ggml.h 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. #ifdef GGML_MULTIPLATFORM
  188. # if defined(_WIN32)
  189. # define GGML_CALL
  190. # else
  191. # define GGML_CALL __attribute__((__ms_abi__))
  192. # endif
  193. #else
  194. # define GGML_CALL
  195. #endif
  196. // TODO: support for clang
  197. #ifdef __GNUC__
  198. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  199. #elif defined(_MSC_VER)
  200. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  201. #else
  202. # define GGML_DEPRECATED(func, hint) func
  203. #endif
  204. #ifndef __GNUC__
  205. # define GGML_ATTRIBUTE_FORMAT(...)
  206. #elif defined(__MINGW32__)
  207. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  208. #else
  209. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  210. #endif
  211. #include <stdint.h>
  212. #include <stddef.h>
  213. #include <stdbool.h>
  214. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  215. #define GGML_FILE_VERSION 1
  216. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  217. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  218. #define GGML_MAX_DIMS 4
  219. #define GGML_MAX_PARAMS 2048
  220. #define GGML_MAX_CONTEXTS 64
  221. #define GGML_MAX_SRC 10
  222. #ifndef GGML_MAX_NAME
  223. #define GGML_MAX_NAME 64
  224. #endif
  225. #define GGML_MAX_OP_PARAMS 64
  226. #define GGML_DEFAULT_N_THREADS 4
  227. #define GGML_DEFAULT_GRAPH_SIZE 2048
  228. #if UINTPTR_MAX == 0xFFFFFFFF
  229. #define GGML_MEM_ALIGN 4
  230. #else
  231. #define GGML_MEM_ALIGN 16
  232. #endif
  233. #define GGML_EXIT_SUCCESS 0
  234. #define GGML_EXIT_ABORTED 1
  235. #define GGUF_MAGIC "GGUF"
  236. #define GGUF_VERSION 3
  237. #define GGUF_DEFAULT_ALIGNMENT 32
  238. #define GGML_UNUSED(x) (void)(x)
  239. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  240. #define GGML_ASSERT(x) \
  241. do { \
  242. if (!(x)) { \
  243. fflush(stdout); \
  244. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  245. ggml_print_backtrace(); \
  246. abort(); \
  247. } \
  248. } while (0)
  249. #ifndef NDEBUG
  250. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  251. #elif defined(__GNUC__)
  252. #define GGML_UNREACHABLE() __builtin_unreachable()
  253. #elif defined(_MSC_VER)
  254. #define GGML_UNREACHABLE() __assume(0)
  255. #else
  256. #define GGML_UNREACHABLE() ((void) 0)
  257. #endif
  258. // used to copy the number of elements and stride in bytes of tensors into local variables.
  259. // main purpose is to reduce code duplication and improve readability.
  260. //
  261. // example:
  262. //
  263. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  264. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  265. //
  266. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  267. const type prefix##0 = (pointer)->array[0]; \
  268. GGML_UNUSED(prefix##0);
  269. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  270. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  271. const type prefix##1 = (pointer)->array[1]; \
  272. GGML_UNUSED(prefix##1);
  273. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  274. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  275. const type prefix##2 = (pointer)->array[2]; \
  276. GGML_UNUSED(prefix##2);
  277. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  278. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  279. const type prefix##3 = (pointer)->array[3]; \
  280. GGML_UNUSED(prefix##3);
  281. #define GGML_TENSOR_UNARY_OP_LOCALS \
  282. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  283. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  284. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  285. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  286. #define GGML_TENSOR_BINARY_OP_LOCALS \
  287. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  288. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  289. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  290. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  291. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  292. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  293. #ifdef __cplusplus
  294. extern "C" {
  295. #endif
  296. #if defined(__ARM_NEON) && defined(__CUDACC__)
  297. typedef half ggml_fp16_t;
  298. #elif defined(__ARM_NEON) && !defined(_MSC_VER)
  299. typedef __fp16 ggml_fp16_t;
  300. #else
  301. typedef uint16_t ggml_fp16_t;
  302. #endif
  303. // convert FP16 <-> FP32
  304. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  305. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  306. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  307. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  308. struct ggml_object;
  309. struct ggml_context;
  310. enum ggml_type {
  311. GGML_TYPE_F32 = 0,
  312. GGML_TYPE_F16 = 1,
  313. GGML_TYPE_Q4_0 = 2,
  314. GGML_TYPE_Q4_1 = 3,
  315. // GGML_TYPE_Q4_2 = 4, support has been removed
  316. // GGML_TYPE_Q4_3 (5) support has been removed
  317. GGML_TYPE_Q5_0 = 6,
  318. GGML_TYPE_Q5_1 = 7,
  319. GGML_TYPE_Q8_0 = 8,
  320. GGML_TYPE_Q8_1 = 9,
  321. // k-quantizations
  322. GGML_TYPE_Q2_K = 10,
  323. GGML_TYPE_Q3_K = 11,
  324. GGML_TYPE_Q4_K = 12,
  325. GGML_TYPE_Q5_K = 13,
  326. GGML_TYPE_Q6_K = 14,
  327. GGML_TYPE_Q8_K = 15,
  328. GGML_TYPE_IQ2_XXS = 16,
  329. GGML_TYPE_IQ2_XS = 17,
  330. GGML_TYPE_IQ3_XXS = 18,
  331. GGML_TYPE_I8,
  332. GGML_TYPE_I16,
  333. GGML_TYPE_I32,
  334. GGML_TYPE_COUNT,
  335. };
  336. // precision
  337. enum ggml_prec {
  338. GGML_PREC_DEFAULT,
  339. GGML_PREC_F32,
  340. };
  341. enum ggml_backend_type {
  342. GGML_BACKEND_CPU = 0,
  343. GGML_BACKEND_GPU = 10,
  344. GGML_BACKEND_GPU_SPLIT = 20,
  345. };
  346. // model file types
  347. enum ggml_ftype {
  348. GGML_FTYPE_UNKNOWN = -1,
  349. GGML_FTYPE_ALL_F32 = 0,
  350. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  351. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  352. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  353. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  354. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  355. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  356. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  357. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  358. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  359. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  360. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  361. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  362. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  363. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  364. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  365. };
  366. // available tensor operations:
  367. enum ggml_op {
  368. GGML_OP_NONE = 0,
  369. GGML_OP_DUP,
  370. GGML_OP_ADD,
  371. GGML_OP_ADD1,
  372. GGML_OP_ACC,
  373. GGML_OP_SUB,
  374. GGML_OP_MUL,
  375. GGML_OP_DIV,
  376. GGML_OP_SQR,
  377. GGML_OP_SQRT,
  378. GGML_OP_LOG,
  379. GGML_OP_SUM,
  380. GGML_OP_SUM_ROWS,
  381. GGML_OP_MEAN,
  382. GGML_OP_ARGMAX,
  383. GGML_OP_REPEAT,
  384. GGML_OP_REPEAT_BACK,
  385. GGML_OP_CONCAT,
  386. GGML_OP_SILU_BACK,
  387. GGML_OP_NORM, // normalize
  388. GGML_OP_RMS_NORM,
  389. GGML_OP_RMS_NORM_BACK,
  390. GGML_OP_GROUP_NORM,
  391. GGML_OP_MUL_MAT,
  392. GGML_OP_MUL_MAT_ID,
  393. GGML_OP_OUT_PROD,
  394. GGML_OP_SCALE,
  395. GGML_OP_SET,
  396. GGML_OP_CPY,
  397. GGML_OP_CONT,
  398. GGML_OP_RESHAPE,
  399. GGML_OP_VIEW,
  400. GGML_OP_PERMUTE,
  401. GGML_OP_TRANSPOSE,
  402. GGML_OP_GET_ROWS,
  403. GGML_OP_GET_ROWS_BACK,
  404. GGML_OP_DIAG,
  405. GGML_OP_DIAG_MASK_INF,
  406. GGML_OP_DIAG_MASK_ZERO,
  407. GGML_OP_SOFT_MAX,
  408. GGML_OP_SOFT_MAX_BACK,
  409. GGML_OP_ROPE,
  410. GGML_OP_ROPE_BACK,
  411. GGML_OP_ALIBI,
  412. GGML_OP_CLAMP,
  413. GGML_OP_CONV_TRANSPOSE_1D,
  414. GGML_OP_IM2COL,
  415. GGML_OP_CONV_TRANSPOSE_2D,
  416. GGML_OP_POOL_1D,
  417. GGML_OP_POOL_2D,
  418. GGML_OP_UPSCALE, // nearest interpolate
  419. GGML_OP_PAD,
  420. GGML_OP_ARGSORT,
  421. GGML_OP_LEAKY_RELU,
  422. GGML_OP_FLASH_ATTN,
  423. GGML_OP_FLASH_FF,
  424. GGML_OP_FLASH_ATTN_BACK,
  425. GGML_OP_WIN_PART,
  426. GGML_OP_WIN_UNPART,
  427. GGML_OP_GET_REL_POS,
  428. GGML_OP_ADD_REL_POS,
  429. GGML_OP_UNARY,
  430. GGML_OP_MAP_UNARY,
  431. GGML_OP_MAP_BINARY,
  432. GGML_OP_MAP_CUSTOM1_F32,
  433. GGML_OP_MAP_CUSTOM2_F32,
  434. GGML_OP_MAP_CUSTOM3_F32,
  435. GGML_OP_MAP_CUSTOM1,
  436. GGML_OP_MAP_CUSTOM2,
  437. GGML_OP_MAP_CUSTOM3,
  438. GGML_OP_CROSS_ENTROPY_LOSS,
  439. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  440. GGML_OP_COUNT,
  441. };
  442. enum ggml_unary_op {
  443. GGML_UNARY_OP_ABS,
  444. GGML_UNARY_OP_SGN,
  445. GGML_UNARY_OP_NEG,
  446. GGML_UNARY_OP_STEP,
  447. GGML_UNARY_OP_TANH,
  448. GGML_UNARY_OP_ELU,
  449. GGML_UNARY_OP_RELU,
  450. GGML_UNARY_OP_GELU,
  451. GGML_UNARY_OP_GELU_QUICK,
  452. GGML_UNARY_OP_SILU,
  453. GGML_UNARY_OP_HARDSWISH,
  454. GGML_UNARY_OP_HARDSIGMOID,
  455. GGML_UNARY_OP_COUNT,
  456. };
  457. enum ggml_object_type {
  458. GGML_OBJECT_TENSOR,
  459. GGML_OBJECT_GRAPH,
  460. GGML_OBJECT_WORK_BUFFER
  461. };
  462. enum ggml_log_level {
  463. GGML_LOG_LEVEL_ERROR = 2,
  464. GGML_LOG_LEVEL_WARN = 3,
  465. GGML_LOG_LEVEL_INFO = 4,
  466. GGML_LOG_LEVEL_DEBUG = 5
  467. };
  468. enum ggml_tensor_flag {
  469. GGML_TENSOR_FLAG_INPUT = 1,
  470. GGML_TENSOR_FLAG_OUTPUT = 2,
  471. GGML_TENSOR_FLAG_PARAM = 4,
  472. };
  473. // ggml object
  474. struct ggml_object {
  475. size_t offs;
  476. size_t size;
  477. struct ggml_object * next;
  478. enum ggml_object_type type;
  479. char padding[4];
  480. };
  481. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  482. // n-dimensional tensor
  483. struct ggml_tensor {
  484. enum ggml_type type;
  485. enum ggml_backend_type backend;
  486. struct ggml_backend_buffer * buffer;
  487. int64_t ne[GGML_MAX_DIMS]; // number of elements
  488. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  489. // nb[0] = ggml_type_size(type)
  490. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  491. // nb[i] = nb[i-1] * ne[i-1]
  492. // compute data
  493. enum ggml_op op;
  494. // op params - allocated as int32_t for alignment
  495. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  496. int32_t flags;
  497. struct ggml_tensor * grad;
  498. struct ggml_tensor * src[GGML_MAX_SRC];
  499. // performance
  500. int perf_runs;
  501. int64_t perf_cycles;
  502. int64_t perf_time_us;
  503. struct ggml_tensor * view_src;
  504. size_t view_offs;
  505. void * data;
  506. char name[GGML_MAX_NAME];
  507. void * extra; // extra things e.g. for ggml-cuda.cu
  508. char padding[8];
  509. };
  510. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  511. // Abort callback
  512. // If not NULL, called before ggml computation
  513. // If it returns true, the computation is aborted
  514. typedef bool (*ggml_abort_callback)(void * data);
  515. // the compute plan that needs to be prepared for ggml_graph_compute()
  516. // since https://github.com/ggerganov/ggml/issues/287
  517. struct ggml_cplan {
  518. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  519. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  520. int n_threads;
  521. // abort ggml_graph_compute when true
  522. ggml_abort_callback abort_callback;
  523. void * abort_callback_data;
  524. };
  525. enum ggml_cgraph_eval_order {
  526. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  527. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  528. GGML_CGRAPH_EVAL_ORDER_COUNT
  529. };
  530. struct ggml_hash_set {
  531. size_t size;
  532. struct ggml_tensor ** keys;
  533. };
  534. // computation graph
  535. struct ggml_cgraph {
  536. int size;
  537. int n_nodes;
  538. int n_leafs;
  539. struct ggml_tensor ** nodes;
  540. struct ggml_tensor ** grads;
  541. struct ggml_tensor ** leafs;
  542. struct ggml_hash_set visited_hash_table;
  543. enum ggml_cgraph_eval_order order;
  544. // performance
  545. int perf_runs;
  546. int64_t perf_cycles;
  547. int64_t perf_time_us;
  548. };
  549. // scratch buffer
  550. struct ggml_scratch {
  551. size_t offs;
  552. size_t size;
  553. void * data;
  554. };
  555. struct ggml_init_params {
  556. // memory pool
  557. size_t mem_size; // bytes
  558. void * mem_buffer; // if NULL, memory will be allocated internally
  559. bool no_alloc; // don't allocate memory for the tensor data
  560. };
  561. // compute types
  562. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  563. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  564. enum ggml_task_type {
  565. GGML_TASK_INIT = 0,
  566. GGML_TASK_COMPUTE,
  567. GGML_TASK_FINALIZE,
  568. };
  569. struct ggml_compute_params {
  570. enum ggml_task_type type;
  571. // ith = thread index, nth = number of threads
  572. int ith, nth;
  573. // work buffer for all threads
  574. size_t wsize;
  575. void * wdata;
  576. };
  577. // numa strategies
  578. enum ggml_numa_strategy {
  579. GGML_NUMA_STRATEGY_DISABLED = 0,
  580. GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
  581. GGML_NUMA_STRATEGY_ISOLATE = 2,
  582. GGML_NUMA_STRATEGY_NUMACTL = 3,
  583. GGML_NUMA_STRATEGY_MIRROR = 4,
  584. GGML_NUMA_STRATEGY_COUNT
  585. };
  586. // misc
  587. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  588. GGML_API int64_t ggml_time_ms(void);
  589. GGML_API int64_t ggml_time_us(void);
  590. GGML_API int64_t ggml_cycles(void);
  591. GGML_API int64_t ggml_cycles_per_ms(void);
  592. GGML_API void ggml_print_backtrace(void);
  593. GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
  594. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  595. GGML_API void ggml_print_object (const struct ggml_object * obj);
  596. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  597. GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
  598. GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
  599. GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
  600. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  601. GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
  602. GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  603. GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  604. GGML_DEPRECATED(
  605. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  606. "use ggml_row_size() instead");
  607. GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
  608. GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
  609. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  610. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  611. GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  612. GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
  613. GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
  614. // TODO: temporary until model loading of ggml examples is refactored
  615. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  616. GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
  617. GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  618. GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
  619. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  620. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  621. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  622. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  623. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  624. GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  625. // use this to compute the memory overhead of a tensor
  626. GGML_API size_t ggml_tensor_overhead(void);
  627. // main
  628. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  629. GGML_API void ggml_free(struct ggml_context * ctx);
  630. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  631. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  632. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  633. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  634. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  635. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  636. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  637. GGML_API struct ggml_tensor * ggml_new_tensor(
  638. struct ggml_context * ctx,
  639. enum ggml_type type,
  640. int n_dims,
  641. const int64_t *ne);
  642. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  643. struct ggml_context * ctx,
  644. enum ggml_type type,
  645. int64_t ne0);
  646. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  647. struct ggml_context * ctx,
  648. enum ggml_type type,
  649. int64_t ne0,
  650. int64_t ne1);
  651. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  652. struct ggml_context * ctx,
  653. enum ggml_type type,
  654. int64_t ne0,
  655. int64_t ne1,
  656. int64_t ne2);
  657. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  658. struct ggml_context * ctx,
  659. enum ggml_type type,
  660. int64_t ne0,
  661. int64_t ne1,
  662. int64_t ne2,
  663. int64_t ne3);
  664. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  665. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  666. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  667. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  668. // Context tensor enumeration and lookup
  669. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  670. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  671. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  672. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  673. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  674. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  675. // Converts a flat index into coordinates
  676. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  677. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  678. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  679. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  680. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  681. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  682. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  683. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  684. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  685. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  686. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  687. GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  688. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  689. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  690. GGML_ATTRIBUTE_FORMAT(2, 3)
  691. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  692. //
  693. // operations on tensors with backpropagation
  694. //
  695. GGML_API struct ggml_tensor * ggml_dup(
  696. struct ggml_context * ctx,
  697. struct ggml_tensor * a);
  698. // in-place, returns view(a)
  699. GGML_API struct ggml_tensor * ggml_dup_inplace(
  700. struct ggml_context * ctx,
  701. struct ggml_tensor * a);
  702. GGML_API struct ggml_tensor * ggml_add(
  703. struct ggml_context * ctx,
  704. struct ggml_tensor * a,
  705. struct ggml_tensor * b);
  706. GGML_API struct ggml_tensor * ggml_add_inplace(
  707. struct ggml_context * ctx,
  708. struct ggml_tensor * a,
  709. struct ggml_tensor * b);
  710. GGML_API struct ggml_tensor * ggml_add_cast(
  711. struct ggml_context * ctx,
  712. struct ggml_tensor * a,
  713. struct ggml_tensor * b,
  714. enum ggml_type type);
  715. GGML_API struct ggml_tensor * ggml_add1(
  716. struct ggml_context * ctx,
  717. struct ggml_tensor * a,
  718. struct ggml_tensor * b);
  719. GGML_API struct ggml_tensor * ggml_add1_inplace(
  720. struct ggml_context * ctx,
  721. struct ggml_tensor * a,
  722. struct ggml_tensor * b);
  723. // dst = a
  724. // view(dst, nb1, nb2, nb3, offset) += b
  725. // return dst
  726. GGML_API struct ggml_tensor * ggml_acc(
  727. struct ggml_context * ctx,
  728. struct ggml_tensor * a,
  729. struct ggml_tensor * b,
  730. size_t nb1,
  731. size_t nb2,
  732. size_t nb3,
  733. size_t offset);
  734. GGML_API struct ggml_tensor * ggml_acc_inplace(
  735. struct ggml_context * ctx,
  736. struct ggml_tensor * a,
  737. struct ggml_tensor * b,
  738. size_t nb1,
  739. size_t nb2,
  740. size_t nb3,
  741. size_t offset);
  742. GGML_API struct ggml_tensor * ggml_sub(
  743. struct ggml_context * ctx,
  744. struct ggml_tensor * a,
  745. struct ggml_tensor * b);
  746. GGML_API struct ggml_tensor * ggml_sub_inplace(
  747. struct ggml_context * ctx,
  748. struct ggml_tensor * a,
  749. struct ggml_tensor * b);
  750. GGML_API struct ggml_tensor * ggml_mul(
  751. struct ggml_context * ctx,
  752. struct ggml_tensor * a,
  753. struct ggml_tensor * b);
  754. GGML_API struct ggml_tensor * ggml_mul_inplace(
  755. struct ggml_context * ctx,
  756. struct ggml_tensor * a,
  757. struct ggml_tensor * b);
  758. GGML_API struct ggml_tensor * ggml_div(
  759. struct ggml_context * ctx,
  760. struct ggml_tensor * a,
  761. struct ggml_tensor * b);
  762. GGML_API struct ggml_tensor * ggml_div_inplace(
  763. struct ggml_context * ctx,
  764. struct ggml_tensor * a,
  765. struct ggml_tensor * b);
  766. GGML_API struct ggml_tensor * ggml_sqr(
  767. struct ggml_context * ctx,
  768. struct ggml_tensor * a);
  769. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a);
  772. GGML_API struct ggml_tensor * ggml_sqrt(
  773. struct ggml_context * ctx,
  774. struct ggml_tensor * a);
  775. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  776. struct ggml_context * ctx,
  777. struct ggml_tensor * a);
  778. GGML_API struct ggml_tensor * ggml_log(
  779. struct ggml_context * ctx,
  780. struct ggml_tensor * a);
  781. GGML_API struct ggml_tensor * ggml_log_inplace(
  782. struct ggml_context * ctx,
  783. struct ggml_tensor * a);
  784. // return scalar
  785. GGML_API struct ggml_tensor * ggml_sum(
  786. struct ggml_context * ctx,
  787. struct ggml_tensor * a);
  788. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  789. GGML_API struct ggml_tensor * ggml_sum_rows(
  790. struct ggml_context * ctx,
  791. struct ggml_tensor * a);
  792. // mean along rows
  793. GGML_API struct ggml_tensor * ggml_mean(
  794. struct ggml_context * ctx,
  795. struct ggml_tensor * a);
  796. // argmax along rows
  797. GGML_API struct ggml_tensor * ggml_argmax(
  798. struct ggml_context * ctx,
  799. struct ggml_tensor * a);
  800. // if a is the same shape as b, and a is not parameter, return a
  801. // otherwise, return a new tensor: repeat(a) to fit in b
  802. GGML_API struct ggml_tensor * ggml_repeat(
  803. struct ggml_context * ctx,
  804. struct ggml_tensor * a,
  805. struct ggml_tensor * b);
  806. // sums repetitions in a into shape of b
  807. GGML_API struct ggml_tensor * ggml_repeat_back(
  808. struct ggml_context * ctx,
  809. struct ggml_tensor * a,
  810. struct ggml_tensor * b);
  811. // concat a and b on dim 2
  812. // used in stable-diffusion
  813. GGML_API struct ggml_tensor * ggml_concat(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * a,
  816. struct ggml_tensor * b);
  817. GGML_API struct ggml_tensor * ggml_abs(
  818. struct ggml_context * ctx,
  819. struct ggml_tensor * a);
  820. GGML_API struct ggml_tensor * ggml_abs_inplace(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a);
  823. GGML_API struct ggml_tensor * ggml_sgn(
  824. struct ggml_context * ctx,
  825. struct ggml_tensor * a);
  826. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * a);
  829. GGML_API struct ggml_tensor * ggml_neg(
  830. struct ggml_context * ctx,
  831. struct ggml_tensor * a);
  832. GGML_API struct ggml_tensor * ggml_neg_inplace(
  833. struct ggml_context * ctx,
  834. struct ggml_tensor * a);
  835. GGML_API struct ggml_tensor * ggml_step(
  836. struct ggml_context * ctx,
  837. struct ggml_tensor * a);
  838. GGML_API struct ggml_tensor * ggml_step_inplace(
  839. struct ggml_context * ctx,
  840. struct ggml_tensor * a);
  841. GGML_API struct ggml_tensor * ggml_tanh(
  842. struct ggml_context * ctx,
  843. struct ggml_tensor * a);
  844. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  845. struct ggml_context * ctx,
  846. struct ggml_tensor * a);
  847. GGML_API struct ggml_tensor * ggml_elu(
  848. struct ggml_context * ctx,
  849. struct ggml_tensor * a);
  850. GGML_API struct ggml_tensor * ggml_elu_inplace(
  851. struct ggml_context * ctx,
  852. struct ggml_tensor * a);
  853. GGML_API struct ggml_tensor * ggml_relu(
  854. struct ggml_context * ctx,
  855. struct ggml_tensor * a);
  856. GGML_API struct ggml_tensor * ggml_leaky_relu(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a, float negative_slope, bool inplace);
  859. GGML_API struct ggml_tensor * ggml_relu_inplace(
  860. struct ggml_context * ctx,
  861. struct ggml_tensor * a);
  862. GGML_API struct ggml_tensor * ggml_gelu(
  863. struct ggml_context * ctx,
  864. struct ggml_tensor * a);
  865. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  866. struct ggml_context * ctx,
  867. struct ggml_tensor * a);
  868. GGML_API struct ggml_tensor * ggml_gelu_quick(
  869. struct ggml_context * ctx,
  870. struct ggml_tensor * a);
  871. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  872. struct ggml_context * ctx,
  873. struct ggml_tensor * a);
  874. GGML_API struct ggml_tensor * ggml_silu(
  875. struct ggml_context * ctx,
  876. struct ggml_tensor * a);
  877. GGML_API struct ggml_tensor * ggml_silu_inplace(
  878. struct ggml_context * ctx,
  879. struct ggml_tensor * a);
  880. // a - x
  881. // b - dy
  882. GGML_API struct ggml_tensor * ggml_silu_back(
  883. struct ggml_context * ctx,
  884. struct ggml_tensor * a,
  885. struct ggml_tensor * b);
  886. // hardswish(x) = x * relu6(x + 3) / 6
  887. GGML_API struct ggml_tensor * ggml_hardswish(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a);
  890. // hardsigmoid(x) = relu6(x + 3) / 6
  891. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  892. struct ggml_context * ctx,
  893. struct ggml_tensor * a);
  894. // normalize along rows
  895. GGML_API struct ggml_tensor * ggml_norm(
  896. struct ggml_context * ctx,
  897. struct ggml_tensor * a,
  898. float eps);
  899. GGML_API struct ggml_tensor * ggml_norm_inplace(
  900. struct ggml_context * ctx,
  901. struct ggml_tensor * a,
  902. float eps);
  903. GGML_API struct ggml_tensor * ggml_rms_norm(
  904. struct ggml_context * ctx,
  905. struct ggml_tensor * a,
  906. float eps);
  907. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  908. struct ggml_context * ctx,
  909. struct ggml_tensor * a,
  910. float eps);
  911. // group normalize along ne0*ne1*n_groups
  912. // used in stable-diffusion
  913. // TODO: eps is hardcoded to 1e-6 for now
  914. GGML_API struct ggml_tensor * ggml_group_norm(
  915. struct ggml_context * ctx,
  916. struct ggml_tensor * a,
  917. int n_groups);
  918. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  919. struct ggml_context * ctx,
  920. struct ggml_tensor * a,
  921. int n_groups);
  922. // a - x
  923. // b - dy
  924. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  925. struct ggml_context * ctx,
  926. struct ggml_tensor * a,
  927. struct ggml_tensor * b,
  928. float eps);
  929. // A: k columns, n rows => [ne03, ne02, n, k]
  930. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  931. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  932. GGML_API struct ggml_tensor * ggml_mul_mat(
  933. struct ggml_context * ctx,
  934. struct ggml_tensor * a,
  935. struct ggml_tensor * b);
  936. // change the precision of a matrix multiplication
  937. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  938. GGML_API void ggml_mul_mat_set_prec(
  939. struct ggml_tensor * a,
  940. enum ggml_prec prec);
  941. // indirect matrix multiplication
  942. // ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
  943. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  944. struct ggml_context * ctx,
  945. struct ggml_tensor * const as[],
  946. int n_as,
  947. struct ggml_tensor * ids,
  948. int id,
  949. struct ggml_tensor * b);
  950. // A: m columns, n rows,
  951. // B: p columns, n rows,
  952. // result is m columns, p rows
  953. GGML_API struct ggml_tensor * ggml_out_prod(
  954. struct ggml_context * ctx,
  955. struct ggml_tensor * a,
  956. struct ggml_tensor * b);
  957. //
  958. // operations on tensors without backpropagation
  959. //
  960. GGML_API struct ggml_tensor * ggml_scale(
  961. struct ggml_context * ctx,
  962. struct ggml_tensor * a,
  963. float s);
  964. // in-place, returns view(a)
  965. GGML_API struct ggml_tensor * ggml_scale_inplace(
  966. struct ggml_context * ctx,
  967. struct ggml_tensor * a,
  968. float s);
  969. // b -> view(a,offset,nb1,nb2,3), return modified a
  970. GGML_API struct ggml_tensor * ggml_set(
  971. struct ggml_context * ctx,
  972. struct ggml_tensor * a,
  973. struct ggml_tensor * b,
  974. size_t nb1,
  975. size_t nb2,
  976. size_t nb3,
  977. size_t offset);
  978. // b -> view(a,offset,nb1,nb2,3), return view(a)
  979. GGML_API struct ggml_tensor * ggml_set_inplace(
  980. struct ggml_context * ctx,
  981. struct ggml_tensor * a,
  982. struct ggml_tensor * b,
  983. size_t nb1,
  984. size_t nb2,
  985. size_t nb3,
  986. size_t offset);
  987. GGML_API struct ggml_tensor * ggml_set_1d(
  988. struct ggml_context * ctx,
  989. struct ggml_tensor * a,
  990. struct ggml_tensor * b,
  991. size_t offset);
  992. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  993. struct ggml_context * ctx,
  994. struct ggml_tensor * a,
  995. struct ggml_tensor * b,
  996. size_t offset);
  997. // b -> view(a,offset,nb1,nb2,3), return modified a
  998. GGML_API struct ggml_tensor * ggml_set_2d(
  999. struct ggml_context * ctx,
  1000. struct ggml_tensor * a,
  1001. struct ggml_tensor * b,
  1002. size_t nb1,
  1003. size_t offset);
  1004. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1005. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a,
  1008. struct ggml_tensor * b,
  1009. size_t nb1,
  1010. size_t offset);
  1011. // a -> b, return view(b)
  1012. GGML_API struct ggml_tensor * ggml_cpy(
  1013. struct ggml_context * ctx,
  1014. struct ggml_tensor * a,
  1015. struct ggml_tensor * b);
  1016. GGML_API struct ggml_tensor * ggml_cast(
  1017. struct ggml_context * ctx,
  1018. struct ggml_tensor * a,
  1019. enum ggml_type type);
  1020. // make contiguous
  1021. GGML_API struct ggml_tensor * ggml_cont(
  1022. struct ggml_context * ctx,
  1023. struct ggml_tensor * a);
  1024. // make contiguous, with new shape
  1025. GGML_API struct ggml_tensor * ggml_cont_1d(
  1026. struct ggml_context * ctx,
  1027. struct ggml_tensor * a,
  1028. int64_t ne0);
  1029. GGML_API struct ggml_tensor * ggml_cont_2d(
  1030. struct ggml_context * ctx,
  1031. struct ggml_tensor * a,
  1032. int64_t ne0,
  1033. int64_t ne1);
  1034. GGML_API struct ggml_tensor * ggml_cont_3d(
  1035. struct ggml_context * ctx,
  1036. struct ggml_tensor * a,
  1037. int64_t ne0,
  1038. int64_t ne1,
  1039. int64_t ne2);
  1040. GGML_API struct ggml_tensor * ggml_cont_4d(
  1041. struct ggml_context * ctx,
  1042. struct ggml_tensor * a,
  1043. int64_t ne0,
  1044. int64_t ne1,
  1045. int64_t ne2,
  1046. int64_t ne3);
  1047. // return view(a), b specifies the new shape
  1048. // TODO: when we start computing gradient, make a copy instead of view
  1049. GGML_API struct ggml_tensor * ggml_reshape(
  1050. struct ggml_context * ctx,
  1051. struct ggml_tensor * a,
  1052. struct ggml_tensor * b);
  1053. // return view(a)
  1054. // TODO: when we start computing gradient, make a copy instead of view
  1055. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1056. struct ggml_context * ctx,
  1057. struct ggml_tensor * a,
  1058. int64_t ne0);
  1059. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1060. struct ggml_context * ctx,
  1061. struct ggml_tensor * a,
  1062. int64_t ne0,
  1063. int64_t ne1);
  1064. // return view(a)
  1065. // TODO: when we start computing gradient, make a copy instead of view
  1066. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1067. struct ggml_context * ctx,
  1068. struct ggml_tensor * a,
  1069. int64_t ne0,
  1070. int64_t ne1,
  1071. int64_t ne2);
  1072. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1073. struct ggml_context * ctx,
  1074. struct ggml_tensor * a,
  1075. int64_t ne0,
  1076. int64_t ne1,
  1077. int64_t ne2,
  1078. int64_t ne3);
  1079. // offset in bytes
  1080. GGML_API struct ggml_tensor * ggml_view_1d(
  1081. struct ggml_context * ctx,
  1082. struct ggml_tensor * a,
  1083. int64_t ne0,
  1084. size_t offset);
  1085. GGML_API struct ggml_tensor * ggml_view_2d(
  1086. struct ggml_context * ctx,
  1087. struct ggml_tensor * a,
  1088. int64_t ne0,
  1089. int64_t ne1,
  1090. size_t nb1, // row stride in bytes
  1091. size_t offset);
  1092. GGML_API struct ggml_tensor * ggml_view_3d(
  1093. struct ggml_context * ctx,
  1094. struct ggml_tensor * a,
  1095. int64_t ne0,
  1096. int64_t ne1,
  1097. int64_t ne2,
  1098. size_t nb1, // row stride in bytes
  1099. size_t nb2, // slice stride in bytes
  1100. size_t offset);
  1101. GGML_API struct ggml_tensor * ggml_view_4d(
  1102. struct ggml_context * ctx,
  1103. struct ggml_tensor * a,
  1104. int64_t ne0,
  1105. int64_t ne1,
  1106. int64_t ne2,
  1107. int64_t ne3,
  1108. size_t nb1, // row stride in bytes
  1109. size_t nb2, // slice stride in bytes
  1110. size_t nb3,
  1111. size_t offset);
  1112. GGML_API struct ggml_tensor * ggml_permute(
  1113. struct ggml_context * ctx,
  1114. struct ggml_tensor * a,
  1115. int axis0,
  1116. int axis1,
  1117. int axis2,
  1118. int axis3);
  1119. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1120. GGML_API struct ggml_tensor * ggml_transpose(
  1121. struct ggml_context * ctx,
  1122. struct ggml_tensor * a);
  1123. // supports 3D: a->ne[2] == b->ne[1]
  1124. GGML_API struct ggml_tensor * ggml_get_rows(
  1125. struct ggml_context * ctx,
  1126. struct ggml_tensor * a,
  1127. struct ggml_tensor * b);
  1128. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1129. struct ggml_context * ctx,
  1130. struct ggml_tensor * a,
  1131. struct ggml_tensor * b,
  1132. struct ggml_tensor * c);
  1133. GGML_API struct ggml_tensor * ggml_diag(
  1134. struct ggml_context * ctx,
  1135. struct ggml_tensor * a);
  1136. // set elements above the diagonal to -INF
  1137. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1138. struct ggml_context * ctx,
  1139. struct ggml_tensor * a,
  1140. int n_past);
  1141. // in-place, returns view(a)
  1142. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1143. struct ggml_context * ctx,
  1144. struct ggml_tensor * a,
  1145. int n_past);
  1146. // set elements above the diagonal to 0
  1147. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1148. struct ggml_context * ctx,
  1149. struct ggml_tensor * a,
  1150. int n_past);
  1151. // in-place, returns view(a)
  1152. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1153. struct ggml_context * ctx,
  1154. struct ggml_tensor * a,
  1155. int n_past);
  1156. GGML_API struct ggml_tensor * ggml_soft_max(
  1157. struct ggml_context * ctx,
  1158. struct ggml_tensor * a);
  1159. // in-place, returns view(a)
  1160. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1161. struct ggml_context * ctx,
  1162. struct ggml_tensor * a);
  1163. // fused soft_max(a*scale + mask + pos[i]*(ALiBi slope))
  1164. // mask is optional
  1165. // pos is required when max_bias > 0.0f
  1166. // max_bias = 0.0f for no ALiBi
  1167. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1168. struct ggml_context * ctx,
  1169. struct ggml_tensor * a,
  1170. struct ggml_tensor * mask,
  1171. struct ggml_tensor * pos,
  1172. float scale,
  1173. float max_bias);
  1174. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1175. struct ggml_context * ctx,
  1176. struct ggml_tensor * a,
  1177. struct ggml_tensor * b);
  1178. // in-place, returns view(a)
  1179. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1180. struct ggml_context * ctx,
  1181. struct ggml_tensor * a,
  1182. struct ggml_tensor * b);
  1183. // rotary position embedding
  1184. // if mode & 1 == 1, skip n_past elements (DEPRECATED)
  1185. // if mode & 2 == 1, GPT-NeoX style
  1186. // if mode & 4 == 1, ChatGLM style
  1187. //
  1188. // b is an int32 vector with size a->ne[2], it contains the positions
  1189. GGML_API struct ggml_tensor * ggml_rope(
  1190. struct ggml_context * ctx,
  1191. struct ggml_tensor * a,
  1192. struct ggml_tensor * b,
  1193. int n_dims,
  1194. int mode,
  1195. int n_ctx);
  1196. // in-place, returns view(a)
  1197. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1198. struct ggml_context * ctx,
  1199. struct ggml_tensor * a,
  1200. struct ggml_tensor * b,
  1201. int n_dims,
  1202. int mode,
  1203. int n_ctx);
  1204. // custom RoPE
  1205. GGML_API struct ggml_tensor * ggml_rope_custom(
  1206. struct ggml_context * ctx,
  1207. struct ggml_tensor * a,
  1208. struct ggml_tensor * b,
  1209. int n_dims,
  1210. int mode,
  1211. int n_ctx,
  1212. int n_orig_ctx,
  1213. float freq_base,
  1214. float freq_scale,
  1215. float ext_factor,
  1216. float attn_factor,
  1217. float beta_fast,
  1218. float beta_slow);
  1219. // in-place, returns view(a)
  1220. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1221. struct ggml_context * ctx,
  1222. struct ggml_tensor * a,
  1223. struct ggml_tensor * b,
  1224. int n_dims,
  1225. int mode,
  1226. int n_ctx,
  1227. int n_orig_ctx,
  1228. float freq_base,
  1229. float freq_scale,
  1230. float ext_factor,
  1231. float attn_factor,
  1232. float beta_fast,
  1233. float beta_slow);
  1234. // compute correction dims for YaRN RoPE scaling
  1235. GGML_CALL void ggml_rope_yarn_corr_dims(
  1236. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1237. // xPos RoPE, in-place, returns view(a)
  1238. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1239. struct ggml_context * ctx,
  1240. struct ggml_tensor * a,
  1241. struct ggml_tensor * b,
  1242. int n_dims,
  1243. float base,
  1244. bool down);
  1245. // rotary position embedding backward, i.e compute dx from dy
  1246. // a - dy
  1247. GGML_API struct ggml_tensor * ggml_rope_back(
  1248. struct ggml_context * ctx,
  1249. struct ggml_tensor * a,
  1250. struct ggml_tensor * b,
  1251. int n_dims,
  1252. int mode,
  1253. int n_ctx,
  1254. int n_orig_ctx,
  1255. float freq_base,
  1256. float freq_scale,
  1257. float ext_factor,
  1258. float attn_factor,
  1259. float beta_fast,
  1260. float beta_slow,
  1261. float xpos_base,
  1262. bool xpos_down);
  1263. // alibi position embedding
  1264. // in-place, returns view(a)
  1265. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_alibi(
  1266. struct ggml_context * ctx,
  1267. struct ggml_tensor * a,
  1268. int n_past,
  1269. int n_head,
  1270. float bias_max),
  1271. "use ggml_soft_max_ext instead (will be removed in Mar 2024)");
  1272. // clamp
  1273. // in-place, returns view(a)
  1274. GGML_API struct ggml_tensor * ggml_clamp(
  1275. struct ggml_context * ctx,
  1276. struct ggml_tensor * a,
  1277. float min,
  1278. float max);
  1279. GGML_API struct ggml_tensor * ggml_im2col(
  1280. struct ggml_context * ctx,
  1281. struct ggml_tensor * a,
  1282. struct ggml_tensor * b,
  1283. int s0,
  1284. int s1,
  1285. int p0,
  1286. int p1,
  1287. int d0,
  1288. int d1,
  1289. bool is_2D,
  1290. enum ggml_type dst_type);
  1291. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1292. struct ggml_context * ctx,
  1293. struct ggml_tensor * a,
  1294. struct ggml_tensor * b,
  1295. int s0,
  1296. int s1,
  1297. int p0,
  1298. int p1,
  1299. int d0,
  1300. int d1);
  1301. GGML_API struct ggml_tensor * ggml_conv_1d(
  1302. struct ggml_context * ctx,
  1303. struct ggml_tensor * a,
  1304. struct ggml_tensor * b,
  1305. int s0, // stride
  1306. int p0, // padding
  1307. int d0); // dilation
  1308. // conv_1d with padding = half
  1309. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1310. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1311. struct ggml_context * ctx,
  1312. struct ggml_tensor * a,
  1313. struct ggml_tensor * b,
  1314. int s,
  1315. int d);
  1316. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1317. struct ggml_context * ctx,
  1318. struct ggml_tensor * a,
  1319. struct ggml_tensor * b,
  1320. int s0,
  1321. int p0,
  1322. int d0);
  1323. GGML_API struct ggml_tensor * ggml_conv_2d(
  1324. struct ggml_context * ctx,
  1325. struct ggml_tensor * a,
  1326. struct ggml_tensor * b,
  1327. int s0,
  1328. int s1,
  1329. int p0,
  1330. int p1,
  1331. int d0,
  1332. int d1);
  1333. // kernel size is a->ne[0] x a->ne[1]
  1334. // stride is equal to kernel size
  1335. // padding is zero
  1336. // example:
  1337. // a: 16 16 3 768
  1338. // b: 1024 1024 3 1
  1339. // res: 64 64 768 1
  1340. // used in sam
  1341. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1342. struct ggml_context * ctx,
  1343. struct ggml_tensor * a,
  1344. struct ggml_tensor * b);
  1345. // kernel size is a->ne[0] x a->ne[1]
  1346. // stride is 1
  1347. // padding is half
  1348. // example:
  1349. // a: 3 3 256 256
  1350. // b: 64 64 256 1
  1351. // res: 64 64 256 1
  1352. // used in sam
  1353. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1354. struct ggml_context * ctx,
  1355. struct ggml_tensor * a,
  1356. struct ggml_tensor * b);
  1357. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1358. struct ggml_context * ctx,
  1359. struct ggml_tensor * a,
  1360. struct ggml_tensor * b,
  1361. int stride);
  1362. enum ggml_op_pool {
  1363. GGML_OP_POOL_MAX,
  1364. GGML_OP_POOL_AVG,
  1365. GGML_OP_POOL_COUNT,
  1366. };
  1367. GGML_API struct ggml_tensor * ggml_pool_1d(
  1368. struct ggml_context * ctx,
  1369. struct ggml_tensor * a,
  1370. enum ggml_op_pool op,
  1371. int k0, // kernel size
  1372. int s0, // stride
  1373. int p0); // padding
  1374. // the result will have 2*p0 padding for the first dimension
  1375. // and 2*p1 padding for the second dimension
  1376. GGML_API struct ggml_tensor * ggml_pool_2d(
  1377. struct ggml_context * ctx,
  1378. struct ggml_tensor * a,
  1379. enum ggml_op_pool op,
  1380. int k0,
  1381. int k1,
  1382. int s0,
  1383. int s1,
  1384. float p0,
  1385. float p1);
  1386. // nearest interpolate
  1387. // used in stable-diffusion
  1388. GGML_API struct ggml_tensor * ggml_upscale(
  1389. struct ggml_context * ctx,
  1390. struct ggml_tensor * a,
  1391. int scale_factor);
  1392. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1393. GGML_API struct ggml_tensor * ggml_pad(
  1394. struct ggml_context * ctx,
  1395. struct ggml_tensor * a,
  1396. int p0,
  1397. int p1,
  1398. int p2,
  1399. int p3);
  1400. // sort rows
  1401. enum ggml_sort_order {
  1402. GGML_SORT_ASC,
  1403. GGML_SORT_DESC,
  1404. };
  1405. GGML_API struct ggml_tensor * ggml_argsort(
  1406. struct ggml_context * ctx,
  1407. struct ggml_tensor * a,
  1408. enum ggml_sort_order order);
  1409. // top k elements per row
  1410. GGML_API struct ggml_tensor * ggml_top_k(
  1411. struct ggml_context * ctx,
  1412. struct ggml_tensor * a,
  1413. int k);
  1414. GGML_API struct ggml_tensor * ggml_flash_attn(
  1415. struct ggml_context * ctx,
  1416. struct ggml_tensor * q,
  1417. struct ggml_tensor * k,
  1418. struct ggml_tensor * v,
  1419. bool masked);
  1420. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1421. struct ggml_context * ctx,
  1422. struct ggml_tensor * q,
  1423. struct ggml_tensor * k,
  1424. struct ggml_tensor * v,
  1425. struct ggml_tensor * d,
  1426. bool masked);
  1427. GGML_API struct ggml_tensor * ggml_flash_ff(
  1428. struct ggml_context * ctx,
  1429. struct ggml_tensor * a,
  1430. struct ggml_tensor * b0,
  1431. struct ggml_tensor * b1,
  1432. struct ggml_tensor * c0,
  1433. struct ggml_tensor * c1);
  1434. // partition into non-overlapping windows with padding if needed
  1435. // example:
  1436. // a: 768 64 64 1
  1437. // w: 14
  1438. // res: 768 14 14 25
  1439. // used in sam
  1440. GGML_API struct ggml_tensor * ggml_win_part(
  1441. struct ggml_context * ctx,
  1442. struct ggml_tensor * a,
  1443. int w);
  1444. // reverse of ggml_win_part
  1445. // used in sam
  1446. GGML_API struct ggml_tensor * ggml_win_unpart(
  1447. struct ggml_context * ctx,
  1448. struct ggml_tensor * a,
  1449. int w0,
  1450. int h0,
  1451. int w);
  1452. GGML_API struct ggml_tensor * ggml_unary(
  1453. struct ggml_context * ctx,
  1454. struct ggml_tensor * a,
  1455. enum ggml_unary_op op);
  1456. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1457. struct ggml_context * ctx,
  1458. struct ggml_tensor * a,
  1459. enum ggml_unary_op op);
  1460. // used in sam
  1461. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1462. struct ggml_context * ctx,
  1463. struct ggml_tensor * a,
  1464. int qh,
  1465. int kh);
  1466. // used in sam
  1467. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1468. struct ggml_context * ctx,
  1469. struct ggml_tensor * a,
  1470. struct ggml_tensor * pw,
  1471. struct ggml_tensor * ph);
  1472. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1473. struct ggml_context * ctx,
  1474. struct ggml_tensor * a,
  1475. struct ggml_tensor * pw,
  1476. struct ggml_tensor * ph);
  1477. // custom operators
  1478. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1479. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1480. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1481. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1482. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1483. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1484. struct ggml_context * ctx,
  1485. struct ggml_tensor * a,
  1486. ggml_unary_op_f32_t fun),
  1487. "use ggml_map_custom1 instead");
  1488. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1489. struct ggml_context * ctx,
  1490. struct ggml_tensor * a,
  1491. ggml_unary_op_f32_t fun),
  1492. "use ggml_map_custom1_inplace instead");
  1493. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1494. struct ggml_context * ctx,
  1495. struct ggml_tensor * a,
  1496. struct ggml_tensor * b,
  1497. ggml_binary_op_f32_t fun),
  1498. "use ggml_map_custom2 instead");
  1499. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1500. struct ggml_context * ctx,
  1501. struct ggml_tensor * a,
  1502. struct ggml_tensor * b,
  1503. ggml_binary_op_f32_t fun),
  1504. "use ggml_map_custom2_inplace instead");
  1505. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1506. struct ggml_context * ctx,
  1507. struct ggml_tensor * a,
  1508. ggml_custom1_op_f32_t fun),
  1509. "use ggml_map_custom1 instead");
  1510. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1511. struct ggml_context * ctx,
  1512. struct ggml_tensor * a,
  1513. ggml_custom1_op_f32_t fun),
  1514. "use ggml_map_custom1_inplace instead");
  1515. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1516. struct ggml_context * ctx,
  1517. struct ggml_tensor * a,
  1518. struct ggml_tensor * b,
  1519. ggml_custom2_op_f32_t fun),
  1520. "use ggml_map_custom2 instead");
  1521. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1522. struct ggml_context * ctx,
  1523. struct ggml_tensor * a,
  1524. struct ggml_tensor * b,
  1525. ggml_custom2_op_f32_t fun),
  1526. "use ggml_map_custom2_inplace instead");
  1527. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1528. struct ggml_context * ctx,
  1529. struct ggml_tensor * a,
  1530. struct ggml_tensor * b,
  1531. struct ggml_tensor * c,
  1532. ggml_custom3_op_f32_t fun),
  1533. "use ggml_map_custom3 instead");
  1534. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1535. struct ggml_context * ctx,
  1536. struct ggml_tensor * a,
  1537. struct ggml_tensor * b,
  1538. struct ggml_tensor * c,
  1539. ggml_custom3_op_f32_t fun),
  1540. "use ggml_map_custom3_inplace instead");
  1541. // custom operators v2
  1542. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1543. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1544. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1545. #define GGML_N_TASKS_MAX -1
  1546. GGML_API struct ggml_tensor * ggml_map_custom1(
  1547. struct ggml_context * ctx,
  1548. struct ggml_tensor * a,
  1549. ggml_custom1_op_t fun,
  1550. int n_tasks,
  1551. void * userdata);
  1552. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1553. struct ggml_context * ctx,
  1554. struct ggml_tensor * a,
  1555. ggml_custom1_op_t fun,
  1556. int n_tasks,
  1557. void * userdata);
  1558. GGML_API struct ggml_tensor * ggml_map_custom2(
  1559. struct ggml_context * ctx,
  1560. struct ggml_tensor * a,
  1561. struct ggml_tensor * b,
  1562. ggml_custom2_op_t fun,
  1563. int n_tasks,
  1564. void * userdata);
  1565. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1566. struct ggml_context * ctx,
  1567. struct ggml_tensor * a,
  1568. struct ggml_tensor * b,
  1569. ggml_custom2_op_t fun,
  1570. int n_tasks,
  1571. void * userdata);
  1572. GGML_API struct ggml_tensor * ggml_map_custom3(
  1573. struct ggml_context * ctx,
  1574. struct ggml_tensor * a,
  1575. struct ggml_tensor * b,
  1576. struct ggml_tensor * c,
  1577. ggml_custom3_op_t fun,
  1578. int n_tasks,
  1579. void * userdata);
  1580. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1581. struct ggml_context * ctx,
  1582. struct ggml_tensor * a,
  1583. struct ggml_tensor * b,
  1584. struct ggml_tensor * c,
  1585. ggml_custom3_op_t fun,
  1586. int n_tasks,
  1587. void * userdata);
  1588. // loss function
  1589. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1590. struct ggml_context * ctx,
  1591. struct ggml_tensor * a,
  1592. struct ggml_tensor * b);
  1593. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1594. struct ggml_context * ctx,
  1595. struct ggml_tensor * a,
  1596. struct ggml_tensor * b,
  1597. struct ggml_tensor * c);
  1598. //
  1599. // automatic differentiation
  1600. //
  1601. GGML_API void ggml_set_param(
  1602. struct ggml_context * ctx,
  1603. struct ggml_tensor * tensor);
  1604. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1605. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1606. // graph allocation in a context
  1607. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1608. GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
  1609. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1610. GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
  1611. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1612. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
  1613. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1614. GGML_API size_t ggml_graph_overhead(void);
  1615. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1616. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1617. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1618. GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1619. GGML_API int ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1620. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1621. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1622. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1623. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1624. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1625. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1626. // print info and performance information for the graph
  1627. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1628. // dump the graph into a file using the dot format
  1629. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1630. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1631. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1632. // but without the second forward pass nodes.
  1633. GGML_API void ggml_build_backward_gradient_checkpointing(
  1634. struct ggml_context * ctx,
  1635. struct ggml_cgraph * gf,
  1636. struct ggml_cgraph * gb,
  1637. struct ggml_cgraph * gb_tmp,
  1638. struct ggml_tensor * * checkpoints,
  1639. int n_checkpoints);
  1640. //
  1641. // optimization
  1642. //
  1643. // optimization methods
  1644. enum ggml_opt_type {
  1645. GGML_OPT_ADAM,
  1646. GGML_OPT_LBFGS,
  1647. };
  1648. // linesearch methods
  1649. enum ggml_linesearch {
  1650. GGML_LINESEARCH_DEFAULT = 1,
  1651. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1652. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1653. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1654. };
  1655. // optimization return values
  1656. enum ggml_opt_result {
  1657. GGML_OPT_OK = 0,
  1658. GGML_OPT_DID_NOT_CONVERGE,
  1659. GGML_OPT_NO_CONTEXT,
  1660. GGML_OPT_INVALID_WOLFE,
  1661. GGML_OPT_FAIL,
  1662. GGML_OPT_CANCEL,
  1663. GGML_LINESEARCH_FAIL = -128,
  1664. GGML_LINESEARCH_MINIMUM_STEP,
  1665. GGML_LINESEARCH_MAXIMUM_STEP,
  1666. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1667. GGML_LINESEARCH_INVALID_PARAMETERS,
  1668. };
  1669. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1670. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1671. // optimization parameters
  1672. //
  1673. // see ggml.c (ggml_opt_default_params) for default values
  1674. //
  1675. struct ggml_opt_params {
  1676. enum ggml_opt_type type;
  1677. size_t graph_size;
  1678. int n_threads;
  1679. // delta-based convergence test
  1680. //
  1681. // if past == 0 - disabled
  1682. // if past > 0:
  1683. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1684. //
  1685. int past;
  1686. float delta;
  1687. // maximum number of iterations without improvement
  1688. //
  1689. // if 0 - disabled
  1690. // if > 0:
  1691. // assume convergence if no cost improvement in this number of iterations
  1692. //
  1693. int max_no_improvement;
  1694. bool print_forward_graph;
  1695. bool print_backward_graph;
  1696. int n_gradient_accumulation;
  1697. // ADAM parameters
  1698. struct {
  1699. int n_iter;
  1700. float sched; // schedule multiplier (fixed, decay or warmup)
  1701. float decay; // weight decay for AdamW, use 0.0f to disable
  1702. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1703. float alpha; // learning rate
  1704. float beta1;
  1705. float beta2;
  1706. float eps; // epsilon for numerical stability
  1707. float eps_f; // epsilon for convergence test
  1708. float eps_g; // epsilon for convergence test
  1709. float gclip; // gradient clipping
  1710. } adam;
  1711. // LBFGS parameters
  1712. struct {
  1713. int m; // number of corrections to approximate the inv. Hessian
  1714. int n_iter;
  1715. int max_linesearch;
  1716. float eps; // convergence tolerance
  1717. float ftol; // line search tolerance
  1718. float wolfe;
  1719. float min_step;
  1720. float max_step;
  1721. enum ggml_linesearch linesearch;
  1722. } lbfgs;
  1723. };
  1724. struct ggml_opt_context {
  1725. struct ggml_context * ctx;
  1726. struct ggml_opt_params params;
  1727. int iter;
  1728. int64_t nx; // number of parameter elements
  1729. bool just_initialized;
  1730. float loss_before;
  1731. float loss_after;
  1732. struct {
  1733. struct ggml_tensor * g; // current gradient
  1734. struct ggml_tensor * m; // first moment
  1735. struct ggml_tensor * v; // second moment
  1736. struct ggml_tensor * pf; // past function values
  1737. float fx_best;
  1738. float fx_prev;
  1739. int n_no_improvement;
  1740. } adam;
  1741. struct {
  1742. struct ggml_tensor * x; // current parameters
  1743. struct ggml_tensor * xp; // previous parameters
  1744. struct ggml_tensor * g; // current gradient
  1745. struct ggml_tensor * gp; // previous gradient
  1746. struct ggml_tensor * d; // search direction
  1747. struct ggml_tensor * pf; // past function values
  1748. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1749. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1750. struct ggml_tensor * lms; // the L-BFGS memory s
  1751. struct ggml_tensor * lmy; // the L-BFGS memory y
  1752. float fx_best;
  1753. float step;
  1754. int j;
  1755. int k;
  1756. int end;
  1757. int n_no_improvement;
  1758. } lbfgs;
  1759. };
  1760. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1761. // optimize the function defined by the tensor f
  1762. GGML_API enum ggml_opt_result ggml_opt(
  1763. struct ggml_context * ctx,
  1764. struct ggml_opt_params params,
  1765. struct ggml_tensor * f);
  1766. // initialize optimizer context
  1767. GGML_API void ggml_opt_init(
  1768. struct ggml_context * ctx,
  1769. struct ggml_opt_context * opt,
  1770. struct ggml_opt_params params,
  1771. int64_t nx);
  1772. // continue optimizing the function defined by the tensor f
  1773. GGML_API enum ggml_opt_result ggml_opt_resume(
  1774. struct ggml_context * ctx,
  1775. struct ggml_opt_context * opt,
  1776. struct ggml_tensor * f);
  1777. // continue optimizing the function defined by the tensor f
  1778. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1779. struct ggml_context * ctx,
  1780. struct ggml_opt_context * opt,
  1781. struct ggml_tensor * f,
  1782. struct ggml_cgraph * gf,
  1783. struct ggml_cgraph * gb,
  1784. ggml_opt_callback callback,
  1785. void * callback_data);
  1786. //
  1787. // tensor flags
  1788. //
  1789. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  1790. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  1791. //
  1792. // quantization
  1793. //
  1794. // - ggml_quantize_init can be called multiple times with the same type
  1795. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1796. // automatically called by ggml_quantize_chunk for convenience
  1797. //
  1798. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1799. // call this at the end of the program to avoid memory leaks
  1800. //
  1801. // note: these are thread-safe
  1802. //
  1803. GGML_API void ggml_quantize_init(enum ggml_type type);
  1804. GGML_API void ggml_quantize_free(void);
  1805. // TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
  1806. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1807. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1808. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1809. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1810. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1811. GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1812. GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1813. GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1814. GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1815. GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1816. // some quantization type cannot be used without an importance matrix
  1817. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1818. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1819. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst,
  1820. int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
  1821. //
  1822. // gguf
  1823. //
  1824. enum gguf_type {
  1825. GGUF_TYPE_UINT8 = 0,
  1826. GGUF_TYPE_INT8 = 1,
  1827. GGUF_TYPE_UINT16 = 2,
  1828. GGUF_TYPE_INT16 = 3,
  1829. GGUF_TYPE_UINT32 = 4,
  1830. GGUF_TYPE_INT32 = 5,
  1831. GGUF_TYPE_FLOAT32 = 6,
  1832. GGUF_TYPE_BOOL = 7,
  1833. GGUF_TYPE_STRING = 8,
  1834. GGUF_TYPE_ARRAY = 9,
  1835. GGUF_TYPE_UINT64 = 10,
  1836. GGUF_TYPE_INT64 = 11,
  1837. GGUF_TYPE_FLOAT64 = 12,
  1838. GGUF_TYPE_COUNT, // marks the end of the enum
  1839. };
  1840. struct gguf_context;
  1841. struct gguf_init_params {
  1842. bool no_alloc;
  1843. // if not NULL, create a ggml_context and allocate the tensor data in it
  1844. struct ggml_context ** ctx;
  1845. };
  1846. GGML_API struct gguf_context * gguf_init_empty(void);
  1847. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1848. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1849. GGML_API void gguf_free(struct gguf_context * ctx);
  1850. GGML_API const char * gguf_type_name(enum gguf_type type);
  1851. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1852. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1853. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1854. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1855. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1856. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1857. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1858. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1859. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1860. // will abort if the wrong type is used for the key
  1861. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1862. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1863. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1864. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1865. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1866. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1867. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1868. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1869. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1870. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1871. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1872. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1873. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1874. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1875. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1876. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1877. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1878. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1879. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1880. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1881. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1882. // overrides existing values or adds a new one
  1883. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1884. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1885. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1886. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1887. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1888. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1889. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1890. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1891. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1892. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1893. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1894. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1895. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1896. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1897. // set or add KV pairs from another context
  1898. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1899. // manage tensor info
  1900. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1901. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1902. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1903. // writing gguf files can be done in 2 ways:
  1904. //
  1905. // - write the entire gguf_context to a binary file in a single pass:
  1906. //
  1907. // gguf_write_to_file(ctx, fname);
  1908. //
  1909. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1910. //
  1911. // FILE * f = fopen(fname, "wb");
  1912. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1913. // fwrite(f, ...);
  1914. // void * data = gguf_meta_get_meta_data(ctx);
  1915. // fseek(f, 0, SEEK_SET);
  1916. // fwrite(f, data, gguf_get_meta_size(ctx));
  1917. // free(data);
  1918. // fclose(f);
  1919. //
  1920. // write the entire context to a binary file
  1921. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1922. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1923. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1924. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1925. //
  1926. // system info
  1927. //
  1928. GGML_API int ggml_cpu_has_avx (void);
  1929. GGML_API int ggml_cpu_has_avx_vnni (void);
  1930. GGML_API int ggml_cpu_has_avx2 (void);
  1931. GGML_API int ggml_cpu_has_avx512 (void);
  1932. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1933. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1934. GGML_API int ggml_cpu_has_fma (void);
  1935. GGML_API int ggml_cpu_has_neon (void);
  1936. GGML_API int ggml_cpu_has_arm_fma (void);
  1937. GGML_API int ggml_cpu_has_metal (void);
  1938. GGML_API int ggml_cpu_has_f16c (void);
  1939. GGML_API int ggml_cpu_has_fp16_va (void);
  1940. GGML_API int ggml_cpu_has_wasm_simd (void);
  1941. GGML_API int ggml_cpu_has_blas (void);
  1942. GGML_API int ggml_cpu_has_cublas (void);
  1943. GGML_API int ggml_cpu_has_clblast (void);
  1944. GGML_API int ggml_cpu_has_vulkan (void);
  1945. GGML_API int ggml_cpu_has_kompute (void);
  1946. GGML_API int ggml_cpu_has_gpublas (void);
  1947. GGML_API int ggml_cpu_has_sse3 (void);
  1948. GGML_API int ggml_cpu_has_ssse3 (void);
  1949. GGML_API int ggml_cpu_has_sycl (void);
  1950. GGML_API int ggml_cpu_has_vsx (void);
  1951. GGML_API int ggml_cpu_has_matmul_int8(void);
  1952. //
  1953. // Internal types and functions exposed for tests and benchmarks
  1954. //
  1955. #ifdef __cplusplus
  1956. // restrict not standard in C++
  1957. #define GGML_RESTRICT
  1958. #else
  1959. #define GGML_RESTRICT restrict
  1960. #endif
  1961. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1962. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1963. typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
  1964. const void * GGML_RESTRICT y, size_t by, int nrc);
  1965. typedef struct {
  1966. const char * type_name;
  1967. int blck_size;
  1968. size_t type_size;
  1969. bool is_quantized;
  1970. ggml_to_float_t to_float;
  1971. ggml_from_float_t from_float;
  1972. ggml_from_float_t from_float_reference;
  1973. ggml_vec_dot_t vec_dot;
  1974. enum ggml_type vec_dot_type;
  1975. int64_t nrows; // number of rows to process simultaneously;
  1976. } ggml_type_traits_t;
  1977. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  1978. #ifdef __cplusplus
  1979. }
  1980. #endif