;
  10099. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10100. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10101. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10102. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10103. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10104. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10105. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10106. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10107. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10108. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10109. }
  10110. } else if (!is_neox) {
  10111. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10112. const float cos_theta = cache[i0 + 0];
  10113. const float sin_theta = cache[i0 + 1];
  10114. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10115. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10116. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10117. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10118. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10119. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10120. }
  10121. } else {
  10122. // TODO: this might be wrong for ne0 != n_dims - need double check
  10123. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10124. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10125. theta_base *= freq_scale;
  10126. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10127. if (ic < n_dims) {
  10128. const int64_t ib = 0;
  10129. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10130. float cur_rot = inv_ndims * ic - ib;
  10131. float cos_theta, sin_theta;
  10132. rope_yarn(
  10133. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10134. &cos_theta, &sin_theta
  10135. );
  10136. sin_theta *= sin_sign;
  10137. theta_base *= theta_scale;
  10138. const int64_t i0 = ib*n_dims + ic/2;
  10139. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10140. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10141. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10142. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10143. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10144. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10145. } else {
  10146. const int64_t i0 = ic;
  10147. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10148. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10149. dst_data[0] = src[0];
  10150. dst_data[1] = src[1];
  10151. }
  10152. }
  10153. }
  10154. }
  10155. }
  10156. }
  10157. }
  10158. static void ggml_compute_forward_rope(
  10159. const struct ggml_compute_params * params,
  10160. const struct ggml_tensor * src0,
  10161. const struct ggml_tensor * src1,
  10162. struct ggml_tensor * dst) {
  10163. switch (src0->type) {
  10164. case GGML_TYPE_F16:
  10165. {
  10166. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  10167. } break;
  10168. case GGML_TYPE_F32:
  10169. {
  10170. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  10171. } break;
  10172. default:
  10173. {
  10174. GGML_ASSERT(false);
  10175. } break;
  10176. }
  10177. }
  10178. // ggml_compute_forward_rope_back
  10179. static void ggml_compute_forward_rope_back(
  10180. const struct ggml_compute_params * params,
  10181. const struct ggml_tensor * src0,
  10182. const struct ggml_tensor * src1,
  10183. struct ggml_tensor * dst) {
  10184. switch (src0->type) {
  10185. case GGML_TYPE_F16:
  10186. {
  10187. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10188. } break;
  10189. case GGML_TYPE_F32:
  10190. {
  10191. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10192. } break;
  10193. default:
  10194. {
  10195. GGML_ASSERT(false);
  10196. } break;
  10197. }
  10198. }
  10199. // ggml_compute_forward_conv_transpose_1d
  10200. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10201. const struct ggml_compute_params * params,
  10202. const struct ggml_tensor * src0,
  10203. const struct ggml_tensor * src1,
  10204. struct ggml_tensor * dst) {
  10205. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10206. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10207. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10208. int64_t t0 = ggml_perf_time_us();
  10209. UNUSED(t0);
  10210. GGML_TENSOR_BINARY_OP_LOCALS
  10211. const int ith = params->ith;
  10212. const int nth = params->nth;
  10213. const int nk = ne00*ne01*ne02;
  10214. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10215. GGML_ASSERT(nb10 == sizeof(float));
  10216. if (params->type == GGML_TASK_INIT) {
  10217. if (ith != 0) {
  10218. return;
  10219. }
  10220. memset(params->wdata, 0, params->wsize);
  10221. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10222. {
  10223. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10224. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10225. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10226. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10227. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10228. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10229. dst_data[i00*ne02 + i02] = src[i00];
  10230. }
  10231. }
  10232. }
  10233. }
  10234. // permute source data (src1) from (L x Cin) to (Cin x L)
  10235. {
  10236. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10237. ggml_fp16_t * dst_data = wdata;
  10238. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10239. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10240. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10241. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10242. }
  10243. }
  10244. }
  10245. // need to zero dst since we are accumulating into it
  10246. memset(dst->data, 0, ggml_nbytes(dst));
  10247. return;
  10248. }
  10249. if (params->type == GGML_TASK_FINALIZE) {
  10250. return;
  10251. }
  10252. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10253. // total rows in dst
  10254. const int nr = ne1;
  10255. // rows per thread
  10256. const int dr = (nr + nth - 1)/nth;
  10257. // row range for this thread
  10258. const int ir0 = dr*ith;
  10259. const int ir1 = MIN(ir0 + dr, nr);
  10260. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10261. ggml_fp16_t * const wdata_src = wdata + nk;
  10262. for (int i1 = ir0; i1 < ir1; i1++) {
  10263. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10264. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10265. for (int i10 = 0; i10 < ne10; i10++) {
  10266. const int i1n = i10*ne11;
  10267. for (int i00 = 0; i00 < ne00; i00++) {
  10268. float v = 0;
  10269. ggml_vec_dot_f16(ne02, &v, 0,
  10270. (ggml_fp16_t *) wdata_src + i1n, 0,
  10271. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10272. dst_data[i10*s0 + i00] += v;
  10273. }
  10274. }
  10275. }
  10276. }
  10277. static void ggml_compute_forward_conv_transpose_1d_f32(
  10278. const struct ggml_compute_params * params,
  10279. const struct ggml_tensor * src0,
  10280. const struct ggml_tensor * src1,
  10281. struct ggml_tensor * dst) {
  10282. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10283. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10284. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10285. int64_t t0 = ggml_perf_time_us();
  10286. UNUSED(t0);
  10287. GGML_TENSOR_BINARY_OP_LOCALS
  10288. const int ith = params->ith;
  10289. const int nth = params->nth;
  10290. const int nk = ne00*ne01*ne02;
  10291. GGML_ASSERT(nb00 == sizeof(float));
  10292. GGML_ASSERT(nb10 == sizeof(float));
  10293. if (params->type == GGML_TASK_INIT) {
  10294. if (ith != 0) {
  10295. return;
  10296. }
  10297. memset(params->wdata, 0, params->wsize);
  10298. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10299. {
  10300. float * const wdata = (float *) params->wdata + 0;
  10301. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10302. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10303. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10304. float * dst_data = wdata + i01*ne00*ne02;
  10305. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10306. dst_data[i00*ne02 + i02] = src[i00];
  10307. }
  10308. }
  10309. }
  10310. }
  10311. // prepare source data (src1)
  10312. {
  10313. float * const wdata = (float *) params->wdata + nk;
  10314. float * dst_data = wdata;
  10315. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10316. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10317. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10318. dst_data[i10*ne11 + i11] = src[i10];
  10319. }
  10320. }
  10321. }
  10322. // need to zero dst since we are accumulating into it
  10323. memset(dst->data, 0, ggml_nbytes(dst));
  10324. return;
  10325. }
  10326. if (params->type == GGML_TASK_FINALIZE) {
  10327. return;
  10328. }
  10329. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10330. // total rows in dst
  10331. const int nr = ne1;
  10332. // rows per thread
  10333. const int dr = (nr + nth - 1)/nth;
  10334. // row range for this thread
  10335. const int ir0 = dr*ith;
  10336. const int ir1 = MIN(ir0 + dr, nr);
  10337. float * const wdata = (float *) params->wdata + 0;
  10338. float * const wdata_src = wdata + nk;
  10339. for (int i1 = ir0; i1 < ir1; i1++) {
  10340. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10341. float * wdata_kernel = wdata + i1*ne02*ne00;
  10342. for (int i10 = 0; i10 < ne10; i10++) {
  10343. const int i1n = i10*ne11;
  10344. for (int i00 = 0; i00 < ne00; i00++) {
  10345. float v = 0;
  10346. ggml_vec_dot_f32(ne02, &v, 0,
  10347. wdata_src + i1n, 0,
  10348. wdata_kernel + i00*ne02, 0, 1);
  10349. dst_data[i10*s0 + i00] += v;
  10350. }
  10351. }
  10352. }
  10353. }
  10354. static void ggml_compute_forward_conv_transpose_1d(
  10355. const struct ggml_compute_params * params,
  10356. const struct ggml_tensor * src0,
  10357. const struct ggml_tensor * src1,
  10358. struct ggml_tensor * dst) {
  10359. switch (src0->type) {
  10360. case GGML_TYPE_F16:
  10361. {
  10362. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10363. } break;
  10364. case GGML_TYPE_F32:
  10365. {
  10366. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10367. } break;
  10368. default:
  10369. {
  10370. GGML_ASSERT(false);
  10371. } break;
  10372. }
  10373. }
  10374. // src0: kernel [OC, IC, KH, KW]
  10375. // src1: image [N, IC, IH, IW]
  10376. // dst: result [N, OH, OW, IC*KH*KW]
  10377. static void ggml_compute_forward_im2col_f32(
  10378. const struct ggml_compute_params * params,
  10379. const struct ggml_tensor * src0,
  10380. const struct ggml_tensor * src1,
  10381. struct ggml_tensor * dst) {
  10382. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10383. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10384. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10385. int64_t t0 = ggml_perf_time_us();
  10386. UNUSED(t0);
  10387. GGML_TENSOR_BINARY_OP_LOCALS;
  10388. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10389. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10390. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10391. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10392. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10393. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10394. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10395. const int ith = params->ith;
  10396. const int nth = params->nth;
  10397. const int64_t N = is_2D ? ne13 : ne12;
  10398. const int64_t IC = is_2D ? ne12 : ne11;
  10399. const int64_t IH = is_2D ? ne11 : 1;
  10400. const int64_t IW = ne10;
  10401. const int64_t KH = is_2D ? ne01 : 1;
  10402. const int64_t KW = ne00;
  10403. const int64_t OH = is_2D ? ne2 : 1;
  10404. const int64_t OW = ne1;
  10405. int ofs0 = is_2D ? nb13 : nb12;
  10406. int ofs1 = is_2D ? nb12 : nb11;
  10407. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10408. GGML_ASSERT(nb10 == sizeof(float));
  10409. if (params->type == GGML_TASK_INIT) {
  10410. return;
  10411. }
  10412. if (params->type == GGML_TASK_FINALIZE) {
  10413. return;
  10414. }
  10415. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10416. {
  10417. float * const wdata = (float *) dst->data;
  10418. for (int64_t in = 0; in < N; in++) {
  10419. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10420. for (int64_t iow = 0; iow < OW; iow++) {
  10421. for (int64_t iic = ith; iic < IC; iic += nth) {
  10422. // micro kernel
  10423. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10424. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10425. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10426. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10427. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10428. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10429. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10430. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10431. } else {
  10432. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10433. }
  10434. }
  10435. }
  10436. }
  10437. }
  10438. }
  10439. }
  10440. }
  10441. }
  10442. // src0: kernel [OC, IC, KH, KW]
  10443. // src1: image [N, IC, IH, IW]
  10444. // dst: result [N, OH, OW, IC*KH*KW]
  10445. static void ggml_compute_forward_im2col_f16(
  10446. const struct ggml_compute_params * params,
  10447. const struct ggml_tensor * src0,
  10448. const struct ggml_tensor * src1,
  10449. struct ggml_tensor * dst) {
  10450. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10451. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10452. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10453. int64_t t0 = ggml_perf_time_us();
  10454. UNUSED(t0);
  10455. GGML_TENSOR_BINARY_OP_LOCALS;
  10456. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10457. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10458. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10459. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10460. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10461. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10462. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10463. const int ith = params->ith;
  10464. const int nth = params->nth;
  10465. const int64_t N = is_2D ? ne13 : ne12;
  10466. const int64_t IC = is_2D ? ne12 : ne11;
  10467. const int64_t IH = is_2D ? ne11 : 1;
  10468. const int64_t IW = ne10;
  10469. const int64_t KH = is_2D ? ne01 : 1;
  10470. const int64_t KW = ne00;
  10471. const int64_t OH = is_2D ? ne2 : 1;
  10472. const int64_t OW = ne1;
  10473. int ofs0 = is_2D ? nb13 : nb12;
  10474. int ofs1 = is_2D ? nb12 : nb11;
  10475. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10476. GGML_ASSERT(nb10 == sizeof(float));
  10477. if (params->type == GGML_TASK_INIT) {
  10478. return;
  10479. }
  10480. if (params->type == GGML_TASK_FINALIZE) {
  10481. return;
  10482. }
  10483. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10484. {
  10485. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10486. for (int64_t in = 0; in < N; in++) {
  10487. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10488. for (int64_t iow = 0; iow < OW; iow++) {
  10489. for (int64_t iic = ith; iic < IC; iic += nth) {
  10490. // micro kernel
  10491. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10492. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10493. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10494. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10495. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10496. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10497. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10498. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10499. } else {
  10500. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10501. }
  10502. }
  10503. }
  10504. }
  10505. }
  10506. }
  10507. }
  10508. }
  10509. }
  10510. static void ggml_compute_forward_im2col(
  10511. const struct ggml_compute_params * params,
  10512. const struct ggml_tensor * src0,
  10513. const struct ggml_tensor * src1,
  10514. struct ggml_tensor * dst) {
  10515. switch (dst->type) {
  10516. case GGML_TYPE_F16:
  10517. {
  10518. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10519. } break;
  10520. case GGML_TYPE_F32:
  10521. {
  10522. ggml_compute_forward_im2col_f32(params, src0, src1, dst);
  10523. } break;
  10524. default:
  10525. {
  10526. GGML_ASSERT(false);
  10527. } break;
  10528. }
  10529. }
  10530. // ggml_compute_forward_conv_transpose_2d
  10531. static void ggml_compute_forward_conv_transpose_2d(
  10532. const struct ggml_compute_params * params,
  10533. const struct ggml_tensor * src0,
  10534. const struct ggml_tensor * src1,
  10535. struct ggml_tensor * dst) {
  10536. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10537. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10538. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10539. int64_t t0 = ggml_perf_time_us();
  10540. UNUSED(t0);
  10541. GGML_TENSOR_BINARY_OP_LOCALS
  10542. const int ith = params->ith;
  10543. const int nth = params->nth;
  10544. const int nk = ne00*ne01*ne02*ne03;
  10545. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10546. GGML_ASSERT(nb10 == sizeof(float));
  10547. if (params->type == GGML_TASK_INIT) {
  10548. if (ith != 0) {
  10549. return;
  10550. }
  10551. memset(params->wdata, 0, params->wsize);
  10552. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10553. {
  10554. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10555. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10556. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10557. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10558. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10559. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10560. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10561. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10562. }
  10563. }
  10564. }
  10565. }
  10566. }
  10567. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10568. {
  10569. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10570. for (int i12 = 0; i12 < ne12; i12++) {
  10571. for (int i11 = 0; i11 < ne11; i11++) {
  10572. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10573. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10574. for (int i10 = 0; i10 < ne10; i10++) {
  10575. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10576. }
  10577. }
  10578. }
  10579. }
  10580. memset(dst->data, 0, ggml_nbytes(dst));
  10581. return;
  10582. }
  10583. if (params->type == GGML_TASK_FINALIZE) {
  10584. return;
  10585. }
  10586. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10587. // total patches in dst
  10588. const int np = ne2;
  10589. // patches per thread
  10590. const int dp = (np + nth - 1)/nth;
  10591. // patch range for this thread
  10592. const int ip0 = dp*ith;
  10593. const int ip1 = MIN(ip0 + dp, np);
  10594. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10595. ggml_fp16_t * const wdata_src = wdata + nk;
  10596. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10597. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10598. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10599. for (int i11 = 0; i11 < ne11; i11++) {
  10600. for (int i10 = 0; i10 < ne10; i10++) {
  10601. const int i1n = i11*ne10*ne12 + i10*ne12;
  10602. for (int i01 = 0; i01 < ne01; i01++) {
  10603. for (int i00 = 0; i00 < ne00; i00++) {
  10604. float v = 0;
  10605. ggml_vec_dot_f16(ne03, &v, 0,
  10606. wdata_src + i1n, 0,
  10607. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10608. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10609. }
  10610. }
  10611. }
  10612. }
  10613. }
  10614. }
  10615. // ggml_compute_forward_pool_1d_sk_p0
  10616. static void ggml_compute_forward_pool_1d_sk_p0(
  10617. const struct ggml_compute_params * params,
  10618. const enum ggml_op_pool op,
  10619. const struct ggml_tensor * src,
  10620. const int k,
  10621. struct ggml_tensor * dst) {
  10622. assert(src->type == GGML_TYPE_F32);
  10623. assert(params->ith == 0);
  10624. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10625. return;
  10626. }
  10627. const char * cdata = (const char *)src->data;
  10628. const char * const data_end = cdata + ggml_nbytes(src);
  10629. float * drow = (float *)dst->data;
  10630. const int64_t rs = dst->ne[0];
  10631. while (cdata < data_end) {
  10632. const float * const srow = (const float *)cdata;
  10633. int j = 0;
  10634. for (int64_t i = 0; i < rs; ++i) {
  10635. switch (op) {
  10636. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10637. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10638. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10639. }
  10640. for (int ki = 0; ki < k; ++ki) {
  10641. switch (op) {
  10642. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10643. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10644. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10645. }
  10646. ++j;
  10647. }
  10648. switch (op) {
  10649. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10650. case GGML_OP_POOL_MAX: break;
  10651. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10652. }
  10653. }
  10654. cdata += src->nb[1];
  10655. drow += rs;
  10656. }
  10657. }
  10658. // ggml_compute_forward_pool_1d
  10659. static void ggml_compute_forward_pool_1d(
  10660. const struct ggml_compute_params * params,
  10661. const struct ggml_tensor * src0,
  10662. struct ggml_tensor * dst) {
  10663. const int32_t * opts = (const int32_t *)dst->op_params;
  10664. enum ggml_op_pool op = opts[0];
  10665. const int k0 = opts[1];
  10666. const int s0 = opts[2];
  10667. const int p0 = opts[3];
  10668. GGML_ASSERT(p0 == 0); // padding not supported
  10669. GGML_ASSERT(k0 == s0); // only s = k supported
  10670. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10671. }
  10672. // ggml_compute_forward_pool_2d
  10673. static void ggml_compute_forward_pool_2d(
  10674. const struct ggml_compute_params * params,
  10675. const struct ggml_tensor * src,
  10676. struct ggml_tensor * dst) {
  10677. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10678. GGML_ASSERT(params->ith == 0);
  10679. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10680. return;
  10681. }
  10682. const int32_t * opts = (const int32_t *)dst->op_params;
  10683. enum ggml_op_pool op = opts[0];
  10684. const int k0 = opts[1];
  10685. const int k1 = opts[2];
  10686. const int s0 = opts[3];
  10687. const int s1 = opts[4];
  10688. const int p0 = opts[5];
  10689. const int p1 = opts[6];
  10690. const char * cdata = (const char*)src->data;
  10691. const char * const data_end = cdata + ggml_nbytes(src);
  10692. const int64_t px = dst->ne[0];
  10693. const int64_t py = dst->ne[1];
  10694. const int64_t pa = px * py;
  10695. float * dplane = (float *)dst->data;
  10696. const int ka = k0 * k1;
  10697. const int offset0 = -p0;
  10698. const int offset1 = -p1;
  10699. while (cdata < data_end) {
  10700. for (int oy = 0; oy < py; ++oy) {
  10701. float * const drow = dplane + oy * px;
  10702. for (int ox = 0; ox < px; ++ox) {
  10703. float * const out = drow + ox;
  10704. switch (op) {
  10705. case GGML_OP_POOL_AVG: *out = 0; break;
  10706. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10707. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10708. }
  10709. const int ix = offset0 + ox * s0;
  10710. const int iy = offset1 + oy * s1;
  10711. for (int ky = 0; ky < k1; ++ky) {
  10712. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10713. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10714. for (int kx = 0; kx < k0; ++kx) {
  10715. int j = ix + kx;
  10716. if (j < 0 || j >= src->ne[0]) continue;
  10717. switch (op) {
  10718. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10719. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10720. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10721. }
  10722. }
  10723. }
  10724. switch (op) {
  10725. case GGML_OP_POOL_AVG: *out /= ka; break;
  10726. case GGML_OP_POOL_MAX: break;
  10727. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10728. }
  10729. }
  10730. }
  10731. cdata += src->nb[2];
  10732. dplane += pa;
  10733. }
  10734. }
  10735. // ggml_compute_forward_upscale
  10736. static void ggml_compute_forward_upscale_f32(
  10737. const struct ggml_compute_params * params,
  10738. const struct ggml_tensor * src0,
  10739. struct ggml_tensor * dst) {
  10740. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10741. return;
  10742. }
  10743. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10744. const int ith = params->ith;
  10745. const int nth = params->nth;
  10746. GGML_TENSOR_UNARY_OP_LOCALS
  10747. const int scale_factor = dst->op_params[0];
  10748. // TODO: optimize
  10749. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10750. const int64_t i03 = i3;
  10751. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10752. const int64_t i02 = i2;
  10753. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10754. const int64_t i01 = i1 / scale_factor;
  10755. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10756. const int64_t i00 = i0 / scale_factor;
  10757. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10758. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10759. *y = *x;
  10760. }
  10761. }
  10762. }
  10763. }
  10764. }
  10765. static void ggml_compute_forward_upscale(
  10766. const struct ggml_compute_params * params,
  10767. const struct ggml_tensor * src0,
  10768. struct ggml_tensor * dst) {
  10769. switch (src0->type) {
  10770. case GGML_TYPE_F32:
  10771. {
  10772. ggml_compute_forward_upscale_f32(params, src0, dst);
  10773. } break;
  10774. default:
  10775. {
  10776. GGML_ASSERT(false);
  10777. } break;
  10778. }
  10779. }
  10780. // ggml_compute_forward_pad
  10781. static void ggml_compute_forward_pad_f32(
  10782. const struct ggml_compute_params * params,
  10783. const struct ggml_tensor * src0,
  10784. struct ggml_tensor * dst) {
  10785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10786. return;
  10787. }
  10788. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10789. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10790. const int ith = params->ith;
  10791. const int nth = params->nth;
  10792. GGML_TENSOR_UNARY_OP_LOCALS
  10793. float * dst_ptr = (float *) dst->data;
  10794. // TODO: optimize
  10795. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10796. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10797. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10798. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10799. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10800. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10801. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10802. dst_ptr[dst_idx] = *src_ptr;
  10803. } else {
  10804. dst_ptr[dst_idx] = 0;
  10805. }
  10806. }
  10807. }
  10808. }
  10809. }
  10810. }
  10811. static void ggml_compute_forward_pad(
  10812. const struct ggml_compute_params * params,
  10813. const struct ggml_tensor * src0,
  10814. struct ggml_tensor * dst) {
  10815. switch (src0->type) {
  10816. case GGML_TYPE_F32:
  10817. {
  10818. ggml_compute_forward_pad_f32(params, src0, dst);
  10819. } break;
  10820. default:
  10821. {
  10822. GGML_ASSERT(false);
  10823. } break;
  10824. }
  10825. }
  10826. // ggml_compute_forward_argsort
  10827. static void ggml_compute_forward_argsort_f32(
  10828. const struct ggml_compute_params * params,
  10829. const struct ggml_tensor * src0,
  10830. struct ggml_tensor * dst) {
  10831. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10832. return;
  10833. }
  10834. GGML_TENSOR_UNARY_OP_LOCALS
  10835. GGML_ASSERT(nb0 == sizeof(float));
  10836. const int ith = params->ith;
  10837. const int nth = params->nth;
  10838. const int64_t nr = ggml_nrows(src0);
  10839. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10840. for (int64_t i = ith; i < nr; i += nth) {
  10841. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10842. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10843. for (int64_t j = 0; j < ne0; j++) {
  10844. dst_data[j] = j;
  10845. }
  10846. // C doesn't have a functional sort, so we do a bubble sort instead
  10847. for (int64_t j = 0; j < ne0; j++) {
  10848. for (int64_t k = j + 1; k < ne0; k++) {
  10849. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10850. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10851. int32_t tmp = dst_data[j];
  10852. dst_data[j] = dst_data[k];
  10853. dst_data[k] = tmp;
  10854. }
  10855. }
  10856. }
  10857. }
  10858. }
  10859. static void ggml_compute_forward_argsort(
  10860. const struct ggml_compute_params * params,
  10861. const struct ggml_tensor * src0,
  10862. struct ggml_tensor * dst) {
  10863. switch (src0->type) {
  10864. case GGML_TYPE_F32:
  10865. {
  10866. ggml_compute_forward_argsort_f32(params, src0, dst);
  10867. } break;
  10868. default:
  10869. {
  10870. GGML_ASSERT(false);
  10871. } break;
  10872. }
  10873. }
  10874. // ggml_compute_forward_flash_attn
  10875. static void ggml_compute_forward_flash_attn_f32(
  10876. const struct ggml_compute_params * params,
  10877. const struct ggml_tensor * q,
  10878. const struct ggml_tensor * k,
  10879. const struct ggml_tensor * v,
  10880. const bool masked,
  10881. struct ggml_tensor * dst) {
  10882. int64_t t0 = ggml_perf_time_us();
  10883. UNUSED(t0);
  10884. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10885. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10886. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10887. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10888. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10889. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10890. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10891. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10892. const int ith = params->ith;
  10893. const int nth = params->nth;
  10894. const int64_t D = neq0;
  10895. const int64_t N = neq1;
  10896. const int64_t P = nek1 - N;
  10897. const int64_t M = P + N;
  10898. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10899. GGML_ASSERT(ne0 == D);
  10900. GGML_ASSERT(ne1 == N);
  10901. GGML_ASSERT(P >= 0);
  10902. GGML_ASSERT(nbq0 == sizeof(float));
  10903. GGML_ASSERT(nbk0 == sizeof(float));
  10904. GGML_ASSERT(nbv0 == sizeof(float));
  10905. GGML_ASSERT(neq0 == D);
  10906. GGML_ASSERT(nek0 == D);
  10907. GGML_ASSERT(nev1 == D);
  10908. GGML_ASSERT(neq1 == N);
  10909. GGML_ASSERT(nek1 == N + P);
  10910. GGML_ASSERT(nev1 == D);
  10911. // dst cannot be transposed or permuted
  10912. GGML_ASSERT(nb0 == sizeof(float));
  10913. GGML_ASSERT(nb0 <= nb1);
  10914. GGML_ASSERT(nb1 <= nb2);
  10915. GGML_ASSERT(nb2 <= nb3);
  10916. if (params->type == GGML_TASK_INIT) {
  10917. return;
  10918. }
  10919. if (params->type == GGML_TASK_FINALIZE) {
  10920. return;
  10921. }
  10922. // parallelize by q rows using ggml_vec_dot_f32
  10923. // total rows in q
  10924. const int nr = neq1*neq2*neq3;
  10925. // rows per thread
  10926. const int dr = (nr + nth - 1)/nth;
  10927. // row range for this thread
  10928. const int ir0 = dr*ith;
  10929. const int ir1 = MIN(ir0 + dr, nr);
  10930. const float scale = 1.0f/sqrtf(D);
  10931. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10932. for (int ir = ir0; ir < ir1; ++ir) {
  10933. // q indices
  10934. const int iq3 = ir/(neq2*neq1);
  10935. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10936. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10937. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10938. for (int i = M; i < Mup; ++i) {
  10939. S[i] = -INFINITY;
  10940. }
  10941. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10942. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10943. // k indices
  10944. const int ik3 = iq3;
  10945. const int ik2 = iq2 % nek2;
  10946. const int ik1 = ic;
  10947. // S indices
  10948. const int i1 = ik1;
  10949. ggml_vec_dot_f32(neq0,
  10950. S + i1, 0,
  10951. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  10952. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  10953. }
  10954. // scale
  10955. ggml_vec_scale_f32(masked_begin, S, scale);
  10956. for (int64_t i = masked_begin; i < M; i++) {
  10957. S[i] = -INFINITY;
  10958. }
  10959. // softmax
  10960. // exclude known -INF S[..] values from max and loop
  10961. // dont forget to set their SW values to zero
  10962. {
  10963. float max = -INFINITY;
  10964. ggml_vec_max_f32(masked_begin, &max, S);
  10965. ggml_float sum = 0.0;
  10966. {
  10967. #ifdef GGML_SOFT_MAX_ACCELERATE
  10968. max = -max;
  10969. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10970. vvexpf(S, S, &Mup);
  10971. ggml_vec_sum_f32(Mup, &sum, S);
  10972. #else
  10973. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10974. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10975. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10976. if (i >= masked_begin) {
  10977. break;
  10978. }
  10979. float * SS = S + i;
  10980. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10981. if (i + j >= masked_begin) {
  10982. break;
  10983. } else if (SS[j] == -INFINITY) {
  10984. SS[j] = 0.0f;
  10985. } else {
  10986. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10987. const float val = expf(SS[j] - max);
  10988. #else
  10989. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10990. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10991. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10992. #endif
  10993. sump[j] += (ggml_float)val;
  10994. SS[j] = val;
  10995. }
  10996. }
  10997. }
  10998. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10999. sum += sump[i];
  11000. }
  11001. #endif
  11002. }
  11003. assert(sum > 0.0);
  11004. sum = 1.0/sum;
  11005. ggml_vec_scale_f32(masked_begin, S, sum);
  11006. #ifndef NDEBUG
  11007. for (int i = 0; i < masked_begin; ++i) {
  11008. assert(!isnan(S[i]));
  11009. assert(!isinf(S[i]));
  11010. }
  11011. #endif
  11012. }
  11013. for (int64_t ic = 0; ic < nev1; ++ic) {
  11014. // dst indices
  11015. const int i1 = iq1;
  11016. const int i2 = iq2;
  11017. const int i3 = iq3;
  11018. // v indices
  11019. const int iv2 = iq2 % nev2;
  11020. const int iv3 = iq3;
  11021. ggml_vec_dot_f32(masked_begin,
  11022. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11023. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11024. S, 0, 1);
  11025. }
  11026. }
  11027. }
  11028. static void ggml_compute_forward_flash_attn_f16(
  11029. const struct ggml_compute_params * params,
  11030. const struct ggml_tensor * q,
  11031. const struct ggml_tensor * k,
  11032. const struct ggml_tensor * v,
  11033. const bool masked,
  11034. struct ggml_tensor * dst) {
  11035. int64_t t0 = ggml_perf_time_us();
  11036. UNUSED(t0);
  11037. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11038. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11039. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11040. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11041. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11042. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11043. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11044. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11045. const int ith = params->ith;
  11046. const int nth = params->nth;
  11047. const int64_t D = neq0;
  11048. const int64_t N = neq1;
  11049. const int64_t P = nek1 - N;
  11050. const int64_t M = P + N;
  11051. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11052. GGML_ASSERT(ne0 == D);
  11053. GGML_ASSERT(ne1 == N);
  11054. GGML_ASSERT(P >= 0);
  11055. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11056. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11057. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11058. GGML_ASSERT(neq0 == D);
  11059. GGML_ASSERT(nek0 == D);
  11060. GGML_ASSERT(nev1 == D);
  11061. GGML_ASSERT(neq1 == N);
  11062. GGML_ASSERT(nek1 == N + P);
  11063. GGML_ASSERT(nev1 == D);
  11064. // dst cannot be transposed or permuted
  11065. GGML_ASSERT(nb0 == sizeof(float));
  11066. GGML_ASSERT(nb0 <= nb1);
  11067. GGML_ASSERT(nb1 <= nb2);
  11068. GGML_ASSERT(nb2 <= nb3);
  11069. if (params->type == GGML_TASK_INIT) {
  11070. return;
  11071. }
  11072. if (params->type == GGML_TASK_FINALIZE) {
  11073. return;
  11074. }
  11075. // parallelize by q rows using ggml_vec_dot_f32
  11076. // total rows in q
  11077. const int nr = neq1*neq2*neq3;
  11078. // rows per thread
  11079. const int dr = (nr + nth - 1)/nth;
  11080. // row range for this thread
  11081. const int ir0 = dr*ith;
  11082. const int ir1 = MIN(ir0 + dr, nr);
  11083. const float scale = 1.0f/sqrtf(D);
  11084. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11085. for (int ir = ir0; ir < ir1; ++ir) {
  11086. // q indices
  11087. const int iq3 = ir/(neq2*neq1);
  11088. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11089. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11090. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11091. for (int i = M; i < Mup; ++i) {
  11092. S[i] = -INFINITY;
  11093. }
  11094. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11095. for (int64_t ic = 0; ic < nek1; ++ic) {
  11096. // k indices
  11097. const int ik3 = iq3;
  11098. const int ik2 = iq2 % nek2;
  11099. const int ik1 = ic;
  11100. // S indices
  11101. const int i1 = ik1;
  11102. ggml_vec_dot_f16(neq0,
  11103. S + i1, 0,
  11104. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11105. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11106. }
  11107. } else {
  11108. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11109. // k indices
  11110. const int ik3 = iq3;
  11111. const int ik2 = iq2 % nek2;
  11112. const int ik1 = ic;
  11113. // S indices
  11114. const int i1 = ik1;
  11115. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11116. S + i1,
  11117. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11118. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11119. }
  11120. }
  11121. // scale
  11122. ggml_vec_scale_f32(nek1, S, scale);
  11123. if (masked) {
  11124. for (int64_t i = P; i < M; i++) {
  11125. if (i > P + iq1) {
  11126. S[i] = -INFINITY;
  11127. }
  11128. }
  11129. }
  11130. // softmax
  11131. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11132. // dont forget to set their S values to zero
  11133. {
  11134. float max = -INFINITY;
  11135. ggml_vec_max_f32(M, &max, S);
  11136. ggml_float sum = 0.0;
  11137. {
  11138. #ifdef GGML_SOFT_MAX_ACCELERATE
  11139. max = -max;
  11140. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11141. vvexpf(S, S, &Mup);
  11142. ggml_vec_sum_f32(Mup, &sum, S);
  11143. #else
  11144. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11145. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11146. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11147. float * SS = S + i;
  11148. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11149. if (SS[j] == -INFINITY) {
  11150. SS[j] = 0.0f;
  11151. } else {
  11152. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11153. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11154. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11155. sump[j] += (ggml_float)val;
  11156. SS[j] = val;
  11157. }
  11158. }
  11159. }
  11160. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11161. sum += sump[i];
  11162. }
  11163. #endif
  11164. }
  11165. assert(sum > 0.0);
  11166. sum = 1.0/sum;
  11167. ggml_vec_scale_f32(M, S, sum);
  11168. #ifndef NDEBUG
  11169. for (int i = 0; i < M; ++i) {
  11170. assert(!isnan(S[i]));
  11171. assert(!isinf(S[i]));
  11172. }
  11173. #endif
  11174. }
  11175. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11176. for (int64_t i = 0; i < M; i++) {
  11177. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11178. }
  11179. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11180. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11181. for (int64_t ic = 0; ic < nev1; ++ic) {
  11182. // dst indices
  11183. const int i1 = iq1;
  11184. const int i2 = iq2;
  11185. const int i3 = iq3;
  11186. // v indices
  11187. const int iv2 = iq2 % nev2;
  11188. const int iv3 = iq3;
  11189. ggml_vec_dot_f16(nev0,
  11190. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11191. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11192. S16, 0, 1);
  11193. }
  11194. } else {
  11195. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11196. // dst indices
  11197. const int i1 = iq1;
  11198. const int i2 = iq2;
  11199. const int i3 = iq3;
  11200. // v indices
  11201. const int iv2 = iq2 % nev2;
  11202. const int iv3 = iq3;
  11203. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11204. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11205. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11206. S16);
  11207. }
  11208. }
  11209. }
  11210. }
  11211. static void ggml_compute_forward_flash_attn(
  11212. const struct ggml_compute_params * params,
  11213. const struct ggml_tensor * q,
  11214. const struct ggml_tensor * k,
  11215. const struct ggml_tensor * v,
  11216. const bool masked,
  11217. struct ggml_tensor * dst) {
  11218. switch (q->type) {
  11219. case GGML_TYPE_F16:
  11220. {
  11221. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11222. } break;
  11223. case GGML_TYPE_F32:
  11224. {
  11225. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11226. } break;
  11227. default:
  11228. {
  11229. GGML_ASSERT(false);
  11230. } break;
  11231. }
  11232. }
  11233. // ggml_compute_forward_flash_ff
  11234. static void ggml_compute_forward_flash_ff_f16(
  11235. const struct ggml_compute_params * params,
  11236. const struct ggml_tensor * a, // F16
  11237. const struct ggml_tensor * b0, // F16 fc_w
  11238. const struct ggml_tensor * b1, // F32 fc_b
  11239. const struct ggml_tensor * c0, // F16 proj_w
  11240. const struct ggml_tensor * c1, // F32 proj_b
  11241. struct ggml_tensor * dst) {
  11242. int64_t t0 = ggml_perf_time_us();
  11243. UNUSED(t0);
  11244. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11245. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11246. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11247. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11248. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11249. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11250. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11251. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11252. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11253. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11254. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11255. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11256. const int ith = params->ith;
  11257. const int nth = params->nth;
  11258. const int64_t D = nea0;
  11259. //const int64_t N = nea1;
  11260. const int64_t M = neb01;
  11261. GGML_ASSERT(ne0 == nea0);
  11262. GGML_ASSERT(ne1 == nea1);
  11263. GGML_ASSERT(ne2 == nea2);
  11264. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11265. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11266. GGML_ASSERT(nbb10 == sizeof(float));
  11267. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11268. GGML_ASSERT(nbc10 == sizeof(float));
  11269. GGML_ASSERT(neb00 == D);
  11270. GGML_ASSERT(neb01 == M);
  11271. GGML_ASSERT(neb10 == M);
  11272. GGML_ASSERT(neb11 == 1);
  11273. GGML_ASSERT(nec00 == M);
  11274. GGML_ASSERT(nec01 == D);
  11275. GGML_ASSERT(nec10 == D);
  11276. GGML_ASSERT(nec11 == 1);
  11277. // dst cannot be transposed or permuted
  11278. GGML_ASSERT(nb0 == sizeof(float));
  11279. GGML_ASSERT(nb0 <= nb1);
  11280. GGML_ASSERT(nb1 <= nb2);
  11281. GGML_ASSERT(nb2 <= nb3);
  11282. if (params->type == GGML_TASK_INIT) {
  11283. return;
  11284. }
  11285. if (params->type == GGML_TASK_FINALIZE) {
  11286. return;
  11287. }
  11288. // parallelize by a rows using ggml_vec_dot_f32
  11289. // total rows in a
  11290. const int nr = nea1*nea2*nea3;
  11291. // rows per thread
  11292. const int dr = (nr + nth - 1)/nth;
  11293. // row range for this thread
  11294. const int ir0 = dr*ith;
  11295. const int ir1 = MIN(ir0 + dr, nr);
  11296. for (int ir = ir0; ir < ir1; ++ir) {
  11297. // a indices
  11298. const int ia3 = ir/(nea2*nea1);
  11299. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11300. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11301. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11302. for (int64_t ic = 0; ic < neb01; ++ic) {
  11303. // b0 indices
  11304. const int ib03 = ia3;
  11305. const int ib02 = ia2;
  11306. const int ib01 = ic;
  11307. // S indices
  11308. const int i1 = ib01;
  11309. ggml_vec_dot_f16(nea0,
  11310. S + i1, 0,
  11311. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11312. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11313. }
  11314. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11315. //ggml_vec_gelu_f32(neb01, S, S);
  11316. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11317. for (int64_t i = 0; i < M; i++) {
  11318. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11319. }
  11320. ggml_vec_gelu_f16(neb01, S16, S16);
  11321. {
  11322. // dst indices
  11323. const int i1 = ia1;
  11324. const int i2 = ia2;
  11325. const int i3 = ia3;
  11326. for (int64_t ic = 0; ic < nec01; ++ic) {
  11327. ggml_vec_dot_f16(neb01,
  11328. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11329. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11330. S16, 0, 1);
  11331. }
  11332. ggml_vec_add_f32(nec01,
  11333. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11334. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11335. (float *) c1->data);
  11336. }
  11337. }
  11338. }
  11339. static void ggml_compute_forward_flash_ff(
  11340. const struct ggml_compute_params * params,
  11341. const struct ggml_tensor * a,
  11342. const struct ggml_tensor * b0,
  11343. const struct ggml_tensor * b1,
  11344. const struct ggml_tensor * c0,
  11345. const struct ggml_tensor * c1,
  11346. struct ggml_tensor * dst) {
  11347. switch (b0->type) {
  11348. case GGML_TYPE_F16:
  11349. {
  11350. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11351. } break;
  11352. case GGML_TYPE_F32:
  11353. {
  11354. GGML_ASSERT(false); // TODO
  11355. } break;
  11356. default:
  11357. {
  11358. GGML_ASSERT(false);
  11359. } break;
  11360. }
  11361. }
  11362. // ggml_compute_forward_flash_attn_back
  11363. static void ggml_compute_forward_flash_attn_back_f32(
  11364. const struct ggml_compute_params * params,
  11365. const struct ggml_tensor * q,
  11366. const struct ggml_tensor * k,
  11367. const struct ggml_tensor * v,
  11368. const struct ggml_tensor * d,
  11369. const bool masked,
  11370. struct ggml_tensor * dst) {
  11371. int64_t t0 = ggml_perf_time_us();
  11372. UNUSED(t0);
  11373. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11374. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11375. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11376. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11377. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11378. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11379. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11380. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11381. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11382. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11383. const int ith = params->ith;
  11384. const int nth = params->nth;
  11385. const int64_t D = neq0;
  11386. const int64_t N = neq1;
  11387. const int64_t P = nek1 - N;
  11388. const int64_t M = P + N;
  11389. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11390. const int mxDM = MAX(D, Mup);
  11391. // GGML_ASSERT(ne0 == D);
  11392. // GGML_ASSERT(ne1 == N);
  11393. GGML_ASSERT(P >= 0);
  11394. GGML_ASSERT(nbq0 == sizeof(float));
  11395. GGML_ASSERT(nbk0 == sizeof(float));
  11396. GGML_ASSERT(nbv0 == sizeof(float));
  11397. GGML_ASSERT(neq0 == D);
  11398. GGML_ASSERT(nek0 == D);
  11399. GGML_ASSERT(nev1 == D);
  11400. GGML_ASSERT(ned0 == D);
  11401. GGML_ASSERT(neq1 == N);
  11402. GGML_ASSERT(nek1 == N + P);
  11403. GGML_ASSERT(nev1 == D);
  11404. GGML_ASSERT(ned1 == N);
  11405. // dst cannot be transposed or permuted
  11406. GGML_ASSERT(nb0 == sizeof(float));
  11407. GGML_ASSERT(nb0 <= nb1);
  11408. GGML_ASSERT(nb1 <= nb2);
  11409. GGML_ASSERT(nb2 <= nb3);
  11410. if (params->type == GGML_TASK_INIT) {
  11411. if (ith == 0) {
  11412. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11413. }
  11414. return;
  11415. }
  11416. if (params->type == GGML_TASK_FINALIZE) {
  11417. return;
  11418. }
  11419. const int64_t elem_q = ggml_nelements(q);
  11420. const int64_t elem_k = ggml_nelements(k);
  11421. enum ggml_type result_type = dst->type;
  11422. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11423. const size_t tsize = ggml_type_size(result_type);
  11424. const size_t offs_q = 0;
  11425. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11426. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11427. void * grad_q = (char *) dst->data;
  11428. void * grad_k = (char *) dst->data + offs_k;
  11429. void * grad_v = (char *) dst->data + offs_v;
  11430. const size_t nbgq1 = nb0*neq0;
  11431. const size_t nbgq2 = nb0*neq0*neq1;
  11432. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11433. const size_t nbgk1 = nb0*nek0;
  11434. const size_t nbgk2 = nb0*nek0*nek1;
  11435. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11436. const size_t nbgv1 = nb0*nev0;
  11437. const size_t nbgv2 = nb0*nev0*nev1;
  11438. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11439. // parallelize by k rows using ggml_vec_dot_f32
  11440. // total rows in k
  11441. const int nr = nek2*nek3;
  11442. // rows per thread
  11443. const int dr = (nr + nth - 1)/nth;
  11444. // row range for this thread
  11445. const int ir0 = dr*ith;
  11446. const int ir1 = MIN(ir0 + dr, nr);
  11447. const float scale = 1.0f/sqrtf(D);
  11448. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11449. // how often k2 (and v2) is repeated in q2
  11450. int nrep = neq2/nek2;
  11451. for (int ir = ir0; ir < ir1; ++ir) {
  11452. // q indices
  11453. const int ik3 = ir/(nek2);
  11454. const int ik2 = ir - ik3*nek2;
  11455. const int iq3 = ik3;
  11456. const int id3 = ik3;
  11457. const int iv3 = ik3;
  11458. const int iv2 = ik2;
  11459. for (int irep = 0; irep < nrep; ++irep) {
  11460. const int iq2 = ik2 + irep*nek2;
  11461. const int id2 = iq2;
  11462. // (ik2 + irep*nek2) % nek2 == ik2
  11463. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11464. const int id1 = iq1;
  11465. // not sure about CACHE_LINE_SIZE_F32..
  11466. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11467. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11468. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11469. for (int i = M; i < Mup; ++i) {
  11470. S[i] = -INFINITY;
  11471. }
  11472. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11473. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11474. // k indices
  11475. const int ik1 = ic;
  11476. // S indices
  11477. const int i1 = ik1;
  11478. ggml_vec_dot_f32(neq0,
  11479. S + i1, 0,
  11480. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11481. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11482. }
  11483. // scale
  11484. ggml_vec_scale_f32(masked_begin, S, scale);
  11485. for (int64_t i = masked_begin; i < M; i++) {
  11486. S[i] = -INFINITY;
  11487. }
  11488. // softmax
  11489. // exclude known -INF S[..] values from max and loop
  11490. // dont forget to set their SM values to zero
  11491. {
  11492. float max = -INFINITY;
  11493. ggml_vec_max_f32(masked_begin, &max, S);
  11494. ggml_float sum = 0.0;
  11495. {
  11496. #ifdef GGML_SOFT_MAX_ACCELERATE
  11497. max = -max;
  11498. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11499. vvexpf(SM, SM, &Mup);
  11500. ggml_vec_sum_f32(Mup, &sum, SM);
  11501. #else
  11502. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11503. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11504. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11505. if (i >= masked_begin) {
  11506. break;
  11507. }
  11508. float * SR = S + i;
  11509. float * SW = SM + i;
  11510. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11511. if (i + j >= masked_begin) {
  11512. break;
  11513. } else if (SR[j] == -INFINITY) {
  11514. SW[j] = 0.0f;
  11515. } else {
  11516. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11517. const float val = expf(SR[j] - max);
  11518. #else
  11519. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11520. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11521. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11522. #endif
  11523. sump[j] += (ggml_float)val;
  11524. SW[j] = val;
  11525. }
  11526. }
  11527. }
  11528. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11529. sum += sump[i];
  11530. }
  11531. #endif
  11532. }
  11533. assert(sum > 0.0);
  11534. sum = 1.0/sum;
  11535. ggml_vec_scale_f32(masked_begin, SM, sum);
  11536. }
  11537. // step-by-step explanation
  11538. {
  11539. // forward-process shape grads from backward process
  11540. // parallel_for ik2,ik3:
  11541. // for irep:
  11542. // iq2 = ik2 + irep*nek2
  11543. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11544. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11545. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11546. // for iq1:
  11547. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11548. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11549. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11550. // S0 = -Inf [D,1,1,1]
  11551. // ~S1[i] = dot(kcur[:D,i], qcur)
  11552. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11553. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11554. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11555. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11556. // ~S5[i] = dot(vcur[:,i], S4)
  11557. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11558. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11559. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11560. // dst backward-/ grad[dst] = d
  11561. //
  11562. // output gradients with their dependencies:
  11563. //
  11564. // grad[kcur] = grad[S1].T @ qcur
  11565. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11566. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11567. // grad[S4] = grad[S5] @ vcur
  11568. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11569. // grad[qcur] = grad[S1] @ kcur
  11570. // grad[vcur] = grad[S5].T @ S4
  11571. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11572. //
  11573. // in post-order:
  11574. //
  11575. // S1 = qcur @ kcur.T
  11576. // S2 = S1 * scale
  11577. // S3 = diag_mask_inf(S2, P)
  11578. // S4 = softmax(S3)
  11579. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11580. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11581. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11582. // grad[qcur] = grad[S1] @ kcur
  11583. // grad[kcur] = grad[S1].T @ qcur
  11584. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11585. //
  11586. // using less variables (SM=S4):
  11587. //
  11588. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11589. // SM = softmax(S)
  11590. // S = d[:D,iq1,iq2,iq3] @ vcur
  11591. // dot_SM_gradSM = dot(SM, S)
  11592. // S = SM * (S - dot(SM, S))
  11593. // S = diag_mask_zero(S, P) * scale
  11594. //
  11595. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11596. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11597. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11598. }
  11599. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11600. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11601. // for ic:
  11602. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11603. // exclude known future zero S[..] values from operation
  11604. ggml_vec_set_f32(masked_begin, S, 0);
  11605. for (int64_t ic = 0; ic < D; ++ic) {
  11606. ggml_vec_mad_f32(masked_begin,
  11607. S,
  11608. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11609. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11610. }
  11611. // S = SM * (S - dot(SM, S))
  11612. float dot_SM_gradSM = 0;
  11613. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11614. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11615. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11616. // S = diag_mask_zero(S, P) * scale
  11617. // already done by above ggml_vec_set_f32
  11618. // exclude known zero S[..] values from operation
  11619. ggml_vec_scale_f32(masked_begin, S, scale);
  11620. // S shape [M,1]
  11621. // SM shape [M,1]
  11622. // kcur shape [D,M]
  11623. // qcur shape [D,1]
  11624. // vcur shape [M,D]
  11625. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11626. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11627. // for ic:
  11628. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11629. // exclude known zero S[..] values from loop
  11630. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11631. ggml_vec_mad_f32(D,
  11632. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11633. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11634. S[ic]);
  11635. }
  11636. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11637. // for ic:
  11638. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11639. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11640. // exclude known zero S[..] values from loop
  11641. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11642. ggml_vec_mad_f32(D,
  11643. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11644. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11645. S[ic]);
  11646. }
  11647. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11648. // for ic:
  11649. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11650. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11651. // exclude known zero SM[..] values from mad
  11652. for (int64_t ic = 0; ic < D; ++ic) {
  11653. ggml_vec_mad_f32(masked_begin,
  11654. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11655. SM,
  11656. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11657. }
  11658. }
  11659. }
  11660. }
  11661. }
  11662. static void ggml_compute_forward_flash_attn_back(
  11663. const struct ggml_compute_params * params,
  11664. const struct ggml_tensor * q,
  11665. const struct ggml_tensor * k,
  11666. const struct ggml_tensor * v,
  11667. const struct ggml_tensor * d,
  11668. const bool masked,
  11669. struct ggml_tensor * dst) {
  11670. switch (q->type) {
  11671. case GGML_TYPE_F32:
  11672. {
  11673. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11674. } break;
  11675. default:
  11676. {
  11677. GGML_ASSERT(false);
  11678. } break;
  11679. }
  11680. }
  11681. // ggml_compute_forward_win_part
  11682. static void ggml_compute_forward_win_part_f32(
  11683. const struct ggml_compute_params * params,
  11684. const struct ggml_tensor * src0,
  11685. struct ggml_tensor * dst) {
  11686. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11687. return;
  11688. }
  11689. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11690. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11691. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11692. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11693. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11694. assert(ne00 == ne0);
  11695. assert(ne3 == nep0*nep1);
  11696. // TODO: optimize / multi-thread
  11697. for (int py = 0; py < nep1; ++py) {
  11698. for (int px = 0; px < nep0; ++px) {
  11699. const int64_t i3 = py*nep0 + px;
  11700. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11701. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11702. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11703. const int64_t i02 = py*w + i2;
  11704. const int64_t i01 = px*w + i1;
  11705. const int64_t i00 = i0;
  11706. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11707. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11708. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11709. ((float *) dst->data)[i] = 0.0f;
  11710. } else {
  11711. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11712. }
  11713. }
  11714. }
  11715. }
  11716. }
  11717. }
  11718. }
  11719. static void ggml_compute_forward_win_part(
  11720. const struct ggml_compute_params * params,
  11721. const struct ggml_tensor * src0,
  11722. struct ggml_tensor * dst) {
  11723. switch (src0->type) {
  11724. case GGML_TYPE_F32:
  11725. {
  11726. ggml_compute_forward_win_part_f32(params, src0, dst);
  11727. } break;
  11728. default:
  11729. {
  11730. GGML_ASSERT(false);
  11731. } break;
  11732. }
  11733. }
  11734. // ggml_compute_forward_win_unpart
  11735. static void ggml_compute_forward_win_unpart_f32(
  11736. const struct ggml_compute_params * params,
  11737. const struct ggml_tensor * src0,
  11738. struct ggml_tensor * dst) {
  11739. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11740. return;
  11741. }
  11742. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11743. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11744. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11745. // padding
  11746. const int px = (w - ne1%w)%w;
  11747. //const int py = (w - ne2%w)%w;
  11748. const int npx = (px + ne1)/w;
  11749. //const int npy = (py + ne2)/w;
  11750. assert(ne0 == ne00);
  11751. // TODO: optimize / multi-thread
  11752. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11753. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11754. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11755. const int ip2 = i2/w;
  11756. const int ip1 = i1/w;
  11757. const int64_t i02 = i2%w;
  11758. const int64_t i01 = i1%w;
  11759. const int64_t i00 = i0;
  11760. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11761. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11762. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11763. }
  11764. }
  11765. }
  11766. }
  11767. static void ggml_compute_forward_win_unpart(
  11768. const struct ggml_compute_params * params,
  11769. const struct ggml_tensor * src0,
  11770. struct ggml_tensor * dst) {
  11771. switch (src0->type) {
  11772. case GGML_TYPE_F32:
  11773. {
  11774. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11775. } break;
  11776. default:
  11777. {
  11778. GGML_ASSERT(false);
  11779. } break;
  11780. }
  11781. }
  11782. //gmml_compute_forward_unary
  11783. static void ggml_compute_forward_unary(
  11784. const struct ggml_compute_params * params,
  11785. const struct ggml_tensor * src0,
  11786. struct ggml_tensor * dst) {
  11787. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11788. switch (op) {
  11789. case GGML_UNARY_OP_ABS:
  11790. {
  11791. ggml_compute_forward_abs(params, src0, dst);
  11792. } break;
  11793. case GGML_UNARY_OP_SGN:
  11794. {
  11795. ggml_compute_forward_sgn(params, src0, dst);
  11796. } break;
  11797. case GGML_UNARY_OP_NEG:
  11798. {
  11799. ggml_compute_forward_neg(params, src0, dst);
  11800. } break;
  11801. case GGML_UNARY_OP_STEP:
  11802. {
  11803. ggml_compute_forward_step(params, src0, dst);
  11804. } break;
  11805. case GGML_UNARY_OP_TANH:
  11806. {
  11807. ggml_compute_forward_tanh(params, src0, dst);
  11808. } break;
  11809. case GGML_UNARY_OP_ELU:
  11810. {
  11811. ggml_compute_forward_elu(params, src0, dst);
  11812. } break;
  11813. case GGML_UNARY_OP_RELU:
  11814. {
  11815. ggml_compute_forward_relu(params, src0, dst);
  11816. } break;
  11817. case GGML_UNARY_OP_GELU:
  11818. {
  11819. ggml_compute_forward_gelu(params, src0, dst);
  11820. } break;
  11821. case GGML_UNARY_OP_GELU_QUICK:
  11822. {
  11823. ggml_compute_forward_gelu_quick(params, src0, dst);
  11824. } break;
  11825. case GGML_UNARY_OP_SILU:
  11826. {
  11827. ggml_compute_forward_silu(params, src0, dst);
  11828. } break;
  11829. case GGML_UNARY_OP_HARDSWISH:
  11830. {
  11831. ggml_compute_forward_hardswish(params, src0, dst);
  11832. } break;
  11833. case GGML_UNARY_OP_HARDSIGMOID:
  11834. {
  11835. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11836. } break;
  11837. default:
  11838. {
  11839. GGML_ASSERT(false);
  11840. } break;
  11841. }
  11842. }
  11843. // ggml_compute_forward_get_rel_pos
  11844. static void ggml_compute_forward_get_rel_pos_f16(
  11845. const struct ggml_compute_params * params,
  11846. const struct ggml_tensor * src0,
  11847. struct ggml_tensor * dst) {
  11848. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11849. return;
  11850. }
  11851. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11852. GGML_TENSOR_UNARY_OP_LOCALS
  11853. const int64_t w = ne1;
  11854. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11855. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11856. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11857. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11858. const int64_t pos = (w - i1 - 1) + i2;
  11859. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11860. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11861. }
  11862. }
  11863. }
  11864. }
  11865. static void ggml_compute_forward_get_rel_pos(
  11866. const struct ggml_compute_params * params,
  11867. const struct ggml_tensor * src0,
  11868. struct ggml_tensor * dst) {
  11869. switch (src0->type) {
  11870. case GGML_TYPE_F16:
  11871. {
  11872. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11873. } break;
  11874. default:
  11875. {
  11876. GGML_ASSERT(false);
  11877. } break;
  11878. }
  11879. }
  11880. // ggml_compute_forward_add_rel_pos
  11881. static void ggml_compute_forward_add_rel_pos_f32(
  11882. const struct ggml_compute_params * params,
  11883. const struct ggml_tensor * src0,
  11884. const struct ggml_tensor * src1,
  11885. const struct ggml_tensor * src2,
  11886. struct ggml_tensor * dst) {
  11887. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11888. if (!inplace && params->type == GGML_TASK_INIT) {
  11889. if (params->ith != 0) {
  11890. return;
  11891. }
  11892. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11893. return;
  11894. }
  11895. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11896. return;
  11897. }
  11898. int64_t t0 = ggml_perf_time_us();
  11899. UNUSED(t0);
  11900. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11901. float * src1_data = (float *) src1->data;
  11902. float * src2_data = (float *) src2->data;
  11903. float * dst_data = (float *) dst->data;
  11904. const int64_t ne10 = src1->ne[0];
  11905. const int64_t ne11 = src1->ne[1];
  11906. const int64_t ne12 = src1->ne[2];
  11907. const int64_t ne13 = src1->ne[3];
  11908. const int ith = params->ith;
  11909. const int nth = params->nth;
  11910. // total patches in dst
  11911. const int np = ne13;
  11912. // patches per thread
  11913. const int dp = (np + nth - 1)/nth;
  11914. // patch range for this thread
  11915. const int ip0 = dp*ith;
  11916. const int ip1 = MIN(ip0 + dp, np);
  11917. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11918. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11919. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11920. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11921. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11922. const int64_t jp0 = jp1 + i10;
  11923. const float src1_e = src1_data[jp0];
  11924. const float src2_e = src2_data[jp0];
  11925. const int64_t jdh = jp0 * ne10;
  11926. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11927. for (int64_t j = 0; j < ne10; ++j) {
  11928. dst_data[jdh + j ] += src2_e;
  11929. dst_data[jdw + j*ne10] += src1_e;
  11930. }
  11931. }
  11932. }
  11933. }
  11934. }
  11935. }
  11936. static void ggml_compute_forward_add_rel_pos(
  11937. const struct ggml_compute_params * params,
  11938. const struct ggml_tensor * src0,
  11939. const struct ggml_tensor * src1,
  11940. const struct ggml_tensor * src2,
  11941. struct ggml_tensor * dst) {
  11942. switch (src0->type) {
  11943. case GGML_TYPE_F32:
  11944. {
  11945. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11946. } break;
  11947. default:
  11948. {
  11949. GGML_ASSERT(false);
  11950. } break;
  11951. }
  11952. }
  11953. // ggml_compute_forward_map_unary
  11954. static void ggml_compute_forward_map_unary_f32(
  11955. const struct ggml_compute_params * params,
  11956. const struct ggml_tensor * src0,
  11957. struct ggml_tensor * dst,
  11958. const ggml_unary_op_f32_t fun) {
  11959. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11960. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11961. return;
  11962. }
  11963. const int n = ggml_nrows(src0);
  11964. const int nc = src0->ne[0];
  11965. assert( dst->nb[0] == sizeof(float));
  11966. assert(src0->nb[0] == sizeof(float));
  11967. for (int i = 0; i < n; i++) {
  11968. fun(nc,
  11969. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11970. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11971. }
  11972. }
  11973. static void ggml_compute_forward_map_unary(
  11974. const struct ggml_compute_params * params,
  11975. const struct ggml_tensor * src0,
  11976. struct ggml_tensor * dst,
  11977. const ggml_unary_op_f32_t fun) {
  11978. switch (src0->type) {
  11979. case GGML_TYPE_F32:
  11980. {
  11981. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11982. } break;
  11983. default:
  11984. {
  11985. GGML_ASSERT(false);
  11986. } break;
  11987. }
  11988. }
  11989. // ggml_compute_forward_map_binary
  11990. static void ggml_compute_forward_map_binary_f32(
  11991. const struct ggml_compute_params * params,
  11992. const struct ggml_tensor * src0,
  11993. const struct ggml_tensor * src1,
  11994. struct ggml_tensor * dst,
  11995. const ggml_binary_op_f32_t fun) {
  11996. assert(params->ith == 0);
  11997. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11998. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11999. return;
  12000. }
  12001. const int n = ggml_nrows(src0);
  12002. const int nc = src0->ne[0];
  12003. assert( dst->nb[0] == sizeof(float));
  12004. assert(src0->nb[0] == sizeof(float));
  12005. assert(src1->nb[0] == sizeof(float));
  12006. for (int i = 0; i < n; i++) {
  12007. fun(nc,
  12008. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12009. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12010. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12011. }
  12012. }
  12013. static void ggml_compute_forward_map_binary(
  12014. const struct ggml_compute_params * params,
  12015. const struct ggml_tensor * src0,
  12016. const struct ggml_tensor * src1,
  12017. struct ggml_tensor * dst,
  12018. const ggml_binary_op_f32_t fun) {
  12019. switch (src0->type) {
  12020. case GGML_TYPE_F32:
  12021. {
  12022. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12023. } break;
  12024. default:
  12025. {
  12026. GGML_ASSERT(false);
  12027. } break;
  12028. }
  12029. }
  12030. // ggml_compute_forward_map_custom1
  12031. static void ggml_compute_forward_map_custom1_f32(
  12032. const struct ggml_compute_params * params,
  12033. const struct ggml_tensor * a,
  12034. struct ggml_tensor * dst,
  12035. const ggml_custom1_op_f32_t fun) {
  12036. assert(params->ith == 0);
  12037. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12038. return;
  12039. }
  12040. fun(dst, a);
  12041. }
  12042. // ggml_compute_forward_map_custom2
  12043. static void ggml_compute_forward_map_custom2_f32(
  12044. const struct ggml_compute_params * params,
  12045. const struct ggml_tensor * a,
  12046. const struct ggml_tensor * b,
  12047. struct ggml_tensor * dst,
  12048. const ggml_custom2_op_f32_t fun) {
  12049. assert(params->ith == 0);
  12050. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12051. return;
  12052. }
  12053. fun(dst, a, b);
  12054. }
  12055. // ggml_compute_forward_map_custom3
  12056. static void ggml_compute_forward_map_custom3_f32(
  12057. const struct ggml_compute_params * params,
  12058. const struct ggml_tensor * a,
  12059. const struct ggml_tensor * b,
  12060. const struct ggml_tensor * c,
  12061. struct ggml_tensor * dst,
  12062. const ggml_custom3_op_f32_t fun) {
  12063. assert(params->ith == 0);
  12064. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12065. return;
  12066. }
  12067. fun(dst, a, b, c);
  12068. }
  12069. // ggml_compute_forward_map_custom1
  12070. static void ggml_compute_forward_map_custom1(
  12071. const struct ggml_compute_params * params,
  12072. const struct ggml_tensor * a,
  12073. struct ggml_tensor * dst) {
  12074. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12075. return;
  12076. }
  12077. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12078. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12079. }
  12080. // ggml_compute_forward_map_custom2
  12081. static void ggml_compute_forward_map_custom2(
  12082. const struct ggml_compute_params * params,
  12083. const struct ggml_tensor * a,
  12084. const struct ggml_tensor * b,
  12085. struct ggml_tensor * dst) {
  12086. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12087. return;
  12088. }
  12089. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12090. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12091. }
  12092. // ggml_compute_forward_map_custom3
  12093. static void ggml_compute_forward_map_custom3(
  12094. const struct ggml_compute_params * params,
  12095. const struct ggml_tensor * a,
  12096. const struct ggml_tensor * b,
  12097. const struct ggml_tensor * c,
  12098. struct ggml_tensor * dst) {
  12099. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12100. return;
  12101. }
  12102. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12103. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12104. }
  12105. // ggml_compute_forward_cross_entropy_loss
  12106. static void ggml_compute_forward_cross_entropy_loss_f32(
  12107. const struct ggml_compute_params * params,
  12108. const struct ggml_tensor * src0,
  12109. const struct ggml_tensor * src1,
  12110. struct ggml_tensor * dst) {
  12111. GGML_ASSERT(ggml_is_contiguous(src0));
  12112. GGML_ASSERT(ggml_is_contiguous(src1));
  12113. GGML_ASSERT(ggml_is_scalar(dst));
  12114. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12115. const int ith = params->ith;
  12116. const int nth = params->nth;
  12117. float * sums = (float *) params->wdata;
  12118. // TODO: handle transposed/permuted matrices
  12119. const int nc = src0->ne[0];
  12120. const int nr = ggml_nrows(src0);
  12121. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12122. if (params->type == GGML_TASK_INIT) {
  12123. if (ith == 0) {
  12124. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12125. }
  12126. return;
  12127. }
  12128. if (params->type == GGML_TASK_FINALIZE) {
  12129. if (ith == 0) {
  12130. float * dp = (float *) dst->data;
  12131. ggml_vec_sum_f32(nth, dp, sums);
  12132. dp[0] *= -1.0f / (float) nr;
  12133. }
  12134. return;
  12135. }
  12136. const double eps = 1e-9;
  12137. // rows per thread
  12138. const int dr = (nr + nth - 1)/nth;
  12139. // row range for this thread
  12140. const int ir0 = dr*ith;
  12141. const int ir1 = MIN(ir0 + dr, nr);
  12142. for (int i1 = ir0; i1 < ir1; i1++) {
  12143. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12144. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12145. float * st = ((float *) params->wdata) + nth + ith*nc;
  12146. #ifndef NDEBUG
  12147. for (int i = 0; i < nc; ++i) {
  12148. //printf("p[%d] = %f\n", i, p[i]);
  12149. assert(!isnan(s0[i]));
  12150. assert(!isnan(s1[i]));
  12151. }
  12152. #endif
  12153. // soft_max
  12154. ggml_float sum = 0.0;
  12155. {
  12156. float max = -INFINITY;
  12157. ggml_vec_max_f32(nc, &max, s0);
  12158. uint16_t scvt; UNUSED(scvt);
  12159. for (int i = 0; i < nc; i++) {
  12160. if (s0[i] == -INFINITY) {
  12161. st[i] = 0.0f;
  12162. } else {
  12163. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12164. const float s = s0[i] - max;
  12165. const float val = expf(s);
  12166. #else
  12167. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12168. memcpy(&scvt, &s, sizeof(scvt));
  12169. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12170. #endif
  12171. sum += (ggml_float)val;
  12172. st[i] = val;
  12173. }
  12174. }
  12175. assert(sum > 0.0);
  12176. // sum = 1.0/sum;
  12177. }
  12178. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12179. sum = (1.0 - eps) / sum;
  12180. ggml_vec_scale_f32(nc, st, sum);
  12181. ggml_vec_add1_f32(nc, st, st, eps);
  12182. ggml_vec_log_f32(nc, st, st);
  12183. ggml_vec_mul_f32(nc, st, st, s1);
  12184. float st_sum = 0;
  12185. ggml_vec_sum_f32(nc, &st_sum, st);
  12186. sums[ith] += st_sum;
  12187. #ifndef NDEBUG
  12188. for (int i = 0; i < nc; ++i) {
  12189. assert(!isnan(st[i]));
  12190. assert(!isinf(st[i]));
  12191. }
  12192. #endif
  12193. }
  12194. }
  12195. static void ggml_compute_forward_cross_entropy_loss(
  12196. const struct ggml_compute_params * params,
  12197. const struct ggml_tensor * src0,
  12198. const struct ggml_tensor * src1,
  12199. struct ggml_tensor * dst) {
  12200. switch (src0->type) {
  12201. case GGML_TYPE_F32:
  12202. {
  12203. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12204. } break;
  12205. default:
  12206. {
  12207. GGML_ASSERT(false);
  12208. } break;
  12209. }
  12210. }
  12211. // ggml_compute_forward_cross_entropy_loss_back
  12212. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12213. const struct ggml_compute_params * params,
  12214. const struct ggml_tensor * src0,
  12215. const struct ggml_tensor * src1,
  12216. const struct ggml_tensor * opt0,
  12217. struct ggml_tensor * dst) {
  12218. GGML_ASSERT(ggml_is_contiguous(dst));
  12219. GGML_ASSERT(ggml_is_contiguous(src0));
  12220. GGML_ASSERT(ggml_is_contiguous(src1));
  12221. GGML_ASSERT(ggml_is_contiguous(opt0));
  12222. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12223. const int64_t ith = params->ith;
  12224. const int64_t nth = params->nth;
  12225. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12226. return;
  12227. }
  12228. const double eps = 1e-9;
  12229. // TODO: handle transposed/permuted matrices
  12230. const int64_t nc = src0->ne[0];
  12231. const int64_t nr = ggml_nrows(src0);
  12232. // rows per thread
  12233. const int64_t dr = (nr + nth - 1)/nth;
  12234. // row range for this thread
  12235. const int64_t ir0 = dr*ith;
  12236. const int64_t ir1 = MIN(ir0 + dr, nr);
  12237. float * d = (float *) opt0->data;
  12238. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12239. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12240. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12241. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12242. #ifndef NDEBUG
  12243. for (int i = 0; i < nc; ++i) {
  12244. //printf("p[%d] = %f\n", i, p[i]);
  12245. assert(!isnan(s0[i]));
  12246. assert(!isnan(s1[i]));
  12247. }
  12248. #endif
  12249. // soft_max
  12250. ggml_float sum = 0.0;
  12251. {
  12252. float max = -INFINITY;
  12253. ggml_vec_max_f32(nc, &max, s0);
  12254. uint16_t scvt; UNUSED(scvt);
  12255. for (int i = 0; i < nc; i++) {
  12256. if (s0[i] == -INFINITY) {
  12257. ds0[i] = 0.0f;
  12258. } else {
  12259. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12260. const float s = s0[i] - max;
  12261. const float val = expf(s);
  12262. #else
  12263. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12264. memcpy(&scvt, &s, sizeof(scvt));
  12265. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12266. #endif
  12267. sum += (ggml_float)val;
  12268. ds0[i] = val;
  12269. }
  12270. }
  12271. assert(sum > 0.0);
  12272. sum = (1.0 - eps)/sum;
  12273. }
  12274. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12275. ggml_vec_scale_f32(nc, ds0, sum);
  12276. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12277. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12278. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12279. #ifndef NDEBUG
  12280. for (int i = 0; i < nc; ++i) {
  12281. assert(!isnan(ds0[i]));
  12282. assert(!isinf(ds0[i]));
  12283. }
  12284. #endif
  12285. }
  12286. }
  12287. static void ggml_compute_forward_cross_entropy_loss_back(
  12288. const struct ggml_compute_params * params,
  12289. const struct ggml_tensor * src0,
  12290. const struct ggml_tensor * src1,
  12291. const struct ggml_tensor * opt0,
  12292. struct ggml_tensor * dst) {
  12293. switch (src0->type) {
  12294. case GGML_TYPE_F32:
  12295. {
  12296. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12297. } break;
  12298. default:
  12299. {
  12300. GGML_ASSERT(false);
  12301. } break;
  12302. }
  12303. }
  12304. /////////////////////////////////
  12305. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12306. GGML_ASSERT(params);
  12307. if (tensor->op == GGML_OP_NONE) {
  12308. return;
  12309. }
  12310. #ifdef GGML_USE_CUBLAS
  12311. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12312. if (skip_cpu) {
  12313. return;
  12314. }
  12315. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12316. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12317. #elif defined(GGML_USE_VULKAN)
  12318. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12319. #ifdef GGML_VULKAN_CHECK_RESULTS
  12320. if (skip_cpu) {
  12321. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12322. }
  12323. #endif
  12324. if (skip_cpu) {
  12325. return;
  12326. }
  12327. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12328. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12329. #endif // GGML_USE_CUBLAS
  12330. #ifdef GGML_USE_SYCL
  12331. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12332. if (skip_cpu) {
  12333. return;
  12334. }
  12335. #endif // GGML_USE_SYCL
  12336. switch (tensor->op) {
  12337. case GGML_OP_DUP:
  12338. {
  12339. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12340. } break;
  12341. case GGML_OP_ADD:
  12342. {
  12343. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12344. } break;
  12345. case GGML_OP_ADD1:
  12346. {
  12347. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12348. } break;
  12349. case GGML_OP_ACC:
  12350. {
  12351. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12352. } break;
  12353. case GGML_OP_SUB:
  12354. {
  12355. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12356. } break;
  12357. case GGML_OP_MUL:
  12358. {
  12359. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12360. } break;
  12361. case GGML_OP_DIV:
  12362. {
  12363. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12364. } break;
  12365. case GGML_OP_SQR:
  12366. {
  12367. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12368. } break;
  12369. case GGML_OP_SQRT:
  12370. {
  12371. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12372. } break;
  12373. case GGML_OP_LOG:
  12374. {
  12375. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12376. } break;
  12377. case GGML_OP_SUM:
  12378. {
  12379. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12380. } break;
  12381. case GGML_OP_SUM_ROWS:
  12382. {
  12383. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12384. } break;
  12385. case GGML_OP_MEAN:
  12386. {
  12387. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12388. } break;
  12389. case GGML_OP_ARGMAX:
  12390. {
  12391. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12392. } break;
  12393. case GGML_OP_REPEAT:
  12394. {
  12395. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12396. } break;
  12397. case GGML_OP_REPEAT_BACK:
  12398. {
  12399. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12400. } break;
  12401. case GGML_OP_CONCAT:
  12402. {
  12403. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12404. } break;
  12405. case GGML_OP_SILU_BACK:
  12406. {
  12407. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12408. } break;
  12409. case GGML_OP_NORM:
  12410. {
  12411. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12412. } break;
  12413. case GGML_OP_RMS_NORM:
  12414. {
  12415. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12416. } break;
  12417. case GGML_OP_RMS_NORM_BACK:
  12418. {
  12419. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12420. } break;
  12421. case GGML_OP_GROUP_NORM:
  12422. {
  12423. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12424. } break;
  12425. case GGML_OP_MUL_MAT:
  12426. {
  12427. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12428. } break;
  12429. case GGML_OP_MUL_MAT_ID:
  12430. {
  12431. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12432. } break;
  12433. case GGML_OP_OUT_PROD:
  12434. {
  12435. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12436. } break;
  12437. case GGML_OP_SCALE:
  12438. {
  12439. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12440. } break;
  12441. case GGML_OP_SET:
  12442. {
  12443. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12444. } break;
  12445. case GGML_OP_CPY:
  12446. {
  12447. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12448. } break;
  12449. case GGML_OP_CONT:
  12450. {
  12451. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12452. } break;
  12453. case GGML_OP_RESHAPE:
  12454. {
  12455. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12456. } break;
  12457. case GGML_OP_VIEW:
  12458. {
  12459. ggml_compute_forward_view(params, tensor->src[0]);
  12460. } break;
  12461. case GGML_OP_PERMUTE:
  12462. {
  12463. ggml_compute_forward_permute(params, tensor->src[0]);
  12464. } break;
  12465. case GGML_OP_TRANSPOSE:
  12466. {
  12467. ggml_compute_forward_transpose(params, tensor->src[0]);
  12468. } break;
  12469. case GGML_OP_GET_ROWS:
  12470. {
  12471. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12472. } break;
  12473. case GGML_OP_GET_ROWS_BACK:
  12474. {
  12475. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12476. } break;
  12477. case GGML_OP_DIAG:
  12478. {
  12479. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12480. } break;
  12481. case GGML_OP_DIAG_MASK_INF:
  12482. {
  12483. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12484. } break;
  12485. case GGML_OP_DIAG_MASK_ZERO:
  12486. {
  12487. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12488. } break;
  12489. case GGML_OP_SOFT_MAX:
  12490. {
  12491. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12492. } break;
  12493. case GGML_OP_SOFT_MAX_BACK:
  12494. {
  12495. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12496. } break;
  12497. case GGML_OP_ROPE:
  12498. {
  12499. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12500. } break;
  12501. case GGML_OP_ROPE_BACK:
  12502. {
  12503. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12504. } break;
  12505. case GGML_OP_ALIBI:
  12506. {
  12507. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12508. } break;
  12509. case GGML_OP_CLAMP:
  12510. {
  12511. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12512. } break;
  12513. case GGML_OP_CONV_TRANSPOSE_1D:
  12514. {
  12515. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12516. } break;
  12517. case GGML_OP_IM2COL:
  12518. {
  12519. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12520. } break;
  12521. case GGML_OP_CONV_TRANSPOSE_2D:
  12522. {
  12523. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12524. } break;
  12525. case GGML_OP_POOL_1D:
  12526. {
  12527. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12528. } break;
  12529. case GGML_OP_POOL_2D:
  12530. {
  12531. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12532. } break;
  12533. case GGML_OP_UPSCALE:
  12534. {
  12535. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12536. } break;
  12537. case GGML_OP_PAD:
  12538. {
  12539. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12540. } break;
  12541. case GGML_OP_ARGSORT:
  12542. {
  12543. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12544. } break;
  12545. case GGML_OP_LEAKY_RELU:
  12546. {
  12547. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12548. } break;
  12549. case GGML_OP_FLASH_ATTN:
  12550. {
  12551. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12552. GGML_ASSERT(t == 0 || t == 1);
  12553. const bool masked = t != 0;
  12554. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12555. } break;
  12556. case GGML_OP_FLASH_FF:
  12557. {
  12558. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12559. } break;
  12560. case GGML_OP_FLASH_ATTN_BACK:
  12561. {
  12562. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12563. GGML_ASSERT(t == 0 || t == 1);
  12564. bool masked = t != 0;
  12565. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12566. } break;
  12567. case GGML_OP_WIN_PART:
  12568. {
  12569. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12570. } break;
  12571. case GGML_OP_WIN_UNPART:
  12572. {
  12573. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12574. } break;
  12575. case GGML_OP_UNARY:
  12576. {
  12577. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12578. } break;
  12579. case GGML_OP_GET_REL_POS:
  12580. {
  12581. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12582. } break;
  12583. case GGML_OP_ADD_REL_POS:
  12584. {
  12585. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12586. } break;
  12587. case GGML_OP_MAP_UNARY:
  12588. {
  12589. ggml_unary_op_f32_t fun;
  12590. memcpy(&fun, tensor->op_params, sizeof(fun));
  12591. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12592. }
  12593. break;
  12594. case GGML_OP_MAP_BINARY:
  12595. {
  12596. ggml_binary_op_f32_t fun;
  12597. memcpy(&fun, tensor->op_params, sizeof(fun));
  12598. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12599. }
  12600. break;
  12601. case GGML_OP_MAP_CUSTOM1_F32:
  12602. {
  12603. ggml_custom1_op_f32_t fun;
  12604. memcpy(&fun, tensor->op_params, sizeof(fun));
  12605. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12606. }
  12607. break;
  12608. case GGML_OP_MAP_CUSTOM2_F32:
  12609. {
  12610. ggml_custom2_op_f32_t fun;
  12611. memcpy(&fun, tensor->op_params, sizeof(fun));
  12612. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12613. }
  12614. break;
  12615. case GGML_OP_MAP_CUSTOM3_F32:
  12616. {
  12617. ggml_custom3_op_f32_t fun;
  12618. memcpy(&fun, tensor->op_params, sizeof(fun));
  12619. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12620. }
  12621. break;
  12622. case GGML_OP_MAP_CUSTOM1:
  12623. {
  12624. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12625. }
  12626. break;
  12627. case GGML_OP_MAP_CUSTOM2:
  12628. {
  12629. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12630. }
  12631. break;
  12632. case GGML_OP_MAP_CUSTOM3:
  12633. {
  12634. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12635. }
  12636. break;
  12637. case GGML_OP_CROSS_ENTROPY_LOSS:
  12638. {
  12639. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12640. }
  12641. break;
  12642. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12643. {
  12644. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12645. }
  12646. break;
  12647. case GGML_OP_NONE:
  12648. {
  12649. // nop
  12650. } break;
  12651. case GGML_OP_COUNT:
  12652. {
  12653. GGML_ASSERT(false);
  12654. } break;
  12655. }
  12656. }
  12657. ////////////////////////////////////////////////////////////////////////////////
  12658. static size_t ggml_hash_size(size_t min_sz) {
  12659. // next primes after powers of two
  12660. static const size_t primes[] = {
  12661. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12662. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12663. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12664. 16777259, 33554467, 67108879, 134217757, 268435459,
  12665. 536870923, 1073741827, 2147483659
  12666. };
  12667. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12668. // find the smallest prime that is larger or equal to min_sz
  12669. size_t l = 0;
  12670. size_t r = n_primes;
  12671. while (l < r) {
  12672. size_t m = (l + r)/2;
  12673. if (primes[m] < min_sz) {
  12674. l = m + 1;
  12675. } else {
  12676. r = m;
  12677. }
  12678. }
  12679. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12680. return sz;
  12681. }
  12682. static size_t ggml_hash(const void * p) {
  12683. return (size_t)p;
  12684. }
  12685. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12686. size_t h = ggml_hash(key) % hash_set.size;
  12687. // linear probing
  12688. size_t i = h;
  12689. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12690. i = (i + 1) % hash_set.size;
  12691. if (i == h) {
  12692. // visited all hash table entries -> not found
  12693. return GGML_HASHTABLE_FULL;
  12694. }
  12695. }
  12696. return i;
  12697. }
  12698. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12699. size_t i = ggml_hash_find(hash_set, key);
  12700. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12701. }
  12702. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12703. size_t i = ggml_hash_find(hash_set, key);
  12704. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12705. if (hash_set.keys[i] == key) {
  12706. return GGML_HASHTABLE_ALREADY_EXISTS;
  12707. }
  12708. // insert
  12709. GGML_ASSERT(hash_set.keys[i] == NULL);
  12710. hash_set.keys[i] = key;
  12711. return i;
  12712. }
  12713. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12714. size_t i = ggml_hash_find(hash_set, key);
  12715. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12716. hash_set.keys[i] = key;
  12717. return i;
  12718. }
  12719. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12720. size = ggml_hash_size(size);
  12721. struct ggml_hash_set result;
  12722. result.size = size;
  12723. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12724. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12725. return result;
  12726. }
  12727. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12728. GGML_FREE(hash_set.keys);
  12729. }
  12730. struct hash_map {
  12731. struct ggml_hash_set set;
  12732. struct ggml_tensor ** vals;
  12733. };
  12734. static struct hash_map * ggml_new_hash_map(size_t size) {
  12735. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12736. result->set = ggml_hash_set_new(size);
  12737. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12738. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12739. return result;
  12740. }
  12741. static void ggml_hash_map_free(struct hash_map * map) {
  12742. ggml_hash_set_free(map->set);
  12743. GGML_FREE(map->vals);
  12744. GGML_FREE(map);
  12745. }
  12746. // gradient checkpointing
  12747. static struct ggml_tensor * ggml_recompute_graph_node(
  12748. struct ggml_context * ctx,
  12749. struct ggml_cgraph * graph,
  12750. struct hash_map * replacements,
  12751. struct ggml_tensor * node) {
  12752. if (node == NULL) {
  12753. return NULL;
  12754. }
  12755. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12756. return node;
  12757. }
  12758. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12759. return node;
  12760. }
  12761. int count_children = 0;
  12762. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12763. if (node->src[k]) {
  12764. ++count_children;
  12765. }
  12766. }
  12767. if (count_children == 0) {
  12768. return node;
  12769. }
  12770. size_t i = ggml_hash_find(replacements->set, node);
  12771. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12772. if (replacements->set.keys[i] == node) {
  12773. return replacements->vals[i];
  12774. }
  12775. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12776. // insert clone into replacements
  12777. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12778. replacements->set.keys[i] = node;
  12779. replacements->vals[i] = clone;
  12780. clone->op = node->op;
  12781. clone->grad = node->grad;
  12782. clone->flags = node->flags;
  12783. clone->extra = node->extra;
  12784. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12785. clone->nb[k] = node->nb[k];
  12786. }
  12787. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12788. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12789. }
  12790. if (node->view_src != NULL) {
  12791. clone->data = (node->view_src->data == NULL)
  12792. ? NULL // view_src not yet allocated
  12793. : (char *) node->view_src->data // view_src already allocated
  12794. + node->view_offs;
  12795. clone->view_src = node->view_src;
  12796. clone->view_offs = node->view_offs;
  12797. }
  12798. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12799. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12800. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12801. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12802. return clone;
  12803. }
  12804. void ggml_build_backward_gradient_checkpointing(
  12805. struct ggml_context * ctx,
  12806. struct ggml_cgraph * gf,
  12807. struct ggml_cgraph * gb,
  12808. struct ggml_cgraph * gb_tmp,
  12809. struct ggml_tensor * * checkpoints,
  12810. int n_checkpoints) {
  12811. ggml_graph_cpy(gf, gb_tmp);
  12812. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12813. if (n_checkpoints <= 0) {
  12814. ggml_graph_cpy(gb_tmp, gb);
  12815. return;
  12816. }
  12817. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12818. // insert checkpoints in replacements
  12819. for (int i = 0; i < n_checkpoints; ++i) {
  12820. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12821. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12822. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12823. replacements->set.keys[k] = checkpoints[i];
  12824. replacements->vals[k] = checkpoints[i];
  12825. }
  12826. ggml_graph_cpy(gf, gb);
  12827. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12828. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12829. // by recomputing them from checkpoints
  12830. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12831. struct ggml_tensor * node = gb_tmp->nodes[i];
  12832. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12833. // insert new tensors recomputing src, reusing already made replacements,
  12834. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12835. // recurse for input tensors,
  12836. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12837. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12838. }
  12839. // insert rewritten backward node with replacements made into resulting backward graph gb
  12840. ggml_build_forward_expand(gb, node);
  12841. }
  12842. ggml_hash_map_free(replacements);
  12843. }
  12844. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12845. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12846. if (ggml_hash_contains(zero_table, a)) {
  12847. return b;
  12848. } else {
  12849. return ggml_add_impl(ctx, a, b, false);
  12850. }
  12851. }
  12852. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12853. if (ggml_hash_contains(zero_table, a)) {
  12854. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12855. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12856. } else {
  12857. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12858. }
  12859. }
  12860. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12861. if (ggml_hash_contains(zero_table, a)) {
  12862. return ggml_repeat(ctx, b, a);
  12863. } else {
  12864. return ggml_add1_impl(ctx, a, b, false);
  12865. }
  12866. }
  12867. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12868. if (ggml_hash_contains(zero_table, a)) {
  12869. return ggml_neg(ctx, b);
  12870. } else {
  12871. return ggml_sub_impl(ctx, a, b, false);
  12872. }
  12873. }
  12874. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12875. struct ggml_tensor * src0 = tensor->src[0];
  12876. struct ggml_tensor * src1 = tensor->src[1];
  12877. switch (tensor->op) {
  12878. case GGML_OP_DUP:
  12879. {
  12880. if (src0->grad) {
  12881. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12882. }
  12883. } break;
  12884. case GGML_OP_ADD:
  12885. {
  12886. if (src0->grad) {
  12887. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12888. }
  12889. if (src1->grad) {
  12890. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12891. }
  12892. } break;
  12893. case GGML_OP_ADD1:
  12894. {
  12895. if (src0->grad) {
  12896. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12897. }
  12898. if (src1->grad) {
  12899. src1->grad = ggml_add_or_set(ctx,
  12900. src1->grad,
  12901. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12902. zero_table);
  12903. }
  12904. } break;
  12905. case GGML_OP_ACC:
  12906. {
  12907. if (src0->grad) {
  12908. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12909. }
  12910. if (src1->grad) {
  12911. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12912. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12913. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12914. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12915. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12916. tensor->grad,
  12917. src1->grad->ne[0],
  12918. src1->grad->ne[1],
  12919. src1->grad->ne[2],
  12920. src1->grad->ne[3],
  12921. nb1, nb2, nb3, offset);
  12922. src1->grad =
  12923. ggml_add_or_set(ctx,
  12924. src1->grad,
  12925. ggml_reshape(ctx,
  12926. ggml_cont(ctx, tensor_grad_view),
  12927. src1->grad),
  12928. zero_table);
  12929. }
  12930. } break;
  12931. case GGML_OP_SUB:
  12932. {
  12933. if (src0->grad) {
  12934. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12935. }
  12936. if (src1->grad) {
  12937. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12938. }
  12939. } break;
  12940. case GGML_OP_MUL:
  12941. {
  12942. if (src0->grad) {
  12943. src0->grad =
  12944. ggml_add_or_set(ctx,
  12945. src0->grad,
  12946. ggml_mul(ctx, src1, tensor->grad),
  12947. zero_table);
  12948. }
  12949. if (src1->grad) {
  12950. src1->grad =
  12951. ggml_add_or_set(ctx,
  12952. src1->grad,
  12953. ggml_mul(ctx, src0, tensor->grad),
  12954. zero_table);
  12955. }
  12956. } break;
  12957. case GGML_OP_DIV:
  12958. {
  12959. if (src0->grad) {
  12960. src0->grad =
  12961. ggml_add_or_set(ctx,
  12962. src0->grad,
  12963. ggml_div(ctx, tensor->grad, src1),
  12964. zero_table);
  12965. }
  12966. if (src1->grad) {
  12967. src1->grad =
  12968. ggml_sub_or_set(ctx,
  12969. src1->grad,
  12970. ggml_mul(ctx,
  12971. tensor->grad,
  12972. ggml_div(ctx, tensor, src1)),
  12973. zero_table);
  12974. }
  12975. } break;
  12976. case GGML_OP_SQR:
  12977. {
  12978. if (src0->grad) {
  12979. src0->grad =
  12980. ggml_add_or_set(ctx,
  12981. src0->grad,
  12982. ggml_scale(ctx,
  12983. ggml_mul(ctx, src0, tensor->grad),
  12984. 2.0f),
  12985. zero_table);
  12986. }
  12987. } break;
  12988. case GGML_OP_SQRT:
  12989. {
  12990. if (src0->grad) {
  12991. src0->grad =
  12992. ggml_add_or_set(ctx,
  12993. src0->grad,
  12994. ggml_scale(ctx,
  12995. ggml_div(ctx,
  12996. tensor->grad,
  12997. tensor),
  12998. 0.5f),
  12999. zero_table);
  13000. }
  13001. } break;
  13002. case GGML_OP_LOG:
  13003. {
  13004. if (src0->grad) {
  13005. src0->grad =
  13006. ggml_add_or_set(ctx,
  13007. src0->grad,
  13008. ggml_div(ctx,
  13009. tensor->grad,
  13010. src0),
  13011. zero_table);
  13012. }
  13013. } break;
  13014. case GGML_OP_SUM:
  13015. {
  13016. if (src0->grad) {
  13017. src0->grad =
  13018. ggml_add1_or_set(ctx,
  13019. src0->grad,
  13020. tensor->grad,
  13021. zero_table);
  13022. }
  13023. } break;
  13024. case GGML_OP_SUM_ROWS:
  13025. {
  13026. if (src0->grad) {
  13027. src0->grad =
  13028. ggml_add_or_set(ctx,
  13029. src0->grad,
  13030. ggml_repeat(ctx,
  13031. tensor->grad,
  13032. src0->grad),
  13033. zero_table);
  13034. }
  13035. } break;
  13036. case GGML_OP_MEAN:
  13037. case GGML_OP_ARGMAX:
  13038. {
  13039. GGML_ASSERT(false); // TODO: implement
  13040. } break;
  13041. case GGML_OP_REPEAT:
  13042. {
  13043. // necessary for llama
  13044. if (src0->grad) {
  13045. src0->grad = ggml_add_or_set(ctx,
  13046. src0->grad,
  13047. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13048. zero_table);
  13049. }
  13050. } break;
  13051. case GGML_OP_REPEAT_BACK:
  13052. {
  13053. if (src0->grad) {
  13054. // TODO: test this
  13055. src0->grad = ggml_add_or_set(ctx,
  13056. src0->grad,
  13057. ggml_repeat(ctx, tensor->grad, src0->grad),
  13058. zero_table);
  13059. }
  13060. } break;
  13061. case GGML_OP_CONCAT:
  13062. {
  13063. GGML_ASSERT(false); // TODO: implement
  13064. } break;
  13065. case GGML_OP_SILU_BACK:
  13066. {
  13067. GGML_ASSERT(false); // TODO: not implemented
  13068. } break;
  13069. case GGML_OP_NORM:
  13070. {
  13071. GGML_ASSERT(false); // TODO: not implemented
  13072. } break;
  13073. case GGML_OP_RMS_NORM:
  13074. {
  13075. // necessary for llama
  13076. if (src0->grad) {
  13077. float eps;
  13078. memcpy(&eps, tensor->op_params, sizeof(float));
  13079. src0->grad = ggml_add_or_set(ctx,
  13080. src0->grad,
  13081. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13082. zero_table);
  13083. }
  13084. } break;
  13085. case GGML_OP_RMS_NORM_BACK:
  13086. {
  13087. GGML_ASSERT(false); // TODO: not implemented
  13088. } break;
  13089. case GGML_OP_GROUP_NORM:
  13090. {
  13091. GGML_ASSERT(false); // TODO: not implemented
  13092. } break;
  13093. case GGML_OP_MUL_MAT:
  13094. {
  13095. // https://cs231n.github.io/optimization-2/#staged
  13096. // # forward pass
  13097. // s0 = np.random.randn(5, 10)
  13098. // s1 = np.random.randn(10, 3)
  13099. // t = s0.dot(s1)
  13100. // # now suppose we had the gradient on t from above in the circuit
  13101. // dt = np.random.randn(*t.shape) # same shape as t
  13102. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13103. // ds1 = t.T.dot(dt)
  13104. // tensor.shape [m,p,qq,rr]
  13105. // src0.shape [n,m,q1,r1]
  13106. // src1.shape [n,p,qq,rr]
  13107. // necessary for llama
  13108. if (src0->grad) {
  13109. struct ggml_tensor * s1_tg =
  13110. ggml_out_prod(ctx, // [n,m,qq,rr]
  13111. src1, // [n,p,qq,rr]
  13112. tensor->grad); // [m,p,qq,rr]
  13113. const int64_t qq = s1_tg->ne[2];
  13114. const int64_t rr = s1_tg->ne[3];
  13115. const int64_t q1 = src0->ne[2];
  13116. const int64_t r1 = src0->ne[3];
  13117. const bool ne2_broadcasted = qq > q1;
  13118. const bool ne3_broadcasted = rr > r1;
  13119. if (ne2_broadcasted || ne3_broadcasted) {
  13120. // sum broadcast repetitions of s1_tg into shape of src0
  13121. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13122. }
  13123. src0->grad =
  13124. ggml_add_or_set(ctx,
  13125. src0->grad, // [n,m,q1,r1]
  13126. s1_tg, // [n,m,q1,r1]
  13127. zero_table);
  13128. }
  13129. if (src1->grad) {
  13130. src1->grad =
  13131. ggml_add_or_set(ctx,
  13132. src1->grad, // [n,p,qq,rr]
  13133. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13134. // ggml_cont(ctx, // [m,n,q1,r1]
  13135. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13136. // tensor->grad), // [m,p,qq,rr]
  13137. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13138. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13139. // // and then use ggml_out_prod
  13140. ggml_out_prod(ctx, // [n,p,qq,rr]
  13141. src0, // [n,m,q1,r1]
  13142. ggml_transpose(ctx, // [p,m,qq,rr]
  13143. tensor->grad)), // [m,p,qq,rr]
  13144. zero_table);
  13145. }
  13146. } break;
  13147. case GGML_OP_MUL_MAT_ID:
  13148. {
  13149. GGML_ASSERT(false); // TODO: not implemented
  13150. } break;
  13151. case GGML_OP_OUT_PROD:
  13152. {
  13153. GGML_ASSERT(false); // TODO: not implemented
  13154. } break;
  13155. case GGML_OP_SCALE:
  13156. {
  13157. // necessary for llama
  13158. if (src0->grad) {
  13159. float s;
  13160. memcpy(&s, tensor->op_params, sizeof(float));
  13161. src0->grad =
  13162. ggml_add_or_set(ctx,
  13163. src0->grad,
  13164. ggml_scale_impl(ctx, tensor->grad, s, false),
  13165. zero_table);
  13166. }
  13167. } break;
  13168. case GGML_OP_SET:
  13169. {
  13170. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13171. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13172. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13173. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13174. struct ggml_tensor * tensor_grad_view = NULL;
  13175. if (src0->grad || src1->grad) {
  13176. GGML_ASSERT(src0->type == tensor->type);
  13177. GGML_ASSERT(tensor->grad->type == tensor->type);
  13178. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13179. tensor_grad_view = ggml_view_4d(ctx,
  13180. tensor->grad,
  13181. src1->grad->ne[0],
  13182. src1->grad->ne[1],
  13183. src1->grad->ne[2],
  13184. src1->grad->ne[3],
  13185. nb1, nb2, nb3, offset);
  13186. }
  13187. if (src0->grad) {
  13188. src0->grad = ggml_add_or_set(ctx,
  13189. src0->grad,
  13190. ggml_acc_impl(ctx,
  13191. tensor->grad,
  13192. ggml_neg(ctx, tensor_grad_view),
  13193. nb1, nb2, nb3, offset, false),
  13194. zero_table);
  13195. }
  13196. if (src1->grad) {
  13197. src1->grad =
  13198. ggml_add_or_set(ctx,
  13199. src1->grad,
  13200. ggml_reshape(ctx,
  13201. ggml_cont(ctx, tensor_grad_view),
  13202. src1->grad),
  13203. zero_table);
  13204. }
  13205. } break;
  13206. case GGML_OP_CPY:
  13207. {
  13208. // necessary for llama
  13209. // cpy overwrites value of src1 by src0 and returns view(src1)
  13210. // the overwriting is mathematically equivalent to:
  13211. // tensor = src0 * 1 + src1 * 0
  13212. if (src0->grad) {
  13213. // dsrc0 = dtensor * 1
  13214. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13215. }
  13216. if (src1->grad) {
  13217. // dsrc1 = dtensor * 0 -> noop
  13218. }
  13219. } break;
  13220. case GGML_OP_CONT:
  13221. {
  13222. // same as cpy
  13223. if (src0->grad) {
  13224. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13225. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13226. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13227. }
  13228. } break;
  13229. case GGML_OP_RESHAPE:
  13230. {
  13231. // necessary for llama
  13232. if (src0->grad) {
  13233. src0->grad =
  13234. ggml_add_or_set(ctx, src0->grad,
  13235. ggml_reshape(ctx,
  13236. ggml_is_contiguous(tensor->grad)
  13237. ? tensor->grad
  13238. : ggml_cont(ctx, tensor->grad),
  13239. src0->grad),
  13240. zero_table);
  13241. }
  13242. } break;
  13243. case GGML_OP_VIEW:
  13244. {
  13245. // necessary for llama
  13246. if (src0->grad) {
  13247. size_t offset;
  13248. memcpy(&offset, tensor->op_params, sizeof(offset));
  13249. size_t nb1 = tensor->nb[1];
  13250. size_t nb2 = tensor->nb[2];
  13251. size_t nb3 = tensor->nb[3];
  13252. if (src0->type != src0->grad->type) {
  13253. // gradient is typically F32, but src0 could be other type
  13254. size_t ng = ggml_element_size(src0->grad);
  13255. size_t n0 = ggml_element_size(src0);
  13256. GGML_ASSERT(offset % n0 == 0);
  13257. GGML_ASSERT(nb1 % n0 == 0);
  13258. GGML_ASSERT(nb2 % n0 == 0);
  13259. GGML_ASSERT(nb3 % n0 == 0);
  13260. offset = (offset / n0) * ng;
  13261. nb1 = (nb1 / n0) * ng;
  13262. nb2 = (nb2 / n0) * ng;
  13263. nb3 = (nb3 / n0) * ng;
  13264. }
  13265. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13266. }
  13267. } break;
  13268. case GGML_OP_PERMUTE:
  13269. {
  13270. // necessary for llama
  13271. if (src0->grad) {
  13272. int32_t * axes = (int32_t *) tensor->op_params;
  13273. int axis0 = axes[0] & 0x3;
  13274. int axis1 = axes[1] & 0x3;
  13275. int axis2 = axes[2] & 0x3;
  13276. int axis3 = axes[3] & 0x3;
  13277. int axes_backward[4] = {0,0,0,0};
  13278. axes_backward[axis0] = 0;
  13279. axes_backward[axis1] = 1;
  13280. axes_backward[axis2] = 2;
  13281. axes_backward[axis3] = 3;
  13282. src0->grad =
  13283. ggml_add_or_set(ctx, src0->grad,
  13284. ggml_permute(ctx,
  13285. tensor->grad,
  13286. axes_backward[0],
  13287. axes_backward[1],
  13288. axes_backward[2],
  13289. axes_backward[3]),
  13290. zero_table);
  13291. }
  13292. } break;
  13293. case GGML_OP_TRANSPOSE:
  13294. {
  13295. // necessary for llama
  13296. if (src0->grad) {
  13297. src0->grad =
  13298. ggml_add_or_set(ctx, src0->grad,
  13299. ggml_transpose(ctx, tensor->grad),
  13300. zero_table);
  13301. }
  13302. } break;
  13303. case GGML_OP_GET_ROWS:
  13304. {
  13305. // necessary for llama (only for tokenizer)
  13306. if (src0->grad) {
  13307. src0->grad =
  13308. ggml_add_or_set(ctx, src0->grad,
  13309. // last ggml_get_rows_back argument src0->grad is only
  13310. // necessary to setup correct output shape
  13311. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13312. zero_table);
  13313. }
  13314. if (src1->grad) {
  13315. // noop
  13316. }
  13317. } break;
  13318. case GGML_OP_GET_ROWS_BACK:
  13319. {
  13320. GGML_ASSERT(false); // TODO: not implemented
  13321. } break;
  13322. case GGML_OP_DIAG:
  13323. {
  13324. GGML_ASSERT(false); // TODO: not implemented
  13325. } break;
  13326. case GGML_OP_DIAG_MASK_INF:
  13327. {
  13328. // necessary for llama
  13329. if (src0->grad) {
  13330. const int n_past = ((int32_t *) tensor->op_params)[0];
  13331. src0->grad =
  13332. ggml_add_or_set(ctx, src0->grad,
  13333. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13334. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13335. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13336. zero_table);
  13337. }
  13338. } break;
  13339. case GGML_OP_DIAG_MASK_ZERO:
  13340. {
  13341. // necessary for llama
  13342. if (src0->grad) {
  13343. const int n_past = ((int32_t *) tensor->op_params)[0];
  13344. src0->grad =
  13345. ggml_add_or_set(ctx, src0->grad,
  13346. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13347. zero_table);
  13348. }
  13349. } break;
  13350. case GGML_OP_SOFT_MAX:
  13351. {
  13352. // necessary for llama
  13353. if (src0->grad) {
  13354. src0->grad =
  13355. ggml_add_or_set(ctx, src0->grad,
  13356. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13357. zero_table);
  13358. }
  13359. } break;
  13360. case GGML_OP_SOFT_MAX_BACK:
  13361. {
  13362. GGML_ASSERT(false); // TODO: not implemented
  13363. } break;
  13364. case GGML_OP_ROPE:
  13365. {
  13366. // necessary for llama
  13367. if (src0->grad) {
  13368. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13369. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13370. const int mode = ((int32_t *) tensor->op_params)[2];
  13371. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13372. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13373. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13374. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13375. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13376. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13377. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13378. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13379. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13380. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13381. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13382. src0->grad = ggml_add_or_set(ctx,
  13383. src0->grad,
  13384. ggml_rope_back(ctx,
  13385. tensor->grad,
  13386. src1,
  13387. n_dims,
  13388. mode,
  13389. n_ctx,
  13390. n_orig_ctx,
  13391. freq_base,
  13392. freq_scale,
  13393. ext_factor,
  13394. attn_factor,
  13395. beta_fast,
  13396. beta_slow,
  13397. xpos_base,
  13398. xpos_down),
  13399. zero_table);
  13400. }
  13401. } break;
  13402. case GGML_OP_ROPE_BACK:
  13403. {
  13404. if (src0->grad) {
  13405. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13406. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13407. const int mode = ((int32_t *) tensor->op_params)[2];
  13408. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13409. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13410. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13411. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13412. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13413. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13414. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13415. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13416. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13417. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13418. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13419. src0->grad = ggml_add_or_set(ctx,
  13420. src0->grad,
  13421. ggml_rope_impl(ctx,
  13422. tensor->grad,
  13423. src1,
  13424. n_dims,
  13425. mode,
  13426. n_ctx,
  13427. n_orig_ctx,
  13428. freq_base,
  13429. freq_scale,
  13430. ext_factor,
  13431. attn_factor,
  13432. beta_fast,
  13433. beta_slow,
  13434. xpos_base,
  13435. xpos_down,
  13436. false),
  13437. zero_table);
  13438. }
  13439. } break;
  13440. case GGML_OP_ALIBI:
  13441. {
  13442. GGML_ASSERT(false); // TODO: not implemented
  13443. } break;
  13444. case GGML_OP_CLAMP:
  13445. {
  13446. GGML_ASSERT(false); // TODO: not implemented
  13447. } break;
  13448. case GGML_OP_CONV_TRANSPOSE_1D:
  13449. {
  13450. GGML_ASSERT(false); // TODO: not implemented
  13451. } break;
  13452. case GGML_OP_IM2COL:
  13453. {
  13454. GGML_ASSERT(false); // TODO: not implemented
  13455. } break;
  13456. case GGML_OP_CONV_TRANSPOSE_2D:
  13457. {
  13458. GGML_ASSERT(false); // TODO: not implemented
  13459. } break;
  13460. case GGML_OP_POOL_1D:
  13461. {
  13462. GGML_ASSERT(false); // TODO: not implemented
  13463. } break;
  13464. case GGML_OP_POOL_2D:
  13465. {
  13466. GGML_ASSERT(false); // TODO: not implemented
  13467. } break;
  13468. case GGML_OP_UPSCALE:
  13469. {
  13470. GGML_ASSERT(false); // TODO: not implemented
  13471. } break;
  13472. case GGML_OP_PAD:
  13473. {
  13474. GGML_ASSERT(false); // TODO: not implemented
  13475. } break;
  13476. case GGML_OP_ARGSORT:
  13477. {
  13478. GGML_ASSERT(false); // TODO: not implemented
  13479. } break;
  13480. case GGML_OP_LEAKY_RELU:
  13481. {
  13482. GGML_ASSERT(false); // TODO: not implemented
  13483. } break;
  13484. case GGML_OP_FLASH_ATTN:
  13485. {
  13486. struct ggml_tensor * flash_grad = NULL;
  13487. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13488. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13489. GGML_ASSERT(t == 0 || t == 1);
  13490. bool masked = t != 0;
  13491. flash_grad =
  13492. ggml_flash_attn_back(ctx,
  13493. src0,
  13494. src1,
  13495. tensor->src[2],
  13496. tensor->grad,
  13497. masked);
  13498. }
  13499. struct ggml_tensor * src2 = tensor->src[2];
  13500. const int64_t elem_q = ggml_nelements(src0);
  13501. const int64_t elem_k = ggml_nelements(src1);
  13502. const int64_t elem_v = ggml_nelements(src2);
  13503. enum ggml_type result_type = flash_grad->type;
  13504. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13505. const size_t tsize = ggml_type_size(result_type);
  13506. const size_t offs_q = 0;
  13507. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13508. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13509. if (src0->grad) {
  13510. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13511. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13512. src0->grad = ggml_add_or_set(ctx,
  13513. src0->grad,
  13514. grad_q,
  13515. zero_table);
  13516. }
  13517. if (src1->grad) {
  13518. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13519. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13520. src1->grad = ggml_add_or_set(ctx,
  13521. src1->grad,
  13522. grad_k,
  13523. zero_table);
  13524. }
  13525. if (src2->grad) {
  13526. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13527. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13528. src2->grad = ggml_add_or_set(ctx,
  13529. src2->grad,
  13530. grad_v,
  13531. zero_table);
  13532. }
  13533. } break;
  13534. case GGML_OP_FLASH_FF:
  13535. {
  13536. GGML_ASSERT(false); // not supported
  13537. } break;
  13538. case GGML_OP_FLASH_ATTN_BACK:
  13539. {
  13540. GGML_ASSERT(false); // not supported
  13541. } break;
  13542. case GGML_OP_WIN_PART:
  13543. case GGML_OP_WIN_UNPART:
  13544. case GGML_OP_UNARY:
  13545. {
  13546. switch (ggml_get_unary_op(tensor)) {
  13547. case GGML_UNARY_OP_ABS:
  13548. {
  13549. if (src0->grad) {
  13550. src0->grad =
  13551. ggml_add_or_set(ctx,
  13552. src0->grad,
  13553. ggml_mul(ctx,
  13554. ggml_sgn(ctx, src0),
  13555. tensor->grad),
  13556. zero_table);
  13557. }
  13558. } break;
  13559. case GGML_UNARY_OP_SGN:
  13560. {
  13561. if (src0->grad) {
  13562. // noop
  13563. }
  13564. } break;
  13565. case GGML_UNARY_OP_NEG:
  13566. {
  13567. if (src0->grad) {
  13568. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13569. }
  13570. } break;
  13571. case GGML_UNARY_OP_STEP:
  13572. {
  13573. if (src0->grad) {
  13574. // noop
  13575. }
  13576. } break;
  13577. case GGML_UNARY_OP_TANH:
  13578. {
  13579. GGML_ASSERT(false); // TODO: not implemented
  13580. } break;
  13581. case GGML_UNARY_OP_ELU:
  13582. {
  13583. GGML_ASSERT(false); // TODO: not implemented
  13584. } break;
  13585. case GGML_UNARY_OP_RELU:
  13586. {
  13587. if (src0->grad) {
  13588. src0->grad = ggml_add_or_set(ctx,
  13589. src0->grad,
  13590. ggml_mul(ctx,
  13591. ggml_step(ctx, src0),
  13592. tensor->grad),
  13593. zero_table);
  13594. }
  13595. } break;
  13596. case GGML_UNARY_OP_GELU:
  13597. {
  13598. GGML_ASSERT(false); // TODO: not implemented
  13599. } break;
  13600. case GGML_UNARY_OP_GELU_QUICK:
  13601. {
  13602. GGML_ASSERT(false); // TODO: not implemented
  13603. } break;
  13604. case GGML_UNARY_OP_SILU:
  13605. {
  13606. // necessary for llama
  13607. if (src0->grad) {
  13608. src0->grad = ggml_add_or_set(ctx,
  13609. src0->grad,
  13610. ggml_silu_back(ctx, src0, tensor->grad),
  13611. zero_table);
  13612. }
  13613. } break;
  13614. default:
  13615. GGML_ASSERT(false);
  13616. }
  13617. } break;
  13618. case GGML_OP_GET_REL_POS:
  13619. case GGML_OP_ADD_REL_POS:
  13620. case GGML_OP_MAP_UNARY:
  13621. case GGML_OP_MAP_BINARY:
  13622. case GGML_OP_MAP_CUSTOM1_F32:
  13623. case GGML_OP_MAP_CUSTOM2_F32:
  13624. case GGML_OP_MAP_CUSTOM3_F32:
  13625. case GGML_OP_MAP_CUSTOM1:
  13626. case GGML_OP_MAP_CUSTOM2:
  13627. case GGML_OP_MAP_CUSTOM3:
  13628. {
  13629. GGML_ASSERT(false); // not supported
  13630. } break;
  13631. case GGML_OP_CROSS_ENTROPY_LOSS:
  13632. {
  13633. if (src0->grad) {
  13634. src0->grad = ggml_add_or_set(ctx,
  13635. src0->grad,
  13636. ggml_cross_entropy_loss_back(ctx,
  13637. src0,
  13638. src1,
  13639. tensor->grad),
  13640. zero_table);
  13641. }
  13642. } break;
  13643. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13644. {
  13645. GGML_ASSERT(false); // not supported
  13646. } break;
  13647. case GGML_OP_NONE:
  13648. {
  13649. // nop
  13650. } break;
  13651. case GGML_OP_COUNT:
  13652. {
  13653. GGML_ASSERT(false);
  13654. } break;
  13655. }
  13656. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13657. if (tensor->src[i] && tensor->src[i]->grad) {
  13658. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13659. }
  13660. }
  13661. }
  13662. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13663. if (node->grad == NULL) {
  13664. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13665. // it can also happen during forward pass, if the user performs computations with constants
  13666. if (node->op != GGML_OP_NONE) {
  13667. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13668. }
  13669. }
  13670. // check if already visited
  13671. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13672. return;
  13673. }
  13674. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13675. const int k =
  13676. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13677. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13678. /* unknown order, just fall back to using i*/ i;
  13679. if (node->src[k]) {
  13680. ggml_visit_parents(cgraph, node->src[k]);
  13681. }
  13682. }
  13683. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13684. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13685. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13686. if (strlen(node->name) == 0) {
  13687. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13688. }
  13689. cgraph->leafs[cgraph->n_leafs] = node;
  13690. cgraph->n_leafs++;
  13691. } else {
  13692. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13693. if (strlen(node->name) == 0) {
  13694. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13695. }
  13696. cgraph->nodes[cgraph->n_nodes] = node;
  13697. if (cgraph->grads) {
  13698. cgraph->grads[cgraph->n_nodes] = node->grad;
  13699. }
  13700. cgraph->n_nodes++;
  13701. }
  13702. }
  13703. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13704. if (!expand) {
  13705. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13706. ggml_graph_clear(cgraph);
  13707. }
  13708. const int n0 = cgraph->n_nodes;
  13709. UNUSED(n0);
  13710. ggml_visit_parents(cgraph, tensor);
  13711. const int n_new = cgraph->n_nodes - n0;
  13712. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13713. if (n_new > 0) {
  13714. // the last added node should always be starting point
  13715. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13716. }
  13717. }
  13718. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13719. ggml_build_forward_impl(cgraph, tensor, true);
  13720. }
  13721. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13722. GGML_ASSERT(gf->n_nodes > 0);
  13723. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13724. if (keep) {
  13725. for (int i = 0; i < gf->n_nodes; i++) {
  13726. struct ggml_tensor * node = gf->nodes[i];
  13727. if (node->grad) {
  13728. node->grad = ggml_dup_tensor(ctx, node);
  13729. gf->grads[i] = node->grad;
  13730. }
  13731. }
  13732. }
  13733. // remember original gradients which start with zero values
  13734. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13735. for (int i = 0; i < gf->n_nodes; i++) {
  13736. if (gf->grads[i]) {
  13737. ggml_hash_insert(zero_table, gf->grads[i]);
  13738. }
  13739. }
  13740. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13741. struct ggml_tensor * node = gf->nodes[i];
  13742. // inplace operations to add gradients are not created by ggml_compute_backward
  13743. // use allocator to automatically make inplace operations
  13744. if (node->grad) {
  13745. ggml_compute_backward(ctx, node, zero_table);
  13746. }
  13747. }
  13748. for (int i = 0; i < gf->n_nodes; i++) {
  13749. struct ggml_tensor * node = gf->nodes[i];
  13750. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13751. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13752. ggml_build_forward_expand(gb, node->grad);
  13753. }
  13754. }
  13755. ggml_hash_set_free(zero_table);
  13756. }
  13757. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13758. size_t nbytes = sizeof(struct ggml_cgraph);
  13759. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13760. if (grads) {
  13761. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13762. }
  13763. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13764. return nbytes;
  13765. }
  13766. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13767. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13768. }
  13769. size_t ggml_graph_overhead(void) {
  13770. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13771. }
  13772. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13773. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13774. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13775. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13776. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13777. size_t hash_size = ggml_hash_size(size * 2);
  13778. struct ggml_tensor ** nodes_ptr = data_start;
  13779. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13780. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13781. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13782. // check that we allocated the correct amount of memory
  13783. assert(obj_size == (size_t) (
  13784. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13785. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13786. *cgraph = (struct ggml_cgraph) {
  13787. /*.size =*/ size,
  13788. /*.n_nodes =*/ 0,
  13789. /*.n_leafs =*/ 0,
  13790. /*.nodes =*/ nodes_ptr,
  13791. /*.grads =*/ grads_ptr,
  13792. /*.leafs =*/ leafs_ptr,
  13793. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13794. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13795. /*.perf_runs =*/ 0,
  13796. /*.perf_cycles =*/ 0,
  13797. /*.perf_time_us =*/ 0,
  13798. };
  13799. return cgraph;
  13800. }
  13801. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13802. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13803. }
  13804. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13805. struct ggml_cgraph cgraph = {
  13806. /*.size =*/ 0,
  13807. /*.n_nodes =*/ i1 - i0,
  13808. /*.n_leafs =*/ 0,
  13809. /*.nodes =*/ cgraph0->nodes + i0,
  13810. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13811. /*.leafs =*/ NULL,
  13812. /*.hash_table =*/ { 0, NULL },
  13813. /*.order =*/ cgraph0->order,
  13814. /*.perf_runs =*/ 0,
  13815. /*.perf_cycles =*/ 0,
  13816. /*.perf_time_us =*/ 0,
  13817. };
  13818. return cgraph;
  13819. }
  13820. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13821. GGML_ASSERT(dst->size >= src->n_leafs);
  13822. GGML_ASSERT(dst->size >= src->n_nodes);
  13823. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13824. dst->n_leafs = src->n_leafs;
  13825. dst->n_nodes = src->n_nodes;
  13826. dst->order = src->order;
  13827. for (int i = 0; i < src->n_leafs; ++i) {
  13828. dst->leafs[i] = src->leafs[i];
  13829. }
  13830. for (int i = 0; i < src->n_nodes; ++i) {
  13831. dst->nodes[i] = src->nodes[i];
  13832. }
  13833. if (src->grads) {
  13834. GGML_ASSERT(dst->grads != NULL);
  13835. for (int i = 0; i < src->n_nodes; ++i) {
  13836. dst->grads[i] = src->grads[i];
  13837. }
  13838. }
  13839. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13840. if (src->visited_hash_table.keys[i]) {
  13841. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13842. }
  13843. }
  13844. }
  13845. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13846. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13847. ggml_graph_cpy(cgraph, result);
  13848. return result;
  13849. }
  13850. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13851. GGML_ASSERT(cgraph->grads != NULL);
  13852. for (int i = 0; i < cgraph->n_nodes; i++) {
  13853. struct ggml_tensor * grad = cgraph->grads[i];
  13854. if (grad) {
  13855. ggml_set_zero(grad);
  13856. }
  13857. }
  13858. }
  13859. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13860. cgraph->n_leafs = 0;
  13861. cgraph->n_nodes = 0;
  13862. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13863. }
  13864. //
  13865. // thread data
  13866. //
  13867. // synchronization is done via busy loops
  13868. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13869. //
  13870. #ifdef __APPLE__
  13871. //#include <os/lock.h>
  13872. //
  13873. //typedef os_unfair_lock ggml_lock_t;
  13874. //
  13875. //#define ggml_lock_init(x) UNUSED(x)
  13876. //#define ggml_lock_destroy(x) UNUSED(x)
  13877. //#define ggml_lock_lock os_unfair_lock_lock
  13878. //#define ggml_lock_unlock os_unfair_lock_unlock
  13879. //
  13880. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13881. typedef int ggml_lock_t;
  13882. #define ggml_lock_init(x) UNUSED(x)
  13883. #define ggml_lock_destroy(x) UNUSED(x)
  13884. #define ggml_lock_lock(x) UNUSED(x)
  13885. #define ggml_lock_unlock(x) UNUSED(x)
  13886. #define GGML_LOCK_INITIALIZER 0
  13887. typedef pthread_t ggml_thread_t;
  13888. #define ggml_thread_create pthread_create
  13889. #define ggml_thread_join pthread_join
  13890. #else
  13891. //typedef pthread_spinlock_t ggml_lock_t;
  13892. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13893. //#define ggml_lock_destroy pthread_spin_destroy
  13894. //#define ggml_lock_lock pthread_spin_lock
  13895. //#define ggml_lock_unlock pthread_spin_unlock
  13896. typedef int ggml_lock_t;
  13897. #define ggml_lock_init(x) UNUSED(x)
  13898. #define ggml_lock_destroy(x) UNUSED(x)
  13899. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13900. #define ggml_lock_lock(x) _mm_pause()
  13901. #else
  13902. #define ggml_lock_lock(x) UNUSED(x)
  13903. #endif
  13904. #define ggml_lock_unlock(x) UNUSED(x)
  13905. #define GGML_LOCK_INITIALIZER 0
  13906. typedef pthread_t ggml_thread_t;
  13907. #define ggml_thread_create pthread_create
  13908. #define ggml_thread_join pthread_join
  13909. #endif
  13910. // Android's libc implementation "bionic" does not support setting affinity
  13911. #if defined(__linux__) && !defined(__BIONIC__)
  13912. static void set_numa_thread_affinity(int thread_n) {
  13913. if (!ggml_is_numa()) {
  13914. return;
  13915. }
  13916. int node_num;
  13917. int rv;
  13918. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13919. switch(g_state.numa.numa_strategy) {
  13920. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  13921. // run thread on node_num thread_n / (threads per node)
  13922. node_num = thread_n % g_state.numa.n_nodes;
  13923. break;
  13924. case GGML_NUMA_STRATEGY_ISOLATE:
  13925. // run thread on current_node
  13926. node_num = g_state.numa.current_node;
  13927. break;
  13928. case GGML_NUMA_STRATEGY_NUMACTL:
  13929. // use the cpuset that numactl gave us
  13930. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  13931. if (rv) {
  13932. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  13933. }
  13934. return;
  13935. default:
  13936. return;
  13937. }
  13938. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13939. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13940. CPU_ZERO_S(setsize, cpus);
  13941. for (size_t i = 0; i < node->n_cpus; ++i) {
  13942. CPU_SET_S(node->cpus[i], setsize, cpus);
  13943. }
  13944. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13945. if (rv) {
  13946. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  13947. }
  13948. CPU_FREE(cpus);
  13949. }
  13950. static void clear_numa_thread_affinity(void) {
  13951. if (!ggml_is_numa()) {
  13952. return;
  13953. }
  13954. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13955. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13956. CPU_ZERO_S(setsize, cpus);
  13957. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13958. CPU_SET_S(i, setsize, cpus);
  13959. }
  13960. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13961. if (rv) {
  13962. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  13963. }
  13964. CPU_FREE(cpus);
  13965. }
  13966. #else
  13967. // TODO: Windows etc.
  13968. // (the linux implementation may also work on BSD, someone should test)
  13969. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  13970. static void clear_numa_thread_affinity(void) {}
  13971. #endif
  13972. struct ggml_compute_state_shared {
  13973. const struct ggml_cgraph * cgraph;
  13974. const struct ggml_cplan * cplan;
  13975. int64_t perf_node_start_cycles;
  13976. int64_t perf_node_start_time_us;
  13977. const int n_threads;
  13978. // synchronization primitives
  13979. atomic_int n_active; // num active threads
  13980. atomic_int node_n; // active graph node
  13981. atomic_int node_task; // active graph node task phase
  13982. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  13983. void * abort_callback_data;
  13984. };
  13985. struct ggml_compute_state {
  13986. ggml_thread_t thrd;
  13987. int ith;
  13988. struct ggml_compute_state_shared * shared;
  13989. };
  13990. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13991. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13992. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13993. node->perf_runs++;
  13994. node->perf_cycles += cycles_cur;
  13995. node->perf_time_us += time_us_cur;
  13996. }
  13997. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13998. int n_tasks = 0;
  13999. switch (node->op) {
  14000. case GGML_OP_CPY:
  14001. case GGML_OP_DUP:
  14002. case GGML_OP_ADD:
  14003. case GGML_OP_ADD1:
  14004. case GGML_OP_ACC:
  14005. {
  14006. n_tasks = n_threads;
  14007. } break;
  14008. case GGML_OP_SUB:
  14009. case GGML_OP_SQR:
  14010. case GGML_OP_SQRT:
  14011. case GGML_OP_LOG:
  14012. case GGML_OP_SUM:
  14013. case GGML_OP_SUM_ROWS:
  14014. case GGML_OP_MEAN:
  14015. case GGML_OP_ARGMAX:
  14016. case GGML_OP_REPEAT:
  14017. case GGML_OP_REPEAT_BACK:
  14018. case GGML_OP_LEAKY_RELU:
  14019. {
  14020. n_tasks = 1;
  14021. } break;
  14022. case GGML_OP_UNARY:
  14023. switch (ggml_get_unary_op(node)) {
  14024. case GGML_UNARY_OP_ABS:
  14025. case GGML_UNARY_OP_SGN:
  14026. case GGML_UNARY_OP_NEG:
  14027. case GGML_UNARY_OP_STEP:
  14028. case GGML_UNARY_OP_TANH:
  14029. case GGML_UNARY_OP_ELU:
  14030. case GGML_UNARY_OP_RELU:
  14031. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14032. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14033. {
  14034. n_tasks = 1;
  14035. } break;
  14036. case GGML_UNARY_OP_GELU:
  14037. case GGML_UNARY_OP_GELU_QUICK:
  14038. case GGML_UNARY_OP_SILU:
  14039. {
  14040. n_tasks = n_threads;
  14041. } break;
  14042. default:
  14043. GGML_ASSERT(false);
  14044. }
  14045. break;
  14046. case GGML_OP_SILU_BACK:
  14047. case GGML_OP_MUL:
  14048. case GGML_OP_DIV:
  14049. case GGML_OP_NORM:
  14050. case GGML_OP_RMS_NORM:
  14051. case GGML_OP_RMS_NORM_BACK:
  14052. case GGML_OP_GROUP_NORM:
  14053. case GGML_OP_CONCAT:
  14054. {
  14055. n_tasks = n_threads;
  14056. } break;
  14057. case GGML_OP_MUL_MAT:
  14058. {
  14059. n_tasks = n_threads;
  14060. // TODO: use different scheduling for different matrix sizes
  14061. //const int nr0 = ggml_nrows(node->src[0]);
  14062. //const int nr1 = ggml_nrows(node->src[1]);
  14063. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14064. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14065. } break;
  14066. case GGML_OP_MUL_MAT_ID:
  14067. {
  14068. n_tasks = n_threads;
  14069. } break;
  14070. case GGML_OP_OUT_PROD:
  14071. {
  14072. n_tasks = n_threads;
  14073. } break;
  14074. case GGML_OP_SCALE:
  14075. case GGML_OP_SET:
  14076. case GGML_OP_CONT:
  14077. case GGML_OP_RESHAPE:
  14078. case GGML_OP_VIEW:
  14079. case GGML_OP_PERMUTE:
  14080. case GGML_OP_TRANSPOSE:
  14081. case GGML_OP_GET_ROWS:
  14082. case GGML_OP_GET_ROWS_BACK:
  14083. case GGML_OP_DIAG:
  14084. {
  14085. n_tasks = 1;
  14086. } break;
  14087. case GGML_OP_DIAG_MASK_ZERO:
  14088. case GGML_OP_DIAG_MASK_INF:
  14089. case GGML_OP_SOFT_MAX_BACK:
  14090. case GGML_OP_ROPE:
  14091. case GGML_OP_ROPE_BACK:
  14092. case GGML_OP_ADD_REL_POS:
  14093. {
  14094. n_tasks = n_threads;
  14095. } break;
  14096. case GGML_OP_ALIBI:
  14097. {
  14098. n_tasks = 1; //TODO
  14099. } break;
  14100. case GGML_OP_CLAMP:
  14101. {
  14102. n_tasks = 1; //TODO
  14103. } break;
  14104. case GGML_OP_SOFT_MAX:
  14105. {
  14106. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14107. } break;
  14108. case GGML_OP_CONV_TRANSPOSE_1D:
  14109. {
  14110. n_tasks = n_threads;
  14111. } break;
  14112. case GGML_OP_IM2COL:
  14113. {
  14114. n_tasks = n_threads;
  14115. } break;
  14116. case GGML_OP_CONV_TRANSPOSE_2D:
  14117. {
  14118. n_tasks = n_threads;
  14119. } break;
  14120. case GGML_OP_POOL_1D:
  14121. case GGML_OP_POOL_2D:
  14122. {
  14123. n_tasks = 1;
  14124. } break;
  14125. case GGML_OP_UPSCALE:
  14126. {
  14127. n_tasks = n_threads;
  14128. } break;
  14129. case GGML_OP_PAD:
  14130. {
  14131. n_tasks = n_threads;
  14132. } break;
  14133. case GGML_OP_ARGSORT:
  14134. {
  14135. n_tasks = n_threads;
  14136. } break;
  14137. case GGML_OP_FLASH_ATTN:
  14138. {
  14139. n_tasks = n_threads;
  14140. } break;
  14141. case GGML_OP_FLASH_FF:
  14142. {
  14143. n_tasks = n_threads;
  14144. } break;
  14145. case GGML_OP_FLASH_ATTN_BACK:
  14146. {
  14147. n_tasks = n_threads;
  14148. } break;
  14149. case GGML_OP_WIN_PART:
  14150. case GGML_OP_WIN_UNPART:
  14151. case GGML_OP_GET_REL_POS:
  14152. case GGML_OP_MAP_UNARY:
  14153. case GGML_OP_MAP_BINARY:
  14154. case GGML_OP_MAP_CUSTOM1_F32:
  14155. case GGML_OP_MAP_CUSTOM2_F32:
  14156. case GGML_OP_MAP_CUSTOM3_F32:
  14157. {
  14158. n_tasks = 1;
  14159. } break;
  14160. case GGML_OP_MAP_CUSTOM1:
  14161. {
  14162. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14163. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14164. n_tasks = n_threads;
  14165. } else {
  14166. n_tasks = MIN(p->n_tasks, n_threads);
  14167. }
  14168. } break;
  14169. case GGML_OP_MAP_CUSTOM2:
  14170. {
  14171. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14172. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14173. n_tasks = n_threads;
  14174. } else {
  14175. n_tasks = MIN(p->n_tasks, n_threads);
  14176. }
  14177. } break;
  14178. case GGML_OP_MAP_CUSTOM3:
  14179. {
  14180. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14181. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14182. n_tasks = n_threads;
  14183. } else {
  14184. n_tasks = MIN(p->n_tasks, n_threads);
  14185. }
  14186. } break;
  14187. case GGML_OP_CROSS_ENTROPY_LOSS:
  14188. {
  14189. n_tasks = n_threads;
  14190. } break;
  14191. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14192. {
  14193. n_tasks = n_threads;
  14194. } break;
  14195. case GGML_OP_NONE:
  14196. {
  14197. n_tasks = 1;
  14198. } break;
  14199. case GGML_OP_COUNT:
  14200. {
  14201. GGML_ASSERT(false);
  14202. } break;
  14203. default:
  14204. {
  14205. fprintf(stderr, "%s: op not implemented: ", __func__);
  14206. if (node->op < GGML_OP_COUNT) {
  14207. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14208. } else {
  14209. fprintf(stderr, "%d\n", node->op);
  14210. }
  14211. GGML_ASSERT(false);
  14212. } break;
  14213. }
  14214. assert(n_tasks > 0);
  14215. return n_tasks;
  14216. }
  14217. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14218. // wait for other threads to finish
  14219. const int last_node_n = * node_n;
  14220. while (true) {
  14221. if (do_yield) {
  14222. sched_yield();
  14223. }
  14224. * node_n = atomic_load(&state->shared->node_n);
  14225. if (* node_n != last_node_n) break;
  14226. }
  14227. }
  14228. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14229. // wait for other threads to finish
  14230. const int last_task_phase = * task_phase;
  14231. while (true) {
  14232. if (do_yield) {
  14233. sched_yield();
  14234. }
  14235. * task_phase = atomic_load(&state->shared->node_task);
  14236. if (* task_phase != last_task_phase) break;
  14237. }
  14238. }
  14239. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14240. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14241. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14242. const struct ggml_cplan * cplan = state->shared->cplan;
  14243. const int n_threads = state->shared->n_threads;
  14244. set_numa_thread_affinity(state->ith);
  14245. int node_n = -1;
  14246. int task_phase = GGML_TASK_FINALIZE;
  14247. while (true) {
  14248. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14249. state->shared->node_n += 1;
  14250. return (thread_ret_t) GGML_EXIT_ABORTED;
  14251. }
  14252. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14253. // all other threads are finished and spinning
  14254. // do finalize and init here so we don't have synchronize again
  14255. struct ggml_compute_params params = {
  14256. /*.type =*/ GGML_TASK_FINALIZE,
  14257. /*.ith =*/ 0,
  14258. /*.nth =*/ 0,
  14259. /*.wsize =*/ cplan->work_size,
  14260. /*.wdata =*/ cplan->work_data,
  14261. };
  14262. if (node_n != -1) {
  14263. /* FINALIZE */
  14264. struct ggml_tensor * node = cgraph->nodes[node_n];
  14265. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14266. params.nth = ggml_get_n_tasks(node, n_threads);
  14267. ggml_compute_forward(&params, node);
  14268. }
  14269. ggml_graph_compute_perf_stats_node(node, state->shared);
  14270. }
  14271. // distribute new work or execute it direct if 1T
  14272. while (++node_n < cgraph->n_nodes) {
  14273. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14274. struct ggml_tensor * node = cgraph->nodes[node_n];
  14275. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14276. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14277. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14278. params.nth = n_tasks;
  14279. if (n_tasks == 1) {
  14280. /* INIT */
  14281. if (GGML_OP_HAS_INIT[node->op]) {
  14282. params.type = GGML_TASK_INIT;
  14283. ggml_compute_forward(&params, node);
  14284. }
  14285. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14286. // they do something more efficient than spinning (?)
  14287. params.type = GGML_TASK_COMPUTE;
  14288. ggml_compute_forward(&params, node);
  14289. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14290. params.type = GGML_TASK_FINALIZE;
  14291. ggml_compute_forward(&params, node);
  14292. }
  14293. ggml_graph_compute_perf_stats_node(node, state->shared);
  14294. } else {
  14295. break;
  14296. }
  14297. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14298. break;
  14299. }
  14300. }
  14301. task_phase = GGML_TASK_INIT;
  14302. atomic_store(&state->shared->n_active, n_threads);
  14303. atomic_store(&state->shared->node_n, node_n);
  14304. atomic_store(&state->shared->node_task, task_phase);
  14305. } else {
  14306. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14307. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14308. }
  14309. // check if we should stop
  14310. if (node_n >= cgraph->n_nodes) break;
  14311. /* INIT & COMPUTE */
  14312. struct ggml_tensor * node = cgraph->nodes[node_n];
  14313. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14314. struct ggml_compute_params params = {
  14315. /*.type =*/ GGML_TASK_INIT,
  14316. /*.ith =*/ state->ith,
  14317. /*.nth =*/ n_tasks,
  14318. /*.wsize =*/ cplan->work_size,
  14319. /*.wdata =*/ cplan->work_data,
  14320. };
  14321. if (state->ith < n_tasks) {
  14322. if (GGML_OP_HAS_INIT[node->op]) {
  14323. ggml_compute_forward(&params, node);
  14324. }
  14325. }
  14326. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14327. task_phase = GGML_TASK_COMPUTE;
  14328. atomic_store(&state->shared->n_active, n_threads);
  14329. atomic_store(&state->shared->node_task, task_phase);
  14330. }
  14331. else {
  14332. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14333. // depending on the workload and the operating system.
  14334. // since it is not clear what is the best approach, it should potentially become user-configurable
  14335. // ref: https://github.com/ggerganov/ggml/issues/291
  14336. // UPD: adding the do_yield flag seems to resolve the issue universally
  14337. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14338. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14339. }
  14340. if (state->ith < n_tasks) {
  14341. params.type = GGML_TASK_COMPUTE;
  14342. ggml_compute_forward(&params, node);
  14343. }
  14344. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14345. task_phase = GGML_TASK_FINALIZE;
  14346. atomic_store(&state->shared->n_active, n_threads);
  14347. atomic_store(&state->shared->node_task, task_phase);
  14348. }
  14349. else {
  14350. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14351. }
  14352. }
  14353. return GGML_EXIT_SUCCESS;
  14354. }
  14355. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14356. if (n_threads <= 0) {
  14357. n_threads = GGML_DEFAULT_N_THREADS;
  14358. }
  14359. size_t work_size = 0;
  14360. struct ggml_cplan cplan;
  14361. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14362. int max_tasks = 1;
  14363. // thread scheduling for the different operations + work buffer size estimation
  14364. for (int i = 0; i < cgraph->n_nodes; i++) {
  14365. struct ggml_tensor * node = cgraph->nodes[i];
  14366. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14367. max_tasks = MAX(max_tasks, n_tasks);
  14368. size_t cur = 0;
  14369. switch (node->op) {
  14370. case GGML_OP_CPY:
  14371. case GGML_OP_DUP:
  14372. {
  14373. if (ggml_is_quantized(node->type)) {
  14374. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14375. }
  14376. } break;
  14377. case GGML_OP_ADD:
  14378. case GGML_OP_ADD1:
  14379. {
  14380. if (ggml_is_quantized(node->src[0]->type)) {
  14381. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14382. }
  14383. } break;
  14384. case GGML_OP_ACC:
  14385. {
  14386. if (ggml_is_quantized(node->src[0]->type)) {
  14387. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14388. }
  14389. } break;
  14390. case GGML_OP_MUL_MAT:
  14391. {
  14392. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14393. #if defined(GGML_USE_CLBLAST)
  14394. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14395. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14396. } else
  14397. #endif
  14398. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14399. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14400. if (node->src[0]->type != GGML_TYPE_F32) {
  14401. // here we need memory for fully dequantized matrix from src0
  14402. // take into account that src0 can be broadcasted into src1[2,3]
  14403. cur = ggml_type_size(GGML_TYPE_F32)
  14404. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14405. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14406. }
  14407. } else
  14408. #endif
  14409. if (node->src[1]->type != vec_dot_type) {
  14410. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14411. }
  14412. } break;
  14413. case GGML_OP_MUL_MAT_ID:
  14414. {
  14415. cur = 0;
  14416. const struct ggml_tensor * src0 = node->src[2];
  14417. const struct ggml_tensor * src1 = node->src[1];
  14418. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14419. if (src1->type != vec_dot_type) {
  14420. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14421. }
  14422. const int n_as = ggml_get_op_params_i32(node, 1);
  14423. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14424. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14425. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14426. } break;
  14427. case GGML_OP_OUT_PROD:
  14428. {
  14429. if (ggml_is_quantized(node->src[0]->type)) {
  14430. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14431. }
  14432. } break;
  14433. case GGML_OP_SOFT_MAX:
  14434. case GGML_OP_ROPE:
  14435. {
  14436. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14437. } break;
  14438. case GGML_OP_CONV_TRANSPOSE_1D:
  14439. {
  14440. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14441. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14442. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14443. const int64_t ne00 = node->src[0]->ne[0]; // K
  14444. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14445. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14446. const int64_t ne10 = node->src[1]->ne[0]; // L
  14447. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14448. if (node->src[0]->type == GGML_TYPE_F16 &&
  14449. node->src[1]->type == GGML_TYPE_F32) {
  14450. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14451. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14452. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14453. node->src[1]->type == GGML_TYPE_F32) {
  14454. cur += sizeof(float)*ne00*ne01*ne02;
  14455. cur += sizeof(float)*ne10*ne11;
  14456. } else {
  14457. GGML_ASSERT(false);
  14458. }
  14459. } break;
  14460. case GGML_OP_CONV_TRANSPOSE_2D:
  14461. {
  14462. const int64_t ne00 = node->src[0]->ne[0]; // W
  14463. const int64_t ne01 = node->src[0]->ne[1]; // H
  14464. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14465. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14466. const int64_t ne10 = node->src[1]->ne[0]; // W
  14467. const int64_t ne11 = node->src[1]->ne[1]; // H
  14468. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14469. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14470. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14471. } break;
  14472. case GGML_OP_FLASH_ATTN:
  14473. {
  14474. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14475. if (node->src[1]->type == GGML_TYPE_F32) {
  14476. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14477. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14478. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14479. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14480. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14481. }
  14482. } break;
  14483. case GGML_OP_FLASH_FF:
  14484. {
  14485. if (node->src[1]->type == GGML_TYPE_F32) {
  14486. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14487. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14488. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14489. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14490. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14491. }
  14492. } break;
  14493. case GGML_OP_FLASH_ATTN_BACK:
  14494. {
  14495. const int64_t D = node->src[0]->ne[0];
  14496. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14497. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14498. if (node->src[1]->type == GGML_TYPE_F32) {
  14499. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14500. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14501. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14502. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14503. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14504. }
  14505. } break;
  14506. case GGML_OP_CROSS_ENTROPY_LOSS:
  14507. {
  14508. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14509. } break;
  14510. case GGML_OP_COUNT:
  14511. {
  14512. GGML_ASSERT(false);
  14513. } break;
  14514. default:
  14515. break;
  14516. }
  14517. work_size = MAX(work_size, cur);
  14518. }
  14519. if (work_size > 0) {
  14520. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14521. }
  14522. cplan.n_threads = MIN(max_tasks, n_threads);
  14523. cplan.work_size = work_size;
  14524. cplan.work_data = NULL;
  14525. return cplan;
  14526. }
  14527. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14528. {
  14529. GGML_ASSERT(cplan);
  14530. GGML_ASSERT(cplan->n_threads > 0);
  14531. if (cplan->work_size > 0) {
  14532. GGML_ASSERT(cplan->work_data);
  14533. }
  14534. }
  14535. #ifdef GGML_USE_VULKAN
  14536. for (int i = 0; i < cgraph->n_nodes; i++) {
  14537. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14538. }
  14539. ggml_vk_preallocate_buffers_cpu_assist();
  14540. for (int i = 0; i < cgraph->n_nodes; i++) {
  14541. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14542. }
  14543. #endif
  14544. const int n_threads = cplan->n_threads;
  14545. struct ggml_compute_state_shared state_shared = {
  14546. /*.cgraph =*/ cgraph,
  14547. /*.cgraph_plan =*/ cplan,
  14548. /*.perf_node_start_cycles =*/ 0,
  14549. /*.perf_node_start_time_us =*/ 0,
  14550. /*.n_threads =*/ n_threads,
  14551. /*.n_active =*/ n_threads,
  14552. /*.node_n =*/ -1,
  14553. /*.node_task =*/ GGML_TASK_FINALIZE,
  14554. /*.abort_callback =*/ NULL,
  14555. /*.abort_callback_data =*/ NULL,
  14556. };
  14557. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14558. // create thread pool
  14559. if (n_threads > 1) {
  14560. for (int j = 1; j < n_threads; ++j) {
  14561. workers[j] = (struct ggml_compute_state) {
  14562. .thrd = 0,
  14563. .ith = j,
  14564. .shared = &state_shared,
  14565. };
  14566. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14567. GGML_ASSERT(rc == 0);
  14568. UNUSED(rc);
  14569. }
  14570. }
  14571. workers[0].ith = 0;
  14572. workers[0].shared = &state_shared;
  14573. const int64_t perf_start_cycles = ggml_perf_cycles();
  14574. const int64_t perf_start_time_us = ggml_perf_time_us();
  14575. // this is a work thread too
  14576. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14577. // don't leave affinity set on the main thread
  14578. clear_numa_thread_affinity();
  14579. // join or kill thread pool
  14580. if (n_threads > 1) {
  14581. for (int j = 1; j < n_threads; j++) {
  14582. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14583. GGML_ASSERT(rc == 0);
  14584. }
  14585. }
  14586. #ifdef GGML_USE_VULKAN
  14587. ggml_vk_graph_cleanup_cpu_assist();
  14588. #endif
  14589. // performance stats (graph)
  14590. {
  14591. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14592. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14593. cgraph->perf_runs++;
  14594. cgraph->perf_cycles += perf_cycles_cur;
  14595. cgraph->perf_time_us += perf_time_us_cur;
  14596. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14597. __func__, cgraph->perf_runs,
  14598. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14599. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14600. (double) perf_time_us_cur / 1000.0,
  14601. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14602. }
  14603. return compute_status;
  14604. }
  14605. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14606. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14607. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14608. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14609. ggml_graph_compute(cgraph, &cplan);
  14610. }
  14611. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14612. for (int i = 0; i < cgraph->n_leafs; i++) {
  14613. struct ggml_tensor * leaf = cgraph->leafs[i];
  14614. if (strcmp(leaf->name, name) == 0) {
  14615. return leaf;
  14616. }
  14617. }
  14618. for (int i = 0; i < cgraph->n_nodes; i++) {
  14619. struct ggml_tensor * node = cgraph->nodes[i];
  14620. if (strcmp(node->name, name) == 0) {
  14621. return node;
  14622. }
  14623. }
  14624. return NULL;
  14625. }
  14626. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14627. const int64_t * ne = tensor->ne;
  14628. const size_t * nb = tensor->nb;
  14629. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14630. ggml_type_name(tensor->type),
  14631. ggml_op_name (tensor->op),
  14632. ggml_n_dims(tensor),
  14633. ne[0], ne[1], ne[2], ne[3],
  14634. nb[0], nb[1], nb[2], nb[3],
  14635. tensor->data,
  14636. tensor->name);
  14637. }
  14638. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14639. const int64_t * ne = tensor->ne;
  14640. const size_t * nb = tensor->nb;
  14641. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14642. arg,
  14643. ggml_type_name(tensor->type),
  14644. ggml_op_name (tensor->op),
  14645. ggml_n_dims(tensor),
  14646. ne[0], ne[1], ne[2], ne[3],
  14647. nb[0], nb[1], nb[2], nb[3],
  14648. tensor->data,
  14649. tensor->name);
  14650. }
  14651. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14652. uint64_t size_eval = 0;
  14653. // compute size of intermediate results
  14654. // TODO: does not take into account scratch buffers !!!!
  14655. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14656. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14657. }
  14658. // print
  14659. {
  14660. FILE * fout = stdout;
  14661. fprintf(fout, "\n");
  14662. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14663. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14664. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14665. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14666. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14667. // header
  14668. fprintf(fout, "\n");
  14669. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14670. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14671. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14672. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14673. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14674. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14675. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14676. }
  14677. // header
  14678. fprintf(fout, "\n");
  14679. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14680. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14681. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14682. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14683. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14684. if (cgraph->nodes[i]->src[j]) {
  14685. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14686. }
  14687. }
  14688. fprintf(fout, "\n");
  14689. }
  14690. fprintf(fout, "\n");
  14691. }
  14692. // write binary data
  14693. {
  14694. FILE * fout = fopen(fname, "wb");
  14695. if (!fout) {
  14696. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14697. return;
  14698. }
  14699. // header
  14700. {
  14701. const uint32_t magic = GGML_FILE_MAGIC;
  14702. const uint32_t version = GGML_FILE_VERSION;
  14703. const uint32_t n_leafs = cgraph->n_leafs;
  14704. const uint32_t n_nodes = cgraph->n_nodes;
  14705. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14706. fwrite(&version, sizeof(uint32_t), 1, fout);
  14707. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14708. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14709. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14710. }
  14711. // leafs
  14712. {
  14713. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14714. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14715. const uint32_t type = tensor->type;
  14716. const uint32_t op = tensor->op;
  14717. fwrite(&type, sizeof(uint32_t), 1, fout);
  14718. fwrite(&op, sizeof(uint32_t), 1, fout);
  14719. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14720. const uint64_t ne = tensor->ne[j];
  14721. const uint64_t nb = tensor->nb[j];
  14722. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14723. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14724. }
  14725. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14726. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14727. // dump the data
  14728. // TODO: pad this to 32 byte boundary
  14729. {
  14730. const size_t size = ggml_nbytes(tensor);
  14731. fwrite(tensor->data, sizeof(char), size, fout);
  14732. }
  14733. }
  14734. }
  14735. // nodes
  14736. {
  14737. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14738. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14739. const uint32_t type = tensor->type;
  14740. const uint32_t op = tensor->op;
  14741. fwrite(&type, sizeof(uint32_t), 1, fout);
  14742. fwrite(&op, sizeof(uint32_t), 1, fout);
  14743. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14744. const uint64_t ne = tensor->ne[j];
  14745. const uint64_t nb = tensor->nb[j];
  14746. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14747. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14748. }
  14749. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14750. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14751. // output the op arguments
  14752. {
  14753. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14754. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14755. args[j] = tensor->src[j];
  14756. }
  14757. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14758. if (args[j]) {
  14759. int32_t idx = -1;
  14760. // check if leaf
  14761. {
  14762. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14763. if (args[j] == cgraph->leafs[k]) {
  14764. idx = k;
  14765. break;
  14766. }
  14767. }
  14768. }
  14769. // check if node
  14770. if (idx == -1) {
  14771. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14772. if (args[j] == cgraph->nodes[k]) {
  14773. idx = cgraph->n_leafs + k;
  14774. break;
  14775. }
  14776. }
  14777. }
  14778. if (idx == -1) {
  14779. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14780. fclose(fout);
  14781. return;
  14782. }
  14783. fwrite(&idx, sizeof(int32_t), 1, fout);
  14784. } else {
  14785. const int32_t nul = -1;
  14786. fwrite(&nul, sizeof(int32_t), 1, fout);
  14787. }
  14788. }
  14789. }
  14790. }
  14791. }
  14792. fclose(fout);
  14793. }
  14794. }
  14795. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14796. assert(*ctx_data == NULL);
  14797. assert(*ctx_eval == NULL);
  14798. struct ggml_cgraph * result = NULL;
  14799. struct ggml_tensor * data = NULL;
  14800. // read file into data
  14801. {
  14802. FILE * fin = fopen(fname, "rb");
  14803. if (!fin) {
  14804. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14805. return result;
  14806. }
  14807. size_t fsize = 0;
  14808. fseek(fin, 0, SEEK_END);
  14809. fsize = ftell(fin);
  14810. fseek(fin, 0, SEEK_SET);
  14811. // create the data context
  14812. {
  14813. const size_t overhead = 1*ggml_tensor_overhead();
  14814. struct ggml_init_params params = {
  14815. .mem_size = fsize + overhead,
  14816. .mem_buffer = NULL,
  14817. .no_alloc = false,
  14818. };
  14819. *ctx_data = ggml_init(params);
  14820. if (!*ctx_data) {
  14821. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14822. fclose(fin);
  14823. return result;
  14824. }
  14825. }
  14826. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14827. {
  14828. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14829. if (ret != fsize) {
  14830. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14831. fclose(fin);
  14832. return result;
  14833. }
  14834. }
  14835. fclose(fin);
  14836. }
  14837. // populate result
  14838. {
  14839. char * ptr = (char *) data->data;
  14840. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14841. if (magic != GGML_FILE_MAGIC) {
  14842. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14843. return result;
  14844. }
  14845. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14846. if (version != GGML_FILE_VERSION) {
  14847. fprintf(stderr, "%s: invalid version number\n", __func__);
  14848. return result;
  14849. }
  14850. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14851. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14852. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14853. const int graph_size = MAX(n_leafs, n_nodes);
  14854. // create the data context
  14855. {
  14856. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14857. struct ggml_init_params params = {
  14858. .mem_size = size_eval + overhead,
  14859. .mem_buffer = NULL,
  14860. .no_alloc = true,
  14861. };
  14862. *ctx_eval = ggml_init(params);
  14863. if (!*ctx_eval) {
  14864. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14865. return result;
  14866. }
  14867. }
  14868. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14869. result->n_leafs = n_leafs;
  14870. result->n_nodes = n_nodes;
  14871. // leafs
  14872. {
  14873. uint32_t type;
  14874. uint32_t op;
  14875. for (uint32_t i = 0; i < n_leafs; ++i) {
  14876. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14877. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14878. int64_t ne[GGML_MAX_DIMS];
  14879. size_t nb[GGML_MAX_DIMS];
  14880. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14881. uint64_t ne_cur;
  14882. uint64_t nb_cur;
  14883. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14884. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14885. ne[j] = ne_cur;
  14886. nb[j] = nb_cur;
  14887. }
  14888. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14889. tensor->op = (enum ggml_op) op;
  14890. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14891. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14892. tensor->data = (void *) ptr;
  14893. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14894. tensor->nb[j] = nb[j];
  14895. }
  14896. result->leafs[i] = tensor;
  14897. ptr += ggml_nbytes(tensor);
  14898. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14899. }
  14900. }
  14901. ggml_set_no_alloc(*ctx_eval, false);
  14902. // nodes
  14903. {
  14904. uint32_t type;
  14905. uint32_t op;
  14906. for (uint32_t i = 0; i < n_nodes; ++i) {
  14907. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14908. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14909. enum ggml_op eop = (enum ggml_op) op;
  14910. int64_t ne[GGML_MAX_DIMS];
  14911. size_t nb[GGML_MAX_DIMS];
  14912. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14913. uint64_t ne_cur;
  14914. uint64_t nb_cur;
  14915. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14916. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14917. ne[j] = ne_cur;
  14918. nb[j] = nb_cur;
  14919. }
  14920. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14921. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14922. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14923. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14924. // parse args
  14925. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14926. const int32_t arg_idx = ptr_arg_idx[j];
  14927. if (arg_idx == -1) {
  14928. continue;
  14929. }
  14930. if (arg_idx < result->n_leafs) {
  14931. args[j] = result->leafs[arg_idx];
  14932. } else {
  14933. args[j] = result->nodes[arg_idx - result->n_leafs];
  14934. }
  14935. }
  14936. // create the tensor
  14937. // "view" operations are handled differently
  14938. // TODO: handle inplace ops - currently a copy is always made
  14939. struct ggml_tensor * tensor = NULL;
  14940. switch (eop) {
  14941. // TODO: implement other view ops
  14942. case GGML_OP_RESHAPE:
  14943. {
  14944. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14945. } break;
  14946. case GGML_OP_VIEW:
  14947. {
  14948. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14949. size_t offs;
  14950. memcpy(&offs, ptr_op_params, sizeof(offs));
  14951. tensor->data = ((char *) tensor->data) + offs;
  14952. } break;
  14953. case GGML_OP_TRANSPOSE:
  14954. {
  14955. tensor = ggml_transpose(*ctx_eval, args[0]);
  14956. } break;
  14957. case GGML_OP_PERMUTE:
  14958. {
  14959. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14960. } break;
  14961. default:
  14962. {
  14963. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14964. tensor->op = eop;
  14965. } break;
  14966. }
  14967. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14968. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14969. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14970. tensor->nb[j] = nb[j];
  14971. }
  14972. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14973. tensor->src[j] = args[j];
  14974. }
  14975. result->nodes[i] = tensor;
  14976. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14977. }
  14978. }
  14979. }
  14980. return result;
  14981. }
  14982. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14983. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14984. GGML_PRINT("=== GRAPH ===\n");
  14985. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14986. for (int i = 0; i < cgraph->n_nodes; i++) {
  14987. struct ggml_tensor * node = cgraph->nodes[i];
  14988. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14989. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14990. i,
  14991. node->ne[0], node->ne[1], node->ne[2],
  14992. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14993. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14994. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14995. (double) node->perf_time_us / 1000.0,
  14996. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14997. }
  14998. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14999. for (int i = 0; i < cgraph->n_leafs; i++) {
  15000. struct ggml_tensor * node = cgraph->leafs[i];
  15001. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15002. i,
  15003. node->ne[0], node->ne[1],
  15004. ggml_op_name(node->op),
  15005. ggml_get_name(node));
  15006. }
  15007. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15008. if (perf_total_per_op_us[i] == 0) {
  15009. continue;
  15010. }
  15011. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15012. }
  15013. GGML_PRINT("========================================\n");
  15014. }
  15015. // check if node is part of the graph
  15016. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15017. if (cgraph == NULL) {
  15018. return true;
  15019. }
  15020. for (int i = 0; i < cgraph->n_nodes; i++) {
  15021. if (cgraph->nodes[i] == node) {
  15022. return true;
  15023. }
  15024. }
  15025. return false;
  15026. }
  15027. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15028. for (int i = 0; i < cgraph->n_nodes; i++) {
  15029. struct ggml_tensor * parent = cgraph->nodes[i];
  15030. if (parent->grad == node) {
  15031. return parent;
  15032. }
  15033. }
  15034. return NULL;
  15035. }
  15036. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15037. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15038. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15039. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15040. gparent0 ? (void *) gparent0 : (void *) parent,
  15041. gparent0 ? "g" : "x",
  15042. gparent ? (void *) gparent : (void *) node,
  15043. gparent ? "g" : "x",
  15044. gparent ? "empty" : "vee",
  15045. gparent ? "dashed" : "solid",
  15046. label);
  15047. }
  15048. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15049. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15050. (void *) parent, "x",
  15051. (void *) node, "x",
  15052. label);
  15053. }
  15054. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15055. char color[16];
  15056. FILE * fp = fopen(filename, "w");
  15057. GGML_ASSERT(fp);
  15058. fprintf(fp, "digraph G {\n");
  15059. fprintf(fp, " newrank = true;\n");
  15060. fprintf(fp, " rankdir = LR;\n");
  15061. for (int i = 0; i < gb->n_nodes; i++) {
  15062. struct ggml_tensor * node = gb->nodes[i];
  15063. if (ggml_graph_get_parent(gb, node) != NULL) {
  15064. continue;
  15065. }
  15066. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15067. snprintf(color, sizeof(color), "yellow");
  15068. } else if (node->grad) {
  15069. if (ggml_graph_find(gf, node)) {
  15070. snprintf(color, sizeof(color), "green");
  15071. } else {
  15072. snprintf(color, sizeof(color), "lightblue");
  15073. }
  15074. } else {
  15075. snprintf(color, sizeof(color), "white");
  15076. }
  15077. fprintf(fp, " \"%p\" [ "
  15078. "style = filled; fillcolor = %s; shape = record; "
  15079. "label=\"",
  15080. (void *) node, color);
  15081. if (strlen(node->name) > 0) {
  15082. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15083. } else {
  15084. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15085. }
  15086. if (ggml_is_matrix(node)) {
  15087. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15088. } else {
  15089. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15090. }
  15091. if (node->grad) {
  15092. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15093. } else {
  15094. fprintf(fp, "\"; ]\n");
  15095. }
  15096. }
  15097. for (int i = 0; i < gb->n_leafs; i++) {
  15098. struct ggml_tensor * node = gb->leafs[i];
  15099. snprintf(color, sizeof(color), "pink");
  15100. fprintf(fp, " \"%p\" [ "
  15101. "style = filled; fillcolor = %s; shape = record; "
  15102. "label=\"<x>",
  15103. (void *) node, color);
  15104. if (strlen(node->name) > 0) {
  15105. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15106. } else {
  15107. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15108. }
  15109. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15110. if (ggml_nelements(node) < 5) {
  15111. fprintf(fp, " | (");
  15112. for (int j = 0; j < ggml_nelements(node); j++) {
  15113. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15114. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15115. }
  15116. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15117. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15118. }
  15119. else {
  15120. fprintf(fp, "#");
  15121. }
  15122. if (j < ggml_nelements(node) - 1) {
  15123. fprintf(fp, ", ");
  15124. }
  15125. }
  15126. fprintf(fp, ")");
  15127. }
  15128. fprintf(fp, "\"; ]\n");
  15129. }
  15130. for (int i = 0; i < gb->n_nodes; i++) {
  15131. struct ggml_tensor * node = gb->nodes[i];
  15132. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15133. if (node->src[j]) {
  15134. char label[16];
  15135. snprintf(label, sizeof(label), "src %d", j);
  15136. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15137. }
  15138. }
  15139. }
  15140. for (int i = 0; i < gb->n_leafs; i++) {
  15141. struct ggml_tensor * node = gb->leafs[i];
  15142. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15143. if (node->src[j]) {
  15144. char label[16];
  15145. snprintf(label, sizeof(label), "src %d", j);
  15146. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15147. }
  15148. }
  15149. }
  15150. fprintf(fp, "}\n");
  15151. fclose(fp);
  15152. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15153. }
  15154. ////////////////////////////////////////////////////////////////////////////////
  15155. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15156. int i = 0;
  15157. for (int p = 0; p < np; ++p) {
  15158. const int64_t ne = ggml_nelements(ps[p]) ;
  15159. // TODO: add function to set tensor from array
  15160. for (int64_t j = 0; j < ne; ++j) {
  15161. ggml_set_f32_1d(ps[p], j, x[i++]);
  15162. }
  15163. }
  15164. }
  15165. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15166. int i = 0;
  15167. for (int p = 0; p < np; ++p) {
  15168. const int64_t ne = ggml_nelements(ps[p]) ;
  15169. // TODO: add function to get all elements at once
  15170. for (int64_t j = 0; j < ne; ++j) {
  15171. x[i++] = ggml_get_f32_1d(ps[p], j);
  15172. }
  15173. }
  15174. }
  15175. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15176. int64_t i = 0;
  15177. for (int p = 0; p < np; ++p) {
  15178. const int64_t ne = ggml_nelements(ps[p]) ;
  15179. // TODO: add function to get all elements at once
  15180. for (int64_t j = 0; j < ne; ++j) {
  15181. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15182. }
  15183. }
  15184. }
  15185. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15186. int64_t i = 0;
  15187. for (int p = 0; p < np; ++p) {
  15188. const int64_t ne = ggml_nelements(ps[p]) ;
  15189. // TODO: add function to get all elements at once
  15190. for (int64_t j = 0; j < ne; ++j) {
  15191. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15192. }
  15193. }
  15194. }
  15195. //
  15196. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15197. //
  15198. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15199. //
  15200. static enum ggml_opt_result ggml_opt_adam(
  15201. struct ggml_context * ctx,
  15202. struct ggml_opt_context * opt,
  15203. struct ggml_opt_params params,
  15204. struct ggml_tensor * f,
  15205. struct ggml_cgraph * gf,
  15206. struct ggml_cgraph * gb,
  15207. ggml_opt_callback callback,
  15208. void * callback_data) {
  15209. GGML_ASSERT(ggml_is_scalar(f));
  15210. // these will store the parameters we want to optimize
  15211. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15212. int np = 0;
  15213. int64_t nx = 0;
  15214. for (int i = 0; i < gf->n_nodes; ++i) {
  15215. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15216. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15217. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15218. ps[np++] = gf->nodes[i];
  15219. nx += ggml_nelements(gf->nodes[i]);
  15220. }
  15221. }
  15222. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15223. int iter = opt->iter;
  15224. ggml_opt_init(opt->ctx, opt, params, nx);
  15225. opt->iter = iter;
  15226. }
  15227. // constants
  15228. float sched = params.adam.sched;
  15229. const float alpha = params.adam.alpha;
  15230. const float decay = params.adam.decay * alpha;
  15231. const float beta1 = params.adam.beta1;
  15232. const float beta2 = params.adam.beta2;
  15233. const float eps = params.adam.eps;
  15234. const float gclip = params.adam.gclip;
  15235. const int decay_min_ndim = params.adam.decay_min_ndim;
  15236. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15237. const float accum_norm = 1.0f / (float) n_accum;
  15238. float * g = opt->adam.g->data; // gradients
  15239. float * m = opt->adam.m->data; // first moment
  15240. float * v = opt->adam.v->data; // second moment
  15241. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15242. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15243. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15244. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15245. bool cancel = false;
  15246. // compute the function value
  15247. float fx = 0;
  15248. ggml_set_zero(opt->adam.g);
  15249. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15250. if (callback) {
  15251. callback(callback_data, accum_step, &sched, &cancel);
  15252. if (cancel) {
  15253. return GGML_OPT_CANCEL;
  15254. }
  15255. }
  15256. // ggml_graph_reset (gf);
  15257. ggml_set_f32 (f->grad, 1.0f);
  15258. ggml_graph_compute(gb, &cplan);
  15259. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15260. fx += ggml_get_f32_1d(f, 0);
  15261. }
  15262. fx *= accum_norm;
  15263. opt->adam.fx_prev = fx;
  15264. opt->adam.fx_best = opt->adam.fx_prev;
  15265. if (pf) {
  15266. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15267. }
  15268. opt->loss_before = opt->adam.fx_prev;
  15269. opt->loss_after = opt->adam.fx_prev;
  15270. // initialize
  15271. if (opt->just_initialized) {
  15272. opt->adam.n_no_improvement = 0;
  15273. opt->just_initialized = false;
  15274. }
  15275. float * fx_best = &opt->adam.fx_best;
  15276. float * fx_prev = &opt->adam.fx_prev;
  15277. int * n_no_improvement = &opt->adam.n_no_improvement;
  15278. int iter0 = opt->iter;
  15279. // run the optimizer
  15280. for (int t = 0; t < params.adam.n_iter; ++t) {
  15281. opt->iter = iter0 + t + 1;
  15282. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15283. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15284. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15285. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15286. for (int i = 0; i < np; ++i) {
  15287. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15288. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15289. }
  15290. const int64_t t_start_wall = ggml_time_us();
  15291. const int64_t t_start_cpu = ggml_cycles();
  15292. UNUSED(t_start_wall);
  15293. UNUSED(t_start_cpu);
  15294. {
  15295. float gnorm = 1.0f;
  15296. if (gclip > 0.0f) {
  15297. // gradient clipping
  15298. ggml_float sum = 0.0;
  15299. for (int64_t i = 0; i < nx; ++i) {
  15300. sum += (ggml_float)(g[i]*g[i]);
  15301. }
  15302. ggml_float norm = sqrt(sum);
  15303. if (norm > (ggml_float) gclip) {
  15304. gnorm = (float) ((ggml_float) gclip / norm);
  15305. }
  15306. }
  15307. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15308. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15309. int64_t i = 0;
  15310. for (int p = 0; p < np; ++p) {
  15311. const int64_t ne = ggml_nelements(ps[p]);
  15312. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15313. for (int64_t j = 0; j < ne; ++j) {
  15314. float x = ggml_get_f32_1d(ps[p], j);
  15315. float g_ = g[i]*gnorm;
  15316. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15317. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15318. float mh = m[i]*beta1h;
  15319. float vh = v[i]*beta2h;
  15320. vh = sqrtf(vh) + eps;
  15321. x = x*(1.0f - p_decay) - mh/vh;
  15322. ggml_set_f32_1d(ps[p], j, x);
  15323. ++i;
  15324. }
  15325. }
  15326. }
  15327. fx = 0;
  15328. ggml_set_zero(opt->adam.g);
  15329. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15330. if (callback) {
  15331. callback(callback_data, accum_step, &sched, &cancel);
  15332. if (cancel) {
  15333. return GGML_OPT_CANCEL;;
  15334. }
  15335. }
  15336. // ggml_graph_reset (gf);
  15337. ggml_set_f32 (f->grad, 1.0f);
  15338. ggml_graph_compute(gb, &cplan);
  15339. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15340. fx += ggml_get_f32_1d(f, 0);
  15341. }
  15342. fx *= accum_norm;
  15343. opt->loss_after = fx;
  15344. // check convergence
  15345. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15346. GGML_PRINT_DEBUG("converged\n");
  15347. return GGML_OPT_OK;
  15348. }
  15349. // delta-based convergence test
  15350. if (pf != NULL) {
  15351. // need at least params.past iterations to start checking for convergence
  15352. if (params.past <= iter0 + t) {
  15353. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15354. if (fabsf(rate) < params.delta) {
  15355. return GGML_OPT_OK;
  15356. }
  15357. }
  15358. pf[(iter0 + t)%params.past] = fx;
  15359. }
  15360. // check for improvement
  15361. if (params.max_no_improvement > 0) {
  15362. if (fx_best[0] > fx) {
  15363. fx_best[0] = fx;
  15364. n_no_improvement[0] = 0;
  15365. } else {
  15366. ++n_no_improvement[0];
  15367. if (n_no_improvement[0] >= params.max_no_improvement) {
  15368. return GGML_OPT_OK;
  15369. }
  15370. }
  15371. }
  15372. fx_prev[0] = fx;
  15373. {
  15374. const int64_t t_end_cpu = ggml_cycles();
  15375. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15376. UNUSED(t_end_cpu);
  15377. const int64_t t_end_wall = ggml_time_us();
  15378. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15379. UNUSED(t_end_wall);
  15380. }
  15381. }
  15382. return GGML_OPT_DID_NOT_CONVERGE;
  15383. }
  15384. //
  15385. // L-BFGS
  15386. //
  15387. // the L-BFGS implementation below is based on the following implementation:
  15388. //
  15389. // https://github.com/chokkan/liblbfgs
  15390. //
  15391. struct ggml_lbfgs_iteration_data {
  15392. float alpha;
  15393. float ys;
  15394. float * s;
  15395. float * y;
  15396. };
  15397. static enum ggml_opt_result linesearch_backtracking(
  15398. const struct ggml_opt_params * params,
  15399. int nx,
  15400. float * x,
  15401. float * fx,
  15402. float * g,
  15403. float * d,
  15404. float * step,
  15405. const float * xp,
  15406. struct ggml_tensor * f,
  15407. struct ggml_cgraph * gb,
  15408. struct ggml_cplan * cplan,
  15409. const int np,
  15410. struct ggml_tensor * ps[],
  15411. bool * cancel,
  15412. ggml_opt_callback callback,
  15413. void * callback_data) {
  15414. int count = 0;
  15415. float width = 0.0f;
  15416. float dg = 0.0f;
  15417. float finit = 0.0f;
  15418. float dginit = 0.0f;
  15419. float dgtest = 0.0f;
  15420. const float dec = 0.5f;
  15421. const float inc = 2.1f;
  15422. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15423. const float accum_norm = 1.0f / (float) n_accum;
  15424. if (*step <= 0.f) {
  15425. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15426. }
  15427. // compute the initial gradient in the search direction
  15428. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15429. // make sure that d points to a descent direction
  15430. if (0 < dginit) {
  15431. return GGML_LINESEARCH_FAIL;
  15432. }
  15433. // initialize local variables
  15434. finit = *fx;
  15435. dgtest = params->lbfgs.ftol*dginit;
  15436. while (true) {
  15437. ggml_vec_cpy_f32(nx, x, xp);
  15438. ggml_vec_mad_f32(nx, x, d, *step);
  15439. // evaluate the function and gradient values
  15440. {
  15441. ggml_opt_set_params(np, ps, x);
  15442. *fx = 0;
  15443. memset(g, 0, sizeof(float)*nx);
  15444. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15445. if (callback) {
  15446. // LBFG-S does not support learning rate -> ignore learning schedule
  15447. float sched = 0;
  15448. callback(callback_data, accum_step, &sched, cancel);
  15449. if (*cancel) {
  15450. return GGML_OPT_CANCEL;
  15451. }
  15452. }
  15453. // ggml_graph_reset (gf);
  15454. ggml_set_f32 (f->grad, 1.0f);
  15455. ggml_graph_compute(gb, cplan);
  15456. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15457. *fx += ggml_get_f32_1d(f, 0);
  15458. }
  15459. *fx *= accum_norm;
  15460. }
  15461. ++count;
  15462. if (*fx > finit + (*step)*dgtest) {
  15463. width = dec;
  15464. } else {
  15465. // Armijo condition is satisfied
  15466. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15467. return count;
  15468. }
  15469. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15470. // check the Wolfe condition
  15471. if (dg < params->lbfgs.wolfe * dginit) {
  15472. width = inc;
  15473. } else {
  15474. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15475. // regular Wolfe conditions
  15476. return count;
  15477. }
  15478. if(dg > -params->lbfgs.wolfe*dginit) {
  15479. width = dec;
  15480. } else {
  15481. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15482. return count;
  15483. }
  15484. }
  15485. }
  15486. if (*step < params->lbfgs.min_step) {
  15487. return GGML_LINESEARCH_MINIMUM_STEP;
  15488. }
  15489. if (*step > params->lbfgs.max_step) {
  15490. return GGML_LINESEARCH_MAXIMUM_STEP;
  15491. }
  15492. if (params->lbfgs.max_linesearch <= count) {
  15493. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15494. }
  15495. (*step) *= width;
  15496. }
  15497. GGML_ASSERT(false && "line search failed");
  15498. return GGML_LINESEARCH_FAIL;
  15499. }
  15500. static enum ggml_opt_result ggml_opt_lbfgs(
  15501. struct ggml_context * ctx,
  15502. struct ggml_opt_context * opt,
  15503. struct ggml_opt_params params,
  15504. struct ggml_tensor * f,
  15505. struct ggml_cgraph * gf,
  15506. struct ggml_cgraph * gb,
  15507. ggml_opt_callback callback,
  15508. void * callback_data) {
  15509. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15510. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15511. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15512. return GGML_OPT_INVALID_WOLFE;
  15513. }
  15514. }
  15515. const int m = params.lbfgs.m;
  15516. // these will store the parameters we want to optimize
  15517. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15518. int np = 0;
  15519. int nx = 0;
  15520. for (int i = 0; i < gf->n_nodes; ++i) {
  15521. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15522. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15523. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15524. ps[np++] = gf->nodes[i];
  15525. nx += ggml_nelements(gf->nodes[i]);
  15526. }
  15527. }
  15528. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15529. int iter = opt->iter;
  15530. ggml_opt_init(ctx, opt, params, nx);
  15531. opt->iter = iter;
  15532. }
  15533. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15534. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15535. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15536. float * x = opt->lbfgs.x->data; // current parameters
  15537. float * xp = opt->lbfgs.xp->data; // previous parameters
  15538. float * g = opt->lbfgs.g->data; // current gradient
  15539. float * gp = opt->lbfgs.gp->data; // previous gradient
  15540. float * d = opt->lbfgs.d->data; // search direction
  15541. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15542. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15543. const float accum_norm = 1.0f / (float) n_accum;
  15544. float fx = 0.0f; // cost function value
  15545. float xnorm = 0.0f; // ||x||
  15546. float gnorm = 0.0f; // ||g||
  15547. // initialize x from the graph nodes
  15548. ggml_opt_get_params(np, ps, x);
  15549. // the L-BFGS memory
  15550. float * lm_alpha = opt->lbfgs.lmal->data;
  15551. float * lm_ys = opt->lbfgs.lmys->data;
  15552. float * lm_s = opt->lbfgs.lms->data;
  15553. float * lm_y = opt->lbfgs.lmy->data;
  15554. bool cancel = false;
  15555. // evaluate the function value and its gradient
  15556. {
  15557. ggml_opt_set_params(np, ps, x);
  15558. fx = 0;
  15559. memset(g, 0, sizeof(float)*nx);
  15560. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15561. if (callback) {
  15562. // LBFG-S does not support learning rate -> ignore learning schedule
  15563. float sched = 0;
  15564. callback(callback_data, accum_step, &sched, &cancel);
  15565. if (cancel) {
  15566. return GGML_OPT_CANCEL;
  15567. }
  15568. }
  15569. // ggml_graph_reset (gf);
  15570. ggml_set_f32 (f->grad, 1.0f);
  15571. ggml_graph_compute(gb, &cplan);
  15572. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15573. fx += ggml_get_f32_1d(f, 0);
  15574. }
  15575. fx *= accum_norm;
  15576. opt->loss_before = fx;
  15577. opt->loss_after = fx;
  15578. }
  15579. // search direction = -gradient
  15580. ggml_vec_neg_f32(nx, d, g);
  15581. // ||x||, ||g||
  15582. ggml_vec_norm_f32(nx, &xnorm, x);
  15583. ggml_vec_norm_f32(nx, &gnorm, g);
  15584. if (xnorm < 1.0f) {
  15585. xnorm = 1.0f;
  15586. }
  15587. // already optimized
  15588. if (gnorm/xnorm <= params.lbfgs.eps) {
  15589. return GGML_OPT_OK;
  15590. }
  15591. if (opt->just_initialized) {
  15592. if (pf) {
  15593. pf[0] = fx;
  15594. }
  15595. opt->lbfgs.fx_best = fx;
  15596. // initial step
  15597. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15598. opt->lbfgs.j = 0;
  15599. opt->lbfgs.k = 1;
  15600. opt->lbfgs.end = 0;
  15601. opt->lbfgs.n_no_improvement = 0;
  15602. opt->just_initialized = false;
  15603. }
  15604. float * fx_best = &opt->lbfgs.fx_best;
  15605. float * step = &opt->lbfgs.step;
  15606. int * j = &opt->lbfgs.j;
  15607. int * k = &opt->lbfgs.k;
  15608. int * end = &opt->lbfgs.end;
  15609. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15610. int ls = 0;
  15611. int bound = 0;
  15612. float ys = 0.0f;
  15613. float yy = 0.0f;
  15614. float beta = 0.0f;
  15615. int it = 0;
  15616. while (true) {
  15617. // store the current position and gradient vectors
  15618. ggml_vec_cpy_f32(nx, xp, x);
  15619. ggml_vec_cpy_f32(nx, gp, g);
  15620. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15621. // to determine if the optimization should be cancelled
  15622. // this is a simple change, but not doing this atm, since I don't have a nice
  15623. // way to test and don't want to break something with so many changes lined up
  15624. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15625. if (cancel) {
  15626. return GGML_OPT_CANCEL;
  15627. }
  15628. if (ls < 0) {
  15629. // linesearch failed - go back to the previous point and return
  15630. ggml_vec_cpy_f32(nx, x, xp);
  15631. ggml_vec_cpy_f32(nx, g, gp);
  15632. return ls;
  15633. }
  15634. opt->loss_after = fx;
  15635. ggml_vec_norm_f32(nx, &xnorm, x);
  15636. ggml_vec_norm_f32(nx, &gnorm, g);
  15637. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15638. if (xnorm < 1.0f) {
  15639. xnorm = 1.0f;
  15640. }
  15641. if (gnorm/xnorm <= params.lbfgs.eps) {
  15642. // converged
  15643. return GGML_OPT_OK;
  15644. }
  15645. // delta-based convergence test
  15646. if (pf != NULL) {
  15647. // need at least params.past iterations to start checking for convergence
  15648. if (params.past <= k[0]) {
  15649. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15650. if (fabsf(rate) < params.delta) {
  15651. return GGML_OPT_OK;
  15652. }
  15653. }
  15654. pf[k[0]%params.past] = fx;
  15655. }
  15656. // check for improvement
  15657. if (params.max_no_improvement > 0) {
  15658. if (fx < fx_best[0]) {
  15659. fx_best[0] = fx;
  15660. n_no_improvement[0] = 0;
  15661. } else {
  15662. n_no_improvement[0]++;
  15663. if (n_no_improvement[0] >= params.max_no_improvement) {
  15664. return GGML_OPT_OK;
  15665. }
  15666. }
  15667. }
  15668. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15669. // reached the maximum number of iterations
  15670. return GGML_OPT_DID_NOT_CONVERGE;
  15671. }
  15672. // update vectors s and y:
  15673. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15674. // y_{k+1} = g_{k+1} - g_{k}.
  15675. //
  15676. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15677. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15678. // compute scalars ys and yy:
  15679. // ys = y^t \cdot s -> 1 / \rho.
  15680. // yy = y^t \cdot y.
  15681. //
  15682. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15683. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15684. lm_ys[end[0]] = ys;
  15685. // find new search direction
  15686. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15687. bound = (m <= k[0]) ? m : k[0];
  15688. k[0]++;
  15689. it++;
  15690. end[0] = (end[0] + 1)%m;
  15691. // initialize search direction with -g
  15692. ggml_vec_neg_f32(nx, d, g);
  15693. j[0] = end[0];
  15694. for (int i = 0; i < bound; ++i) {
  15695. j[0] = (j[0] + m - 1) % m;
  15696. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15697. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15698. lm_alpha[j[0]] /= lm_ys[j[0]];
  15699. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15700. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15701. }
  15702. ggml_vec_scale_f32(nx, d, ys/yy);
  15703. for (int i = 0; i < bound; ++i) {
  15704. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15705. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15706. beta /= lm_ys[j[0]];
  15707. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15708. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15709. j[0] = (j[0] + 1)%m;
  15710. }
  15711. step[0] = 1.0;
  15712. }
  15713. GGML_ASSERT(false && "lbfgs failed");
  15714. return GGML_OPT_DID_NOT_CONVERGE;
  15715. }
  15716. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15717. struct ggml_opt_params result;
  15718. switch (type) {
  15719. case GGML_OPT_ADAM:
  15720. {
  15721. result = (struct ggml_opt_params) {
  15722. .type = GGML_OPT_ADAM,
  15723. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15724. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15725. .past = 0,
  15726. .delta = 1e-5f,
  15727. .max_no_improvement = 100,
  15728. .print_forward_graph = true,
  15729. .print_backward_graph = true,
  15730. .n_gradient_accumulation = 1,
  15731. .adam = {
  15732. .n_iter = 10000,
  15733. .sched = 1.000f,
  15734. .decay = 0.0f,
  15735. .decay_min_ndim = 2,
  15736. .alpha = 0.001f,
  15737. .beta1 = 0.9f,
  15738. .beta2 = 0.999f,
  15739. .eps = 1e-8f,
  15740. .eps_f = 1e-5f,
  15741. .eps_g = 1e-3f,
  15742. .gclip = 0.0f,
  15743. },
  15744. };
  15745. } break;
  15746. case GGML_OPT_LBFGS:
  15747. {
  15748. result = (struct ggml_opt_params) {
  15749. .type = GGML_OPT_LBFGS,
  15750. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15751. .n_threads = 1,
  15752. .past = 0,
  15753. .delta = 1e-5f,
  15754. .max_no_improvement = 0,
  15755. .print_forward_graph = true,
  15756. .print_backward_graph = true,
  15757. .n_gradient_accumulation = 1,
  15758. .lbfgs = {
  15759. .m = 6,
  15760. .n_iter = 100,
  15761. .max_linesearch = 20,
  15762. .eps = 1e-5f,
  15763. .ftol = 1e-4f,
  15764. .wolfe = 0.9f,
  15765. .min_step = 1e-20f,
  15766. .max_step = 1e+20f,
  15767. .linesearch = GGML_LINESEARCH_DEFAULT,
  15768. },
  15769. };
  15770. } break;
  15771. }
  15772. return result;
  15773. }
  15774. GGML_API void ggml_opt_init(
  15775. struct ggml_context * ctx,
  15776. struct ggml_opt_context * opt,
  15777. struct ggml_opt_params params,
  15778. int64_t nx) {
  15779. opt->ctx = ctx;
  15780. opt->params = params;
  15781. opt->iter = 0;
  15782. opt->nx = nx;
  15783. opt->just_initialized = true;
  15784. if (opt->ctx == NULL) {
  15785. struct ggml_init_params ctx_opt_params;
  15786. if (opt->params.type == GGML_OPT_ADAM) {
  15787. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15788. if (opt->params.past > 0) {
  15789. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15790. }
  15791. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15792. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15793. if (opt->params.past > 0) {
  15794. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15795. }
  15796. }
  15797. ctx_opt_params.mem_buffer = NULL;
  15798. ctx_opt_params.no_alloc = false;
  15799. opt->ctx = ggml_init(ctx_opt_params);
  15800. }
  15801. switch (opt->params.type) {
  15802. case GGML_OPT_ADAM:
  15803. {
  15804. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15805. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15806. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15807. opt->adam.pf = params.past > 0
  15808. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15809. : NULL;
  15810. ggml_set_zero(opt->adam.m);
  15811. ggml_set_zero(opt->adam.v);
  15812. if (opt->adam.pf) {
  15813. ggml_set_zero(opt->adam.pf);
  15814. }
  15815. } break;
  15816. case GGML_OPT_LBFGS:
  15817. {
  15818. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15819. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15820. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15821. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15822. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15823. opt->lbfgs.pf = params.past > 0
  15824. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15825. : NULL;
  15826. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15827. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15828. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15829. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15830. ggml_set_zero(opt->lbfgs.x);
  15831. ggml_set_zero(opt->lbfgs.xp);
  15832. ggml_set_zero(opt->lbfgs.g);
  15833. ggml_set_zero(opt->lbfgs.gp);
  15834. ggml_set_zero(opt->lbfgs.d);
  15835. if (opt->lbfgs.pf) {
  15836. ggml_set_zero(opt->lbfgs.pf);
  15837. }
  15838. ggml_set_zero(opt->lbfgs.lmal);
  15839. ggml_set_zero(opt->lbfgs.lmys);
  15840. ggml_set_zero(opt->lbfgs.lms);
  15841. ggml_set_zero(opt->lbfgs.lmy);
  15842. } break;
  15843. }
  15844. }
  15845. enum ggml_opt_result ggml_opt(
  15846. struct ggml_context * ctx,
  15847. struct ggml_opt_params params,
  15848. struct ggml_tensor * f) {
  15849. bool free_ctx = false;
  15850. if (ctx == NULL) {
  15851. struct ggml_init_params params_ctx = {
  15852. .mem_size = 16*1024*1024,
  15853. .mem_buffer = NULL,
  15854. .no_alloc = false,
  15855. };
  15856. ctx = ggml_init(params_ctx);
  15857. if (ctx == NULL) {
  15858. return GGML_OPT_NO_CONTEXT;
  15859. }
  15860. free_ctx = true;
  15861. }
  15862. enum ggml_opt_result result = GGML_OPT_OK;
  15863. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15864. ggml_opt_init(ctx, opt, params, 0);
  15865. result = ggml_opt_resume(ctx, opt, f);
  15866. if (free_ctx) {
  15867. ggml_free(ctx);
  15868. }
  15869. return result;
  15870. }
  15871. enum ggml_opt_result ggml_opt_resume(
  15872. struct ggml_context * ctx,
  15873. struct ggml_opt_context * opt,
  15874. struct ggml_tensor * f) {
  15875. // build forward + backward compute graphs
  15876. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15877. ggml_build_forward_expand(gf, f);
  15878. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15879. ggml_build_backward_expand(ctx, gf, gb, true);
  15880. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15881. }
  15882. enum ggml_opt_result ggml_opt_resume_g(
  15883. struct ggml_context * ctx,
  15884. struct ggml_opt_context * opt,
  15885. struct ggml_tensor * f,
  15886. struct ggml_cgraph * gf,
  15887. struct ggml_cgraph * gb,
  15888. ggml_opt_callback callback,
  15889. void * callback_data) {
  15890. // build forward + backward compute graphs
  15891. enum ggml_opt_result result = GGML_OPT_OK;
  15892. switch (opt->params.type) {
  15893. case GGML_OPT_ADAM:
  15894. {
  15895. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15896. } break;
  15897. case GGML_OPT_LBFGS:
  15898. {
  15899. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15900. } break;
  15901. }
  15902. if (opt->params.print_forward_graph) {
  15903. ggml_graph_print (gf);
  15904. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15905. }
  15906. if (opt->params.print_backward_graph) {
  15907. ggml_graph_print (gb);
  15908. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15909. }
  15910. return result;
  15911. }
  15912. ////////////////////////////////////////////////////////////////////////////////
  15913. void ggml_set_input(struct ggml_tensor * tensor) {
  15914. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  15915. }
  15916. void ggml_set_output(struct ggml_tensor * tensor) {
  15917. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  15918. }
  15919. ////////////////////////////////////////////////////////////////////////////////
  15920. void ggml_quantize_init(enum ggml_type type) {
  15921. ggml_critical_section_start();
  15922. switch (type) {
  15923. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15924. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15925. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15926. default: // nothing
  15927. break;
  15928. }
  15929. ggml_critical_section_end();
  15930. }
  15931. void ggml_quantize_free(void) {
  15932. ggml_critical_section_start();
  15933. iq2xs_free_impl(256);
  15934. iq2xs_free_impl(512);
  15935. ggml_critical_section_end();
  15936. }
  15937. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15938. assert(k % QK4_0 == 0);
  15939. const int nb = k / QK4_0;
  15940. for (int b = 0; b < n; b += k) {
  15941. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15942. quantize_row_q4_0_reference(src + b, y, k);
  15943. for (int i = 0; i < nb; i++) {
  15944. for (int j = 0; j < QK4_0; j += 2) {
  15945. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15946. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15947. hist[vi0]++;
  15948. hist[vi1]++;
  15949. }
  15950. }
  15951. }
  15952. return (n/QK4_0*sizeof(block_q4_0));
  15953. }
  15954. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15955. assert(k % QK4_1 == 0);
  15956. const int nb = k / QK4_1;
  15957. for (int b = 0; b < n; b += k) {
  15958. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15959. quantize_row_q4_1_reference(src + b, y, k);
  15960. for (int i = 0; i < nb; i++) {
  15961. for (int j = 0; j < QK4_1; j += 2) {
  15962. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15963. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15964. hist[vi0]++;
  15965. hist[vi1]++;
  15966. }
  15967. }
  15968. }
  15969. return (n/QK4_1*sizeof(block_q4_1));
  15970. }
  15971. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15972. assert(k % QK5_0 == 0);
  15973. const int nb = k / QK5_0;
  15974. for (int b = 0; b < n; b += k) {
  15975. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15976. quantize_row_q5_0_reference(src + b, y, k);
  15977. for (int i = 0; i < nb; i++) {
  15978. uint32_t qh;
  15979. memcpy(&qh, &y[i].qh, sizeof(qh));
  15980. for (int j = 0; j < QK5_0; j += 2) {
  15981. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15982. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15983. // cast to 16 bins
  15984. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15985. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15986. hist[vi0]++;
  15987. hist[vi1]++;
  15988. }
  15989. }
  15990. }
  15991. return (n/QK5_0*sizeof(block_q5_0));
  15992. }
  15993. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15994. assert(k % QK5_1 == 0);
  15995. const int nb = k / QK5_1;
  15996. for (int b = 0; b < n; b += k) {
  15997. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15998. quantize_row_q5_1_reference(src + b, y, k);
  15999. for (int i = 0; i < nb; i++) {
  16000. uint32_t qh;
  16001. memcpy(&qh, &y[i].qh, sizeof(qh));
  16002. for (int j = 0; j < QK5_1; j += 2) {
  16003. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16004. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16005. // cast to 16 bins
  16006. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16007. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16008. hist[vi0]++;
  16009. hist[vi1]++;
  16010. }
  16011. }
  16012. }
  16013. return (n/QK5_1*sizeof(block_q5_1));
  16014. }
  16015. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16016. assert(k % QK8_0 == 0);
  16017. const int nb = k / QK8_0;
  16018. for (int b = 0; b < n; b += k) {
  16019. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16020. quantize_row_q8_0_reference(src + b, y, k);
  16021. for (int i = 0; i < nb; i++) {
  16022. for (int j = 0; j < QK8_0; ++j) {
  16023. const int8_t vi = y[i].qs[j];
  16024. hist[vi/16 + 8]++;
  16025. }
  16026. }
  16027. }
  16028. return (n/QK8_0*sizeof(block_q8_0));
  16029. }
  16030. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16031. return
  16032. type == GGML_TYPE_IQ2_XXS ||
  16033. type == GGML_TYPE_IQ2_XS;
  16034. }
  16035. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16036. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16037. ggml_quantize_init(type); // this is noop if already initialized
  16038. size_t result = 0;
  16039. int n = nrows * n_per_row;
  16040. switch (type) {
  16041. case GGML_TYPE_Q4_0:
  16042. {
  16043. GGML_ASSERT(start % QK4_0 == 0);
  16044. GGML_ASSERT(start % n_per_row == 0);
  16045. size_t start_row = start / n_per_row;
  16046. size_t row_size = ggml_row_size(type, n_per_row);
  16047. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16048. GGML_ASSERT(result == row_size * nrows);
  16049. } break;
  16050. case GGML_TYPE_Q4_1:
  16051. {
  16052. GGML_ASSERT(start % QK4_1 == 0);
  16053. GGML_ASSERT(start % n_per_row == 0);
  16054. size_t start_row = start / n_per_row;
  16055. size_t row_size = ggml_row_size(type, n_per_row);
  16056. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16057. GGML_ASSERT(result == row_size * nrows);
  16058. } break;
  16059. case GGML_TYPE_Q5_0:
  16060. {
  16061. GGML_ASSERT(start % QK5_0 == 0);
  16062. GGML_ASSERT(start % n_per_row == 0);
  16063. size_t start_row = start / n_per_row;
  16064. size_t row_size = ggml_row_size(type, n_per_row);
  16065. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16066. GGML_ASSERT(result == row_size * nrows);
  16067. } break;
  16068. case GGML_TYPE_Q5_1:
  16069. {
  16070. GGML_ASSERT(start % QK5_1 == 0);
  16071. GGML_ASSERT(start % n_per_row == 0);
  16072. size_t start_row = start / n_per_row;
  16073. size_t row_size = ggml_row_size(type, n_per_row);
  16074. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16075. GGML_ASSERT(result == row_size * nrows);
  16076. } break;
  16077. case GGML_TYPE_Q8_0:
  16078. {
  16079. GGML_ASSERT(start % QK8_0 == 0);
  16080. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16081. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16082. } break;
  16083. case GGML_TYPE_Q2_K:
  16084. {
  16085. GGML_ASSERT(start % QK_K == 0);
  16086. GGML_ASSERT(start % n_per_row == 0);
  16087. size_t start_row = start / n_per_row;
  16088. size_t row_size = ggml_row_size(type, n_per_row);
  16089. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16090. GGML_ASSERT(result == row_size * nrows);
  16091. } break;
  16092. case GGML_TYPE_Q3_K:
  16093. {
  16094. GGML_ASSERT(start % QK_K == 0);
  16095. GGML_ASSERT(start % n_per_row == 0);
  16096. size_t start_row = start / n_per_row;
  16097. size_t row_size = ggml_row_size(type, n_per_row);
  16098. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16099. GGML_ASSERT(result == row_size * nrows);
  16100. } break;
  16101. case GGML_TYPE_Q4_K:
  16102. {
  16103. GGML_ASSERT(start % QK_K == 0);
  16104. GGML_ASSERT(start % n_per_row == 0);
  16105. size_t start_row = start / n_per_row;
  16106. size_t row_size = ggml_row_size(type, n_per_row);
  16107. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16108. GGML_ASSERT(result == row_size * nrows);
  16109. } break;
  16110. case GGML_TYPE_Q5_K:
  16111. {
  16112. GGML_ASSERT(start % QK_K == 0);
  16113. GGML_ASSERT(start % n_per_row == 0);
  16114. size_t start_row = start / n_per_row;
  16115. size_t row_size = ggml_row_size(type, n_per_row);
  16116. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16117. GGML_ASSERT(result == row_size * nrows);
  16118. } break;
  16119. case GGML_TYPE_Q6_K:
  16120. {
  16121. GGML_ASSERT(start % QK_K == 0);
  16122. GGML_ASSERT(start % n_per_row == 0);
  16123. size_t start_row = start / n_per_row;
  16124. size_t row_size = ggml_row_size(type, n_per_row);
  16125. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16126. GGML_ASSERT(result == row_size * nrows);
  16127. } break;
  16128. case GGML_TYPE_IQ2_XXS:
  16129. {
  16130. GGML_ASSERT(start % QK_K == 0);
  16131. GGML_ASSERT(start % n_per_row == 0);
  16132. GGML_ASSERT(imatrix);
  16133. size_t start_row = start / n_per_row;
  16134. size_t row_size = ggml_row_size(type, n_per_row);
  16135. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16136. GGML_ASSERT(result == row_size * nrows);
  16137. } break;
  16138. case GGML_TYPE_IQ2_XS:
  16139. {
  16140. GGML_ASSERT(start % QK_K == 0);
  16141. GGML_ASSERT(start % n_per_row == 0);
  16142. GGML_ASSERT(imatrix);
  16143. size_t start_row = start / n_per_row;
  16144. size_t row_size = ggml_row_size(type, n_per_row);
  16145. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16146. GGML_ASSERT(result == row_size * nrows);
  16147. } break;
  16148. case GGML_TYPE_IQ3_XXS:
  16149. {
  16150. GGML_ASSERT(start % QK_K == 0);
  16151. GGML_ASSERT(start % n_per_row == 0);
  16152. size_t start_row = start / n_per_row;
  16153. size_t row_size = ggml_row_size(type, n_per_row);
  16154. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16155. GGML_ASSERT(result == row_size * nrows);
  16156. } break;
  16157. case GGML_TYPE_F16:
  16158. {
  16159. size_t elemsize = sizeof(ggml_fp16_t);
  16160. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16161. result = n * elemsize;
  16162. } break;
  16163. case GGML_TYPE_F32:
  16164. {
  16165. size_t elemsize = sizeof(float);
  16166. result = n * elemsize;
  16167. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16168. } break;
  16169. default:
  16170. assert(false);
  16171. }
  16172. return result;
  16173. }
  16174. ////////////////////////////////////////////////////////////////////////////////
  16175. struct gguf_str {
  16176. uint64_t n; // GGUFv2
  16177. char * data;
  16178. };
  16179. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16180. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16181. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16182. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16183. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16184. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16185. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16186. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16187. [GGUF_TYPE_BOOL] = sizeof(bool),
  16188. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16189. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16190. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16191. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16192. [GGUF_TYPE_ARRAY] = 0, // undefined
  16193. };
  16194. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16195. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16196. [GGUF_TYPE_UINT8] = "u8",
  16197. [GGUF_TYPE_INT8] = "i8",
  16198. [GGUF_TYPE_UINT16] = "u16",
  16199. [GGUF_TYPE_INT16] = "i16",
  16200. [GGUF_TYPE_UINT32] = "u32",
  16201. [GGUF_TYPE_INT32] = "i32",
  16202. [GGUF_TYPE_FLOAT32] = "f32",
  16203. [GGUF_TYPE_BOOL] = "bool",
  16204. [GGUF_TYPE_STRING] = "str",
  16205. [GGUF_TYPE_ARRAY] = "arr",
  16206. [GGUF_TYPE_UINT64] = "u64",
  16207. [GGUF_TYPE_INT64] = "i64",
  16208. [GGUF_TYPE_FLOAT64] = "f64",
  16209. };
  16210. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16211. union gguf_value {
  16212. uint8_t uint8;
  16213. int8_t int8;
  16214. uint16_t uint16;
  16215. int16_t int16;
  16216. uint32_t uint32;
  16217. int32_t int32;
  16218. float float32;
  16219. uint64_t uint64;
  16220. int64_t int64;
  16221. double float64;
  16222. bool bool_;
  16223. struct gguf_str str;
  16224. struct {
  16225. enum gguf_type type;
  16226. uint64_t n; // GGUFv2
  16227. void * data;
  16228. } arr;
  16229. };
  16230. struct gguf_kv {
  16231. struct gguf_str key;
  16232. enum gguf_type type;
  16233. union gguf_value value;
  16234. };
  16235. struct gguf_header {
  16236. char magic[4];
  16237. uint32_t version;
  16238. uint64_t n_tensors; // GGUFv2
  16239. uint64_t n_kv; // GGUFv2
  16240. };
  16241. struct gguf_tensor_info {
  16242. struct gguf_str name;
  16243. uint32_t n_dims;
  16244. uint64_t ne[GGML_MAX_DIMS];
  16245. enum ggml_type type;
  16246. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16247. // for writing API
  16248. const void * data;
  16249. size_t size;
  16250. };
  16251. struct gguf_context {
  16252. struct gguf_header header;
  16253. struct gguf_kv * kv;
  16254. struct gguf_tensor_info * infos;
  16255. size_t alignment;
  16256. size_t offset; // offset of `data` from beginning of file
  16257. size_t size; // size of `data` in bytes
  16258. //uint8_t * padding;
  16259. void * data;
  16260. };
  16261. static size_t gguf_type_size(enum gguf_type type) {
  16262. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16263. return GGUF_TYPE_SIZE[type];
  16264. }
  16265. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16266. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16267. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16268. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16269. GGML_ASSERT(info->ne[i] > 0);
  16270. }
  16271. // prevent overflow for total number of elements
  16272. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16273. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16274. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16275. }
  16276. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16277. const size_t n = fread(dst, 1, size, file);
  16278. *offset += n;
  16279. return n == size;
  16280. }
  16281. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16282. p->n = 0;
  16283. p->data = NULL;
  16284. bool ok = true;
  16285. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16286. // early exit if string length is invalid, prevents from integer overflow
  16287. if (p->n == SIZE_MAX) {
  16288. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16289. return false;
  16290. }
  16291. p->data = GGML_CALLOC(p->n + 1, 1);
  16292. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16293. return ok;
  16294. }
  16295. struct gguf_context * gguf_init_empty(void) {
  16296. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16297. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16298. ctx->header.version = GGUF_VERSION;
  16299. ctx->header.n_tensors = 0;
  16300. ctx->header.n_kv = 0;
  16301. ctx->kv = NULL;
  16302. ctx->infos = NULL;
  16303. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16304. ctx->offset = 0;
  16305. ctx->size = 0;
  16306. ctx->data = NULL;
  16307. return ctx;
  16308. }
  16309. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16310. FILE * file = fopen(fname, "rb");
  16311. if (!file) {
  16312. return NULL;
  16313. }
  16314. // offset from start of file
  16315. size_t offset = 0;
  16316. char magic[4];
  16317. // check the magic before making allocations
  16318. {
  16319. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16320. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16321. if (magic[i] != GGUF_MAGIC[i]) {
  16322. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16323. fclose(file);
  16324. return NULL;
  16325. }
  16326. }
  16327. }
  16328. bool ok = true;
  16329. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16330. // read the header
  16331. {
  16332. strncpy(ctx->header.magic, magic, 4);
  16333. ctx->kv = NULL;
  16334. ctx->infos = NULL;
  16335. ctx->data = NULL;
  16336. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16337. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16338. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16339. if (ctx->header.version == 1) {
  16340. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16341. fclose(file);
  16342. gguf_free(ctx);
  16343. return NULL;
  16344. }
  16345. // sanity-checks to prevent from integer/buffer overflows
  16346. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16347. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16348. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16349. if (!ok) {
  16350. fprintf(stderr, "%s: failed to read header\n", __func__);
  16351. fclose(file);
  16352. gguf_free(ctx);
  16353. return NULL;
  16354. }
  16355. }
  16356. // read the kv pairs
  16357. {
  16358. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16359. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16360. struct gguf_kv * kv = &ctx->kv[i];
  16361. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16362. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16363. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16364. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16365. switch (kv->type) {
  16366. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16367. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16368. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16369. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16370. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16371. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16372. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16373. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16374. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16375. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16376. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16377. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16378. case GGUF_TYPE_ARRAY:
  16379. {
  16380. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16381. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16382. switch (kv->value.arr.type) {
  16383. case GGUF_TYPE_UINT8:
  16384. case GGUF_TYPE_INT8:
  16385. case GGUF_TYPE_UINT16:
  16386. case GGUF_TYPE_INT16:
  16387. case GGUF_TYPE_UINT32:
  16388. case GGUF_TYPE_INT32:
  16389. case GGUF_TYPE_FLOAT32:
  16390. case GGUF_TYPE_UINT64:
  16391. case GGUF_TYPE_INT64:
  16392. case GGUF_TYPE_FLOAT64:
  16393. case GGUF_TYPE_BOOL:
  16394. {
  16395. // prevent from integer overflow in the malloc below
  16396. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16397. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16398. fclose(file);
  16399. gguf_free(ctx);
  16400. return NULL;
  16401. }
  16402. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16403. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16404. } break;
  16405. case GGUF_TYPE_STRING:
  16406. {
  16407. // prevent from integer overflow in the malloc below
  16408. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16409. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16410. fclose(file);
  16411. gguf_free(ctx);
  16412. return NULL;
  16413. }
  16414. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16415. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16416. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16417. }
  16418. } break;
  16419. case GGUF_TYPE_ARRAY:
  16420. default: GGML_ASSERT(false && "invalid type"); break;
  16421. }
  16422. } break;
  16423. default: GGML_ASSERT(false && "invalid type");
  16424. }
  16425. if (!ok) {
  16426. break;
  16427. }
  16428. }
  16429. if (!ok) {
  16430. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16431. fclose(file);
  16432. gguf_free(ctx);
  16433. return NULL;
  16434. }
  16435. }
  16436. // read the tensor infos
  16437. {
  16438. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16439. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16440. struct gguf_tensor_info * info = &ctx->infos[i];
  16441. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16442. info->ne[j] = 1;
  16443. }
  16444. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16445. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16446. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16447. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16448. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16449. }
  16450. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16451. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16452. gguf_tensor_info_sanitize(info);
  16453. if (!ok) {
  16454. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16455. fclose(file);
  16456. gguf_free(ctx);
  16457. return NULL;
  16458. }
  16459. }
  16460. }
  16461. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16462. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16463. if (alignment_idx != -1) {
  16464. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16465. }
  16466. // we require the data section to be aligned, so take into account any padding
  16467. {
  16468. const size_t offset_pad = offset % ctx->alignment;
  16469. if (offset_pad != 0) {
  16470. offset += ctx->alignment - offset_pad;
  16471. fseek(file, offset, SEEK_SET);
  16472. }
  16473. }
  16474. // store the current file offset - this is where the data section starts
  16475. ctx->offset = offset;
  16476. // compute the total size of the data section, taking into account the alignment
  16477. {
  16478. ctx->size = 0;
  16479. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16480. struct gguf_tensor_info * info = &ctx->infos[i];
  16481. const int64_t ne =
  16482. (int64_t) info->ne[0] *
  16483. (int64_t) info->ne[1] *
  16484. (int64_t) info->ne[2] *
  16485. (int64_t) info->ne[3];
  16486. if (ne % ggml_blck_size(info->type) != 0) {
  16487. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16488. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16489. fclose(file);
  16490. gguf_free(ctx);
  16491. return NULL;
  16492. }
  16493. const size_t size_cur = ggml_row_size(info->type, ne);
  16494. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16495. }
  16496. }
  16497. // load the tensor data only if requested
  16498. if (params.ctx != NULL) {
  16499. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16500. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16501. // the ggml_tensor structs to the appropriate locations in the binary blob
  16502. // compute the exact size needed for the new ggml_context
  16503. const size_t mem_size =
  16504. params.no_alloc ?
  16505. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16506. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16507. struct ggml_init_params pdata = {
  16508. .mem_size = mem_size,
  16509. .mem_buffer = NULL,
  16510. .no_alloc = params.no_alloc,
  16511. };
  16512. *params.ctx = ggml_init(pdata);
  16513. struct ggml_context * ctx_data = *params.ctx;
  16514. struct ggml_tensor * data = NULL;
  16515. if (!params.no_alloc) {
  16516. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16517. ok = ok && data != NULL;
  16518. // read the binary blob with the tensor data
  16519. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16520. if (!ok) {
  16521. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16522. fclose(file);
  16523. ggml_free(ctx_data);
  16524. gguf_free(ctx);
  16525. return NULL;
  16526. }
  16527. ctx->data = data->data;
  16528. }
  16529. ggml_set_no_alloc(ctx_data, true);
  16530. // create the tensors
  16531. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16532. const int64_t ne[GGML_MAX_DIMS] = {
  16533. ctx->infos[i].ne[0],
  16534. ctx->infos[i].ne[1],
  16535. ctx->infos[i].ne[2],
  16536. ctx->infos[i].ne[3],
  16537. };
  16538. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16539. ok = ok && cur != NULL;
  16540. ggml_set_name(cur, ctx->infos[i].name.data);
  16541. if (!ok) {
  16542. break;
  16543. }
  16544. // point the data member to the appropriate location in the binary blob using the tensor infos
  16545. if (!params.no_alloc) {
  16546. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16547. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16548. }
  16549. }
  16550. if (!ok) {
  16551. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16552. fclose(file);
  16553. ggml_free(ctx_data);
  16554. gguf_free(ctx);
  16555. return NULL;
  16556. }
  16557. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16558. }
  16559. fclose(file);
  16560. return ctx;
  16561. }
  16562. void gguf_free(struct gguf_context * ctx) {
  16563. if (ctx == NULL) {
  16564. return;
  16565. }
  16566. if (ctx->kv) {
  16567. // free string memory - not great..
  16568. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16569. struct gguf_kv * kv = &ctx->kv[i];
  16570. if (kv->key.data) {
  16571. GGML_FREE(kv->key.data);
  16572. }
  16573. if (kv->type == GGUF_TYPE_STRING) {
  16574. if (kv->value.str.data) {
  16575. GGML_FREE(kv->value.str.data);
  16576. }
  16577. }
  16578. if (kv->type == GGUF_TYPE_ARRAY) {
  16579. if (kv->value.arr.data) {
  16580. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16581. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16582. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16583. if (str->data) {
  16584. GGML_FREE(str->data);
  16585. }
  16586. }
  16587. }
  16588. GGML_FREE(kv->value.arr.data);
  16589. }
  16590. }
  16591. }
  16592. GGML_FREE(ctx->kv);
  16593. }
  16594. if (ctx->infos) {
  16595. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16596. struct gguf_tensor_info * info = &ctx->infos[i];
  16597. if (info->name.data) {
  16598. GGML_FREE(info->name.data);
  16599. }
  16600. }
  16601. GGML_FREE(ctx->infos);
  16602. }
  16603. GGML_ALIGNED_FREE(ctx);
  16604. }
  16605. const char * gguf_type_name(enum gguf_type type) {
  16606. return GGUF_TYPE_NAME[type];
  16607. }
  16608. int gguf_get_version(const struct gguf_context * ctx) {
  16609. return ctx->header.version;
  16610. }
  16611. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16612. return ctx->alignment;
  16613. }
  16614. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16615. return ctx->offset;
  16616. }
  16617. void * gguf_get_data(const struct gguf_context * ctx) {
  16618. return ctx->data;
  16619. }
  16620. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16621. return ctx->header.n_kv;
  16622. }
  16623. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16624. // return -1 if key not found
  16625. int keyfound = -1;
  16626. const int n_kv = gguf_get_n_kv(ctx);
  16627. for (int i = 0; i < n_kv; ++i) {
  16628. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16629. keyfound = i;
  16630. break;
  16631. }
  16632. }
  16633. return keyfound;
  16634. }
  16635. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16636. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16637. return ctx->kv[key_id].key.data;
  16638. }
  16639. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16640. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16641. return ctx->kv[key_id].type;
  16642. }
  16643. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16644. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16645. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16646. return ctx->kv[key_id].value.arr.type;
  16647. }
  16648. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16649. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16650. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16651. return ctx->kv[key_id].value.arr.data;
  16652. }
  16653. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16654. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16655. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16656. struct gguf_kv * kv = &ctx->kv[key_id];
  16657. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16658. return str->data;
  16659. }
  16660. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16661. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16662. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16663. return ctx->kv[key_id].value.arr.n;
  16664. }
  16665. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16666. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16667. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16668. return ctx->kv[key_id].value.uint8;
  16669. }
  16670. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16671. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16672. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16673. return ctx->kv[key_id].value.int8;
  16674. }
  16675. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16676. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16677. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16678. return ctx->kv[key_id].value.uint16;
  16679. }
  16680. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16681. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16682. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16683. return ctx->kv[key_id].value.int16;
  16684. }
  16685. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16686. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16687. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16688. return ctx->kv[key_id].value.uint32;
  16689. }
  16690. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16691. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16692. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16693. return ctx->kv[key_id].value.int32;
  16694. }
  16695. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16696. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16697. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16698. return ctx->kv[key_id].value.float32;
  16699. }
  16700. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16701. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16702. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16703. return ctx->kv[key_id].value.uint64;
  16704. }
  16705. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16706. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16707. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16708. return ctx->kv[key_id].value.int64;
  16709. }
  16710. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16711. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16712. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16713. return ctx->kv[key_id].value.float64;
  16714. }
  16715. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16716. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16717. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16718. return ctx->kv[key_id].value.bool_;
  16719. }
  16720. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16721. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16722. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16723. return ctx->kv[key_id].value.str.data;
  16724. }
  16725. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16726. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16727. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16728. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16729. return &ctx->kv[key_id].value;
  16730. }
  16731. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16732. return ctx->header.n_tensors;
  16733. }
  16734. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16735. // return -1 if tensor not found
  16736. int tensorfound = -1;
  16737. const int n_tensors = gguf_get_n_tensors(ctx);
  16738. for (int i = 0; i < n_tensors; ++i) {
  16739. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16740. tensorfound = i;
  16741. break;
  16742. }
  16743. }
  16744. return tensorfound;
  16745. }
  16746. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16747. return ctx->infos[i].offset;
  16748. }
  16749. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16750. return ctx->infos[i].name.data;
  16751. }
  16752. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16753. return ctx->infos[i].type;
  16754. }
  16755. // returns the index
  16756. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16757. const int idx = gguf_find_key(ctx, key);
  16758. if (idx >= 0) {
  16759. return idx;
  16760. }
  16761. const int n_kv = gguf_get_n_kv(ctx);
  16762. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16763. ctx->kv[n_kv].key.n = strlen(key);
  16764. ctx->kv[n_kv].key.data = strdup(key);
  16765. ctx->header.n_kv++;
  16766. return n_kv;
  16767. }
  16768. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16769. const int idx = gguf_get_or_add_key(ctx, key);
  16770. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16771. ctx->kv[idx].value.uint8 = val;
  16772. }
  16773. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16774. const int idx = gguf_get_or_add_key(ctx, key);
  16775. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16776. ctx->kv[idx].value.int8 = val;
  16777. }
  16778. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16779. const int idx = gguf_get_or_add_key(ctx, key);
  16780. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16781. ctx->kv[idx].value.uint16 = val;
  16782. }
  16783. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16784. const int idx = gguf_get_or_add_key(ctx, key);
  16785. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16786. ctx->kv[idx].value.int16 = val;
  16787. }
  16788. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16789. const int idx = gguf_get_or_add_key(ctx, key);
  16790. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16791. ctx->kv[idx].value.uint32 = val;
  16792. }
  16793. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16794. const int idx = gguf_get_or_add_key(ctx, key);
  16795. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16796. ctx->kv[idx].value.int32 = val;
  16797. }
  16798. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16799. const int idx = gguf_get_or_add_key(ctx, key);
  16800. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16801. ctx->kv[idx].value.float32 = val;
  16802. }
  16803. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16804. const int idx = gguf_get_or_add_key(ctx, key);
  16805. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16806. ctx->kv[idx].value.uint64 = val;
  16807. }
  16808. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16809. const int idx = gguf_get_or_add_key(ctx, key);
  16810. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16811. ctx->kv[idx].value.int64 = val;
  16812. }
  16813. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16814. const int idx = gguf_get_or_add_key(ctx, key);
  16815. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16816. ctx->kv[idx].value.float64 = val;
  16817. }
  16818. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16819. const int idx = gguf_get_or_add_key(ctx, key);
  16820. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16821. ctx->kv[idx].value.bool_ = val;
  16822. }
  16823. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16824. const int idx = gguf_get_or_add_key(ctx, key);
  16825. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16826. ctx->kv[idx].value.str.n = strlen(val);
  16827. ctx->kv[idx].value.str.data = strdup(val);
  16828. }
  16829. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16830. const int idx = gguf_get_or_add_key(ctx, key);
  16831. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16832. ctx->kv[idx].value.arr.type = type;
  16833. ctx->kv[idx].value.arr.n = n;
  16834. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16835. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16836. }
  16837. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16838. const int idx = gguf_get_or_add_key(ctx, key);
  16839. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16840. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16841. ctx->kv[idx].value.arr.n = n;
  16842. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16843. for (int i = 0; i < n; i++) {
  16844. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16845. str->n = strlen(data[i]);
  16846. str->data = strdup(data[i]);
  16847. }
  16848. }
  16849. // set or add KV pairs from another context
  16850. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16851. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16852. switch (src->kv[i].type) {
  16853. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16854. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16855. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16856. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16857. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16858. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16859. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16860. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16861. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16862. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16863. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16864. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16865. case GGUF_TYPE_ARRAY:
  16866. {
  16867. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16868. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16869. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16870. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16871. }
  16872. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16873. GGML_FREE((void *)data);
  16874. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16875. GGML_ASSERT(false && "nested arrays not supported");
  16876. } else {
  16877. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16878. }
  16879. } break;
  16880. default: GGML_ASSERT(false && "invalid type"); break;
  16881. }
  16882. }
  16883. }
  16884. void gguf_add_tensor(
  16885. struct gguf_context * ctx,
  16886. const struct ggml_tensor * tensor) {
  16887. const int idx = ctx->header.n_tensors;
  16888. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16889. ctx->infos[idx].name.n = strlen(tensor->name);
  16890. ctx->infos[idx].name.data = strdup(tensor->name);
  16891. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16892. ctx->infos[idx].ne[i] = 1;
  16893. }
  16894. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16895. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16896. ctx->infos[idx].ne[i] = tensor->ne[i];
  16897. }
  16898. ctx->infos[idx].type = tensor->type;
  16899. ctx->infos[idx].offset = 0;
  16900. ctx->infos[idx].data = tensor->data;
  16901. ctx->infos[idx].size = ggml_nbytes(tensor);
  16902. if (ctx->header.n_tensors > 0) {
  16903. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16904. }
  16905. ctx->header.n_tensors++;
  16906. }
  16907. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16908. const int idx = gguf_find_tensor(ctx, name);
  16909. if (idx < 0) {
  16910. GGML_ASSERT(false && "tensor not found");
  16911. }
  16912. ctx->infos[idx].type = type;
  16913. }
  16914. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16915. const int idx = gguf_find_tensor(ctx, name);
  16916. if (idx < 0) {
  16917. GGML_ASSERT(false && "tensor not found");
  16918. }
  16919. ctx->infos[idx].data = data;
  16920. ctx->infos[idx].size = size;
  16921. // update offsets
  16922. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16923. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16924. }
  16925. }
  16926. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16927. // fwrite(&val->n, sizeof(val->n), 1, file);
  16928. // fwrite(val->data, sizeof(char), val->n, file);
  16929. //}
  16930. //
  16931. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16932. // fwrite(val, sizeof(char), size, file);
  16933. //}
  16934. struct gguf_buf {
  16935. void * data;
  16936. size_t size;
  16937. size_t offset;
  16938. };
  16939. static struct gguf_buf gguf_buf_init(size_t size) {
  16940. struct gguf_buf buf = {
  16941. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  16942. /*buf.size =*/ size,
  16943. /*buf.offset =*/ 0,
  16944. };
  16945. return buf;
  16946. }
  16947. static void gguf_buf_free(struct gguf_buf buf) {
  16948. if (buf.data) {
  16949. GGML_FREE(buf.data);
  16950. }
  16951. }
  16952. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16953. if (buf->offset + size > buf->size) {
  16954. buf->size = 1.5*(buf->offset + size);
  16955. if (buf->data) {
  16956. buf->data = realloc(buf->data, buf->size);
  16957. }
  16958. }
  16959. }
  16960. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16961. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16962. if (buf->data) {
  16963. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16964. }
  16965. buf->offset += sizeof(val->n);
  16966. if (buf->data) {
  16967. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16968. }
  16969. buf->offset += val->n;
  16970. }
  16971. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16972. gguf_buf_grow(buf, el_size);
  16973. if (buf->data) {
  16974. memcpy((char *) buf->data + buf->offset, val, el_size);
  16975. }
  16976. buf->offset += el_size;
  16977. }
  16978. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16979. // write header
  16980. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16981. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16982. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16983. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16984. // write key-value pairs
  16985. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16986. struct gguf_kv * kv = &ctx->kv[i];
  16987. gguf_bwrite_str(buf, &kv->key);
  16988. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16989. switch (kv->type) {
  16990. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16991. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16992. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16993. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16994. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16995. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16996. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16997. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16998. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16999. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17000. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17001. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17002. case GGUF_TYPE_ARRAY:
  17003. {
  17004. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17005. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17006. switch (kv->value.arr.type) {
  17007. case GGUF_TYPE_UINT8:
  17008. case GGUF_TYPE_INT8:
  17009. case GGUF_TYPE_UINT16:
  17010. case GGUF_TYPE_INT16:
  17011. case GGUF_TYPE_UINT32:
  17012. case GGUF_TYPE_INT32:
  17013. case GGUF_TYPE_FLOAT32:
  17014. case GGUF_TYPE_UINT64:
  17015. case GGUF_TYPE_INT64:
  17016. case GGUF_TYPE_FLOAT64:
  17017. case GGUF_TYPE_BOOL:
  17018. {
  17019. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17020. } break;
  17021. case GGUF_TYPE_STRING:
  17022. {
  17023. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17024. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17025. }
  17026. } break;
  17027. case GGUF_TYPE_ARRAY:
  17028. default: GGML_ASSERT(false && "invalid type"); break;
  17029. }
  17030. } break;
  17031. default: GGML_ASSERT(false && "invalid type");
  17032. }
  17033. }
  17034. // write tensor infos
  17035. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17036. struct gguf_tensor_info * info = &ctx->infos[i];
  17037. gguf_bwrite_str(buf, &info->name);
  17038. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17039. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17040. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17041. }
  17042. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17043. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17044. }
  17045. // we require the data section to be aligned, so take into account any padding
  17046. {
  17047. const size_t offset = buf->offset;
  17048. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17049. if (offset_pad != offset) {
  17050. uint8_t pad = 0;
  17051. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17052. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17053. }
  17054. }
  17055. }
  17056. if (only_meta) {
  17057. return;
  17058. }
  17059. size_t offset = 0;
  17060. // write tensor data
  17061. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17062. struct gguf_tensor_info * info = &ctx->infos[i];
  17063. const size_t size = info->size;
  17064. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17065. gguf_bwrite_el(buf, info->data, size);
  17066. if (size_pad != size) {
  17067. uint8_t pad = 0;
  17068. for (size_t j = 0; j < size_pad - size; ++j) {
  17069. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17070. }
  17071. }
  17072. GGML_ASSERT(offset == info->offset);
  17073. offset += size_pad;
  17074. }
  17075. }
  17076. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17077. FILE * file = fopen(fname, "wb");
  17078. if (!file) {
  17079. GGML_ASSERT(false && "failed to open file for writing");
  17080. }
  17081. struct gguf_buf buf = gguf_buf_init(16*1024);
  17082. gguf_write_to_buf(ctx, &buf, only_meta);
  17083. fwrite(buf.data, 1, buf.offset, file);
  17084. gguf_buf_free(buf);
  17085. fclose(file);
  17086. }
  17087. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17088. // no allocs - only compute size
  17089. struct gguf_buf buf = gguf_buf_init(0);
  17090. gguf_write_to_buf(ctx, &buf, true);
  17091. return buf.offset;
  17092. }
  17093. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17094. struct gguf_buf buf = gguf_buf_init(16*1024);
  17095. gguf_write_to_buf(ctx, &buf, true);
  17096. memcpy(data, buf.data, buf.offset);
  17097. gguf_buf_free(buf);
  17098. }
  17099. ////////////////////////////////////////////////////////////////////////////////
  17100. int ggml_cpu_has_avx(void) {
  17101. #if defined(__AVX__)
  17102. return 1;
  17103. #else
  17104. return 0;
  17105. #endif
  17106. }
  17107. int ggml_cpu_has_avx_vnni(void) {
  17108. #if defined(__AVXVNNI__)
  17109. return 1;
  17110. #else
  17111. return 0;
  17112. #endif
  17113. }
  17114. int ggml_cpu_has_avx2(void) {
  17115. #if defined(__AVX2__)
  17116. return 1;
  17117. #else
  17118. return 0;
  17119. #endif
  17120. }
  17121. int ggml_cpu_has_avx512(void) {
  17122. #if defined(__AVX512F__)
  17123. return 1;
  17124. #else
  17125. return 0;
  17126. #endif
  17127. }
  17128. int ggml_cpu_has_avx512_vbmi(void) {
  17129. #if defined(__AVX512VBMI__)
  17130. return 1;
  17131. #else
  17132. return 0;
  17133. #endif
  17134. }
  17135. int ggml_cpu_has_avx512_vnni(void) {
  17136. #if defined(__AVX512VNNI__)
  17137. return 1;
  17138. #else
  17139. return 0;
  17140. #endif
  17141. }
  17142. int ggml_cpu_has_fma(void) {
  17143. #if defined(__FMA__)
  17144. return 1;
  17145. #else
  17146. return 0;
  17147. #endif
  17148. }
  17149. int ggml_cpu_has_neon(void) {
  17150. #if defined(__ARM_NEON)
  17151. return 1;
  17152. #else
  17153. return 0;
  17154. #endif
  17155. }
  17156. int ggml_cpu_has_arm_fma(void) {
  17157. #if defined(__ARM_FEATURE_FMA)
  17158. return 1;
  17159. #else
  17160. return 0;
  17161. #endif
  17162. }
  17163. int ggml_cpu_has_metal(void) {
  17164. #if defined(GGML_USE_METAL)
  17165. return 1;
  17166. #else
  17167. return 0;
  17168. #endif
  17169. }
  17170. int ggml_cpu_has_f16c(void) {
  17171. #if defined(__F16C__)
  17172. return 1;
  17173. #else
  17174. return 0;
  17175. #endif
  17176. }
  17177. int ggml_cpu_has_fp16_va(void) {
  17178. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17179. return 1;
  17180. #else
  17181. return 0;
  17182. #endif
  17183. }
  17184. int ggml_cpu_has_wasm_simd(void) {
  17185. #if defined(__wasm_simd128__)
  17186. return 1;
  17187. #else
  17188. return 0;
  17189. #endif
  17190. }
  17191. int ggml_cpu_has_blas(void) {
  17192. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17193. return 1;
  17194. #else
  17195. return 0;
  17196. #endif
  17197. }
  17198. int ggml_cpu_has_cublas(void) {
  17199. #if defined(GGML_USE_CUBLAS)
  17200. return 1;
  17201. #else
  17202. return 0;
  17203. #endif
  17204. }
  17205. int ggml_cpu_has_clblast(void) {
  17206. #if defined(GGML_USE_CLBLAST)
  17207. return 1;
  17208. #else
  17209. return 0;
  17210. #endif
  17211. }
  17212. int ggml_cpu_has_vulkan(void) {
  17213. #if defined(GGML_USE_VULKAN)
  17214. return 1;
  17215. #else
  17216. return 0;
  17217. #endif
  17218. }
  17219. int ggml_cpu_has_kompute(void) {
  17220. #if defined(GGML_USE_KOMPUTE)
  17221. return 1;
  17222. #else
  17223. return 0;
  17224. #endif
  17225. }
  17226. int ggml_cpu_has_sycl(void) {
  17227. #if defined(GGML_USE_SYCL)
  17228. return 1;
  17229. #else
  17230. return 0;
  17231. #endif
  17232. }
  17233. int ggml_cpu_has_gpublas(void) {
  17234. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17235. ggml_cpu_has_sycl();
  17236. }
  17237. int ggml_cpu_has_sse3(void) {
  17238. #if defined(__SSE3__)
  17239. return 1;
  17240. #else
  17241. return 0;
  17242. #endif
  17243. }
  17244. int ggml_cpu_has_ssse3(void) {
  17245. #if defined(__SSSE3__)
  17246. return 1;
  17247. #else
  17248. return 0;
  17249. #endif
  17250. }
  17251. int ggml_cpu_has_vsx(void) {
  17252. #if defined(__POWER9_VECTOR__)
  17253. return 1;
  17254. #else
  17255. return 0;
  17256. #endif
  17257. }
  17258. int ggml_cpu_has_matmul_int8(void) {
  17259. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17260. return 1;
  17261. #else
  17262. return 0;
  17263. #endif
  17264. }
  17265. ////////////////////////////////////////////////////////////////////////////////